
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 1–15

SCHEDULING SPLIT INTERVALS∗

R. BAR-YEHUDA† , M. M. HALLDÓRSSON‡ , J. (S.) NAOR† , H. SHACHNAI† ,

AND I. SHAPIRA†

Abstract. We consider the problem of scheduling jobs that are given as groups of nonintersecting
segments on the real line. Each job Jj is associated with an interval, Ij , which consists of up to t
segments, for some t ≥ 1, and a weight (profit), wj ; two jobs are in conflict if their intervals intersect.
Such jobs show up in a wide range of applications, including the transmission of continuous-media
data, allocation of linear resources (e.g., bandwidth in linear processor arrays), and computational
biology/geometry. The objective is to schedule a subset of nonconflicting jobs of maximum total
weight.

Our problem can be formulated as the problem of finding a maximum weight independent set
in a t-interval graph (the special case of t = 1 is an ordinary interval graph). We show that, for
t ≥ 2, this problem is APX-hard, even for highly restricted instances. Our main result is a 2t-
approximation algorithm for general instances. This is based on a novel fractional version of the
Local Ratio technique. One implication of this result is the first constant factor approximation
for nonoverlapping alignment of genomic sequences. We also derive a bicriteria polynomial time
approximation scheme for a restricted subclass of t-interval graphs.

Key words. interval graph, independent set, scheduling, approximation algorithm

AMS subject classifications. 68Q25, 68W25, 90C59

DOI. 10.1137/S0097539703437843

1. Introduction. We consider the problem of scheduling jobs that are given as
groups of nonintersecting segments on the real line. Each job Jj is associated with a
t-interval, Ij , which consists of up to t disjoint segments, for some t ≥ 1, and a weight
(profit), wj ; two jobs are in conflict if any of their segments intersect. The objective
is to schedule on a single machine a subset of nonconflicting jobs whose total weight
is maximum.

An instance of our problem can be modeled as the intersection graph of t-intervals,
known as a t-interval graph. Each vertex in the graph corresponds to an interval that
has been “split” into t parts, or segments, such that two vertices u and v are adjacent
if and only if some segment in the interval corresponding to u intersects with some
segment in the interval corresponding to v (see Figure 1). In the special case where
intersections can occur only between the ith segments of two intervals, 1 ≤ i ≤ t, we
get the subclass of t-union graphs. (A precise definition is given in section 2.1.) Note
that 1-interval graphs are precisely interval graphs. Our problem can be viewed as the
maximum weight independent set (MWIS) problem restricted to a weighted t-interval
graph G(V,E), where we seek a subset of nonadjacent vertices U ⊆ V , such that the
weight of U is maximized.

∗Received by the editors November 25, 2003; accepted for publication (in revised form) August
7, 2004; published electronically April 21, 2006. A preliminary version appeared in the Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp. 732–741.

http://www.siam.org/journals/sicomp/36-1/43784.html
†Computer Science Department, Technion, Haifa 32000, Israel (reuven@cs.technion.ac.il,

naor@cs.technion.ac.il, hadas@cs.technion.ac.il, csira@cs.technion.ac.il). The research of the first
author was supported by the fund for the promotion of research at the Technion. The research
of the third author was supported in part by US-Israel BSF grant 2002276 and by EU contract
IST-1999-14084 (APPOL II).

‡Department of Computer Science, University of Iceland, IS-107 Reykjavik, Iceland (mmh@hi.is).

1

2 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

� �

�

�
�
�
��

�

��

a b

c d

e

(a)

� �

� �

�

�
�
�
��

�

��

a1 b1

c1 d1

e

a2 b2

c2
�

d2
�

(b)

a1 a2

b1 b2

c1 c2

d1 d2

e

(c)

Fig. 1. A 2-interval graph (a), corresponding interval (segment intersection) graph (b), and
interval system (c).

We describe below several practical scenarios involving t-interval graphs.
Transmission of continuous-media data. Traditional multimedia servers transmit

data to the clients by broadcasting video programs at prespecified times. Modern
systems allow us to replace broadcasts with the allocation of video data streams
to individual clients upon request for some time interval (see, e.g., [34, 6]). In this
operation mode, a client may wish to take a break and resume viewing the program
at some later time. This scenario is natural in, for example, video programs that are
used in remote education [25].

Suppose that a client starts viewing a program at time t0. At time t1 the client
takes a break and resumes viewing the program at t2, until the end of the program
(at t3). This scenario can be described by a split interval, I, that consists of two
segments: I1 = (t0, t1) and I2 = (t2, t3).

The scheduler may get many requests formed as split intervals; each request is
associated with a profit which is gained by the system only if all of the segments cor-
responding to the request are scheduled. The goal is to schedule a subset of nonover-
lapping requests that maximizes the total profit, i.e., find an MWIS in the intersection
graph of the split intervals.

Most of the previous work in this area describes analytic models (e.g., [31]) or
experimental studies in which VCR-like operations can be used by the clients (see
[6, 12, 34, 45]); however, these studies focus on the efficient use of system resources
while supporting such operations rather than on the scheduling problem.

Linear resource allocation. Another application is allocation of multiple linear
resources [22]. Requests for a linear resource can be modeled as intervals on a line;
two requests for a resource can be scheduled together unless their intervals overlap.
A disk drive is a linear resource when requests are for contiguous blocks [38]. A linear
array network is a linear resource, since a request for bandwidth between processors
i and j requires that bandwidth be allocated on all intervening edges. Consider a
computer system that consists of a linear array network and a large disk, shared by
a set of processors. A scheduler must decide when to schedule requests, where each
request may comprise of distinct requests to these two linear resources, e.g., “a certain
amount of bandwidth between processors 4 and 7, and a lock on blocks 1000-1200 of
the disk.” Two requests are in conflict if they overlap on the disk or in their bandwidth
requirements. Thus, when the goal is to maximize the number of requests satisfied
by the system, we get an instance of the MWIS problem on the subclass of 2-union
graphs. Indeed, each segment in a 2-interval represents an allocation of one of the
resources (e.g., the first segment is bandwidth allocation, and the second segment is
the allocation of blocks on the disk to a given request). In general, with t different
resources we get an instance of the MWIS on a t-union graph.

SCHEDULING SPLIT INTERVALS 3

Genomic sequence similarity. One of the more fundamental problems in com-
putational biology is to determine the similarity of substructures. We consider here
genomic sequences (DNA, protein) and define the substructures to be contiguous
subsequences. The similarity score of a substructure is generally related to the local
alignment, or editing distance, between the two subsequences.

When considering the total similarity of two whole sequences, we can view this
as being made up by the combination of individual substructures. Due to genomic
rearrangements, the order of the subsequences need not be preserved between the two
genomes. The nonoverlapping local alignment problem seeks a collection of substruc-
tures, each corresponding to pairs (Si, Ti) of subsequences of the genomes S and T ,
where none of the subsequences overlap (neither in S nor in T). The objective is to
maximize the sum of the similarity scores of the substructures.

As an example, suppose S = xxxAxxBC and T = C ′yyA′zzB′, where A, B, and
C are sequences with similarity scores of 15, 20, and 11 to sequences A′, B′, and C ′,
respectively. Then, the total similarity of S and T would be 46.

We may assume that the input sequences have been preprocessed to give sub-
sequence pairs with nonzero similarity. Each such substructure (Si, Ti) corresponds
to a 2-interval, formed by the interval that Si forms with S one on hand, and the
interval that Ti forms with T on the other hand. The nonoverlapping restriction of
the problem implies that the set of 2-intervals that we find needs to be mutually
independent. Hence, the nonoverlapping local alignment problem corresponds to the
MWIS in 2-union graphs.

The common total similarity of t sequences simultaneously can similarly be mod-
eled as the MWIS problem in t-union graphs. Previously, the problem was considered
only in the case where the projections of input boxes did not contain one another, i.e.,
the case of proper t-union graphs. While making the problem easier, this restriction
is not intrinsic to the biological problem.

Computational geometry. The problem of finding an independent set among a set
of multidimensional axis-parallel boxes is of independent interest in computational
geometry. It corresponds to the MWIS problem in t-union graphs.

1.1. Our results. We provide a comprehensive study of the MWIS problem
in t-interval graphs. In section 2, we show that the problem is APX-hard even on
highly restricted instances, namely, on (2, 2)-union graphs (defined in section 2.1). In
section 3 we discuss some structural properties of t-interval graphs. In particular, we
derive a bound on the inductiveness of a t-interval graph. As a corollary, we extend
the best bound known on the chromatic number of t-interval graphs of Gyárfás [18].
We show this bound to be asymptotically optimal.

In section 3.2, we study the MWIS problem on 2-interval graphs. We show that
a simple greedy algorithm achieves the factor O(min{logR, log n}), where R is the
ratio between the longest and shortest segments in the instance.

Our main result (in section 4) is a 2t-approximation algorithm for the MWIS
in any t-interval graph, for t ≥ 2, which is based on a novel fractional version of the
Local Ratio technique. (The Local Ratio technique was first developed in [5] and later
extended by [2, 4].) We use the fractional Local Ratio technique to round a fractional
solution obtained from a linear programming relaxation of our problem. We expect
that our nonstandard use of the Local Ratio technique will find more applications.
Indeed, recently, this technique was used for obtaining improved bounds for the MWIS
in the intersection graph of axis-parallel rectangles in the plane [32].

As we shall see, the MWIS in t-interval graphs properly includes the k-dimensional

4 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

matching problem. For this unweighted problem the best approximation factor known
is k/2+ε, for any ε > 0 [26]. Hazan, Safra, and Schwartz [24] have recently shown that
it is hard to approximate the k-dimensional matching problem within an O(k/ log k)
factor unless P = NP. Thus, our results are close to best possible.

For the class of t-union graphs, we develop (in section 5) a (1, 1+ε)-approximation
scheme with respect to the optimal profit and the latest completion time of any interval
in some optimal solution. In particular, our scheme gets as parameter TO the latest
completion time of an interval in some optimal schedule and outputs a subset of
intervals of optimal profit, in which the latest completion time of any interval is at
most TO(1 + ε).

1.2. Related work. We mention below several works that are related to ours.
Split interval graphs. Many NP-hard problems, including the MWIS problem

[15, 16], can be solved efficiently in interval graphs. Split interval graphs have a long
history in graph theory [43, 17, 39, 44], and more recently, union graphs have been
studied under the name of multitrack interval graphs [30, 19, 29]. We mention some of
the main results. For any fixed t ≥ 2, determining whether a given graph is a t-interval
(t-union) graph is NP-complete [44] ([19], respectively). 2-union graphs contain trees
[43, 30] and more generally all outerplanar graphs [29], while 3-interval graphs contain
the class of planar graphs [39]. Graphs of maximum degree Δ are � 1

2 (Δ+1)�-interval
graphs [17]. The complete bipartite graph, Km,n, is a t-interval and t-union graph for
t = �(mn + 1)/(m + n)� [43, 19].

Union graphs, which constitute a subfamily of split interval graphs, were also
considered in several papers. Bafna, Narayanan, and Ravi [3] considered the problem
of finding a weighted independent set in t-union graphs in the context of an application
coming from computational biology. The union graphs considered in [3] are proper;
i.e., there is no containment between segments. For the weighted independent set
problem in proper t-union graphs, the paper [3] shows that the problem is NP-hard
and gives a (2t−1+1/2t)-approximation algorithm. This is obtained by mapping the
problem to the MWIS in (2t + 1)-claw free graphs, noting that proper t-union graphs
are (2t + 1)-claw free. Recently, Chleb́ık and Chleb́ıkova [11] showed that proper
t-union graphs are (2t + 1)-claw free. Using an algorithm of Berman [7] this gives a
(t+ 1/2)-approximation of the MWIS in proper t-union graphs. Berman, DasGupta,
and Muthukrishnan showed in [8] that a simple O(n log n) algorithm (based on the
Local Ratio technique) yields a factor of 3 for proper 2-union graphs.

Coupled-task and flow shop scheduling. The problem of scheduling 2-intervals
(known as coupled-task scheduling) was considered in the area of machine scheduling,
with the objective of minimizing the overall completion time, or makespan (see, e.g.,
[35, 41]). Relaxed versions of the problem that require only a lower bound on the time
that elapses between the schedules of the two tasks of each job (also called time-lag
problems) were studied, e.g., in [37, 13, 10].

An instance of our problem can be viewed as an instance of the flow shop problem,
in which the segments and break times are represented by tasks that need to be
processed on a set of m = 2t + 1 machines. (The precise transformation is given
in section 5.) In general, the flow shop problem, where the objective is to minimize
the makespan, is NP-complete even on three machines [14]. The best result known
is the O(log2(mμ)/ log log(mμ))-approximation algorithm, where μ is the maximum
number of operations per job, and m is the number of machines [40, 42]. Hall [20]
gave a polynomial time approximation scheme (PTAS) for this problem in the case
where m is fixed (but arbitrary).

SCHEDULING SPLIT INTERVALS 5

2. Preliminaries.

2.1. Definitions and notation. Given a t-interval graph, G = (V,E), we as-
sume that each vertex v ∈ V is mapped to a set of at most t segments, and we call v a
split interval. Suppose that segment I is one of the segments that vertex v is mapped
to; then we say that I belongs to v and denote it by (v, I). We denote by I(G) the
collection of segments (or intervals) on the real line, partitioned into disjoint groups,
where each group is associated with a split interval. A t-interval graph is proper if no
segment properly contains another segment.

In the subfamily of t-union graphs, the segments associated with each vertex can
be labeled in such a way that for any two vertices u and v, the ith segment of u and the
�th segment of v never intersect for 1 ≤ i, � ≤ t, and i �= �. Union graphs correspond
also to certain geometric intersection graphs. The t segments are viewed as intervals
on orthogonal axes, corresponding to a t-dimensional box; two boxes intersect if their
projections on any of the t axes do. We further define subclasses of union graphs,
where coordinates are all integral and segments are half-open. In (a, b)-union graphs,
a subclass of 2-union graphs, all x-segments are of length a and all y-segments are of
length b.

Given a graph G = (V,E), we denote by N(v) the set of neighbors of v ∈ V , and
by N [v] the closed neighborhood of v, {v}∪N(v). A (k+1)-claw is a graph consisting
of a center vertex adjacent to k + 1 mutually nonadjacent vertices. A graph is called
(k + 1)-claw free if it contains no k-claw as an induced subgraph.

Finally, we define our performance measures. Denote by OPT an optimal al-
gorithm. The approximation factor of an algorithm A is r if for every finite input
instance I, A(I)/OPT (I) ≥ 1/r, where A(I) and OPT (I) are the values of A and
OPT on I. A polynomial time approximation scheme (PTAS) is an algorithm which
takes as input both the instance I and an error bound ε, has performance guaran-
tee R(I, ε) ≤ (1 + ε), and runs in time polynomial in |I|. A (β, ε) bicriteria PTAS
is a PTAS which is a β-approximation in one optimization criterion and a (1 + ε)-
approximation in the other criterion.

2.2. Hardness results. The independent set problem in interval graphs is easy
to solve exactly, since interval graphs always contain a simplicial vertex, i.e., a vertex
whose neighborhood is a clique. In fact, most approximation algorithms for indepen-
dent sets on geometric intersection graphs are based on a related relaxed property:
there always exists a vertex whose neighborhood does not contain a large independent
set. We first show that for general t-interval graphs this property does not hold.

Observation 2.1. For any n ≥ 2, there exists a 2-interval graph G on n vertices,
in which every vertex has Ω(

√
n) independent neighbors.

Proof. We show how to construct a 2-interval graph, in which every vertex has
k independent neighbors. We construct the graph from (k + 1) sets of intervals; each
set consists of k intervals, and each interval is composed of two segments: a short
segment and a long segment. All the short segments in the input are of the same
length, and likewise for all the long segments.

The graph is constructed as follows. For � = 1, . . . , k, all the short segments of
the intervals in the �th set, I�1, . . . , I

�
k, intersect the long segments of the �th intervals

in the sets 1, . . . , k+1, i.e., I1
� , . . . , I

k+1
� , excluding I�� . Finally, all the short segments

of the intervals in the (k + 1)th set intersect the long segment of the interval I�� ,
1 ≤ � ≤ k (see Figure 2). Thus, we get that any interval I�j with � �= j intersects k

nonintersecting intervals in the jth set, and I�� intersects k nonintersecting intervals

6 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

I1
1 I1

2 ...
I1
k

I2
1

I3
1

...
Ik+1
1

I2
1 I2

2 ...
I2
k

I1
2

I3
2

...
Ik+1
2

...
Ik+1
1 Ik+1

2 ...
Ik+1
k

...

...

...

I1
1

I2
2

...
Ikk

Fig. 2. A 2-interval graph in which every vertex has k independent neighbors.

in the (k + 1)th set.
Note that since k(k + 1) ≤ n, we may have some remaining intervals, which are

not contained in any set. We can place the segments of each such interval on the
line such that its long segment intersects all the intervals in the �th set, for some
1 ≤ � ≤ k + 1, providing that interval with k independent neighbors.

We note that the above construction can be modified to hold for 2-union graphs.
We now give a structural result that implies hardness of approximation for a highly
restricted class of proper 2-union graphs. A degree-3 graph is one of maximum de-
gree 3.

Theorem 2.2. The class of (2, 2)-union graphs includes the class of degree 3.
Proof. A linear forest is a collection of disjoint paths. A path can be repre-

sented as a collection of length-2 half-closed intervals between integral endpoints,
e.g., [0, 2), [1, 3), [2, 4), etc. Thus, a union of a pair of linear forests can be represented
as a (2, 2)-union graph. Akiyama, Exoo, and Harary [1] showed that degree-3 graphs
can be represented as a union of two linear forests. Namely, they showed that for a
degree-3 graph G, we have that la(G) = 2, where la(G) denotes the linear arboricity
of G or the minimum number of classes in a partition of E(G) such that each class
induces a linear forest.

It follows that the MWIS problem is APX-hard on unweighted (2, 2)-union graphs,
since the (unweighted) MIS problem is APX-hard on degree-3 graphs (see [9, 23]). It
also implies equivalent hardness results for other optimization problems that are hard
to approximate on degree-3 graphs.

Corollary 2.3. The MWIS problem is APX-hard on unweighted (2, 2)-union
graphs.

Segments of unit size, whose start points are integral, are called unit segments.
t-interval graphs of unit segments can be characterized precisely.

For some k > 1, let S = {1, 2, . . . , n}, and let C be a collection of subsets of S,
where each subset is of size at most k. The k-set packing problem is that of finding
a maximum cardinality subcollection C ′ ⊆ C, such that the intersection of any two
sets in C ′ is empty. In the weighted version, each subset has a weight, and we seek a
subcollection C ′ of maximum weight.

Lemma 2.4. The k-set packing problem is equivalent to the MWIS in the special
class of k-interval graphs of unit segments.

Proof. There is a bijective mapping between unit segments and the set S, where
[i, i+ 1) maps to i for all values of i. Thus, there is a bijective mapping between sets
of up to k elements from S and sets of up to k unit segments.

A special case of k-set packing is the k-dimensional matching problem. Here,
S is partitioned into subsets S1, S2, . . . , Sk, and each set in C contains exactly one
element from each Si. The k-dimensional matching problem is similarly equivalent to

SCHEDULING SPLIT INTERVALS 7

the MWIS in the special class of k-union graphs of unit segments. The former problem
is NP-hard to approximate within factor O(k/ log k) [24], while the best factor known
is k/2 + ε for any ε > 0 [26]. We note that the 2-set packing problem is equivalent
to the (polynomially solvable) edge cover problem, while 3-dimensional matching is
APX-hard [36].

Corollary 2.5. The MWIS problem in (1, 1)-interval graphs is polynomial solv-
able. The MWIS problem in (1, 1, 1)-union graphs is APX-hard.

The correspondence between (1, 1)-union graphs to line graphs of bipartite graphs,
and the resulting polynomial solvability of the MWIS problem, was shown by Halldórs-
son et al. [22].

3. Greedy algorithms.

3.1. Coloring t-interval graphs. For a t-interval graph G (see in Figure 1(a)
for t = 2), let G∗ denote the graph formed by the intersection of the segments of the
intervals (Figure 1(b)). The clique number, ω(G∗), denotes the maximum number of
segments crossing a point on the real line.

Theorem 3.1. For any t-interval graph G, there is a vertex v in G such that

d(v) ≤ 2t(ω(G∗) − 1) − 1.

Proof. Since each vertex in G corresponds to up to t vertices of G∗, |V (G∗)| ≤
t · |V (G)|, and since each edge in G corresponds to one or more edges in G∗, |E(G)| ≤
|E(G∗)|. Since G∗ is an interval graph, there is a simplicial ordering of the graph
so that each vertex vi has at most ω(G∗) − 1 neighbors among the vertices vi+1,
Thus, the number of edges in G∗ is at most (ω(G∗) − 1)|V (G∗)|; in fact, it must
be strictly less, since the last vertex has later neighbors. It follows that the average
degree of G is bounded by

d(G) =
2|E(G)|
|V (G)| ≤ 2t

|E(G∗)|
|V (G∗)| < 2t(ω(G∗) − 1).

Hence, the minimum degree of G is at most 2t(ω(G∗) − 1) − 1.
This leads to a simple coloring algorithm: find a vertex v satisfying the lemma,

color the remaining graph G \ v, and finally color v with the smallest color not used
by previously colored neighbors. This results in a 2t(ω(G∗) − 1)-coloring.

The above gives a 2t-approximation for coloring t-interval graphs via a greedy
algorithm. Gyárfás [18] showed that the chromatic number of a t-interval graph G is
at most 2t(ω(G) − 1), where ω(G) is the clique number of the graph.

Corollary 3.2. A greedy algorithm colors G using 2t(ω(G∗) − 1) colors.
Observe that this bound is obtained without knowledge of the underlying interval

representation of G∗; this is important since deducing the representation is known to
be NP-hard [44]. We show that this is about the best bound on χ(G) one can obtain
in terms of ω(G∗), within a constant factor.

Lemma 3.3. For infinitely many t, there is a proper t-interval graph G such that
ω(G) = (t− 1)ω(G∗).

Proof. Let p be any prime number and Zp be the finite field over {0, 1, . . . , p−1}.
Let t = p + 1. Let Ci,j and Di, i, j ∈ Zp, be any disjoint unit segments. We shall
construct a system of t-intervals Ix,y, x, y ∈ Zp, and show that the t-intervals are
pairwise overlapping, i.e., that any pair contains a common segment.

Let Ix,y = {Ci,ix+y mod p : i ∈ Zp} ∪ {Dx} for each x, y ∈ Zp. Clearly, the sets
contain t segments each. Consider a pair of t-intervals Ix,y, Ix′,y′ . If x = x′, then both

8 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

t-intervals contain the segment Dx = Dx′ . Otherwise, there exists an i ∈ Zp that is a
solution to the modular equation i(x− x′) ≡ (y′ − y)(modp). Then, both t-intervals
Ix,y and Ix′,y′ contain the segment Ci,ix+y mod p = Ci,ix′+y′ mod p.

It follows that the intersection graph on these t-intervals is a clique on p2 = (t−1)2

vertices. On the other hand, each segment Ci,j is contained in exactly (t−1) t-intervals
Ix,y (namely, those for which j = ix+y mod p) and the same holds for each Di. Thus,
the clique number of G∗ is t− 1.

3.2. Greedy independent set algorithms. We study here a greedy algorithm
for the special case where t = 2, in order to motivate the use of more complicated
techniques in later sections.

Recall from Observation 2.1 that, in a 2-interval graph, the neighborhood of ev-
ery vertex may include many independent vertices. Thus, purely greedy methods are
bound to fail. Consider, for instance, the optimal greedy algorithm for independent
sets in interval graphs that iteratively adds the interval with the leftmost right end-
point. An analogous method for 2-interval graphs could be to iteratively select the
2-interval with the leftmost right endpoint of the first segment, among all 2-intervals
that do not intersect previously chosen 2-intervals. This algorithm, which we call
Sort-and-Select, cannot be expected to perform well on all 2-interval graphs. How-
ever, it performs well under certain circumstances, which allows us to partition the
instance into well-solvable subcases.

Theorem 3.4. Let G be a 2-interval graph where
• the first segment is no shorter than the second, and
• the ratio between the length of the shortest and longest second seg-
ment is at most 4.

Then, the approximation factor of Sort-and-Select is 6.
Proof. Let I be the interval chosen first by Sort-and-Select. We claim that I

intersects at most six independent intervals. Namely, the second segment of I is
at most four times the length of the shortest segment in the graph; as a result, it
intersects at most five independent segments/vertices. Also, since the first segment is
furthest to the left of all segments in the graph, it does not intersect two independent
vertices. Thus, among the intervals eliminated by the addition of I to the solution, the
optimal solution can contain at most six. By induction, the algorithm then achieves
an approximation factor of 6.

Using the Local Ratio technique, which is discussed in depth in the next section,
one can obtain the same factor for the weighted case. Also, by a similar argument,
one can argue a factor of 3 for the case of proper 2-interval graphs.

Given a general 2-interval graph, we first divide the intervals into those where the
first segment is shorter than the second segment and those where the first segment
is at least as long as the second. This gives us two instances, which can be viewed
as symmetric by reversing the direction of the real line. Thus, by increasing the
approximation factor by a factor of 2, we can assume that in our instance the first
segments are no shorter than the second segments.

We can partition the instance into (lgR)/2 subinstances, or buckets, where R is
the ratio between the longest to shortest (S) second segment. The bucket Gi consists
of intervals with second segments in the range [4i−1S, 4iS) for i = 1, 2, . . . , �(lgR)/2�.
Each bucket satisfies the conditions of Theorem 3.4; thus, the largest of the indepen-
dent sets found in each bucket by Sort-and-Select is a 6 lgR approximation.

Note that we can represent the n second segments in the input by 2n endpoints

SCHEDULING SPLIT INTERVALS 9

on the line, and we define the length of each segment as the number of endpoints that
lie between its left and right endpoints plus one. Then, the maximal possible length
of a segment is 2n−1, and the number of buckets is B = min{lgR, lg(2n−1)}. Hence,
we obtain the following result.

Theorem 3.5. There is a greedy partitioning algorithm for the maximum inde-
pendent set in 2-interval graphs achieving a factor of O(min{logR, log 2n}).

4. A 2t-approximation algorithm. We describe here a 2t-approximation al-
gorithm for the MWIS problem in a t-interval graph G = (V,E). The algorithm is
based on rounding a fractional solution derived from a linear programming relaxation
of the problem. The standard linear programming relaxation of the MWIS problem
is the following. For each v ∈ V , let x(v) be the linear relaxation of the indicator
variable for v, i.e., whether v belongs to the independent set. Let w,x ∈ R

|V | be a
weight vector and a relaxed indicator vector, respectively.

maximize w · x subject to:

for each clique C ∈ G:
∑
v∈C

x(v) ≤ 1

A feasible solution for the above linear program, whose value is an upper bound on
the MWIS problem in the graph, can be obtained from the Lovász ϑ-function [33].
However, as we shall see, it is not necessary to optimize over all cliques in the case of
t-interval graphs. We say that a clique C in the graph is an interval clique if for every
vertex v ∈ C, there is a segment I ∈ v such that the intersection of ((v, I)|v ∈ C) is
nonempty. It is easy to see that the interval cliques are defined by the set of right
endpoints of the segments in I(G) as follows. Each right endpoint z corresponds to the
clique defined by the vertices containing z. (See Figure 3 for an example.) Therefore,
the number of interval cliques in a t-interval graph is linear in the number of segments.

We now further relax the MWIS problem and consider only interval cliques. In
the integral case, let x(v) denote the indicator variable of vertex v, and for each I ∈ v,
x(v, I) = x(v). In the linear relaxation (P), for each interval clique C, we require that
the sum of the variables (v, I) ∈ C is at most 1. It suffices to require, for each vertex
v and I ∈ v, x(v, I) ≥ x(v), since only x(v) participates in the objective function, and
therefore in an optimal solution, without loss of generality, x(v, I) = x(v).

z

(v1, I1)

(v2, I2)

(v3, I3)

(v4, I4)

Fig. 3. The interval clique (v1, v2, v3, v4) is defined by z, the right endpoint of (v1, I1).

10 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

(P) maximize w · x subject to:

for each interval clique C:
∑

(v,I)∈C

x(v, I) ≤ 1

for each v ∈ V and I ∈ v: x(v, I) − x(v) ≥ 0

for each v ∈ V and I ∈ v: x(v), x(v, I) ≥ 0

Since the number of interval cliques in a t-interval graph is linear in the number of
segments, an optimal solution to (P) can be computed in polynomial time.

The heart of our rounding algorithm is the following lemma. It can be viewed as
a fractional analogue of Theorem 3.1.

Lemma 4.1. Let x be a feasible solution to (P). Then, there exists a vertex v ∈ V
satisfying

∑
u∈N [v]

x(u) ≤ 2t.

Proof. For two adjacent vertices u and v, define y(u, v) = x(v) · x(u). Define
y(u, u) = x(u)2. For a segment I, let R(I) be the interval clique defined by the right
endpoint of I (I ∈ R(I)). We prove the claim using a weighted averaging argument,
where the weights are the values y(u, v) for all pairs of adjacent vertices, u and v.

Consider the sum
∑

v∈V

∑
u∈N [v] y(u, v). An upper bound on this sum can be

obtained as follows. For each v ∈ V , consider all segments I ∈ v, and for each (v, I),
add up y(u, v) for all (u, J) that intersect with (v, I) (including (v, I)). In fact, it
suffices to add up y(u, v) only for segments (u, J) such that (u, J) ∈ R(I), and then
multiply the total sum by 2. This suffices because of the following: (a) If, for segments
(v, I) and (u, J), the right endpoint of I precedes the right endpoint of J , then (v, I)
“sees” (u, J) and vice-versa. Since y(u, v) = y(v, u), each of them contributes the
same value to the other. (b) For segments (v, I) and (u, J), the constraints of (P)
imply that x(v, I) = x(v) and x(u, J) = x(u). Hence, it follows from (a) and (b) that
the mutual contribution of two segments (u, J) and (v, I) that intersect depends only
on u and v; i.e., it is y(u, v). Thus,

∑
v∈V

∑
u∈N [v]

y(u, v) ≤ 2 ·
∑
v∈V

∑
I∈v

∑
(u,J)∈R(I)

y(u, v).

Since ∑
(u,J)∈R(I)

y(u, v) ≤ x(v) ·
∑

(u,J)∈R(I)

x(u) ≤ x(v),

we get that

∑
v∈V

∑
u∈N [v]

y(u, v) ≤ 2t ·
∑
v∈V

x(v).

Hence, there exists a vertex v satisfying

∑
u∈N [v]

y(u, v) ≤ 2t · x(v).(1)

SCHEDULING SPLIT INTERVALS 11

By factoring out x(v) from both sides of inequality (1), the statement of the lemma is
obtained.

We now define a fractional version of the Local Ratio technique. The proof of the
next lemma is immediate.

Lemma 4.2. Let x be a feasible solution to (P). Let w1 and w2 be a decomposition
of the weight vector w such that w = w1 +w2. Let r > 0. Suppose that y is a feasible
integral solution vector to (P) satisfying w1 ·y ≥ r(w1 ·x) and w2 ·y ≥ r(w2 ·x). Then,

w · y ≥ r(w · x).

The rounding algorithm will apply a Local Ratio decomposition of the weight
vector w with respect to an optimal solution x to linear program (P). The algorithm
proceeds as follows.

1. If no vertices remain, return the empty set. Otherwise, proceed to the next
step.

2. Define V0 = {v ∈ V |w(v) < 0}. If V0 is nonempty, return I, the recursive
solution for V \ V0. Otherwise, proceed to the next step.

3. Let v′ ∈ V be a vertex satisfying
∑

u∈N [v′] x(u) ≤ 2t. Decompose w by
w = w1 + w2 as follows:

w1(u) =

{
w(v′) if u ∈ N [v′],
0 otherwise.

(In the decomposition, the component w2 may be nonpositive.)
4. Solve the problem recursively using w2 as the weight vector. Let I ′ be the

independent set returned.
5. If I ′ ∪ {v′} is an independent set, return I = I ′ ∪ {v′}. Otherwise, return

I = I ′.
Clearly, the set I is an independent set. We now analyze the quality of the

solution produced by the algorithm.
Theorem 4.3. Let x be an optimal solution to linear program (P). Then, it

holds for the independent set I computed by the algorithm that w(I) ≥ 1
2t · w · x.

Proof. The proof is by induction on the number of vertices having positive weight.
Any vertex deleted by the algorithm is considered to have zero weight. At the basis
of the induction (Step 1), the inductive hypothesis holds, since the weight vector is
considered to be zero. We now prove the inductive step.

In Step 2, if V0 is nonempty, by the inductive hypothesis, w(I) ≥ 1
2t · w · x.

Extending w to include the nonpositive components that were deleted in Step 2 can
only decrease the right-hand side, and therefore the inequality still holds.

In Steps 3–5, let y and y′ be the indicator vectors of the sets I and I ′, respectively.
By the decomposition in Step 3, weight vector w2 has fewer positive weight vertices
than w. Therefore, by the inductive hypothesis, w2 · y′ ≥ (1/2t) · w2 · x. Since
w2(v

′) = 0, it also holds that w2 · y ≥ (1/2t) ·w2 · x. From Step 5 of the algorithm it
follows that at least one vertex from N [v′] belongs to I. Hence, w1 ·y ≥ (1/2t) ·w1 ·x.
Thus, by Lemma 4.2, it follows that

w · y ≥ 1

2t
· w · x.

We have thus proved that I is a 2t-approximate solution to the MWIS problem.

12 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

We now outline an alternative way of using Lemma 4.1 to obtain the same approx-
imation factor. Given an optimal solution x to linear program (P), a multicoloring of
V by a set X is a mapping ψ : V → 2X such that |ψ(v)| = x(v) for each vertex v, and
ψ(v) ∩ ψ(u) = ∅ for each edge (u, v) ∈ E(G). Since x is a feasible solution to (P), a
repeated application of Lemma 4.1 results in a multicoloring with values in the closed
interval [0, 2t].

To view this as a multicoloring, it may be easier to discretize the instance within
any desired precision by multiplying the x(v)’s by a sufficiently large integer L. Then
the values assigned are positive integers in the range 1, . . . , 2tL. A continuous view-
point is to assign each vertex a collection of contiguous segments; if we use Lemma 4.1
to assign the values one by one, we can always guarantee that a vertex v can be mapped
to segments from [0, 2t] of combined length x(v) without overlapping any of the seg-
ments to which its neighbors are mapped to. In fact, by always mapping a vertex
to the smallest available values, we need never use more than n disjoint segments for
any vertex.

Let 0 = z0 < z1 < · · · < zk−1 denote the values where the multicoloring changes,
and let zk = 2t. Thus, the coloring remains unchanged in the segment [zi, zi+1),
i = 0, . . . , k − 1. Consider the sets Si = {v ∈ V : xi ∈ ψ(v)} for i = 0, . . . , k − 1.
Since ψ is a multicoloring, the Si’s are independent sets in G. Let I be the set Si of
maximum weight,

∑
v∈Si

w(v).
Theorem 4.4. w(I) is a 2t-approximate independent set.
Proof. Observe that the number of color values to which vertex v is mapped is

x(v), and we can represent them by
∑

Si�v(zi − zi+1) = x(v). We have that

∑
v∈V

w(v)x(v) =
∑
v∈V

w(v)
∑
Si�v

(zi+1 − zi) =
∑
Si

(zi+1 − zi)
∑
v∈Si

w(v)

=

k−1∑
i=0

(zi+1 − zi)w(Si) ≤
k−1∑
i=0

(zi+1 − zi)w(I) = 2tw(I).

5. A bicriteria approximation scheme for union graphs. Recall that the
MWIS problem is APX-hard already on (2, 2)-union graphs. We consider below the
larger subclass of t-union graphs in which the possible number of segment lengths is
bounded by some constant. For this subclass we develop a bicriteria PTAS, which
finds an MWIS by allowing some delays in the schedule.

Let ci denote the number of distinct lengths of the ith segment, 1 ≤ i ≤ t, where
t is some constant. Recall that, in the flow shop problem, we are given a set of n
jobs, J1, . . . , Jn, that need to be processed on m machines, M1, . . . ,Mm; each job,
Jj , consists of m operations, Oj,1, . . . , Oj,m, where Oj,i must be processed without
interruptions on the machine Mi for pj,i time units. Any machine, Mi, can process
either a single operation at a time or an unbounded number of operations; in the latter
case we call Mi a nonbottleneck machine. Each job may be processed by at most one
machine at any time. For a given schedule, let Cj be the completion time of Jj .
The objective is to minimize the maximum completion time (or makespan), given by
Cmax = maxj Cj . Denote by C∗

max the optimal makespan.
An instance of our problem can be transformed to an instance of the flow shop

problem, where each job has 2t + 1 operations, and the machines M2i+1, 0 ≤ i ≤
t− 1, are nonbottleneck machines. In our transformation, we apply some ideas from
[27, 21, 28]. We represent each t-interval, Ij , as a job Jj , where each segment is
associated with an “operation” of the job. In addition, we simulate the breaks with

SCHEDULING SPLIT INTERVALS 13

operations of the same lengths that need to be processed on nonbottleneck machines.
Similarly, to include the release time rj of Ij , we add to Jj the operation Oj,1, whose
length is equal to rj ; the machine M1 is a nonbottleneck machine. Thus, if Ij has t
segments, Jj has 2t operations.

Recall that, in a union graph, each interval has a due date, dj , that is equal to its
release time plus the sum of its processing times and break times. To simulate these
due dates we define a delivery time, qj , for each job, Jj . Let qj = −dj . We add to Jj
the operation Oj,(2t+1), where pj,(2t+1) = qj , and M2t+1 is a nonbottleneck machine.
Our objective then is to minimize the maximum delivery completion time, given by
maxj{Cj + qj} = maxj{Cj − dj}. This is equivalent to minimizing the maximum
lateness of any job, given by Lj = Cj − dj . Hence, our objective can be viewed as
minimization of Lmax = maxj Lj .

Denote by TO the maximum completion time of an optimal solution for the MWIS
instance. Since we look for an MWIS that can be scheduled with maximum lateness
at most εTO, we slightly modify the definition of lateness. Let d̃j = dj − TO; then,

for any j, d̃j ≤ 0. By setting qj = −d̃j , we get that all the delivery times are positive.
The maximum lateness is now given by Lmax = maxj{Cj −dj +TO}. Indeed, for any
job Jj , Cj ≥ dj ; therefore, Lmax ≥ TO, and since in any optimal schedule there are
no “late” jobs, the minimal lateness is L∗

max = TO.
Our scheme uses as procedure a PTAS for finding a (1+ ε)-approximation for the

flow shop makespan problem with a fixed number of machines (see, e.g., [20]). We
represent a t-interval Ij by a (2t+1)-vector (pj,1, . . . , pj,2t+1), where pj,1 is the release
time, pj,2i (pj,2i+1), is the length of the ith segment (break), 1 ≤ i < t, and pj,2t+1

(= qj) is the delivery time of the corresponding job, Jj .
Below we summarize the steps of our scheme, which gets as parameters the value

of TO and some ε > 0.
1. We scale the parameter values for Jj ; that is, we divide the processing and

release times by TO and round each release time down and each break time
up to the nearest multiple of ε.

2. We guess O, the number of intervals scheduled by OPT .
3. We guess the subset SO of O intervals of maximal weight, scheduled by OPT .

This is done by guessing the set of vectors representing SO, among which we
choose the subset of intervals of maximum weight.

4. Using a PTAS for minimizing the makespan in the flow shop instance of SO,
we find a schedule of SO for which Lmax ≤ (1 + ε)L∗

max.
Note that due to the above rounding, we need to add ε to the release times; also,

each break time may delay the optimal completion time by ε. Therefore, by taking
ε′ = ε/2t we guarantee that the delay of each interval is at most (1 + ε) times TO.
Finally, we set Lj = Lj − TO; thus, the maximum lateness of any job in our schedule
is equal to at most εTO = εC∗

max.
For the complexity of the scheme, note that Steps 1 and 2 take linear time, and

since the possible number of vectors (pj,1, . . . pj,2t+1) is (2t/ε)t
∏t

i=1 ci, we can guess

SO in O(n(tt
∏t

i=1
ci)/ε

t

) steps. This is multiplied by the complexity of the PTAS for
the flow shop.

Theorem 5.1. Let t ≥ 1 be some fixed constant. Given a t-union graph with
a constant number of distinct segment lengths, let W be the weight of an optimal
MWIS, whose latest completion time is TO. Then, for any ε > 0, there is a PTAS
that schedules an independent set of weight at least W, such that any interval is late
by at most εTO.

14 BAR-YEHUDA, HALLDÓRSSON, NAOR, SHACHNAI, SHAPIRA

Acknowledgments. We thank Yossi Azar for many helpful comments on this
paper. We also thank two anonymous referees for insightful comments and sugges-
tions.

REFERENCES

[1] J. Akiyama, G. Exoo, and F. Harary, Covering and packing in graphs III: Cyclic and acyclic
invariants, Math. Slovaca, 30 (1980), pp. 405–417.

[2] V. Bafna, P. Berman, and T. Fujito, A 2-approximation algorithm for the undirected feed-
back vertex set problem, SIAM J. Discrete Math., 12 (1999), pp. 289–297.

[3] V. Bafna, B. Narayanan, and R. Ravi, Nonoverlapping local alignments (weighted indepen-
dent sets of axis parallel rectangles), Discrete Appl. Math., 71 (1996), pp. 41–53.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B.Schieber, A unified approach to
approximating resource allocation and scheduling, J. ACM, 48 (2001), pp. 1069–1090.

[5] R. Bar-Yehuda and S. Even, A local ratio theorem for approximating the weighted vertex
cover problem, Ann. Discrete Math., 25 (1985), pp. 27–46.

[6] P. Basu, A. Narayanan, R. Krishnan, and T. D. C. Little, An implementation of dynamic
service aggregation for interactive video delivery, in Proceedings of SPIE—Multimedia
Computing and Networking, San Jose, CA, 1998, pp. 110–112.

[7] P. Berman, A d/2-approximation for maximum weight independent set in d-claw free graphs,
Nordic J. Comput., 7 (2000), pp. 178–184.

[8] P. Berman, B. DasGupta, and S. Muthukrishnan, Simple approximation algorithm for
nonoverlapping local alignments, in Proceedings of the 13th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2002, pp. 677–678.

[9] P. Berman and T. Fujito, Approximating independent sets in degree 3 graphs, in Proceedings
of the 4th Workshop on Algorithms and Data Structures (WADS’95), Lecture Notes in
Comput. Sci. 955, Springer-Verlag, New York, 1995, pp. 449–460.

[10] P. Brucker, T. Hilbig, and J. Hurink, A branch and bound algorithm for a single-machine
scheduling problem with positive and negative time-lags, Discrete Appl. Math., 94 (1999),
pp. 77–99.

[11] M. Chleb́ık and J. Chleb́ıkova, Approximation hardness of optimization problems in in-
tersection graphs of d-dimensional boxes, in Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2005, pp. 267–
276.

[12] A. Dan, P. Shahabuddin, and D. Sitaram, Channel Allocation under Batching and VCR
Control in Movie-On-Demand Servers, IBM Research Report RC19588, IBM, Yorktown
Heights, NY, 1994.

[13] M. Dell‘Amico, Shop problems with two machines and time lags, Oper. Res., 44 (1996),
pp. 777–787.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

[15] F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques,
and maximum independent set of a chordal graph, SIAM J. Comput., 1 (1972), pp. 180–
187.

[16] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[17] J. R. Griggs and D. B. West, Extremal values of the interval number of a graph, SIAM J.
Algebraic Discrete Methods, 1 (1980), pp. 1–7.

[18] A. Gyárfás, On the chromatic number of multiple interval graphs and overlap graphs, Discrete
Math., 55 (1985), pp. 161–166.

[19] A. Gyárfás and D. B. West, Multitrack interval graphs, Congr. Numer., 109 (1995), pp. 109–
116.

[20] L. A. Hall, Approximability of flow shop scheduling, Math. Programming, 82 (1998), pp. 175–
190.

[21] L. A. Hall and D. B. Shmoys, Approximation algorithms for constrained scheduling problems,
in Proceedings of the IEEE 30th Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 1989, pp. 134–139.

[22] M. M. Halldórsson, S. Rajagopalan, H. Shachnai, and A. Tomkins, Scheduling Multiple
Resources, manuscript, 1999.

SCHEDULING SPLIT INTERVALS 15

[23] M. M. Halldórsson and K. Yoshihara, Approximation algorithms for maximum independent
set problem on cubic graphs, in Proceedings of International Symposium on Algorithms
and Computation (ISAAC ’95), Lecture Notes in Comput. Sci. 1004, Springer-Verlag, New
York, 1995, pp. 152–161.

[24] E. Hazan, S. Safra, and O. Schwartz, On the hardness of approximating k-dimensional
matching, in Proceedings of the 6th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, Princeton University, Princeton, NJ,
2003, pp. 83–97.

[25] G. Hoyle, Distance Learning on the Net, http://www.hoyle.com.
[26] C. A. J. Hurkens and A. Schrijver, On the size of systems of sets every t of which have an

SDR, with an application to the worst-case ratio of heuristics for packing problems, SIAM
J. Discrete Math., 2 (1989), pp. 68–72.

[27] K. Jansen, R. Solis-Oba, and M. Sviridenko, Makespan minimization in job shops: A poly-
nomial time approximation scheme, in Proceedings of the 31th Annual ACM Symposium
on Theory of Computing, ACM, New York, 1999, pp. 394–399.

[28] D. Karger, C. Stein, and J. Wein, Scheduling algorithms, in Algorithms and Theory of
Computation Handbook, CRC Press, Boca Raton, FL, 1998, Chapter 35.

[29] A. V. Kostochka and D. B. West, Every outerplanar graph is the union of two interval
graphs, Congr. Numer., 139 (1999), pp. 5–8.

[30] N. Kumar and N. Deo, Multidimensional interval graphs, Congr. Numer., 102 (1994), pp. 45–
56.

[31] M. Y. Y. Leung, C. S. Lui, and L. Golubchik, Use of analytical performance models for
system sizing and resource allocation in interactive video-on-demand systems employing
data sharing techniques, IEEE Trans. Knowl. Data Eng., 14 (2002), pp. 615–637.

[32] L. Lewin-Eytan, J. Naor, and A. Orda, Routing and admission control in networks with
advance reservations, in Proceedings of the 5th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX), Rome, Italy, 2002, pp. 215–228.

[33] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory, 25 (1979),
pp. 1–7.

[34] C. Martin, P. S. Narayanan, B. Ozden, R. Rastogi, and A. Silberschatz, The Fellini
multimedia storage server, in Multimedia Information Storage and Management, Kluwer
Academic Publishers, Dordrecht, The Netharlands, 1996.

[35] A. J. Orman and C. N. Potts, On the complexity of coupled-task scheduling, Discrete Appl.
Math., 72 (1997), pp. 141–154.

[36] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[37] A. H. G. Rinnooy Kan, Scheduling Problems, Martinus Nijhoff, The Hague, 1976.
[38] D. Rotem, Analysis of disk arm movement for large sequential reads, in Proceedings of Prin-

ciples of Database Systems (PODS), ACM, New York, 1992, pp. 47–54.
[39] E. R. Scheinerman and D. B. West, The interval number of a planar graph—three intervals

suffice, J. Combin. Theory Ser. B, 35 (1983), pp. 224–239.
[40] J. P. Schmidt, A. Siegel, and A. Srinivasan, Chernoff–Hoeffding bounds for applications

with limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223–250.
[41] R. D. Shapiro, Scheduling coupled tasks, Naval Research Logistics Quarterly, 27 (1980),

pp. 489–498.
[42] D. B. Shmoys, C. Stein, and J. Wein, Improved approximation algorithms for shop scheduling

problems, SIAM J. Comput., 23 (1994), pp. 617–632.
[43] W. T. Trotter, Jr., and F. Harary, On double and multiple interval graphs, J. Graph

Theory, 3 (1979), pp. 205–211.
[44] D. B. West and D. B. Shmoys, Recognizing graphs with fixed interval number is NP-complete,

Discrete Applied Mathematics, 8 (1984), pp. 295–305.
[45] P. S. Yu, J. L. Wolf, and H. Shachnai, Design and analysis of a look-ahead scheduling

scheme to support pause-resume video-on-demand applications, ACM Multimedia Systems
Journal, 3 (1995), pp. 137–149.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 16–27

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS∗

ANDREI BULATOV† AND VÍCTOR DALMAU‡

Abstract. A Mal’tsev operation is a ternary operation ϕ that satisfies the identities ϕ(x, y, y) =
ϕ(y, y, x) = x. Constraint satisfaction problems involving constraints invariant under a Mal’tsev
operation constitute an important class of constraint satisfaction problems, which includes the affine
satisfiability problem, subgroup and near subgroup constraints, and many others. It is also known
that any tractable case of the counting constraint satisfaction problem involves only Mal’tsev con-
straints.

The first algorithm solving the arbitrary constraint satisfaction problem with Mal’tsev constraints
has been given by Bulatov. However, this algorithm is very sophisticated and relies heavily on
advanced algebraic machinery. In this paper, we give a different and much simpler algorithm for this
type of constraint.

Key words. constraint satisfaction, Mal’tsev

AMS subject classifications. 08A70, 68Q25, 69T99

DOI. 10.1137/050628957

1. Introduction. Constraint satisfaction problems arise in a wide variety of
areas, such as combinatorics, logic, algebra, and artificial intelligence. An instance of
the constraint satisfaction problem (CSP) consists of a set of variables, a set of values
(which can be taken by the variables) that is called a domain, and a set of constraints
(where a constraint is a pair given by a list of variables, called the constraint scope,
and a relation indicating the valid combinations of values for the variables in the
scope, called the constraint relation). The goal in a CSP is to decide whether or not
there is an assignment of values to the variables satisfying all of the constraints. It
is sometimes customary to cast the CSP as a relational homomorphism problem [15],
namely, the problem of deciding, given a pair (A,B) of relational structures, whether
or not there is a homomorphism from A to B. In this formalization, each relation of
A contains tuples of variables that are constrained together, and the corresponding
relation of B contains the allowed tuples of values that the variable tuples may take.

The CSP is NP-complete in general, motivating the search for polynomial-time
tractable cases of the CSP. A particularly useful way to restrict the CSP in order to
obtain tractable cases is to restrict the types of constraints that may be expressed,
by requiring the relations appearing in a constraint to belong to a given fixed set Γ.
Such a restricted version of the CSP is denoted by CSP(Γ). This form of restriction
can capture and place into a unified framework many particular cases of the CSP
that have been independently investigated, for instance, the Horn Satisfiability,
2-Satisfiability, and Graph H-Colorability problems. Schaefer was the first to
consider the class of problems CSP(Γ); he proved a now famous dichotomy theorem,

∗Received by the editors April 11, 2005; accepted for publication (in revised form) November 29,
2005; published electronically April 21, 2006.

http://www.siam.org/journals/sicomp/36-1/62895.html
†School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby V5A

1S6, BC, Canada (abulatov@cs.sfu.ca).
‡Departament de Tecnologia, Universitat Pompeu Fabra Estació de França, Passeig de la cir-

cumval.lació, Barcelona 08003, Spain (victor.dalmau@upf.edu). This author’s research was partially
supported by the MCyT under grants TIC 2002-04470-C03, TIC 2002-04019-C03, and TIN 2004-
04343, the EU PASCAL Network of Excellence, IST-2002-506778, and the MODNET Marie Curie
Research Training Network, MRTN-CT-2004-512234.

16

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 17

showing that for every set Γ of relations over a two-element domain, CSP(Γ) is either
solvable in polynomial time or NP-complete [23].

In recent years, much effort has been invested toward the program of isolating all
sets Γ of relations (or constraint languages) over a finite domain that give rise to a class
of instances of CSP, CSP(Γ), solvable in polynomial time. Impressive progress has
been made along these lines leading to the identification of several broad conditions on
Γ that guarantee tractability. It was initiated by [2, 17, 19], where it has been shown
that the complexity of CSP(Γ) depends only on the algebraic invariance properties of
relations from Γ.

Some important recent achievements in the field include a complete classification
of CSPs over a three-element domain [4] and the conservative CSP [6]. Remarkably,
one of the main ingredients in both results is the recent result due to the first au-
thor [5] stating that every set Γ of relations on a finite set invariant with respect to a
Mal’tsev operation, that is, a ternary operation ϕ satisfying ϕ(x, y, y) = ϕ(y, y, x) = x
for all x, y, gives rise to a tractable problem class. This result also encompasses and
generalizes several previously known tractable cases of the CSP, such as affine prob-
lems [19, 23], constraint satisfaction problems on finite groups with near subgroups
and their cosets [14, 15], and paraprimal CSPs [11].

Another reason Mal’tsev constraints are so important is that, to date, almost all
CSPs known to be solvable in polynomial time can be solved using local propagation
algorithms. In this type of algorithm we identify forbidden combinations of values for
sets of variables of fixed size and then propagate the original problem by imposing
new constraints that use this information. The only known exception is CSPs in-
volving constraints invariant under a Mal’tsev operation. Thus, Mal’tsev constraints
constitute a conceptually important class of constraints that require a completely dif-
ferent approach in solution techniques. Feder and Vardi attempted to capture this
distinction in [15], where they used Datalog programs to simulate local propagation
algorithms and suggested the term problems with ability to count for those problems
which cannot be solved using Datalog. We also note another appearance of Mal’tsev
constraints [8]. In that paper, we show that invariance with respect to a Mal’tsev
operation is a necessary condition for the tractability of the counting CSP.

It is fair to say that the original proof of the tractability of Mal’tsev constraints [5]
is very complicated. Furthermore, it makes intensive use of advanced algebraic tech-
niques and thus is hardly comprehensible for a nonalgebraist. In this paper we give a
different proof of the tractability of Mal’tsev constraints. The proof presented in this
paper is notably simpler than the original proof and does not require the use of any
previous algebraic result; indeed the proof is completely self-contained.

2. Preliminaries.

2.1. Constraint satisfaction problem. Let A be a finite set and let n be a
positive integer. An n-ary relation on A is any subset of An. In what follows, for
every positive integer n, [n] will denote the set {1, . . . , n}.

A constraint satisfaction problem is a natural way to express simultaneous re-
quirements for values of variables. This is stated more precisely in the following
definition.

Definition 2.1. An instance P = (V ;A; {C1, . . . , Cm}) of a constraint satisfac-
tion problem consists of

• a finite set of variables, V = {v1, . . . , vn};
• a finite domain of values, A;

18 ANDREI BULATOV AND VÍCTOR DALMAU

• a finite set of constraints, {C1, . . . , Cm}; each constraint Cl, l ∈ [m], is a pair
((vi1 , . . . , vikl

), Sl), where
– (vi1 , . . . , vikl

) is a tuple of variables of length kl, called the constraint
scope, and

– Sl is a kl-ary relation on A, called the constraint relation.

A solution to a CSP instance is a mapping s : V → A such that for each constraint
Cl, l ∈ [m], we have that (s(vi1), . . . , s(vkl

)) ∈ Sl.

The question in the CSP instance P is to decide whether or not there exists a
solution to P.

The CSP is NP-complete in general, even when the constraints are restricted to
binary constraints [21] or when the domain of values has size 2 [10].

Example 1. An instance of the standard propositional 3-Satisfiability problem
[16, 22] is specified by giving a formula of propositional logic consisting of a conjunction
of clauses, each of which contains exactly three literals, and asking whether there are
values for the variables which make the formula true.

Suppose that Φ = F1 ∧ · · · ∧ Fn is such a formula, where the Fi are clauses. The
satisfiability question for Φ can be expressed as the CSP instance (V, {0, 1}, C), where
V is the set of all variables appearing in the clauses Fi and C is the set of constraints
{(s1, R1), . . . , (sn, Rn)}, where each constraint (sk, Rk) is constructed as follows:

• sk = (xk
1 , x

k
2 , x

k
3), where xk

1 , x
k
2 , x

k
3 are the variables appearing in clause Fk;

• Rk = {0, 1}3 \ {(a1, a2, a3)}, where ai = 1 if xk
i is negated in Fk and ai = 0

otherwise (i.e., Rk contains exactly those 3-tuples that make Fk true).

The solutions of this instance are exactly the assignments which make the formula Φ
true.

Example 2. An instance of the Graph k-Colorability problem consists of a
graph G. The question is whether the vertices of G can be labeled with k colors so
that adjacent vertices are assigned different colors.

This problem can be expressed as a CSP instance as follows. Let G = (V,E) be
a graph. Then we treat V as the set of variables (thus interpreting vertices of G as
variables). For the domain we use a k-element set A of colors. Finally, for each edge
(u, v) ∈ E we introduce a constraint ((u, v), �=A), where �=A is the disequality relation
on A, defined by

�=A = {(a, b) ∈ A2 | a �= b}.

In applications of the CSP, we normally need just some restricted versions of the
problem. One of the most natural and useful ways to restrict the CSP is to impose
restrictions on the allowed constraint relations.

Definition 2.2. For any set of relations Γ, CSP(Γ) is defined to be the class of
decision problems with

• Instance: A constraint satisfaction problem instance P, in which all con-
straint relations are elements of Γ.

• Question: Does P have a solution?

Example 1 (continued). If we define Γ
3-Sat

to be the constraint language on
{0, 1} consisting of all relations expressible by 3-clauses, then any instance of 3-

Satisfiability can be expressed as an instance of CSP(Γ
3-Sat

) and vice versa. In
other words, 3-Satisfiability is equivalent to CSP(Γ

3-Sat
).

Example 2 (continued). Similarly, the Graph k-Colorability can be viewed
as CSP({�=A}).

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 19

In the two examples we have given, even the restricted problems are NP-complete.
However, in many cases restricting the allowed form of constraint relations, we arrive
at a problem solvable in polynomial time (we refer to such problems as tractable
problems).

Example 3. An instance of Graph Unreachability consists of a graph, G =
(V,E), and a pair of vertices, v, w ∈ V . The question is whether there is no path in
G from v to w.

This can be expressed as the CSP instance (V, {0, 1}, C), where

C = {(e, {={0,1}}) | e ∈ E} ∪ {((v), {(0)}), ((w), {(1)})},

where ={0,1} denotes the equality relation on the set {0, 1}.
If we define Γ

Unreach
to be the constraint language on {0, 1} containing just

the relations ={0,1}, {(0)}, and {(1)}, then any instance of Graph Unreachability

can be expressed as an instance of CSP(Γ
Unreach

) in this way.
The research project, which this paper is a part of, aims to distinguish those

constraint languages Γ which give rise to a tractable problem CSP(Γ) from those
which do not.

In the CSP literature, it is usual to assume constraint languages to be finite. This
is motivated by certain difficulties of representing infinite collections of relations, by
the fact that applications of the CSP in discrete mathematics normally require only
some fixed variety of relations, and also by some traditions well established in the area.
The algebraic approach we introduce in the next section makes it very natural to deal
with infinite constraint languages. Thus, in this paper, the constraint languages we
consider are allowed to be infinite. This implies, in particular, that the arity of
relations is not necessarily bounded.

Example 4. Let A be a finite field, and let Γ
Lin

be the constraint language
consisting of all relations over A which consist of all solutions to some linear equation
over A. Any relation from Γ

Lin
, and therefore any instance of CSP(Γ

Lin
), can be

represented by a system of linear equations over A (for more details, see [3]).
Clearly, Γ

Lin
is infinite and yet every instance of CSP(Γ

Lin
) can be easily defined

and it can be solved in polynomial time (e.g., by Gaussian elimination).

2.2. Polymorphisms and invariants. We briefly introduce the basics of the
algebraic approach to the CSP. For more details the reader is referred to [2].

Definition 2.3. Let ϕ : Am → A be an m-ary operation on A and let R be
an n-ary relation over A. We say that R is invariant under ϕ and ϕ is said to be a
polymorphism of R if for all (not necessarily different) tuples t1 = (t11, . . . , t

1
n), . . . ,

tm = (tm1 , . . . , tmn) in R, the tuple ϕ(t1, . . . , tm) defined as

(ϕ(t11, . . . , t
m
1), . . . , ϕ(t1n, . . . , t

m
n))

belongs to R.
Let C be a set of operations on A and let Γ be a constraint language. Then

Inv(C) denotes the set of all relations invariant under each operation from C, and
Pol(Γ) denotes the set of all operations which are polymorphisms of every relation
from Γ.

Example 5. Let R be the solution space of a system of linear equations over a
field F . Then the operation ϕ(x, y, z) = x − y + z is a polymorphism of R. Indeed,
let A · x = b be the system defining R, and suppose that x,y, z ∈ R. Then

A · ϕ(x,y, z) = A · (x − y + z) = A · x −A · y + A · z = b − b + b = b.

20 ANDREI BULATOV AND VÍCTOR DALMAU

In fact, the converse can also be shown: If R is invariant under ϕ, then it is the
solution space of a certain system of linear equations.

The cornerstone theorem proved by Jeavons [17] and Jeavons, Cohen, and Gys-
sens [19] provides a link between the complexity of CSP(Γ) and the properties of
the polymorphisms of Γ. It amounts to saying that, for every finite constraint lan-
guage Γ, the complexity of CSP(Γ) depends solely on the set Pol(Γ). In other words,
if Pol(Γ1) = Pol(Γ2), then CSP(Γ1) and CSP(Γ2) are polynomial-time reducible to
each other (provided Γ1 and Γ2 are finite). This also motivates the prior study of
constraint languages of the form Inv(C) for some set C of operations. In fact, most
of the existing tractability results on constraint languages may be formulated as the
tractability of problems CSP(Inv(C)), where C consists of a single operation! (See,
e.g., [1, 9, 12, 13, 17, 18, 20].)

One such type of operation that guarantees the tractability of the corresponding
CSP is Mal’tsev operations.

Definition 2.4. A ternary operation ϕ : A3 → A on a finite set A is called
Mal’tsev if it satisfies the following identities:

ϕ(x, y, y) = ϕ(y, y, x) = x ∀x, y ∈ A.

For instance, operation ϕ defined in Example 5 is Mal’tsev.

The following theorem was first proved in [5].

Theorem 2.5. Let ϕ be a Mal’tsev operation. Then CSP(Inv(ϕ)) is solvable in
polynomial time.

The proof given in [5] employs a sophisticated algorithm that relies heavily on
algebraic techniques and can hardly be understood without extensive knowledge of
universal algebra. In this paper, we give a much shorter and simpler proof that is
completely self-contained. Although the two algorithms have been designed mostly
independently, they have a similar structure. To complete this section we outline the
structure of the two algorithms and describe the main differences between them.

Both algorithms use compact representations of relations invariant under a
Mal’tsev operation. Clearly, the size of an n-ary relation can be exponential in n.
Therefore, if n is, for example, the number of variables in a CSP instance, then to
represent an n-ary relation we need something more sophisticated than just a list of
tuples. One possible form of such representation is introduced in the next section;
representations used in [5] are very similar, but have a much finer structure. Both
representations exploit the rectangularity of relations invariant under a Mal’tsev op-
eration (see the next section).

Given a CSP instance P = (V,A, {C1, . . . , Ck}), both algorithms progressively
construct compact representations of the complete sets of solutions of the instances
P0,P1,P2, . . . ,Pk = P, where Pi = (V,A, {C1, . . . , Ci}). In [5], this is done by con-
structing, in a certain complicated way, and then solving a system of linear equations
such that a representation of Pi+1 can be found as a basis of its solution space. Later,
when working on [7], the second author observed that the same task can be fulfilled
in a much more straightforward and simple way. This observation is the core of the
present paper.

3. Signatures and representations. Let A be a finite set, let n be a positive
integer, let t = (t1, . . . , tn) be an n-ary tuple, and let i1, . . . , ij be (not necessarily

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 21

different) elements from [n]. By pri1,...,ij t we denote the tuple (ti1 , . . . , tij). Similarly,
for every n-ary relation R on A and for every i1, . . . , ij ∈ [n], we denote by pri1,...,ij R
the j-ary relation given by {pri1,...,ij t : t ∈ R}.

Given a relation R and an operation ϕ, we denote by 〈R〉ϕ the smallest relation
R′ that contains R and is invariant under ϕ. Very often, the operation ϕ will be clear
from the context and we will drop it, writing 〈R〉 instead of 〈R〉ϕ.

Let n be a positive integer, let A be a finite set, let t, t′ be n-ary tuples, and let
(i, a, b) be any element in [n]×A2. We say that (t, t′) witnesses (i, a, b) if pr1,...,i−1 t =
pr1,...,i−1 t′, pri t = a, and pri t

′ = b. We also say that t and t′ witness (i, a, b),
meaning that (t, t′) witnesses (i, a, b).

Let R be any n-ary relation on A. We define the signature of R, SigR ⊆ [n]×A2,
as the set containing all those (i, a, b) ∈ [n] ×A2 witnessed by tuples in R; that is

SigR = {(i, a, b) ∈ [n] ×A2 : ∃t, t′ ∈ R such that (t, t′) witnesses (i, a, b)}.

A subset R′ of R is called a representation of R if SigR′ = SigR. If, furthermore,
|R′| ≤ 2|SigR |, then R′ is called a compact representation of R. Observe that every
relation R has compact representations. Indeed, in order to construct such a compact
representation R′ we need only select, for each (i, a, b) in SigR, a couple of tuples t, t′

in R that witness (i, a, b) and include them in R′.
Example 6. Fix a set A, an element d ∈ A, and an integer n. For every (i, a) ∈

[n] ×A we define the tuple edi,a as the only tuple satisfying

prj edi,a =

{
a if i = j
d otherwise

for all j ∈ [n].

It is easy to observe that for every (i, a, b) ∈ [n] × A2, (edi,a, e
d
i,b) witnesses (i, a, b).

Consequently, for a fixed d, the set of tuples {edi,a : i ∈ [n], a ∈ A} is a representation
of the relation An. Notice also that it is indeed a compact representation.

The algorithm we propose relies on Lemma 3.1, which follows from the property
of rectangularity of relations invariant under a Mal’tsev operation ϕ. Let R be an
n-ary relation invariant under ϕ and let t1, t2, t3 ∈ R be such that pr1,...,n−1 t2 =
pr1,...,n−1 t3 and prn t1 = prn t2. Then the tuple t with pr1,...,n−1 t = pr1,...,n−1 t1
and prn t = prn t3 belongs to R. Indeed, we can choose t = ϕ(t1, t2, t3) ∈ R. Let us
see that t satisfies the required conditions. Since ϕ is Mal’tsev we can infer that

pr1,...,n−1 t = pr1,...,n−1 ϕ(t1, t2, t3) = pr1,...,n−1 ϕ(t1, t2, t2) = pr1,...,n−1 t1.

Also, we have that

prn t = prn ϕ(t1, t2, t3) = prn ϕ(t2, t2, t3) = prn t3.

Lemma 3.1. Let A be a finite set, let ϕ : A3 → A be a Mal’tsev operation, let
R be a relation on A invariant under ϕ, and let R′ be a representation of R. Then
〈R′〉ϕ = R.

Proof. Let n be the arity of R. By induction on i, we shall show that, for every
i ∈ [n], pr1,...,i〈R′〉 = pr1,...,i R. The case i = 1 follows easily from the fact that for
each t ∈ R, (1,pr1 t,pr1 t) is in SigR and hence in SigR′ .

So, let us assume that the claim holds for i < n and let t be any tuple in R.
We show that pr1,...,i+1 t ∈ pr1,...,i+1〈R′〉. By induction hypothesis there exists a
tuple t1 in 〈R′〉 such that pr1,...,i t1 = pr1,...,i t. We have that (i+ 1,pri+1 t1,pri+1 t)

22 ANDREI BULATOV AND VÍCTOR DALMAU

belongs to SigR, and therefore, there exist some tuples t2 and t3 in R′ witnessing
it. To complete the proof we just need to observe that since t2 and t3 witness
(i + 1,pri+1 t,pri+1 t1), we have that pr1,...,i t2 = pr1,...,i t3 and that pri+1 t1 =
pri+1 t2 and pri+1 t = pri+1 t3. Then the equality pr1,...,i+1 t = pr1,...,i+1 ϕ(t1, t2, t3)
follows from the rectangularity of pr1,...,i+1 R.

4. Proof of Theorem 2.5. We prove Theorem 2.5 by giving a polynomial-time
algorithm that correctly decides whether a CSP(Inv(ϕ)) instance has a solution.

Let P = ({v1, . . . , vn}, A, {C1, . . . , Cm}) be a CSP(Inv(ϕ)) instance which will be
the input of the algorithm.

For each l ∈ {0, . . . ,m} we define Pl as the CSP instance that contains the first l
constraints of P, that is, Pl = ({v1, . . . , vn}, A, {C1, . . . , Cl}). Furthermore, we shall
denote by Rl the n-ary relation on A defined as

Rl = {(s(v1), . . . , s(vn)) : s is a solution of Pl}.

As we have already mentioned, in a nutshell, the algorithm introduced in this
section computes for each l ∈ {0, . . . ,m} a compact representation R′

l of Rl. In the
initial case (l = 0), P0 does not have any constraint at all and, consequently, R0 = An.
Hence, a compact representation of R0 can be easily obtained as in Example 6. Once
a compact representation R′

0 of R0 has been obtained, then the algorithm starts an
iterative process in which a compact representation R′

l+1 of Rl+1 is obtained from R′
l

and the constraint Cl+1. This is achieved by calling Procedure Next, which constitutes
the core of the algorithm. The algorithm then goes as follows:
Algorithm Solve(({v1, . . . , vn}, A, {C1, . . . , Cm}))
Step 1 select an arbitrary element d in A
Step 2 set R′

0 := {edi,a : (i, a) ∈ [n] ×A}
Step 3 for each l ∈ {0, . . . ,m− 1} do

(let Cl+1 be ((vi1 , . . . , vil+1
), Sl+1))

Step 3.1 set R′
l+1 := Next(R′

l, i1, . . . , il+1, Sl+1)
endfor

Step 4 if R′
m �= ∅ return yes

Step 5 otherwise return no
Observe that if we modify Step 4 so that the algorithm returns an arbitrary tuple

in R′
m instead of “yes,” then we have an algorithm that does not merely solve the

decision question but actually provides a solution.
Correctness and polynomial-time complexity of the algorithm are direct con-

sequences of the correctness and the running time of Procedure Next: As shown
in section 4.3 (Lemma 4.1), at each iteration of Step 3.1, the output of the call
Next(R′

l, i1, . . . , il+1, Sl+1) is a compact representation of the relation {t ∈ Rl :
pri1,...,il+1

t ∈ Sl+1}, which is indeed Rl+1. Furthermore, the time complexity of
Solve is obviously polynomial in the time complexity of Next. Thus to finish the
proof of Theorem 2.5, we need to design Next and show that it is correct and has
polynomial time complexity.

The remainder of the paper is devoted to defining and analyzing Procedure Next.
In order to define Procedure Next it is convenient to introduce first two simple pro-
cedures, namely Nonempty and Fix-values, which will be intensively used by our
Procedure Next.

4.1. Procedure Nonempty. This procedure receives as an input a compact rep-
resentation R′ of a relation R invariant under ϕ, a sequence i1, . . . , ij of elements in

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 23

[n], where n is the arity of R, and a j-ary relation S also invariant under ϕ. The
output of the procedure is either an n-ary tuple t ∈ R such that pri1,...,ij t ∈ S or
“no,” meaning that such a tuple does not exist.
Procedure Nonempty(R′, i1, . . . , ij , S)
Step 1 set U := R′

Step 2 while ∃t1, t2, t3 ∈ U such that pri1,...,ij ϕ(t1, t2, t3) �∈ pri1,...,ij U do

Step 2.1 set U := U ∪ {ϕ(t1, t2, t3)}
endwhile

Step 3 if ∃t in U such that pri1,...,ij t ∈ S then return t

Step 4 else return “no”
We shall start by studying the procedure’s correctness. First observe that every

tuple in U belongs initially to R′ (and hence to R) or it has been obtained by applying
ϕ to some tuples t1, t2, t3 that previously belonged to U . Therefore, since R is
invariant under ϕ, we can conclude that U ⊆ R. Consequently, if a tuple t is returned
in Step 3, then it belongs to R and also satisfies the condition pri1,...,ij t ∈ S, as
desired. It remains only to show that if a “no” is returned in Step 4, then there exists
no tuple t in R such that pri1,...,ij t ∈ S. In order to do this we need to show some
simple facts about U . Notice that at any point of the execution of the procedure
R′ ⊆ U . Then U is also a representation of R and hence 〈U〉 = R. Therefore we have
that

〈pri1,...,ij U〉 = pri1,...,ij 〈U〉 = pri1,...,ij R.

By the condition on the “while” of Step 2 we have that when the procedure leaves the
execution of Step 2 it must be the case that for all t1, t2, t3 ∈ U , pri1,...,ij ϕ(t1, t2, t3)
∈ pri1,...,ij U and, consequently, pri1,...,ij U = 〈pri1,...,ij U〉 = pri1,...,ij R. Hence, if
there exists some t in R such that pri1,...,ij ∈ S, then there must exist some t′ in U
such that pri1,...,ij ∈ S, and we are done.

Let us study now the running time of the procedure. It is only necessary to focus
on Steps 2 and 3. At each iteration of the loop in Step 2, cardinality of U increases
by one. So we can bound the number of iterations by the size |U | of U at the end of
the execution of the procedure.

The cost of each iteration is basically dominated by the cost of checking whether
there exist some tuples t1, t2, t3 ∈ U such that pri1,...,ij ϕ(t1, t2, t3) �∈ pri1,...,ij U
which is done in Step 2. In order to try all possible combinations for t1, t2, t3 in
U , |U |3 steps suffice. Each one of these steps requires time O(|U |n), as tuples have
arity n and checking whether ϕ(t1, t2, t3) belongs to U can be done naively by a
sequential search in U . Thus, the running time of Nonempty is polynomial in n and
in the possible size of U .

Notice now that this is not enough. Indeed, as we do not restrict the arity of the
relations used, j may be comparable with n, which implies that the size of U may
be exponential in n. To solve this problem, we organize invoking Nonempty in such
a way that the size of U is bounded by a polynomial in |S|, n, and |A|. In order to
accomplish this, we shall ensure that at each call to Nonempty the following condition
is satisfied:

|pri1,...,ij R| ≤ |S| · |A|2.(4.1)

Later (see Procedures Next and Next-beta) we show how this can be achieved.
It is not difficult to see that if (4.1) is true, then the size of U can be bounded by a

24 ANDREI BULATOV AND VÍCTOR DALMAU

polynomial. More precisely, the size of U can be bounded by the initial size of R′,
which is at most n · |A|2 (since R′ is compact) plus the number of iterations of Step 2,
which is bounded by |pri1,...,ij R| ≤ |S| · |A|2.

4.2. Procedure Fix-values. This procedure receives as an input a compact
representation R′ of a relation R invariant under ϕ and a sequence a1, . . . , am, m ≤ n,
of elements of A (n is the arity of R). The output is a compact representation of the
relation given by

{t ∈ R : pr1 t = a1, . . . ,prm t = am}.

Procedure Fix-values(R′, a1, . . . , am)
Step 1 set j := 0; Uj := R′

Step 2 while j < m do
Step 2.1 set Uj+1 := ∅
Step 2.2 for each (i, a, b) ∈ [n] ×A2 do
Step 2.2.1 if ∃t2, t3 ∈ Uj witnessing (i, a, b)

(we assume that if a = b then t2 = t3) and
Nonempty(Uj , j + 1, i, {(aj+1, a)}) �= “no” and
(i > j + 1 or a = b = ai) then

(let t1 be the tuple returned
by the call to Nonempty(Uj , j + 1, i, {aj+1, a}))
set Uj+1 := Uj+1 ∪ {t1, ϕ(t1, t2, t3)}

endfor
Step 2.4 set j := j + 1

endwhile
Step 3 return Um

Let us study the correctness of the procedure. We shall show by induction on
j ∈ {0, . . . ,m} that Uj is a compact representation of Rj = {t ∈ R : pr1 t = a1,
. . . ,prj t = aj}. The case j = 0 is correctly settled in Step 1. Hence it is only
necessary to show that at every iteration of the while loop in Step 2, if Uj is a
compact representation of Rj , then Uj+1 is a compact representation of Rj+1. It is
easy to see that if any of the conditions of the if in Step 2.2.1 is falsified, then (i, a, b)
is not in SigRj+1

. So it remains only to see that when the if in Step 2.2.1 is satisfied,
we have that (a) t1 and ϕ(t1, t2, t3) are tuples in Rj+1, and (b) (t1, ϕ(t1, t2, t3))
witnesses (i, a, b).

Proof of (a). As t1 = Nonempty(Uj , j + 1, i, {(aj+1, a)}), we can conclude that
t1 belongs to Rj , prj+1 t1 = aj+1, and pri t1 = a. Consequently t1 belongs to Rj+1.
Furthermore, as t1, t2, and t3 are in Rj and Rj is invariant under ϕ, ϕ(t1, t2, t3)
belongs to Rj . Let us see now that prj+1 t2 = prj+1 t3 by means of a case analysis.
If i > j + 1, then we have that prj+1 t2 = prj+1 t3 as (t2, t3) witnesses (i, a, b). If
i ≤ j + 1, then a = b = ai and hence t2 and t3 are identical.

Finally, since ϕ is Mal’tsev, prj+1 ϕ(t1, t2, t3) = prj+1 t1 = aj+1 and hence
ϕ(t1, t2, t3) belongs to Rj+1.

Proof of (b). Since (t2, t3) witnesses (i, a, b), we have that pr1,...,i−1 t2 = pr1,...,i−1 t3.
Consequently, pr1,...,i−1 ϕ(t1, t2, t3) = pr1,...,i−1 t1. Furthermore, we also have that
pri ϕ(t1, t2, t3) = pri ϕ(a, a, b) = b.

Notice that each iteration adds at most two tuples for some (i, a, b) in SigRj+1
.

Consequently, Uj+1 is compact. This completes the proof of its correctness.
Let us study now the time complexity of Fix-values. The while loop at Step 2

is performed m ≤ n times. At each iteration the procedure executes another loop

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 25

(Step 2.2). The for each loop at Step 2.2 is executed for each (i, a, b) in [n] × A2,
that is, a total number of n|A|2 times. The cost of each iteration of the loop is
basically dominated by the cost of the call to Procedure Nonempty. Therefore, the
time complexity of the procedure is polynomial in n and the maximal time complexity
of Nonempty. Observe that in this case condition (4.1) in the call of Nonempty is
satisfied.

4.3. Procedure Next. We are now almost in a position to introduce Procedure
Next. Procedure Next receives as input a compact representation R′ of a relation R
invariant under ϕ, a sequence i1, . . . , ij of elements in [n] where n is the arity of R, and
a j-ary relation S invariant under ϕ. The output of Next is a compact representation
of the relation R∗ = {t ∈ R : pri1,...,ij t ∈ S}. It is an easy exercise to verify that R∗

is also invariant under ϕ.
We shall start by defining a procedure called Next-beta that is equivalent to

Next but has a worse time complexity running time. In particular, the running time
of Next-beta might be exponential in the size of its input.
Procedure Next-beta(R′, i1, . . . , ij , S)
Step 1 set U := ∅
Step 2 for each (i, a, b) ∈ [n] ×A2 do
Step 2.1 if Nonempty(R′, i1, . . . , ij , i, S × {a}) �= “no” then

(let t be the tuple returned by Nonempty(R′, i1, . . . , ij , i, S × {a}))
Step 2.2 if Nonempty(Fix-values(R′,pr1 t, . . . ,pri−1 t),

i1, . . . , ij , i, S × {b}) �= “no”
(let t′ be the tuple returned by
Nonempty(Fix-values(R′,pr1 t, . . . ,pri−1 t), i1, . . . , ij , i, S × {b}))
set U := U ∪ {t, t′}

endfor
Step 3 return U

The overall structure of Procedure Next-beta is similar to that of Procedure
Fix-values. Observe that the condition of the if statement

Nonempty(R′, i1, . . . , ij , i, S × {a}) �= “no”

of Step 2.1 is satisfied if and only if there exists a tuple t ∈ R such that pri1,...,ij t ∈ S
and pri t = a. Hence if such a tuple does not exist, then (i, a, b) is not in SigR∗ and
nothing needs to be done for (i, a, b). Now consider the condition of the if statement
in Step 2.2 which is given by

Nonempty(Fix-values(R′,pr1 t, . . . ,pri−1 t), i1, . . . , ij , i, S × {b}) �= “no”.

This condition is satisfied if and only if there exists some t′ in R such that pri1,...,ij t′ ∈
S such that pr1,...,i−1 t′ = pr1,...,i−1 t and pri t

′ = b. It is immediate to see that if
the condition holds, then (t, t′) witnesses (i, a, b). It only remains to show that if
(i, a, b) ∈ SigR∗ , then such a t′ must exist. In order to do this, it is necessary only to
verify that if ta, tb are tuples in R∗ witnessing (i, a, b), then, since ϕ is Mal’tsev, the
tuple ϕ(t, ta, tb) satisfies the desired properties (here t is the tuple returned by the
call to Procedure Nonempty in Step 2.1).

Again, the cardinality of U is bounded by 2|SigR∗ |, and hence, U is a compact
representation.

Let us study the running time of Procedure Next-beta. The loop of Step 2 is
performed n|A|2 times and the cost of each iteration is basically the cost of Steps

26 ANDREI BULATOV AND VÍCTOR DALMAU

2.1 and 2.2 in which other procedures are called. Therefore, the running time of
Next-beta is polynomial in n and the running time of Nonempty and Fix-values.
However, when invoking Nonempty on Steps 2.1 and 2.2, we cannot be sure that
condition (4.1) holds, and therefore the running time of Nonempty and consequently
Next-beta may be exponential in the size of the input. To avoid this problem, we
define a new procedure, Next, which makes a sequence of calls to Next-beta such
that the following condition is satisfied:

|pri1,...,ij R| ≤ |S| · |A|.(4.2)

It is easy to observe that if condition (4.2) in the call of Next-beta is guaran-
teed, then condition (4.1) in every call of Nonempty is also satisfied. Consequently, if
Next-beta is called with parameters satisfying condition (4.2), then its running time
is polynomial on n, S, and |A|.
Procedure Next(R′, i1, . . . , ij , S)
Step 1 set l := 0, Ul := R′

Step 2 while l < j do
Step 2.1 set Ul+1 := Next-beta(Ul, i1, . . . , il+1,pri1,...,il+1

S)

end while
Step 3 return Uj

Let us show that condition (4.2) is satisfied in any call to Procedure Next-beta in
Step 2.1. In the first iteration (l = 0), condition (4.2) holds as pri1 R

′ ⊆ A. For every
subsequent iteration l ∈ {1, . . . , j − 1} observe that at the beginning of the iteration,

pri1,...,il〈Ul〉 = pri1,...,il S.

Consequently, at each call to Procedure Next-beta we have

|pri1,...,il+1
〈Ul〉| ≤ |pri1,...,il S||A| ≤ |S| · |A|.

Therefore, condition (4.2) holds and the running time of the call is polynomial in n,
|S|, and |A|.

Therefore, we have just proved the following lemma.
Lemma 4.1. For every n ≥ 1, every n-ary relation R invariant under ϕ, every

compact representation R′ of R, every i1, . . . , ij ∈ [n], and every j-ary relation S
invariant under ϕ, Next(R′, i1, . . . , ij , S) computes a compact representation of R∗ =
{t ∈ R : pri1,...,ij ∈ S} in time polynomial in n, |S|, and |A|. Furthermore, R∗ is
invariant under ϕ.

Corollary 4.2. Algorithm Solve decides correctly if an arbitrary instance P of
CSP(Inv(ϕ)) is satisfiable in time polynomial in n, s, and |A|, where n is the number
of variables of P, s is the total number of tuples in the constraint relations, and A is
the domain.

REFERENCES

[1] A. A. Bulatov and P. G. Jeavons, Algebraic Structures in Combinatorial Problems, Tech.
Report MATH-AL-4-2001, Technische Universität Dresden, Dresden, Germany, 2001.

[2] A. A. Bulatov, A. A. Krokhin, and P. G. Jeavons, Constraint satisfaction problems and
finite algebras, in Automata, Languages and Programming (ICALP’00), Lecture Notes in
Comput. Sci. 1853, Springer-Verlag, Berlin, 2000, pp. 272–282.

[3] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints using
finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742.

A SIMPLE ALGORITHM FOR MAL’TSEV CONSTRAINTS 27

[4] A. A. Bulatov, A dichotomy theorem for constraints on a three-element set, in Proceedings
of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS’02), 2002, pp.
649–658.

[5] A. A. Bulatov, Mal’tsev Constraints Are Tractable, Tech. Report PRG-02-05, Computing
Laboratory, Oxford University, Oxford, UK, 2002.

[6] A. A. Bulatov, Tractable conservative constraint satisfaction problems, in Proceedings of the
18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), 2003, pp. 321–330.

[7] A. A. Bulatov, H. Chen, and V. Dalmau, Learnability of relatively quantified generalized
formulas, in Algorithmic Learning Theory (ALT ’04), Lecture Notes in Comput. Sci. 3244,
Springer-Verlag, Berlin, 2004, pp. 365–379.

[8] A. A. Bulatov and V. Dalmau, Towards a dichotomy theorem for the counting constraint
satisfaction problem, in Proceedings of the 44th IEEE Symposium on Foundations of Com-
puter Science (FOCS’03), Boston, 2003, pp. 562–571.

[9] H. M. Chen and V. Dalmau, (Smart) look-ahead arc consistency and the pursuit of CSP
tractability, in Principles and Practice of Constraint Programming (CP’04), Lecture Notes
in Comput. Sci. 3258, Springer-Verlag, Berlin, 2004, pp. 182–196.

[10] S. A. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing (STOC’71), 1971, pp. 151–158.

[11] V. Dalmau, A new tractable class of constraint satisfaction problems, Ann. Math. Artif. Intell.,
44 (2005), pp. 61–85.

[12] V. Dalmau, R. Gavaldà, P. Tesson, and D. Thérien, Tractable clones of polynomials over
semigroups, in Principles and Practice of Constraint Programming (CP’05), Lecture Notes
in Comput. Sci. 3709, Springer-Verlag, Berlin, New York, 2005, pp. 196–210.

[13] V. Dalmau and J. Pearson, Closure functions and width 1 problems, in Principles and Prac-
tice of Constraint Programming (CP’99), Lecture Notes in Comput. Sci. 1713, Springer-
Verlag, Berlin, New York, 1999, pp. 159–173.

[14] T. Feder, Constraint Satisfaction on Finite Groups with Near Subgroups, Electronic Collo-
quium on Computational Complexity (ECCC), TR05-005, 2005.

[15] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[17] P. G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204.

[18] P. G. Jeavons, D. A. Cohen, and M. C. Cooper, Constraints, consistency and closure,
Artificial Intelligence, 101 (1998), pp. 251–265.

[19] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM, 44 (1997),
pp. 527–548.

[20] A. A. Krokhin, A. A. Bulatov, and P. G. Jeavons, The complexity of constraint satisfaction:
An algebraic approach, in Proceedings of the SMS-NATO Meeting on Structural Theory of
Automata, Semigroups and Universal Algebra, Montreal, QB, Canada, 2003, pp. 181–213.

[21] A. K. Mackworth, Consistency in networks of relations, Artificial Intelligence, 8 (1977), pp.
99–118.

[22] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[23] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual

ACM Symposium on Theory of Computing (STOC’78), 1978, pp. 216–226.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 28–55

IDENTIFYING CLUSTERS FROM POSITIVE DATA∗

JOHN CASE† , SANJAY JAIN‡ , ERIC MARTIN§ , ARUN SHARMA¶, AND

FRANK STEPHAN‖

Abstract. The present work studies clustering from an abstract point of view and investigates
its properties in the framework of inductive inference. Any class S considered is given by a hypothesis
space, i.e., numbering, A0, A1, . . . of nonempty recursively enumerable (r.e.) subsets of N or Q

k. A
clustering task is a finite and nonempty set of r.e. indices of pairwise disjoint such sets. The class
S is said to be clusterable if there is an algorithm which, for every clustering task I, converges in
the limit on any text for

⋃
i∈I Ai to a finite set J of indices of pairwise disjoint clusters such that⋃

j∈J Aj =
⋃

i∈I Ai. A class is called semiclusterable if there is such an algorithm which finds a J

with the last condition relaxed to
⋃

j∈J Aj ⊇
⋃

i∈I Ai.
The relationship between natural topological properties and clusterability is investigated. Topo-

logical properties can provide sufficient or necessary conditions for clusterability, but they cannot
characterize it. On the one hand, many interesting conditions make use of both the topologi-
cal structure of the class and a well-chosen numbering. On the other hand, the clusterability of
a class does not depend on which numbering of the class is used as a hypothesis space for the
clusterer.

These ideas are demonstrated in the context of naturally geometrically defined classes. Besides
the text for the clustering task, clustering of many of these classes requires the following additional
information: the class of convex hulls of finitely many points in a rational vector space can be clustered
with the number of clusters as additional information. Interestingly, the class of polygons (together
with their interiors) is clusterable if the number of clusters and the overall number of vertices of these
clusters is given to the clusterer as additional information. Intriguingly, this additional information
is not sufficient for classes including figures with holes.

While some classes are unclusterable due to their topological structure, others are only compu-
tationally intractable. An oracle might permit clustering all computationally intractable clustering
tasks but fail on some classes which are topologically difficult. It is shown that an oracle E permits
clustering all computationally difficult classes iff E ≥T K ∧ E′ ≥T K′′. Furthermore, no 1-generic
oracle below K and no 2-generic oracle permits clustering any class which is not clusterable without
an oracle.

Key words. inductive inference, clustering, hypothesis space, numbering, Turing degree, topo-
logical and geometric properties of clusterable classes

AMS subject classifications. 03D20, 03D25, 68Q32, 68T05

DOI. 10.1137/050629112

∗Received by the editors April 12, 2005; accepted for publication (in revised form) December 2,
2005; published electronically May 3, 2006. The work of J. Case is supported in part by NSF grant
CCR-0208616 and by USDA IFAFS grant 01-04145. The work of S. Jain is supported in part by NUS
grant R252-000-127-112. A. Sharma and F. Stephan conducted most of this research while working
at National ICT Australia which is funded by the Australian Government’s Department of Com-
munications, Information Technology and the Arts and by the Australian Research Council through
Backing Australia’s Ability and the ICT Centre of Excellence Program. The work of F. Stephan is
supported in part by NUS grant R252-000-212-112.

http://www.siam.org/journals/sicomp/36-1/62911.html
†Computer and Information Sciences Department, University of Delaware, Newark, DE 19716-

2586, (case@cis.udel.edu).
‡School of Computing, National University of Singapore, Singapore 117543 (sanjay@comp.

nus.edu.sg).
§School of Computer Science and Engineering, UNSW Sydney NSW 2052, Sydney, Australia

(emartin@cse.unsw.edu.au).
¶Division of Research and Commercialization, Queensland University of Technology, GPO Box

2434, Brisbane QLD 4001, Australia (arun.sharma@qut.edu.au).
‖Department of Mathematics and School of Computing, National University of Singapore, Singa-

pore 117543 (fstephan@comp.nus.edu.sg).

28

IDENTIFYING CLUSTERS FROM POSITIVE DATA 29

1. Introduction. The basic idea of clustering, given a set of points
XX

XXXX XX XXXX

XXXXX XXX XXXX

XXXX XXX XXXXX

X X XX XXXXXXXX

X

is to find a natural way to group the points into clusters (sets) such that every point
belongs to exactly one cluster; the current example gives four clusters:
11

1111 33 4444

11111 333 4444

1111 333 44444

1 2 33 44444444

3

Clustering has been widely studied in several forms in the fields of machine learning
and statistics [2, 5, 10, 17, 19]. Abstract treatments of the topic are rare; however,
Kleinberg [14] provides an axiomatic approach to clustering. The present work in-
vestigates clustering from the perspective of Gold-style learning theory [9, 11], where
limitations can stem from uncomputable phenomena.

The purpose of this paper is to study the roles of computation, topology, and ge-
ometry in the clustering process. In this interest, the following topics are investigated
in an abstract model of clustering:

1. necessary or sufficient topological conditions for clustering;
2. various relationships between clustering, learning, and hypothesis spaces;
3. clusterability of many natural classes of geometrically defined objects;
4. oracles as a method to distinguish between topological and computational

aspects of clustering.
The basic setting is that a hypothesis space of potential clusters is given. This space
is recursively enumerable. A finite set I of (r.e. indices of) pairwise disjoint clusters
from the given class is called a clustering task. Given such a clustering task, the
clusterer—which might be any algorithmic device—receives a text containing all the
data occurring in these clusters and is supposed to find in the limit a set J of (indices
of) pairwise disjoint clusters which cover all the data to be seen. There are two variants
with respect to a third condition: if one requires that the union of the clusters given
by I is the same as the union of the clusters given by J , then one refers to this
problem as clustering; if this condition is omitted, then one refers to this problem as
semiclustering.

Clustering is, in some cases, more desirable than semiclustering; for example, the
clustering tasks from the class Sconv,k defined in Definition 8.1 are collections of convex
sets having a positive distance from each other. The solution to such a clustering task
is unique since each of these sets corresponds to a cluster. A clusterer has to identify
these sets, while a semiclusterer can just converge to the convex hull of all data to
be seen. Such a solution is legitimate for semiclustering since it is again a member of
the class Sconv,k. But it fails to meet the intuition behind clustering since it does not
distinguish the data from the various clearly different clusters.

Note that in the process of clustering, it is sufficient to find the set J of indices
mentioned above. From this J one can find, for every data-item x in the set

⋃
j∈J Aj

of all permitted data, the unique cluster to which x belongs. One just enumerates the

30 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

sets with the indices in J until the data-item appears in one of them and then uses
an index of this set as a description for the cluster to which this data-item belongs.
Thus, from a recursion-theoretic point of view, finding the set J is the relevant part
of a given clustering problem.

For every indexed class of recursively enumerable sets, there is a canonical transla-
tion from these indices to type-0 grammars in the Chomsky hierarchy which generate
the corresponding sets. This links the current setting of clustering to grammatical
inference, although there is no need herein to exploit the detailed structure of the
grammars obtained by such a translation.

We now summarize some of our results.
1. A class has the finite containment property iff any finite union of its members

contains only finitely many other members. In section 5 it is shown that classes sat-
isfying this natural property separate the basic notions of clusterability, semicluster-
ability, and learnability. There is no purely topological characterization of clusterable
classes: if a class contains an infinite set C and all singleton sets disjoint from C, then
the class is clusterable iff C is recursive. Proposition 6.1 gives a further characteriza-
tion, which depends on the numbering: a class of disjoint sets is clusterable iff it has
a numbering in which every set occurs only finitely often. Section 6 provides some
further sufficient criteria for clusterability that take into account topological aspects
as well as properties of the given hypothesis space. These criteria are refinements of
the finite containment property.

2. Clusterable classes are learnable, but learnable classes may not be clusterable.
Although clusterable classes are, by definition, uniformly recursively enumerable, the
set of clustering tasks might fail to be. Proposition 3.2 shows that a class that can be
clustered using a class comprising hypothesis space, that is, a hypothesis space which
enumerates the members of a superclass, can also be clustered using any hypothesis
space which enumerates the members of the class only. But by Example 3.3, a cluster-
able class might not be clusterable with respect to some class comprising hypothesis
space.

3. In sections 7 and 8 it is demonstrated how one can map concrete examples into
this general framework. These concrete examples are geometrically defined subsets of
Q

k: affine sets, classes of sets with distinct accumulation points, and convex hulls of
finite sets. This third example is not clusterable, but it turns out to be clusterable
if some additional information about the clustering task given to the clusterer is re-
vealed. While there are several natural candidates for the additional information in
the case of convex hulls of finite sets, this approach becomes much more difficult when
dealing with clusters of other shapes. In the case of polygons in the 2-dimensional
space, the additional information provided can consist of the number of clusters plus
the overall number of vertices in the polygons considered. Still, this additional infor-
mation is insufficient for clustering classes of geometrical objects, some of which have
holes. But the k-dimensional area is sufficient additional information as long as one
rules out that the symmetric difference of two clusters has k-dimensional area 0.

4. Oracles are a way to distinguish between topological and computational diffi-
culty of a clustering problem. In section 4 the relationship between an oracle E and
the classes clusterable relative to E is investigated. For example, every 1-generic ora-
cle E which is Turing reducible to the halting problem is trivial: every class which is
clusterable relative to E is already clusterable without any oracle. On the other hand,
some classes are not clusterable relative to any oracle. Proposition 4.3 characterizes
the maximal oracles which permit clustering of any class which is clusterable relative
to some oracle; in particular, it is shown that such oracles exist.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 31

2. The basic model. Most of the notation follows the books [11, 18]. The next
paragraph summarizes the most important notions used in the present work.

Basic notation. A class S is assumed to consist of recursively enumerable sub-
sets of a countable underlying set U where, in sections 3–6, U is the set of natural
numbers N and where, in sections 7 and 8, U is a rational vector space of finite pos-
itive dimension. Most of the time, S is even required to be uniformly recursively
enumerable, which means that there is a sequence A0, A1, . . . of subsets of U such that
first, S = {A0, A1, . . .}, and second, {(i, x) ∈ N × U : x ∈ Ai} is recursively enumer-
able. Such a sequence A0, A1, . . . is called a numbering for S. The only exceptions
are Proposition 3.9 and Remark 4.2, where clusterability is used for general classes as
defined in Definition 3.8.

The letters I, J,H always range over finite subsets of N. The norm is used to
induce a one-one ordering of the finite sets: it is defined as norm(I) =

∑
i∈I 2i. Note

that norm(I) ≤ norm(J) whenever I ⊆ J . Define AI as
⋃

i∈I Ai. Let Ai,s denote the
set of elements enumerated into Ai within s steps, and let AI,s =

⋃
i∈I Ai,s. Without

loss of generality, Ai,s ⊆ {0, 1, . . . , s} for all s. The sets Ai,s are uniformly recursive;
that is, {(i, s, x) : x ∈ Ai,s} is recursive.

Let disj(S) contain all finite sets I such that Ai ∩Aj = ∅ for all different i, j ∈ I.
The sets in disj(S) are called clustering tasks. There is an approximation disjs(S) to
disj(S) such that I ∈ disjs(S) if Ai,s ∩Aj,s = ∅ for all different i, j ∈ I.

For any set A, let |A| be the cardinality of A. Let A∗ be the set of all finite
sequences of members of A and |σ| be the length of a string σ ∈ A∗.

A text for a nonempty set A ⊆ U is any infinite sequence containing all elements,
but no nonelements, of A. Clusterers and semiclusterers are recursive functions from
U

∗ to finite subsets of N; learners are recursive functions from U
∗ to N. Also, mappings

ME represented by a machine M having access to an oracle E are considered. An
element σ ∈ A∗ is called a stabilizing sequence (for A and M) if M(στ) = M(σ) for
all τ ∈ A∗.

The sequence W0,W1, . . . denotes an acceptable numbering of all recursively enu-
merable sets, and We can be interpreted as the domain of the eth partial-recursive
function ϕe. The set K = {e : e ∈ We} is called the halting problem and this notion
can be generalized to computation relative to oracles: A′ is the halting problem rel-
ative to A; in particular, K ′ is the halting problem relative to K, and K ′′ is relative
to K ′. For more information on iterated halting problems, see [18, p. 450].

An oracle G is k-generic if for every Σ0
k-set T of strings there is a prefix η � G

such that either η ∈ T or η′ /∈ T for all η′ � η. There are 1-generic sets but no
2-generic sets below K. Nevertheless, k-generic sets exist for all k ∈ {1, 2, . . .}.

Definition 2.1. A class S = {A0, A1, . . .} of clusters is called clusterable iff
there is a clusterer M which, for every I ∈ disj(S), converges on every text for AI to
a J ∈ disj(S) with AJ = AI . Such an M is called a clusterer for S.

S is called semiclusterable if one replaces AJ = AI with the weaker condition that
AJ ⊇ AI .

S is called learnable in the limit from positive data with respect to the hypothesis
space A0, A1, . . . iff there is a learner M which, for every L ∈ S, converges on every
text for L to a j ∈ N with Aj = L. In the following, “learnable” stands for “learnable
in the limit from positive data with respect to the hypothesis space A0, A1,”

Note that every learner, clusterer, or semiclusterer M which succeeds on A has
a stabilizing sequence σ ∈ A∗. Furthermore, M(σ) is then also a correct hypothesis
for A.

32 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Remark 2.2. A clusterer M for S = {A0, A1, . . .} might also use a different
hypothesis space instead of the default one. Here a numbering B0, B1, . . . is called
the hypothesis space of M iff for every clustering task I and any text for AI , M
converges on this text to a finite set J such that BJ = AI and Bi ∩ Bj = ∅ for all
different i, j ∈ J . The hypothesis space is class preserving if S = {B0, B1, . . .} and
class comprising if S ⊆ {B0, B1, . . .}. Nevertheless, in light of Proposition 3.2, it is
assumed that a clusterer uses the default numbering A0, A1, . . . as its hypothesis space
unless explicitly stated otherwise.

Remark 2.3. Many learning criteria have analogous definitions for clustering. For
example, a machine M is confident iff it converges on every input to some hypothesis.
Thus, one could consider the notion of confidently clusterable classes. This notion is
more restrictive; that is, there are classes which are clusterable but not confidently
clusterable. In many respects, the theory developed on the basis of these notions is
very similar to the corresponding one for learning due to the following reason.

Many separations of different criteria C1 and C2 in learning from positive data can
be carried over to separations of the corresponding criteria C̃1 and C̃2 in clustering.
Given a class S separating the learning criterion C1 from C2, one can consider the
class

S̃ = {Ã : A ∈ S} where Ã = {0} ∪ {x + 1 : x ∈ A}

to separate C̃1 from C̃2. The main idea is to use the 0 in order to avoid any two
members of S̃ being disjoint. Then every clustering task and every reasonable hypo-
thesis is a singleton set. Learners for S and clusterers for S̃ can be translated into
each other.

For example, there is a class S which is learnable but not confidently learnable.
Then the class S̃ is clusterable but not confidently clusterable. That is, S̃ witnesses
that the notion of confident clustering is more restrictive than the notion of clustering.

This explains some of the many similarities between learning and clustering.
Thus, the present work does not focus on the introduction and study of clusterability
notions parallel to the many variants of learning in the limit. Instead, emphasis is
given more on the relations between clusterability on the one hand and topological,
recursion-theoretic, and geometrical properties of classes under consideration on the
other.

3. Numberings and clustering. The main topic of this section is the investi-
gation of the role of numberings in clustering. A natural question is whether clustering
is independent of the numbering chosen as the hypothesis space. Another important
issue is the relationship between numberings of the class of clusters and numberings
of the class of finite disjoint unions of clusters. The latter, which represents the clus-
tering tasks, might not have a numbering despite the fact that the former does, as
shown in the next example. The class of sets representing the clustering tasks in this
example cannot be made recursively enumerable by changing the numbering of the
class of clusters.

Example 3.1. For every i ∈ N, let

Ai =

{
{i + 1} if i /∈ K,
{0, i + 1} if i ∈ K.

The class S = {A0, A1, . . .} is uniformly recursively enumerable, but the class {AI :
I ∈ disj(S)} is not. Taking i to be the minimum of K, one has for all j > i,

j /∈ K ⇔ (∃I ∈ disj(S)) [{0, i + 1, j + 1} ⊆ AI].

IDENTIFYING CLUSTERS FROM POSITIVE DATA 33

This connection holds for all numberings of S but fails for any numbering of the
superclass of all finite sets.

Thus, there are clusterable classes in which the corresponding class of all clustering
tasks does not have a numbering. Nevertheless, a fundamental result of de Jongh and
Kanazawa [4] carries over to clustering: whenever a class is clusterable with respect to
a class comprising hypothesis space, the class is also clusterable with respect to every
class-preserving hypothesis space. Actually, the following result is even a bit stronger
since it does not require that the hypothesis space B0, B1, . . . be class comprising but
only that it satisfy the following more technical, but also more general, condition:

S ⊆ {BJ : (∀i, j ∈ J) [i = j ∨Bi ∩Bj = ∅]}.

Thus, for every I ∈ disj(S) there is a finite set J such that {Bj : j ∈ J} is pairwise
disjoint and AI = BJ . Note that this condition is indeed more general than the class-
comprising condition, as it holds in the case that A0, A1, . . . is an enumeration of
all two-element sets and B0, B1, . . . is an enumeration of all one-element sets. An
application of the next result is that every uniformly recursively enumerable class
consisting only of finite sets is clusterable.

Proposition 3.2. Let A0, A1, . . . be a numbering of a class S and B0, B1, . . .
be another numbering (of a possibly different class) such that for every I ∈ disj(S)
there is a J with AI = BJ . If there is a clusterer for S using the hypothesis space
B0, B1, . . . , then there is another clusterer that uses the original numbering A0, A1, . . .
as its hypothesis space.

Proof. Assume that M is a clusterer for S using the numbering B0, B1, . . . as its
hypothesis space. Note that M is required to be correct only on clustering tasks from
S, whereas the superclass {B0, B1, . . .} is not required to be clusterable.

The clusterer M has on every AI with I ∈ disj(S) a stabilizing sequence σI which
can be found in the limit: σI = lims σI,s with σI , σI,s ∈ A∗

I and M(σIτ) = M(σI)
for all τ ∈ A∗

I . Then the following clusterer N uses A0, A1, . . . as its hypothesis
space.

Algorithm N. On input of length s, N computes the output J of M fed with
the same input and searches for the set H ⊆ {0, 1, . . . , s} of least norm satisfying the
following conditions:

• H ∈ disjs(S);
• σH,s ∈ B∗

J,s;
• M(σH,sτ) = M(σH,s) for all τ ∈ B∗

J,s of length up to s.
If H is found, then output H, else output ∅.

Verification. Given a clustering task and a text for this task, let J be the hy-
pothesis to which M converges. Let I be the set of least norm such that AI = BJ

and I ∈ disj(S). Note that for all H with norm(H) < norm(I), either H /∈ disj(S),
or range(σH) �⊆ BJ , or there is a τ ∈ B∗

J such that M(σHτ) �= M(σH). Thus, if
the length s of the part of the text fed into N is sufficiently large, then the following
properties hold:

• I ⊆ {0, 1, . . . , s};
• for all H with norm(H) ≤ norm(I), H ∈ disjs(S) ⇔ H ∈ disj(S);
• for all H ∈ disj(S) with norm(H) ≤ norm(I), σH,s = σH ;
• σI ∈ B∗

J,s and M(σI) outputs J ;
• for all H ∈ disj(S) with norm(H) < norm(I), either σH /∈ B∗

J or there is a
τ ∈ B∗

J,s of length up to s with M(σHτ) �= M(σH).

34 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Hence I satisfies the search conditions of N , but no H with norm(H) < norm(I) does.
Thus, N converges on a text for BJ to the set I and N witnesses that S is clusterable
using the hypothesis space A0, A1, . . . for S.

Example 3.3. The converse of Proposition 3.2 does not hold: there is a cluster-
able class S and a numbering of a superclass of S such that no clusterer for S can use
this numbering as a hypothesis space.

Proof. For every i, let Ai = {〈i, x〉 : x ≤ |Wi|} and let S = {A0, A1, . . .}. It is
easy to see that S is clusterable using the numbering A0, A1, . . . as the hypothesis
space: on input σ the clusterer just outputs {i : 〈i, 0〉 ∈ range(σ)}.

For better readability, the second numbering has two indices. One defines that
Bi,j = {〈i, x〉 : min({j, x}) ≤ |Wi|}. Note that Bi,j = {〈i, 0〉, 〈i, 1〉, . . .} iff either Wi

is infinite or j ≤ |Wi|. Furthermore {Ai : i ∈ N} ⊆ {Bi,j : i, j ∈ N}; that is, the
hypothesis space of the Bi,j is class comprising.

Assume by way of contradiction that M is a clusterer for S using the numbering
of the Bi,j as its hypothesis space. Given any i, M converges on every text for Ai

to a singleton {(i, j)} with Ai = Bi,j . If Wi is finite, then j > |Wi|. Thus, one can
compute relative to K whether Wi is finite as follows:

1. Taking a default enumeration of Ai, one can use K to determine j such that
M—using this enumeration as a text for Ai—converges to {(i, j)};

2. one can use K to determine whether |Wi| > j;
3. if |Wi| > j, Wi is infinite; if not, Wi is finite.

This K-recursive algorithm contradicts the fact that the set {i : Wi is finite} has the
same Turing degree as K ′ and gives the desired contradiction.

Although there are classes S = {A0, A1, . . .} such that {AI : I ∈ disj(S)} is
not uniformly recursively enumerable, the superclass {AI : I ⊆ N ∧ |I| is finite} is
uniformly recursively enumerable. A clusterer for S can easily be converted to a
learner for S using the hypothesis space given by the numbering B0, B1, . . . , which
satisfies Bnorm(I)−1 = AI for all nonempty sets I. But learnability of uniformly
recursively enumerable classes does not depend on the hypothesis space; following
a result of de Jongh and Kanazawa [4], there is also a learner for S which uses
A0, A1, . . . as its hypothesis space. Thus, every clusterable class is learnable, although
the converse direction does not hold.

Property 3.4. Every clusterable class is learnable.
Example 3.5. (a) The class Sgold consisting of N and all its finite subsets is

neither learnable nor clusterable. But Sgold is semiclusterable.
(b) The class Ssing consisting of all singletons and the set N is learnable and

semiclusterable but not clusterable.
(c) Let C be infinite and recursively enumerable. The class SC consisting of C

and all singletons disjoint from C is learnable. Furthermore, SC is clusterable iff SC

is semiclusterable iff C is recursive.
Proof. (a) Gold [9] observed that Sgold is not learnable. By Property 3.4, the class

Sgold is also not clusterable. But Sgold is semiclusterable by the trivial algorithm,
which always conjectures an index for N.

(b) The class Ssing is learnable by the algorithm which conjectures an index for
range(σ) if |range(σ)| = 1 and an index for N if |range(σ)| �= 1. Since every finite set
belongs to a clustering task from Ssing, the structure of the clustering tasks of Ssing

is equal to that of Sgold. Thus, Ssing is semiclusterable but not clusterable.
(c) Note that the class SC has a numbering by taking Ai = C if i ∈ C and

Ai = {i} otherwise. One first enumerates i into Ai and, whenever i shows up in C,
one enumerates also the other elements of C into Ai.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 35

The class SC can be learned by conjecturing the cluster Ai for the first number i
occurring in the text; once selected, the output is kept forever.

If C is recursive, then SC is clusterable: on input σ, one outputs range(σ) if
range(σ) ∩ C = ∅ and {min(C)} ∪ (range(σ) − C) otherwise. What this algorithm
does is output the set containing the minimal indices of the clusters which intersect
the set of data items seen so far. Note that every clusterer is also a semiclusterer.
Thus, SC is semiclusterable as well.

It remains to show that C is recursive whenever there is a semiclusterer M for
SC . The set C has a stabilizing sequence σ with respect to M . Now let J = M(σ).
There is a finite and possibly empty set D disjoint from C such that AJ = C ∪ D.
Thus, one has that

x /∈ C ⇔ x ∈ D ∨ (∃τ ∈ C∗) [M(σxτ) �= M(σ)].

These formulas witness that C is recursively enumerable. Since C itself is also
recursively enumerable, the set C is actually recursive.

The classes Ssing and SC , where C is nonrecursive, are learnable but not cluster-
able. Both have the property that they are not closed under disjoint union. The next,
easy-to-verify, result shows that this property is essential for getting examples which
are learnable but not clusterable.

Property 3.6. Let a class S be closed under disjoint union, that is, A∪B ∈ S for
all disjoint A,B ∈ S. Then S is clusterable iff S is learnable.

A learner M for a class S is called prudent if it outputs only indices of sets it
learns. One can enumerate all possible hypotheses e0, e1, . . . of M and thus obtain a
numbering B0, B1, . . . with Bi = Wei of a learnable superclass of S. Fulk [8] showed
that every learnable class has a prudent learner. Therefore, it is sufficient to consider
only uniformly recursively enumerable classes for learning. So Fulk’s result can be
stated as follows.

Property 3.7 [see 11, Proposition 5.20]. Every learnable class has a prudent
learner. In particular, every learnable class is contained in some learnable and uni-
formly recursively enumerable class.

Thus, every learnable class can be extended to one which is learnable and uni-
formly recursively enumerable. But in contrast to learning in the limit, this require-
ment turns out to be restrictive for clustering. Indeed, Proposition 3.9 below gives
for every {0, 1}-valued function F �≤T K ′′ a clusterable class which is not contained
in any uniformly recursively enumerable clusterable class. Furthermore, the union of
any two such classes, given by different functions F, F ′, is no longer clusterable. So
one cannot cover these classes by countably many clusterable superclasses. Most in-
teresting results are based on Definition 2.1 with the consequence that only countably
many classes are clusterable. The more general notion below expands the collection
of clusterable classes to an uncountable one. Although the latter collection contains
many irregular classes of limited interest, it still gives some fundamental insights.

This notion of “clustering in the general sense” is formally introduced in Defini-
tion 3.8 and used only in Proposition 3.9 and Remark 4.2 below. As the enumeration
A0, A1, . . . is not available, a fixed acceptable numbering W0,W1, . . . is used as hypo-
thesis space instead.

Definition 3.8. A class S of recursively enumerable sets is clusterable in the
general sense iff there is a machine M which converges on every text for the union of
finitely many disjoint sets L0, L1, . . . , Ln ∈ S to a finite set J of indices of pairwise
disjoint members of S such that L0 ∪ L1 ∪ · · · ∪ Ln =

⋃
e∈J We.

36 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Proposition 3.9. Let F be a {0, 1}-valued function which is not computable
relative to the oracle K ′′. For all x, y ∈ N and z ∈ {0, 1}, let Ax,z, Bx,y be defined as

Ax,z = {〈x, 0, z〉, 〈x, 1, z〉, 〈x, 2, z〉, . . .},
Bx,y = {〈x, y, 0〉, 〈x, y, 1〉}.

Then the class S containing all sets Ax,z and Bx,y with x, y ∈ N and z = F (x) is
clusterable in the general sense but not contained in any clusterable class which is
uniformly recursively enumerable.

Proof. A clustering algorithm outputs on input σ a set J which contains indices
of the following sets:

• Ax,z whenever 〈x, 0, z〉 ∈ range(σ) but 〈x, 0, 1 − z〉 /∈ range(σ);
• Bx,y whenever Bx,y ⊆ range(σ).

The verification of the correctness of this algorithm can be carried out by taking
into account that for every x the following holds: S contains exactly one of the sets
Ax,0, Ax,1; every clustering task never contains both Ax,z and Bx,y.

Assume by way of contradiction that C0, C1, . . . is a numbering of a clusterable
superclass of S. This numbering contains exactly one, and only one, of the sets
Ax,0, Ax,1 since Ax,F (x) ∈ S and every class containing both Ax,0, Ax,1 together with
the sets Bx,y for all y ∈ N is not clusterable. The class of all Ax,0, Ax,1, and Bx,y has a
basic principle in common with the class Ssing from Example 3.5: the set Ax,0∪Ax,1 is
the disjoint union of the subsets Bx,0, Bx,1, . . . , and therefore no clusterable superclass
of S contains both sets Ax,0 and Ax,1. Thus, one can get F from the numbering
C0, C1, . . . as follows:

F (x) = z ⇔ (∃i) [Ci = Ax,z].

Since the equality of two recursively enumerable sets can be tested relative to the
oracle K ′, the function F would be computable relative to K ′′ in contradiction to the
choice of F .

4. Clustering and oracles. Oracles are a method for measuring the complex-
ity of a problem. Some classes are clusterable with a suitable oracle, while others
cannot be clustered with any oracle. Thus, the use of oracles permits us to distin-
guish problems caused by the computational difficulty of the class involved from those
which are unclusterable for topological reasons. This is illustrated in the following
remark.

Remark 4.1. Recall the classes SC and Sgold from Example 3.5. The class SC is
clusterable iff the set C in its definition is recursive. It is easy to see that supplying C
as an oracle to the clusterer resolves all computational problems in the case that C is
not recursive. But the class Sgold is unclusterable because of its topological structure
and remains unclusterable relative to every oracle.

Oracles have been extensively studied in the context of inductive inference [1,
6, 13, 16]. These studies considered arbitrary classes but not uniformly recursively
enumerable ones. The results for arbitrary classes carry over directly from learning
to clustering in the general sense.

Remark 4.2. Fortnow and coworkers [6] investigated for many settings of learning
the question of which oracles are maximal for learning in the sense that they enable us
to solve all principally solvable learning problems. Jain and Sharma [13] showed that
in the setting of learning languages from positive data there is no maximal oracle.
The same holds for clustering: for every oracle E, the class SE

jump consisting of all

IDENTIFYING CLUSTERS FROM POSITIVE DATA 37

sets {2x, 2x + 1} with x ∈ E′ and {2x}, {2x + 1} with x /∈ E′ is clusterable in the
general sense relative to an oracle F iff E′ ≤T F ′. The reason is that a clusterer MF

on a text for {2x, 2x + 1} can figure out in the limit how many clusters of SE
jump are

needed to cover {2x, 2x + 1}:

x ∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I| = 1;

x /∈ E′ ⇔ MF converges on 2x (2x + 1) (2x + 1) . . . to I with |I| = 2.

Thus, there is no oracle E which is maximal for clustering in the general sense,
meaning that every class which is clusterable in the general sense relative to some
oracle is also clusterable in the general sense relative to E.

An oracle is called trivial for clustering in the general sense iff every class which is
clusterable in the general sense relative to this oracle is also clusterable in the general
sense without it. Now it is shown that a nonrecursive oracle E is trivial for clustering
in the general sense iff it has a 1-generic degree and is Turing reducible to the halting
problem, that is, Case 1 below is satisfied.

Case 1. E ≤T G for a 1-generic set G ≤T K. Let S be any class which is
clusterable in the general sense relative to E. By [6, Lemma 4.19] there is a clusterer
MG which asks on every text belonging to any clustering task from S only finitely
many queries to G. The answers to these queries can be successfully figured out in
the limit—thus there is a recursive clusterer for S which converges on every text of
any finite disjoint union of sets in S to exactly the same output as MG. In particular,
G (and thus E) is trivial for clustering in the general sense.

Case 2. E �≤T G for any 1-generic set G ≤T K. Kummer and Stephan [16,
Theorem 10.5] showed that there is a class SE

func which is learnable relative to E
but not without any oracle. This class SE

func consists of graphs of recursive functions
and, following Remark 2.3, one can assume without loss of generality that f(0) = 0
for every function whose graph is in SE

func. The class SE
func is, on the one hand,

clusterable in the general sense relative to E and, on the other hand, not clusterable
in the general sense without any oracle. In particular, SE

func witnesses that E is not
trivial for clustering in the general sense.

The previous remark completes the investigation of clustering in the general sense
within the present work. From now on, S denotes again a uniformly recursively
enumerable family of clusters. That is, S = {A0, A1, . . .}, and the set {(i, x) ∈ N

2 :
x ∈ Ai} is recursively enumerable.

The usefulness of oracles with respect to clustering differs much from the case of
clustering in the general sense. Dealing only with uniformly recursively enumerable
classes reduces our ability to separate oracles by suitable classes. The definitions for
maximal and trivial oracles for clustering are the following.

Call an oracle E maximal for clustering if every uniformly recursively enumerable
class which is clusterable relative to some oracle is already clusterable relative to E.
Call an oracle E trivial for clustering if every uniformly recursively enumerable class
which is clusterable relative to E is already clusterable without any oracle.

Here the word “maximal” instead of “omniscient” is used since by Remark 4.1
some classes are not clusterable with any oracle. In contrast, omniscient oracles for
learning functions permit us to learn the class of all recursive functions [1] and do not
leave any function learning problem unsolved.

The next result shows that, in contrast to the case of clustering in the general
sense, there are maximal oracles for clustering. It turns out that for an oracle E below
K the following three conditions are equivalent: E is trivial for clustering, E is trivial

38 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

for learning sets, E is trivial for learning functions; see [6] for the equivalence of the
last two statements.

Proposition 4.3. For every oracle E the following statements are equivalent:
(a) E ≥T K and E′ ≥T K ′′;
(b) the oracle E is maximal for learning from positive data—every uniformly re-

cursively enumerable class is either not learnable with any oracle or learnable
with oracle E;

(c) the oracle E is maximal for clustering—every uniformly recursively enumer-
able class is either not clusterable with any oracle or clusterable with oracle E.

Proof. Assume that E satisfies E ≥T K and E′ ≥T K ′′ and assume that S =
{A0, A1, . . .} is clusterable relative to some oracle. Then S satisfies Angluin’s telltale
condition below and one can actually give an algorithm which succeeds with the
oracle E.

Angluin’s condition (see [3]). The class S is clusterable with the help of some
oracle iff for every I ∈ disj(S), there is a finite set D, called a telltale set for I, such
that D ⊆ AI and no J ∈ disj(S) satisfies D ⊆ AJ ⊂ AI .

Note that one can test with oracle K ′′ whether the telltale condition holds for
given I,D: F (D, I) = 1 ⇔ (∀J ∈ disj(S)) [D �⊆ AJ ∨AJ �⊂ AI]. This condition has an
E-recursive approximation Fs(D, I) which converges for s → ∞ to 1 if F (D, I) = 1
holds and to 0 otherwise.

Algorithm M . Given an E-recursive enumeration of {(D, J) : D is a finite
subset of N and J ∈ disj(S)}, M(σ) outputs J from the first pair (D, J) satisfying
the following conditions:

• D ⊆ range(σ) ⊆ AJ ;
• F|σ|(D, J) = 1.

In order to guarantee that M is total, the search is limited to the first |σ| pairs, and
M(σ) outputs ∅ if none of the first |σ| pairs qualifies.

Verification. Since every clustering task I ∈ disj(S) has a telltale set D′ such
that D′ ⊆ AI and F (D′, I) = 1, the algorithm converges to some pair (D, J) with
F (D, J) = 1. One has that D ⊆ AI ⊆ AJ and it then follows from Angluin’s condition
that AI = AJ .

Complete class. It remains to show that condition (a) on E is necessary. The
class Scomp considered here consists of the sets Ai,D defined below, where i ∈ N and
D is a finite subset of N. Note that below, the entry for ∅ is given explicitly, and
therefore D �= ∅ in the second entry; in particular, max(D) is defined there:

Ai,∅ = {〈i, x〉 : x ∈ Wi ∪ {0}},
Ai,D = {〈i, x〉 : x ∈ D ∪ {0}

∨ (x > max(D) ∧ {z : max(D) ≤ z < x} ⊆ Wi)

∨ (x ≤ max(D) ∧ {z : x ≤ z ≤ max(D)} ⊆ Wi)}.

Clusterer N with oracle K′′. Given input σ, NK′′
determines the sets

Bi = range(σ) ∩ {〈i, 0〉, 〈i, 1〉, . . .}.

Then J consists of the pairs (i,D), where Bi �= ∅ and D is a finite set of least norm
satisfying one of the following conditions:

1. Ai,D = Bi;
2. D = ∅, Bi ⊆ Ai,∅, and Wi coinfinite;

IDENTIFYING CLUSTERS FROM POSITIVE DATA 39

3. Ai,D = Bi ∪ {〈i, x〉 : x ≥ max(D)}.
Then NK′′

outputs J .
Verification. Given a clustering task I, the clusterer obviously finds all i, where

(i, C) ∈ I for some C. Furthermore, there is at most one C with (i, C) ∈ I since Ai,C

always contains 〈i, 0〉. It can be seen that the above cases 1, 2, 3 in the algorithm
of NK′′

are disjoint and that NK′′
converges syntactically whenever NK′′

converges
semantically:

• If Ai,C is finite, then eventually all elements show up and NK′′
outputs an

index for this set.
• If Ai,C is infinite and Wi coinfinite, then C = ∅ and no finite subset of Ai,∅

is in Scomp. Thus, the first case does not apply and NK′′
puts (i, ∅) into J

according to the second case.
• If Ai,C is infinite and Wi cofinite, then let ai be the first number such that

all x ≥ ai are in Wi. In particular, the set D = {x ≤ ai : 〈i, x〉 ∈ Ai,C}
satisfies Ai,D = Ai,C , and therefore (i,D) or some equivalent index goes into
J whenever Bi contains all 〈i, x〉 ∈ Ai,C with x ≤ ai.

This completes the verification of the clusterer NK′′
. It is easy to see that Scomp is

also learnable relative to K ′′. Furthermore, Scomp is clusterable and learnable relative
to any oracle which is maximal for clustering.

Hardness. It is sufficient to show that learning is hard since no member of Scomp

is the disjoint finite union of two or more other members of Scomp, and every clusterer
therefore has to find for every L ∈ Scomp a singleton {(i,D)} such that Ai,D = L. In
the following, assume that an oracle E and a learner OE using the oracle E are given.
Note that every set Ai,∅ has a stabilizing sequence. Let σi be the first stabilizing
sequence found by a search applying the oracle E′. Note that OE(σi) has to be an
index for Ai,∅ since OE(σiτ) = OE(σi) for all τ ∈ (Ai,∅)

∗ by the definition of a
stabilizing sequence. Let bi be the maximum of all y with 〈i, y〉 ∈ range(σi).

Let H1 ⊕H2 denote the set {2x : x ∈ H1} ∪ {2x+ 1 : x ∈ H2}. There is an index
i such that Wi = N ⊕ K. Then Ai,∅ = {〈i, y〉 : y ∈ Wi}. Now consider any x with
2x > bi and Ai,D, where D consists of 2x and all y with 〈i, y〉 ∈ range(σi). If x ∈ K,
then range(σi) ∪ {〈i, 2x + 1〉} ⊆ Ai,∅. If x /∈ K, then Ai,D − Ai,∅ = {〈i, 2x + 1〉}.
Therefore,

x ∈ K ⇔ 2x + 1 ∈ Wi,

x /∈ K ⇔ (∃τ ∈ (Ai,∅)
∗) [OE(σi〈i, 2x + 1〉τ) �= OE(σi)].

A finite modification of the above formula takes care of the x with 2x ≤ bi and shows
that K is computable relative to E.

Assume that the set Wi is cofinite and ai is, as above, the minimum of all x with
{x, x + 1, . . .} ⊆ Wi. Now consider any y < ai with y ∈ Wi. Then Ai,∅ − {〈i, y〉} is
in Scomp. Since σi is a stabilizing sequence for Ai,∅, 〈i, y〉 occurs in σi. Thus, there
are no elements of Wi strictly between bi and ai. In particular, Wi is cofinite iff every
x > bi with x ∈ Wi actually satisfies {x, x+ 1, . . .} ⊆ Wi. As it is already known that
K ≤T E, one has that K ′ ≤ E′, and the following algorithm decides relative to E′

whether Wi is cofinite.
Given i, compute relative to E′ the sequence σi and the number bi. Check whether

there is an x > bi with x ∈ Wi. If not, then Wi is finite and thus coinfinite. If so, one
can find such an x with oracle E. Then Wi is cofinite iff {x, x + 1, . . .} ⊆ Wi, which
can again be checked with oracle E′.

40 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Thus, exploiting that E ≥T K and E′ ≥T K ′, one can derive that E′ ≥T K ′′

since K ′′ and the index-set {i : Wi is cofinite} have the same Turing degree. This
completes the proof.

Proposition 4.4. Let E be a nonrecursive oracle with E ≤T K.
(a) If E has 1-generic degree, then E is trivial and permits us to cluster only

classes which can already be clustered without any oracle.
(b) If E does not have 1-generic degree, then there is a uniformly recursively

enumerable class which can be clustered using the oracle E but not without
any oracle.

The same characterizations hold for learning in place of clustering.
Proof. (a) Clustering S and learning S̃ = {AI : I ∈ disj(S)} have the same diffi-

culty if one does not require the use of the hypothesis space {A0, A1, . . .}. Therefore,
if one can cluster S with the help of oracle E, then one can also learn S̃ with the
help of the same oracle. Thus, by Kummer and Stephan [16, Theorem 10.5], S̃ can
be learned without any oracle. This learner can be interpreted as a clusterer which
outputs only singleton classes and uses an acceptable numbering of all recursively
enumerable sets as its hypothesis space. By Proposition 3.2 one can translate this
learner into a clusterer using A0, A1, . . . as its hypothesis space.

(b) By [16, Theorem 10.5] there is a class SE
func of graphs of recursive functions

which can be learned relative to oracle E but not without any oracle. Suppose ME

learns SE
func. The main task is to build a uniformly recursively enumerable superclass

which still can be learned with oracle E. Without loss of generality, all functions f
with a graph in SE

func satisfy that f(0) = 0. Therefore, 〈0, 0〉 is in all members of
SE

func. Furthermore, 〈0, 0〉 will also be in all the members of the superclass S of SE
func

to be constructed. Thus, S is clusterable iff it is learnable.
Since E ≤T K, the oracle E has a recursive approximation E0, E1, . . . and the

machine ME has also approximations ME0 ,ME1 , . . . such that MEs works with Es

instead of E. The sequence of these approximations to ME is uniformly recursive.
The class S. For every given i, j, k ∈ N, let Ai,j,k contain all pairs 〈x, y〉 which

satisfy one of the three conditions below. The class S consists of all Ai,j,k with
i, j, k ∈ N.

Condition 1. The pair 〈x, y〉 is just 〈0, 0〉.
Condition 2. There is a number s ≥ max({i, j, k, x}) such that the following

statements hold:
• ϕi(z) is defined for all z ≤ max({j, x}), ϕi(0) = 0, and ϕi(x) = y;
• for all t with k ≤ t ≤ s, MEt(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉) = {i};
• for z = j, j+1, . . . ,max({j, x}), MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈z, ϕi(z)〉) = {i};
• either j = 0 or MEs(〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j − 1, ϕi(j − 1)〉) �= {i}.

Condition 3. This condition does not depend on 〈x, y〉 since it covers the case in
which the parameters do not permit us to construct a desired set but might already
have caused the enumeration of pairs different from 〈0, 0〉:

– ϕi is defined on 0, 1, . . . , j;
– MEs(η) �= MEk(η) for some s > k and η � 〈0, ϕi(0)〉〈1, ϕi(1)〉 . . . 〈j, ϕi(j)〉.

It is easy to see that this class is uniformly recursively enumerable. The intuition
behind the conditions is the following. Condition 1 makes the set Ai,j,k nonempty and
enforces that S is clusterable relative to E iff S is learnable relative to E. Condition
2 tries to put information on the graph of ϕi into Ai,j,k, where j, k serve as additional
information. Condition 3 takes care of the class when the choice of the parameters j, k
is inadequate. Note that whenever ME converges for a total function f to {i} such
that ϕi = graph(f), there is a position j from which on ME has converged to {i}. In

IDENTIFYING CLUSTERS FROM POSITIVE DATA 41

particular, Ai,j,k = graph(f) where k is the least number such that MEs(η) = ME(η)
for all s ≥ k and η � 〈0, f(0)〉〈1, f(1)〉 . . . 〈j, f(j)〉. Let (izero, jzero, kzero) be an index
of {〈0, 0〉} and (iall, jall, kall) be an index of {〈x, y〉 : x, y ∈ N}.

Algorithm N with oracle E. On input σ, NE does the following steps:
1. Let f(m) be the least number y such that 〈m, y〉 is in range(σ);
2. if f(0) or f(1) cannot be recovered from range(σ), then output (izero, jzero,

kzero) and halt;
3. if there is 〈m, z〉 ∈ range(σ) with z > f(m), then output (iall, jall, kall) and

halt;
4. find the largest n such that f(0), f(1), . . . , f(n) can be recovered from range(σ);
5. compute for m = 0, 1, . . . , n the indices im such that

ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m, f(m)〉) = {im}

and let km,|σ| be the least number o such that 〈0, 1〉 is not enumerated into
Aim,m,o within |σ| − o steps;

6. determine all numbers m ∈ {1, 2, . . . , n} such that either range(σ) consists of
the elements enumerated into Aim,m,km,|σ| within |σ| steps or m is the least
number with im = im+1 = · · · = in;

7. output {(im,m, km,|σ|)} for the least m that was selected in step 6 and halt.
Verification. Let L be any set in S. It is easy to see that NE identifies the sets

Aizero,jzero,kzero and Aiall,jall,kall
. Thus, one can consider any set L ∈ S which is of

the form {〈x, f(x)〉 : x < b}, where b ∈ {2, 3, . . . ,∞} and f is a recursive function. It
is obvious that any 〈x, y〉 ∈ range(σ) satisfies f(x) = y, thus f is correctly recovered
by NE and n is the largest integer such that all pairs 〈x, f(x)〉 with x ≤ n occur in σ.

Let j be the least number such that j < b and for ij = ME(f(0), f(1), . . . , f(j)),
there is a k with Aij ,j,k = L. Now fix this k to be the minimal one with Aij ,j,k = L.
Then Aij ,j,o �= L for all o < k; indeed Aij ,j,o = Aiall,jall,kall

for these o. Note that
m, km,|σ| as chosen in step 7 of the algorithm, respectively, converge to j and k from
below, where k is the least integer such that the f(0), f(1), . . . , f(j) chosen by the
algorithm satisfy

(∀m′ ≤ j) (∀s ≥ k)[MEs(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)
= ME(〈0, f(0)〉〈1, f(1)〉 . . . 〈m′, f(m′)〉)].

Given any text for L, assume that σ is so long that the following statements hold:
1. All pairs 〈m, f(m)〉 with m ≤ j have occurred in σ, and thus NE knows

f(0), f(1), . . . , f(j);
2. if L is finite, then L = range(σ) and all elements of L are enumerated into

Aij ,j,k within |σ| steps;
3. for all m ≤ j and t > |σ|, km,t = km,|σ|;
4. an element of Aim,m,km,|σ| −L is enumerated into Aim,m,km,|σ| within |σ| steps

whenever this difference is not empty and m ≤ j;
5. an element of L − Aim,m,km,|σ| has occurred in σ whenever this difference is

not empty and m ≤ j.
The first statement implies that NE can recover the relevant part of f . The second
statement implies that whenever L is finite, its elements and the finitely many elements
of Aij ,j,k are explicitly known to the learner. The third statement enforces that kj,|σ| =
k, and thus k is known to the learner. The fourth and fifth statements guarantee for
all m < j that NE does not output {(im,m, km,|σ|)} whenever Aim,m,km,|σ| �= L. By

42 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

the choice of j, this holds for all m < j and NE outputs {(ij , j, k)} on input σ. Thus,
NE identifies L.

The following example shows that there is a difference between the trivial oracles
for clustering in the general sense and clustering of uniformly recursively enumerable
classes.

Example 4.5. Every 2-generic oracle is trivial for clustering.
Proof. Assume that G is 2-generic and S = {A0, A1, . . .} is clusterable relative

to G via an oracle machine MG. Without loss of generality, ME is total for every
oracle E. Now consider the following sets of strings:

T = {η : (∃I, J) (∃x, t) (∃σ ∈ A∗
I) (∀τ ∈ A∗

I) (∀E � η) (∀s ≥ t)

[(J /∈ disjs(S) ∨AI,s(x) �= AJ,s(x)) ∧ I ∈ disjs(S) ∧ME(στ) = J]};

UI,σ = {ϑ : (∃τ ∈ A∗
I) (∀E � ϑ) [ME(στ) �= ME(σ)]}.

The oracles quantified in the definitions above are evaluated only up to a certain
point. Thus, one can make the definitions of the sets to be Σ0

2.
Given any I ∈ disj(S), MG has a stabilizing sequence σ for AI . If σ is not also

a stabilizing sequence for ME , then there is a τ and a prefix ϑ � E with ME(στ) �=
ME(σ), where all queries to E while computing these two values target only the
domain of ϑ. Thus, ϑ ∈ UI,σ. Since G is 2-generic and σ is a stabilizing sequence for
MG, there is a prefix α � G such that no extension ϑ � α is in UI,σ. In particular, σ
is a stabilizing sequence for AI and ME whenever the oracle E satisfies E � α. Thus,
the stabilizing sequence σ is uniform for all ME with E � α.

The set T contains all η such that for some I ∈ disj(S), for some J and a uniform
stabilizing sequence σ for AI with respect to η, ME(σ) = J for all E � η and either
J /∈ disj(S) or AJ �= AI . It follows again that η �� G for all η ∈ T . Thus there is a
prefix θ � G such that no extension of θ is in T .

Algorithm N . The clusterer N is a variant of the locking sequence hunting
construction and searches simultaneously for an η � θ and σ built from the data and
a J such that ME(στ) = J for all E � η and τ obtained from data seen so far. That
is, if at stage s the set D is the range of all data seen so far, N searches the first pair
(σ, η) in an enumeration of N

∗ × {0, 1}∗ such that
1. σ ∈ D∗ and η ∈ θ · {0, 1}∗;
2. for all τ ∈ D∗ with |τ | ≤ s− |σ| and all E,F � η, ME(στ) = MF (σ).

Let J = MF (σ) for the set F = {x : η(x) ↓= 1}; N outputs J .
Verification. First, note that the search always terminates, as any σ ∈ D∗ with

|σ| > s and any η extending ϑ trivially satisfy the requirements. Furthermore, there
is a pair (σ, η) which is a uniform stabilizing sequence for AI satisfying η � θ, and
N finds such a sequence in the limit. Since G strongly avoids T in the sense that no
extension of the prefix θ is in T , any pair (σ, η) considered by N infinitely often is a
correct uniform stabilizing sequence, and thus N converges to an index J ∈ disj(S)
of AI .

5. The finite containment property. The main topic of this section is to
investigate the relationship between the topological structure of the class S and the
question of whether S is clusterable. Recall that the classes Sgold and Ssing are not
clusterable for topological reasons: they contain a cluster which is the disjoint infinite
union of some other clusters. Thus, one might impose the following natural condition
in order to overcome this problem.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 43

Definition 5.1. A class S = {A0, A1, . . .} has the finite containment property
if every finite union of clusters contains only finitely many clusters. That is, for all i
there are only finitely many sets B ∈ S with B ⊆ A{0,1,...,i}.

Note that the finite containment property is not necessary for clusterability. The
class { {i, i+1, . . .} : i ∈ N} is learnable and clusterable but does not satisfy the finite
containment property.

It is easy to see that the finite containment property implies Angluin’s condition:
for every set AI , there are only finitely many sets AJ with AJ ⊂ AI . If one takes D
to be the set {min(AI − AJ) : AJ ⊂ AI}, then D is finite and there is no AJ with
D ⊆ AJ ⊂ AI . Thus, from the proof of Proposition 4.3 one has the following.

Property 5.2. If S = {A0, A1, . . .} has the finite containment property, then S is
clusterable relative to every oracle E with E ≥T K and E′ ≥T K ′′.

Although the finite containment property guarantees clusterability from the topo-
logical point of view, it fails to guarantee clusterability from the recursion-theoretic
point of view. Indeed, the class Scomp given in the proof of Proposition 4.3 satisfies
the finite containment property. If Wi is cofinite, then there are only finitely many
subsets of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp. If Wi is coinfinite, then Ai,∅ is the only infinite
subset of {〈i, 0〉, 〈i, 1〉, . . .} in Scomp and all further subsets of {〈i, 0〉, 〈i, 1〉, . . .} are
finite sets which are not contained in Ai,∅.

Note that the class SC from Example 3.5 is, for the case that C is nonrecursive,
a witness for a class satisfying the finite containment property which is learnable but
not semiclusterable. This gives the following property.

Property 5.3. There is a class satisfying the finite containment property which is
learnable but neither clusterable nor semiclusterable.

Since the topological structure of SC is the same whenever C is infinite, cluster-
ability of the class SC is not determined by its topological structure.

Property 5.4. Clusterability cannot be characterized in topological terms only.
If one takes C to be the halting problem K, then SC (from Example 3.5) witnesses

that the oracle K is necessary for semiclustering, even in the case where classes have
to satisfy the finite containment property. Proposition 5.5 below shows that semiclus-
tering is much easier than clustering: every uniformly recursively enumerable class is
semiclusterable using the halting problem as an oracle. In particular, no topological
condition can make semiclustering impossible, but only computational conditions can.

Furthermore, every uniformly recursive class is semiclusterable. But this condi-
tion is not necessary for either semiclusterable or clusterable classes. For example,
the class { {x : ϕx(x) ↓= i} : i ∈ N} is clusterable but consists of pairwise disjoint
and recursively inseparable sets.

Proposition 5.5. Every r.e. class has a semiclusterer using the halting problem
as an oracle. Furthermore, a class S = {A1, A2, . . .} is semiclusterable without any
oracle if the representation of the class is a uniformly recursive family, that is, if
{(i, x) ∈ N

2 : x ∈ Ai} is recursive and not only recursively enumerable.
Proof. It is sufficient to assume that M can check whether some x is in Ai. This

can be done either by using the halting problem as an oracle or by assuming that the
sequence A0, A1, . . . is uniformly recursive.

Now M on input σ determines all J ⊆ {0, 1, . . . , |σ|} such that J ∈ disj|σ|(S) and
range(σ) ⊆ AJ . If there are several such sets, M outputs the one with the least norm.
If there are none, M outputs ∅.

Note that all J which either do not represent disjoint sets or do not contain all
data showing up in the limit are eventually disqualified. On the other hand, the set I
representing the clustering task is among the determined sets whenever |σ| ≥ max(I).

44 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Thus, M converges in the limit to some J such that norm(J) ≤ norm(I), J ∈ disj(S),
and AI ⊆ AJ . Therefore M witnesses that S is semiclusterable.

By Property 5.3 one can separate learnability from clusterability and semiclus-
terability by a class satisfying the finite containment property. The next results
show that there are no implications between the notions of learnability, clusterability,
and semiclusterability except the following two: “clusterable ⇒ semiclusterable” and
“clusterable ⇒ learnable.” All nonimplications are witnessed by classes satisfying the
finite containment property.

Proposition 5.6. There is a class with the finite containment property which is
semiclusterable and learnable but not clusterable.

Proof. Let S consist of the clusters

A3i = {〈i, x〉 : x ∈ N};
A3i+1 = {〈i, x〉 : x is even and x < 2 + |Wi|};
A3i+2 = {〈i, x〉 : x is odd and x < 2 + |Wi|}.

If Wi is infinite, then A3i+1 consists of the 〈i, x〉 where x is even and W3i+2 con-
sists of those 〈i, x〉 where x is odd. Since the union A0 ∪ A1 ∪ · · · ∪ A3i+2 contains
only the clusters A0, A1, . . . , A3i+2, the class S has the finite containment property.
Furthermore, S is semiclusterable by assigning to every input σ the set

{3i : (∃x ∈ N) [〈i, x〉 ∈ range(σ)]}.

Now it is shown that S is not clusterable. Thus, assume by way of contradiction that
a recursive M witnesses S to be clusterable.

For each A3i, one finds by using the oracle K a stabilizing sequence σi ∈ (A3i)
∗.

One can reduce the question of whether Wi is infinite to the question of whether
range(σi) ⊆ A{3i+1,3i+2}, which is decidable relative to K: if Wi is infinite, then
range(σi) ⊆ A{3i+1,3i+2}; if Wi is finite, then range(σi) �⊆ A{3i+1,3i+2}. The latter
holds, since otherwise σi would also be a stabilizing sequence for A{3i+1,3i+2}, and M
cannot have the same stabilizing sequence for two different sets in which one set is a
subset of the other. The reduction of {i : Wi is infinite} to the oracle K contradicts
the fact that {i : Wi is infinite} is Turing equivalent to K ′.

It remains to show that the class S is learnable. This can be done by considering
the following learner N .

Algorithm N . On input σ, let i be the least number such that a pair of the
form 〈i, x〉 occurs in range(σ). Then

N(σ) =

⎧⎨
⎩

3i if there are even and odd y with 〈i, y〉 ∈ range(σ);
3i + 1 if there are only even y with 〈i, y〉 ∈ range(σ);
3i + 2 if there are only odd y with 〈i, y〉 ∈ range(σ).

The correctness of the learner N can easily be verified.
Example 5.7. The class containing all sets A3i, A3i+1, A3i+2, A{3i+1,3i+2} from

the numbering A0, A1, . . . in the proof of Proposition 5.6 is neither learnable nor clus-
terable. But it satisfies the finite containment property and is semiclusterable.

A natural variant of the finite containment property is the finite meet property,
which says that each member of the class S meets only finitely many other members
(that is, for each A ∈ S, |{A′ ∈ S : A ∩ A′ �= ∅}| is finite). The class SC , from
Example 3.5, witnesses that for C = K one might need the oracle K to cluster a class
satisfying the finite meet property. Since the class given in the proof of Proposition 4.3

IDENTIFYING CLUSTERS FROM POSITIVE DATA 45

satisfies the finite containment property and can be clustered only relative to maximal
oracles, the next result shows that classes satisfying the finite meet property are easier
and require only the oracle K.

Proposition 5.8. If a class satisfies the finite meet property, then it is clusterable
with the halting-problem oracle K.

Proof. Let S = {A0, A1, . . .} satisfy the finite meet property. Let b0, b1, . . . be a
text for AI with I ∈ disj(S); without loss of generality, I consists of minimal indices;
that is, for all i ∈ I and for all j, if Ai = Aj , then i ≤ j. Relative to K and the text,
one can enumerate the set

H = {h : Ah ∩ {b0, b1, . . .} �= ∅ ∧ (∀j < h) [Aj �= Ah] }.

Now one considers all subsets J ⊆ H with J ∈ disj(S). Note that I ⊆ H and
I ∈ disj(S), and thus I is among the considered sets. Due to the finite meet property,
H is finite and only finitely many J are considered. Since these sets are uniformly
recursive relative to K, one can find in the limit a considered set J which satisfies
AJ = {b0, b1, . . .}, that is, AJ = AI . Thus S is clusterable using the oracle K.

6. Numbering-based properties. Every uniformly recursively enumerable
class of pairwise disjoint sets is learnable: the learner just waits until it finds x ∈
range(σ) and i ≤ |σ| such that x is enumerated into Ai within |σ| steps; from then on
the learner outputs the index i. But for nonrecursive sets C, the class SC witnesses
that such a class is not clusterable. Thus, one has to consider not only properties
of the class but also properties of some of its numberings. A class {A0, A1, . . .} has
the numbering-based finite containment property if for every I there are only finitely
many j with Aj ⊆ AI .

Proposition 6.1. A class of pairwise disjoint sets has the numbering-based finite
containment property iff it is clusterable.

Proof. Let S = {A0, A1, . . .} be a class of pairwise disjoint sets. Due to the
numbering-based finite containment property there are, for every i, only finitely many
j with Aj = Ai. Now consider the following clusterer.

Algorithm M . On input σ, find the J of the largest norm which satisfies the
following three conditions:

1. J ⊆ {0, 1, . . . , |σ|};
2. J ∈ disj|σ|(S);
3. Aj ∩ range(σ) �= ∅ for all j ∈ J .

Then output this J .
Verification. Note that the algorithm always terminates since ∅ satisfies the search

conditions. Fix a clustering task I. The set H = {h : Ah ∩ AI �= ∅} is finite. Since
M always outputs subsets of H, it follows that M converges to some J ⊆ H. This J
is the set of the highest norm such that J ⊆ H and J ∈ disj(S). Since the members
of S are pairwise disjoint, it holds for every j ∈ J that Aj not only meets AI but,
moreover, is contained in AI . Furthermore, if i ∈ I, then Ai ∩AJ is not empty, since
otherwise J ∪ {i} is also a subset of H, is in disj(S), and has a norm larger than that
of J . Thus, Ai ⊆ AJ . Since this holds for all i ∈ I, AJ = AI and M is a clusterer
for S.

Converse direction. Assume that N is a clusterer for S and consider the set

E = {i : (∀j < i) (∀σ ∈ A∗
j,i, |σ| ≤ i) (∃τ ∈ (Ai ∪Aj)

∗) [N(στ) �= N(σ)]}.

The set E is recursively enumerable since the universal quantifiers are bounded and
the second one runs over strings of the finite set Aj,i of all elements enumerated into

46 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Aj within i steps. Given any set in S, let i be its minimal index. Let j < i. Since
Aj �= Ai, Aj is disjoint from Ai, {j, i} ∈ disj(S), and A{j,i} is a proper superset of Ai.
The clusterer N must converge on texts for Aj and A{i,j} to different outputs. Thus,
there is no σ ∈ A∗

j with N(σ) = N(στ) for all τ ∈ A∗
{i,j}. The index i is eventually

enumerated into E. The set Ai has a stabilizing sequence σ. For all sufficiently large
j with Ai = Aj , the length of σ is shorter than j and its range enumerated into Ai

within j steps. It follows that σ prevents j from being enumerated into E and E
contains only finitely many indices of Ai. The set E has a recursive enumeration
e0, e1, . . . , which defines by Bh = Aeh a new numbering B0, B1, . . . of S having the
desired properties.

Remark 6.2. Proposition 5.6 gives a class which satisfies the numbering-based
finite containment property but is not clusterable. A variant of the class Scomp given in
the proof of Proposition 4.3 satisfies the numbering-based finite containment property
but is clusterable only relative to maximal oracles.

Let the numbering-based finite meet property denote that every Ai meets Aj

only for finitely many j. It follows from Proposition 5.8 that a class satisfying the
numbering-based finite meet property is clusterable with the oracle K. But even this
property is not sufficient for clustering without oracles. The class in Example 5.7
actually satisfies the numbering-based finite meet property but is not clusterable.

A further example of a class which satisfies the numbering-based finite meet prop-
erty but is not clusterable can be constructed using the following result of Jain and
Sharma [12]: there is no learner which identifies all recursively enumerable sets from
any text for the set plus an upper bound on its least index. The class

{{〈i, x〉 : x ∈ Wj} : j ≤ i ∧Wj �= ∅}

has a numbering witnessing that it satisfies the numbering-based finite meet property.
But it consists of copies of sets Wj , having coded an upper bound of an index of Wj

into its first coordinate. This class cannot be learnable or clusterable because one
would get a contradiction to the result of Jain and Sharma otherwise.

In the following, two conditions are presented which are more restrictive than the
numbering-based finite containment property and guarantee that a class is clusterable.

Proposition 6.3. Assume that Ai �⊆
⋃

j �=i Aj for all i and that it is decidable
whether two sets Ai, Aj intersect. Then S = {A0, A1, . . .} is clusterable.

Proof. The clusterer M uses the fact that one can check disjointness effectively,
that is, that disj(S) is recursive.

Algorithm M . On input b0, b1, . . . , bs, M considers all J ⊆ {0, 1, . . . , s} satis-
fying the following conditions:

1. Ai,s ∩ {b0, b1, . . . , bs} �= ∅ for all i ∈ J ;
2. J ∈ disj(S);
3. there is no j ∈ {0, 1, . . . , s} − J such that Aj,s ∩ {b0, b1, . . . , bs} �= ∅ and

J ∪ {j} ∈ disj(S).
If there are several sets J1, J2, . . . , Jn ⊆ {0, 1, . . . , s} which satisfy all three conditions,
then M computes for m = 1, 2, . . . , n the number

cm = max{h ≤ s + 1 : {bj : j < h} ⊆ Jm,s}

and outputs Jm for the m which maximizes cm; if there are still several options, M
outputs the one with the least norm.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 47

Verification. Assume that a clustering task I ∈ disj(S) is given and that b0b1 . . .
is a text for AI . Let s be so large that there is a c satisfying the following conditions:

• s ≥ max(I);
• for any i ∈ I there exists an h ≤ c with bh ∈ Ai −

⋃
j �=i Aj ;

• {b0, b1, . . . , bc} ⊆ AI,s.
Then I clearly satisfies the first two search conditions of M . The third is also satisfied
since, whenever Aj ∩ AI = ∅, Aj does not contain any of the elements b0, b1, . . . , bs.
Thus, any set J �= I satisfying all three conditions is not a superset of I. In particular,
there is an i ∈ I−J and an h ≤ c such that bh ∈ Ai−AJ . Since {b0, b1, . . . , bc} ⊆ AI,s

and {b0, b1, . . . , bc} �⊆ AJ , M outputs I and not J . Thus, M converges on a text for
AI to I, and M is a clusterer for S.

Proposition 6.4. Assume that S = {A0, A1, . . .} satisfies the following three
conditions:

1. Every Ai is infinite;
2. if i �= j, then Ai ∩Aj is finite;
3. S is uniformly recursive, that is, {(i, x) : x ∈ Ai} is recursive.

Then S is clusterable. But no two of these three conditions are sufficient for being
clusterable.

Proof. On input σ, the clusterer M searches for the J of the least norm satisfying
the following properties:

• J ⊆ {0, 1, . . . , |σ|};
• range(σ) ⊆ AJ ;
• J ∈ disj|σ|(S).

If such a J is found, then M outputs J , else M outputs ∅.
First, one can easily see that M is recursive since the search space is limited to

2|σ|+1 candidate sets. Second, one considers any clustering task I and any text for it.
Every sufficiently long prefix σ of the text satisfies i ≤ |σ| and Ai ∩ range(σ) �= ∅ for
all i ∈ I. Thus, I satisfies for all sufficiently long σ the three search conditions, and
hence M converges to a set J with norm(J) ≤ norm(I). For every i ∈ I, the set Ai

is not a subset of AJ−{i} since Ai is infinite and Ai ∩ AJ−{i} is finite. Thus, I ⊆ J .
Since norm(J) ≤ norm(I) (from above), it follows that I = J .

Recall the definition of SC from Example 3.5. The class {A × N : A ∈ SC} for
a nonrecursive parameter-set C satisfies conditions 1 and 2 but is not clusterable.
The class of all cofinite sets satisfies conditions 1 and 3 but is neither learnable [11,
section 3.6.2] nor clusterable. The class Sgold satisfies conditions 2 and 3 but is not
clusterable.

7. Geometric examples. The major topic of this and the following sections
is to look at sets of clusters which are characterized by basic geometric properties.
Therefore, the underlying set is no longer N but the k-dimensional rational vector
space Q

k, where k ∈ {1, 2, . . .} is fixed. The classes considered consist of natural
subsets of Q

k. This is quite common practice in computer science; for example,
the real numbers used in standard programming languages are indeed rationals, as
they normally consist only of finitely many binary digits multiplied by a power of 2;
furthermore, dealing with rationals avoids the uncountability of the set of reals and
also uncomputable real points. Except for the class Saccu,k in Definition 7.2 below,
the following hold: The clusters are built from finitely many parameter-points in Q

k;
the clusters are connected sets; and every clustering task consists of clusters having
a positive distance from each other. Thus, there is a unique natural way of breaking
down a clustering task into clusters.

48 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

The space Q
k is a metric space. The standard metric d between two points is

given by the square root of the sum of the squares of the differences of the coordinates,
for example, d((1, 2, 3), (0, 0, 5)) =

√
(1 − 0)2 + (2 − 0)2 + (3 − 5)2 =

√
1 + 4 + 4 = 3

in Q
3. d is also called distance.
Recall that a subset U ⊆ Q

k is affine iff for every fixed x ∈ U the set V = {y ∈
Q

k : x + y ∈ U} is a rational vector space, that is, closed under scalar multiplication
and addition. The dimension of U is the dimension of V as a vector space; it is
independent of the choice of x.

Example 7.1. Let Saff,k be the class of all affine subspaces of Q
k which have

dimension k − 1. The class Saff,k is clusterable but the class Saff,k ∪ {Q
k} is not.

Proof. If one considers a one-one numbering A0, A1, . . . of Saff,k, one can easily
verify the following properties:

1. Every Ai has dimension k − 1;
2. if i �= j, then Ai ∩ Aj is either empty or an affine subspace of dimension up

to k − 2;
3. the set {(i, x) : x ∈ Ai} is recursive.

Properties 1 and 2 enforce that Ai �⊆ AJ−{i} for every finite set J . Thus, one can
adapt the clusterer for the class in Proposition 6.4 to a clusterer for Saff,k. The
verification can also easily be transferred.

The class Saff,k ∪{Q
k} is just the geometric version of the class Ssing from Exam-

ple 3.5. Let U be a (k−1)-dimensional vector space and W be a 1-dimensional vector
space with U +W = Q

k. Furthermore let Ux = {x+ y : y ∈ U}. Since every Ux is in
Saff,k and Q

k is the disjoint union of all Ux with x ∈ W , it follows that Saff,k ∪ {Q
k}

is not clusterable.
Definition 7.2. Let k be a positive natural number and Saccu,k be a class

{A0, A1, . . .} of bounded subsets of Q
k for which there is a recursive and one-one

sequence a0, a1, . . . of points in Q
k satisfying the following:

1. Every Ai has exactly one accumulation point which is ai;
2. no accumulation point of the set {a0, a1, . . .} is contained in this set.

Comment. Every set Ai ∪ {ai} is compact, but it is not required that ai ∈ Ai,
and therefore the set Ai itself might fail to be compact.

Proposition 7.3. The class Saccu,k is clusterable.
Proof. The following machine M witnesses that Saccu,k is clusterable.
Algorithm M . On input b0b1 . . . bs, let

Hs = {i ≤ s : (∃h ≤ s) (∀j ≤ h, j �= i)

[bh /∈ {b0, b1, . . . , bi} ∧ d(ai, bh) < d(aj , bh)]},

Js = {i ∈ Hs : (∃h) (∀j ∈ Hs − {i}) [bh ∈ Ai,s −Aj,s]}

and output Js.
Verification. Since ai is an accumulation point of Ai but not of {a0, a1, . . .}, and

since ai �= aj whenever i �= j, for every i there is a threshold εi > 0 such that
• for all q ∈ Q

k there is at most one i with d(ai, q) < εi;
• for almost all q ∈ Ai, d(ai, q) < εi.

Consider now a text b0b1 . . . for a set AI with I ∈ disj(Saccu,k). Let H =
⋃

s∈N
Hs

where Hs, Js are the sets constructed by the algorithm with input b0, b1, . . . , bs. There
are only finitely many q ∈ AI which do not satisfy d(ai, q) < εi for an i ∈ I, and there
is a stage t ≥ max(I) such that {b0, b1, . . . , bt} contains all these q. It follows that
H ⊆ {0, 1, . . . , t}. Note that the intersection Ai∩Aj is finite for any different i, j since

IDENTIFYING CLUSTERS FROM POSITIVE DATA 49

the sets Ai, Aj are bounded and have different accumulation points. So all sufficiently
large s satisfy the following conditions:

• H = Hs;
• for all different i, j ∈ H, Ai ∩Aj = Ai,s ∩Aj,s;
• for all i ∈ I, there is an h ≤ s such that bh ∈ Ai− (

⋃
j∈H Aj ∪{b0, b1, . . . , bi})

and d(bh, ai) < εi.
It follows that on the one hand, I ⊆ Hs, and on the other hand, that every j ∈ Hs−I
satisfies AI ∩ Aj ⊆ AI,s. Since b0, b1, . . . is a text for AI , it follows that Js = I and
M is a clusterer for Saccu,k.

The class Saccu,k is clusterable but the machine M makes use of the sequence
a0, a1, . . . as an auxiliary source of information. Nevertheless, this information is
implicit. One can build a program for it into the machine M , which simulates this
program, in order to get some further information on Saccu,k.

8. Clustering with additional information. Freivalds and Wiehagen [7] in-
troduced a learning model in which the learner receives—in addition to the graph of
the function to be learned—an upper bound on the size of some program for this func-
tion. This additional information increases the learning power and enables a machine
to learn the class of all recursive functions.

Similarly, a machine receiving adequate additional information can solve every
clustering task for the class Sconv,k defined below. But without that additional infor-
mation, Sconv,k is not clusterable. Thus, the main goal of this section is to determine
which pieces of additional information are sufficient to cluster certain geometrically
defined classes where clustering without additional information is impossible.

Recall that the convex hull of a set D = {x0, x1, . . . , xn}, denoted by hull(D), is
the set given by

hull(D) = {q0x0 + q1x1 + · · · + qnxn : q0, q1, . . . , qn ∈ Q

∧ q0, q1, . . . , qn ≥ 0 ∧ q0 + q1 + · · · + qn = 1}.

Given a set E as a convex hull of a finite set, there is a unique minimal set D such
that E = hull(D).

Definition 8.1. For a given positive natural number k, the class Sconv,k contains
all subsets of Q

k which are the rational points in the convex hull of a finite subset
of Q

k.
Note that Sconv,k has the following nice properties, which will be used in the

proofs implicitly: every cluster is ε-connected for all ε > 0; any two clusters Ai, Aj

have either a point in common or have a positive distance from each other, where the
distance is defined as d(Ai, Aj) = inf{d(x, y) : x ∈ Ai, y ∈ Aj}.

Proposition 8.2. The class Sconv,k is semiclusterable but not clusterable.
Proof. A semiclusterer M for Sconv,k works as follows.
Algorithm M . On input σ, M searches for the first i ∈ {0, 1, . . . , |σ|} such that

range(σ) ⊆ hull(Ai,|σ|). If this i is found, then M outputs {i}, else M outputs ∅.
Verification. Let I be the clustering task and i be the least index of a set with

AI ⊆ Ai. Given any text for AI , every sufficiently long prefix σ of the text satisfies
the following three conditions:

• |σ| ≥ i;
• range(σ) �⊆ Aj for all j < i;
• hull(Ai,|σ|) = Ai.

It is easy to see that M(σ) = {i} for the input σ. Therefore, M converges to i and
Sconv,k is semiclusterable.

50 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Gold’s condition. Note that every singleton in Q
k belongs to Sconv,k and that

there are also infinite clusters. Then, given an M and an infinite Ai, M has a
stabilizing sequence σ ∈ (Ai)

∗. Thus, either M fails on the clustering task I rep-
resenting all singletons {x} with x ∈ range(σ) or M fails on the clustering task {i}
representing Ai.

Proposition 8.3. The class Sconv,k is clusterable with additional information if
for any clustering task I one of the following pieces of information is also provided to
the machine M :

• the number |I| of clusters of the clustering task;
• a positive lower bound ε for γ = min({1} ∪ {d(Ai, Aj) : i, j ∈ I ∧ i �= j});
• the minimal number p of points which are needed to generate all the convex

sets Ai with i ∈ I.
Proof. The algorithm tries to identify in the limit the following pieces of informa-

tion:
• finite sets E0, E1, . . . , Em;
• for each l ∈ {0, 1, . . . ,m}, an index jl such that Ajl = hull(El).

The final conjecture of the algorithm will then be the set J = {j0, j1, . . . , jm}.
The algorithm uses the notion of an ε-component. Given ε > 0, a subset E ⊆ U

is an ε-component of U if the following two conditions hold:
• For any x, y ∈ E, there is a sequence z1, z2, . . . , zh of elements of E such that
x = z1, y = zh, and d(zl, zl+1) < ε for all l with 1 ≤ l < h;

• d(x, y) ≥ ε for any x ∈ E and y ∈ U − E.
Note that for every ε and finite set U , the partition of U into ε-components is unique.

Algorithm M . On input σ, the clusterer goes into the first case applicable from
the following:

• If |I| is given and there is a maximal ε ∈ { 1
|σ| ,

2
|σ| , . . .} such that range(σ)

has exactly |I| ε-components, then let m = |I| and F0, F1, . . . , Fm−1 be these
components. For l = 0, 1, . . . ,m− 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

• If ε is given, then let m be the number of ε-components F0, F1, . . . , Fm−1 of
range(σ). For l = 0, 1, . . . ,m− 1, let El be the smallest subset of Fl with
hull(El) = hull(Fl).

• If p is given and there is a number m ∈ {0, 1, . . . , p− 1}, an ε ∈ { 1
|σ| ,

2
|σ| , . . .},

and E0, E1, . . . , Em−1 ⊆ range(σ) such that
– p = |E0| + |E1| + · · · + |Em−1|,
– each set El consists of the corners of hull(El), and
– the sets hull(El) ∩ range(σ) are the ε-components of range(σ),

then fix m and the sets E0, E1, . . . , Em−1.
• If none of the previous cases hold, then let m = |σ| and E0, E1, . . . , Em−1 be

the m singleton subsets of range(σ).
Now find for each l ∈ {0, 1, . . . ,m−1} the least s ≥ |σ| such that there is a jl ≤ s with
hull(El) = hull(Ajl,s); if there are several candidates for this jl, then choose the least
one. Having found m and j0, j1, . . . , jm−1, the output is the set J = {j0, j1, . . . , jm−1}.

Verification. It is easy to verify that M is computable and is defined on every
σ. Fix a clustering task I ∈ disj(Sconv,k) and a text for AI . In the case of additional
information of the second type, let δ be the given lower bound ε for γ; otherwise let
δ = 1 if |I| = 1 and δ = min{d(Ai, Aj) : i, j ∈ I ∧ i �= j} if |I| > 1. Assume that a
prefix σ of the given text is so long that for each i ∈ I, the following conditions hold:

• For all j ∈ {0, 1, . . . , i}, hull(Aj,|σ|) = Ai iff Aj = Ai;

IDENTIFYING CLUSTERS FROM POSITIVE DATA 51

• hull(range(σ) ∩Ai,|σ|) = Ai;

• for all x ∈ Ai, there is a y ∈ range(σ) such that d(x, y) < δ
10 ;

• 1
|σ| <

δ
10 .

Then one can verify that the algorithm will come up with a lower bound ε for δ such
that the ε-components of range(σ) coincide with the δ-components. Furthermore, the
parameter m is the cardinality |I|, and the sets E0, E1, . . . , Em−1 are sets of minimal
cardinality such that

{hull(E0),hull(E1), . . . ,hull(Em−1)} = {Ai : i ∈ I}.

Since σ is a sufficiently long prefix of the text, the output of the algorithm is a finite
set J with {Aj : j ∈ J} = {Ai : i ∈ I}. It follows that M solves the clustering
task I.

The last results of the present work deal with conditions under which nonconvex
geometrical objects can be clustered. Our first approach is to look at unions of convex
objects which are still connected. For k = 1, this class is the same as Sconv,1. But for
k = 2, this class is larger. There the type of additional information used for clustering
Sconv,k is no longer sufficient. Given both the number of clusters and the number
of vertices as additional information, it is possible to cluster the natural subclass
Spolygon,2 of all classes considered. But if one permits holes inside the clusters, this
additional information is no longer sufficient. An alternative parameter is the k-
dimensional area covered by a geometric object. In Example 8.8 a natural class
Sarea,k is introduced which can be clustered with the area of a clustering task given
as additional information. The class Sarea,2 contains Spolygon,2 and the class from
Example 8.7 as subclasses.

Definition 8.4. A polygon is given by n vertices q1, q2, . . . , qn ∈ Q
2 and is the

union of n sides, which are the convex hulls of {q1, q2}, {q2, q3}, . . . , {qn, q1}. The
sides do not cross each other, and exactly two sides contain one vertex. Every side
has positive length and the angle between the two sides meeting at a vertex is never
0, 180, or 360 degrees. Let p0, p1, . . . be an enumeration of the polygons, and let Pi

be the set of all points in Q
2 which are on the polygon pi or in its interior. Let ni

denote the minimum number of vertices to define the polygon pi, and let Spolygon,2 be
the class {P0, P1, . . .}.

Remark 8.5. Note that every polygon has the same number of sides as vertices.
The length 0 of sides and the angle of 180 degrees are forbidden in order to make the
representation unique up to some permutation of the vertices. The angles of 0 and
360 degrees are forbidden in order to avoid irregularities.

The following fact will be used below. Assume that Pi ⊆ Pj , ni ≤ nj , and every
side of pj contains at least nj + 2 points of Pi. Then Pi = Pj . To see this, consider
any side T of pj . Let c0, c1, . . . , cnj , cnj+1 be nj + 2 points on T ∩ Pi. These points
are all on pi since they are on pj and Pi ⊆ Pj . There is a u ∈ {0, 1, . . . , nj} such that
no vertex of pi is properly between cu and cu+1. Then the convex hull of {cu, cu+1}
is part of a side UT of Pi. So every side T of pj has at least two points in common
with some side UT of pi.

The first claim is that for T �= T̃ , UT �= UT̃ . So suppose by way of contradiction

that there are two sides T, T̃ of Pj such that UT = UT̃ . Let d1 ∈ T ∩ UT and

d2 ∈ T̃ ∩ UT̃ . Then UT contains hull({d1, d2}) and is a subset of Pj , although not a
side of Pj . Since UT touches two sides of Pj and goes through the interior of Pj , UT

splits Pj into two halves, each of which has some sides different from UT . On these
sides are points of pi ∩ pj , and thus Pi would also be split into two halves by UT , a

52 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Fig. 1. Left and right hand clusters. Each has 8 vertices and 8 sides.

contradiction. Thus, ni = nj .

The next claim is that if UT and UT̃ are neighbors, then so are T and T̃ (and

thus, the intersection point of UT and UT̃ is the same as that of T and T̃). To see this,
suppose otherwise. Then the angle UT , UT̃ splits Pj into two halves, each of which
has some sides different from UT and UT̃ . On these sides are points of pi ∩ pj , and
thus Pi would also be split into two halves by the angle UT , UT̃ , a contradiction.

It follows from above that T = UT , UT̃ = T̃ , and thus pi = pj .
Note that this property no longer holds if one permits a set of polygons instead of

a single polygon. So there is a polygon pj such that one can find, for any finite subset
F ⊆ Pj , a set {i1, i2} ∈ disj(Spolygon,2) with F ⊆ P{i1,i2} ⊆ Pj . More precisely, let pj
be given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0), and let F be any finite
subset of Pj . Then take q = min({y : (∃x) [(x, y) ∈ F ∧ y > 1]}) and take i1, i2 repre-
senting the rectangles given by (0, 0), (0, 1), (3, 1), (3, 0) and (1, q), (1, 2), (2, 2), (2, q).

Figure 1 illustrates the last counterexample. More information on polygons can
be found in textbooks on geometry such as [15].

Proposition 8.6. The class Spolygon,2 = {P0, P1, . . .} is clusterable with addi-
tional information in the sense that it is clusterable from the following input provided
to a clusterer for clustering task I in addition to a text for PI : the cardinality |I|
and the number

∑
i∈I ni. Clustering is impossible if only one of these two pieces of

information is available.
Proof. Assume that the algorithm M knows |I| and

∑
i∈I ni and receives as input

a prefix σ of a text for AI . Then M searches for the J ⊆ {0, 1, . . . , |σ|} of least norm
which satisfies the following conditions:

1. J ∈ disj(Spolygon,2);
2. |J | = |I|;
3.

∑
j∈J nj =

∑
i∈I ni;

4. range(σ) ⊆ PJ ;
5. the vertices of the pj with j ∈ J are in range(σ);
6. if T is a side of pj and j ∈ J , then |T ∩ range(σ)| ≥

∑
i∈I ni + 2.

M outputs J if J is found, and ∅ otherwise.
For the verification, it is easy to see that M is recursive. Now consider any

clustering task I ∈ disj(Spolygon,2). Since I satisfies the search conditions for all
sufficiently long prefixes σ of the text, the clusterer converges to a J with norm(J) ≤
norm(I), PI ⊆ PJ , |J | = |I|, and

∑
j∈J nj =

∑
i∈I ni. If i ∈ I, then Pi ⊆ PJ . If

Pi �⊆ Pj for any single j ∈ J , then the Pj with j ∈ J intersecting Pi would have a
positive distance from each other; but since Pi is connected, some points of Pi would
not be in any Pj with j ∈ J . Thus, this case cannot happen. Furthermore, if Pj is
disjoint from PI , then the vertices of Pj never show up in the input, and thus j /∈ J .
It follows that there is a one-one correspondence between the i ∈ I and j ∈ J such
that Pi ⊆ Pj . Since

∑
j∈J nj =

∑
i∈I ni, there are i ∈ I and j ∈ J with Pi ⊆ Pj

and ni ≤ nj . Furthermore Pj ∩ PI−{i} = ∅, and thus all points of Pj which have

IDENTIFYING CLUSTERS FROM POSITIVE DATA 53

Fig. 2. Opening a hole while preserving 10 vertices and 10 sides.

shown up in the input are actually from Pi. It follows for every side T of pj that
nj + 2 ≤ |T ∩ range(σ)| ≤ |T ∩ Pi|. Thus, by Remark 8.5, Pi = Pj and ni = nj .
In particular, there are no i ∈ I, j ∈ J with Pi ⊆ Pj and ni < nj . Since |I| = |J |
and

∑
j∈J nj =

∑
i∈I ni, one can conclude that there are also no i ∈ I, j ∈ J with

Pi ⊆ Pj and ni > nj . Thus, ni = nj whenever i ∈ I, j ∈ J, Pi ⊆ Pj . By the previous
considerations, this gives that Pi = Pj whenever i ∈ I, j ∈ J, Pi ⊆ Pj . In particular,
PJ = PI and M is a clusterer for Spolygon,2 which succeeds whenever it receives on
the input, in addition to a text for PI , the numbers |I| and

∑
i∈I ni.

Now it is shown that, in addition to the text, the other two pieces of information
given to M are needed. That is, M cannot succeed while receiving only one of them.

If only the additional information |I| is given, then consider a stabilizing sequence
σ for the rectangle Pi with vertices (0, 0), (0, 2), (1, 2), (1, 0). Since range(σ) is finite,
there are rationals q1, q2 with 0 < q1 < q2 < 1 such that no point of the form (q, r) with
q1 < q < q2 is in range(σ). Thus σ is also a stabilizing sequence for the Pj given by
the polygon through the vertices (0, 0), (0, 2), (q1, 2), (q1, 1), (q2, 1), (q2, 2), (1, 2), (1, 0)
and Pj ⊂ Pi. Thus, the clusterer fails to identify either the clustering task {i} or the
clustering task {j}.

If only the additional information
∑

i∈I ni is given, one can take I = {i} such that
pi, Pi is given by (0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 0), and ni = 8 as done
in Remark 8.5 (see Figure 1). Now let σ ∈ P ∗

i be a stabilizing sequence for Pi and
q = min({y : (∃x) [(x, y) ∈ range(σ)∧y > 1]}). Then σ is also a stabilizing sequence for
a cluster consisting of the two rectangles which are given as (0, 0), (0, 1), (3, 1), (3, 0)
and (1, q), (1, 2), (2, 2), (2, q). See Figure 1 for an illustration.

Example 8.7. Let Bi,j = pj ∪ (Pi − Pj) and mi,j = ni + nj if Pj ⊆ Pi − pi;
otherwise let Bi,j = Pi and mi,j = ni. Let Shole,2 consist of all sets Bi,j. Then it is
impossible to cluster Shole,2 if besides a text the only pieces of additional information
supplied are |I| and

∑
(i,j)∈I mi,j.

Proof. The counterexample here is an adaptation of the counterexample from
Proposition 8.6. The idea is just to connect the two parts by a bridge and to cutout
only the lower connection.

Now take i, j such that the polygons pi, pj are given by (0, 0), (0, 1), (1, 1), (1, 3),
(4, 3), (4, 0) and (2, 1), (2, 2), (3, 2), (3, 1). Note that mi,j = 10. Let σ ∈ B∗

i,j be a
stabilizing sequence for Bi,j and

q = min({y : (∃x) [(x, y) ∈ range(σ) ∧ y > 1]}).

Then σ is also a stabilizing sequence for a polygon Ph ⊆ Bi,j given by (0, 0), (0, 1),
(3, 1), (3, 2), (2, 2), (2, q), (1, q), (1, 3), (4, 3), (4, 0). The polygon Ph has also 10 vertices
and is obtained by connecting the hole with the outside world. Figure 2 illustrates
this counterexample.

54 CASE, JAIN, MARTIN, SHARMA, AND STEPHAN

Alternatively, one might not restrict the dimension but require that the class
under consideration be the union of convex hulls of finite sets which have a positive k-
dimensional area. Then this area is a natural parameter for clustering with additional
information. Note that in the 2-dimensional case the class Shole,2 from Example 8.7
is a subclass of Sarea,k as defined below, and thus is clusterable using the area as
additional information.

Example 8.8. Let Sarea,k = {A0, A1, . . .} be the class of finite unions of members
of Sconv,k which are connected and have a positive k-dimensional area. Without loss
of generality, the set {(i, x) : x ∈ Ai} and the function mapping i to the area of Ai are
recursive. Then there is a clusterer for Sarea,k which uses the area of the members of
a cluster as additional information. But Sarea,k cannot be clustered without additional
information.

Proof. Assume that AI ⊂ AJ , and let x ∈ AJ − AI be given. The point x has a
positive distance r from AI . But the area of AJ ∩ R, where R is the k-dimensional
cube of side-length r

10k with center x, is positive. It follows that the area of AJ is at
least the sum of the areas of AI and R ∩ AJ . So whenever two sets AI , AJ have the
same area, they are either equal or incomparable. Thus, one can use the following
algorithm.

For any given clustering task I, M receives the additional information q and a
prefix σ of a text for AI . Then M outputs the first J such that J ∈ disj|σ|(Sarea,k),
range(σ) ⊆ AJ , and AJ has the k-dimensional area q.

It is easy to see that M is recursive and total. Furthermore, M converges to the
least J with norm(J) = norm(I), AJ having the area q and AI ⊆ AJ . It follows
from the arguments above that AI = AJ and that M satisfies the required proper-
ties.

9. Conclusion. Clustering is a process which makes important use of prior as-
sumptions. Indeed, not every set of points in an underlying space is a potential
cluster; for instance, geometric conditions play an important role in the definition of
the class of admissible clusters. Whereas such conditions have been taken into ac-
count in previous studies, none of those has investigated the consequences of the more
fundamental requirement that clustering be a computable process. This paper shows
that recursion-theoretic and geometric conditions can both yield substantial insights
on whether or not clustering is possible. It also explores the extent to which cluster-
ing depends on computational properties by characterizing the power of oracles for
clustering. It is expected that further studies of the interaction between topological,
recursion-theoretic, and geometrical properties will turn out to be fruitful.

REFERENCES

[1] L. Adleman and M. Blum, Inductive inference and unsolvability, J. Symbolic Logic, 56
(1991), pp. 891–900.

[2] M. R. Anderberg, Cluster Analysis for Applications, Academic Press, New York, 1973.
[3] D. Angluin, Inductive inference of formal languages from positive data, Inform. and Control,

45 (1980), pp. 117–135.
[4] D. de Jongh and M. Kanazawa, Angluin’s theorem for indexed families of r.e. sets and

applications, in Proceedings of the 9th Annual Conference on Computational Learning
Theory, ACM, New York, 1996, pp. 193–204.

[5] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed., Wiley, New York, 2001.
[6] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. A. Kurtz, M. Pleszkoch,

T. A. Slaman, R. Solovay, and F. Stephan, Extremes in the degrees of inferability,
Ann. Pure Appl. Logic, 66 (1994), pp. 231–276.

IDENTIFYING CLUSTERS FROM POSITIVE DATA 55

[7] R. Freivalds and R. Wiehagen, Inductive inference with additional information, Elektron.
Informationsverarb. Kybernetik, 15 (1979), pp. 179–185.

[8] M. Fulk, Prudence and other conditions on formal language learning, Inform. Comput., 85
(1990), pp. 1–11.

[9] E. M. Gold, Language identification in the limit, Inform. Control, 10 (1967), pp. 447–474.
[10] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice–Hall, Englewood

Cliffs, NJ, 1988.
[11] S. Jain, D. Osherson, J. Royer, and A. Sharma, Systems that Learn: An Introduction to

Learning Theory, 2nd ed., MIT Press, Cambridge, MA, 1999.
[12] S. Jain and A. Sharma, Learning with the knowledge of an upper bound on program size,

Inform. Comput., 102 (1993), pp. 118–166.
[13] S. Jain and A. Sharma, On the non-existence of maximal inference degrees for language

identification, Inform. Process. Lett., 47 (1993), pp. 81–88.
[14] J. Kleinberg, An impossibility theorem for clustering, in Advances in Neural Information

Processing Systems 15 (NIPS 2002), MIT Press, Cambridge, MA, 2003, pp. 446–453.
[15] F. Kürpig and O. Niewiadomski, Grundlehre Geometrie. Begriffe, Lehrsätze, Grundkon-

struktionen, Vieweg, Braunschweig, Germany, 1992.
[16] M. Kummer and F. Stephan, On the structure of the degrees of inferability, J. Comput.

System Sci., 52 (1996), pp. 214–238.
[17] P. B. Mirchandani and R. L. Francis, eds., Discrete Location Theory, Wiley, New York,

1990.
[18] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.
[19] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, New York,

1998.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 56–82

FAULT-TOLERANT GATHERING ALGORITHMS FOR
AUTONOMOUS MOBILE ROBOTS∗

NOA AGMON† AND DAVID PELEG‡

Abstract. This paper studies fault-tolerant algorithms for the problem of gathering N au-
tonomous mobile robots. A gathering algorithm, executed independently by each robot, must ensure
that all robots are gathered at one point within finite time. In a failure-prone system, a gathering
algorithm is required to successfully gather the nonfaulty robots, independently of the behavior of the
faulty ones. Both crash and Byzantine faults are considered. It is first observed that most existing
algorithms fail to operate correctly in a setting allowing crash failures. Subsequently, an algorithm
tolerant against one crash-faulty robot in a system of three or more robots is presented.

It is then observed that all known algorithms fail to operate correctly in a system prone to
Byzantine faults, even in the presence of a single fault. Moreover, it is shown that in an asynchronous
environment it is impossible to perform a successful gathering in a 3-robot system, even if at most
one of them might fail in a Byzantine manner. Thus, the problem is studied in a fully synchronous
system. An algorithm is provided in this model for gathering N ≥ 3 robots with at most a single
faulty robot, and a more general gathering algorithm is given in an N -robot system with up to f
faults, where N ≥ 3f + 1.

Key words. robot swarms, autonomous mobile robots, convergence

AMS subject classifications. 68Q22, 70B15

DOI. 10.1137/050645221

1. Introduction.
Background. Systems of multiple autonomous mobile robots engaged in cooper-

ative activities have been extensively studied throughout the past decade [10, 5, 16,
17, 7, 11, 3, 27]. This subject is of interest for a number of reasons. For one, it may
be possible to use a multiple robot system in order to accomplish tasks that no single
spatially limited robot can achieve. Another advantage of multiple robot systems has
to do with the decreased cost due to the use of simpler and cheaper individual robots.
Also, these systems have immediate applicability in a wide variety of tasks, such as
military operations and space missions. Subsequently, studies of autonomous mo-
bile robot systems can be found in different disciplines, from engineering to artificial
intelligence (e.g., [18, 4, 15, 19]).

Our interest is in problems related to the distributed control of systems of au-
tonomous mobile robots. Most studies on robot control problems resulted in the
design of algorithms based on heuristics, with little emphasis on formal analysis of
the correctness, termination, or complexity properties of the algorithms. During the
last few years, various aspects of this problem have been studied from the point of
view of distributed computing (cf. [5, 20, 25, 26, 23, 2]), where the focus is on trying to
model an environment consisting of mobile robots, and studying the capabilities the
robots must have in order to achieve their common goal. A number of computational

∗Received by the editors August 4, 2005; accepted for publication (in revised form) December
1, 2005; published electronically May 3, 2006. An extended abstract of this paper appeared in
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, 2004.

http://www.siam.org/journals/sicomp/36-1/64522.html
†Department of Computer Science, Bar-Ilan University, Ramat-Gan, 52900 Israel (segaln@cs.biu.

ac.il).
‡Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science,

Rehovot, 76100 Israel (david.peleg@weizmann.ac.il). The work of this author was supported in part
by a grant from the Israel Science Foundation.

56

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 57

models were proposed in the literature, and some studies attempted to characterize
the influence of the models on the ability of a group of robots to perform certain basic
tasks under different constraints.

The primary motivation of the studies presented in [23, 26, 20, 21, 25] is to
identify the minimal capabilities a collection of distributed robots must have in order
to accomplish certain basic tasks and produce interesting interaction. Consequently,
the models adopted in these studies assume the robots to be relatively weak and
simple. In particular, these robots are generally assumed to be dimensionless (namely,
treated as points that do not obstruct each other’s visibility or movement), oblivious
(or memoryless; namely, they do not remember their previous actions or the previous
positions of the other robots), lacking a common coordinate system, orientation, or
scale, using no explicit communication, and anonymous (some of these assumptions
are modified in order to achieve goals that are otherwise unfeasible). They operate in
simple “look-compute-move” cycles. Thus the robots base their movement decisions
on viewing their surroundings and analyzing the configuration of robot locations.
A robot is capable of locating all robots within its visibility range (which can be
either limited or unlimited) and laying them in its private coordinate system, thereby
calculating their position (distance and angles) with respect to one another and with
respect to itself. Hence, from the “distributed computing” angle, such problems are
particularly interesting since they give rise to a different type of communication model,
based solely on “positional” or “geometric” information exchange.

A basic task that has received considerable attention is the gathering problem,
defined as follows. Given an initial configuration of N autonomous mobile robots, all
N robots should occupy a single point within a finite number of steps. The closely
related convergence problem is defined similarly, except that the robots are required
only to converge to a single point, rather than reach it. Namely, instead of demanding
that the robots gather to one point within finite time, the convergence requirement
is that for every ε > 0, there is a time tε by which all robots are within distance of at
most ε of each other.

Fault tolerance. As the common models of multiple robot systems assume cheap,
simple, and relatively weak robots, the issue of resilience to failure becomes prominent,
since in such systems one cannot possibly rely on assuming fail-proof hardware or
software, especially when such robot systems are expected to operate in hazardous or
harsh environments. At the same time, one of the main attractive features of multiple-
robot systems is their potential for enhanced fault tolerance. It seems plausible that
the inherent redundancy of such systems may be exploited in order to enable them
to perform their tasks even in the presence of faults.

Following the common “f of N” classification often used in the area, a fault-
tolerant algorithm for a given task is required to ensure that in a system consisting of
N robots where it is assumed that at most f robots might fail in any execution, the
task is achieved by all nonfaulty robots, regardless of the actions taken by the faulty
ones. In the gathering task, for example, when faults are introduced into the system,
the requirement applies only for the nonfaulty robots; i.e., if f ′ robots fail, then all
the remaining N − f ′ nonfaulty robots are required to occupy a single point within a
finite time.

Perhaps surprisingly, however, this aspect of multiple robot systems has been
explored to very little extent so far. In fact, almost all results we are aware of in
the literature rely on the assumption that all robots function properly and follow
their protocol without any deviation. One exception concerns transient failures. As

58 NOA AGMON AND DAVID PELEG

observed in [26, 23, 13], any algorithm that works correctly on oblivious robots is
necessarily self-stabilizing; i.e., it guarantees that after any transient failure the system
will return to a correct state and the goal will be achieved. Yet another line of study
concerns a fault model where it is assumed that restricted sensor and control failures
might occur, but if faults do occur in the system, then the identity of the faulty robots
becomes known to all robots [23]. This may be an unrealistic assumption in many
typical settings, and it clearly provides an easy means of overcoming the faults: Each
nonfaulty robot may simply ignore the failed ones, effectively removing them from
the group of robots, so the algorithm continues to function properly. However, in case
unidentified faults occur in the system, it is no longer guaranteed that the algorithms
of [23, 26] remain correct; i.e., the goal might not be achieved. The only concrete
attempt we are aware of for dealing with crash faults is described in [29], where an
algorithm is given for the active robot selection problem (ARSP) in the presence of
initial crash faults. The ARSP creates a subgroup of nonfaulty robots from a group
that also includes initially crashed robots and makes the robots in that subgroup
recognize one another. This allows the nonfaulty robots in the subgroup to overcome
the existence of faults in the system, and they can further execute any algorithm
within the group.

Hence the design of fault-tolerant distributed control algorithms for multiple robot
systems is still a largely unexplored direction, which the current paper investigates.

Related work. A number of basic mobile robot coordination problems were con-
sidered in the literature. One class of problems involves the formation of geometric
patterns. The robots are required to arrange themselves in a given geometric form,
such as a circle, a simple polygon or a line, within finite time (see, e.g., [23, 9, 12]).
The task of flocking, requiring the robots to follow the movement of a predefined
leader, was studied in [22]. The even distribution problem, requiring the robots to
spread out uniformly over a specified region of a simple geometric shape, and the
related task of partitioning the robots into groups were studied in [23].

The problem of gathering autonomous mobile robots, dealt with in this paper,
requires the robots to gather to the same point within finite time (see, e.g., [24, 25,
14, 7, 6, 8]). This problem was studied extensively in two computational models. The
first is the model of [23, 26], hereafter referred to as the semisynchronous (SSYNC)
model. The second is the closely related CORDA model [20, 21, 25], hereafter referred
to as the asynchronous (ASYNC) model.

The gathering problem was first discussed in [25, 26] in the SSYNC model. It was
proved there that it is impossible to achieve gathering of two oblivious autonomous
mobile robots that have no common sense of orientation under the SSYNC model.
The algorithms presented therein for N ≥ 3 robots rely on the assumption that a robot
can identify a point p∗ occupied by two or more robots (also known as multiplicity
point). This assumption was later proved to be essential for achieving gathering in
all asynchronous and semisynchronous models [22]. Another necessary requirement
for solvability in the SSYNC and ASYNC models is that the input configuration
does not include more than one multiplicity point of nonfaulty robots (it is easy to
show that if two multiplicity points of nonfaulty robots are allowed, the situation is
equivalent to the 2-robot system, and thus gathering is impossible). In fact, all known
gathering algorithms for N ≥ 3 rely on a strategy by which a single multiplicity point
p∗ is formed during the execution of the algorithm, and once this happens, all robots
move to the point p∗. Under these assumptions, an algorithm is developed in [26] for
gathering N ≥ 3 robots in the SSYNC model. In the ASYNC model, an algorithm

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 59

for gathering N = 3, 4 robots is brought in [22, 7], and an algorithm for gathering
N ≥ 5 robots is described in [6].

The gathering problem was also studied (in both the SSYNC and ASYNC mod-
els) in a system where the robots have limited visibility. The visibility conditions
are modelled by means of a visibility graph, representing the (symmetric) visibility
relation of the robots with respect to one another; i.e., an edge exists between Ri

and Rj if and only if Ri and Rj are visible to each other. It was shown that the
problem is unsolvable in the case that the visibility graph is not connected [14]. In
[1] a convergence algorithm was provided for any N in limited visibility systems. An
algorithm that achieves gathering in the ASYNC model is described in [14], under
the assumption that all robots share a compass (i.e., agree on a direction in the
plane).

Our results. This paper presents a systematic study of failure-prone robot systems
through examining the gathering problem under the crash and Byzantine fault models.
An (N, f)-fault system is a system consisting of N robots, of which at most f might
fail at any execution. An (N, f)-crash system (resp., (N, f)-Byzantine system) is an
(N, f)-fault system where the faults considered are according to the crash or Byzantine
model. A fault-tolerant algorithm for a given task in an (N, f)-fault system is required
to ensure that so long as at most f robots have failed, the task is achieved by all
nonfaulty robots, regardless of the actions taken by the faulty ones.

Under the crash fault model, we show that the gathering problem is solvable
in current computational models such as the SSYNC model, though most existing
algorithms fail to deal correctly with such faults and, in particular, there is currently
no algorithm for N ≥ 4 that solves the gathering problem in the presence of one faulty
robot under the crash fault model. We propose an algorithm that solves the gathering
problem in an (N, 1)-crash system, for any N ≥ 3, under the SSYNC model.

We then consider (N, f)-Byzantine systems for N ≥ 3. We first observe that
all existing algorithms fail to deal correctly with this situation. Moreover, we show
that it is impossible to perform a successful gathering in (3, 1)-Byzantine systems
under the SSYNC model. We then introduce the fully synchronous (FSYNC) model,
which is similar to the synchronous model mentioned in [26], and present an algorithm
solving the gathering problem under this model in (N, f)-Byzantine systems for every1

N ≥ 3f + 1.

2. The model. We follow the common computational model of distributed robot
systems. In particular, we make the following assumptions: The visibility range of the
robots is assumed to be unlimited. The robots are treated as points (dimensionless
objects) which do not obstruct each other’s visibility or movement. The robots are
anonymous and cannot communicate with each other. For the sake of analysis, denote
the robots in the system by R1, . . . , RN . Each robot Ri has its private coordinate
system, consisting of the position of the origin, direction of the positive x-axis, and
the size of one unit distance. It is assumed that the direction of the positive y-axis is
90◦ counterclockwise of the direction of the positive x-axis. The coordinate systems
of the various robots might all be different and not share the same direction or scale.

Following most previous papers on the gathering problem in the literature [24,
25, 14, 7, 22], the model adopted throughout this paper is the oblivious model, where
it is assumed that the robots cannot remember their previous states, and thus the

1A peculiarity of our algorithms is that N = 3 robots can tolerate f = 1 failures, but N > 3
robot systems require N ≥ 3f + 1 rather than N ≥ 3f .

60 NOA AGMON AND DAVID PELEG

decisions they make in each step are based only on the current configuration. The
main motivation for developing algorithms for the oblivious model is twofold. First,
solutions developed on the basis of assuming nonobliviousness do not necessarily work
in a dynamic environment where the robots are activated in different cycles or might
be added/removed from the system dynamically. Second, as mentioned earlier, any
algorithm that works correctly for oblivious robots is inherently self-stabilizing, i.e., it
withstands transient errors. More generally, it is advantageous to develop algorithms
for the weakest robot types possible, as an algorithm that works correctly for weak
robots will clearly work correctly in a system of stronger robot types. In contrast, our
lower bounds serve mainly to draw the borderlines where the various models become
too weak to allow solutions.

Robot operation cycle. Each robot Ri in the system is assumed to operate indi-
vidually in simple cycles. Every cycle consists of three steps, Look, Compute, and
Move. In the FSYNC and SSYNC models the length of this cycle is uniform for all
robots.

• Look : Identify the locations of all robots in Ri’s private coordinate system;
the result of this step is a multiset of points P = {p1, . . . , pN} defining the
current configuration. As the robots are indistinguishable, each robot Ri

knows its own location pi but does not know the identity of the robots at
each of the other points.

• Compute: Execute the given algorithm, resulting in a goal point pG.
• Move: Move towards the point pG. The robot might stop before reaching its

goal point pG but is promised to traverse a distance of at least S (unless it
has reached the goal).

Note that the Look and Move steps are carried out identically in every cycle, indepen-
dently of the algorithm used. The differences between different algorithms occur in the
Compute step. Moreover, the procedure carried out in the Compute step is identical
for all robots. If the robots are oblivious, then the algorithm cannot rely on informa-
tion from previous cycles; thus the procedure can be fully specified by describing a
single Compute step, and its only input is the current configuration P = {p1, . . . , pN},
giving the robot locations. Throughout, we may denote the location of Ri in the con-
figuration P by p(Ri). Also, whenever no confusion may arise, we identify p(Ri) as
the point pi.

Three synchronization models. As mentioned earlier, our computational model for
studying and analyzing problems of coordinating and controlling a set of autonomous
mobile robots follows two well-studied models: the SSYNC model and the ASYNC
model. The semisynchronous (SSYNC) model is partially synchronous, in the sense
that all robots operate according to the same clock cycles, but not all robots are
necessarily active in all cycles. The activation of the different robots can be thought
of as managed by a hypothetical “scheduler,” whose only “fairness” obligation is
that each robot must be activated and given a chance to operate infinitely often
in any infinite execution. The fully asynchronous (ASYNC) model differs from the
SSYNC model in that each robot acts independently in a cycle composed of four steps:
Wait, Look, Compute, Move. The length of this cycle is finite, but not bounded.
Consequently, there is no bound on the length of the walk in a single cycle, and
different cycles of the same robot may vary in length. In contrast, in the SSYNC
model a bound exists on the cycle length due to the common clock, and as a result
the robot will not necessarily reach the target point p in the current cycle but stop
somewhere on its trajectory to p.

In this paper we also consider the extreme fully synchronous (FSYNC) model.

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 61

This model is similar to the SSYNC model, where the robots operate according to
the same clock cycles, except that here all robots are active on all cycles. In this
model we assume discrete time 0, 1, . . . , and let pi(t) denote the position of Ri at
time t, where pi(0) is the initial position of Ri. In each cycle t, the set of positions
is a multiset, as two robots are not prohibited from occupying the same position
simultaneously. In each cycle t, each robot Ri is capable of moving over distance at
least S > 0 in one step (S is unknown to the robots). Therefore it is guaranteed that
if dist(piG, pi(t)) ≤ S, where piG is Ri’s goal point in the current cycle, then Ri will
reach its goal in the current cycle. Otherwise, it will traverse a distance of at least S
towards piG.

Failure models. The fault models discussed throughout the paper are the crash
fault model and the Byzantine fault model. In the Byzantine fault model, it is assumed
that a faulty robot might behave in arbitrary and unforeseeable ways. For the sake
of analysis, it is convenient to model the behavior of the system by means of an
adversary which has the ability to control the behavior of the faulty robots, as well
as the “undetermined” features in the behavior of the nonfaulty processors (e.g.,
the distance to which they move). Specifically, in each cycle the adversary has the
following roles. For each faulty robot, it determines its course of action in that cycle,
which can be arbitrary. For each nonfaulty robot, it determines the distance to which
the robot will move in this cycle (for a robot Ri located at pi and headed for the goal
point pG, if dist(pi, pG) ≤ S, then the robot must be allowed to reach pG; else, the
adversary may stop Ri at any point on the line segment pipG that is at least distance
S away from pi).

In the crash fault model, the behavior of the system is similar to the one described
in the Byzantine fault model, except that for each faulty robot the adversary is only
allowed to stop its movement. This may be done at any point in time during the
cycle, i.e., either during the movement toward the goal point or before it has started.
Once the adversary has crashed the faulty robot, that robot will remain stationary
indefinitely.

3. Gathering under the crash fault model.

3.1. Inadequacy of known algorithms. Most gathering algorithms proposed
in the literature fail to withstand even a single crash failure because they depend, in
certain configurations, on the movement of a single robot. More formally, let A be a
gathering algorithm for an N -robot system. In every configuration C, the algorithm
instructs some robots to move and some to remain stationary. Denote the number of
robots A instructs to move in configuration C by M(C,A), and let

M̌(N,A) = min{M(C,A) | C is a configuration in an N -robot system}.

Lemma 3.1. In an (N, f)-crash system, an algorithm A with M̌(N,A) ≤ f will
fail in achieving gathering or convergence.

Proof. Consider an (N, f)-crash system and a gathering algorithm A with
M̌(N,A) ≤ f , and let C ′ be the configuration of the system realizing M̌ , i.e., such
that M(C ′,A) ≤ f . Starting in that configuration, the adversary can fail the (f or
fewer) robots instructed by the algorithm to move. This will cause the next configu-
ration to be identical to C ′ again, and the N − f nonfaulty robots will remain in the
same configuration C ′ indefinitely.

In fact, every gathering algorithm A we are aware of in the SSYNC and ASYNC
models [24, 25, 26, 7] has M̌(N,A) = 1 for N ≥ 4, and, consequently, by Lemma 3.1,

62 NOA AGMON AND DAVID PELEG

these algorithms fail to achieve gathering even in the presence of one crash faulty
robot. The algorithm described in [6] for gathering N ≥ 5 robots in the ASYNC
model can also fail in the presence of one crash faulty robot if that robot lies between
some other robot and its goal point. On the positive side, it turns out that the
gathering algorithm given in [7] for N = 3 under the ASYNC model can be shown to
operate correctly also in the presence of one crashed robot (we give a slightly simpler
algorithm for this case in the SSYNC model below), and the algorithm given therein
for N = 4 can be transformed into an algorithm for (4, 1)-crash systems with some
minor changes.

An additional difficulty in handling a robot system with crash faults is caused by
the assumption, made by all current algorithms, that only a single multiplicity point
is created throughout the execution of the algorithm. In the presence of faults, the
fact that the adversary has the ability to stop the nonfaulty robots after traversing a
minimal distance S and the ability to crash the faulty robots at any step during the
execution makes it easy for the adversary to create a second multiplicity point once
the first is created, whenever the trajectories of two or more robots moving towards
their goals intersect. In particular, it is easy to see that in a collinear configuration
with N > 3 robots and given an algorithm that instructs all robots to move towards a
point on the line, the adversary can create two multiplicity points on the line, simply
by crashing some robot R at a point p between the multiplicity point and another
robot R′, thus forcing R′ to pass through p, and stopping it there.

3.2. An algorithm for a (3, 1)-crash system. Consider the following Proce-
dure 3-Gathercrash for gathering in a (3, 1)-crash system in the SSYNC model. As
discussed earlier, we need only present the procedure used for the Compute step. The
input to this procedure is the configuration P = {p1, p2, p3}. The procedure classifies
the configuration according to its state, and acts in each case as follows.

Procedure 3-Gathercrash(P)

1. State [MULT]: P contains a multiplicity point p∗:
Set pG ← p∗.

2. State [Collinear]: p1, p2, p3 are collinear (say, with p2 in the middle):
Set pG ← p2.

3. State [Obtuse]: ∃i ∈ {1, 2, 3} such that ∠pjpipk ≥ π/2:
Set pG ← pi.

4. State [Acute]: p1, p2, p3 form an acute triangle:
Set pG to be the intersection point of the three angle bisectors.

Note that state [Collinear] is redundant, since it is covered by state [Obtuse]. It
is included merely for convenience of presentation.

Analysis. In analyzing our algorithms, we use the following notation regarding
points and lines in the Euclidean plane. Denote the Euclidean distance between two
points p and q by dist(p, q). Also, denote the Euclidean distance between two current
locations pi and pj of the two robots Ri and Rj , respectively, by dist(Ri, Rj). Denote
the line segment between the points p and q by pq. We use the following well-known
fact.

Lemma 3.2. In a triangle �p1p2p3, the intersection point pM of the three angle
bisectors satisfies ∠pipMpj ≥ π/2 for every 1 ≤ i < j ≤ 3.

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 63

θ

β β

α
α γ

γ

p1

p2

p3

pM

Fig. 1. Proof of Lemma 3.2.

β
α

p’’
2S

2p’

pG

1p’
1S

1p

p0

1d

2d

d3

p2

Fig. 2. Proof of Lemma 3.3.

Proof. Let α = ∠pMp1p2, β = ∠pMp2p3, γ = ∠pMp3p1, and θ = ∠p1pMp2 (see
Figure 1). It follows that 2α + 2β + 2γ = π; hence α + β = π/2− γ < π/2, and since
in the triangle �pMp1p2, θ + α+ β = π, it follows that θ > π/2. A similar argument
applies in �pMp2p3 and �pMp1p3.

Lemma 3.3. If two robots R1 and R2, initially located at the points p1 and p2,
respectively, move towards a common meeting point pG and α = ∠p1pGp2 ≥ π/2, then
the distance between them decreases by at least 0.7S.

Proof. For i = 1, 2, let Si denote the distance traversed by the robot Ri, and let p′i
denote the new location of Ri. Consider the triangle �p1p2pG, and let β = ∠p2p1pG
(see Figure 2). Denote the distance between the robot locations before and after the
movement by d1 = dist(p1, p2) and d2 = dist(p′1, p

′
2), respectively. Without loss of

generality, suppose that p′1 is closer than p′2 to the line p1p2. Draw a line parallel to
d1 through p′1, denote its intersection with p2pG by p′′, and let d3 = dist(p′1, p

′′).

We need to prove that d1 − d2 > 0.7S. Since it is clear that d2 ≤ d3, it suffices
to show that Δ = d1 − d3 > 0.7S. Drop a perpendicular line from p′1 to p1p2, and
let p0 be its intersection point with the line p1p2. Let Δ′ = dist(p0, p1). It is also
clear that Δ′ ≤ Δ; hence it remains to prove that Δ′ ≥ 0.7S. Since α ≥ π/2, the
remaining two angles in �p1p2pG sum to at most π/2. Without loss of generality,
let β ≤ π/4. Also, according to our model assumption, each robot moves a distance
of at least S in each cycle, i.e., Si ≥ S for i = 1, 2. Therefore, by the sine theorem
on the triangle �p1p

′
1p0 (see Figure 3), S ≤ S1 = S1

sin(π/2) = Δ′

sin(π/2−β) , and hence

Δ′ ≥ S · cos(β) ≥ S · cos(π/4) ≥ 0.7S, completing the proof.

64 NOA AGMON AND DAVID PELEG

β

Δ’

S1

0p

1p’
p1

Fig. 3. Triangle enlargement from proof of Lemma 3.3.

α
d2

p

p’i

0
p

d1

pij

M

β

p

Si
δγ

Fig. 4. Proof of Lemma 3.4.

Lemma 3.4. There exists a constant c > 0 such that, given three robots R1, R2,
and R3 located at points p1, p2, and p3, respectively, where �p1p2p3 is an acute tri-
angle, if one or more of the robots traverses a distance of at least S towards the in-
tersection point pM of the three angle bisectors, then the circumference of the triangle
decreases by at least cS.

Proof. By Lemma 3.2, pipMpj > π/2 for every 1 ≤ i, j ≤ 3. Thus, by Lemma 3.3,
if two of the three robots move towards pM , then the distance between them decreases
by at least 0.7S, and as the other distances do not increase, the circumference of the
triangle decreases by at least 0.7S. It remains to show that even if only one robot
moves towards pM it decreases the distance between itself and its neighbors by at least
c′S for some constant c′; thus altogether the circumference of the triangle decreases
by at least 2c′S = cS.

Consider the triangle �pipMpj , 1 ≤ i, j ≤ 3. Let α = ∠pipMpj , β = ∠pMpipj ,
and γ = ∠pMpjpi (see Figure 4). Since �p1p2p3 is acute, it follows that 2β < π/2;
thus β < π/4 and, similarly, γ < π/4. Assume, without loss of generality, that robot
Ri traversed a distance Si ≥ S towards pM and lies on a point p′i. Let d1 = dist(pi, pj),
d2 = dist(p′i, pj), and Δ = d1−d2. By the sine theorem on the triangles �pipjpM and

�p′ipjpM it follows that d1

d2
=

sin(∠pjp
′
ipM)

sin β , and since ∠pjp
′
ipM > β, it follows that

d1 > d2. Let p0 be the point on the segment pipj that creates an isosceles triangle

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 65

2
P = {p , p , p }

1
Configuration

3

MULT

Obtuse Collinear

Acute

Fig. 5. Statechart for Procedure 3-Gathercrash.

�p0pjp
′
i; i.e., dist(pj , p0) = d2. Note that dist(p0, pi) = Δ. Let δ = ∠pip

′
ip0. Since

3π/8 <
π − γ

2
<

π − ∠pipjp
′
i

2
= ∠pjp0p

′
i = ∠pjp

′
ip0 < π/2,

it follows that 3π/8 < β + δ < π/2, and as β < π/4, we have π/8 < δ < π/2. By the
sine theorem on the triangle �pip

′
ip0 it follows that

Δ = Si
sin δ

sin(δ + β)
≥ S

sin δ

sin(δ + β)
≥ S

sin(π/8)

sin(π/2)
> 0.3S.

Therefore by choosing c′ = 0.3, the lemma holds for c = 0.6.
Theorem 3.5. Algorithm 3-Gathercrash solves the gathering problem in a (3, 1)-

crash system under the SSYNC model.
Proof. Consider an initial configuration P = {p1, p2, p3}. It suffices to show

that the algorithm causes the system to reach state [MULT]; i.e., either it gathers
all robots together in one point or it causes the creation of one multiplicity point,
since if the remaining robot is nonfaulty, then it will join the multiplicity point in
finite time by step 1 of the algorithm, and if it is faulty, then gathering has been
achieved. Consider the flow of states the system could be in. It suffices to show that
the states used for classifying the configurations in Procedure 3-Gathercrash form a
finite connected directed acyclic graph (DAG) (possibly with self-loops), where all
paths lead to a final state [MULT] in which a multiplicity point exists (see Figure 5),
such that starting with a configuration in any of the states, we reach the final state
within a finite number of cycles.

If in the initial configuration p1, p2, p3 are collinear, then the configuration will
remain collinear, and within finite time, either both extreme robots will arrive at the
location of the middle robot (if both are nonfaulty) or only one of them will arrive
(if one of the extreme robots is faulty); thus in any case a multiplicity point will be
created in the location of the middle robot, leading to state [MULT].

Next, suppose that the initial configuration is not collinear but obtuse; i.e., there
exists a point pi such that ∠pjpipk ≥ π/2. Then the configuration remains obtuse until
one robot reaches Ri. Since at least one of the robots instructed to move towards Ri

is nonfaulty, it will reach its goal point within finite time, thus reaching state [MULT].
Finally, if p1, p2, p3 create an acute triangle in cycle t, then one of the following

two cases holds. In the first case, at least one robot was active in the current cycle
and traversed a distance of at least S towards pM . There are two subcases to be
examined. If the system remains in state [Acute], then by Lemma 3.4 the circum-
ference of �p1p2p3 decreases by at least 0.6S. Therefore, if the robots constantly
remain in state [Acute], then at least two robots will eventually meet in pM , leading
to state [MULT]. The other subcase is that this movement causes �p1p2p3 to become

66 NOA AGMON AND DAVID PELEG

Cell(p)

k+1

k-1

p

p

p

k

k

Fig. 6. Example of a circle division according to the Voronoi cells.

obtuse. In this case, the system changes to state [Obtuse]. In the second case, all
active robots in this cycle traversed a distance smaller than S towards pM ; thus they
are now located at pM . Again there are two subcases. If two or more robots were
active, then they meet at pM , leading to state [MULT]. Otherwise, only one robot,
say Ri, is located in pM . Then by Lemma 3.2, ∠pjpipk ≥ π/2; thus �p1p2p3 becomes
obtuse, and the system changes to state [Obtuse], leading to gathering as discussed
above.

3.3. An algorithm for an (N, 1)-crash system, N ≥ 3. Let us start with
some terminology. A legal configuration in the (N, 1)-crash system is a set P of robot
locations that has at most one multiplicity point. Denote the smallest enclosing
circle of the set P by SEC(P) and the points on its circumference by Ccir(P) and let
Cint(P) = P \ Ccir(P). For a circle C and the set of points P = {p1, . . . , pl} on its
circumference, denote the partition of the circle C into Voronoi cells according to the
points in P by Vor(C,P), and denote by Cell(pk) the cell defined by the point pk ∈ P
(see Figure 6). Two points q and q′ in C are said to share the cell Cell(pk) if they
both lie inside the cell or on its boundary.

Consider the following Algorithm Gathercrash for gathering all nonfaulty robots in
an (N, 1)-crash system under the SSYNC model. The input to this algorithm is a legal
configuration P = {p1, . . . , pN}. The algorithm classifies the configuration according
to its state and acts in each case as follows. If there are no multiplicity points in the
configuration, then each robot performs Procedure Create Mult in order to reach a
configuration with a multiplicity point. Figure 7 illustrates the three possible cases of
substate [IN2] in this procedure. Once a multiplicity point p∗ is detected, each robot
performs Procedure GoTo Mult in order to achieve gathering of all nonfaulty robots
in p∗, while avoiding creation of additional multiplicity points.

Algorithm Gathercrash(P)

1. State [Singletons]: The configuration P does not contain a multiplicity point:
Invoke Procedure Create Mult(P).

2. State [MULT]: The configuration P contains a single multiplicity point p∗:
Invoke Procedure GoTo Mult(P).

The input to Procedure GoTo Mult is the configuration P = {p1, . . . , pN}. We say
that robot Ri has a “free corridor” to the point p if no other robot is currently located
on the straight line segment pip. Note that as robots are viewed as dimensionless ob-
jects, the availability of a free corridor is not necessarily a prerequisite for allowing
a robot to get home free. However, allowing a robot to follow a trajectory through
the location of another robot makes the algorithm prone to the creation of more

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 67

Procedure Create Mult(P)
State [N3]: N = 3:
Invoke Procedure 3-Gathercrash on p1, p2, p3.
State [N4+]: N ≥ 4:

1. Substate [IN0]: |Cint(P)| = 0:
Set pG to be the center of SEC(P).

2. Substate [IN1]: |Cint(P)| = 1 with pj as the single point in Cint(P):
Set pG ← pj .

3. Substate [IN2]: |Cint(P)| = 2 with pi and pj as the two points in Cint(P):
Each robot Rk in Ccir(P) sets pG(Rk) ← p(Rk).
The two robots Ri and Rj in Cint(P) do:

(a) Compute the Voronoi partition Vor(SEC(P), Ccir(P)).
(b) Substate [IN2(a)]: pi and pj do not share cells:

Ri and Rj move towards the center of SEC(P).
(c) Substate [IN2(b)]: pi and pj share a single cell, Cell(Rk):

Ri and Rj move towards Rk.
(d) Substate [IN2(c)]: pi and pj share two cells; i.e., both robots lie on

the radius forming the boundary between two adjacent cells Cell(Rk) and
Cell(Rk+1):
The robot closer to the circle, say Ri, chooses the first of Rk, Rk+1 in its
clockwise direction, say Rk, and sets pG(Ri) ← p(Rk).
The other robot, Rj , sets pG(Rj) ← p(Ri).

4. Substate [IN3]: |Cint(P)| ≥ 3:
Each robot Rk in Ccir(P) sets pG(Rk) ← p(Rk).
Each robot Rk in Cint(P) recursively invokes Procedure Create Mult(Cint(P)).

(c)(b)(a)

Fig. 7. Illustration of the three substates of substate [IN2] in Procedure Create Mult.

than one multiplicity point. Therefore Procedure GoTo Mult attempts to avoid such
trajectories.

Analysis.
Lemma 3.6. If the initial configuration is in state [Singletons], i.e., it contains

no multiplicity points, then Procedure Create Mult leads, within finite time, to a con-
figuration in state [MULT], i.e., including a single multiplicity point.

Proof. We prove the lemma by looking at the flow of states the system could
be in. It suffices to show that the states used for classifying the configurations in
Procedure Create Mult form a finite connected DAG (possibly with self-loops), where
all paths lead to a final state [MULT] in which a multiplicity point exists (see Figure
9), such that starting with a configuration in any of the states, we reach the final
state within a finite number of cycles.

68 NOA AGMON AND DAVID PELEG

Procedure GoTo Mult(P) (for robot Ri)
/* The configuration contains a multiplicity point p∗ */

1. State [Free]: Ri has a free corridor to p∗:
Set pG ← p∗.

2. State [Blocked]: There exist one or more robots on Ri’s trajectory towards
p∗:

a. Translate your coordinate system to be centered at p∗.
b. Compute for each robot Rj the angle μj of

−−→
p∗pj counterclockwise from

the x-axis.
c. Find the robot Rk with smallest angle μk > μi.

Let μ = (μk + 2μi)/3, and d = dist(Ri, Rk) (see Figure 8(a)).
d. Let p′i be the point at distance d and angle μ from p∗.
e. Set pG ← p′i.

j

*p

p*

iR

i
k

μ
R

μ
μ

(a) (b)

Fig. 8. Illustration of state [Blocked] in Procedure GoTo Mult.

N3 IN0 IN1

P = {p , ..., p }

(b)(a)

1
Configuration

N

IN2(b)

IN2(c)IN2(a)

IN2

MULT

IN2

MULT

IN3

Fig. 9. Statechart for Procedure Create Mult. (a) The general statechart. (b) The substates of
state [IN2].

State [N3]: If N = 3, then by Theorem 3.5, Procedure 3-Gathercrash achieves
gathering, and in particular one multiplicity point is created.

State [IN0]: If N ≥ 4 and |Cint(P)| = 0, then if not all robots move together

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 69

to the same distance, the system changes either to state [MULT] or to a state where
|Cint(P)| ≥ 1, i.e., [IN1], [IN2], or [IN3]. If robots on the circumference move to a new
configuration P ′ in which they are all again on SEC(P ′), then the system remains in
the same state, [IN0], but the radius of SEC(P) is reduced by at least S, since each of
the robots moved by at least S towards the center of SEC(P). Therefore the self-loop
at state [IN0] can be repeated only finitely many times, ending in a configuration
where either |Cint(P)| ≥ 1, two robots meet and create a multiplicity point, or all
robots meet. Note also that if a multiplicity point is created after this step, then it
is necessarily unique, as it could be created only by two or more robots from Ccir(P)
meeting at the center point of SEC(P), which is the only possible intersection point
for the trajectories of the robots.

State [IN1]: If N ≥ 4 and |Cint(P)| = 1, then a similar argument holds; thus
also here the self-loop can be taken only finitely many times or the system’s state
changes to a state where |Cint(P)| ≥ 2, namely, [IN2] or [IN3], or a multiplicity point
is created, leading to state [MULT]. If a multiplicity point is created as a result of this
step, then it is unique, as it could be created only by one or more robots from Ccir(P)
and the inner robot Ri, since the trajectories of any two robots moving towards Ri

intersect only at the location of Ri.

State [IN2]: If N ≥ 4 and |Cint(P)| = 2, then the only outcome of this state
could be a single multiplicity point, as can be verified by inspecting the possible
substates. In this state, only two robots are active and move towards one goal point;
thus the multiplicity point is unique.

State [IN2(a)]: If pi and pj do not share a cell, then both robots are instructed
to go to the center of SEC(P). Eventually, either both robots will meet there, leading
to state [MULT], or only one will arrive at the center; thus the two robots now share
a cell, leading to state [IN2(b)].

State [IN2(b)]: If pi and pj share a single cell, Cell(Rk), then either they meet
on their way to Rk or one or both meet Rk at location pk, thus leading to state
[MULT].

State [IN2(c)]: If pi and pj share two cells, then the following possibilities may
occur. Either the robot closer to Ccir(P), say Ri, meets with its target, say Rk, or Rj

will meet Ri on its way, thus creating a multiplicity point, leading to state [MULT],
or Rj enters the interior of the sector Cell(Rk), thus leading to state [IN2(b)].

State [IN3]: Finally, if N ≥ 4 and |Cint(P)| ≥ 3, then the procedure is ap-
plied recursively on the inner robots, while the outer robots remain stationary. Thus,
as seen above, a single multiplicity point is created on the lowest level of the
recursion.

Lemma 3.7. In an (N, 1)-crash system, if the initial configuration is in state
[MULT], i.e., it contains a single multiplicity point p∗, then Procedure GoTo Mult
guarantees that within finite time all nonfaulty robots gather at p∗ while avoiding the
creation of additional multiplicity points.

Proof. Every robot with a free corridor towards p∗ is instructed to go towards p∗;
thus all nonfaulty robots will arrive at p∗ within a finite time. If a robot Ri detects
another robot on its trajectory towards p∗, it looks for a free corridor by moving
orthogonally to the multiplicity point, while making sure that it does not obstruct
the free corridor of any other robot. This is ensured by moving only so as to change
its angle with respect to the x-axis and p∗ by a third of the angle to the closest-angle
neighboring robot Rj (see Figure 8(a)). Note that it is possible that Rj will also enter
the same sector, due to the lack of consistent coordinate system (and in particular,

70 NOA AGMON AND DAVID PELEG

the absence of common orientation, which may cause the Rjth clockwise sector to be
the same as the Rith clockwise sector). However, even if Rj enters that clear sector,
it will be in the “far” third of the sector.

It is also possible for k ≥ 3 robots Ri1 , . . . , Rik to share a common corridor to
p∗ (see Figure 8(b)). In this case the one closest to p∗, say Ri1 , will move towards
p∗, and the others might take the same new trajectory to p∗. However, on this new
trajectory, only k − 1 robots collide, so the closest to p∗ has a free corridor, and only
k− 2 robots must shift orthogonally again. Hence if a robot has more than one robot
on its trajectory towards p∗, then it will remain in state [Blocked] during finitely many
cycles until it has a free corridor towards p∗; thus it will eventually switch to state
[Free] and arrive at p∗.

Theorem 3.8. Algorithm Gathercrash solves the gathering problem in an (N, 1)-
crash system under the SSYNC model for any N ≥ 3.

Proof. Since the initial configuration is legal, by Lemma 3.6 it is guaranteed
that Procedure Create Mult will lead to a single multiplicity point. By Lemma 3.7,
applying Procedure GoTo Mult on a system with one multiplicity point leads to the
gathering of all nonfaulty robots at that point.

4. Impossibility of gathering under Byzantine faults.

4.1. Impossibility results in the SSYNC and ASYNC models. In [21]
it is shown that the class of problems solvable in ASYNC is contained in the class
of problems solvable in the SSYNC model. It follows that proving impossibility
of gathering in an (N, 1)-Byzantine system in SSYNC also proves impossibility in
ASYNC. We next prove that in the SSYNC model it is impossible for any algorithm
to achieve either gathering or convergence of three robots in the Byzantine fault model,
even in the presence of at most one faulty robot.

Definition. A gathering algorithm A is called hyperactive if it instructs every
robot to make a move in every cycle until the task is achieved; i.e., M̌(N,A) = N .

Theorem 4.1. In a (3, 1)-Byzantine system under the SSYNC model, any non-
hyperactive gathering algorithm will fail in achieving gathering or convergence.

Proof. Suppose the system consists of three robots R1, R2, R3, and there exists a
scenario σ in which at some configuration C1, R1 is active, but the algorithm instructs
it to stay in place. In this system, the adversary can do the following. It designates R3

as faulty and executes the scenario σ with R3 acting correctly up to a configuration
C1. At this cycle, it makes R1 active and R2 passive. As a result, neither R1 nor R2

moves in this cycle. In addition, the adversary moves R3 to create a configuration C2

that from R2’s point of view is equivalent to what R1 has seen in C1 (see Figure 10).
The adversary now makes R1 passive and R2 active. Since R2’s state is equivalent
to R1’s state in the previous configuration, the algorithm will now instruct R2 to
stay in place. The adversary can now switch from configuration C1 to C2 and back,
forcing R1 and R2 to stay in place indefinitely. Therefore the algorithm fails to achieve
gathering or convergence of the nonfaulty robots.

Definition. A distributed robot algorithm is N -diverging if there exists an (N, f)-
Byzantine system and a configuration in which the instructions of the algorithm com-
bined with the actions of the adversary can cause two nonfaulty robots to increase
the distance between them. An example of divergence caused by the instructions of
the algorithm is illustrated in Figure 11(a). An example of divergence caused by the
intervention of the adversary is illustrated in Figure 11(b), where robot R1 is stopped
short of reaching its goal point.

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 71

2

1

C

C

R2

R2R1

1R

R3

R3

Fig. 10. Theorem 4.1.

(c)

R2R1

p
G

2

1

p
G

(b)

R1 R2

(a)

R1

1

p
G

R2p
G

2

Fig. 11. Divergence of robots.

The premature-stopping technique. Our impossibility proofs make extensive use
of the following technique. In order to cause two robots to diverge in some given
configuration C of a given system T , the adversary can stop a nonfaulty robot Ri

after traversing a relatively small distance Si. Note that Si might be smaller than
S in the current system, in which case the adversary is not permitted to stop Ri

prematurely. However, as the algorithm is required to be valid in any system, it
is intuitively clear that we may always consider a different system T ′ with S small
enough to allow a movement of distance Si. Moreover, since the algorithm is unaware
of the value of S, it cannot distinguish between identical configurations in the two
systems T and T ′ and will issue the same instructions to each robot in configuration
C in T and T ′. Therefore the premature-stopping technique can be applied with
any movement length greater than zero. We make this argument more formal in the
proofs that follow.

As for the applicability of the premature-stopping technique, the adversary can
apply it to cause the robots to diverge in any case where two robots move towards
their respective goals on nonintersecting trajectories (see Figure 11(c)). In addition,
even if the trajectories do intersect, the adversary can still apply the technique in
some cases and again cause divergence, as seen in Figure 11(b). (One example for a
case in which the premature stopping technique cannot help the adversary to force
divergence is when the trajectories of the two robots R1 and R2 intersect and the
angle between p(R1), p(R1) and the intersection point is at least π/2; see Lemma 3.3
and Figure 2.)

Lemma 4.2. In the SSYNC (or even the FSYNC) model, a 3-diverging algo-
rithm will fail to achieve gathering or convergence.

Proof. Suppose, towards contradiction, that there exists a 3-diverging algorithm A
that solves the gathering problem. Consider a (3, 1)-Byzantine system T with robots

72 NOA AGMON AND DAVID PELEG

d

p

p

(t’-1)1

(t’)1

1
m

m

(a) (b)

d

p

p

p3(0)

(0)2

1(0)

2

p

p

t’d

0
t’-1

C
z2 (t’-1)p

2
p
2(t’)

p
3(t’-1)

z1

0d

t’ t’-1C0= C

Fig. 12. Lemma 4.2.

R1, R2, and R3, and a configuration C0 on which A’s instructions and the adversary’s
actions cause R1 and R2 to increase their distance. For t ≥ 0 and i = 1, 2, denote
by pi(t) the location of robot Ri in configuration Ct, and let dt = dist(p1(t), p2(t)).
Let σ = {C0, C1, . . . , Ck} be the sequence of configurations in an execution of the
algorithm in which the adversary intervenes on the transition from C0 to C1 so as
to increase dist(R1, R2) but does not intervene thereafter, and in Ck all robots are
gathered in one point. Note that d1 > d0. Let t′ = min{t | dt ≤ d0, 2 ≤ t ≤ k}. By
continuity considerations, as dt′−1 > d0 and dt′ ≤ d0, there must be a time during the
transition from Ct′−1 to Ct′ in which the robots R1 and R2 were located in middle
points pm1 and pm2 , respectively, at distance exactly dist(pm1 , pm2) = d0. For i = 1, 2,
let zi = dist(pi(t

′ − 1), pmi) (see Figure 12) and denote the minimum distance any
robot traversed at any cycle 0 ≤ t ≤ t′ − 1 by z3.

Now replace the (3, 1)-Byzantine system T by another system T ′ where S =
min{z1, z2, z3} and consider the following scenario. The adversary designates R3 as
faulty and executes the scenario σ up to Ct′−1. At this cycle, it stops R1 and R2

at points pm1 and pm2 , respectively, and moves the faulty robot R3 to the exact same
position it occupied in C0. Thus, the new configuration C̃t is identical to C0; hence
the robots R1 and R2 will diverge again, and the system can be made to cycle through
the configuration sequence {C0, . . . , C̃t} indefinitely, and thus R1 and R2 will never
meet, contradicting the assumption.

Observation 4.3. Let A be an algorithm operating in a (3, 1)-Byzantine system.

Let
Li,j be the straight half-line starting at pi and going through pj. Suppose that in
some configuration C, A instructs Ri and Rj to move on vectors
vi and
vj towards

destination points gi and gj, respectively. Denote the angle between
Li,j and
vi (mea-

sured from
Li,j in the counterclockwise direction) by μi, and the angle between
Li,j

and
vj by μj (see Figure 13). Then each of the following is a sufficient condition for
A to be 3-diverging:

(C1) 0 ≤ μj ≤ μi ≤ π.
(C2) π ≤ μi ≤ μj ≤ 2π.
(C3) 0 ≤ μi ≤ π ≤ μj ≤ 2π or 0 ≤ μj ≤ π ≤ μi ≤ 2π.
(C4) 0 ≤ μi < μj ≤ π and either μi ≥ π/2 or μj ≤ π/2.
(C5) π ≤ μj < μi ≤ 2π and either μi ≤ 3π/2 or μj ≥ 3π/2.

Proof. To show that A is 3-diverging in each of these cases, we have to show a
scenario in which the instructions of A combined with the actions of the adversary will

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 73

jvvi

Li,j

i
p

j
p

iμ jμ

Fig. 13. Observation 4.3.

cause Ri and Rj to increase the distance between them. Denote the current distance
between Ri and Rj by d1, the location of Ri after traversing a distance Si by p′i, and
the location of Rj after traversing a distance Sj by p′j . Let d2 = dist(p′i, p

′
j).

Case (C1). It is easy to see that if μi = μj = π/2 and the robots move in different
distances towards their goals, then d2 > d1 (as the hypotenuse in a right triangle is the
longest side in the triangle). Therefore, in a system where S = min{Si, Sj}, Si �= Sj ,
it is enough that the adversary applies the premature-stopping technique, stops Ri

after exactly a distance Si, and stops Rj after traversing Sj . If μi = μj < π/2, then,
applying again the premature-stopping technique, the adversary stops Rj after exactly
a distance S and lets Ri continue traversing any distance greater than S. Similarly, if
μi = μj > π/2, then the adversary stops Ri after traversing exactly a distance S and
lets Rj traverse any distance greater than S. Finally, if 0 < μj < μi < π, then the
adversary can apply the premature-stopping technique and stop Rj after traversing a
small distance and let Rj continue its movement as planned. In all cases, d1 > d2.

Case (C2). This case is simply a reflection of Case (C1).

Case (C3). It is easy to see that the trajectories of Ri and Rj diverge and never
intersect. Traversing on those trajectories might not always cause divergence (for
example, if the trajectory of Rj runs close to the current location of Ri as in Figure
11(c)), but by applying the premature-stopping technique as explained earlier, the
adversary can cause divergence.

Case (C4). If 0 ≤ μi < μj ≤ π and either μi ≥ π/2 or μj ≤ π/2, then
vi and

vj intersect at some point, pI . Without loss of generality let μi ≥ π/2. Drop a
perpendicular line from pj to the line going through pI and pi and let q0 be the in-
tersection point (see Figure 14). Let d3 = dist(pj , p

′
i). Consider the triangle �p′ipjq0.

Clearly d3 > d1; therefore as Sj → 0, d2 → d3, and hence d2 > d1. Now apply the
premature-stopping technique by stopping Rj after traversing a distance of exactly
S, where S is very small (tending to 0), and allow Ri to traverse a distance Si, thus
causing d2 > d1.

Case (C5). This case is a reflection of Case (C4).

Theorem 4.4. In a (3, 1)-Byzantine system under the SSYNC model it is im-
possible to perform successful gathering or convergence.

Proof. Consider a gathering algorithm A and an initial setting in which the
three robots R1, R2, and R3 are collinear, with R2 in the middle. If the algorithm
instructs R2 to remain stationary, then it is nonhyperactive and by Theorem 4.1 will
not achieve gathering. From Observation 4.3 it follows that if 0 ≤ μ1, μ2, μ3 ≤ π, then
in order to avoid being 3-diverging, necessarily μ3 > μ2 > μ1 (see Figure 15). But
under this assumption, if μ2 ≥ π/2, then applying Case (C4) of Observation 4.3 with
respect to p2 and p3 yields that A is 3-diverging. If, on the other hand, μ2 ≤ π/2,
then applying Case (C4) of Observation 4.3 with respect to p1 and p2 yields the same
conclusion.

74 NOA AGMON AND DAVID PELEG

i

ip’
d

3

d2

p
μjμi

iv

p I

vj
p’j

p
jd1q0

Fig. 14. Observation 4.3, Case (C4).

2μ 3μ1μ

2
p

3
p

1
p

Fig. 15. Illustration of proof of Theorem 4.4.

A similar argument applies in case π ≤ μ1, μ2, μ3 ≤ 2π. Finally, if μ1 > π and
μ2, μ3 < π or μ1, μ2 > π and μ3 < π, then algorithm A is 3-diverging by Case (C3)
of Observation 4.3. Thus, by Lemma 4.2, algorithm A fails to achieve gathering or
convergence.

We remark that in the FSYNC model, an N -diverging algorithm for N > 3
will not necessarily fail. In particular, the algorithms suggested in subsection 5.3
for the FSYNC model might be diverging yet still achieve gathering. Also, in the
FSYNC model, a nonhyperactive algorithm will not necessarily fail. In particular,
the gathering algorithm for N = 3 suggested in section 5 for the FSYNC model is not
always hyperactive (for example, when the three robots are collinear, the robot lying
in the middle is instructed to remain still). In fact, the converse may hold; namely,
in the FSYNC model, a hyperactive algorithm might be problematic. For example,
it is shown in the following lemma that in a one-dimensional setting, the adversary
can cause failure of every hyperactive algorithm.

Lemma 4.5. In the FSYNC model, a hyperactive algorithm for a one-dimensional
(3, 1)-Byzantine system will fail to achieve gathering or convergence.

Proof. Consider a (3, 1)-Byzantine system on the line. Consider an arbitrary
configuration C in which all robots are instructed by the algorithm to move. Without
loss of generality suppose that at least two of the robots, say R1 and R2, are instructed
to move to the right. Let εi denote the distance traversed by the robot Ri in the current
round, and without loss of generality suppose ε1 ≤ ε2. Then the same behavior will
occur in a robot system in which S ≤ ε1. In such a system, the adversary can stop R2

after traversing a distance of only ε1. The adversary can also fail the third robot R3,

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 75

making it move to the right to distance ε1. The resulting configuration is identical to
the original C, implying that the adversary can keep the system at this configuration
indefinitely.

4.2. Intuition: Problems with previous approaches. The difficulty of han-
dling a system of autonomous mobile robots with Byzantine faults is due to, among
other reasons, the conventions regarding multiplicities on which most existing al-
gorithms rely. In particular, these algorithms are based on enforcing the following
conventions: (a) No more than one multiplicity point is created throughout the ex-
ecution of the algorithm until successful gathering is achieved. (b) All robots lying
in a multiplicity point remain stationary. (c) Robots lying in a multiplicity point are
never separated again. These conventions are used for both gathering algorithms and
other pattern formation algorithms; see [9].

All of the above assumptions no longer hold in a system where Byzantine faults
might occur. First, the adversary could create a second multiplicity point as soon as it
detects one such point, by “failing” a robot that does not lie in the multiplicity point
and sending it to the location of yet another currently single robot. As a result, in
the gathering problem assumption (b) cannot be relied on. Assumption (c) is violated
even if the algorithm instructs all robots lying on the same point to move towards
the same destination point, as the adversary could stop their movement in different
locations.

Since all known algorithms rely on conventions (a)–(c) listed above, which can be
violated in a system consisting of N robots with even one Byzantine faulty robot, it
is clear that those algorithms fail to achieve gathering.

To get a feel for the possible complications that may occur in this model, let
us consider some simple solutions one might propose for the problem. One natural
general approach for attacking the problem is to try to gradually reduce the number
of distinct points where the robots reside, by gathering partial subsets of robots at
different points. A possible algorithm attempting to achieve that is one that requires
each robot, in each cycle, to move towards its closest neighbor. This may lead to
deadlocks once the robots pair up, since each one’s closest neighbor already resides
at the same location. Therefore the algorithm should instruct each robot to move
towards the closest robot among those currently residing at locations other than its
own. One problem that arises is that sets of robots that have already met might
break up again; hence “progress” is hard to measure. Another obvious problem is
that of symmetry breaking. Even ignoring this problem, this approach can still lead
to nonconverging scenarios. For instance, suppose that the N robots are located on
a straight line, with Ri at location xi = i(i − 1)/2. Then the algorithm requires R1

to move towards R2 and Ri to move towards Ri−1 for every 2 ≤ i ≤ N . However,
if R1 is faulty and chooses to move away from R2, and all robots traverse exactly
a distance S, then the configuration is translated by S in the −x direction and is
otherwise unchanged. (See Figure 16.)

Another natural algorithm is based on computing the center of gravity pG of
the configuration and going to pG. This algorithm can be failed by the adversary in

2R

1

3R

3

4R

6

5R

10

1R

0

Fig. 16. Bad scenario for nearest-neighbor algorithm.

76 NOA AGMON AND DAVID PELEG

similar manner, by failing a robot located far from the rest and taking it to a walk
towards infinity, forcing the entire pack of nonfaulty robots to be dragged along.

5. Fault-tolerant gathering in the FSYNC model.

5.1. Preliminaries. We now discuss the problem of gathering N autonomous
mobile robots in an (N, f)-Byzantine system under the fully synchronous model. We
use the following notation. Denote the geometric span (or diameter) of the set of
points P by

Span(P) = max{dist(p, q) | p, q ∈ P}.

Denote the convex hull of a multiset of points P by H(P), and the set of vertices of
H(P) by VH(P). Denote the set of (N to N − f) nonfaulty robots by RNF . Denote
the center of gravity (or barycenter) of a multiset P of n ≥ 3 points pi = (xi, yi), i =
1, . . . , N by

Cgrav(P) =

(∑N
i=i xi

N
,

∑N
i=i yi
N

)
.

Define the sum of distances between all pairs of nonfaulty robots as

Dtot(P) =
∑

Ri,Rj∈RNF

dist(Ri, Rj).

Note that for any set of points P , while the center of gravity Cgrav(P) is defined
in terms of the point coordinates in some specific coordinate system, the resulting
point is independent of the particular coordinate system in use. Hence for a set of
robots in some arbitrary configuration C in the plane, whenever each of the robots
computes Cgrav(P), the resulting point computed by the different robots is the same,
even if each robot has its own coordinate system.

Definition. A robot algorithm is concentrating if it satisfies the following proper-
ties:

1. It is nondiverging; i.e., no two nonfaulty robots will increase the distance
between them in any round.

2. There exists a constant c > 0 such that at each step, at least one pair of
nonfaulty robots that are at different locations either meets or decreases the
distance between them by at least c.

Lemma 5.1. Let A be a concentrating algorithm. Then in a (3, 1)-Byzantine
system under the FSYNC model, A achieves gathering.

Proof. If in each cycle Dtot decreases by a constant amount c, then within a finite
number of cycles A achieves gathering of all nonfaulty robots (since Dtot must reach
0). If there is indeed one faulty robot, then there may be only one pair of nonfaulty
robots. The algorithm A ensures that the distance between the two nonfaulty robots
decreases by at least a constant c in each cycle; hence Dnew

tot ≤ Dold
tot − c and therefore

these two robots will eventually meet. If all three robots are nonfaulty, then A ensures
that the distance between at least one pair, say R1 and R2, decreases by at least c
while dist(R1, R3) and dist(R2, R3) do not increase (since A is nondiverging); hence
Dnew

tot ≤ Dold
tot − c and A achieves gathering.

Definition. A distributed robot algorithm A is said to dictate 2-pair convergence
in a given cycle if in that cycle it instructs two distinct pairs of robots to decrease
the distance between them by a constant amount. A distributed robot algorithm A

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 77

α

b

a S

S

1
p

p
2

p
G

1
p’

2
p’

1
d

2
d

Fig. 17. Proof of Lemma 5.2.

is said to dictate triple convergence in a given cycle if in that cycle it instructs three
robots to decrease by a constant amount the distance between every pair of them.

Note that for N = 3, triple convergence implies also nondivergence and hence
also concentration. Note also that these conditions do not require that the robots
involved be nonfaulty; in particular, one of them may fail and disobey the algorithm’s
instructions, in which case its distances will not decrease as needed. Nevertheless,
these conditions turn out to be sufficient for gathering in certain settings.

Lemma 5.2. Consider two robots R1 and R2, initially located at the points p1

and p2, which traverse the same distance S′ towards a common meeting point pG, and
let α = ∠p1pGp2. If α ≤ π/2, then the distance between them decreases by at least
S′(1 − cosα).

Proof. Let p′1 and p′2 denote the new location of R1 and R2 after moving a
distance S′ towards pG, and let d1 = dist(p1, p2), d2 = dist(p′1, p

′
2), a = dist(p′1, pG),

and b = dist(p′1, pG) (see Figure 17).

By the cosine theorem on the triangles �p1pGp2 and �p′1pGp
′
2, it follows that

d2
1 = (a + S′)2 + (b + S′)2 − 2(a + S′)(b + S′) cosα,

d2
2 = a2 + b2 − 2ab cosα.

Therefore

d1 − d2 =
2a + 2b + S′

d1 + d2
· S′(1 − cosα).

By the triangle inequality on triangles �p1pGp2 and �p′1pGp
′
2 it follows that a+ b+

2S′ > d1 and a + b > d2. Therefore 2a+2b+S′

d1+d2
> 1, so d1 − d2 > S′(1 − cosα). In

the range (0, π/2] this value is always greater than 0 and is equal to 0 if and only if
α = 0.

5.2. Gathering on a (3, 1)-Byzantine system in the FSYNC model.
Let us next describe a gathering algorithm for three robots in an FSYNC model
with at most one Byzantine fault. The input to this procedure is a configuration
P = {p1, p2, p3}.

Procedure 3-GatherByz(P)

1. State [Collinear]: p1, p2, p3 are collinear with p2 in the middle:
Set pG ← p2.

2. State [Triangle]: The three points form a triangle:
Set pG to be the intersection point of the three angle bisectors of the
triangle �p1p2p3.

78 NOA AGMON AND DAVID PELEG

Fig. 18. Illustration of H1
int.

Observe that the case of two robots residing at the same point, say p1 = p2, is
handled by step 1 of the procedure. In this case, pG = p1; thus R1 and R2 stay in
place and R3 is required to move towards them.

Analysis.
Theorem 5.3. Algorithm 3-GatherByz solves the gathering problem in a (3, 1)-

Byzantine system under the FSYNC model.
Proof. Let us first consider the case when R1, R2, and R3 are collinear, say, with

R2 in the middle. Since both extreme robots are instructed to move towards R2, and
R2 is instructed to stay in place, it is clear that the instructions of the algorithm
ensure that dist(R1, R3) decreases in each cycle by at least S (or they meet), and also
that dist(R1, R2) and dist(R2, R3) decrease by at least S (or they meet). Hence the
algorithm dictates triple convergence in each cycle.

Next, suppose that R1, R2, and R3 are not collinear. By Lemma 3.2, the angle
between every two robots and pG is greater than π/2. Therefore, by Lemma 3.3, we
again have triple convergence.

Therefore in each cycle, whether the robots are collinear or not, triple convergence
is ensured. Since for N = 3 triple convergence implies nondivergence as well, the
algorithm achieves gathering by Lemma 5.1.

5.3. Gathering for f ≥ 1 and N ≥ 3f + 1 in the FSYNC model. In
this section we propose an algorithm for solving the gathering problem in an (N, f)-
Byzantine system, where N ≥ 3f + 1 in the FSYNC model. The main idea of the
algorithm is to ensure that the goal point selected in each cycle falls in the convex
hull of the nonfaulty robot locations. As shown later, this ensures that the geometric
span of the set of locations of the nonfaulty robots decreases by at least 0.25S; thus
the robots will meet within a finite number of cycles. Due to its high complexity, this
algorithm is only of theoretical merit, except for small values of f .

Definition. The hull intersection Hk
int(P) is the convex set created as the inter-

section of all
(
N
k

)
sets H(P \ {pi1 , . . . , pik}) for 1 ≤ k ≤ N , pij ∈ P . (See Figure 18

for k = 1.)

The algorithm. Consider the following Procedure GatherByz for determining
the goal point pG in each cycle. The input to this procedure is a configuration P =
{p1, . . . , pN}, and f is the maximum number of faulty robots.

Procedure GatherByz(P)

1. Compute Q ← VH(Hf
int(P)).

2. Set pG ← Cgrav(Q).

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 79

(c) (d)(b)(a)

q

(P)
1

int
= H

G
= p

1

3
p

1
p

5
p

1
p

p

p

3
p

4
p

5
p

3
p

1
p

5

Fig. 19. Illustration of Procedure GatherByz in a (5, 1)-Byzantine system.

To illustrate the algorithm, let us consider a number of possible configurations of
a (5, 1)-Byzantine system (see Figure 19).

(a) p1 = p2, and p3 = p4 = p5. Then H1
int(P) is the segment p1p3, and pG is its

midpoint.
(b) p1 = p2 = p3 = p4 �= p5. Then H1

int(P) = {p1}, and pG = p1.
(c) p1 = p2, p3 = p4, and p5 is distinct. Then H1

int(P) is the segment p1p3, and
pG is its midpoint.

(d) p1 = p2, and p3, p4, p5 are distinct. Then H1
int(P) is some segment qp1, and

pG is its midpoint.

Analysis. Let us first prove that the algorithm is well defined. For this we have
to show that the set Q is nonempty.

Helly’s theorem for d = 2 (cf. [28, Theorem 4.1.1]). Let S be a finite family of at
least three convex sets in R

2. If every three members of S have a point in common,
then there is a point common to all members of S.

Lemma 5.4. For a multiset P = {p1, . . . , pN}, N ≥ 3k + 1, Hk
int(P) is convex

and nonempty.

Proof. Hk
int(P) is convex as it is the intersection of

(
N
k

)
convex sets. We prove that

it is nonempty by Helly’s theorem. Consider three arbitrary sets P l = {pl1, . . . , plk} ⊆
P, 1 ≤ l ≤ 3, and let Ql = H(P \P l), 1 ≤ l ≤ 3. Then Q1 ∩Q2 ∩Q3 contains at least
P ′ = P \ (P 1 ∪P 2 ∪P 3). As |P | ≥ 3k+ 1, |P ′| ≥ 1. It follows that the intersection of
every three such sets is nonempty, and by Helly’s theorem VH(Hk

int(P)) is nonempty
as well.

The analysis of Procedure GatherByz is based on showing that if a set of K robots
R1, . . . , RK initially located at the points P = {p1, . . . , pK} move towards a point pG
in their convex hull H(P) and their new positions are at the points P ′ = {p′1, . . . , p′K},
then their geometric span decreases by at least cS for some constant c ≥ 1/4; i.e.,
Span(P ′) ≤ Span(P)− cS. Consequently, the robots will meet within a finite number
of cycles.

Lemma 5.5. Let P = {p1, . . . , pk} be a set of points in the plane.

1. Span(P) ≥ dist(p, p′) for every two points p, p′ in the convex hull H(P).
2. The geometric span is attained by two points pa, pb ∈ P that occur as vertices

in H(P).
3. Moreover, for every point pG in H(P), ∠papGpb ≥ π/4.

Proof. Consider two arbitrary points p, p′ inside H(P). By the definition of the
convex hull, it is clear that the segment pp′ falls entirely within the convex hull of P .
Therefore this segment can be extended in both directions towards the circumference
of H(P), hitting it at the points q, q′. Hence dist(p, p′) ≤ dist(q, q′). If the points
q and q′ are vertices of the convex hull, then q, q′ ∈ P , and we are done. So now
suppose this is not the case. If q is not a vertex of H(P), then it occurs on an edge
pipi+1. In this case, at least one of the two adjacent vertices of the convex hull,

80 NOA AGMON AND DAVID PELEG

without loss of generality pi, satisfies that dist(q′, pi) > dist(q′, q). Similarly, if q′ is
not a vertex, then it occurs on an edge pjpj+1, and again without loss of generality
dist(pj , pi) > dist(q′, pi). Hence combined, Span(P) ≥ dist(p, p′). Therefore for each
such segment pp′ there exists a segment pipj , pi, pj ∈ P , whose length is greater than
or equal to dist(q, q′).

The proof used to establish the first claim of the lemma also yields the second
claim, as it shows that for any two points q, q′ that are not both vertices of H(P),
there exist two vertices pi, pj ∈ P of H(P) satisfying dist(pi, pj) > dist(q, q′); hence
Span(P) cannot be attained by those points q, q′.

The third claim of the lemma is proved as follows. Let pa, pb be the two vertices
of H(P) attaining Span(P), and suppose, towards contradiction, that there exists a
point pG in H(P) such that α = ∠papGpb < π/4. Consider the triangle �papGpb. Let
β = ∠papbpG and γ = ∠pbpapG. Without loss of generality assume that β ≥ γ. Then

α < π/4 < 3π/8 < (π − α)/2 = (β + γ)/2 < β < β + γ = π − α.

Hence sinβ > sinα. Also, by the sine theorem on the triangle �papGpb,

dist(pa, pb)

dist(pa, pG)
=

sinα

sinβ
.

It follows that dist(pa, pG) > dist(pa, pb). By part 1 of the lemma, Span(P) ≥
dist(pa, pG) > dist(pa, pb), contradicting the assumption.

Lemma 5.6. For every two sets of points P and Q, if H(P) ⊆ H(Q), then
Span(P) ≤ Span(Q).

Proof. Let pa, pb ∈ P be the vertices attaining the geometric span of P . As P ⊆
H(P) ⊆ H(Q), also pa, pb ∈ H(Q). Thus by Lemma 5.5, Span(P) = dist(pa, pb) ≤
Span(Q).

Lemma 5.7. If a set of K robots R1, . . . , RK initially located at the points P =
{p1, . . . , pK} traverse the same distance S towards a point pG in the convex hull H(P)
and their new positions are at the points P ′ = {p′1, . . . , p′K}, then their geometric span
decreases by at least cS for some constant c ≥ 1/4; i.e., Span(P ′) ≤ Span(P) − cS.

Proof. Let pa, pb be the two vertices of H(P) attaining Span(P), and let p′i, p
′
j be

the two vertices of H(P ′) attaining Span(P ′). Note that pG is internal also to H(P ′).
Hence, by part 3 of Lemma 5.5, it follows that α = ∠papGpb ≥ π/4. If π/4 ≤ α < π/2,
then according to Lemma 5.2, dist(p′a, p

′
b) ≤ dist(pa, pb)− (1− cosα) ≤ dist(pa, pb)−

0.25S. Also, if α ≥ π/2, then by Lemma 3.3, dist(p′a, p
′
b) ≤ dist(pa, pb) − 0.7S.

Therefore, in any case dist(p′a, p
′
b) ≤ dist(pa, pb) − 0.25S. Also, since pa, pb attains

Span(P), it follows that dist(pa, pb) ≥ dist(pi, pj); therefore

Span(P ′) = dist(p′i, p
′
j) ≤ dist(pi, pj) − S/4 ≤ dist(pa, pb) − S/4

= Span(P) − S/4.

Corollary 5.8. If a set of K robots R1, . . . , RK initially located at the points
P = {p1, . . . , pK} move towards a point pG in the convex hull H(P) and their new
positions are at the points P ′ = {p′1, . . . , p′K}, then their geometric span decreases by
at least cS for some constant c ≥ 1/4; i.e., Span(P ′) ≤ Span(P) − cS.

Proof. By the model assumption, each robot traverses a distance of at least S
towards pG. Let p′′i denote the point at a distance exactly S from pi in the direction of
pG, and let P ′′ = {p′′1 , . . . , p′′K}. Clearly H(P ′) ⊆ H(P ′′). By Lemma 5.6, Span(P ′) ≤
Span(P ′′). By Lemma 5.7, Span(P ′′) ≤ Span(P) − cS. The claim follows.

FAULT-TOLERANT GATHERING OF MOBILE ROBOTS 81

Lemma 5.9. If a set of K robots R1, . . . , RK move in every cycle t towards a
point pG in their convex hull, then the robots will meet within a finite number of cycles.

Proof. For t ≥ 1, denote by Ht the convex hull of the robot configuration at the
beginning of cycle t. In each cycle, the robots move a distance of at least S towards a
point pG in the convex hull. Thus, by Corollary 5.8, Span(Ht+1) ≤ Span(Ht)− 0.25S
for every t. Therefore within at most 4 · Span(H1)/S cycles, the geometric span of
the robot configuration will be 0; thus all robots meet.

Theorem 5.10. Algorithm GatherByz solves the gathering problem in an (N, f)-
Byzantine system under the FSYNC model for any N ≥ 3f + 1.

Proof. By Lemma 5.9 it is sufficient to show that the goal point pG selected in
the cycle falls in H(RNF), the convex hull of the nonfaulty robots. To prove this, we
check the goal point pG determined in each cycle.

By definition, the set Hf
int(P) is contained in its entirety in H(P) as well as in

the convex hull of every N − f points of P ; thus, in particular, it falls in H(RNF).
Since the center of gravity of a set of points is inside its convex hull, it follows that pG
is in H(RNF). By Lemma 5.4, it follows that Hf

int(P) is nonempty; thus the center

of gravity of the set VH(Hf
int(P)) is well defined.

6. Open problems. The design of fault-tolerant distributed control algorithms
for multiple robot systems is still far from being fully explored. Directions for future
research include the following. To begin with, it may be useful to study other kinds
of fault models in addition to the crash and Byzantine models, such as a model in
which the robots might lose some of their movement control (for instance, lose control
of their movement length), or a model in which robots might diverge from their
original movement direction up to a certain percentage of error. It is also necessary
to develop fault-tolerant algorithms for tasks other than gathering (e.g., formation
of geometric patterns). The maximum number of faults under which a solution is
still feasible, for gathering and other tasks, has yet to be established. Finally, it
would be interesting to examine the effect of changes in some initial assumptions on
the model’s fault tolerance properties. Examples for possible model changes include
partial nonobliviousness of the robots (e.g., robots equipped with a small amount of
memory, say, allowing them to remember the subsequence of X most recent cycles),
robots capable of partial agreement on their orientation, or robots capable of explicit
communication (perhaps under certain limitations, e.g., only with nearby robots).

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, A distributed memoryless point convergence
algorithm for mobile robots with limited visibility, IEEE Trans. Robotics and Automation,
15 (1999), pp. 818–828.

[2] H. Ando, I. Suzuki, and M. Yamashita, Formation and agreement problems for synchronous
mobile robots with limited visibility, in Proceedings of the IEEE International Symposium
on Intelligent Control, 1995, pp. 453–460.

[3] E. M. Arkin, M. A. Bender, S. P. Fekete, J. S. B. Mitchell, and M. Skutella, The freeze-
tag problem: How to wake up a swarm of robots, in Proceedings of the 13th ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, 2002, pp. 568–577.

[4] T. Balch and R. Arkin, Behavior-based formation control for multirobot teams, IEEE Trans.
Robotics and Automation, 14 (1998), pp. 926–939.

[5] Y. U. Cao, A. S. Fukunaga, and A. B. Kahng, Cooperative mobile robotics: Antecedents
and directions, Autonomous Robots, 4 (1997), pp. 7–23.

[6] M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro, Solving the robots gathering
problem, in Automata, Languages and Programming, Lecture Notes in Comput. Sci. 2719,
Springer-Verlag, Berlin, 2003, pp. 1181–1196.

82 NOA AGMON AND DAVID PELEG

[7] M. Cieliebak and G. Prencipe, Gathering autonomous mobile robots, in Proceedings of the
9th International Colloquium on Structural Information and Communication Complexity,
2002, pp. 57–72.

[8] R. Cohen and D. Peleg, Convergence properties of the gravitational algorithm in asyn-
chronous robot systems, SIAM J. Comput., 34 (2005), pp. 1516–1528.

[9] X. Defago and A. Konagaya, Circle formation for oblivious anonymous mobile robots with
no common sense of orientation, in Proceedings of the 2nd ACM Workshop on Principles
of Mobile Computing, ACM Press, New York, 2002, pp. 97–104.

[10] M. Erdmann and T. Lozano-Perez, On multiple moving objects, Algorithmica, 2 (1987),
pp. 477–521.

[11] M. Erdmann and T. Lozano-Perez, On multiple moving objects, in Proceedings of the IEEE
International Conference on Robotics and Automation, 1986, pp. 1419–1424.

[12] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Hard tasks for weak robots:
The role of common knowledge in pattern formation by autonomous mobile robots, in
Algorithms and Computation, Lecture Notes in Comput. Sci. 1741, Springer-Verlag, Berlin,
1999, pp. 93–102.

[13] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Distributed coordination of a set
of autonomous mobile robots, in Proceedings of the IEEE Intelligent Vehicles Symposium
(IV 2000), 2000, pp. 480–485.

[14] P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer, Gathering of autonomous mobile
robots with limited visibility, in Proceedings of the 18th Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Comput. Sci. 2010, Springer-Verlag, Berlin, 2001,
pp. 247–258.

[15] D. Jung, G. Cheng, and A. Zelinsky, Experiments in realising cooperation between au-
tonomous mobile robots, in Proceedings of the International Symposium on Experimental
Robotics, 1997, pp. 609–620.

[16] Y. Kuniyoshi, S. Rougeaux, M. Ishii, N. Kita, S. Sakane, and M. Kakikura, Coopera-
tion by observation: The framework and basic task patterns, in Proceedings of the IEEE
International Conference on Robotics and Automation, 1994, pp. 767–774.

[17] L. E. Parker, Designing control laws for cooperative agent teams, in Proceedings of the IEEE
International Conference on Robotics and Automation, 1993, pp. 582–587.

[18] L. E. Parker and C. Touzet, Multi-robot learning in a cooperative observation task, in Dis-
tributed Autonomous Robotic Systems 4, Springer-Verlag, New York, 2000, pp. 391–401.

[19] L. E. Parker, C. Touzet, and F. Fernandez, Techniques for learning in multirobot teams,
in Robot Teams: From Diversity to Polymorphism, T. Balch and L. E. Parker, eds.,
A K Peters, Natick, MA, 2002, pp. 191–236.

[20] G. Prencipe, CORDA: Distributed coordination of a set of atonomous mobile robots, in Pro-
ceedings of the 4th European Research Seminar on Advances in Distributed Systems, 2001,
pp. 185–190.

[21] G. Prencipe, Instantaneous actions vs. full asynchronicity: Controlling and coordinating a set
of autonomous mobile robots, in Theoretical Computer Science, Lecture Notes in Comput.
Sci. 2202, Springer-Verlag, Berlin, 2001, pp. 185–190.

[22] G. Prencipe, Distributed Coordination of a Set of Atonomous Mobile Robots, Ph.D. thesis,
Universita Degli Studi Di Pisa, Pisa, Italy, 2002.

[23] K. Sugihara and I. Suzuki, Distributed algorithms for formation of geometric patterns with
many mobile robots, J. Robotic Systems, 13 (1996), pp. 127–139.

[24] I. Suzuki and M. Yamashita, Agreement on a common x-y coordinate system by a group
of mobile robots in Proceedings of the Dagstuhl Seminar on Modeling and Planning for
Sensor-Based Intelligent Robots, 1996, pp. 305–321.

[25] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation and agreement
problems, in Proceedings of the 3rd Colloquium on Structural Information and Communi-
cation Complexity, 1996, pp. 313–330.

[26] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of geometric
patterns, SIAM J. Comput., 28 (1999), pp. 1347–1363.

[27] M. Sztainberg, E. Arkin, M. Bender, and J. Mitchell, Analysis of heuristics for the
freeze-tag problem, in Algorithm Theory—SWAT 2002, Lecture Notes in Comput. Sci.
2368, Springer-Verlag, Berlin, 2002, pp. 270–279.

[28] R. Wenger, Helly-type theorems and geometric transversals, in Handbook of Discrete and
Computational Geometry, J. E. Goodman and J. O’Rourke, eds., CRC, Boca Raton, FL,
1997, pp. 63–82.

[29] D. Yoshida, T. Masuzawa, and H. Fujiwara, Fault-tolerant distributed algorithms for au-
tonomous mobile robots with crash faults, Systems and Computers in Japan, 28 (1997),
pp. 33–43.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 83–98

DISPROVING THE SINGLE LEVEL CONJECTURE∗

STASYS JUKNA†

Abstract. We consider the size of monotone circuits for quadratic Boolean functions, that is,
disjunctions of length-2 monomials. Our motivation is that a good (linear in the number of variables)
lower bound on the monotone circuit size for a certain type of quadratic function would imply a good
(even exponential) lower bound on the general nonmonotone circuit size.

To get more insight into the structure of monotone circuits for quadratic functions, we consider
the so-called single level conjecture posed explicitly in the early 1990s. The conjecture claims that
monotone single level circuits, that is, circuits which have only one level of AND gates, for quadratic
functions are not much larger than arbitrary monotone circuits. In this paper we disprove the
conjecture as follows: there exist quadratic functions whose monotone circuits have linear size but
whose monotone single level circuits require almost quadratic size.

Key words. quadratic functions, monotone circuits, Boolean sums, graph complexity, clique
covering number, Kneser graph, Sylvester graph

AMS subject classifications. 05C35, 05C60, 68Q17, 68R10, 94C30

DOI. 10.1137/S0097539705447001

1. Introduction. A quadratic Boolean function is a monotone Boolean function
in which all prime implicants have length 2. There is an obvious correspondence be-
tween such functions and graphs: every graph G = (V,E) defines a natural quadratic
function

fG(X) =
∨

uv∈E

xuxv,(1.1)

and every quadratic function defines a unique graph. We consider the complexity of
computing such functions by monotone circuits, that is, by circuits over the standard
monotone basis {∨,∧, 0, 1} of fanin-2 AND and OR gates. Single level circuits are
circuits in which every path from an input to an output gate contains at most one
AND gate. Note that every quadratic Boolean function fG in n variables can be
computed by a trivial monotone single level circuit with at most n − 1 AND gates
using the form

∨
u∈S

xu ∧
(∨

v:uv∈E

xv

)
,(1.2)

where S ⊆ V is an arbitrary vertex cover of G, that is, a set of vertices such that
every edge of G is incident with a vertex in S.

Single level conjecture. For quadratic functions, single level circuits are
almost as powerful as unrestricted ones.

Here “almost” means “up to a constant factor.” This conjecture—first explicitly
framed as the “single level conjecture” by Lenz and Wegener in [14]—was considered
by several authors; see [12, 4, 5, 17, 14, 2] among others. That the conjecture holds

∗Received by the editors February 17, 2005; accepted for publication (in revised form) Novem-
ber 23, 2005; published electronically May 3, 2006. This research was supported by DFG grant
SCHN 503/2-2.

http://www.siam.org/journals/sicomp/36-1/44700.html
†Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania.

83

84 STASYS JUKNA

for almost all quadratic functions was shown by Bloniarz [4] more than 25 years ago
and, so far, no (even constant) gap between the size of general and single level circuits
for quadratic functions is known.

In this paper we disprove the single level conjecture in a strong sense as follows:
There exist quadratic functions in n variables whose monotone circuits have linear
size but whose monotone single level circuits require size Ω(n2/ log3 n). A similar gap
is also shown for Boolean formulas. We also discuss the single level conjecture in the
case of monotone circuits with unbounded fanin gates.

Why should we care about monotone circuits for quadratic functions when we
already can prove high (even exponential) lower bounds for monotone circuits? There
are several reasons for this, as follows:

1. Any explicit n-vertex graph G that cannot be represented (in a sense de-
scribed later in section 3) by a monotone circuit using fewer than cn gates for a
sufficiently large constant c > 0 would give us an explicit exponential lower bound
for general (nonmonotone) circuits. Let us briefly sketch how this happens. Every
bipartite n × n graph G ⊆ U × W with n = 2m and U = W = {0, 1}m gives
us a Boolean function f (the characteristic function of G) in 2m variables such
that f(uv) = 1 iff uv ∈ G. Suppose now that we have a nonmonotone circuit
F (y1, . . . , y2m) computing f whose inputs are variables yi and negated variables
yi; the rest of the circuit is monotone (consists of AND and OR gates). Then,
according to the so-called “magnification lemma” [10], it is possible to replace its
4m = 4 log n input literals (both positive and negative) with appropriate Boolean
sums (ORs) of variables in X = {xv : v ∈ U ∪ W} so that the resulting mono-
tone circuit F+(X) in |X| = 2n variables represents G. It can be shown (see [21]
or Lemma 3.6 below) that all 4 logn Boolean sums can be simultaneously computed
by a monotone circuit of size cn for a constant c. Therefore, the size of F cannot
be much smaller than that of F+: size(F) ≥ size(F+) − cn. Hence, a lower bound
cn + nε on the size of monotone circuits representing G would yield a lower bound
nε = 2εm on the nonmonotone circuit size of an explicit Boolean function f in 2m
variables.

2. Better yet, for some graphs G, fG is the only monotone Boolean function
representing G. Such graphs are, in particular, complements of triangle-free graphs
(see Observation 3.5 below). Hence, one could obtain large (even exponential) lower
bounds for general nonmonotone circuits by proving a good (but only linear) lower
bound on the monotone circuit size of such quadratic functions.

3. Unlike Boolean functions, graphs have been studied for a long time, and ex-
plicit constructions of graphs with very special properties are already known. We
therefore hope to design a lower bound proof that is highly specialized for some par-
ticular graph or some small class of graphs. This could (probably) lead to a lower
bound proof, which will not fulfill the “largeness” condition in the notion of “natural
proofs” [23].

4. When applied to quadratic functions, known lower bound arguments for
monotone circuits, such as Razborov’s method of approximations [22] and its modi-
fications, cannot yield lower bounds larger than n. The reason for this is that these
arguments are lower bounding the minimum of AND gates and of OR gates needed
to compute the function, and (as we already noted above) every quadratic Boolean
function fG in n variables can be computed by a trivial monotone single level circuit
with at most n AND gates.

We therefore need entirely new lower bound arguments for monotone circuits

DISPROVING THE SINGLE LEVEL CONJECTURE 85

computing quadratic functions. For this, it is important to better understand the
structure of such circuits. The (long-studied) single level conjecture seems to be a
good starting point in this direction.

2. Results. Let us first introduce some notation. By the size of a circuit we will
always mean the number of gates in it. For a monotone Boolean function f , let C(f)
denote the minimum number of gates and C&(f) the minimum number of AND gates
in a monotone circuit computing f . Let also C1(f) and C1

&(f) denote the single level
counterparts of these measures. Further, let L(f) and L1(f) denote the minimum
length of a monotone (resp., of a monotone single level) formula computing f . Recall
that a formula is a circuit in which all gates have fanout-1, i.e., the underlying graph
is a tree; the length of the formula is the number of leaves of this tree.

In Table 2.1 we summarize known upper and lower bounds on the maximum
possible complexity of quadratic functions fG over all n-vertex graphs; the upper
bounds here hold for all graphs and the lower bounds for almost all graphs.

Table 2.1

Known bounds on the maximum complexity of quadratic functions.

Upper bounds Lower bounds

C1(n) = O(n2/ logn) [4] C(n) = Ω(n2/ logn) [4]

L1(n) = O(n2/ logn) [26, 5, 21] L(n) = Ω(n2/ logn)

C1
&(n) ≤ n− �logn� + 1 [26, 14] C1

&(n) ≥ n− c logn [24]

C&(n) = Ω(n/ logn) [14]

C&(n) = Ω(n) [2]

In this paper we are interested in the corresponding gaps between general and
single level complexities for individual graphs, as follows:

1. circuit gap Gap(G) = C1(fG)/C(fG);
2. multiplicative gap Gapmult(G) = C1

&(fG)/C&(fG);
3. formula gap Gap form(G) = L1(fG)/L(fG).

Note that the single level conjecture claims that Gap(G) = O(1) for all graphs G.
Table 2.1 shows that, for almost all graphs, the conjecture is indeed true.

An even stronger support for the single level conjecture was given by Mirwald
and Schnorr [17] as follows: if we consider circuits over the basis {⊕,∧, 1} computing
(algebraic) quadratic forms

∑
uv∈E xuxv over GF(2) and if we count only AND gates,

then every optimal (with respect to the number of AND gates) circuit is a single level
circuit. But the case of circuits over the basis {∨,∧, 0, 1} has remained unclear.

In the case of formulas, Krichevski [12] proved that Gap form(Kn) = 1 for the com-
plete graph Kn on n vertices, even if negation is allowed as an operation. A graph with
Gap form(G) ≥ 8/7 was given by Bublitz [5]. In the case of multiplicative complexity,
a graph with Gapmult(G) ≥ 4/3 was given by Lenz and Wegener [14]. Recently, this
gap was substantially enlarged to Gapmult(G) = Ω(n/ log n) by Amano and Maruoka
in [2]; this was implicit also in [10]. Using a construction of Tarjan [25] (which, in its
turn, was used by Tarjan for disproving that AND gates are powerless for computing
Boolean sums), Amano and Maruoka [2] have also shown the gap Gap(F) ≥ 29/28
for circuits computing a set F of quadratic functions. However, even the existence of
a single graph G with Gap(G) > 1 was not known.

Our main result is the following.
Theorem 2.1. There exist n-vertex graphs G such that C(fG) = O(n) but

C1(fG) = Ω(n2/ log3 n). Hence, Gap(G) = Ω(n/ log3 n).
The graphs used in Theorem 2.1 are saturated extensions of Sylvester-type graphs,

86 STASYS JUKNA

that is, of bipartite graphs whose vertices are particular vectors in GF(2)r, and where
two vertices are adjacent iff their scalar product over GF(2) is 1. The saturated
extension of a bipartite graph H ⊆ U ×W is a (nonbipartite) graph G = (V,E) with
V = U ∪ W such that E ∩ (U × W) = H and the induced subgraphs of G on U as
well as on W are complete graphs. The reason for considering graphs of this special
form lies in the simple fact (see Lemma 3.8 below) that by having a small circuit
representing H we can construct a small circuit computing fG.

To disprove the single level conjecture for formulas, we consider a bipartite version
of graphs introduced by Lovász [15] in his famous proof of Kneser’s conjecture [11].
A bipartite Kneser n × n graph is a bipartite graph K ⊆ U × W , where U and W
consist of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅.

Theorem 2.2. If G is the saturated extension of a bipartite Kneser n × n
graph, then L(fG) = O(n log n), but L1(fG) ≥ n1+c for a constant c > 0. Hence,
Gap form(G) = nΩ(1).

Next, we consider the single level conjecture for monotone unbounded fanin cir-
cuits and formulas. Note that in this case single level circuits are precisely the Σ3

circuits: the bottom (next to the inputs) level consists of OR gates, the middle level
consists of AND gates, and the top level consists of a single OR gate. For a monotone
Boolean function f , let C∗(f) (resp., L∗(f)) be the minimum size of a monotone un-
bounded fanin circuit (resp., formula) computing f . Let also C1

∗(f) and L1
∗(f) denote

the corresponding measures in a class of monotone Σ3 circuits (i.e., the single level
versions of these measures). Note that, also in the case of formulas, we now count the
number of gates, not the number of leaves.

Single level circuits of unbounded fanin are interesting for at least two reasons,
as follows:

1. The presence of unbounded fanin gates may exponentially increase the power
of single level circuits: if, say, G is the saturated extension of an n to n match-
ing, then C1(fG) = Ω(n) but C1

∗(fG) = O(log n) (by Lemmas 3.8, 3.10, and 3.13
below).

2. By the reduction due to Valiant [27], a lower bound of the form nΩ(1) on the
size of a monotone Σ3 formula representing an explicit n-vertex graph would give us a
superlinear lower bound on nonmonotone (fanin-2) circuits of logarithmic depth, and
thus, would resolve an old and widely open problem in circuit complexity (see [10] for
details).

The form (1.2) implies that C1
∗(fG) = O(n) for all n-vertex graphs. On the other

hand, easy counting shows C∗(fG) = Ω(n) for almost all n-vertex graphs: every gate
in a circuit of size t can have at most 2t possible sets of immediate predecessors,
implying an upper bound 2O(t2) on the total number of such circuits. Hence, also in
the case of unbounded fanin circuits, the single level conjecture holds for almost all
quadratic functions. The following theorem gives a stronger result: the conjecture
holds for explicit (and large) classes of quadratic functions.

Recall that a set S ⊆ V is a vertex cover of G = (V,E) if every edge of G is
incident with a vertex in S. Let τ(G) denote the minimum cardinality of a vertex
cover of G. Note that for every n-vertex graph G = (V,E) of maximum degree d we
have |E|/d ≤ τ(G) ≤ n− 1. Let also m(G) denote the maximum possible number m
such that G contains a matching with m edges as an induced subgraph. Representation
(1.2) gives us the upper bound C1

∗(fG) ≤ L1
∗(fG) ≤ 2τ(G) + 1. On the other hand,

we have the following lower bounds.
Theorem 2.3. For every graph G we have C∗(fG) ≥ m(G) + 1. Moreover,

DISPROVING THE SINGLE LEVEL CONJECTURE 87

L1
∗(fG) ≥ τ(G)/d and C1

∗(fG) ≥
√
τ(G)/d, where d is the maximum degree of G.

Hence, if we consider circuits with unbounded fanin gates, then the single level
conjecture is true for all n-vertex graphs containing an induced matching with Ω(n)
edges: for all such graphs we have C∗(fG) = Ω(n) and C1

∗(fG) = O(n).
In the case of multiplicative complexity (where we count only AND gates) we

have the following gap.
Theorem 2.4. If G is the saturated extension of an n to n matching, then

C&(fG) = O(log n), but C1
&(fG) = Ω(n). Hence, Gapmult(G) = Ω(n/ log n).

This result was implicit in [10] (and even in [1]; cf. Lemma 3.10 below), where it
was shown that an n to n matching M (a bipartite n×n graph consisting of n vertex
disjoint edges) can be represented by a monotone conjunctive normal form (CNF)
with O(log n) clauses. The proof in this case is particularly simple, and we include
it just for completeness. Amano and Maruoka [2] have used a somewhat different
argument to show the same gap.

Table 2.2

Summary of results concerning the single level conjecture.

Known This paper

Circuits Gap(F) ≥ 29/28 [2] Gap(G) = Ω(n/ log3 n)

(all gates) (for a set of graphs; no known Sylvester-type graphs

gap for a single graph) (main result)

Formulas Gap form(Kn) = 1 [12] Gap form(G) = nΩ(1)

(all gates) Gap form(G) ≥ 8/7 [5] Kneser-type graphs

Circuits No gap over GF(2) [17] Gapmult(G) = Ω(n/ logn)

(AND gates) Gapmult(G) ≥ 4/3 [14] Perfect matchings

Gapmult(G) = O(n/ log logn) [2] (also in [2]; implicit in [1, 10])

Unbounded fanin C∗(fG) ≥ m(G) + 1

(all gates) τ(G)/d ≤ L1
∗(fG) ≤ 2τ(G) + 1

C1
∗(fG) ≥

√
τ(G)/d

∀ G of maximal degree d

The rest of the paper is organized as follows. In the next section we collect
some preliminary definitions and technical facts. We then use these facts to prove
Theorems 2.1–2.4 in sections 4–7. We conclude with several open problems.

3. Preliminaries. In this section we first recall from [10] the notion of graph
representation, expose some properties of quadratic functions of saturated graphs,
and recall some results about Boolean sums. We then prove some general (graph
theoretic) bounds on the circuit complexity of quadratic functions.

We shall use standard graph theory notation. A set of vertices is independent if
no two of its vertices are adjacent. A nonedge is a pair of nonadjacent vertices; if
the graph is bipartite, then a nonedge is a pair of nonadjacent vertices from different
parts (color classes); that is, pairs of vertices in one color class are neither edges nor
nonedges. A subgraph (or a spanning subgraph) of a graph is obtained by deleting
its edges. An induced subgraph is obtained by deleting vertices (together with all the
edges incident to them). The main difference between these two types of subgraphs is
that every nonedge of an induced subgraph is also a nonedge of the original graph. A
bipartite clique Ka,b is a complete bipartite graph with color classes of sizes a and b.

3.1. Graph representation. Every graph G = (V,E) gives us a set of Boolean
functions “representing” this graph in the following sense. We associate with each
vertex v a Boolean variable xv, and consider Boolean functions f(X) with X =

88 STASYS JUKNA

{xv : v ∈ V }. Such a function accepts or rejects a subset of vertices S ⊆ V if it
accepts or rejects the incidence vector of S. We are interested in the behavior of such
functions on edges and nonedges of G, viewed as 2-element sets of their endpoints.

Definition 3.1 (see [10]). A Boolean function represents a given graph if it
accepts all edges and rejects all nonedges.

Hence, f(X) represents the graph G if for every input vector a ∈ {0, 1}X with
precisely two 1’s in, say, positions u and v, f(a) = 1 if uv is an edge, and f(a) = 0 if
uv is a nonedge of G. If uv is neither an edge nor a nonedge (in the bipartite case)
or if a contains more or less than two 1’s, then the value f(a) may be arbitrary.

Note that the quadratic function fG represents the graph G in a strong sense: for
every subset S ⊆ V , fG(S) = 0 iff S is an independent set of G. But, in general, there
may be many other Boolean functions representing the same graph, because they do
not need to reject independent sets with more than two vertices. Hence, there are
more chances to design a small circuit representing a given graph than to (directly)
design a small circuit computing its quadratic function. We will use this possibility
later to upper bound the circuit size of quadratic functions.

A complete star around a vertex u in a graph with n vertices is a set of n−1 edges
sharing u as one of their endpoints. If the graph is bipartite, then a complete star
is a set of edges joining all vertices of one part with a fixed vertex of the other part.
A graph is star-free if it contains no complete stars. The only property of star-free
graphs we will use later is given by the following simple observation.

Observation 3.2. Any monotone Boolean function representing a star-free graph
must reject all its single vertices.

This is true because f({u}) = 1, together with the monotonicity of f , implies
that f must accept all edges of a complete star around u.

3.2. Saturated graphs. As noted above, besides the quadratic function fG,
there may be many other monotone Boolean functions representing G—these func-
tions may “wrongly” accept some independent sets of G of cardinality larger than
2. The simplest way to exclude this possibility is to “kill off” all such independent
sets by “saturating” the graph, i.e., by adding new edges. This way we come to the
following definition.

Definition 3.3. A graph G is saturated if it has no independent sets with more
than two vertices, that is, if the complement of G is a triangle-free graph.

The first interesting property of quadratic functions of saturated graphs is that
these functions belong to a fundamental class of so-called “slice functions” for which
negation is almost powerless (see, e.g., [29, sections 6.13–6.14]). Recall that a k-
slice function is a monotone Boolean function f such that f(a) = 0 for inputs a
with less than k 1’s, and f(a) = 1 for inputs a with more than k 1’s, that is, f =
f ∧ Tn

k ∨ Tn
k+1.

Observation 3.4. If G is a saturated graph, then fG is a 2-slice function.
Proof. Let G = (V,E) be a saturated graph, and let S ⊆ V . If |S| < 2, then

fG(S) = 0 by the definition of quadratic functions (they cannot have prime implicants
shorter than 2). If |S| > 2, then S cannot be an independent set since G is saturated;
hence, fG(S) = 1.

The next interesting property of saturated graphs is their unique function repre-
sentation.

Observation 3.5. If G is a saturated star-free graph, then fG is the only monotone
Boolean function representing G.

Proof. Let f be an arbitrary monotone Boolean function representing G. We have

DISPROVING THE SINGLE LEVEL CONJECTURE 89

to show that f(S) = fG(S) for all subsets S ⊆ V . If fG(S) = 1, then S contains both
endpoints of some edge. This edge must be accepted by f and, since f is monotone,
f(S) = 1. If fG(S) = 0, then S is an independent set of G, and |S| ≤ 2 since G is
saturated. Hence, S is either a single vertex or a nonedge. In both cases we have
that f(S) = 0 because f must reject all nonedges and, by Observation 3.2, must also
reject all single vertices.

3.3. Boolean sums. We shall also use the following two facts about the mono-
tone complexity of Boolean sums. The disjunctive complexity of a collection of
Boolean sums

∨
i∈S1

xi, . . . ,
∨

i∈Sm
xi (or of the corresponding family of sets S1, . . . , Sm)

is the minimum size of a circuit consisting solely of fanin-2 OR gates and simultane-
ously computing all these m Boolean sums.

Lemma 3.6 (Pudlák–Rödl–Savický [21]). For every m ≥ k ≥ 1, the disjunctive
complexity of any family of m subsets of {1, . . . , n} does not exceed

kn + k2�m/k�+1.

In particular, any collection of k log n Boolean sums in n variables can be simultane-
ously computed by a circuit consisting solely of at most 3kn fanin-2 OR gates.

By this lemma, Boolean sums may not necessarily be computed separately: one
partial sum computed at some OR gate may be used many times. Still, the overlap
of gates cannot be too large if the sums are “disjoint enough.” A family of sets is
(h, k)-disjoint if no h + 1 of its members share more than k elements in common.

Lemma 3.7 (Wegener [28]; Mehlhorn [16]). Any (h, k)-disjoint family S1, . . . , Sm

has disjunctive complexity at least

1

kh

m∑
i=1

|Si| −
m

h
.

Proof sketch. At least |Si| − 1 gates are necessary for computation of the ith sum
and at least |Si|/k − 1 of the functions computed at these gates are Boolean sums
of more than k summands. We count only these gates. Since the family is (h, k)-
disjoint, each of these gates can be useful for at most h outputs. Hence, we need at
least

∑m
i=1(|Si|/k − 1)/h gates to compute all m sums.

3.4. Upper bounds for general circuits. An extension of a bipartite graph
H ⊆ U × W is a (nonbipartite) graph G = (V,E) with V = U ∪ W such that
E ∩ (U ×W) = H. The saturated extension is an extension whose induced subgraphs
on U as well as on W are complete graphs. That is, saturated extensions consist
of two disjoint cliques with some edges between these cliques. A useful property of
such graphs (besides that they are saturated) is that the complexity of computing fG
cannot be much larger than the complexity of representing H: to determine the value
fG(S), it is enough to additionally test whether S has more than two elements.

By the length of a CNF we mean the number of clauses in it.
Lemma 3.8. Let H ⊆ U×W be a bipartite n×n graph, G the saturated extension

of H, and f a monotone Boolean function representing H. Then fG = (f ∧ g) ∨ h,
where g is a monotone CNF of length 2 and h is an OR of O(log n) monotone CNFs
of length 2. Moreover, if H is star-free, then fG = f ∨ h.

Remark. Note that C&(h) = O(log n), L(h) = O(n log n), and C(h) = O(n). The
first two upper bounds are obvious. The third follows from Lemma 3.6.

Proof. Let g =
(∨

u∈U xu

)
∧
(∨

w∈W xw

)
and h = KU ∨KW , where KU (S) = 1

iff |S ∩U | ≥ 2; that is, KU is the quadratic function of a complete graph on U . Since

90 STASYS JUKNA

the edges of a complete graph n-vertex graph can be covered by m ≤ �log n bipartite
cliques, each of the functions KU and KW has the form

m∨
i=1

(∨
u∈Ai

xu

)
∧
(∨

v∈Bi

xv

)
(3.1)

with m ≤ �log n and Ai ∩Bi = ∅ for all i = 1, . . . ,m. Hence, h can be computed by
an OR of m monotone CNFs of length 2. It remains to show that (f ∧g)∨h coincides
with fG.

If fG(S) = 1, then S contains both endpoints of some edge uv of G. This edge
must be accepted either by f ∧ g (if uv ∈ H) or by h (if both u and v are in the same
color class). Since both f ∧ g and h are monotone, the function (f ∧ g)∨ h accepts S.

If fG(S) = 0, then S is an independent set of G; that is, S is either a single vertex
or a nonedge of H. In both cases, h(S) = 0 because none of the color classes can
contain more than one vertex from S. Moreover, g(S) = 0 if S is a single vertex, and
f(S) = 0 if S is a nonedge of H. Hence, the function (f ∧ g) ∨ h rejects S.

If H is star-free, then the function f alone must reject all single vertices, implying
that in this case fG = f ∨ h.

Lemma 3.8 gives us a simple (but useful) tool to show that a quadratic function
fG of the saturated extension of a bipartite graph H can be computed by a small
monotone circuit: it is enough to represent H by a small circuit. To achieve this last
goal, it is often enough to show that H has small “intersection representation.”

Say that a graph G admits an intersection representation of size r if it is possible
to associate with every vertex u a subset Au of {1, . . . , r} so that Au ∩ Av = ∅ if uv
is an edge, and Au ∩ Av �= ∅ if uv is a nonedge of G. Let int(G) denote the smallest
r for which G admits such a representation.

Let cnf(G) denote the minimum length of a monotone CNF representing the
graph G, and let cov(G) denote the minimum number of independent sets of G cov-
ering all nonedges of G.

Lemma 3.9 (see [9, 10]). For every graph G, cnf(G) = int(G) = cov(G).
The first equality was observed in [10], and the second in [9]. Both are easy to

verify. If a graph G = (V,E) can be represented by a CNF
∧r

i=1

∨
v∈Si

xv, then the
sets Au = {i : u �∈ Si} give the desired intersection representation of G, the r sets
Ii = {u ∈ V : i ∈ Au} are independent and cover all nonedges of G, and the CNF of
the form above with Si = V \ Ii represents the graph G.

Alon [1] used probabilistic arguments to prove that cov(G) = O(d2 log n) for every
n-vertex graph G of maximum degree d. Hence, we have the following general upper
bound.

Lemma 3.10 (Alon [1]). For every n-vertex graph G of maximum degree d, we
have cnf(G) = O(d2 log n).

Another possible way to show that a graph H can be represented by a small
monotone circuit is to design a small nonmonotone circuit representing H, and then
use the fact that negation is (almost) powerless in the context of graph representation.

Lemma 3.11. Let H be a bipartite n × n graph. If H can be represented by a
circuit of size L over the basis {∨,∧,¬}, then H can be represented by a monotone
circuit of size at most 2L + O(n).

Proof. The proof is reminiscent of the proof, due to Berkowitz [3], that negation
is (almost) powerless for slice functions (see also Theorem 13.1 in [29]).

Let F be a circuit of size L over the basis {∨,∧,¬} representing a bipartite graph
H ⊆ U ×W . Using DeMorgan rules we can transform this circuit into an equivalent

DISPROVING THE SINGLE LEVEL CONJECTURE 91

circuit F ′ of size at most 2L such that negation is used only on inputs. We then
replace each negated input xu with u ∈ U by a Boolean sum gu =

∨
v∈U\{u} xv, and

replace each negated input xw with w ∈ W by a Boolean sum hw =
∨

v∈W\{w} xv.
Since all these Boolean sums can be simultaneously computed by a trivial circuit
consisting of O(n) OR gates (see, e.g., [29, p. 198] for a more general result), the size
of the new circuit F+ does not exceed 2L + O(n). Since the only difference of F+

from the original circuit F is that negated inputs are replaced by Boolean sums, it
remains to show that on arcs ab ∈ U × W these sums take the same values as the
corresponding inputs.

Take an arbitrary set S = {a, b} with a ∈ U and b ∈ W . The incidence vector
of this set has precisely two 1’s in positions a and b. Hence, gu(S) = 1 iff a �= u iff
xu(S) = 0 iff xu(S) = 1. Similarly, hw(S) = 1 iff b �= w iff xw(S) = 0 iff xw(S) = 1.
Hence, on edges and nonedges of H the functions gu and hw take the same values as
the negated variables xu and xw, implying that F+ represents H.

3.5. Lower bounds for single level circuits. Given a covering E =
⋃m

i=1 Ai×
Bi of the edges of a graph G = (V,E) by bipartite cliques, its size is the number m
of cliques, and its weight is the total number

∑m
i=1(|Ai| + |Bi|) of vertices in these

cliques. Let cc(G) denote the minimum size and ccw(G) the minimum weight of a
bipartite clique covering of G. These measures were first studied by Erdős, Goodman,
and Pósa in [9], and now are the subject of an extensive literature. In particular, it is
known that the maximum of cc(G) over all n-vertex graphs is n−Θ(logn) [6, 26, 24],
and that the maximum of ccw(G) is Θ(n2/ log n) [4, 7, 5].

For a graph G, let μ(G) be the minimum of (a+ b)/ab over all pairs a, b ≥ 1 such
that G contains a copy of a complete bipartite a× b graph Ka,b.

Lemma 3.12. For every graph G, C1
&(fG) = cc(G) and L1(fG) ≥ μ(G) · |E|.

Moreover, if G is an extension of a bipartite graph H, then cc(G) ≥ cc(H)/2 and
ccw(G) ≥ ccw(H).

Proof. The equalities C1
&(fG) = cc(G) and L1(fG) = ccw(G) follow immediately

from the fact (shown in [4, 14]) that monotone single level circuits for quadratic
functions have the form (3.1), where m is the number of AND gates in the circuit.

To show that ccw(G) ≥ μ(G) · |E|, let E = A1×B1∪· · ·∪Am×Bm be a bipartite
clique covering of G = (V,E) of minimal weight. Select subsets Ei ⊆ Ai ×Bi so that
the Ei’s are disjoint and cover the same set E of edges. Then

ccw(G) =

m∑
i=1

(|Ai| + |Bi|) =

m∑
i=1

∑
e∈Ei

|Ai| + |Bi|
|Ei|

≥
m∑
i=1

∑
e∈Ei

μ(G) = μ(G) · |E|.

To prove the last claim, let G = (V,E) be an extension of H ⊆ U × W ; hence,
E ∩ (U ×W) = H. If Ai ×Bi, i = 1, . . . ,m, is a bipartite clique covering of G, then
(Ai ∩U)× (Bi ∩W), (Bi ∩U)× (Ai ∩W), i = 1, . . . ,m, is a bipartite clique covering
of H. The number of bipartite cliques in this new covering is at most twice that in
the original covering, and the total number of vertices in the new covering does not
increase at all.

The case of circuits, in which we count all gates (not just AND gates), is a bit
more complicated because Boolean sums (entering AND gates) may not necessar-
ily be computed separately: one partial sum computed at some OR gate may be
used many times. Still, by Lemma 3.7, we know that the overlap of gates cannot
be too large if the sums are disjoint enough. The disjointedness of a collection of
sums

∨
i∈S1

xi, . . . ,
∨

i∈Sm
xi is naturally related to the absence of large cliques in the

92 STASYS JUKNA

incidence m×n graph of this collection, where i and j are adjacent iff j ∈ Si: the col-
lection of sums is (h, k)-disjoint precisely when this graph has no copies of Kh+1,k+1.
Amano and Maruoka [2] used this relation to show that C1(fG) ≥ |E| for any graph
G = (V,E) with no copies of K2,2; in this case the corresponding sums are (1, 1)-
disjoint. Their argument can be easily extended to yield a lower bound of the form
C1(fG) ≥ |E|/tO(1) for Kt,t-free graphs. However, we need superlinear lower bounds
on C1(fG) for graphs G, which are saturated extensions of bipartite n× n graphs H,
and such graphs already have copies of Kt,t with t = n/4, even if the graph H itself
is K2,2-free.

To get rid of this problem, we use a tighter analysis of single level circuits to prove
a stronger result, namely, a lower bound on the minimum size C1(H) of monotone
single level circuits representing H (recall that such a circuit must behave correctly
only on edges and nonedges of H; on other inputs it may take arbitrary values). If G
is an extension of H, then nonedges of H are also nonedges of G, and hence must be
rejected by fG. This means that every circuit computing fG must also represent H,
implying that C1(fG) ≥ C1(H) for every extension G of H.

Lemma 3.13. Let H ⊆ U ×W be a bipartite star-free n×n graph with no copies
of Kt,t. Then C1(H) = Ω(|H|/t3).

Proof. Take a minimal monotone single level circuit F representing H. The circuit
F has the form

∨m
i=1 gi ∧ hi, where

gi =
∨

u∈Si

xu and hi =
∨
v∈Ti

xv

with Si, Ti ⊆ U ∪W are Boolean sums computed at the inputs of the ith AND gate.
Our goal is to show that we need many OR gates to compute these sums. We cannot
apply Lemma 3.7 directly to these sums because the corresponding families may not
be disjoint enough. Still, we can use the absence of Kt,t in H to show that the
restriction of these families to the left part U or to the right part W of the bipartition
must contain a large enough (t, t)-disjoint subfamily.

First, observe that Si ∩ Ti = ∅ because the graph H is star-free (single variables
represent complete stars). Also, if for some i, both Si and Ti lie entirely in the same
part of the bipartition, then we could just remove the ith AND gate—the resulting
circuit would still represent H (recall that on pairs of vertices within one part of the
bipartition the circuit can take arbitrary values). Thus, we may assume that this does
not happen. Hence, H is the union of bipartite cliques

Ai ×Bi = (Si ∩ U) × (Ti ∩W),

A′
i ×B′

i = (Ti ∩ U) × (Si ∩W)

for i = 1, . . . ,m. We may assume w.l.o.g. that the union H ′ of cliques Ai × Bi,
i = 1, . . . ,m, contains at least |H ′| ≥ |H|/2 edges of H (if not, then take the remaining
bipartite cliques).

Since H ′ has no copies of Kt,t, for every i = 1, . . . ,m, at least one of the sets Ai

and Bi must have fewer than t elements. Hence, if we set I = {i : |Ai| < t}, then
|Bi| < t for all i �∈ I. We may assume that the bipartite graph

H1 =
⋃
i∈I

Ai ×Bi

contains at least |H1| ≥ |H ′|/2 ≥ |H|/4 edges of H (if not, then let H1 be the union
of bipartite cliques Ai ×Bi with i �∈ I and replace the roles of the Ai’s and the Bi’s).

DISPROVING THE SINGLE LEVEL CONJECTURE 93

This way we obtain a bipartite Kt,t-free graph H1 ⊆ A×B with parts A =
⋃

i∈I Ai

and B =
⋃

i∈I Bi, and with |H1| ≥ |H|/4 edges. We are going to represent this graph
by a monotone (single level) circuit F1 of size not much larger than that of F , and to
apply Lemma 3.7 in order to show that the size of F1 must be large; this will yield
the desired lower bound on size(F).

To achieve the first goal, we collect the Boolean sums hi, i ∈ I, computed in F
into a circuit F1, by the construction

F1(X) =
∨
u∈A

xu ∧
(∨

i∈Iu

hi

)
=

∨
u∈A

xu ∧
(∨

i∈Iu

∨
v∈Ti

xv

)
,

where Iu = {i ∈ I : u ∈ Ai}. For every vertex u ∈ A, the circuit F1 accepts an arc
uv ∈ A×B iff v ∈ Ti∩W = Bi for some i ∈ I such that u ∈ Ai. Hence, F1 represents
the graph H1. Since all Boolean sums hi with i ∈ I are already computed in F , we
need at most

∑
u∈A

|Iu| =
∑
i∈I

|Ai| ≤ t · |I|

new gates to compute all functions xu ∧
(∨

i∈Iu
hi

)
with u ∈ A. To compute the

disjunction of these functions, we need at most |A| ≤
∑

i∈I |Ai| ≤ t · |I| additional
OR gates. Hence, size(F1) ≤ size(F) + 2t · |I| ≤ 3t · size(F).

On the other hand, by the construction, the circuit F1 simultaneously computes
all Boolean sums

∨
i∈Iu

hi =
∨

v∈Tu
xv with u ∈ A and Tu =

⋃
i∈Iu

Ti using only
fanin-2 OR gates. Hence, size(F1) is at least the disjunctive complexity of the family
T = {Tu : u ∈ A}. This, in its turn, is at least the disjunctive complexity of the
restriction T ′ = {Tu ∩W : u ∈ A} of T to the set W : having a circuit for T we can
get a circuit for T ′ just by setting to 0 all variables xu with u �∈ W . Observe that for
every u ∈ A,

Tu ∩W =
⋃

i:u∈Ai

Ti ∩W =
⋃

i:u∈Ai

Bi

is the set of all neighbors of u in H1. Since H1 has no copies of Kt,t, no t vertices in A
can have t common neighbors. This means that the family T ′ must be (t, t)-disjoint
(in fact, even (t− 1, t− 1)-disjoint). Since |H1| =

∑
u∈A |Tu ∩W |, Lemma 3.7 yields

size(F1) ≥
1

t2

∑
u∈A

|Tu ∩W | − |A|
t

=
|H1|
t2

− |A|
t
.

Together with the previous estimate size(F1) ≤ 3t · size(F) and an obvious estimate
|A| ≤ t · |I| ≤ t · size(F), this yields

size(F) ≥ 1

3t
· size(F1) ≥

|H1|
3t3

− |A|
3t2

≥ |H1|
3t3

− size(F).

Since |H1| ≥ |H|/4, the desired lower bound size(F) = Ω(|H|/t3) follows.
Now we turn to the actual proofs of Theorems 2.1–2.4.

94 STASYS JUKNA

4. Circuits: Proof of Theorem 2.1. In order to prove the gap claimed in
Theorem 2.1, we need (by Lemma 3.13) a bipartite n× n graph which

1. is dense, i.e., has Ω(n2) edges,
2. has no copies of Kt,t with t about logn,
3. can be represented by a small (linear size) monotone circuit.

The existence of graphs, satisfying the first two conditions, is a classical result of
Erdős [8]. However, its proof is probabilistic and gives no idea of how to ensure the
third condition. To get rid of this problem, we just reverse the order of the argument:
we first choose an appropriate graph G whose induced subgraphs satisfy the third
condition. Then we use the probabilistic argument to show that G must contain a
sufficiently large induced subgraph satisfying the first two conditions.

Let F = GF(2), and let r be a sufficiently large even integer. With every subset
S ⊆ F

r we associate a bipartite graph HS ⊆ S × S such that two vertices u and v
are adjacent iff u · v = 1, where u · v is the scalar product over F. We will need the
following Ramsey-type property of such graphs.

Lemma 4.1 (Pudlák–Rödl [20]). Suppose every vector space V ⊆ F
r of dimension

�(r + 1)/2� intersects S in less than t elements. Then neither HS nor the bipartite
complement HS contains Kt,t.

Proof sketch. The proof is based on the observation that any copy of Kt,t in HS

would give us a pair of subsets X and Y of S of size t such that x · y = 1 for all
x ∈ X and y ∈ Y . Viewing the vectors in X as the rows of the coefficient matrix
and the vectors in Y as unknowns, we obtain that the sum dim(X ′) + dim(Y ′) of the
dimensions of vector spaces X ′ and Y ′, spanned by X and Y , respectively, cannot
exceed r + 1. Hence, at least one of these dimensions is at most (r + 1)/2, implying
that either |X ′ ∩ S| < t or |Y ′ ∩ S| < t. However, this is impossible because both X ′

and Y ′ contain subsets X and Y of S of size t.
In the next lemma we use the following versions of Chernoff’s inequality (see, e.g.,

[18], section 4.1): If X is the sum of n independent Bernoulli random variables with

the success probability p, then Pr (|X| ≤ (1 − c)pn) ≤ e−c2pn/2 for 0 < c ≤ 1, and
Pr (|X| ≥ cpn) ≤ 2−cpn for c > 2e.

Lemma 4.2. There exists a subset S ⊆ F
r of size |S| = 2r/2 such that neither

HS nor the bipartite complement HS contains a copy of Kr,r.
Proof. Let N = 2r, and let S ⊆ F

r be a random subset where each vector u ∈ F
r

is included in S independently with probability p = 21−r/2 = 2/
√
N . By Chernoff’s

inequality, |S| ≥ pN/2 = 2r/2 with probability at least 1 − e−Ω(pN) = 1 − o(1).
Now let V ⊆ F

r be a subspace of F
r of dimension �(r + 1)/2� = r/2 (remember

that r is even). Then |V | = 2r/2 =
√
N and we may expect p|V | = 2 elements in

|S∩ V |. By Chernoff’s inequality, Pr (|S ∩ V | ≥ 2c) ≤ 2−2c holds for any c > 2e. The
number of vector spaces in F

r of dimension r/2 does not exceed
(

r
r/2

)
≤ 2r/

√
r. We can

therefore take c = r/2 and conclude that the set S intersects some (r/2)-dimensional
vector space V in 2c = r or more elements with probability at most 2r−(log r)/2−r =
r−1/2 = o(1). Hence, with probability 1− o(1), the set S has cardinality at least 2r/2

and |S ∩ V | < r for every (r/2)-dimensional vector space V . Fix such a set S′ and
take an arbitrary subset S ⊆ S′ of cardinality |S| = 2r/2. By Lemma 4.1, neither HS

nor HS contains a copy of Kr,r.
Now we turn to the actual proof of Theorem 2.1.
Proof of Theorem 2.1. Let S ⊆ F

r be a subset of cardinality |S| = n = 2r/2

guaranteed by Lemma 4.2. We may assume that u · v = 1 holds for at least half of
the pairs in S (otherwise take the bipartite complement of HS). Hence, H = HS is a

DISPROVING THE SINGLE LEVEL CONJECTURE 95

bipartite n×n graph with n = |S| vertices in each part and with |H| ≥ |S|2/2 = n2/2
edges. Moreover, this graph contains no copy of Kr,r where r = 2 log n.

Now let G be the saturated extension of H. By removing the centers of complete
stars, we obtain an induced star-free subgraph H ′ of H. Since the graph H has
no copies of Kr,r, it can have at most 2(r − 1) complete stars, implying that the
resulting subgraph H ′ still has |H ′| ≥ |H| − 2(r − 1)n = Ω(n2) edges. Moreover,
every circuit representing H must also represent H ′ because edges/nonedges of H ′

are also edges/nonedges of H (this is a property of induced subgraphs that is not
shared by spanning subgraphs) and every circuit for H must correctly accept/reject
them. Therefore, C1(fG) ≥ C1(H) ≥ C1(H ′) where, by Lemma 3.13, C1(H ′) =
Ω(|H ′|/r3) = Ω(n2/ log3 n). Hence, C1(fG) = Ω(n2/ log3 n).

To get an upper bound on C(fG), let us identify each vector w ∈ S with the set
of 1-coordinates of w. Hence, two vertices u and v are adjacent in H iff |u ∩ v| is
odd. It is not difficult to verify that (for even r) the graph H can be represented by
a depth-2 formula F (X) =

⊕r
i=1

∨
w∈Si

xw with Si = {w ∈ S : i �∈ w}. Indeed, the
ith clause

∨
w∈Si

xw accepts an arc uv ∈ S × S iff u ∈ Si, or v ∈ Si iff i �∈ u ∩ v.
Hence, the formula F accepts uv iff uv is accepted by an odd number of clauses iff
|{i : i �∈ u ∩ v}| = r − |u ∩ v| is odd iff |u ∩ v| is odd iff uv ∈ H.

By Lemma 3.6, all r = 2 log n Boolean sums in the formula F (X) above can be
simultaneously computed by a circuit of linear (in n) size. Hence, the graph H can be
represented by a linear size circuit over the basis {∨,∧,¬} and, by Lemma 3.11, can
be represented by a monotone circuit of linear size. Since G is the saturated extension
of H, Lemma 3.8 implies that C(fG) = O(n). Hence, Gap(G) = C1(fG)/C(fG) =
Ω
(
n/ log3 n

)
.

5. Formulas: Proof of Theorem 2.2. Let G be the saturated extension of the
bipartite Kneser n× n graph K ⊆ U × V . Recall that in this case U and W consist
of all n = 2r subsets u of {1, . . . , r}, and uv ∈ K iff u ∩ v = ∅. Since log2 3 > 1.58,
the graph K has |K| =

∑
u∈U 2r−|u| = 3r ≥ n3/2+c edges with c ≥ 0.08. Moreover,

the graph K can contain a complete bipartite a × b subgraph ∅ �= A × B ⊆ K
only if a ≤ 2k and b ≤ 2r−k for some 0 ≤ k ≤ r, because then it must hold that(⋃

u∈A u
)
∩
(⋃

v∈B v
)

= ∅. Since a ≤ a′ and b ≤ b′ imply (a + b)/ab ≥ (a′ + b′)/a′b′,

we have μ(K) ≥ (2k + 2r−k)/2r ≥ 2−r/2 = n−1/2. By Lemma 3.12, L1(fG) =
ccw(G) ≥ ccw(K) ≥ μ(K) · |K| ≥ n1+c.

On the other hand, by its definition the graph K admits an intersection repre-
sentation of size r and, by Lemma 3.9, can be represented by a monotone CNF with
int(K) ≤ r = log n clauses, and hence, by a monotone formula with O(n log n) fanin-2
AND and OR gates. Together with Lemma 3.8, this implies that L(fG) = O(n log n).
Hence, Gap form(G) = L1(fG)/L(fG) = Ω(nc/ log n).

6. Unbounded fanin circuits: Proof of Theorem 2.3. To prove the lower
bound C∗(fG) ≥ m(G) + 1 we use the communication complexity argument. By an
observation due to Nisan (see [19] or [13, Lemma 11.2]), C∗(fG) is at least the deter-
ministic two-party communication complexity of fG under the worst-case partition of
its input variables (this holds for arbitrary, not necessarily quadratic, functions and
for arbitrary, not necessarily monotone, circuits). Now let M be an induced matching
in G with |M | = m(G) edges. By setting to 0 all the variables corresponding to
vertices outside this matching, we obtain that C∗(fG) ≥ C∗(fM) (recall that M is an

induced subgraph of G). The function fM itself has the form fM =
∨|M |

i=1 xiyi, i.e., is

96 STASYS JUKNA

the negation of the set disjointedness function, and its deterministic communication
complexity under the natural partition, where one player gets all xi’s and the other
gets all yi’s, is well known to be |M | + 1. Hence, C∗(fG) ≥ C∗(fM) ≥ |M | + 1 =
m(G) + 1.

For the proof of the second part of Theorem 2.3 we need the following fact. Let
cnf(fG) denote the minimum length of (i.e., the number of clauses in) a monotone
CNF computing fG.

Lemma 6.1. For every graph G of maximum degree d, cnf(fG) ≥ τ(G)/d.
Proof. Let F be a monotone CNF of length t = cnf(fG) computing fG. Since fG

has no prime implicants of length 1 (by its definition (1.1)), this CNF must contain at
least two clauses. Take any of these clauses C =

∨
u∈S xu and consider the shrunken

CNF F ′ = F \ {C}. Since C must accept all edges of G, each of these edges must
have at least one endpoint in S. Hence, S must be a vertex cover of G, implying that
|S| ≥ τ(G).

Since F is a shortest CNF computing fG, the shrunken CNF F ′ must make an
error; i.e., it must (wrongly) accept some independent set of G. That is, there must
be an independent set I such that every clause of F ′ contains a variable xv with
v ∈ I. Since F ′ has only t − 1 clauses, we may assume that |I| ≤ t − 1. This
error must be corrected by the clause C, implying that every vertex u ∈ S must be
adjacent (in G) to at least one vertex in I, for otherwise F would wrongly accept the
independent set I ∪ {u} of G. Hence, at least one vertex v ∈ I must have at least
|S|/|I| ≥ τ(G)/t neighbors in S. Since the degree of v cannot exceed d, the desired
lower bound t ≥ τ(G)/d follows.

Now take an arbitrary graph G = (V,E) of maximum degree d, and let F be a
smallest monotone Σ3 circuit computing fG. We first consider the case when F is a
formula, i.e., all gates have fanout-1. This formula is an OR F = F1 ∨ · · · ∨ Fs of
monotone CNFs, and size(F) ≥

∑s
i=1 ri, where ri is the length of the ith CNF Fi.

The CNFs Fi, i = 1, . . . , s, compute quadratic functions of subgraphs Gi = (V,Ei) of
G such that E1 ∪ · · · ∪ Es = E. Note that τ(G) ≤

∑s
i=1 τ(Gi). Since each of these

subgraphs has maximum degree at most d, Lemma 6.1 implies that the entire formula
F must have size at least

∑s
i=1 ri ≥

∑s
i=1 τ(Gi)/d ≥ τ(G)/d. If F is not a formula

(i.e., some OR gates on the bottom level have fanout larger than 1), then we still have
that size(F) ≥ t = max{s, r1, . . . , rs}. Take a CNF Fi for which τ(Gi) ≥ τ(G)/s. By
Lemma 6.1, Fi has length ri ≥ τ(Gi)/d ≥ τ(G)/sd. Since both ri and s do not exceed
t, this yields t2 ≥ τ(G)/d, and the desired lower bound t ≥

√
τ(G)/d on the number

of gates in F follows.

7. Multiplicative complexity: Proof of Theorem 2.4. Let G be the satu-
rated extension of an n to n matching M . Then, by Lemma 3.12, C1

&(fG) = cc(G) ≥
cc(M)/2 = n/2. On the other hand, M can be represented by a monotone CNF of
length O(log n). This follows from the more general Lemma 3.10, but can also be
shown directly as follows (see [10]): Let r = 2 log n, and associate with each vertex
ui on the left side its own (r/2)-element subset Ai of {1, . . . , r}, and assign to the
unique matched vertex vi on the right side the complement Bi of Ai. It is clear
then that Ai ∩ Bj = ∅ iff i = j. Hence, cnf(M) = int(M) ≤ r = 2 log n. To-
gether with Lemma 3.8, this implies that C&(fG) = O(log n). Hence, Gapmult(G) =
Ω(n/ log n).

8. Concluding remarks and open problems. As we mentioned in section 2,
the unbounded fanin version of the single level conjecture is true for almost all graphs.

DISPROVING THE SINGLE LEVEL CONJECTURE 97

Better yet, Theorem 2.3 implies that the conjecture is true for all n-vertex graphs
containing an induced matching with Ω(n) edges. Still, it seems very unlikely that
the conjecture is true for all graphs.

Problem 8.1. Does there exist n-vertex graphs G of maximal degree d with
L∗(fG) = o (τ(G)/d) or C∗(fG) = o(

√
τ(G)/d)?

Another open problem is to prove superlinear lower bounds on the size of mono-
tone (fanin-2) circuits computing explicit quadratic functions in n variables. For for-
mulas (fanout-1 circuits) lower bounds L(fG) = Ω(n3/2) can be proved using the rank
argument [10]. However, the case of circuits is more complicated because (as men-
tioned in the introduction) known lower bounds for monotone circuits—the method of
approximations due to Razborov [22] and its derivatives—cannot yield lower bounds
larger than n.

Problem 8.2. Prove C(fG) ≥ n1+ε for an explicit n-vertex graph G.
What can be said about the single level conjecture in the context of graph rep-

resentation, that is, if we consider circuits representing graphs G instead of circuits
computing their quadratic functions fG? For circuits with fanin-2 gates the question
is already answered in section 4: the gap between single level and general circuits
is Ω(n/ log3 n) also in this context. But what about circuits with unbounded fanin
gates? For a graph G, let C∗(G) be the minimum size of a monotone unbounded fanin
circuit representing G, and let C1

∗(G) be the single level version of this measure. Note
that, for some graphs G, circuits representing G may be exponentially smaller than
circuits computing the quadratic function fG. If, say, Mn is a matching with n edges,
then cnf(Mn) = O(log n) (by Lemma 3.10) but C∗(fMn

) = Ω(n) (by Theorem 2.3).
This also shows that, in the context of graph representation, Lemma 6.1 no longer
holds.

Problem 8.3 (Pudlák–Rödl–Savický [21]). Prove that C1
∗(G) may be much larger

than C∗(G).
Easy counting shows that C1

∗(G) = Ω(n) for almost all n-vertex graphs. On the
other hand, as mentioned in section 2, a lower bound nΩ(1) for an explicit graph G
would yield a superlinear lower bound for nonmonotone log-depth circuits. Actually,

even a much more moderate lower bound 2α
√

logn with α → ∞ would have interesting
consequences (see [10]).

Problem 8.4. Prove C1
∗(G) ≥ 2α

√
log n for an explicit n-vertex graph G.

Although, as mentioned above, we already can prove lower bounds L(fG) =
Ω(n3/2) for some explicit graphs G, doing this for saturated graphs is a much more dif-
ficult task. Bloniarz [4] used counting arguments to show that C(fG) = Ω(n2/ log n)
for almost all n-vertex graphs G; this remains true also in the class of saturated graphs.
The problem, however, is the explicitness: we want a lower bound for explicitly con-
structed graphs. As mentioned in the introduction, a lower bound C(fG) ≥ cn for a
sufficiently large constant c > 0 would have great consequences in circuit complexity.
A (potentially) less ambitious problem is to do this for formulas.

Problem 8.5. Exhibit an explicit saturated star-free graph on n-vertices with
L(fG) = Ω(n logk n).

Since, by Observation 3.5, for such graphs we have the equality L(G) = L(fG),
this would yield an explicit Boolean function in m = Θ(logn) variables requiring
nonmonotone formulas of size Ω(mk) (see [10] for details).

Acknowledgments. I am grateful to Georg Schnitger and Ingo Wegener for
interesting discussions, and to the referees for numerous and very helpful suggestions
concerning the presentation.

98 STASYS JUKNA

REFERENCES

[1] N. Alon, Covering graphs by the minimum number of equivalence relations, Combinatorica, 6
(1986), pp. 201–206.

[2] M. Amano and A. Maruoka, On the monotone circuit complexity of quadratic Boolean func-
tions, in Proceedings of the 5th International Symposium on Algorithms and Computation,
Lecture Notes in Comput. Sci. 3341, Springer, Berlin, 2004, pp. 28–40.

[3] S. J. Berkowitz, On Some Relations between Monotone and Non-monotone Circuit Com-
plexity, Tech. rep., Comput. Sci. Dept., University of Toronto, Toronto, Ontario, Canada,
1982.

[4] P. A. Bloniarz, The Complexity of Monotone Boolean Functions and an Algorithm for Find-
ing Shortest Paths in a Graph, Ph.D. Dissertation, Tech. rep. 238, Lab. Comput. Sci.,
MIT, Cambridge, MA, 1979.

[5] S. Bublitz, Decomposition of graphs and monotone size of homogeneous functions, Acta In-
form., 23 (1986), pp. 689–696.

[6] F. R. K. Chung, On the covering of graphs, Discrete Math., 30 (1980), pp. 89–93.
[7] F. R. K. Chung, P. Erdős, and J. Spencer, On the decomposition of graphs into complete

bipartite subgraphs, in Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 95–101.
[8] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp. 292–

294.
[9] P. Erdős, A. W. Goodman, and L. Pósa, The representation of a graph by set intersections,

Canad. J. Math., 18 (1966), pp. 106–112.
[10] S. Jukna, On graph complexity, Combin. Probab. Comput., to appear.
[11] M. Kneser, Aufgabe 300, Jahresber. Dtsch. Math.-Ver., 58 (1955), p. 27.
[12] R. E. Krichevski, Complexity of contact circuits realizing a function of logical algebra, Sov.

Phys. Dokl., 8 (1964), pp. 770–772.
[13] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, Cam-

bridge, MA, 1997.
[14] K. Lenz and I. Wegener, The conjunctive complexity of quadratic boolean functions, Theoret.

Comput. Sci., 81 (1991), pp. 257–268.
[15] L. Lovász, Kneser’s conjecture, chromatic numbers and homotopy, J. Combin. Theory Ser. A,

25 (1978), pp. 319–324.
[16] K. Mehlhorn, Some remarks on Boolean sums, Acta Inform., 12 (1979), pp. 371–375.
[17] R. Mirwald and C. P. Schnorr, The multiplicative complexity of quadratic boolean forms,

Theoret. Comput. Sci., 102 (1992), pp. 307–328.
[18] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-

bridge, UK, 1995.
[19] N. Nisan, The communication complexity of threshold gates, in Combinatorics, Paul Erdős Is

Eighty, Vol. 1, D. Miklós, V. T. Sós, and T. Szőni, eds., János Bolyai Math. Soc., Budapest,
Hungary, 1993, pp. 301–315.

[20] P. Pudlák and V. Rödl, Pseudorandom sets and explicit constructions of Ramsey graphs, in
Complexity of Computations and Proofs, J. Krajiček, ed., Quad. Mat. 13, Dept. Math.,
Seconda Univ., Napoli, Caserta, 2004, pp. 327–346.

[21] P. Pudlák, V. Rödl, and P. Savický, Graph complexity, Acta Inform., 25 (1988), pp. 515–
535.

[22] A. Razborov, Lower bounds on the monotone complexity of some Boolean functions, Sov.
Math. Dokl., 31 (1985), pp. 354–357.

[23] A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24–35.
[24] V. Rödl and A. Ruciński, Bipartite coverings of graphs, Combin. Probab. Comput., 6 (1997),

pp. 349–352.
[25] R. Tarjan, Complexity of monotone networks for computing conjunctions, Ann. Discrete

Math., 2 (1978), pp. 121–133.
[26] Z. Tuza, Covering of graphs by complete bipartite subgraphs: Complexity of 0-1 matrices,

Combinatorica, 4 (1984), pp. 111–116.
[27] L. Valiant, Graph-theoretic arguments in low-level complexity, in Proceedings of the 6th Sym-

posium on Mathematical Foundations of Computer Science, Lecture Notes in Comput.
Sci. 53, Springer, Berlin, 1977, pp. 162–176.

[28] I. Wegener, A new lower bound on the monotone network complexity of Boolean sums, Acta
Inform., 15 (1980), pp. 147–152.

[29] I. Wegener, The Complexity of Boolean Functions, John Wiley, Chichester; Teubner,
Stuttgart, 1987.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 99–131

RECONSTRUCTING CHROMOSOMAL EVOLUTION∗

LI-SAN WANG† AND TANDY WARNOW‡

Abstract. Chromosomes evolve through genome rearrangement events, including inversions,
transpositions, and inverted transpositions, that change the order and strandedness of genes within
chromosomes. In this paper we present a method for estimating evolutionary histories for chro-
mosomes based upon such events. The fundamental mathematical challenge of our approach is to
estimate the true evolutionary distance between every pair of chromosomes, where the true evolu-
tionary distance is the number of rearrangement events that took place in the evolutionary history
between the chromosomes. We present two techniques, Exact- and Approx-IEBP, for estimating true
evolutionary distances and prove guarantees about the accuracy of these techniques under a very
general stochastic model of chromosomal evolution. We then show how we can use these estimated
distances to obtain highly accurate estimates of chromosomal evolutionary history, significantly im-
proving upon the previous best techniques.

Key words. phylogeny reconstruction, genome rearrangements, Markov chain, distance correc-
tion, neighbor joining, Nadeau–Taylor model, inversions, transpositions

AMS subject classifications. 05E25, 60J27, 65C50, 92B05, 92B10

DOI. 10.1137/S0097539701397229

1. Introduction. Evolutionary tree reconstructions have for the most part been
based upon analyses of biomolecular sequences evolving through site substitutions
(also called point mutations). Yet, point mutations can accumulate quickly, and ex-
tensive research (both theoretical and experimental) has shown that when enough
point mutations have occurred, existing approaches for estimating evolutionary his-
tories will generally produce highly inaccurate trees [1, 8, 15, 19]. Thus, obtaining a
good estimate of the evolutionary history of some datasets can be very difficult when
using point mutations alone as the source of evolutionary signal.

In the last two decades, biologists have become increasingly interested in recon-
structing evolution using large-scale features of whole chromosomes. The hope is that
if the events that led these chromosomes to change were sufficiently rare, it might
be possible to obtain better (i.e., more accurate) evolutionary history reconstructions
through a proper analysis of these data.

Two of the more promising types of mutational events that have been consid-
ered by biologists are inversions and transpositions (defined later); these events affect
chromosomes in two ways: they can rearrange the order of genes within chromosomes,
and they can change the strand on which these genes appear. Since these events are
much less frequent than point mutations, biologists were hopeful that evolutionary
histories estimated using these rearrangement events might be more accurate than
histories estimated from point mutations [24].

∗Received by the editors November 1, 2001; accepted for publication (in revised form) December
21, 2005; published electronically May 26, 2006. Parts of this article appeared in the Thirty-Third
Symposium on Theory of Computing (STOC’01) and the First Workshop for Algorithms on Bio-
computing (WABI’01).

http://www.siam.org/journals/sicomp/36-1/39722.html
†Corresponding author. 203 Goddard Labs, Department of Biology, University of Pennsylvania,

Philadelphia, PA 19104 (lswang@mail.med.upenn.edu). This author’s research was supported by the
National Science Foundation and the National Institutes of Health.

‡Department of Computer Sciences, Taylor Hall 2.124, University of Texas, Austin, TX 78712-
1188 (tandy@cs.utexas.edu). This author’s research was supported by the David and Lucile Packard
Foundation and by the National Science Foundation (0121680 and 0331453).

99

100 LI-SAN WANG AND TANDY WARNOW

In this paper we show how to estimate evolutionary histories for chromosomes that
have evolved under inversions and transpositions. Our approach is “distance-based,”
which means that we first estimate a matrix of “evolutionary distances” between
every pair of chromosomes in the input and then apply a tree reconstruction method
which uses distances (such as neighbor joining [25]). This is a standard approach in
phylogenetics, and it has been used very successfully for phylogenetic analyses from
molecular sequences. However, this approach requires a mathematical technique for
estimating evolutionary distances.

Techniques for estimating evolutionary distances between chromosomes have been
developed prior to this work, but all have been restricted to inversion-only evolution.
For example, several polynomial time methods for computing the inversion distance
(see [2, 10, 14]) have been developed. However, the inversion distance is an edit dis-
tance, and hence it may underestimate the actual number of events; that is, the actual
transformation of one chromosome into another may not take the shortest path. Using
the inversion distance as a proxy for the evolutionary distance can thus lead in turn
to inaccurate phylogenies. In addition, Sankoff and Blanchette [26] developed a tech-
nique which enabled the estimation of evolutionary distances under inversion-only
models of evolution; this technique, however, was never used in phylogeny recon-
struction. No technique before this work has addressed the problem of estimating
evolutionary distances between chromosomes when inversions and transpositions are
both allowed.

This paper makes the following progress towards the challenge of estimating evo-
lutionary histories for chromosomes:

• We present a statistical model of the evolutionary process which allows for
inversions, transpositions, and inverted transpositions; this model generalizes
the Nadeau–Taylor model [18], and thus is called the generalized Nadeau–
Taylor (GNT) model.

• We present mathematical techniques for estimating evolutionary distances and
prove theorems about the accuracy of these estimations under the GNT model.

• We present a simulation study evaluating the relative performance of our
new distance estimators by comparison to earlier distance estimators, as well
as evaluating the accuracy of phylogenies reconstructed by neighbor joining
(the benchmark distance-based method) using different ways of estimating
evolutionary distances. This study shows how our new distance estimation
techniques dramatically improve upon the estimation of true evolutionary
distances, and also improve the accuracy of phylogeny reconstruction from
chromosomes when used with neighbor joining, by comparison to early dis-
tance estimation techniques.

The organization of this paper is as follows. We define our notation in section 2
and give an overview of our mathematical technique for estimating evolutionary dis-
tances in section 3. Fundamental to our estimation technique is the ability to compute
the expected “breakpoint distance” produced by a sequence of k random events in the
GNT model; techniques (both exact and approximate) for these computations are pre-
sented in sections 4 and 5. In section 6, we then show how to use these computations
to estimate evolutionary distances under the GNT model from whole chromosomes;
part of this requires that we establish theoretical results about the fast mixing of a
Markov chain we define. We provide a simulation study in section 7, evaluating both
the accuracy of new distance estimators in comparison to earlier techniques and how
these new distance estimation techniques impact the accuracy of phylogenies esti-
mated using the neighbor joining [25] method. We summarize our results in section 9.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 101

2. Definitions.

2.1. Representations of chromosomes. The genomes of some organisms have
a single chromosome or contain single chromosome organelles (such as mitochondria
[4, 21] or chloroplasts [20, 23]). These chromosomes can be linear or circular, depend-
ing upon their type. Whether from gene maps or from whole chromosome sequencing
projects, it is possible to obtain highly accurate information about the ordering and
strandedness (since chromosomes are double-stranded) of the genes within the chro-
mosome.

In this paper, we will explore evolutionary history reconstruction for single chro-
mosome genomes, under the assumption that the chromosomes have evolved under
inversions, transpositions, and inverted transpositions. Since genes are never lost or
added under these processes, our inputs are sets of chromosomes in which each gene
appears once in each chromosome.

We now describe how we can represent each chromosome as a signed permuta-
tion of the integers 1, 2, . . . , n, where there are n genes. We assign a number to the
same gene in each chromosome, arbitrarily pick one strand out of each chromosome
to be the positive orientation, and thus assign each gene either a positive or nega-
tive sign to indicate its strand. In this way, each chromosome can be represented
by a signed permutation of {1, . . . , n}. Note that this representation is not unique.
Each linear chromosome can be represented in two ways, so that (1, 2, . . . , 9, 10) and
(−10,−9, . . . ,−2,−1) represent the same linear chromosome. To represent a circular
permutation, we simply break the circular permutation at an arbitrary gene and pick
one of the two directions to follow; thus, circular permutations admit many represen-
tations. For example, (1, 2, 3), (2, 3, 1), and (−1,−3,−2) are representations for the
same circular chromosome. The canonical representation for a circular chromosome
is obtained by having gene 1 at the first position in its positive sign. Thus, the first
representation in the previous example is the canonical representation.

2.2. Chromosomal rearrangement events. We now define inversions, trans-
positions, and inverted transpositions. Starting with a chromosome G = (g1, g2, . . . , gn)
an inversion between indices a and b, 1 ≤ a < b ≤ n + 1, produces the chromosome
with linear ordering

(g1, g2, . . . , ga−1,−gb−1, . . . ,−ga, gb, . . . , gn).

If b < a, we can still apply an inversion to a circular (but not linear) chromosome by
simply rotating the circular ordering until ga precedes gb in the representation, since
we consider all rotations of the complete circular ordering of a circular chromosome
as equivalent.

A transposition on the (linear or circular) chromosome G acts on three indices,
a, b, c, with 1 ≤ a < b ≤ n and 2 ≤ c ≤ n + 1, c /∈ [a, b], and operates by picking
up the interval ga, ga+1, . . . , gb−1 and inserting it immediately after gc−1. Thus, the
chromosome G above (with the additional assumption of c > b) is replaced by

(g1, . . . , ga−1, gb, gb+1, . . . , gc−1, ga, ga+1, . . . , gb−1, gc, . . . , gn).

An inverted transposition is the combination of a transposition and an inversion on
the transposed substring so that G is replaced by

(g1, . . . , ga−1, gb, gb+1, . . . , gc−1,−gb−1,−gb−2, . . . ,−ga, gc, . . . , gn).

Inversions, transpositions, and inverted transpositions are particular examples of
chromosomal rearrangements, which are events that change the order and stranded-
ness of genes within chromosomes. Thus, any function that maps signed gene orders

102 LI-SAN WANG AND TANDY WARNOW

to signed gene orders on the same set of genes is a chromosomal rearrangement. We
may also consider rearrangements that change the number of copies of each gene
within a chromosome; such events include duplications, insertions, and deletions of
strings. However, in this paper, we will be most interested in studying just inversions,
transpositions, and inverted transpositions.

2.3. Breakpoint distances. A standard way of computing a distance between
chromosomes is the breakpoint distance [3], which we now define. Let G and G′ be two
chromosomes on the same set of genes, and assume each gene appears exactly once
in each of the two chromosomes. Two genes x and y are adjacent in chromosome G
if x is immediately followed by y in G or, equivalently, if −y is immediately followed
by −x (recall that chromosomes have several equivalent representations). We then
define a breakpoint in G with respect to G′ to be an ordered pair of signed genes (x, y)
such that x and y are adjacent in G but are not adjacent in G′. Just as we consider
chromosomes to have equivalent representations, we consider the ordered pair (x, y) to
be equivalent to (−y,−x). The breakpoint distance between two chromosomes G and
G′ is the number of nonequivalent breakpoints in G with respect to G′. Therefore, the
breakpoint distance is a metric since it is the cardinality of the symmetric difference
between two sets. In particular, it is a symmetric function: the number of breakpoints
in G with respect to G′ is the same as the number of breakpoints in G′ with respect
to G.

An example should make this clear. Let G and G′ be circular chromosomes
defined by G = (1, 2, 3, 4) and G′ = (1,−3,−2, 4). There are two breakpoints in G′

with respect to G, and these are (1,−3) and (−2, 4). There are also two breakpoints
in G with respect to G′, namely (1, 2) and (3, 4). Thus, the breakpoint distance
between G and G′ is two. Note also that the pair (2, 3) is not a breakpoint in either
chromosome with respect to the other chromosome.

We will let dBP (G,G′) denote the breakpoint distance between G and G′.

2.4. The Nadeau–Taylor model. The Nadeau–Taylor model was introduced
in [18] and was the first stochastic model of chromosome evolution. In the Nadeau–
Taylor model there is a fixed binary evolutionary tree, and the ancestral chromosome
(that is, the chromosome at the root of the tree) has a single copy of each gene. This
chromosome evolves down the tree solely through inversions, and any two inversions
are equiprobable. The number of inversions that takes place on an edge e is a random
variable which is Poisson distributed with mean λe. (Note that λe depends upon
the edge e, and so the expected number of inversions can differ between the different
edges.) A Nadeau–Taylor model tree is fully specified by the chromosome at the root,
the tree, and the parameters λe (one for each edge).

2.5. The generalized Nadeau–Taylor model. The generalized Nadeau–
Taylor (GNT) model is obtained by generalizing the Nadeau–Taylor model [18] to
allow for transpositions and inverted transpositions, in addition to inversions. As in
the Nadeau–Taylor model, we assume that there is a fixed binary evolutionary tree
T , and the ancestral chromosome has a single copy of each gene. In the GNT model,
inversions, transpositions, and inverted transpositions can occur on each edge, but
any two events of the same type (two inversions, two transpositions, or two inverted
transpositions) are equiprobable. We fix the relative probabilities of the three types
of events across the tree. Thus, we have three parameters wI , wT , and wIT , which
denote the probability that a rearrangement is an inversion, a transposition, and an

RECONSTRUCTING CHROMOSOMAL EVOLUTION 103

inverted transposition, respectively. Thus, wI + wT + wIT = 1. As in the Nadeau–
Taylor model, we assume the number of events on each edge e is Poisson distributed
with mean λe. Thus, the tree T , the parameters λe on each edge, and the three
parameters wI , wT , and wIT define the model exactly. We let GNT (wI , wT , wIT)
denote the set of GNT model trees with the triplet (wI , wT , wIT).

2.6. Additive distances and trees. Let T be a binary tree with leaves labeled
s1, s2, . . . , sm. Assume that every edge e in T has a positive length we. Then the
additive distance matrix corresponding to the edge-weighted tree (T,w) is

Dij =
∑
e∈Pij

w(e),

where Pij is the path in T between leaves si and sj .
It is well known that given the matrix [Dij] it is possible to reconstruct T and

its edge weights we but not the location of the root of T (so that only the unrooted
underlying tree can be reconstructed from its additive distance matrix) [29]. In fact,
given a matrix [dij] such that maxij |dij−Dij | < f/2, where f = min{we : e ∈ E(T)},
the tree T (but not its edge weights) can be reconstructed exactly [1, 15].

2.7. True evolutionary distances. Let T be the true tree for a set of chro-
mosomes, let e be any edge in T , and let ke be the actual number of events (whether
inversions, transpositions, or inverted transpositions) that took place on edge e. Then
the matrix Dij =

∑
e∈Pij

ke is the matrix of true evolutionary distances. By construc-
tion, the matrix of true evolutionary distances is additive, and thus defines the true
evolutionary tree.

3. An overview of our technique for estimating true evolutionary dis-
tances. By construction, given the matrix of true evolutionary distances we can com-
pute the true tree and the number of events on each edge of the tree in polynomial
time. Furthermore, by our earlier discussion, given a bounded inaccurate estimation
of true evolutionary distances, we can still compute the true tree in polynomial time.
Because highly accurate estimations of true evolutionary distances enable accurate es-
timations of phylogenies, statisticians have developed techniques for estimating true
evolutionary distances under various stochastic models of evolution (see [15, 17] for
more on this). It is for this reason that we are interested in estimating true evo-
lutionary distances for chromosomes that have evolved under the GNT model. We
now describe our basic technique for estimating true evolutionary distances between
chromosomes that have evolved under the GNT model.

Suppose we are given the triplet (wI , wT , wIT) and a positive integer k. Let G be
an arbitrary (but fixed) chromosome on genes 1, 2, . . . , n, and let Gk be the chromo-
some that is the result of applying k random events to G under the GNT (wI , wT , wIT)
model. Note that dBP (G,Gk) is a random variable that depends only upon n, k, and
the triplet (wI , wT , wIT). We will show that we can compute the expected value of
this random variable (i.e., E[dBP (G,Gk)]) in polynomial time, and we can also com-
pute a highly accurate approximation of E[dBP (G,Gk)] somewhat faster. Once we
have an estimate of this expected breakpoint distance, we can then estimate the true
evolutionary distance between an arbitrary pair of chromosomes as follows.

We begin by making a simple but significant observation. Given any pair G,G′

of chromosomes, we can always relabel the genes so that under this relabeling G
becomes G0 (the unrearranged chromosome) and G′ becomes G′′. Because all in-
versions (as well as transpositions and inverted transpositions) are equally likely, we

104 LI-SAN WANG AND TANDY WARNOW

know E[dBP (G,G′)] and E[dBP (G0, G
′′)] will have the same distribution; this was

first mentioned explicitly in [5]. In subsequent sections, we assume one of the two
input chromosomes is always the unrearranged chromosome.

• Input: G and G′, two chromosomes on n genes, and the triplet (wI , wT , wIT).
• Output: An estimation of the actual number of events (inversions, transposi-

tions, and inverted transpositions) that took place in the evolutionary history
between G and G′, under the GNT (wI , wT , wIT) model.

• Method:
– Compute the breakpoint distance y = dBP (G,G′) between G and G′.
– Return the integer k that minimizes |E[dBP (G,Gk)] − y|.

Thus, our approach for estimating true evolutionary distances relies explicitly
upon techniques for estimating (or computing exactly) the expected breakpoint dis-
tance produced by k random events under the GNT (wI , wT , wIT) model. Our exact
calculation for the expected breakpoint distance produced by k random events takes
O(kn2) time for signed circular chromosomes and O((k+n)n4) time for signed linear
chromosomes. We also provide an approximation algorithm for computing the ex-
pected breakpoint distance and prove that it has very low error; furthermore, it is a
simple closed form formula which can be computed in constant time, and hence it is
much faster than our exact algorithm. In addition, our approximation algorithm can
be applied to circular/linear and signed/unsigned chromosomes easily, and thus is a
more flexible analytical tool. Both techniques, therefore, are of interest.

4. Exact calculation of the expected breakpoint distance. We show how
to calculate exactly the expected breakpoint distance produced by k random events
in the GNT (wI , wT , wIT) model. Here we will assume that we know the triplet
(wI , wT , wIT) and thus do not need to estimate this from the data. Later in the paper
we will investigate the empirical performance of using our techniques for estimating
evolutionary distances and examine the consequences of using incorrect values for the
triplet. We will show that even under these conditions, the trees we obtain using these
distance estimates will still improve significantly upon trees obtained using standard
distance estimation techniques.

4.1. Preliminaries.
Circular chromosomes. Let G0 = (1, 2, . . . , n) be the “unrearranged” chromo-

some of n genes at the beginning of the evolutionary process. For any k ≥ 1, let
ρ1, ρ2, . . . ρk be k random events drawn from the GNT (wI , wT , wIT) model, and let
Gk = ρkρk−1 · · · ρ1G0 (i.e., Gk is the result of applying these k rearrangements to
G0). We define the function Bi(G), 1 ≤ i ≤ n − 1, by setting Bi(G) = 0 if G has
the form (. . . , i, i + 1, . . .) after some rotation and/or flipping and Bi(G) = 1 if not;
in other words, Bi(G) = 1 if and only if the unrearranged chromosome G0 has a
breakpoint between i and i + 1 with respect to G. We also set Bn(G) to reflect a
breakpoint between n and 1; i.e., Bn(G) = 0 if and only if gene 1 follows gene n in
G. Let Pi,k = Pr(Bi(Gk) = 1); then E[dBP (G0, Gk)] =

∑n
i=1 Pi,k.

Linear chromosomes. First, we modify the representation of the linear chromo-
some by adding “sentinel” genes 0 and n+1 at the beginning and end of the ancestral
chromosome G0; these sentinel genes exist just to make the discussion easier and are
never moved during the evolution of the chromosome. Thus, every chromosome we
consider will begin with gene 0 and end with gene n + 1.

Given a linear chromosome G = (g0 = 0, g1, g2, . . . , gn, gn+1 = n + 1), we define
the function Bi(G), 0 ≤ i ≤ n, as we did for circular chromosomes; thus, Bi(G) = 1
if and only if the unrearranged chromosome G0 has a breakpoint between i and i+ 1

RECONSTRUCTING CHROMOSOMAL EVOLUTION 105

with respect to G. We define Pi,k identically as in the case of circular chromosomes
and obtain E[dBP (G0, Gk)] =

∑n
i=0 Pi,k.

4.2. Calculating the expected breakpoint distance for inversion-only
evolution (i.e., under the Nadeau–Taylor model). We begin by showing how
the calculation proceeds when wI = 1, so that only inversions occur. This calculation
was first obtained by Sankoff and Blanchette in [26].

Theorem 1 (see [26]). Let Pr((Gk)i = h) be the probability gene h (with the
given sign) at the ith position after k random inversions. Then

Pr((Gk)i = h) = Pr((Gk−1)i = h)

(
1 −

(
n

2

)−1

(i− 1)(n + 1 − i)

)

+

(
n

2

)−1 n∑
j=2

(Pr((Gk−1)j = h) min{i− 1, n + 1 − j, j − 1, n + 1 − j}).

By setting i = 2 and h = 2, and using Pr((Gk)2 �= 2) = 1 − Pr((Gk)2) = 2), we
can compute the probability that a breakpoint occurs between genes 1 and 2 after k
random inversions for any k ≥ 0.

4.3. Exact calculation of the expected breakpoint distance for circu-
lar chromosomes. The previous section presented a technique for calculating the
expected breakpoint distance after k random equiprobable inversions. Here we show
how to use the same idea in calculating the expected breakpoint after k random events
in the GNT model for circular chromosomes. We begin with some notation.

Notation. Under the GNT model, Pi,k has the same distribution for all i, 1 ≤
i ≤ n, and so E[dBP (G0, Gk)] = nP1,k. Therefore, we will focus on the breakpoint
between genes 1 and 2. Let GC

n be the set of all signed circular chromosomes with n
genes, and let WC

n = {±1,±2, . . . ,±(n− 1)}.
The state representation L(G) of chromosome G is an element of WC

n defined as
follows:

• In G, do genes 1 and 2 have the same sign? If the signs are the same, then
L(G) > 0; otherwise, L(G) < 0.

• To determine |L(G)|, we transform G into the canonical representation (so
gene 1 is at the first position with positive sign). Then |L(G)| is one less than
the position where gene 2 is found (either in its positive or negated form)
in G.

For example, for the case where G = (1, 3, 5, 4,−2, 6) we have L(G) = −4, since gene
2 appears (in its negated form) in position 5 in the canonical representation for G.

Since P1,k is the probability that B1 = 1 (i.e., that there is a breakpoint between g1

and g2) after k random events, the sign and the position of gene 2 uniquely determine
P1,k. Hence, {L(Gk) : k ≥ 0} is a homogeneous Markov chain whose state space is
WC

n . We will use these states for indexing elements in the transition matrix and the
distribution vectors. For example, if M is the transition matrix for {L(Gk) : k ≥ 0},
then for all i, j in WC

n , Mi,j is the probability of jumping to state i from state j in
one step in the Markov chain.

The transition matrix for signed circular chromosomes. Let RI , RT , and RIT be
the set of all inversions, transpositions, and inverted transpositions, respectively. For
every rearrangement ρ ∈ RI ∪RT ∪RIT , we construct the 0, 1-matrix Mρ as follows:

• For every i and j in WC
n , (Mρ)i,j = 1 if L(G) = j implies L(ρG) = i (i.e., ρ

corresponds to a transition from state j to state i).

106 LI-SAN WANG AND TANDY WARNOW

We then let

MI =
1

|RI |
∑
ρ∈RI

Mρ,

MT =
1

|RT |
∑
ρ∈RT

Mρ,

and

MIT =
1

|RIT |
∑

ρ∈RIT

Mρ.

The transition matrix M for {L(Gk) : k ≥ 0} is therefore

M = (1 − wT − wIT)MI + wTMT + wITMIT .

Let xk be the distribution vector for L(Gk). The following can then be easily estab-
lished:

(x0)2 = 1,

(x0)i = 0, i ∈ WC
n , i �= 2,

xk = Mkx0,

E[dBP (G0, Gk)] � nP1,k = n(1 − (xk)2).

Note that the result in Theorem 1 is just this result for the case in which only inversions
occur, i.e., for which wI = 1 and wT = wIT = 0.

We now derive closed-form formulas for the transition matrix M for the
GNT (wI , wT , wIT) model on signed circular chromosomes with n genes. Let

(
a
b

)
denote the binomial coefficient, with

(
a
b

)
= 0 if b > a. First, consider the number of

rearrangement events in each class:
1. Inversions. By symmetry of circular chromosomes and the model, each inver-

sion has a corresponding inversion that inverts the complementary substring
(the solid vs. the dotted arc in Figure 1(a)); thus we need only to consider
the

(
n
2

)
inversions that do not invert gene 1.

2. Transpositions. In Figure 1(b), given the three indices in a transposition,
the chromosome is divided into three substrings, and the transposition swaps
two substrings without changing the signs. Let the three substrings be A,
B, and C, where A contains gene 1. A takes the form (A1, 1, A2), where A1

and A2 may be empty. In the canonical representation there are only two
possible unsigned permutations: (1, A2, B,C,A1) and (1, A2, C,B,A1). This
means we need only to consider transpositions that swap the two substrings
not containing gene 1.

3. Inverted transpositions. There are 3
(
n
3

)
inverted transpositions. In Fig-

ure 1(c), given the three endpoints in an inverted transposition, exactly one
of the three substrings changes signs. Using the canonical representation,
we interchange the two substrings that do not contain gene 1 and invert one
of them (the first two chromosomes right of the arrow in Figure 1(c)), or
we invert both substrings without swapping (the rightmost chromosome in
Figure 1(c)).

RECONSTRUCTING CHROMOSOMAL EVOLUTION 107

1g
g1

A

C

B

g
1

B

A

C

(a) Inversion (b) Transposition

g1
A

C

B

g1
A

B

C g1

A
C

B

g1

A

B

C

(c) Inverted transposition

Fig. 1. The three types of rearrangement events in the GNT model on a signed circular chro-
mosome. (a) We need only to consider inversions that do not invert gene 1. (b) A transposition
corresponds to swapping two substrings. (c) The three types of inverted transpositions. Starting
from the left chromosome, the three distinct results are shown here; the broken arc represents the
substring being transposed and inverted.

For all u and v in WC
n , let ιn(u, v), τn(u, v), and νn(u, v) be the numbers of inversions,

transpositions, and inverted transpositions that bring a gene in state u to state v.
Then

Mu,v = (1 − wT − wIT)(MI)u,v + wT (MT)u,v + wIT (MIT)u,v

=
1 − wT − wIT(

n
2

) ιn(u, v) +
wT(
n
3

)τn(u, v) +
wIT

3
(
n
3

)νn(u, v).

The following lemma gives formulas for ιn(u, v), τn(u, v), and νn(u, v).
Lemma 1. For all u and v in WC

n , let ιn(u, v), τn(u, v), and νn(u, v) be the
numbers of inversions, transpositions, and inverted transpositions that bring a gene
in state u to state v (n is the number of genes in each chromosome). Then

(a) ιn(u, v) =

⎧⎨
⎩

min{|u|, |v|, n− |u|, n− |v|} if uv < 0,
0 if u �= v, uv > 0,(|u|

2

)
+
(
n−|u|

2

)
if u = v,

(b) τn(u, v) =

⎧⎨
⎩

0 if uv < 0,
(min{|u|, |v|})(n− max{|u|, |v|}) if u �= v, uv > 0,(|u|

3

)
+
(
n−|u|

3

)
if u = v,

(c) νn(u, v) =

⎧⎨
⎩

(n− 2)ιn(u, v) if uv < 0,
τn(u, v) if u �= v, uv > 0,
3τn(u, v) if u = v.

108 LI-SAN WANG AND TANDY WARNOW

Proof. The proof of (a) was provided in [26] and is omitted.
We now prove (b). Consider the gene with state u. Let v be the new state of

that gene after the transposition with indices (a, b, c), 2 ≤ a < b < c ≤ n + 1. Since
transpositions do not change the sign, τn(u, v) = τn(−u,−v), and τn(u, v) = 0 if
uv < 0. Therefore we need only to analyze the case where u, v > 0.

We first analyze the case when u = v. Assume that either a ≤ u < b or b ≤ u < c.
In the first case, from the definition in section 2 we immediately have v = u+ (c− b),
from which it follows that v−u = c−b > 0. In the second case, we have v = u+(a−b),
so that v − u = a − b < 0. Both cases contradict the assumption that u = v, and
the only remaining possibilities that make u = v are when 1 ≤ u = v < a − 1 or
c − 1 ≤ u = v ≤ n − 1. This leads to the third line in the τn(u, v) formula. Next,
the total number of solutions (a, b, c) for the following two problems is τn(u, v) when
u �= v and u, v > 0:

(i) u < v : b = c− (v − u), 2 ≤ a ≤ u + 1 < b < c ≤ n + 1, u < v ≤ c.
(ii) u > v : b = a + (u− v), 2 ≤ a < b ≤ u + 1 < c ≤ n + 1, a ≤ v < u.

In the first case τn(u, v) = u(n− v), and in the second case τn(u, v) = v(n− u). The
second line in the τn(u, v) formula follows by combining the two results.

For inverted transpositions there are three distinct subclasses of rearrangement
events. The result in (c) follows by applying the above method to the three
cases.

We now derive the running time for this exact method.
Theorem 2. It takes O(kn2) time to compute the expected breakpoint distance

produced by k random events under the GNT model on circular chromosomes on n
genes, using the exact technique.

Proof. We first compute the 2(n−1)×2(n−1) transition matrices MI , MT , MIT

in O(n2) time using the closed-form formulas above (each entry takes O(1) time).
Computing M from the three matrices takes O(n2) time. Finally, computing the
expected breakpoint distance requires k matrix-vector multiplications, which takes
O(kn2) time.

4.4. Exact calculation of the expected breakpoint distance for linear
chromosomes. When the chromosomes are linear, different breakpoints will have
different distributions. Thus, to compute the distribution of a given breakpoint, we
will need to consider the positions and the signs of the genes involved at the same
time. We begin with some notation.

Notation. Let GL
n be the set of all signed linear chromosomes, and let WL

n =
{(u, v) : u, v = ±1, . . . ,±n, |u| �= |v|}. We define the state representations Ji : GL

n →
WL

n , i = 1, . . . , n− 1, as follows. For any chromosome G ∈ GL
n , Ji(G) = (u, v), where

• |u| is the position of gene i, and the sign of u is the same as that of gene i;
• |v| is the position of gene i + 1, and the sign of v is the same as that of gene

i + 1.
For example, in the chromosome G = (1, 4, 2, 5, 6,−3,−7, 8) we have J3(G) = (−6, 2)
(based on the positions and signs of genes 3 and 4), and J7(G) = (−7, 8) (based on
the positions and signs of genes 7 and 8). Thus, by examining Ji(G) we can determine
if the genes i and i + 1 are “adjacent” (meaning that gene i + 1 follows gene i) in G;
thus, genes i and i+ 1 are adjacent if and only if Ji(Gk) = (u, u+ 1) for some integer
u (note that u could be negative).

Therefore {Ji(Gk) : k ≥ 0}, 1 ≤ i ≤ n − 1, forms a homogeneous Markov chain
with state space WL

n . As before we use the states in WL
n as indices to the transition

matrix and the distribution vectors.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 109

Let x〈i,k〉 be the distribution vector of Ji(Gk). For every rearrangement ρ ∈
RI , RT , and RIT , the matrix Mρ is defined as for circular chromosomes, with different
dimensions. We let

MI =
1

|RI |
∑
ρ∈RI

Mρ,

MT =
1

|RT |
∑
ρ∈RT

Mρ,

and

MIT =
1

|RIT |
∑

ρ∈RIT

Mρ.

The transition matrix M for linear chromosomes has the same form as the transition
matrix for circular chromosomes, i.e.,

M = (1 − wT − wIT)MI + wTMT + wITMIT .

Let e be a vector where e(u,v) = 1 whenever v = u + 1, and 0 otherwise. Then

eTx〈i,k〉 =
∑

u=v+1

(x〈i,k〉)(u,v)

is the probability there is no breakpoint between genes i and i+ 1 in G0 with respect
to Gk. Therefore

(x〈i,0〉)(i,i+1) = 1,

(x〈i,0〉)(u,v) = 0, (u, v) ∈ WL
n , (u, v) �= (i, i + 1),

x〈i,k〉 = Mkx〈i,0〉,

Pi,k = 1 − eTx〈i,k〉 = 1 − eTMkx〈i,0〉.

Since the two sentinel genes 0 and n+1 never change their positions and signs, the
distributions of the two breakpoints B0 and Bn depend on the state of one gene each
(1 and n, respectively). Hence we can use the results from circular chromosomes to
estimate P0,k and Pn,k. Since these two quantities have the same distribution under
the GNT model, the expected breakpoint distance after k events is

E[dBP (G0, Gk)] =

n∑
i=0

Pi,k = 2P0,k +

n−1∑
i=1

Pi,k = 2P0,k +

n−1∑
i=1

(1 − eTMkx〈i,0〉)

= 2P0,k + (n− 1) − eTMk
n−1∑
i=1

x〈i,0〉.(1)

Constructing transition matrices. We do not have a simple closed-form formula to
construct MI , MT , or MIT as in the circular-chromosome case. Instead, we compute
Mρ for every rearrangement ρ and sum over them to obtain the three matrices ac-
cording to their definition. We use the following lemma to simplify the computation.

110 LI-SAN WANG AND TANDY WARNOW

Lemma 2. For every rearrangement ρ transforming G0 = (0, 1, 2, . . . , n, n + 1)
into G = (0, g1, g2, . . . , gn, n+1), we have (Mρ)(x,x′),(y,y′) = 1 (i.e., ρ transforms state
(y, y′) into (x, x′)) if

1. gene |y| is the |x|th gene in G (g1 is the first gene), and the sign of gene |y|
in G is the same as the sign of xy;

2. gene |y′| is the |x′|th gene in G (g1 is the first gene), and the sign of gene |y′|
in G is the same as the sign of x′y′.

(Mρ)(x,x′),(y,y′) = 0 otherwise.
Proof. Consider any chromosome G′. If Li(G

′) = (y, y′), then gene i is at position
|y| having the same sign as the number y. Assume in ρG0 that gene |y| is at position
|x|, and the sign of gene |y| is the same as the sign of number x; this implies that
gene i is in position |x| in ρG′. Moreover, gene i changes sign if and only if x < 0; so
the sign of gene i is the same as xy.

The lemma above provides us with an efficient algorithm for constructing MI ,
MT , and MIT . We give the details in the next theorem.

Theorem 3. Assume the chromosome is linear with n distinct genes. It takes
O((k + n)n4) time to compute the expected breakpoint distance produced by k random
events under the GNT model, using the exact technique.

Proof. By (1), we need to compute Mk
∑n−1

i=1 x〈i,0〉 and P0,k. P0,k is easy be-
cause it is equal to P1,k for circular chromosomes. On the other hand, computing

Mk
∑n−1

i=1 x〈i,0〉 means we have to compute MI , MT , and MIT , for which we do
not have simple closed-form formulas (unlike for the case of circular chromosomes).
Moreover, the number of states (and the number of rows or columns for the transition
matrix) is O(n2).

To compute MI , MT , and MIT , we need only to apply every rearrangement to
the unrearranged chromosome and check which entry is set to 1 for each column in
the matrix. We use MI as an example:

1. We first initialize every entry in MI to 0.
2. For every inversion ρ, we apply it to the unrearranged chromosome G0 to

obtain G = ρG0 and do the following:
(a) For each column with corresponding state (y, y′), we use the lemma

above together with G to find the resulting state (x, x′); we then increase
(MI)(x,x′),(y,y′) by 1.

3. We divide MI by
(
n
2

)
to obtain the final matrix.

We now analyze the running time for the algorithm above. Initializing MI takes O(n4)
time, since there are 22

(
n
2

)
distinct states. There are

(
n
2

)
distinct inversions; for each

inversion ρ, computing ρG0 takes O(n) time. Line 2(a) takes O(n2) time for each ρ,
since there are 22

(
n
2

)
columns in MI . So the total running time is O(n4 +

(
n
2

)
× (n +

22
(
n
2

)
)) = O(n4). Similar arguments show the running times for constructing MT

and MIT are both O(n5), since there are O(n3) distinct transpositions and inverted
transpositions.

Computing P0,k and Pn,k takes O(kn2) time using the circular-chromosome al-
gorithm. To compute Pi,k, 1 ≤ i ≤ n − 1, we first compute MI in O(n4) time

and MT and MIT in O(n5) time. Computing
∑n−1

i=1 x〈i,0〉 takes O(n3) time. We

then evaluate k matrix-vector multiplications to obtain Mk
∑n−1

i=1 x〈i,0〉; this step
takes O(kn4) time. It then takes O(n2) time to obtain E[dBP (G0, Gk)] from these
results.

Note that if only inversions are present, the running time becomes O(kn4).

RECONSTRUCTING CHROMOSOMAL EVOLUTION 111

5. Approximating the expected breakpoint distance.

5.1. Introduction. In this section we present a faster, but approximate rather
than exact, technique, Fk, for estimating the expected breakpoint distance produced
by k random events under the GNT model. Our estimation is obtained through
averaging tight lower and upper bounds, and we show the relative and absolute error
of the approximation is small.

5.2. Extending the model. We use a model more general than the GNT model
for the derivation to allow more general results for our approximation. We formulate
this more general model as follows. A rearrangement class E acting on Gn (depending
on the context of the problem, Gn can be either circular or linear) is a pair (A(E), fE),
where A(E) is a set of rearrangements with nonzero probability of taking place, and
fE(ρ|G) is the probability that rearrangement ρ takes place on chromosome G, for a
given ρ ∈ A(E) and G ∈ Gn. We say the random variable ρ is of rearrangement class
E acting on chromosome G if ρ is in A(E) and has distribution fE(ρ|G).

Following the notation in section 2, we now present the derivation of our ap-
proximation algorithm. Assume the rearrangement to act on G is ρ. We recall the
definitions of Bi, 1 ≤ i ≤ n, and Pi,k: Bi(G) = 0 if genes i and i + 1 are adjacent
in G0 (with respect to G) and Bi(G) = 1 if not. Gk is the result of applying k
random events to the unrearranged chromosome (1, 2, . . . , n). Pi,k is defined to be
Pr(Bi(Gk) = 1). Thus, E[dBP (G0, Gk)] =

∑n
i=1 Pi,k for circular chromosomes and

E[dBP (G0, Gk)] =
∑n

i=0 Pi,k for linear chromosomes.
We make the following definitions:
• s(i|G, E) = Pr(Bi(ρG) = 1 | Bi(G) = 0),
• u(i|G, E) = Pr(Bi(ρG) = 0 | Bi(G) = 1),
• Sep(i|G, E) = {ρ ∈ A(E) : Bi(ρG) = 1}, and
• Uni(i|G, E) = {ρ ∈ A(E) : Bi(ρG) = 0}.

We focus on rearrangement classes E where fE is independent of k and G, and
s(i|G, E) is independent of G. All three rearrangement classes in the GNT model,
namely the class of random inversions, the class of random transpositions, and the
class of random inverted transpositions, satisfy these requirements.

We now show the derivation and properties of our true evolutionary distance es-
timator. We start in section 5.3 with the simple case of rearrangement event classes
where the breakpoints satisfy the Markov property and find the expected number of
breakpoints after k random rearrangements. The result is extended in section 5.4,
where the requirement on the Markov property is relaxed; the result is an approxima-
tion to the expected number of breakpoints. The error bounds on the approximation
are shown in section 5.5. The main result is in section 5.6, where we develop the tech-
nique for rearrangement classes that are mixtures of other rearrangement classes. The
technique is then applied to the GNT model of chromosome evolution in section 5.7.

5.3. Single rearrangement class models where the breakpoints satisfy
the Markov property. We start with a simple case by considering any rearrange-
ment class E for which s(i|G, E) and u(i|G, E) are independent of the past history
and the current chromosome G to be acted upon. Then {Bi(Gk), k ≥ 0} is a Markov
process (see Figure 2), as is shown in the following theorem.

Theorem 4. Assume E is a class of rearrangements such that s(i|G, E) and
u(i|G, E) do not depend upon chromosome G. Let their common values be s(i|E) and

112 LI-SAN WANG AND TANDY WARNOW

B i (G)

10

u

s

1−s

1−u

Fig. 2. Each breakpoint can be regarded as a two-state stochastic process with two parameters
s and u (see section 5.4).

u(i|E), respectively. Then

Pi,k = s(i|E)

(
1 − (1 − s(i|E) − u(i|E))k

1 − (1 − s(i|E) − u(i|E))

)
.

Proof. We have the following recurrence:

s(i|E) = Pr(ρk ∈ Sep(i|Gk, E) | Bi(i|Gk) = 0)

= Pr(Bi(Gk+1) = 1 | Bi(Gk) = 0)

=
Pr(Bi(Gk+1) = 1 ∩Bi(Gk) = 0)

1 − Pi,k
,

u(i|E) = Pr(ρk ∈ Uni(i|Gk, E) | Bi(Gk) = 1),

= Pr(Bi(Gk+1) = 0 | Bi(Gk) = 1)

=
Pr(Bi(Gk+1) = 0 ∩Bi(Gk) = 1)

Pi,k
,

Pi,k+1 = Pr(B1(Gk+1) = 1) = (1 − Pk)s(i|E) + Pk(1 − u(i|E)),

= Pk(1 − s(i|E) − u(i|E)) + s(i|E),

Pi|0 = 0.

The proof follows by solving the recurrence.
Corollary 1. Let Gk be the result of applying k random inversions to the

unsigned linear chromosome G0 having n genes. If Gk is linear,

E[dBP (G0, Gk)] = (n− 1)

(
1 −

(
n− 3

n− 1

)k
)
,

and if Gk is circular,

E[dBP (G0, Gk)] =
n(n− 3)

n− 1

(
1 −

(
n− 4

n− 2

)k
)
.

Proof. The proof follows from Theorem 4, with parameters from Table 1. The
linear case is originally in [5] with similar arguments, and the circular case is a simple
extension.

5.4. The lower and upper bounds technique for single rearrangement
class models. For many other classes of rearrangements, the parameters regarding
transitions of Bi(G)’s state depend not only on Bi(G) but on other properties of G as

RECONSTRUCTING CHROMOSOMAL EVOLUTION 113

well. For example, the number of inversions that makes genes 1 and 2 adjacent depends
on the number of genes between these two genes. However, for the rearrangement
classes E where s(i|G, E) does not depend on G, we can obtain upper and lower
bounds on the expected number of breakpoints, as we now show.

Let umin(i|E) and umax(i|E) be the lower and upper bounds of u(i|G, E) over all
chromosomes G. Observe that a larger value of u(i|G, E) means that genes i and i + 1
are more likely to be made adjacent, given that they are currently not adjacent. This
means Pi,k, the probability of having a breakpoint between gene i and i + 1 after k
rearrangements, is monotone decreasing on u(i|G, E).

Theorem 5. Assume E is a class of rearrangements such that s(i|E) is inde-
pendent of the chromosome G currently acted upon. Let umin(i|E) and umax(i|E) be
defined as in the previous paragraph. We have PL

i,k ≤ Pi,k ≤ PH
i,k for all k, where

PL
i,k = s(i|E)

(
1 − (1 − s(i|E) − umax(i|E))k

1 − (1 − s(i|E) − umax(i|E))

)
,

PH
i,k = s(i|E)

(
1 − (1 − s(i|E) − umin(i|E))k

1 − (1 − s(i|E) − umin(i|E))

)
.

Proof. The two recursions determined by umin(i|E) and umax(i|E) can be solved
using Theorem 4. We prove the inequality bounding Pi,k by PL

i,k and PH
i,k for all k ≥ 0

by induction. When k = 0, all three quantities are 0, and so the base case holds. The
induction step is as follows:

PL
i,k+1 = PL

i,k(1 − s(i|E) − umax(i|E)) + s(i|E)

≤ Pi,k(1 − s(i|E) − u(i|Gk, E)) + s(i|E) = Pi,k+1

≤ PH
i,k(1 − s(i|E) − umin(i|E)) + s(i|E) = PH

i,k+1.

Corollary 2. Given two random signed circular chromosomes G and G′ on n
genes, n ≥ 2,

E[dBP (G,G′)] =
n(n− 1.5)

n− 1
.

Proof. The expected breakpoint distance between two random chromosomes is
the same as the breakpoint distance between an unrearranged chromosome G0 and
a random chromosome G. In the canonical representation, gene 1 is always positive
and at the first position in both chromosomes.

Since G0 is the unrearranged chromosome, G0 = (1, 2, . . . , n); however, there are
2(n− 1) equally probable choices regarding the sign and position of gene 2 in G. The
probability of a breakpoint between genes 1 and 2 in G (with respect to G0) is thus
exactly (2(n− 1) − 1)/(2(n− 1)) = (n− 1.5)/(n− 1). The theorem follows since the
other breakpoints (i, i + 1) have the same probability as (1, 2).

This result is apparently new; see [4] for a previous estimate, which this corrects.
Definition 1. Given any class of rearrangements E that satisfies the assumption

in Theorem 5, we set

Fk =

n∑
i=0

PL
i,k + PH

i,k

2
.

The function Fk is an approximation to the expected number of breakpoints after k
random rearrangements drawn from E.

114 LI-SAN WANG AND TANDY WARNOW

Note that Fk is strictly monotone increasing with respect to k, since both PL
i,k and

PH
i,k are strictly monotone increasing with respect to k. This observation guarantees

that the integer k minimizing |Fk − x| is unique (up to a possible tie between two
integers that differ by 1).

5.5. Error bounds on the technique using upper and lower bounds. In
this section we bound the absolute and relative errors of the estimator Fk with respect
to E[dBP (G0, Gk)]. Let

• RL
i = 1 − s(i|E) − umax(i|E), and

• RH
i = 1 − s(i|E) − umin(i|E).

Note (RL
i)k ≤ (RH

i)k for all k ≥ 0. We now bound the error of the estimator Fk.
Lemma 3.

1

2
(PH

i,k − PL
i,k) ≤

umax(i|E) − umin(i|E)

2 s(i|E)
.

Proof.

1

2
(PH

i,k − PL
i,k) =

1

2
s(i|E)

(
1 − (RH

i)k

1 −RH
i

− 1 − (RL
i)k

1 −RL
i

)
=

1

2
s(i|E)

k−1∑
j=0

((RH
i)j − (RL

i)j)

≤ 1

2
s(i|E)

∞∑
j=0

((RH
i)j − (RL

i)j) =
1

2
s(i|E)

(
1

1 −RH
i

− 1

1 −RL
i

)

=
s(i|E)(umax(i|E) − umin(i|E))

2(s(i|E) + umin(i|E))(s(i|E) + umax(i|E))

≤ umax(i|E) − umin(i|E)

2 s(i|E)
.

Theorem 6.

|Fk − E[dBP (G0, Gk)]| ≤
n∑

i=0

umax(i|E) − umin(i|E)

2s(i|E)
∀k ≥ 0.

In addition, if umax(i|E) (and thus umin(i|E)) is O(s(i|E)/n), for all i : 0 ≤ i ≤ n (as
is the case for random inversions, transpositions, and inverted transpositions), then
|Fk − E[dBP (G0, Gk)]| = O(1).

Proof. The error is at most one half of the maximum difference between
∑n

i=0 P
H
i,k

and
∑n

i=0 P
L
i,k; the result follows from Lemma 3.

When both umin(i|E) and umax(i|E) are O(s(i|E)
n), the error is at most

n∑
i=0

umax(i|E) − umin(i|E)

2 s(i|E)
=

n∑
i=0

O

(
1

n

)
= O(1).

Theorem 7. Let sl = min0≤i≤n{s(i|E)}, sh = max0≤i≤n{s(i|E)}, rl =
min0≤i≤n{s(i|E)+umin(i|E)}, and rh = max0≤i≤n{s(i|E)+umax(i|E)}. For all k ≥ 1,

slrl
shrh

≤ Fk

E[dBP (G0, Gk)]
≤ shrh

slrl
.

In addition, if sh/sl = 1 + Θ(1
n) and umax(i|E) (and thus umin(i|E)) is O(s(i|E)/n),

for all i : 0 ≤ i ≤ n, then

Fk

E[dBP (G0, Gk)]
= 1 + O

(
1

n

)
.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 115

Proof. We prove only the upper bound, as the lower bound is the reciprocal of
the upper bound and can be proved similarly. Let w = 1− rl and v = 1− rh; we have
v ≤ w, 1 − wk ≤ 1 − vk, and

Fk

E[dBP (G0, Gk)]
=

∑n
i=0 P

H
i,k∑n

i=0 P
L
i,k

≤
max

0≤i≤n
PH
i,k

min
0≤i≤n

PL
i,k

≤ sh(1 + w + w2 + · · · + wk−1)

sl(1 + v + v2 + · · · + vk−1)

=
sh

1 − wk

1 − w

sl
1 − vk

1 − v

=

(
sh(1 − v)

sl(1 − w)

)(
1 − wk

1 − vk

)
≤ sh(1 − v)

sl(1 − w)
=

shrh
slrl

.

In Table 1 is a list of the parameters of the three rearrangement classes in the
GNT model.

5.6. Upper and lower bounds estimation with multiple rearrangement
classes. We can easily extend the results to a mixture of different rearrangement
classes. Consider m classes of rearrangements, E1, . . . , Em, where Ei = (A(Ei), fEi), 1 ≤
i ≤ m. For any rearrangement ρ, let γj = Pr(ρ ∈ Ej), 1 ≤ j ≤ m. Assume γj does
not depend on chromosome G, the chromosome currently acted upon. Let s(i|Ej),
u(i|G, Ej), umin(i|Ej), and umax(i|Ej) be the parameters corresponding to Ej as defined
in Theorem 5. Let E = (A(E), fE) be the rearrangement class such that A(E) =
∪m
j=1A(Ej), and fE(r|G) =

∑m
j=1 γj fEj

(r|G). Then Sep(i|G, E) = ∪m
j=1Sep(i|G, Ej),

and Uni(i|G, E) = ∪m
j=1Uni(i|G, Ej).

The hierarchical way of choosing rearrangements (first, choose rearrangement
class, and then choose one rearrangement among others in the class chosen) during
evolution allows two rearrangements in different rearrangement classes to produce the
same results, while retaining the additivity of probability:

Pr(ρ = ρ0|G = G0) =

m∑
j=1

Pr(ρ = ρ0|G = G0, Ej is chosen) Pr(Ej is chosen|G = G0)

=

m∑
j=1

γjfEj (ρ0|G0).

The new recurrence is

s(i|E) = Pr(Bi(Gk+1) = 1|Bi(Gk) = 0) = Pr(ρk ∈ Sep(i|Gk, E) | Bi(Gk) = 0)

=

m∑
j=1

Pr(ρk ∈ Sep(i|Gk, Ej) | Bi(Gk) = 0) =

m∑
j=1

γjs(i|Ej).

Similarly,

u(i|Gk, E) = Pr(Bi(Gk+1) = 0|Bi(Gk) = 1) =

m∑
j=1

γjuj(i|Gk, Ej) ∀k ≥ 0,

umin(i|E) =

m∑
j=1

γjumin(i|Ej), umax(i|E) =

m∑
j=1

γjumax(i|Ej),

Pi,k+1 = (1 − Pi,k)s(i|E) + Pi,k(1 − u(i|Gk, E))

= Pi,k(1 − s(i|E) − u(i|Gk, E)) + s(i|E),

Pi|0 = 0.

116 LI-SAN WANG AND TANDY WARNOW

Table 1

Recurrence parameters for rearrangement classes in the GNT model. The three rearrangement
classes are inversion (Inv), transposition (Trp), and inverted transposition (ITrp). For circular
chromosomes, Bi(Gk) has the same distribution for 1 ≤ i ≤ n, and B0(Gk) is always set to 0.

Linear chromosomes

Signed Rearrangement s(i) s0, sn umin(i) umax(i) umin(0) umax(0)
type i �= 0, n i �= 0, n i �= 0, n umin(n) umax(n)

No Inv n−2(
n
2

) 2
n

2(
n
2

) 2(
n
2

) 1(
n
2

) 1(
n
2

)

Yes Inv 2
n+1

2
n+1

0 1(
n+1

2

) 0 1(
n+1

2

)

No Trp
3(n−2)
n(n−1)

3
n+1

6
n(n−1)

6
n(n−1)

1(
n+1

3

) 6
n(n+1)

Yes Trp 3
n+1

3
n+1

0 6
n(n+1)

0 6
n(n+1)

No ITrp
3(n−3)
n(n−1)

3
n

6
n(n−2)

6
n(n−2)

1

2
(
n
3

) 6
n(n−1)

Yes ITrp 3
n+1

3
n+1

0 3
(n−1)(n+1)

0 3
n(n+1)

Circular chromosomes

Signed Rearrangement s(i) umin(i) umax(i)
type 1 ≤ i ≤ n 1 ≤ i ≤ n 1 ≤ i ≤ n

No Inv n−3(
n−1

2

) 2(
n−1

2

) 2(
n−1

2

)

Yes Inv 2
n

0 1(
n
2

)

No Trp
3(n−3)

(n−1)(n−2)
6

(n−1)(n−2)
6

(n−1)(n−2)

Yes Trp 3
n

0 6
n(n−1)

No ITrp 3
n−1

6
(n−1)(n−3)

6
(n−1)(n−3)

Yes ITrp 3
n

0 4
n(n−2)

RECONSTRUCTING CHROMOSOMAL EVOLUTION 117

Results similar to Theorems 6 and 7 on error bounds can be obtained for multiple

classes. Recall that we defined Fk =
∑n

i=0

PL
i,k+PH

i,k

2 .
Theorem 8. Consider the estimator Fk with the parameters s(i|E), umin(i|E),

and umax(i|E) given in the previous paragraphs. If the assumptions in Theorems 6
and 7 regarding these parameters are satisfied, then

|Fk − E[dBP (G0, Gk)]| = O(1)

and

φ−1 ≤ Fk

E[dBP (G0, Gk)]
≤ φ,

where φ = 1 + O(1
n).

Proof. The proof follows from Theorems 6 and 7.

5.7. Approximating the breakpoint distance under the GNT model.
We now show how to compute an approximation to the expected breakpoint distance
under the GNT (wI , wT , wIT) model. We use the notation defined in earlier sections
(i.e., Fk,s(i), u(i), umin(i), and umax(i)) and provide the parameters for the upper
and lower bounds technique in Table 2.

Recall that Fk =
∑n

i=0

PL
i,k+PH

i,k

2 . Under the GNT model we can tighten the error
bounds for Fk obtained in Theorem 6 as follows.

Theorem 9. We assume the chromosomes evolve under the GNT model. For all
k > 0,

|Fk − E[dBP (G0, Gk)]| ≤ 1 +
1

n− 1

and

φ−1 ≤ Fk

E[dBP (G0, Gk)]
≤ φ,

where φ = 1 + 2+4wT +2wIT

2+wT +wIT
n−1 + O(n−2).

Proof. The proof follows from Theorems 6 and 7 with parameters s(i), umin(i),
and umax(i). See Table 2 for details. The relative error bound can be obtained by

examining

∑n

i=0
PH

i,k∑n

i=1
PL

i,k

directly.

6. Estimating evolutionary distances under the GNT model. In the pre-
vious two sections we presented methods (one exact and one approximate) for esti-
mating the expected breakpoint distance produced by a sequence of random events
under the GNT model. In this section we show how to use those methods to estimate
evolutionary distances under the GNT model.

Recall the discussion in the overview section, in which we described the basic
technique for estimating evolutionary distances. We assumed we had a method for
estimating the expected breakpoint distance produced by a sequence of k random
events in the GNT model (denoted by E[dBP (G,Gk)]) and that we knew the param-
eters of the model (i.e., the triplet (wI , wT , wIT)). Our technique was as follows:

• Compute the breakpoint distance y = dBP (G,G′) between G and G′.
• Return the integer k that minimizes |E[dBP (G,Gk)] − y|.

118 LI-SAN WANG AND TANDY WARNOW

T
a
b
l
e

2

R
ecu

rren
ce

pa
ra

m
eters

a
n
d

erro
r

bo
u
n
d
s

fo
r

th
e

G
N

T
m

od
el.

T
h
e

p
ro

ba
bilities

th
a
t
a

rea
rra

n
gem

en
t
is

a
n

in
versio

n
,
a

tra
n
spo

sitio
n
,
o
r

a
n

in
verted

tra
n
spo

sitio
n

a
re

1
−

w
T
−

w
I
T
,
w

T
,
a
n
d
w

I
T
,
respectively

,
fo

r
lin

ea
r

(L
in

)
o
r

circu
la

r
(C

ir)
ch

ro
m

o
so

m
es.

F
o
r

circu
la

r
ch

ro
m

o
so

m
es,

th
e

pa
ra

m
eters

s(n
),

u
m

in
(n

),
a
n
d
u
m

a
x
(n

)
a
gree

w
ith

th
o
se

fo
r
i
=

1
,...,n

−
1
,
a
n
d
B

0
(G

)
=

0
fo

r
a
ll

ch
ro

m
o
so

m
es

G
.

S
ig

n
ed

C
h
r.

s(i)
(1

≤
i≤

n
−

1
)

u
m

in
(i)

(1
≤

i≤
n
−

1
)

u
m

a
x
(i)

(1
≤

i≤
n
−

1
)

N
o

L
in

2
(n

−
2
)+

w
T

(n
−

2
)+

w
I
T

(n
−

5
)

n
(n

−
1
)

2
(2

n
−

4
)+

2
w

T
(n

−
2
)+

2
w

I
T

(n
+

1
)

n
(n

−
1
)(n

−
2
)

2
(2

n
−

4
)+

2
w

T
(n

−
2
)+

2
w

I
T

(n
+

1
)

n
(n

−
1
)(n

−
2
)

Y
es

L
in

2
+
w

T
+
w

I
T

n
+

1
0

2
(n

−
1
)+

4
w

T
(n

−
1
)+

w
I
T

(n
+

2
)

(n
+

1
)n

(n
−

1
)

N
o

C
ir

2
(n

−
3
)+

w
T

(n
−

3
)+

w
I
T
n

(n
−

1
)(n

−
2
)

4
(n

−
3
)+

2
w

T
(n

−
3
)+

2
w

I
T
n

(n
−

1
)(n

−
2
)(n

−
3
)

4
(n

−
3
)+

2
w

T
(n

−
3
)+

2
w

I
T
n

(n
−

1
)(n

−
2
)(n

−
3
)

Y
es

C
ir

2
+
w

T
+
w

I
T

n
0

2
(n

−
2
)+

4
w

T
(n

−
2
)+

2
w

I
T
n

n
(n

−
1
)(n

−
2
)

S
ig

n
ed

C
h
r.

s(0
),s(n

)
u
m

in
(0

),u
m

in
(n

)
u
m

a
x
(n

),u
m

a
x
(n

)

N
o

L
in

2
(n

+
1
)+

w
T

(n
−

2
)+

w
I
T

(n
+

1
)

n
(n

+
1
)

2
(n

+
1
)(n

−
2
)−

2
w

T
(n

−
2
)
2−

w
I
T

(n
+

1
)(2

n
−

7
)

(n
+

1
)n

(n
−

1
)(n

−
2
)

2
(n

+
1
)+

4
w

T
(n

−
2
)+

4
w

I
T

(n
+

1
)

(n
+

1
)n

(n
−

1
)

Y
es

L
in

2
+
w

T
+
w

I
T

n
+

1
0

2
+

4
w

T
+
w

I
T

n
(n

+
1
)

S
ig

n
C

h
r.

A
b
so

lu
te

erro
r

b
o
u
n
d

= ∑
ni=

0

u
m

a
x
(i)−

u
m

i
n
(i)

2
s
(i)

R
ela

tiv
e

erro
r

u
p
p
er

b
o
u
n
d
†

= ∑
ni
=

0
P

Hi
,k

∑
ni
=

0
P

Li
,k

N
o

L
in

6
w

T
+
w

I
T (

2
+

9
(
n
−

1
)

(
n
−

2
)
2)

(n
−

1
) (

2
+
w

T
+
w

I
T

+
3
(
1
+

w
I
T

)

n
−

2

)
≤

2
n
−

1
1

+
O

(n
−

2
)

Y
es

L
in

12
+

3
w

T
2
(2

+
w

T
+
w

I
T

)
+

1n (
2
−

3
2
+
w

T
+
w

I
T)

≤
1

+
1n

1
+

2
+

4
w

T
+
w

I
T

2
+
w

T
+
w

I
T

n
−

1
+

O
(n

−
2
)

N
o

C
ir

0
1

Y
es

C
ir

(
1

+
3
w

T
+
w

I
T (

n
+

2
n
−

2)
2
+
w

T
+
w

I
T

)(
n

2
(n

−
1
))

≤
1

+
1

n
−

1
1

+
2
+

4
w

T
+

2
w

I
T

2
+
w

T
+
w

I
T

n
−

1
+

O
(n

−
2
)

†
S
ee

T
h
eo

rem
s

7
a
n
d

9
fo

r
d
eta

ils.
O

n
ly

th
e

u
p
p
er

b
o
u
n
d
s

a
re

sh
o
w

n
h
ere;

th
e

lo
w

er
b
o
u
n
d
s

a
re

th
eir

recip
ro

ca
ls.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 119

In the previous two sections we presented methods (one exact and one approxi-
mate) for estimating the expected breakpoint distance produced by k random events
under the GNT (wI , wT , wIT) model. Thus, each of these methods can be used in
this general technique to estimate evolutionary distances under the GNT model.
Since each involves inverting an expected breakpoint distance, we call these methods
Exact-IEBP and Approx-IEBP. However, in order to precisely define these methods
and compute their running time, we need to answer the following questions:

• For which values of k will we compute E[dBP (G,Gk)] (the expected break-
point distance produced by k random events under the GNT model)?

• Given a set of these expected breakpoint distances, how do we find k mini-
mizing |E[dBP (G,Gk)] − y|?

We present the answers to these questions in this section. These answers will then let
us prove our main theorem (Theorem 12), which shows that we can compute the pair-
wise Exact-IEBP distances of m circular chromosomes in O(m2n+min{m2, n} log n+
n3 log n) time, and O(m2n+min{m2, n} log n+n5 log n) time if the chromosomes are
linear, and we can compute the Approx-IEBP distances of all

(
m
2

)
pairs of chromosomes

in O(m2n + min{m2, n} log n time for both linear and circular chromosomes. Thus,
the Approx-IEBP method is much faster than the Exact-IEBP method for typical val-
ues of n and m that would be encountered in practice (where n
 m is likely). Since
we will also establish that Approx-IEBP provides highly accurate estimates of evolu-
tionary distances, and that phylogenies obtained using Approx-IEBP are comparable
to phylogenies obtained using Exact-IEBP, Approx-IEBP is a competitive technique.

6.1. Fast mixing of the GNT model. Both the Exact-IEBP and the Approx-
IEBP algorithms require a finite upper limit to the number of actual rearrangements
allowed to occur on the chromosome. However, distance-based phylogeny reconstruc-
tion methods require finite entries in distance matrices, and so we need some upper
bound on the estimated true evolutionary distance. This means we need only to com-
pute Fi for all i up to the smallest k such that E[dBP (G0, G∞)] − Fk = o(1). Since
the approximate expected breakpoint distance Fk in Approx-IEBP has absolute error
O(1), the upper limit for Approx-IEBP should be sufficient for Exact-IEBP as well.

Intuitively, the following question provides us with a reasonable upper limit: what
is the number of rearrangements required for the resulting chromosome to be almost
random? The answer was shown, for the inversion-only scenario, to be Θ(n lnn) in
[7].

Theorem 10 (see [7]). Assume we apply k random inversions to the linear
unrearranged chromosome with n genes, (1, 2, . . . , n). Let Pk be the distribution of
linear gene orders after k random inversions, and let Jn = 2nn! be the number of
distinct linear gene orders with n genes. Let Dk = maxG |Pk(G) − 1

Jn
| be the total

variational distance between Pk and the uniform distribution of gene orders. Then
1. if c < 1/2, then limn→∞ Dcn lnn = 1;
2. if c > 2, then limn→∞ Dcn lnn = 0.

The result above is applicable only to the inversion-only scenario. Using results
in the derivation for Approx-IEBP, we show in Theorem 11 that the upper limit our
algorithms need is smaller than 2n lnn: when k = 1

2+wT +wIT
n lnn, the expected

breakpoint distance is already “saturated,” in the sense the expected breakpoint dis-
tance reaches its maximum value.

We assume the chromosomes are signed and circular, and we fix (wI , wT , wIT);
then s, umin, umax, PL

k , and PH
k all are independent of the position of breakpoints.

We set F∞ = limk→∞ Fk. (More generally, given a definition for Xk, we set X∞ =

120 LI-SAN WANG AND TANDY WARNOW

limk→∞ Xk.)
Lemma 4.

1. F∞ = n(1 − umax
2(s + umax)

).

2. Let c = v
2+wT +wIT

lnn (v > 1). Then PH
cn ≥ 1 − 1

nv .

3. Let c = v
3+wT +wIT

lnn (v > 1). Then PL
cn ≥ (1 − umax

s+umax
)(1 − 1

n).
Proof.
1. We have

s =
2 + wT + wIT

n
,

umin = 0,

umax =
2(n− 2) + 4wT (n− 2) + 2wITn

n(n− 1)(n− 2)
.

Since

PH
k = s

1 − (1 − s− umin)k

1 − (1 − s− umin)
,

PL
k = s

1 − (1 − s− umax)k

1 − (1 − s− umax)
.

We have

PH
∞ = s

1

1 − (1 − s− umin)
=

s

s + umin
= 1,

PL
∞ = s

1

1 − (1 − s− umax)
=

s

s + umax

⇒ F∞ =
n

2

(
PH
∞ + PL

∞
)

=
n

2

(
2s + umax

s + umax

)

= n

(
1 − umax

2(s + umax)

)
.

2.

PH
cn = 1 − (1 − s)cn

≥ 1 − exp(−c(2 + wT + wIT))

= 1 − 1

nv
.

3. We have

umax =
2(n− 2) + 4wT (n− 2) + 2wITn

n(n− 1)(n− 2)
≤ 2 + 4wT + 2wIT

n(n− 2)
≤ 6

n(n− 2)
,

s + umax =
2(n− 2) + 4wT (n− 2) + 2wITn

n(n− 1)(n− 2)
+

2 + wT + wIT

n
≤ 3 + wT + wIT

n
.

So

(1 − (s + umax))cn ≤ exp(−cn(s + umax)) ≤ exp(−c(3 + wT + wIT)).

RECONSTRUCTING CHROMOSOMAL EVOLUTION 121

The lemma follows:

PL
cn =

s

s + umax
(1 − (1 − s− umax)cn)

≥ s

s + umax
(1 − exp(−cn(s + umax)))

≥
(

1 − umax

s + umax

)
(1 − exp(−cn(s + umax)))

≥
(

1 − umax

s + umax

)
(1 − exp(−c(3 + wT + wIT)))

=

(
1 − umax

s + umax

)(
1 − 1

nv

)
.

Theorem 11. Let k = vn
2+wT +wIT

lnn (v > 1). Then F∞ −Fcn ≤ n1−v.
Proof.

Fk =
n

2
(PL

k + PH
k)

≥ n

2

(
1 − 1

nv
+

(
1 − umax

s + umax

)(
1 − 1

nv

))

=
n

2

(
1 − 1

nv

)(
2 − umax

s + umax

)

=

(
n− 1

nv−1

)(
1 − umax

2(s + umax)

)

⇒ F∞ −Fk ≤ 1

nv−1

(
1 − umax

2(s + umax)

)
≤ n1−v.

6.2. Running time analysis. We prove the following result regarding the run-
ning time.

Theorem 12. Let S be a set of m chromosomes, each on the same set of n
genes, with each gene appearing once in each chromosome. If each chromosome in
S is circular, then we can compute the Exact-IEBP distance matrix in O(m2n +
min{m2, n} log n + n3 log n) time; if the chromosomes in S are each linear, then the
Exact-IEBP distance matrix can be computed in O(m2n+min{m2, n} log n+n5 log n)
time. For both linear and circular chromosomes, we can compute the Approx-IEBP

distance matrix in O(m2n + min{m2, n} log n) time.
Proof. As shown in Theorem 11, we can assume that no more than r = vn lnn

rearrangements occur in the evolutionary history. We will use this as an upper limit for
the maximum number of rearrangement events, in order to obtain a faster algorithm
for Exact-IEBP and Approx-IEBP.

We begin by deriving the running time for Approx-IEBP. For each pair of chro-
mosomes we compute the breakpoint distance; this takes O(m2n) time. For each of
the

(
m
2

)
breakpoint distances that appears (of which there are at most O(min{m2, n})

distinct ones) we will need to compute the Approx-IEBP distance; this, we will show,
can be done in O(min{m2, n} log n) time, yielding the desired result. Recall that Fk is
the approximation of the expected breakpoint distance produced by k random events
in the GNT model. For each k, the value k that minimizes |Fk − dBP (G,Gk)| can be
found in O(log r) = O(log n) time using the binary search method; whenever a new
Fk is required in the binary search, we compute it, which takes constant time.

122 LI-SAN WANG AND TANDY WARNOW

To compute the Exact-IEBP distance matrix, we begin as with Approx-IEBP, by
computing all pairwise breakpoint distances. We then compute the table of expected
breakpoint distances after k events for every k between 1 and r. To do this, we
compute Mx, M2x = M(Mx), up to Mrx, where M is the transition matrix and x is
the distribution vector for G0, the unrearranged chromosome. Then, for k = 1 to r,
we compute E[dBP (G0, Gk)] from Mkx in O(1) time for each k. So the running time
for building the table is dominated by r matrix-vector multiplications, which takes
O(rn2) time for circular chromosomes and O((r+n)n4) = O(n5 log n) time for linear
chromosomes. The table allows us to perform binary search in O(log n) time for each
distinct breakpoint distance.

7. Experiments. We studied four distance estimators with respect to estimat-
ing the evolutionary distances and with respect to their impact on phylogeny recon-
struction. The four distance estimators we studied are

1. BP, the breakpoint distance between two chromosomes,
2. INV, the minimum number of inversions needed to transform one chromosome

into another,
3. Approx-IEBP, and
4. Exact-IEBP.

7.1. Software. We use PAUP* 4.0 [27] to compute the neighbor joining (NJ)
method and the topological error rate of the computed trees. We implemented a
simulator [6] for the GNT model. The input consists of a rooted leaf-labeled tree
and the associated parameters (i.e., edge lengths and the relative probabilities of in-
versions, transpositions, and inverted transpositions). On each edge, the simulator
applies random rearrangement events to the circular chromosome at the ancestral
node according to the model with given parameters wT and wIT . We use tgen [11]
to generate random trees. These trees have topologies drawn from the uniform dis-
tribution, and edge lengths drawn from the discrete uniform distribution on intervals
[a, b], where we specify a and b.

7.2. Accuracy of the estimators. In this section we study the behavior of the
Exact-IEBP and Approx-IEBP distances by comparing each to the actual number of
rearrangement events. We simulate the GNT model on a circular chromosome with
37 genes (the typical number of genes in the animal mitochondrial chromosomes [4])
and 120 genes (the typical number of genes in the plant chloroplast chromosomes
[13]). Starting with the unrearranged chromosome G0, we apply k events to it to
obtain the chromosome Gk for k = 1, . . . , 300 when the number of genes is 120 and
k = 1, . . . , 100 when the number of genes is 37. For each value of k we simulate 500
runs. We then compute the four distances.

The simulation results are shown in Figures 3 and 4 for inversion-only evolution
and Figure 5 when all three types of events are equiprobable. Note that both BP

and INV distances underestimate the actual number of events (except for very small
numbers of events) under all conditions. Note also that the error increases more
rapidly with the number of events, when the model allows transpositions and inverted
transpositions. When the number of genes increases, the standard deviations of both
methods decrease. By contrast, Approx-IEBP and Exact-IEBP provide much better
estimates of the true evolutionary distances.

We then compute the absolute error (that is, the difference between the measured
distance and the actual number of events) for each of the distance estimators. Using

RECONSTRUCTING CHROMOSOMAL EVOLUTION 123

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Breakpoint Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Inversion Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(a) (b)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Approx−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Exact−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(c) (d)

Fig. 3. Accuracy of the estimators (see section 7.2). The number of genes is 37 (the typical
value for mitochondrial chromosomes). Each plot is a comparison between some distance measures
and the actual number of rearrangements. The evolutionary model is inversion-only. The x-axis is
divided into 25 bins; the length of the vertical bars indicate the standard deviation. The distance
estimators are (a) BP, (b) INV, (c) Approx-IEBP, and (d) Exact-IEBP.

the same data in the previous experiment, we generate the plots as follows. The x-axis
is the actual number of events. For each distance estimator D we plot the curve fD,
where fD(x) is the mean of the set {| 1cD(G0, Gk)−k| : 1 ≤ k ≤ x} over all observations
Gk, where we pick a constant c for each distance estimator in order to reduce the
bias. Thus, for example, we use c = 1 for the Approx-IEBP and the Exact-IEBP

distances since they estimate the actual number of events. For the BP distance we
let c = 2(1 − wT − wIT) + 3(wT + wIT) = 2 + wT + wIT since this is the expected
number of breakpoints created by each event in the model when the number of events
is very low. Similarly for the INV distance we let c = (1−wT −wIT)+3wT +2wIT =
1 + 2wT +wIT since each transposition can be replaced by three inversions, and each
inverted transposition can be replaced by two inversions.

The result is in Figure 6. We consistently observe that Exact-IEBP is the best, and
that INV and BP are the worst, and the difference between Exact-IEBP and BP or INV

124 LI-SAN WANG AND TANDY WARNOW

0 50 100 150 200
0

50

100

150

200

Breakpoint Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 50 100 150 200
0

50

100

150

200

Inversion Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(a) (b)

0 50 100 150 200
0

50

100

150

200

Approx−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 50 100 150 200
0

50

100

150

200

Exact−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(c) (d)

Fig. 4. Accuracy of the estimators (see section 7.2). The number of genes is 120 (the typical
value for chloroplast chromosomes). Each plot is a comparison between some distance measures
and the actual number of rearrangements. The evolutionary model is inversion-only. The x-axis is
divided into 25 bins; the length of the vertical bars indicate the standard deviation. The distance
estimators are (a) BP, (b) INV, (c) Approx-IEBP, and (d) Exact-IEBP.

is significant. The relative performance of Approx-IEBP is variable; in most cases it
is a close second to Exact-IEBP (in most cases they are essentially indistinguishable),
but in one case (transposition-only evolution on 37 genes) it is actually worse than all
the methods for large numbers of events. Note also that all methods get worse with
increasing numbers of events—accuracy is greatest for the smallest distances, with
error increasing as the number of events increases.

7.3. Accuracy of NJ using different estimators. Based upon the relative
performance of the distance estimators with respect to estimating true evolutionary
distances, we would conjecture that phylogenies constructed using either Approx-IEBP
or Exact-IEBP would be better than phylogenies constructed using either BP or INV

and that, in general, phylogenies constructed using Exact-IEBP would be better than
those constructed using Approx-IEBP. In this section we evaluate this conjecture. See
Table 3 for the settings for the experiment.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 125

0 50 100 150 200
0

50

100

150

200

Breakpoint Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 50 100 150 200
0

50

100

150

200

Inversion Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(a) (b)

0 50 100 150 200
0

50

100

150

200

Approx−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

0 50 100 150 200
0

50

100

150

200

Exact−IEBP Distance

A
ct

ua
l n

um
be

r
of

 e
ve

nt
s

(c) (d)

Fig. 5. Accuracy of the estimators (see section 7.2). The number of genes is 120 (the typical
value for chloroplast chromosomes). Each plot is a comparison between some distance measures
and the actual number of rearrangements. The evolutionary model is such that the three types of
rearrangement events are equiprobable (wI = wT = wIT = 1/3). The x-axis is divided into 25 bins;
the length of the vertical bars indicate the standard deviation. The distance estimators are (a) BP,
(b) INV, (c) Approx-IEBP, and (d) Exact-IEBP.

Table 3

Settings for the NJ performance simulation study.

Parameter Value
1. Number of genes 37, 120
2. Number of leaves 160
3. Expected number of Discrete uniform within the following intervals:

rearrangements in each edge [1,3], [1,5], [1,10], [3,5], [3,10], and [5,10]
4. Probability settings: (1,0,0) (Inversion only)

(wI , wT , wIT)† (0, 1, 0) (Transposition only)
(1
3
, 1
3
, 1
3
) (The three rearrangement classes are equally likely)

5. Datasets for each setting 100

† The probabilities that a rearrangement is an inversion, a transposition, or an inverted
transposition are 1 − wT − wIT , wT , and wIT , respectively.

126 LI-SAN WANG AND TANDY WARNOW

37 genes 120 genes
Inversions only

0 20 40 60 80 100
0

20

40

60

80

100

Actual number of events

A
bs

ol
ut

e
di

ffe
re

nc
e

BP
INV
Approx−IEBP
Exact−IEBP

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Actual number of events
A

bs
ol

ut
e

di
ffe

re
nc

e

BP
INV
Approx−IEBP
Exact−IEBP

(a) (d)
Transpositions only

0 20 40 60 80 100
0

20

40

60

80

100

Actual number of events

A
bs

ol
ut

e
di

ffe
re

nc
e

BP
INV
Approx−IEBP
Exact−IEBP

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Actual number of events

A
bs

ol
ut

e
di

ffe
re

nc
e

BP
INV
Approx−IEBP
Exact−IEBP

(b) (e)
Three types of events

0 20 40 60 80 100
0

20

40

60

80

100

Actual number of events

A
bs

ol
ut

e
di

ffe
re

nc
e

BP
INV
Approx−IEBP
Exact−IEBP

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Actual number of events

A
bs

ol
ut

e
di

ffe
re

nc
e

BP
INV
Approx−IEBP
Exact−IEBP

(c) (f)

Fig. 6. Accuracy of the estimators by absolute difference (see section 7.2 for the details). We
simulate the evolution on 37 and 120 genes.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 127

We begin by defining the criteria by which we will evaluate the accuracy of the
reconstructed trees.

Topological accuracy. During the evolutionary process, some edges of the model
tree may have no changes (i.e., evolutionary events) on them. Since reconstructing
such edges is at best guesswork, we are not interested in these edges. Hence, we define
the “true tree” to be the tree that is obtained by contracting the edges in the model
tree on which there are no changes [9, 16].

We now define how we score an inferred tree, by comparison to the true tree.
Note that both trees are on the same set of leaves.

Let T be any tree on the set S of taxa, and let e be an edge in T . The removal
of e (but not its endpoints) from T produces a bipartition πe on the leaf set S. The
set C(T) = {πe : e ∈ E(T)} is called the “character encoding” of T , and it uniquely
identifies T (up to nodes of degree two). Now suppose that T0 is the true tree and T1

is the inferred tree. The missing edges are the edges in T0 which do not correspond
to bipartitions in C(T1); these are also referred to as false negatives. Note that the
external edges (i.e., edges incident to a leaf) are trivial in the sense that they are
present in every tree with the same set of leaves. Thus, the false negative rate is the
number of false negatives, divided by the number of internal edges in T0 (that set of
internal edges is denoted by EI(T0)). In other words, the false negative rate is

FN(T0, T1) =
|C(T0) − C(T1)|

|EI(T0)|
.

Experimental setting. For each setting of the parameters (number of leaves, prob-
abilities of rearrangements, and edge lengths), we generate 100 datasets of chromo-
somes as follows. First, we generate a random leaf-labeled tree (from the uniform
distribution on topologies). The leaf-labeled tree and the parameter settings thus
define a model tree in the GNT model. We run the simulator on the model tree and
produce a set of chromosomes at the leaves.

For each set of chromosomes, we compute the four distances. We then compute
NJ trees on each of the four distance matrices and compare the resultant trees to the
true tree. The results of this experiment are in Figure 7. Distance matrices with some
normalized edit distances equal to 1 are said to be “saturated”; it is well known that
it is very difficult to obtain highly accurate phylogenies from datasets whose distance
matrices are close to being saturated [12]. For this reason, we study the impact of
the largest distance in the matrix on the accuracy of the phylogeny reconstructed
for the data. Therefore, we bin the datasets according to their maximum distance,
and we let the x-axis be the maximum normalized inversion distance (as computed
by the linear time algorithm for minimum inversion distances given in [2]) between
any two chromosomes in the input. The y-axis is the false negative rate (i.e., the
proportion of missing edges) of the computed tree. False negative rates of less than
5% are excellent, but false negative rates of up to 10% can be tolerated.

We use NJ(D) to denote the tree returned by NJ using distance D; thus we have
NJ(BP), NJ(INV), NJ(Approx-IEBP), and NJ(Exact-IEBP).

Observations. We begin with some general observations. First, under all condi-
tions (number of genes and evolutionary model), for each of the distance estimator
techniques, the topological error of the NJ trees increases with the diameter of the
dataset; this is consistent with the observation made earlier that errors in estimating
distances increase with the number of events. Second, independent largely of the
evolutionary model and the distance estimator, trees reconstructed on 120 genes are

128 LI-SAN WANG AND TANDY WARNOW

37 genes 120 genes
Inversions only

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance

N
or

m
al

iz
ed

 F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance
N

or
m

al
iz

ed
 F

al
se

 N
eg

at
iv

e
R

at
e

(%
)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

(a) (d)
Transpositions only

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance

N
or

m
al

iz
ed

 F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance

N
or

m
al

iz
ed

 F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

(b) (e)
Three types of events

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance

N
or

m
al

iz
ed

 F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Normalized Max. Pairwise Inv. Distance

N
or

m
al

iz
ed

 F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(BP)
NJ(INV)
NJ(Approx−IEBP)
NJ(Exact−IEBP)

(c) (f)

Fig. 7. NJ performance under several distances (see section 7.3). See Table 3 for the settings
in the experiment.

RECONSTRUCTING CHROMOSOMAL EVOLUTION 129

more accurate than trees reconstructed on 37 genes, once the diameter is fixed (this
observation fails only for high diameter datasets analyzed using BP). Also, NJ(BP)
provides the worst trees, and (except for inversion-only evolution, as we will discuss
below) NJ(Exact-IEBP) provides the best trees.

Trends specific to the number of genes, or the model of evolution, are as follows.
First, inversion-only evolution is generally most accurately reconstructed using INV

distances, rather than our new estimators; however, once the diameter of the dataset
is large enough, our new estimators provide better phylogenies than INV. On datasets
with 120 genes, there is very little difference between Exact-IEBP and Approx-IEBP,
and both (except for very low diameter datasets) produce significantly better trees
than BP or INV.

7.4. Robustness to unknown model parameters. In this section we con-
sider the problem where the model parameters (wI , wT , wIT) are unknown when using
Exact-IEBP and Approx-IEBP, as will in general be the case in any real data analysis.
Though it may be possible to estimate these parameters from the data, we will ap-
proach the problem here by assuming that the parameters are simply incorrectly spec-
ified: thus, the data evolve under one model (perhaps inversion-only), but distances
are estimated under the assumption of another model (perhaps transposition-only).
We will examine the consequences of these incorrect assumptions on the phylogenies
reconstructed using these distances.

We explore this question for NJ(Exact-IEBP) in Figure 8; for the study of
NJ(Approx-IEBP), see [28], which shows comparable robustness. The settings are
given in Table 3. The experiment is similar to the previous experiment, except here
we use both the correct and the incorrect values of (wI , wT , wIT) for the Exact-IEBP

distance. Note that all the constructed trees, whether using correct or highly incor-
rect model parameters, are indistinguishable with respect to topological error, showing
that NJ(Exact-IEBP) is highly robust against errors in (wI , wT , wIT).

8. Extension to other models. Approx-IEBP is applicable to rearrangement
models that are more general than the GNT model, as long as the probability a
rearrangement occurs depends on the rearrangement itself but not on the chromosome
it acts upon.

For example, Pinter and Skiena proposed an inversion-only stochastic model of
chromosomal evolution in [22] which assumes that the probability of an inversion
depends only on its length (the number of genes being inverted) and that any two
inversions with the same length are equiprobable. Our method can be used to estimate
true evolutionary distances under this model, since this model is a mixture where we
put all inversions of the same length into the same class.

9. Conclusion. We presented two polynomial time algorithms, Exact-IEBP and
Approx-IEBP, for estimating the actual number of rearrangements that have taken
place in the evolutionary history between two chromosomes that have evolved under
the GNT model. Exact-IEBP uses exact estimates of the expected breakpoint distance
under the GNT model, while Approx-IEBP uses approximate estimates but can be eas-
ily applied to more general models and is much faster. Thus, these techniques provide
the only general purpose polynomial time methods for computing evolutionary dis-
tances between chromosomes that have evolved under inversions, transpositions, and
inverted transpositions. We demonstrated the impact of these tools on phylogenetic
reconstruction through the simulation study we presented, showing that many more

130 LI-SAN WANG AND TANDY WARNOW

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(Exact−IEBP(1,0,0))
NJ(Exact−IEBP(0,1,0))
NJ(Exact−IEBP(1/3,1/3,1/3))

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(Exact−IEBP(1,0,0))
NJ(Exact−IEBP(0,1,0))
NJ(Exact−IEBP(1/3,1/3,1/3))

(a) Inversions only (b) Transpositions only

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Normalized Maximum Pairwise Inversion Distance

F
al

se
 N

eg
at

iv
e

R
at

e
(%

)

NJ(Exact−IEBP(1,0,0))
NJ(Exact−IEBP(0,1,0))
NJ(Exact−IEBP(1/3,1/3,1/3))

(c) Three types of events equally likely

Fig. 8. Robustness of the Exact-IEBP method to incorrectly specified parameters (see sec-
tion 7.4). See Table 3 for the settings in the experiment. The three values in the legend are the wI ,
wT , and wIT values used in the Exact-IEBP method, where wI , wT , and wIT are the probabilities
that a rearrangement event is an inversion, a transposition, or an inverted transposition.

accurate trees can be reconstructed using these two estimators than using previously
defined estimators, including the polynomial time inversion or breakpoint distances.

REFERENCES

[1] K. Atteson, The performance of the neighbor-joining methods of phylogenetic reconstruction,
Algorithmica, 25 (1999), pp. 251–278.

[2] D. A. Bader, B. M. E. Moret, and M. Yan, A linear-time algorithm for computing inversion
distance between two signed permutations with an experimental study, J. Comp. Biol., 8
(2001), pp. 251–278.

[3] M. Blanchette, G. Bourque, and D. Sankoff, Breakpoint phylogenies, in Genome Infor-
matics, S. Miyano and T. Takagi, eds., Universal Academy Press, Tokyo, Japan, 1997,
pp. 25–34.

[4] M. Blanchette, M. Kunisawa, and D. Sankoff, Gene order breakpoint evidence in animal
mitochondrial phylogeny, J. Mol. Evol., 49 (1999), pp. 193–203.

[5] A. Caprara and G. Lancia, Experimental and statistical analysis of sorting by reversals, in
Comparative Genomics, D. Sankoff and J. H. Nadeau, eds., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000, pp. 171–184.

[6] M. E. Cosner, R. K. Jansen, B. M. E. Moret, L. A. Raubeson, L.-S. Wang, T. Warnow,

and S. Wyman, A new fast heuristic for computing the breakpoint phylogeny and a phylo-

RECONSTRUCTING CHROMOSOMAL EVOLUTION 131

genetic analysis of a group of highly rearranged chloroplast genomes, in Proceedings of the
8th International Conference on Intelligent Systems for Molecular Biology (ISMB 2000),
AAAI Press, Menlo Park, CA, 2000, pp. 104–115.

[7] R. Durrett, Genome Rearrangement: Recent Progress and Open Problems, 2003, http://
www.math.cornell.edu/∼durrett/FGR/.

[8] P. L. Erdos, M. Steel, L. Szekely, and T. Warnow, A few logs suffice to build almost all
trees—I. Random Structures Algorithms, 14 (1999), pp. 153–184.

[9] O. Gascuel, private communication, 2001.
[10] S. Hannenhalli and P. Pevzner, Transforming cabbage into turnip (polynomial algorithm

for genomic distance problems), in Proceedings of the 27th Annual ACM Symposium on
Theory of Computing (STOC95), 1995, pp. 178–189.

[11] D. Huson, private communication, 1999.
[12] D. Huson, S. Nettles, K. Rice, T. Warnow, and S. Yooseph, Hybrid tree reconstruction

methods, ACM J. Experimental Algorithmics, 4 (1999), article 5.
[13] R. K. Jansen, private communication, 2000.
[14] H. Kaplan, R. Shamir, and R. E. Tarjan, Faster and simpler algorithm for sorting signed

permutations by reversals, in Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA97), 1997, pp. 344–351.

[15] J. Kim and T. Warnow, Tutorial on Phylogenetic Tree Estimation, 1999, http://kim.bio.
upenn.edu/∼jkim/media/ISMBtutorial.pdf.

[16] S. Kumar, Minimum evolution trees, Mol. Biol. Evol., 15 (1996), pp. 584–593.
[17] W.-H. Li, Molecular Evolution, Sinauer Associates, Sunderland, MA, 1997.
[18] J. H. Nadeau and B. A. Taylor, Lengths of chromosome segments conserved since divergence

of man and mouse, Proc. Natl. Acad. Sci. U.S.A., 81 (1984), pp. 814–818.
[19] L. Nakhleh, B. M. E. Moret, U. Roshan, K. St. John, J. Sun, and T. Warnow, The

accuracy of fast phylogenetic methods for large datasets, in Proceedings of the 7th Pacific
Symposium on BioComputing (PSB02), 2002, pp. 211–222.

[20] R. G. Olmstead and J. D. Palmer, Chloroplast DNA systematics: A review of methods and
data analysis, Amer. J. Bot., 81 (1994), pp. 1205–1224.

[21] J. D. Palmer, Chloroplast and mitochondrial genome evolution in land plants, in Cell Or-
ganelles, R. Herrmann, ed., Springer-Verlag, Wein, 1992, pp. 99–133.

[22] R. Y. Pinter and S. Skiena, Genomic sorting with length-weighted reversals, Genome Infor-
matics, 13 (2002), pp. 103–111.

[23] L. A. Raubeson and R. K. Jansen, Chloroplast DNA evidence on the ancient evolutionary
split in vascular land plants, Science, 255 (1992), pp. 1697–1699.

[24] A. Rokas and P. W. H. Holland, Rare genomic changes as a tool for phylogenetics, Trends
in Ecology and Evolution, 15 (2000), pp. 454–459.

[25] N. Saitou and M. Nei, The neighbor-joining method: A new method for reconstructing phy-
logenetic trees, Mol. Biol. Evol., 4 (1987), pp. 406–425.

[26] D. Sankoff and M. Blanchette, Probability models for genome rearrangements and linear
invariants for phylogenetic inference, in Proceedings of the 3rd International Conference
on Computational Molecular Biology (RECOMB99), 1999, pp. 302–309.

[27] D. Swofford, PAUP* 4.0, Sinauer Associates, Sunderland, MA, 2001.
[28] L.-S. Wang and T. Warnow, Estimating true evolutionary distances between genomes, in

Proceedings of the 33th Annual ACM Symposium on Theory of Computing (STOC 2001),
2001, pp. 637–646.

[29] M. Waterman, T. F. Smith, M. Singh, and W. A. Beyer, Additive evolutionary trees, J.
Theoret. Biol., 64 (1977), pp. 199–213.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 132–157

FAST MONTE CARLO ALGORITHMS FOR MATRICES I:
APPROXIMATING MATRIX MULTIPLICATION∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. Motivated by applications in which the data may be formulated as a matrix, we
consider algorithms for several common linear algebra problems. These algorithms make more effi-
cient use of computational resources, such as the computation time, random access memory (RAM),
and the number of passes over the data, than do previously known algorithms for these problems.
In this paper, we devise two algorithms for the matrix multiplication problem. Suppose A and B
(which are m × n and n × p, respectively) are the two input matrices. In our main algorithm, we
perform c independent trials, where in each trial we randomly sample an element of {1, 2, . . . , n} with
an appropriate probability distribution P on {1, 2, . . . , n}. We form an m × c matrix C consisting
of the sampled columns of A, each scaled appropriately, and we form a c × n matrix R using the
corresponding rows of B, again scaled appropriately. The choice of P and the column and row scaling
are crucial features of the algorithm. When these are chosen judiciously, we show that CR is a good
approximation to AB. More precisely, we show that

‖AB − CR‖F = O(‖A‖F ‖B‖F /
√
c),

where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2
F =

∑
i,j

A2
ij . This algorithm can be implemented

without storing the matrices A and B in RAM, provided it can make two passes over the matrices
stored in external memory and use O(c(m+n+p)) additional RAM to construct C and R. We then
present a second matrix multiplication algorithm which is similar in spirit to our main algorithm.
In addition, we present a model (the pass-efficient model) in which the efficiency of these and other
approximate matrix algorithms may be studied and which we argue is well suited to many applications
involving massive data sets. In this model, the scarce computational resources are the number of
passes over the data and the additional space and time required by the algorithm. The input matrices
may be presented in any order of the entries (and not just row or column order), as is the case in
many applications where, e.g., the data has been written in by multiple agents. In addition, the input
matrices may be presented in a sparse representation, where only the nonzero entries are written.

Key words. randomized algorithms, Monte Carlo methods, massive data sets, streaming mod-
els, matrix multiplication

AMS subject classification. 68W20

DOI. 10.1137/S0097539704442684

1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. Examples
of such computations include matrix multiplication, the computation of the singular
value decomposition of a matrix, and the computation of compressed approximate
decompositions of a matrix. In this paper, we present a computational model for
computing on massive data sets (the pass-efficient model) in which our algorithms

∗Received by the editors April 5, 2004; accepted for publication (in revised form) November 17,
2005; published electronically May 26, 2006. The technical report version of this paper appeared as
Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication, by P. Drineas,
R. Kannan, and M. W. Mahoney [13]. A preliminary version of this paper, including the main
algorithm and main theorem of section 4, appeared as Fast Monte-Carlo algorithms for approximate
matrix multiplication, by P. Drineas and R. Kannan, in Proceedings of the 42nd Annual Symposium
on Foundations of Computer Science, 2001, pp. 452–459.

http://www.siam.org/journals/sicomp/36-1/44268.html
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (drinep@cs.

rpi.edu).
‡Department of Computer Science, Yale University, New Haven, CT 06520 (kannan@cs.yale.edu).

This author was supported in part by a grant from the NSF.
§Department of Mathematics, Yale University, New Haven, CT 06520 (mahoney@cs.yale.edu).

132

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 133

may naturally be formulated; we also present two algorithms for the approximation
of the product of two matrices. In a second paper we present two algorithms for the
computation of low-rank approximations to a matrix [11]. Finally, in a third paper
we present two algorithms to compute a compressed approximate decomposition to
a matrix that has several appealing properties [12]. We expect our algorithms to
be useful in many applications where data sets are modeled by matrices and are
extremely large. For example, in information retrieval and data mining (two rapidly
growing areas of research in computer science and scientific computation that build
on techniques and theories from fields such as statistics, linear algebra, database
theory, pattern recognition, and learning theory) a large collection of m objects, e.g.,
documents, genomes, images, or web pages, is implicitly presented as a set of points
in an n-dimensional Euclidean space, where n is the number of features that describe
the object. This collection may be represented by an m × n matrix A, the rows of
which are the object vectors and the columns of which are the feature vectors.

Recent interest in computing with massive data sets has led to the development of
computational models in which the usual notions of time efficiency and space efficiency
have been modified [23, 19, 3, 14, 10, 5]. In the applications that motivate these data-
streaming models [19, 5], e.g., the observational sciences and the monitoring and
operation of large networked systems, the data sets are much too large to fit into
main memory. Thus, they are either not stored or are stored in a secondary storage
device which may be read sequentially as a data stream but for which random access
is very expensive. Typically, algorithms that compute on a data stream examine the
data stream, keep a small “sketch” of the data, and perform computations on the
sketch. Thus, these algorithms are usually randomized and approximate, and their
performance is evaluated by considering resources such as the time to process an item
in the data stream, the number of passes over the data, the additional workspace and
additional time required, and the quality of the approximations returned. (Note that
in some cases the term “data-streaming model” refers to a model in which only a
single pass over the data is allowed [19, 5].)

The motivation for our particular “pass-efficient” approach is that in modern
computers the amount of external memory (e.g., disk storage or tape storage) has
increased enormously, while RAM and computing speeds have increased, but at a
substantially slower pace. Thus, we have the ability to store large amounts of data,
but not in RAM, and we do not have the computational ability to process these data
with algorithms that require superlinear time. A related motivation is that input-
output rates have not increased proportionally. Thus, the size of the data inputs (as
limited, e.g., by the size of disks) has increased substantially faster than the rate at
which we can access the data randomly.

In order to provide a framework in which to view the algorithms presented herein,
we first introduce and describe the pass-efficient model of data-streaming computa-
tion [10]. In the pass-efficient model the computational resources are the number
of sequential-access passes over the data and the additional RAM space and the
additional time required. Thus, our algorithms are quite different from traditional
numerical analysis approaches and generally fit within the following framework. Our
algorithms will be allowed to read the matrices from external storage a few—e.g., one
or two or three—times and keep a small randomly chosen and rapidly computable
“sketch” of the matrices in RAM. Our algorithms will also be permitted additional
RAM space and additional time in order to perform computations on the “sketch.”
The results of these computations will be returned as approximations to the solution
of the original problem.

134 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

In all of our algorithms, an important implementation issue will be how to form
the random sample. An obvious choice is to use uniform sampling, where each data
object is equally likely to be picked. Uniform sampling can be performed blindly, in
which case the sample to be chosen can be decided before seeing the data. Even when
the number of data elements is not known in advance an element can be selected
uniformly at random in one pass over the data; see Lemma 1. Uniform sampling fits
within our framework and is useful for certain (restricted) classes of problems. To
obtain much more generality, we will sample according to a judiciously chosen (and
data-dependent) set of nonuniform sampling probabilities. This nonuniform sampling,
in which in the first pass through the data we compute sampling probabilities (e.g.,
we may keep rows or columns of a data matrix with probability proportional to the
square of their lengths) and in the second pass we draw the sample, offers substantial
gains. For example, it allows us to approximately solve problems in sparse matrices
as well as dense matrices.

The idea of sampling rows or columns of matrices in order to approximate various
operations is not new; indeed, a motivation for our main matrix multiplication algo-
rithm came from [15]. In this paper and accompanying work [11, 12], we extend those
ideas and develop algorithms with provable error bounds for a variety of matrix oper-
ations. One of the main contributions of our work is to demonstrate that a “sketch”
consisting of a small judiciously chosen random sample of rows and/or columns of the
input matrix or matrices is adequate for provably rapid and efficient approximation of
several common matrix operations. We believe that the underlying principle of using
nonuniform sampling to create “sketches” of the data in a small number of passes
(and “pass-efficient” approaches more generally) constitutes an appealing and fruitful
direction for algorithmic research in order to address the size and nature of modern
data sets.

In the present paper, we present two simple and intuitive algorithms which, when
given an m× n matrix A and an n× p matrix B, compute an approximation to the
product AB. In the first algorithm, the BasicMatrixMultiplication algorithm of
section 4, we perform c independent trials, where in each trial we randomly sample an
element of {1, 2, . . . , n} with an appropriate probability distribution P on {1, 2, . . . , n}.
We form an m × c matrix C consisting of the sampled columns of A, each scaled
appropriately, and we form a c×n matrix R using the corresponding rows of B, again
scaled appropriately. The choice of P and the column and row scaling are crucial
features of the algorithm. When these are chosen judiciously, we show that CR is a
good approximation to AB. More precisely, we show that

‖AB − CR‖F = O(‖A‖F ‖B‖F /
√
c),

where ‖·‖F denotes the Frobenius norm, i.e., ‖A‖2
F =

∑
i,j A

2
ij , holds in expectation

and with high probability. Thus, in particular, when B = AT we have that if c =
Ω(1/ε2), then ‖AAT −CCT ‖F ≤ ε ‖A‖2

F holds with high probability. This algorithm
can be implemented without storing the matrices A and B in RAM, provided it can
make two passes over the matrices stored in external memory and use O(c(m+n+p))
additional RAM; thus it will be efficient in the pass-efficient model.

In the second algorithm, the ElementwiseMatrixMultiplication algorithm
of section 5, which is an extension of ideas from [2, 1], elements of A and B, rather
than columns and rows, are randomly either zeroed out or kept and rescaled, thereby
constructing matrices Ã and B̃. Although this algorithm lacks a useful bound on

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 135

‖AB − ÃB̃‖F , under appropriate assumptions a bound on the spectral norm of the
form

‖AB − ÃB̃‖2 = O(‖A‖F ‖B‖F /
√
c)

holds with high probability.
After this introduction, we provide in section 2 a review of the relevant linear

algebra, and in section 3 we introduce the pass-efficient model of data-streaming com-
putation and discuss several technical sampling lemmas. In section 4 we introduce
and analyze in detail the BasicMatrixMultiplication algorithm to approximate
the product of two matrices. Then, in section 5 we describe and analyze the Ele-

mentwiseMatrixMultiplication algorithm which is based on the ideas of [2, 1].
Finally, in section 6 we provide a discussion and conclusion. In the appendix, we
provide further analysis of the BasicMatrixMultiplication algorithm.

2. Review of linear algebra. This section contains a review of some linear
algebra that will be useful throughout the paper. For more detail, see [18, 20, 25, 6]
and the references therein.

For a vector x ∈ R
n we let |x| =

(∑n
i=1 |xi|2

)1/2
denote its Euclidean length.

For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, denote the jth column of A as a

column vector and A(i), i = 1, . . . ,m, denote the ith row of A as a row vector. We
denote matrix norms by ‖A‖ξ, using subscripts to distinguish between various norms.
Of particular interest will be the Frobenius norm which is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij ,(1)

and the spectral norm which is defined by

‖A‖2 = sup
x∈Rn, x �=0

|Ax|
|x| .(2)

These norms are related to each other as ‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2.

3. The pass-efficient model and sampling lemmas. In this section, we
informally define a computational model in which the computational resources are
the number of passes over the data and the additional space and additional time
required. In addition, we present several technical sampling lemmas.

3.1. The pass-efficient model. The pass-efficient model of data-streaming
computation is a model that is motivated by the observation that in modern com-
puters the amount of disk storage, i.e., sequential access memory, has increased very
rapidly while random access memory (RAM) and computing speeds have increased at
a substantially slower pace [10]. Thus, one has the ability to store very large amounts
of data but does not have random access to the data. Additionally, processing the
data with algorithms that take low polynomial time or linear time with large constants
is prohibitive.

To model this phenomenon, we consider the pass-efficient model, in which the
three computational resources of interest are the number of passes over the data and
the additional space and time required [10]. The data are assumed to be stored in an
external disk space, to consist of elements whose size is bounded by a constant, and to
be presented to an algorithm on a read-only tape. The only access an algorithm has

136 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

to the data is via a pass, where a pass over the data is a sequential read of the entire
input from disk where only a constant amount of processing time is permitted per bit
read. Note that this is a more restrictive notion of a pass over the data than in other
data-streaming models [23, 19, 14]; in particular, in the pass-efficient model only a
constant rather than a logarithmic (in the data input length) amount of computation
is permitted per bit read. In addition to the external disk space to store the data
and to a small number of passes over the data, an algorithm in the pass-efficient
model is permitted to use additional RAM space and additional computation time.
An algorithm operating in this model is considered pass-efficient if it requires a fixed
number of passes, independent of the input size, and additional space and time which
are sublinear in the length of the data stream in order to compute a “description” of
the solution, which is then returned by the algorithm. A description of the solution
is either an explicit solution (if that is possible within the specified additional space
and time) or an implicit representation of the solution that can be computed in the
allotted additional space and time, and that can be expanded into an explicit solution
with the additional expense of one pass over the data and linear (in the data input
length) additional space and time. Note that, depending on the application, this last
step may or may not be necessary. Note also that if the data are represented by
an m × n matrix, then the data stream has length O(mn) and an algorithm which
uses additional space and time that is linear in the number of data points or in the
dimensionality of the data points, i.e., that is O(m) or O(n), is sublinear in the length
of the data stream and thus is pass-efficient. We will be primarily interested in models
that require additional space and time that is either O(m+n) or constant with respect
to m and n.

The sparse-unordered representation of data is a form of data representation in
which each element of the data stream consists of a pair ((i, j), Aij) where the elements
in the data stream may be unordered with respect to the indices (i, j), and only the
nonzero elements of the matrix A need to be presented. This very general form is
suited to applications where, e.g., multiple agents may write parts of a matrix to a
central database and where one cannot make assumptions about the rules for write-
conflict resolution. The data stream read by algorithms in the pass-efficient model
is assumed to be presented in the sparse-unordered representation. Other related
methods of data representation have been studied within the data-streaming context;
see, e.g., [17] for applications to the problem of dynamic histogram maintenance.

3.2. Sampling lemmas. In this section we present two sampling primitives that
will be used by our algorithms. Consider the Select algorithm presented in Figure 1.
The following lemma establishes that in one pass over the data one can sample an
element according to certain probability distributions.

Lemma 1. Suppose that {a1, . . . , an}, ai ≥ 0, are read in one pass, i.e., one
sequential read over the data, by the Select algorithm. Then the Select algorithm
requires O(1), i.e., constant with respect to n, additional storage space and returns a
random i∗ sampled from the probability distribution Pr [i∗ = i] = ai/

∑n
i′=1 ai′ .

Proof. First, note that retaining the selected value and the running sum requires
O(1) additional space. The remainder of the proof is by induction. After reading

the first element a1, i∗ = 1 with probability a1/a1 = 1. Let D� =
∑�

i′=1 ai′ and
suppose that the algorithm has read a1, . . . , a� thus far and has retained the running
sum D� and a sample i∗ such that Pr [i∗ = i] = ai/D�. Upon reading a�+1 the
algorithm lets i∗ = � + 1 with probability a�+1/D�+1 and retains i∗ at its previous
value otherwise. At that point, clearly Pr [i∗ = � + 1] = a�+1/D�+1; furthermore for

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 137

Select Algorithm.

Input: {a1, . . . , an}, ai ≥ 0, read in one pass, i.e., one sequential read, over the
data.

Output: i∗, ai∗ .

1. D = 0.
2. For i = 1 to n,

(a) D = D + ai.
(b) With probability ai/D, let i∗ = i and ai∗ = ai.

3. Return i∗, ai∗ .

Fig. 1. The Select algorithm.

i = 1, . . . , �, Pr [i∗ = i] = ai

D�
(1 − a�+1

D�+1
) = ai

D�+1
. By induction this result holds when

� + 1 = n and the lemma follows.
In a single pass over the data this algorithm can be run in parallel with O(s)

total memory units to return s independent samples i∗1, . . . , i
∗
s such that for each i∗t ,

t = 1, . . . , s, we have Pr [i∗t = i] = ai/
∑n

i′=1 ai′ .
The next lemma is a modification of the previous lemma to deal with the case

where a matrix is read in the sparse-unordered representation and one wants to choose
a row label with a certain probability. This can also be implemented in O(1) additional
space and time. Note that a trivial modification would permit choosing a column label.

Lemma 2. Suppose that A ∈ R
m×n is presented in the sparse-unordered represen-

tation and is read in one pass, i.e., one sequential read over the data, by the Select

algorithm. Then the algorithm requires O(1), i.e., constant with respect to m and n,

additional storage space and returns i∗, j∗ such that Pr [i∗ = i ∧ j∗ = j] = A2
ij/ ‖A‖2

F

and thus Pr [i∗ = i] = |A(i)|2/ ‖A‖2
F .

Proof. Since A2
i∗j∗ > 0 the first claim follows from Lemma 1; the second follows

since

Pr [i∗ = i] =

n∑
j=1

Pr [i∗ = i ∧ j∗ = j] =

n∑
j=1

A2
ij

‖A‖2
F

=
|A(i)|2

‖A‖2
F

.

Algorithms such as the Select algorithm, which select elements from a large pool
of elements whose size is initially unknown, have been called reservoir algorithms [28].

4. The basic matrix multiplication approximation algorithm. In this
section, which describes the main result of the paper, the BasicMatrixMultipli-

cation algorithm to approximate the product of two matrices is presented; it is
analyzed in this section and in the appendix. After describing the algorithm in sec-
tion 4.1 we describe its implementation and running time issues in section 4.2. In
section 4.3 we analyze the algorithm and provide error bounds for arbitrary probabil-
ity distributions; in section 4.4 error bounds are derived for probability distributions
which are nearly optimal in a well-defined sense. We provide further discussion of
the algorithm in section 6, and in the appendix we provide further analysis of the
BasicMatrixMultiplication algorithm.

138 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

BasicMatrixMultiplication Algorithm.

Input: A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and {pi}ni=1 such that

pi ≥ 0 and
∑n

i=1 pi = 1.

Output: C ∈ R
m×c and R ∈ R

c×p.

1. For t = 1 to c,
(a) Pick it ∈ {1, . . . , n} with Pr [it = k] = pk, k = 1, . . . , n, independently

and with replacement.
(b) Set C(t) = A(it)/

√
cpit and R(t) = B(it)/

√
cpit .

2. Return C,R.

Fig. 2. The BasicMatrixMultiplication algorithm.

4.1. The algorithm. Recall that for A ∈ R
m×n and B ∈ R

n×p, the product
AB may be written as the sum of n rank-one matrices

AB =

n∑
t=1

A(t)B(t).(3)

When matrix multiplication is formulated in this manner, a simple randomized algo-
rithm to approximate the product matrix AB suggests itself: randomly sample with
replacement from the terms in the summation c times according to a probability dis-
tribution {pi}ni=1, scale each term in an appropriate manner, and output the sum of
the scaled terms. If m = p = 1, then A(t), B(t) ∈ R and it is straightforward to show
that this sampling procedure produces an unbiased estimator for the sum. When the
terms in the sum are rank-one matrices, as in (3), we show that similar results hold.

Consider the BasicMatrixMultiplication algorithm described in Figure 2.
When this algorithm is given as input two matrices A and B, a probability distribution
{pi}ni=1, and a number c of column-row pairs to choose, it returns as output matrices
C and R such that the product CR is an approximation to AB. Observe that since

CR =

c∑
t=1

C(t)R(t) =

c∑
t=1

1

cpit
A(it)B(it)

the procedure for sampling and scaling column and row pairs that is used in the
BasicMatrixMultiplication algorithm corresponds to sampling terms in (3) and
rescaling by dividing by cpit if the tth term is sampled. Alternatively, one could define
the sampling matrix S ∈ R

n×c to be the zero-one matrix where Sij = 1 if the ith
column of A (and thus also the ith row of B) is chosen in the jth independent random
trial, and Sij = 0 otherwise. If the rescaling matrix D ∈ R

c×c is the diagonal matrix
with Dtt = 1/

√
cpit , then

C = ASD and R = (SD)TB

so that CR = ASD(SD)TB ≈ AB. Figure 3 presents a diagram illustrating the action
of the BasicMatrixMultiplication algorithm. The product AB is shown as B and
then A operating between the high-dimensional R

p and R
m via the high-dimensional

R
n; this is approximated by CR, which is shown as R and then C operating between

R
p and R

m via the low-dimensional subspace R
c. Also shown are the sampling matrix

S and the diagonal rescaling matrix D.

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 139

R
p B ��

R

���
��

��
��

��
��

��
��

� R
n A ��

R
m

R
c

S

��

C

�������������������

D

��

Fig. 3. Diagram for the BasicMatrixMultiplication algorithm.

An important issue is the choice of the probabilities {pi}ni=1 and the scaling. It
is easily seen that the scaling of 1/

√
cpit used in the BasicMatrixMultiplica-

tion algorithm makes CR an unbiased estimator of AB; see Lemma 3. Lemma 3
also computes Var [(CR)ij] under general probabilities {pi}ni=1. We then compute

E[‖AB − CR‖2
F] and see that probabilities of the form pk = |A(k)||B(k)|/N, k =

1, . . . , n, where N is a normalization, are optimal in that they minimize this quantity;
see Lemma 4.

This approach for approximating matrix multiplication has several advantages.
First, it is conceptually simple, and in some cases it can be generalized to approximate
the product of more than two matrices; see section A.1 for more on the latter point.
Second, since the heart of the algorithm involves matrix multiplication of smaller
matrices, it can use any algorithm in the literature for performing the desired matrix
multiplication [18, 26, 8]. Third, this approach does not tamper with the sparsity
of the matrices, unlike an algorithm that would project both A and B to the same
random c-dimensional subspace and take the product of the projections. Finally, the
algorithm can be easily implemented; see sections 4.2 and 6 for more discussion.

4.2. Implementation of the sampling and running time. To implement
the BasicMatrixMultiplication algorithm, it must be decided which elements
of the input to sample and those elements must then be sampled. In the case of
uniform sampling one can decide before the input is seen which column-row pairs to
sample. Then, a single pass over the matrices is sufficient to sample the columns and
rows of interest and to construct C and R; this requires O(c(m + p)) additional time
and space. We will see below that it is useful to sample according to a nonuniform
probability distribution that depends on column and row lengths, e.g., see (5) and (7).
In order to decide which column-row pairs to sample in such a case, one pass through
the matrices and O(n) additional time and space is sufficient; in the additional space
running totals of |A(k)|2 and |B(k)|2 are kept, so that after the first pass |A(k)|, |B(k)|,
k = 1, . . . , n, and thus the probabilities, can be calculated in O(n) additional time.
Then in a second pass the columns and rows of interest can be sampled and C and
R can be constructed and stored; this requires O(c(m + p)) additional space and
time. Thus, in addition to either one or two passes over the data, for both uniform
and nonuniform sampling, O(c(m + n + p)) additional space and time is sufficient
to sample from the matrices A and B of the input and to construct the matrices C
and R.

If B = AT and nonuniform sampling is performed (assuming probabilities of the
form (5) or (7)), the resource requirements are slightly different. Due to Lemma 2 we
can select which columns of A to choose using constant (with respect to n) additional

140 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

space and time during the first pass. Then, during the second pass, these columns
may be extracted and the matrices C and R = CT may be constructed using O(cm)
additional space and time; this will be used in the LinearTimeSVD algorithm of
[11]. Note that if only a constant-sized part of the columns of C is needed, as, for
example, in the ConstantTimeSVD algorithm of [11], then extracting and storing
this constant-sized subset of the samples desired may be performed using constant
additional space and time.

4.3. Analysis of the algorithm for arbitrary probabilities. In this sec-
tion we prove upper bounds for ‖AB − CR‖2

F , where C and R are returned from
the BasicMatrixMultiplication algorithm. Recall that by Jensen’s inequality
bounding ‖AB − CR‖2

F (in expectation) implies a bound for ‖AB − CR‖F . Recall
also that a bound on ‖AB − CR‖F immediately provides a bound on ‖AB − CR‖2

since ‖AB − CR‖2 ≤ ‖AB − CR‖F .
Our first lemma proves that the expectation of the (i, j)th element of the ap-

proximation is equal to the (i, j)th element of the exact product; it also describes the
variance of the approximation of the (i, j)th element.

Lemma 3. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n,

and {pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Construct C and R with the
BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.
Then

E [(CR)ij] = (AB)ij

and

Var [(CR)ij] =
1

c

n∑
k=1

A2
ikB

2
kj

pk
− 1

c
(AB)2ij .

Proof. Fix i, j. For t = 1, . . . , c, define Xt =
(A(it)B(it)

cpit

)
ij

=
AiitBitj

cpit
. Thus,

E [Xt] =

n∑
k=1

pk
AikBkj

cpk
=

1

c
(AB)ij and E

[
X2

t

]
=

n∑
k=1

A2
ikB

2
kj

c2pk
.

Since by construction (CR)ij =
∑c

t=1 Xt, we have E [(CR)ij] =
∑c

t=1 E [Xt] =
(AB)ij . Since (CR)ij is the sum of c independent random variables, Var [(CR)ij] =∑c

t=1 Var [Xt]. Since Var [Xt] = E
[
X2

t

]
− E [Xt]

2
, we see that

Var [Xt] =

n∑
k=1

A2
ikB

2
kj

c2pk
− 1

c2
(AB)2ij

and the lemma follows.
Using this lemma, we bound E

[
‖AB − CR‖2

F

]
in the next lemma. In addition,

we note how this measure of the error depends on the pi’s.
Lemma 4. Suppose A ∈ R

m×n, B ∈ R
n×p, c ∈ Z

+ such that 1 ≤ c ≤ n,
and {pi}ni=1 are such that pi ≥ 0 and

∑n
i=1 pi = 1. Construct C and R with the

BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 141

Then

E
[
‖AB − CR‖2

F

]
=

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2
cpk

− 1

c
‖AB‖2

F .(4)

Furthermore, if

pk =

∣∣A(k)
∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ ,(5)

then

E
[
‖AB − CR‖2

F

]
=

1

c

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣
)2

− 1

c
‖AB‖2

F .(6)

This choice of pk minimizes E
[
‖AB − CR‖2

F

]
among possible choices for the sam-

pling probabilities.
Proof. First, note that

E
[
‖AB − CR‖2

F

]
=

m∑
i=1

p∑
j=1

E
[
(AB − CR)

2
ij

]
=

m∑
i=1

p∑
j=1

Var [(CR)ij] .

Thus, from Lemma 3 it follows that

E
[
‖AB − CR‖2

F

]
=

1

c

n∑
k=1

1

pk

(∑
i

A2
ik

)(∑
j

B2
kj

)
− 1

c
‖AB‖2

F

=
1

c

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 − 1

c
‖AB‖2

F .

If the value pk =
|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| is used in this expression, then

E
[
‖AB − CR‖2

F

]
=

1

c

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣
)2

− 1

c
‖AB‖2

F .

Finally, to prove that this choice for the pk’s minimizes E
[
‖AB − CR‖2

F

]
define the

function

f(p1, . . . , pn) =

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 ,

which characterizes the dependence of E
[
‖AB − CR‖2

F

]
on the pk’s. To minimize f

subject to
∑n

k=1 pk = 1, introduce the Lagrange multiplier λ and define the function

g(p1, . . . , pn) = f(p1, . . . , pn) + λ

(
n∑

k=1

pk − 1

)
.

142 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

We then have at the minimum that

0 =
∂g

∂pi
=

−1

p2
i

∣∣A(i)
∣∣2 ∣∣B(i)

∣∣2 + λ.

Thus,

pi =

∣∣A(i)
∣∣ ∣∣B(i)

∣∣
√
λ

=

∣∣A(i)
∣∣ ∣∣B(i)

∣∣∑n
i′=1

∣∣A(i′)
∣∣ ∣∣B(i′)

∣∣ ,

where the second equality comes from solving for
√
λ in

∑n−1
k=1 pk = 1. That these prob-

abilities are a minimum follows since ∂2g
∂pi

2 > 0 ∀i such that |A(i)|2|B(i)|2 >0.

4.4. Analysis of the algorithm for nearly optimal probabilities. With
Lemma 4 and using Jensen’s inequality, upper bounds on quantities such as E

[
‖AB−

CR‖2
F

]
and E

[
‖AB − CR‖F

]
may be obtained for various sampling probabilities

{pi}ni=1. In many cases, by using a martingale argument to show that the error
is tightly concentrated around its mean, the expectations in these bounds may be
removed and the corresponding results can be shown to hold with high probability.

Rather than presenting these results in their full generality, we restrict our at-
tention to two particular sets of probabilities. We will say that the sampling prob-

abilities pk =
|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| are the optimal probabilities since they minimize

E
[
‖AB − CR‖2

F

]
, which as Lemma 4 shows is one natural measure of the error. We

will say that a set of sampling probabilities {pi}ni=1 are nearly optimal probabilities if

pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| for some positive constant β ≤ 1.

We now prove, for nearly optimal sampling probabilities, results analogous to
those of Lemma 4, and also that the corresponding results with the expectations
removed hold with high probability. Notice that if β
= 1, then we suffer a small
β-dependent loss in accuracy.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that for some positive constant β ≤ 1

pk ≥
β
∣∣A(k)

∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ .(7)

Construct C and R with the BasicMatrixMultiplication algorithm, and let CR
be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(8)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then, with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(9)

Proof. Following reasoning similar to that of Lemma 4 and using the probabilities

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 143

of (7), we see that

E
[
‖AB − CR‖2

F

]
≤ 1

c

n∑
k=1

1

pk

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2

≤ 1

βc

(
n∑

k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣
)2

≤ 1

βc
‖A‖2

F ‖B‖2
F ,

where the last inequality follows due to the Cauchy–Schwarz inequality. Next, define
the event E2 to be

‖AB − CR‖F ≤ η√
βc

‖A‖F ‖B‖F(10)

and note that to prove the remainder of the theorem it suffices to prove that Pr [E2] ≥
1−δ. To that end, note that C and R and thus CR =

∑c
t=1

1
cpit

AitBit are formed by

randomly selecting c elements from {1, . . . , n}, independently and with replacement.
Let the sequence of elements chosen be {it}ct=1. Consider the function

F (i1, . . . , ic) = ‖AB − CR‖F .(11)

We will show that changing one it at a time does not change F too much; this will
enable us to apply a martingale inequality. To this end, consider changing one of the
it to i′t while keeping the other it’s the same. Then construct the corresponding C ′

and R′. Note that C ′ differs from C in only a single column and that R′ differs from
R in only a single row. Thus,

‖CR− C ′R′‖F =

∥∥∥∥∥
A(it)B(it)

cpit
−

A(i′t)B(i′t)

cpi′t

∥∥∥∥∥
F

(12)

≤ 1

cpit

∥∥∥A(it)B(it)

∥∥∥
F

+
1

cpi′t

∥∥∥A(i′t)B(i′t)

∥∥∥
F

(13)

=
1

cpit

∣∣A(it)
∣∣ ∣∣B(it)

∣∣+ 1

cpi′t

∣∣A(i′t)
∣∣ ∣∣B(i′t)

∣∣(14)

≤ 2

c
max
α

∣∣A(α)
∣∣ ∣∣B(α)

∣∣
pα

.(15)

Equation (12) follows by construction and (14) follows since ‖xyT ‖F = |x| |y| for
x ∈ R

n and y ∈ R
n. Thus, using the probabilities (7) and employing the Cauchy–

Schwarz inequality we see that

‖CR− C ′R′‖F ≤ 2

βc

n∑
k=1

∣∣A(k)
∣∣ ∣∣B(k)

∣∣(16)

≤ 2

βc
‖A‖F ‖B‖F .(17)

Therefore, using the triangle inequality we see that

‖AB − CR‖F ≤ ‖AB − C ′R′‖F + ‖C ′R′ − CR‖F
≤ ‖AB − C ′R′‖F +

2

βc
‖A‖F ‖B‖F .(18)

144 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

By similar reasoning, we can derive

‖AB − C ′R′‖F ≤ ‖AB − CR‖F +
2

βc
‖A‖F ‖B‖F .(19)

Define Δ = 2
βc ‖A‖F ‖B‖F ; thus,

|F (i1, . . . , ik, . . . , ic) − F (i1, . . . , i
′
k, . . . , ic)| ≤ Δ.(20)

Let γ=
√

2c log(1/δ)Δ and consider the associated Doob martingale. By the Hoeffding–
Azuma inequality [22],

Pr

[
‖AB − CR‖F ≥ 1√

βc
‖A‖F ‖B‖F + γ

]
≤ exp

(
−γ2/2cΔ2

)
= δ(21)

and the theorem follows.
An immediate consequence of Theorem 1 is that by choosing enough column-row

pairs, the error in the approximation of the matrix product can be made arbitrarily
small. In particular, if c ≥ 1/βε2, then by using Jensen’s inequality it follows that

E [‖AB − CR‖F] ≤ ε ‖A‖F ‖B‖F(22)

and if, in addition, c ≥ η2/βε2, then with probability at least 1 − δ

‖AB − CR‖F ≤ ε ‖A‖F ‖B‖F .(23)

In certain applications, e.g., [11, 12], one is interested in an application of Theorem

1 to the case that B = AT , i.e., one is interested in approximating
∥∥AAT − CCT

∥∥2

F
.

In this case, sampling column-row pairs corresponds to sampling columns of A, and

nearly optimal probabilities will be those such that pk ≥ β|A(k)|2
‖A‖2

F

for some positive

β ≤ 1. By taking B = AT and applying Jensen’s inequality, we have the following
theorem as a corollary of Theorem 1.

Theorem 2. Suppose A ∈ R
m×n, c ∈ Z

+, 1 ≤ c ≤ n, and {pi}ni=1 are such

that
∑n

i=1 pi = 1 and such that pk ≥ β|A(k)|2
‖A‖2

F

for some positive constant β ≤ 1.

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Construct C (and R = CT)
with the BasicMatrixMultiplication algorithm, and let CCT be an approximation
to AAT . Then

E
[∥∥AAT − CCT

∥∥
F

]
≤ 1√

βc
‖A‖2

F(24)

and with probability at least 1 − δ,

∥∥AAT − CCT
∥∥
F
≤ η√

βc
‖A‖2

F .(25)

5. A second matrix multiplication algorithm. In this section we describe
the ElementwiseMatrixMultiplication algorithm to approximate the product
of two matrices. First, in section 5.1, we describe the algorithm, its implementation,
and running time issues; then in section 5.2 we analyze the algorithm and bound its
error with respect to both the Frobenius and spectral norms. We will see that the
algorithm returns good approximations with respect to the spectral norm but not
with respect to the Frobenius norm.

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 145

ElementwiseMatrixMultiplication Algorithm.

Input: A ∈ R
m×n, B ∈ R

n×p, {pij}m,n
i,j=1 such that 0 ≤ pij ≤ 1, and {qij}n,pi,j=1 such

that 0 ≤ qij ≤ 1.

Output: S ∈ R
m×n and R ∈ R

n×p.

Algorithm:
1. For i = 1 to m and j = 1 to n, independently,

(a) Set

Sij =

{
Aij/pij with probability pij ,
0 otherwise.

2. For i = 1 to n and j = 1 to p, independently,
(a) Set

Rij =

{
Bij/qij with probability qij ,
0 otherwise.

3. Return S,R.

Fig. 4. The ElementwiseMatrixMultiplication algorithm.

5.1. The algorithm and its implementation. The method to approximate
the product of two matrices that is presented in this section differs from the previous
algorithm and is inspired by [2] and [1]. In [2] the singular value decomposition of a
matrix is approximated using elementwise uniform sampling; in [1] this approach is
extended to include nonuniform sampling probabilities of a certain natural form. Since
neither of these papers applies these methods to approximate matrix multiplication,
we do so here for comparison with the BasicMatrixMultiplication algorithm.

Consider the ElementwiseMatrixMultiplication algorithm presented in Fig-
ure 4. When this algorithm is given as input two matrices A ∈ R

m×n and B ∈ R
n×p

it creates two matrices S ∈ R
m×n and R ∈ R

n×p by keeping a few elements of A and a
few elements of B, respectively, scaling in an appropriate manner those elements that
are kept, and zeroing out the remaining elements. The algorithm then returns matri-
ces S and R such that the product SR is an approximation to AB. Note that since
S and R are formed independently of each other the algorithm does not keep “corre-
sponding” elements; doing so would introduce dependence that would complicate the
analysis.

The ElementwiseMatrixMultiplication algorithm can be implemented with
the nonuniform probabilities used in this section with two passes over the data; we
leave it as an open problem whether a single pass suffices when working within the
pass-efficient framework. This algorithm differs from the BasicMatrixMultiplica-

tion algorithm in that we get an expected number of elements so we have an expected
additional space required for storage and an expected additional time required for the
associated sparse matrix multiplication. We do not provide a detailed analysis of
these random variables.

5.2. Analysis of the algorithm. In this section we present error bounds for
both ‖AB − SR‖F and ‖AB − SR‖2. While the Frobenius norm error bound for this
algorithm is rather easy to derive using very intuitive probability distributions, the
spectral norm bound is more complicated and requires some additional technicalities.

146 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Since whether or not (for a given i, j) Sij = 0 or Sij = Aij/pij we have that
Aij − Sij is large (and similarly for the matrix R and thus the matrix SR) it is
plausible that the ElementwiseMatrixMultiplication algorithm does not have
a good bound for E

[
‖AB − SR‖2

F

]
. This intuition is formalized in the following

lemma. Note that � and �′ are chosen such that not more than � and �′ of the
elements of the matrices A and B are retained in expectation, respectively.

Lemma 5. Suppose A ∈ R
m×n and B ∈ R

n×p, let �, �′ ∈ Z
+, and let pij =

min{1, �A2
ij/ ‖A‖2

F } and qij = min{1, �′B2
ij/ ‖B‖2

F }. Construct S and R with the
ElementwiseMatrixMultiplication algorithm, and let SR be an approximation
to AB. Then, ∀i, j,

E [(SR)ij] = (AB)ij ,

Var [(SR)ij] =

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

n∑
k=1

A2
ikB

2
kj

E
[
‖AB − SR‖2

F

]
≥ mpn

��′
‖A‖2

F ‖B‖2
F −

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 .(26)

Proof. Let us first fix i, j. Then, since for every k we have that Sik = Aik/pik
with probability pik and Sik = 0 with probability 1− pik, we have that E [Sik] = Aik;
similarly for Rkj , we have that E [Rkj] = Bkj . Thus, since S and R have been
constructed independently, we have that

E [(SR)ij] = E

[
n∑

k=1

SikRkj

]
=

n∑
k=1

E [Sik]E [Rkj] = (AB)ij .

Since Var [(SR)ij] = E
[
(SR)2ij

]
− E [(SR)ij]

2
and since (SR)ij =

∑n
k=1 SikRkj we

get that

Var [(SR)ij] =

n∑
k1=1

n∑
k2=1

E [Sik1Rk1jSik2Rk2j] − E [(SR)ij]
2

=

n∑
k=1

E
[
S2
ik

]
E
[
R2

kj

]
+

n∑
k1=1

∑
k2 �=k1

E [Sik1]E [Rk1j]E [Sik2]E [Rk2j] − (AB)2ij

=

n∑
k=1

A2
ik

pik

B2
kj

qkj
+

n∑
k1=1

∑
k2 �=k1

Aik1
Bk1jAik2

Bk2j − (AB)2ij

=

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

n∑
k=1

A2
ikB

2
kj ,

where the last line follows by adding and subtracting
∑n

k1=1

∑
k2=k1

Aik1Bk1jAik2Bk2j

from the second-to-last line.
Thus, since E

[
‖AB − SR‖2

F

]
=
∑m

i=1

∑p
j=1 Var [(SR)ij] and since the probabil-

ities pij and qij are such that 1/pik ≥ ‖A‖2
F /�A2

ik and 1/qkj ≥ ‖B‖2
F /�′B2

kj we get

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 147

that

E
[
‖AB − SR‖2

F

]
=

m∑
i=1

p∑
j=1

n∑
k=1

A2
ik

pik

B2
kj

qkj
−

m∑
i=1

p∑
j=1

n∑
k=1

A2
ikB

2
kj

≥
m,p∑
i,j=1

n∑
k=1

‖A‖2
F ‖B‖2

F

��′
−

n∑
k=1

∣∣A(k)
∣∣2 ∣∣B(k)

∣∣2 .

The lemma then follows.
Next we show that although the ElementwiseMatrixMultiplication algo-

rithm does not yield a nice error bound for the Frobenius norm, it does for the spec-
tral norm. In order to prove Theorem 4, which provides our bound on ‖AB − SR‖2,
we will use the following theorem, which follows immediately from a result that was
proved in [1] and which shows that with high probability the spectrum of a random
matrix is close to its expectation. The theorem is proved by using a generalization of
a result of Füredi and Komlós [16], combined with a more recent concentration result
of Krivelevich and Vu based on Talagrand’s inequality [21].

Theorem 3. Given an n×n matrix A, let Â be any random matrix whose entries
are independent random variables such that ∀i, j, E

[
Âij

]
= Aij, Var

[
Âij

]
≤ σ2, and

∣∣∣Âij −Aij

∣∣∣ ≤ σ
√

2n

log3 (2n)
.(27)

For any n ≥ 10, with probability at least 1 − 1/(2n),

‖A− Â‖2 < 7σ
√

2n.(28)

Prior to stating the main result of this section, we must address a technical issue
that arises in our effort to apply the above theorem in order to bound ‖AB − SR‖2.
Note that the construction of the matrices S and R by the ElementwiseMatrix-

Multiplication algorithm may be viewed as adding carefully constructed random
matrices E and D such that S = A + E and R = B + D; see [2] and [1] for a dis-
cussion. As we will see below, if we can bound ‖E‖2 and ‖D‖2, then a bound for
‖AB − SR‖2 follows easily. Since we will apply Theorem 3 in order to obtain such
bounds, we need to satisfy the range constraint (27). Sampling with respect to the
nonuniform probability distribution of Lemma 5 might violate this constraint since,
in the unlikely event that a small element is kept, the resulting entry Sij = Aij/pij
will be very large (and similarly for R). Thus, following [1], we modify our sampling
probabilities so that small elements are kept with a slightly larger probability which
is proportional to |Aij | instead of A2

ij :

pij =

⎧⎨
⎩

min{1, �A2
ij/ ‖A‖2

F } if |Aij | > ‖A‖F log3 (2n)√
2n�

,

min
{

1,
√
�|Aij | log3 (2n)√

2n‖A‖F

}
otherwise,

(29)

qij =

⎧⎨
⎩

min{1, �′B2
ij/ ‖B‖2

F } if |Bij | > ‖B‖F log3 (2n)√
2n�′

,

min
{

1,
√
�′|Bij | log3 (2n)√

2n‖B‖F

}
otherwise.

(30)

We now state and prove our main theorem of this section. In the interests of clarity
we make several simplifying assumptions in the statement of the theorem.

148 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Theorem 4. Suppose A ∈ R
m×n, B ∈ R

n×p, and let pij and qij be as specified

in (29) and (30) with � = �′ ≥ 1. Assume that � ≤ ‖A‖2
F /maxi,j A

2
ij and that

� ≤ ‖B‖2
F /maxi,j B

2
ij; assume also that m = n = p and that n is large enough so that

2n ≥ log6 (2n). Construct S and R with the ElementwiseMatrixMultiplication

algorithm, and let SR be an approximation to AB. Then, with probability at least
1 − 1/n,

‖AB − SR‖2 ≤
(

20

√
n

�
+

100n

�

)
‖A‖F ‖B‖F .(31)

Proof. By the assumptions on n and �, neither pij nor qij exceed 1 for any i, j.
Letting E = S −A and D = R−B, we have

SR = (A + E)(B + D) = AB + AD + EB + ED.(32)

Thus, by the triangle inequality and submultiplicitivity, we have that

‖AB − SR‖2 ≤ ‖A‖2 ‖D‖2 + ‖E‖2 ‖B‖2 + ‖E‖2 ‖D‖2 .(33)

In order to apply Theorem 3 to ‖E‖2 and ‖D‖2 we first verify that the assumptions
of the theorem are satisfied. From the proof of Lemma 5, we have that E [Sij] = Aij .
In addition,

Var [Sij] ≤ E
[
S2
ij

]
=

A2
ij

pij
≤ ‖A‖2

F

�

holds regardless of whether |Aij | is larger or smaller than the threshold. Similarly, we

get that E [Rij] = Bij and that Var [Dij] ≤ ‖B‖2
F

� . It is straightforward to show that
regardless of whether or not |Aij | is above or below the threshold and regardless of
whether or not Sij = 0 or Sij = Aij/pij we have that

|Aij − Sij | ≤
‖A‖F

√
2n√

� log3 (2n)
.(34)

Similarly, one can show that

|Bij −Rij | ≤
‖B‖F

√
2n√

� log3 (2n)
.(35)

Thus, the conditions of Theorem 3 are satisfied and with probability at least 1−1/2n
each of the following holds:

‖E‖2 ≤ 7 ‖A‖F
√

2n/
√
�,(36)

‖D‖2 ≤ 7 ‖B‖F
√

2n/
√
�.(37)

Thus, with probability at least 1 − 1/n both of these inequalities hold. Combining
the bounds (36) and (37) with (33), and since ‖·‖2 ≤ ‖·‖F , we have

‖AB − SR‖2 ≤ ‖A‖2 ‖D‖2 + ‖E‖2 ‖B‖2 + ‖E‖2 ‖D‖2

≤ 7
√

2n ‖A‖F ‖B‖F√
�

+
7
√

2n ‖A‖F ‖B‖F√
�

+
98n ‖A‖F ‖B‖F

�

≤
(
20
√
n/� + 100n/�

)
‖A‖F ‖B‖F .

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 149

Notice that if we let � = cn in Theorem 4, then the error bound (31) becomes

‖AB − SR‖2 ≤
(

20√
c

+
100

c

)
‖A‖F ‖B‖F = O(1/

√
c) ‖A‖F ‖B‖F .

Comparison with (9) of Theorem 1 reveals that (since ‖·‖2 ≤ ‖·‖F) both of our matrix
multiplication algorithms have, asymptotically, a similar bound with respect to the
spectral norm.

6. Discussion and conclusion. To the best of our knowledge, the only previous
randomized algorithm that approximates the product of two matrices is that of Cohen
and Lewis [7]. This algorithm is based on random walks in a graph representation
of the input matrices and attempts to identify all high-valued entries in nonnegative
matrix products in order to improve estimates (relative to exact sparse multiplication)
by spending less time on small-valued entries. Their algorithm is more complicated
than ours, it requires different graph representations of the input matrices if the
matrices are allowed to contain negative entries, it needs to store the complete input
matrices, and it is especially useful when the matrices are not sparse.

It is worth emphasizing how the BasicMatrixMultiplication algorithm be-
haves when A and B are well approximated by low-rank matrices. Since a low-rank
matrix or a matrix that is well approximated by a low-rank matrix is a matrix whose
rows and columns contain much redundant information in terms of the subspaces they
span, it is plausible that if the range of B overlaps appropriately with the domain of
A, then we can get a good approximation to AB by carefully sampling a small number
c of appropriately rescaled rank-one approximations to AB. Theorem 1 shows that if
the {pi}ni=1 are chosen judiciously, then this is the case and Figure 3 illustrates this.

We emphasize that in the case of sampling with nonuniform probabilities our
sampling can be viewed as a two-pass algorithm; in the first pass the algorithm reads
the matrix, it then decides which columns and rows to keep, and then in the second
pass it extracts these columns and rows. In certain applications, two passes through
the matrix are not possible and only one pass is allowed [14]. In these cases, we can
still perform uniform sampling; in this case, if column-row pairs are all approximately
the same size, i.e., |A(k)||B(k)| is close to its mean value (more precisely, if there exists
some positive constant β ≤ 1 such that ∀k |A(k)||B(k)| ≤ 1

βn

∑n
k′=1 |A(k′)||B(k′)|),

then the uniform probabilities are nearly optimal and we can sample uniformly with
a small β-dependent loss in accuracy.

Note that although larger columns and rows get picked more often, the scaling is
such that their weight is deemphasized in the estimator sum. One could imagine a
situation when detailed information about the elements of, e.g., A may be obtained
after a single pass but no information or no information except general bounds on the
size of the elements may be possible for B. In this case, a set of sampling probabil-
ities other than those discussed in section 4 may be appropriate. See Table 1 for a
summary of the results for different probability distributions; these results are proven
in section A.3

The ElementwiseMatrixMultiplication algorithm has been presented for
completeness and because in some applications its use may be more appropriate than
the use of the BasicMatrixMultiplication algorithm. It is worth emphasizing
that the ElementwiseMatrixMultiplication algorithm achieves its spectral norm
bound since its sampling procedure may be viewed as adding a carefully constructed
random perturbation to every element of the original matrix; see [2, 1] for a nice
discussion of these ideas.

150 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Table 1

Summary of results for different probability distributions.

E
[
‖AB − CR‖F

]
≤ w.h.p. ‖AB − CR‖F ≤ Comments and restrictions

pk ≥
β

∣∣A(k)
∣∣|B(k)|∑

k′

∣∣A(k′)
∣∣∣∣B(k′)

∣∣ 1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F η = 1 +

√
8
β

log
(

1
δ

)

pk ≥
β

∣∣A(k)
∣∣2

‖A‖2
F

1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F
η = 1 +

‖A‖F
‖B‖F

M
√

8
β

log
(

1
δ

)
M = maxα

|B(α)|
|A(α)|

pk ≥ β|B(k)|2
‖B‖2

F

1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F
η = 1 +

‖B‖F
‖A‖F

M
√

8
β

log
(

1
δ

)
M = maxα

|A(α)|
|B(α)|

pk ≥
β

∣∣A(k)
∣∣∑n

k′=1

∣∣A(k′)
∣∣ 1√

βc
‖A‖F

√
nM η√

βc
‖A‖F

√
nM

η = 1 +

√
8
β

log
(

1
δ

)
M = maxα

∣∣B(α)

∣∣
pk ≥ β|B(k)|∑n

k′=1

∣∣B(k′)

∣∣ 1√
βc

√
nM‖B‖F

η√
βc

√
nM‖B‖F

η = 1 +

√
8
β

log
(

1
δ

)
M = maxα

∣∣A(α)
∣∣

pk ≥
β

∣∣A(k)
∣∣|B(k)|

‖A‖F ‖B‖F
1√
βc

‖A‖F ‖B‖F
η√
βc

‖A‖F ‖B‖F η = 1 +

√
8
β

log
(

1
δ

)

pk = 1
n

See Lemma 11. See Lemma 11. See Lemma 11.

Recent work has focused on establishing lower bounds on the number of queries
a sampling algorithm is required to perform in order to approximate a given function
accurately with low probability of error; see, e.g., [4]. See also [24, 27] for recent
related work.

Appendix. Further analysis of the basic matrix multiplication algo-
rithm. In this section we provide further analysis of the BasicMatrixMultiplica-

tion algorithm. In section A.1 we consider approximating the product of more than
two matrices by a similar sampling process. Then, in section A.2 we examine element-
wise error bounds for the algorithm, and in section A.3 we consider error bounds for
probability distributions which are not nearly optimal in the sense of section 4.4.

A.1. Approximating the product of more than two matrices. In this
section we consider the task of approximating the product of three or more matrices
using the ideas of the BasicMatrixMultiplication algorithm of section 4. For
simplicity our exposition will be restricted to the case of approximating the product
ABC of three matrices. Recall that given matrices A ∈ R

m×n, B ∈ R
n×p, C ∈ R

p×q,
the product ABC may be written as

ABC =

n∑
s=1

p∑
t=1

A(s)BstC(t).(38)

One possible way of extending the ideas of section 4.1 is the following. Randomly
choose is ∈ {1, . . . , n} independently and with replacement c1 times according to a
probability distribution {pi}ni=1 and randomly choose jt ∈ {1, . . . , p} independently

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 151

R
q C ��

C̃

���
��

��
��

��
��

��
��

��
R

p B ��
R

n A ��
R

m

R
c2

S(C,c2)

��

B̃ ��

D{qk}

�� R
c1

S(A,c1)

��

Ã

�������������������

D{pk}

��

Fig. 5. Diagram for the algorithm to approximately multiply three matrices.

and with replacement c2 times according to a probability distribution {qj}pj=1. Then
form the matrix Ã ∈ R

m×c1 with columns Ã(s) = A(is)/
√
c1pis , the matrix B̃ ∈

R
c1×c2 with elements B̃st = Bisjt/

√
c1c2pisqjt , and the matrix C̃ ∈ R

c2×q with rows
C̃(t) = C(jt)/

√
c2qjt so that

ÃB̃C̃ =

c1∑
s=1

c2∑
t=1

A(is)BisjtC(jt)

c1c2pisqjt
.

Figure 5 presents a diagram illustrating the action of the algorithm just described
to approximate the product of three matrices. One could then define sampling
matrices S(A,c1) and S(C,c2) and diagonal rescaling matrices D{pk} and D{qk} in
a manner analogous to that of section 4.1 and as indicated in Figure 5. Then

ÃB̃C̃ = AS(A,c1)D{pk}2
S(A,c1)

T
BS(C,c2)D{qk}2

S(C,c2)
T
C ≈ ABC. An intuitively

appealing aspect of this algorithm is that the product ABC is shown as C, B, and
then A operating between the high-dimensional R

q and R
m via the high-dimensional

R
p and R

n; this is approximated by ÃB̃C̃, which acts between R
q and R

m via the
low-dimensional subspaces R

c2 and R
c1 . One difficulty with this algorithm is that its

analysis is quite complicated due to the correlation in the nonindependent sampling
of the elements of the matrix B.

A second way of extending the ideas of section 4.1 is the following. Randomly
choose (is, jt) ∈ {1, . . . , n} × {1, . . . , p} independently and with replacement c times
according to a probability distribution {pkl}n,p(k,l)=1. This corresponds to sampling c

terms from the sum (38). Then define

P =

c∑
u≡(s,t)=1

1

cpkslt

A(ks)BksltC(lt),

where the summation is a single sum over the c pairs (ks, lt) ∈ {1, . . . , n}× {1, . . . , p}
chosen by the algorithm. In this second algorithm the subspace interpretation of the
first algorithm is lost but the analysis simplifies considerably. Using ideas similar to
those in section 4 we can prove the following lemma about this algorithm.

Lemma 6. Given matrices A ∈ R
m×n, B ∈ R

n×p, C ∈ R
p×q, construct an

approximation P to the product ABC by sampling as described in the second algorithm
above with probabilities {pk,l}np(k,l)=1. Then, for every i, j we have that E[(P)ij] =

(ABC)ij and that

Var
[
(P)ij

]
=

1

c

n∑
k=1

p∑
l=1

1

pkl
A2

ikB
2
klC

2
lj −

1

c
(ABC)

2
ij .

152 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

In addition,

E
[
‖ABC − P‖2

F

]
=

1

c

n∑
k=1

p∑
l=1

1

pkl

∣∣A(k)
∣∣2B2

kl

∣∣C(l)

∣∣2 − 1

c
‖ABC‖2

F

and the probabilities

pkl =

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣∑
k′
∑

l′

∣∣A(k′)
∣∣ |Bk′l′ |

∣∣C(l′)

∣∣
minimize E

[
‖ABC − P‖2

F

]
Proof. The proof is similar to those of Lemmas 3 and 4.
As in section 4.4 we will define probabilities {pkl} to be nearly optimal if

pkl ≥ β

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣∑
k′
∑

l′

∣∣A(k′)
∣∣ |Bk′l′ |

∣∣C(l′)

∣∣
for some β ≤ 1. If sampling is performed with these probabilities, one can show that

E
[
‖ABC − P‖2

F

]
≤ 1

cβ

∑
k

∑
l

∣∣A(k)
∣∣ |Bkl|

∣∣C(l)

∣∣,
and a similar result can be shown to hold with high probability.

Unfortunately, computing the optimal probabilities in the general case is not pass-
efficient since it would require O(np) additional space and time. This situation would
be relatively worse if one wanted to compute the product of more than three matrices,
rendering this method uncompetitive with the exact algorithm. On the other hand,
if the matrices are known to have a special structure or if the data are presented in
a more specialized format, then this algorithm may be useful. For example, if it is
known that none of the elements of B are too big, i.e., that the elements of B are such
that there exists a ξB such that ∀i, j we have that Bij ≤ ξB ‖B‖2

F /np, then there will
exist a set of probabilities that are nearly optimal that do not depend on B and that
can be computed efficiently.

A.2. Elementwise error bounds. In this section we provide elementwise error
bounds on |(AB)ij − (CR)ij | for the BasicMatrixMultiplication algorithm for
two different probability distributions. We have the following lemma.

Lemma 7. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Let M be such that |Aij | ≤ M and
|Bij | ≤ M for every appropriate i, j. Construct C and R with the BasicMatrix-

Multiplication algorithm, and let CR be an approximation to AB. If pk = 1/n for
every k, then for every δ > 0 with probability at least 1 − δ

|(AB)ij − (CR)ij | <
nM2

√
c

√
8 ln(2mp/δ) ∀i, j.(39)

If pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| for some positive constant β ≤ 1, then for every δ > 0 with

probability at least 1 − δ

|(AB)ij − (CR)ij | <
n
√
mpM2

√
βc

√
(8/β) ln(2mp/δ) ∀i, j.(40)

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 153

Proof. Let us first consider the case of uniform sampling probabilities, i.e., when
pk = 1/n. First, fix attention on one particular (i, j) ∈ ({1, . . . ,m} , {1, . . . , p}). De-

fine X
(ij)
t =

(A(it)B(it)

cpit

)
ij

=
AiitBitj

cpit
. From Lemma 3 we see that E

[
X

(ij)
t

]
= 1

c (AB)ij .

Define Y
(ij)
t = X

(ij)
t − 1

c (AB)ij , t = 1, . . . , c, and note that the Yt’s are independent

random variables with E
[
Y

(ij)
t

]
= 0 for every t = 1, . . . , c. In addition,

∣∣∣Y (ij)
t

∣∣∣ ≤
∣∣∣∣AiitBitj

cpit

∣∣∣∣+
∣∣∣∣1c (AB)ij

∣∣∣∣
≤
∣∣∣∣AiitBitj

cpit

∣∣∣∣+ nM2

c
(41)

≤ 2nM2

c
.(42)

Inequality (42) follows since for the uniform probabilities |AiitBitj

cpit
| ≤ nM2

c . By com-

bining the upper and lower bounds provided by (42) with Hoeffding’s inequality, we
have that for any t > 0

Pr

[∣∣∣∣∣
c∑

t=1

Y
(ij)
t

∣∣∣∣∣ ≥ ct

]
≤ 2 exp

(
− 2c2t2∑c

i=1 (4nM2/c)
2

)
= 2 exp

(
− c3t2

8n2M4

)
.(43)

Define the event Eij to be |
∑c

t=1 Y
(ij)
t | ≥ ct and the event E =

⋃m
i=1

⋃p
j=1 Eij . If we

then let t = nM2 2
√

2
c3/2

√
ln (2mp/δ), then by (43) we have that Pr [Eij] ≤ δ

mp . Thus,

(39) then follows since

Pr [E] ≤
m∑
i=1

p∑
j=1

Pr [Eij] ≤
∑
ij

δ/mp = δ.

When applied to the nonuniform probabilities pk ≥ β|A(k)||B(k)|∑n

k′=1
|A(k′)||B(k′)| a similar line of

reasoning establishes (40). The key step is to note that when using these probabilities
we have that

∣∣∣∣AiitBitj

cpit

∣∣∣∣ ≤
∣∣∣∣∣

AiitBitj

cβ
∣∣A(k)

∣∣ ∣∣B(k)

∣∣
n∑

k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣
∣∣∣∣∣ ≤

∣∣∣∣n
√
mp

cβ
M2

∣∣∣∣ .(44)

Since nM2/c ≤ n
√
mpM2/(cβ) this, when combined with (41), implies that

∣∣∣Y (ij)
t

∣∣∣ ≤ 2n
√
mpM2

cβ
,(45)

which provides the upper and lower bounds on the random variable required to apply
Hoeffding’s inequality.

When the uniform probabilities are used

‖AB − CR‖2
F =

∑
ij

|(AB)ij − (CR)ij |2 ≤ mn2pM4

c
8 log(2mp/δ)

holds with probability greater than 1− δ. The difference between this result and the
result of Theorem 1 or its variants such as Lemma 11 is that Lemma 7 guarantees that

154 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

every element of the approximation will have small additive error, while Theorem 1
provides a tighter Frobenius norm bound but not elementwise guarantees.

It may seem counterintuitive that by sampling with respect to the optimal proba-
bilities of section 4 the bound of (40) is worse than that of (39) by a factor of

√
mp/β.

(Relatedly, when the nonuniform probabilities of Lemma 7 are used, we have that

‖AB − CR‖2
F ≤ m2n2p2M4

β2c
8 log(2mp/δ)

with probability greater than 1 − δ.) The reason for this is that the optimal prob-

abilities are optimal with respect to minimizing E
[
‖AB − CR‖2

F

]
, in which case

elements corresponding to smaller columns and rows contribute relatively little. On
the other hand, the two statements of Lemma 7 are required to hold for every i and
j. Thus (whether or not the uniform probabilities are nearly optimal) because the
optimal sampling probabilities bias toward elements corresponding to larger columns
and rows an extra factor of

√
mp is needed.

A.3. Analysis of the algorithm for nonnearly optimal probabilities.
Note that the nearly optimal probabilities (7) use information from both matrices
A and B in a particular form. In some cases, such detailed information about both
matrices may not be available. Thus, we present results for the BasicMatrixMul-

tiplication algorithm for several other sets of probabilities. See Table 1 in section
6 for a summary of these results.

In the first case, to estimate the product AB one could use the probabilities
(46) which use information from the matrix A only. In this case ‖AB − CR‖F can
still be shown to be small in expectation, and under an additional assumption the
expectation can be removed and the corresponding result can be shown to hold with
high probability.

Lemma 8. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣2
‖A‖2

F

(46)

for some positive constant β ≤ 1. Construct C and R with the BasicMatrixMul-

tiplication algorithm, and let CR be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(47)

Furthermore, let M= maxα
|B(α)|
|A(α)| , let δ∈(0, 1), and let η = 1+

‖A‖F

‖B‖F
M
√

(8/β) log(1/δ).

Then with probability at least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(48)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

Alternatively, to estimate the product AB one could use the probabilities (49)
which also use information from the matrix A only, but in a different form than the
probabilities (46). In this case, under an additional assumption ‖AB − CR‖F can
still be shown to be small both in expectation and with high probability.

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 155

Lemma 9. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣(49)

for some positive constant β ≤ 1. Let M = maxα |B(α)|. Construct C and R with the
BasicMatrixMultiplication algorithm, and let CR be an approximation to AB.
Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F nM2.(50)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F nM2.(51)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

The probabilities (46) and (49) depend on only the lengths of the columns of A.
Results similar to those of the previous two lemmas hold if the probabilities depend
on the rows of B rather than the columns of A; see Table 1.

Alternatively, to estimate the product of AB one could use the probabilities (52);
interestingly, although the probabilities differ from those of (7) we are able to derive
the same bounds as those of Theorem 1 without additional assumptions.

Lemma 10. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that
∑n

i=1 pi = 1 and such that

pk ≥
β
∣∣A(k)

∣∣ ∣∣B(k)

∣∣
‖A‖F ‖B‖F

(52)

for some positive constant β ≤ 1. Construct C and R with the BasicMatrixMul-

tiplication algorithm, and let CR be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(53)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(54)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

Of course one could estimate the product AB using the uniform probabilities (55).
In this case for simplicity we consider bounding ‖AB − CR‖F directly.

Lemma 11. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that

pk =
1

n
.(55)

156 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Construct C and R with the BasicMatrixMultiplication algorithm, and let CR
be an approximation to AB. Then

E [‖AB − CR‖F] ≤
√

n

c

(
n∑

k=1

∣∣∣A(k)
∣∣∣2 ∣∣B(k)

∣∣2
)1/2

.(56)

Furthermore, let δ ∈ (0, 1) and γ = n√
c

√
8 log (1/δ) maxα

∣∣A(α)
∣∣ ∣∣B(α)

∣∣. Then with

probability at least 1 − δ,

‖AB − CR‖F ≤
√

n

c

(
n∑

k=1

∣∣∣A(k)
∣∣∣2 ∣∣B(k)

∣∣2
)1/2

+ γ.(57)

Proof. The proof is similar to that of Theorem 1 except that the indicated prob-
abilities are used.

Acknowledgments. We would like to thank Dimitris Achlioptas for bringing
to our attention the results of [21] and the National Science Foundation for partial
support of this work. In addition, we would like to thank an anonymous reviewer for
providing a careful reading of this paper, for making numerous constructive sugges-
tions, and for bringing [28] to our attention.

REFERENCES

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, J.
ACM, to appear.

[2] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, in
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 611–
618.

[3] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the frequency
moments, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
1996, pp. 20–29.

[4] Z. Bar-Yossef, Sampling lower bounds via information theory, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003, pp. 335–344.

[5] D. Barbara, C. Faloutsos, J. Hellerstein, Y. Ioannidis, H. V. Jagadish, T. Johnson,

R. Ng, V. Poosala, K. Ross, and K. C. Sevcik, The New Jersey data reduction report,
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 1997.

[6] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[7] E. Cohen and D. D. Lewis, Approximating matrix multiplication for pattern recognition tasks,

J. Algorithms, 30 (1999), pp. 211–252.
[8] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.

Symbolic Comput., 9 (1990), pp. 251–280.
[9] P. Drineas and R. Kannan, Fast Monte-Carlo algorithms for approximate matrix multipli-

cation, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, 2001, pp. 452–459.

[10] P. Drineas and R. Kannan, Pass efficient algorithms for approximating large matrices, in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003,
pp. 223–232.

[11] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
II: Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp.
158–183.

[12] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36
(2006), pp. 184–206.

[13] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo Algorithms for Matrices I:
Approximating Matrix Multiplication, Tech. Report YALEU/DCS/TR-1269, Department
of Computer Science, Yale University, New Haven, CT, 2004.

FAST MONTE CARLO ALGORITHMS FOR MATRICES I 157

[14] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan, An approximate L1-
difference algorithm for massive data sets, in Proceedings of the 40th Annual IEEE Sym-
posium on the Foundations of Computer Science, 1999, pp. 501–511.

[15] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank
approximations, in Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, 1998, pp. 370–378.

[16] Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica, 1
(1981), pp. 233–241.

[17] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss, Fast,
small-space algorithms for approximate histogram maintenance, in Proceedings of the 34th
Annual ACM Symposium on Theory of Computing, 2002, pp. 389–398.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1989.

[19] M. R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing on Data Streams, Tech.
Report 1998-011, Digital Systems Research Center, Palo Alto, CA, 1998.

[20] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.

[21] M. Krivelevich and V. H. Vu, On the Concentration of Eigenvalues of Random Symmetric
Matrices, Tech. Report MSR-TR-2000-60, Microsoft Research, Redmond, WA, 2000.

[22] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, 1989,
J. Siemons, ed., London Math. Soc. Lecture Notes Ser., Cambridge University Press, Cam-
bridge, UK, 1989, pp. 148–188.

[23] J. I. Munro and M. S. Paterson, Selection and sorting with limited storage, in Proceedings
of the 19th Annual IEEE Symposium on Foundations of Computer Science, 1978, pp. 253–
258.

[24] M. Rudelson and R. Vershynin, Approximation of Matrices, manuscript.
[25] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York,

1990.
[26] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 14 (1969), pp. 354–356.
[27] R. Vershynin, Coordinate Restrictions of Linear Operators in ln2 , manuscript; available online

from http://arxiv.org/abs/math/0011232.
[28] J. S. Vitter, Random sampling with a reservoir, ACM Trans. Math. Softw., 11 (1985), pp. 37–

57.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 158–183

FAST MONTE CARLO ALGORITHMS FOR MATRICES II:
COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. In many applications, the data consist of (or may be naturally formulated as) an
m×n matrix A. It is often of interest to find a low-rank approximation to A, i.e., an approximation
D to the matrix A of rank not greater than a specified rank k, where k is much smaller than m and
n. Methods such as the singular value decomposition (SVD) may be used to find an approximation
to A which is the best in a well-defined sense. These methods require memory and time which are
superlinear in m and n; for many applications in which the data sets are very large this is prohibitive.
Two simple and intuitive algorithms are presented which, when given an m×n matrix A, compute a
description of a low-rank approximation D∗ to A, and which are qualitatively faster than the SVD.
Both algorithms have provable bounds for the error matrix A − D∗. For any matrix X, let ‖X‖F
and ‖X‖2 denote its Frobenius norm and its spectral norm, respectively. In the first algorithm, c
columns of A are randomly chosen. If the m × c matrix C consists of those c columns of A (after
appropriate rescaling), then it is shown that from CTC approximations to the top singular values and
corresponding singular vectors may be computed. From the computed singular vectors a description
D∗ of the matrix A may be computed such that rank(D∗) ≤ k and such that

‖A−D∗‖2
ξ ≤ min

D:rank(D)≤k
‖A−D‖2

ξ + poly(k, 1/c) ‖A‖2
F

holds with high probability for both ξ = 2, F . This algorithm may be implemented without storing
the matrix A in random access memory (RAM), provided it can make two passes over the matrix
stored in external memory and use O(cm + c2) additional RAM. The second algorithm is similar
except that it further approximates the matrix C by randomly sampling r rows of C to form a
r × c matrix W . Thus, it has additional error, but it can be implemented in three passes over the
matrix using only constant additional RAM. To achieve an additional error (beyond the best rank k
approximation) that is at most ε‖A‖2

F , both algorithms take time which is polynomial in k, 1/ε, and
log(1/δ), where δ > 0 is a failure probability; the first takes time linear in max(m,n) and the second
takes time independent of m and n. Our bounds improve previously published results with respect
to the rank parameter k for both the Frobenius and spectral norms. In addition, the proofs for
the error bounds use a novel method that makes important use of matrix perturbation theory. The
probability distribution over columns of A and the rescaling are crucial features of the algorithms
which must be chosen judiciously.

Key words. randomized algorithms, Monte Carlo methods, massive data sets, singular value
decomposition

AMS subject classification. 68W20

DOI. 10.1137/S0097539704442696

1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. In this paper
we consider the singular value decomposition (SVD); in two related papers we consider
matrix multiplication and a new method for computing a compressed approximate
decomposition of a large matrix [13, 14]. Since such computations generally require

∗Received by the editors April 5, 2004; accepted for publication (in revised form) November 17,
2005; published electronically May 26, 2006. The technical report version of this paper appeared as
Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix,
by P. Drineas, R. Kannan, and M. W. Mahoney [15].

http://www.siam.org/journals/sicomp/36-1/44269.html
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (drinep@cs.

rpi.edu).
‡Department of Computer Science, Yale University, New Haven, CT 06520 (kannan@cs.yale.edu).

This author was supported in part by a grant from the NSF.
§Department of Mathematics, Yale University, New Haven, CT 06520 (mahoney@cs.yale.edu).

158

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 159

time which is superlinear in the number of nonzero elements of the matrix, we expect
our algorithms to be useful in many applications where data sets are modeled by
matrices and are extremely large. In all these cases, we assume that the input matrices
are prohibitively large to store in random access memory (RAM) and thus that only
external memory storage is possible. Our algorithms will be allowed to read the
matrices a few, e.g., one, two or three, times and keep a small randomly chosen
and rapidly computable “sketch” of the matrices in RAM; computations will then be
performed on this “sketch.” We will work within the framework of the pass-efficient
computational model, in which the scarce computational resources are the number
of passes over the data, the additional RAM space required, and the additional time
required [13, 12].

In many applications, the data consist of (or may be naturally formulated as) an
m×n matrix A which is either low-rank or is well approximated by a low-rank matrix
[7, 9, 25, 3, 26, 28, 29, 24, 22]. In these application areas, e.g., latent semantic indexing,
DNA microarray analysis, facial and object recognition, and web search models, the
data may consist of m points in R

n. Let A ∈ R
m×n be the matrix with these points as

rows. Two methods for dealing with such high-dimensional data are the SVD (and the
related principal components analysis) and multidimensional scaling [18, 23]. Thus,
it is often of interest to find a low-rank approximation to A, i.e., an approximation
D, of rank no greater than a specified rank k, to the matrix A, where k is much
smaller than m and n. For example, this rank reduction is used in many applications
of linear algebra and statistics as well as in image processing, lossy data compression,
text analysis, and cryptography [6]. The SVD may be used to find an approximation
to A which is the best in a well-defined sense [18, 19], but it requires a superlinear (in m
and n) polynomial time dependence that is prohibitive for many applications in which
the data sets are very large. Another method that has attracted interest recently is
the traditional “random projection” method where one projects the problem into a
randomly chosen low-dimensional subspace [21, 30, 20]. This dimensional reduction
requires performing an operation that amounts to premultiplying the given m × n
matrix A by an s×m matrix which takes time dependent in a superlinear manner on
m + n.

In this paper we present two simple and intuitive algorithms which, when given
an m×n matrix A, compute a description of a low-rank approximation D∗ to A, and
which are qualitatively faster than the SVD. Both algorithms have provable bounds
for the error matrix A − D∗. For any matrix X, let ‖X‖F and ‖X‖2 denote its
Frobenius norm and its spectral norm (as defined in section 3.1), respectively. In
the first algorithm, the LinearTimeSVD algorithm of section 4, c columns of A are
randomly chosen. If the m × c matrix C consists of those c columns of A (after
appropriate rescaling), then it is shown that from CTC approximations to the top
singular values and corresponding singular vectors of A may be computed. From the
computed singular vectors a description D∗ of the matrix A may be computed such
that rank(D∗) ≤ k and such that

‖A−D∗‖2
ξ ≤ min

D:rank(D)≤k
‖A−D‖2

ξ + poly(k, 1/c) ‖A‖2
F(1)

holds with high probability for each of ξ = 2, F . This algorithm may be implemented
without storing the matrix A in RAM, provided it can make two passes over the
matrix stored in external memory and use O(cm + c2) additional RAM. The second
algorithm, the ConstantTimeSVD algorithm of section 5, is similar except that it
further approximates the matrix C by randomly sampling r rows of C to form an r×c

160 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Table 1

Summary of sampling complexity.

Additional error for: LinearTimeSVD ConstantTimeSVD Ref. [16, 17]

‖A−D∗‖2
2 1/ε2 1/ε4 k4/ε3

‖A−D∗‖2
F k/ε2 k2/ε4 k4/ε3

matrix W . Thus, it has additional error but can be implemented in three passes over
the matrix using additional RAM that is O(cr), i.e., that is constant for constant c and

r. To achieve an additional error that is at most ε ‖A‖2
F , both algorithms take time

which is polynomial in k, 1/ε, and log(1/δ), where δ > 0 is a failure probability; see
Table 1 for a summary of the dependence of the sampling complexity on k and ε. The
first algorithm takes time linear in max(m,n) and the other takes time independent
of m and n. Our bounds improve previously published results with respect to the
rank parameter k for both the Frobenius and the spectral norms. In addition, the
proofs for the error bounds use a novel method that makes important use of matrix
perturbation theory. The probability distribution over columns of A and the rescaling
are crucial features of the algorithms which must be chosen judiciously.

It is worth emphasizing how this work fits into recent work on computing low-rank
matrix approximations. In the original work of Frieze, Kannan, and Vempala [16] (see
also [17]) it was shown that by working with a randomly chosen and constant-sized
submatrix of A, one could obtain bounds of the form (1) for the Frobenius norm
(and thus indirectly for the spectral norm). To achieve an additional error that is at

most ε ‖A‖2
F , the size of the submatrix was a constant with respect to m and n but

depended polynomially on k and 1/ε; although the submatrix was constant-sized, its
construction (in particular, the construction of the sampling probabilities) required
space and thus time that was linear in m+ n. In this work, we modify the algorithm
of [16] so that both the construction of and the computation on the constant-sized
submatrix requires only constant additional space and time; thus, it fits within the
framework of the pass-efficient model of data-streaming computation [12, 13]. In
addition, we provide a different proof of the main result of [16] for the Frobenius norm
and improve the polynomial dependence on k. Our proof method is quite different
than that of [16]; it relies heavily on the approximate matrix multiplication result of
[13] and [11] and it uses the Hoffman–Wielandt inequality. In addition, we provide a
proof of a direct and significantly improved bound with respect to the spectral norm.
Since these results are technically quite complex, we also present the corresponding
proofs for both norms in the linear additional space and time framework [12, 13].
These latter results have been presented in the context of clustering applications [10],
but are included here for completeness and to provide motivation and clarity for the
more complex constant time results. Table 1 provides a summary of our results, for
both the linear and the constant time models, and shows the number of rows and
columns to be sampled sufficient to ensure, with high probability, an additional error
of ε ‖A‖2

F in (1); see section 6 for more discussion.

In other related work, Achlioptas and McSherry have also computed low-rank
approximations using somewhat different sampling techniques [2, 1]. The primary
focus of their work was in introducing methods to accelerate orthogonal iteration and
Lanczos iteration, which are two commonly used methods for computing low-rank
approximations to a matrix. Also included in [2, 1] is a comparison of their methods
with those of [10, 12, 16] and thus with the results we present here. Our algorithms

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 161

and those of [16] and [2, 1] come with mathematically rigorous guarantees of the
running time and of the quality of the approximation produced. As far as we know,
so-called incremental SVD algorithms, which bring as much of the data as possible
into memory, compute the SVD, and then update this SVD in an incremental fashion
with the remaining data, do not come with such guarantees.

In section 2 several applications areas that deal with large matrices are discussed,
and in section 3 we provide a review of relevant linear algebra, the pass-efficient
model, and an approximate matrix multiplication result that will be used extensively.
Then, in section 4 our linear additional space and time approximation algorithm, the
LinearTimeSVD algorithm, is presented and analyzed; in section 5 our constant
additional space and time approximation algorithm, the ConstantTimeSVD algo-
rithm, is presented and analyzed. Finally, in section 6 a discussion and conclusion are
presented.

2. Some applications. There are numerous applications in which the data are
well approximated by a low-rank matrix. In this section we discuss several such
applications to provide motivation for our algorithms.

2.1. Latent semantic indexing. Latent semantic indexing (LSI) is a general
technique for analyzing a collection of documents which are assumed to be related
[7, 9, 25]. Approaches to retrieving textual information from databases that depend
on a lexical match between words in the query and words in the document can be
inaccurate, both because often users want to retrieve information on the basis of
conceptual content and because individual words do not in general provide reliable
evidence about the conceptual topic of a document. LSI is an alternative matching
method that attempts to overcome problems associated with lexical matching; it does
so by assuming that there is some underlying or latent semantic structure that is
partially obscured by variability in word choice and then using techniques such as
SVD to remove the noise and estimate this latent structure.

Suppose that there are m documents and n terms which occur in the documents.
Latent semantic structure analysis starts with a term-document matrix, e.g., a matrix
A ∈ R

m×n, where Aij is frequency of the jth term in the ith document. A topic is
modeled as an n-vector of nonnegative reals summing to 1, where the jth component
of a topic vector is interpreted as the frequency with which the jth term occurs in a
discussion of the topic. By assumption, the number of topics that the documents are
about is small relative to the number of unique terms n. It can be argued that, for
a given k, finding a set of k topics which best describe the documents corresponds
to keeping only the top k singular vectors of A; most of the important underlying
structure in the association of terms and documents will then be kept and most of
the noise or variability in word usage will be removed.

2.2. DNA microarray data. DNA microarray technology has been used to
study a variety of biological processes since it permits the monitoring of the expres-
sion levels of thousands of genes under a range of experimental conditions [3, 26, 28].
Depending on the particular technology, either the absolute or the relative expres-
sion levels of m genes, which for model organisms may constitute nearly the entire
genome, are probed simultaneously by a single microarray. A series of n arrays probe
genome-wide expression levels in n different samples, i.e., under n different experi-
mental conditions. The data from microarray experiments may thus be represented
as a matrix A ∈ R

m×n, where Aij represents the expression level of gene i under
experimental condition j. From this matrix, both the relative expression level of the

162 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

ith gene under every condition and also the relative expression level of every gene
under the jth condition may be easily extracted.

This matrix is low-rank and thus a small number of eigengenes and corresponding
eigenarrays (left and right singular vectors) are sufficient to capture most of the gene
expression information. Removing the rest, which correspond to noise or experimen-
tal artifacts, enables meaningful comparison of the expression levels of different genes.
When processing and modeling genome-wide expression data, the SVD and its low-
rank approximation provides a framework such that the mathematical variables and
operations suggest assigned biological meaning, e.g., in terms of cellular regulatory
processes and cellular states, that may be hidden in the original data due to exper-
imental noise or hidden dependencies. Expression data has been used for inference
tasks such as to identify genes based on coexpression, predict regulatory elements,
and reverse-engineer transcription networks, but this inference is difficult with noise
or dependencies.

2.3. Eigenfaces and facial recognition. Applications of SVD and low-rank
approximations in computer vision include pattern estimation, image compression
and restoration, and facial and object recognition, where the concept of eigenfaces
has been useful [29, 24].

The goal of facial recognition is to recognize a certain face given a database of
photographs of human faces under variations in lighting conditions and pose view-
points. A common approach is to represent the database as a matrix in which the rows
of the matrix are the images represented as vectors. Thus, if there are m images, each
of which is of size n × n, the matrix A ∈ R

m×n2

represents the database of images,
where Aij is the jth pixel value in the ith image. Typically, m � n2 and, although
many of the singular vectors are needed for very accurate reconstruction of an image,
often only a few of the singular vectors are needed to extract the major appearance
characteristics of an image. The right singular vectors of the matrix A are known as
eigenfaces since they are the principal components or eigenvectors of the associated
correlation matrix of the set of face images. The eigenfaces are computed and they
are used to project the database of photographs to a lower-dimensional space that
spans the significant variations among known facial images. Then, given a new image,
it is projected to the same low-dimensional space, and its position is then compared
to the images in the database.

2.4. Web search model. The problem of how to extract information from the
network structure of a hyperlinked environment such as the World Wide Web was
considered by Kleinberg [22]. This is of interest, for example, if one wants to find web
pages that are relevant to a given query and one is using a keyword-based web search
program, since there is no obvious endogenous measure of an authoritative page that
would favor it under a text-based ranking system.

Starting with a set of pages returned by a text-based search engine, a document
is defined to be an authority if many other documents returned by the search point
to it, i.e., have a hypertext link to it. A document is defined to be a hub if it points
to many other documents. More generally, suppose n documents are returned by the
search engine. Then, a matrix A ∈ R

m×n is defined, where Aij is 1 or 0 depending on
whether the ith document points to the jth document. Kleinberg attempts to find two
n-vectors, x and y, where xi is the hub weight of document i and yj is the authority
weight of document j. He then argues that it is desirable to find max|x|=|y|=1 x

TAy,
where | · | denotes the Euclidean length, since in maximizing x, y one expects the hub
weights and authority weights to be mutually consistent. This is simply the problem of

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 163

finding the singular vectors of A. Since A is large, he judiciously chooses a submatrix
of A and computes only the singular vectors of it. In the case when the key word
has multiple meanings, not only the top but also some of the other singular vectors
with large singular values are interesting. Thus, it is of interest to find the k largest
singular vectors form some small k. This is the problem we are considering, and we
also find the singular vectors of a submatrix, but a randomly chosen one.

3. Review of relevant background. This section contains a review of linear
algebra that will be useful throughout the paper; for more detail, see [18, 19, 27, 8]
and the references therein. This section also contains a review of the pass-efficient
model of data-streaming computation (which provides a framework within which our
SVD results may be viewed) and a matrix multiplication result that will be used
extensively in our proofs; see [11, 12, 13] for more details.

3.1. Review of linear algebra. For a vector x ∈ R
n we let xi, i = 1, . . . , n,

denote the ith element of x and we let |x| = (
∑n

i=1 |xi|2)1/2. For a matrix A ∈ R
m×n

we let A(j), j = 1, . . . , n, denote the jth column of A as a column vector and A(i),
i = 1, . . . ,m, denote the ith row of A as a row vector; thus, if Aij denotes the (i, j)th
element of A, Aij = (A(j))i = (A(i))j . The range of an A ∈ R

m×n is

range(A) = {y ∈ R
m : y = Ax for some x ∈ R

n} = span(A(1), . . . , A(n)).

The rank of A, rank(A), is the dimension of range(A) and is equal to the number of
linearly independent columns of A; since this is equal to rank(AT) it also equals the
number of linearly independent rows of A. The null space of A is

null(A) = {x ∈ R
n : Ax = 0}.

For a matrix A ∈ R
m×n we denote matrix norms by ‖A‖ξ, using subscripts to

distinguish between various norms. Of particular interest will be the Frobenius norm,
which is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij .(2)

If Tr (A) is the matrix trace which is the sum of the diagonal elements of A, then

‖A‖2
F = Tr(ATA) = Tr(AAT). Also of interest is the spectral norm, which is defined

by

‖A‖2 = sup
x∈Rn, x �=0

|Ax|
|x| .(3)

Both of these norms are submultiplicative and unitarily invariant and they are related
to each other as

‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2 .

Both of these norms provide a measure of the “size” of the matrix A. Note that if
A ∈ R

m×n, then there exists an x ∈ R
n such that |x| = 1 and ATAx = ‖A‖2

2 x and

that if {x1, x2, . . . , xn} is any basis of R
n and if A ∈ R

m×n, then ‖A‖2
F =

∑n
i=1

∣∣Axi
∣∣2.

164 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

If A ∈ R
m×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ R

m×m

and V = [v1v2 . . . vn] ∈ R
n×n where {ut}mt=1 ∈ R

m and {vt}nt=1 ∈ R
n are such that

UTAV = Σ = diag(σ1, . . . , σρ),(4)

where Σ ∈ R
m×n, ρ = min{m,n}, and σ1 ≥ σ2 ≥ · · · ≥ σρ ≥ 0. Equivalently,

A = UΣV T .

The three matrices U , V , and Σ constitute the SVD of A. The σi are the singular
values of A and the vectors ui, vi are the ith left and the ith right singular vectors,
respectively. The columns of U and V satisfy the relations Avi = σiu

i and ATui =
σiv

i. For symmetric matrices the left and right singular vectors are the same. The
singular values of A are the nonnegative square roots of the eigenvalues of ATA and of
AAT ; furthermore, the columns of U , i.e., the left singular vectors, are eigenvectors of
AAT and the columns of V , i.e., the right singular vectors, are eigenvectors of ATA.

The SVD can reveal important information about the structure of a matrix. If
we define r by σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σρ = 0, then rank(A) = r,
null(A) = span(vr+1, . . . , vρ), and range(A) = span(u1, . . . , ur). If we let Ur ∈ R

m×r

denote the matrix consisting of the first r columns of U , Vr ∈ R
r×n denote the matrix

consisting of the first r columns of V , and Σr ∈ R
r×r denote the principal r × r

submatrix of Σ, then

A = UrΣrV
T
r =

r∑
t=1

σtu
tvt

T
.(5)

Note that this decomposition property provides a canonical description of a matrix
as a sum of r rank-one matrices of decreasing importance. If k ≤ r and we define

Ak = UkΣkV
T
k =

k∑
t=1

σtu
tvt

T
,(6)

then Ak = UkU
T
k A = (

∑k
t=1 u

tutT)A and Ak = AVkV
T
k = A(

∑k
t=1 v

tvt
T
), i.e., Ak

is the projection of A onto the space spanned by the top k singular vectors of A.
Furthermore, the distance (as measured by both ‖·‖2 and ‖·‖F) between A and any
rank-k approximation to A is minimized by Ak, i.e.,

min
D∈Rm×n:rank(D)≤k

‖A−D‖2 = ‖A−Ak‖2 = σk+1(A)(7)

and

min
D∈Rm×n:rank(D)≤k

‖A−D‖2
F = ‖A−Ak‖2

F =

r∑
t=k+1

σ2
t (A).(8)

Thus, Ak constructed from the k largest singular triplets of A is the optimal rank-k
approximation to A with respect to both ‖·‖F and ‖·‖2. More generally, one can also

show that ‖A‖2 = σ1 and that ‖A‖2
F =

∑r
i=1 σ

2
i .

From the perturbation theory of matrices it is known that the size of the difference
between two matrices can be used to bound the difference between the singular value
spectrum of the two matrices [27, 8]. In particular, if A,E ∈ R

m×n,m ≥ n, then

max
t:1≤t≤n

|σt(A + E) − σt(A)| ≤ ‖E‖2(9)

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 165

and
n∑

k=1

(σk(A + E) − σk(A))2 ≤ ‖E‖2
F .(10)

The latter inequality is known as the Hoffman–Wielandt inequality.

3.2. Review of the pass-efficient model. The pass-efficient model of data-
streaming computation is a computational model that is motivated by the observation
that in modern computers the amount of disk storage, i.e., sequential access memory,
has increased very rapidly, while RAM and computing speeds have increased at a
substantially slower pace [13, 12]. In the pass-efficient model the three scarce compu-
tational resources are number of passes over the data and the additional RAM space
and additional time required by the algorithm. The data are assumed to be stored on
a disk, to consist of elements whose size is bounded by a constant, and to be presented
to an algorithm on a read-only tape. See [13] for more details.

3.3. Review of matrix multiplication. The BasicMatrixMultiplication

algorithm to approximate the product of two matrices is presented and analyzed in
[13]. When this algorithm is given as input two matrices, A ∈ R

m×n and B ∈ R
n×p,

a probability distribution {pi}ni=1, and a number c ≤ n, it returns as output two
matrices, C and R, such that CR ≈ AB; C ∈ R

m×c is a matrix whose columns are
c randomly chosen columns of A (suitably rescaled) and R ∈ R

c×p is a matrix whose
rows are the c corresponding rows of B (also suitably rescaled). An important aspect
of this algorithm is the probability distribution {pi}ni=1 used to choose column-row
pairs. Although one could always use a uniform distribution, superior results are
obtained if the probabilities are chosen judiciously. In particular, a set of sampling
probabilities {pi}ni=1 are nearly optimal probabilities if they are of the form (11) and
are the optimal probabilities (with respect to approximating the product AB) if they
are of the form (11) with β = 1. In [13] we prove the following theorem.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n, and

{pi}ni=1 are such that pi ≥ 0,
∑n

i=1 pi = 1 and such that for some positive constant
β ≤ 1

pk ≥
β
∣∣A(k)

∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ .(11)

Construct C and R with the BasicMatrixMultiplication algorithm of [13] and
let CR be an approximation to AB. Then

E
[
‖AB − CR‖2

F

]
≤ 1

βc
‖A‖2

F ‖B‖2
F .(12)

Furthermore, let δ ∈ (0, 1) and η = 1 +
√

(8/β) log(1/δ). Then, with probability at
least 1 − δ,

‖AB − CR‖2
F ≤ η2

βc
‖A‖2

F ‖B‖2
F .(13)

In [13] it is shown that after one pass over the matrices nearly optimal probabilities
can be constructed. In the present paper, we will be particularly interested in the
case that B = AT . In this case, using the Select algorithm of [13] random samples
can be drawn according to nearly optimal probabilities using O(1) additional space
and time.

166 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

LinearTimeSVD Algorithm.

Input: A ∈ R
m×n, c, k ∈ Z

+ such that 1 ≤ k ≤ c ≤ n, {pi}ni=1 such that pi ≥ 0 and∑n
i=1 pi = 1.

Output: Hk ∈ R
m×k and σt(C), t = 1, . . . , k.

1. For t = 1 to c,
(a) Pick it ∈ 1, . . . , n with Pr [it = α] = pα, α = 1, . . . , n.
(b) Set C(t) = A(it)/

√
cpit .

2. Compute CTC and its SVD; say CTC =
∑c

t=1 σ
2
t (C)ytyt

T
.

3. Compute ht = Cyt/σt(C) for t = 1, . . . , k.

4. Return Hk, where H
(t)
k = ht, and σt(C), t = 1, . . . , k.

Fig. 1. The LinearTimeSVD algorithm.

R
n

V

{vi}��

ΣA ��
R

m

U

{ui} ��
R

n A ��
R

m
R

m
H(=UC)

{hi}
��

R
c

C

��

CTC

�� R
c

Y (=VC)

{yi}��

ΣC

��

Fig. 2. Diagram for the LinearTimeSVD algorithm.

4. Linear time SVD approximation algorithm.

4.1. The algorithm. Given a matrix A ∈ R
m×n we wish to approximate its

top k singular values and the corresponding singular vectors in a constant number of
passes through the data and O(cm+ c2) additional space and O(c2m+ c3) additional
time. The strategy behind the LinearTimeSVD algorithm is to pick c columns of
the matrix A, rescale each by an appropriate factor to form a matrix C ∈ R

m×c, and
then compute the singular values and corresponding left singular vectors of the matrix
C, which will be approximations to the singular values and left singular vectors of A,
in a sense we make precise later. These are calculated by performing an SVD of the
matrix CTC to compute the right singular vectors of C and from them calculating
the left singular vectors of C.

The LinearTimeSVD algorithm is described in Figure 1; it takes as input a
matrix A and returns as output an approximation to the top k left singular values
and the corresponding singular vectors. Note that by construction the SVD of C is

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 167

C = HΣCY
T . A diagram illustrating the action of the LinearTimeSVD algorithm is

presented in Figure 2. The transformation represented by the matrix A is shown along
with its SVD, and the transformation represented by the matrix C is also shown along
with its SVD. It will be shown that if the probabilities {pi}ni=1 are chosen judiciously,
then the left singular vectors of C are with high probability approximations to the
left singular vectors of A.

In section 4.2 we discuss running-time issues, and in section 4.3 we will prove the
correctness of the algorithm.

4.2. Analysis of the implementation and running time. Assuming that
nearly optimal sampling probabilities (as defined in section 3.3) are used, then in
the LinearTimeSVD algorithm the sampling probabilities pk can be used to select
columns to be sampled in one pass and O(c) additional space and time using the
Select algorithm of [13]. Given the elements to be sampled, the matrix C can then
be constructed in one additional pass; this requires additional space and time that
is O(mc). Given C ∈ R

m×c, computing CTC requires O(mc) additional space and
O(mc2) additional time, and computing the SVD of CTC requires O(c3) additional
time. Then computing Hk requires k matrix-vector multiplications for a total of
O(mck) additional space and time. Thus, overall O(cm + c2) additional space and
O(c2m + c3) additional time are required by the LinearTimeSVD algorithm. Note
that the “description” of the solution that is computable in the allotted additional
space and time is the explicit approximation to the top k singular values and corre-
sponding left singular vectors.

4.3. Analysis of the sampling step. Approximating A by Ak = UkU
T
k A

incurs an error equal to ‖A−Ak‖2
F =

∑r
t=k+1 σ

2
t (A) and ‖A−Ak‖2 = σk+1(A),

since Ak is the “optimal” rank-k approximation to A with respect to both ‖·‖F and
‖·‖2. We will show that in addition to this error the matrix HkH

T
k A has an error that

depends on ‖AAT −CCT ‖F . Then, using the results of Theorem 1, we will show that

this additional error depends on ‖A‖2
F . We first consider obtaining a bound with

respect to the Frobenius norm.

Theorem 2. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm. Then

∥∥A−HkH
T
k A

∥∥2

F
≤ ‖A−Ak‖2

F + 2
√
k
∥∥AAT − CCT

∥∥
F
.

Proof. Recall that for matrices X and Y , ‖X‖2
F = Tr(XTX), Tr (X + Y) =

Tr (X) + Tr (Y), and also that HT
k Hk = Ik. Thus, we may express

∥∥A−HkH
T
k A

∥∥2

F
as

∥∥A−HkH
T
k A

∥∥2

F
= Tr

(
(A−HkH

T
k A)T (A−HkH

T
k A)

)

= Tr
(
ATA− 2ATHkH

T
k A + ATHkH

T
k HkH

T
k A

)
= Tr

(
ATA

)
− Tr

(
ATHkH

T
k A

)

= ‖A‖2
F −

∥∥ATHk

∥∥2

F
.(14)

168 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

We may relate
∥∥ATHk

∥∥2

F
and

∑k
t=1 σ

2
t (C) by the following:

∣∣∣∣∣
∥∥ATHk

∥∥2

F
−

k∑
t=1

σ2
t (C)

∣∣∣∣∣ ≤
√
k

(
k∑

t=1

(∣∣ATht
∣∣2 − σ2

t (C)
)2

)1/2

=
√
k

(
k∑

t=1

(∣∣ATht
∣∣2 − ∣∣CTht

∣∣2)2
)1/2

=
√
k

(
k∑

t=1

(
htT (AAT − CCT)ht

)2
)1/2

≤
√
k
∥∥AAT − CCT

∥∥
F
.(15)

The first inequality follows by applying the Cauchy–Schwarz inequality; the last in-
equality follows by writing AAT and CCT with respect to a basis containing {ht}kt=1.
By again applying the Cauchy–Schwarz inequality, noting that σ2

t (X) = σt(XXT) for
a matrix X, and applying the Hoffman–Wielandt inequality (10), we may also relate∑k

k=1 σ
2
t (C) and

∑k
k=1 σ

2
t (A) by the following:

∣∣∣∣∣
k∑

t=1

σ2
t (C) −

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤
√
k

(
k∑

t=1

(
σ2
t (C) − σ2

t (A)
)2)1/2

=
√
k

(
k∑

t=1

(
σt(CCT) − σt(AAT)

)2)1/2

≤
√
k

(
m∑
t=1

(
σt(CCT) − σt(AAT)

)2)1/2

≤
√
k
∥∥CCT −AAT

∥∥
F
.(16)

Combining the results of (15) and (16) allows us to relate
∥∥ATHk

∥∥2

F
and

∑k
t=1 σ

2
t (A)

by the following:

∣∣∣∣∣
∥∥ATHk

∥∥2

F
−

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤ 2
√
k
∥∥AAT − CCT

∥∥
F
.(17)

Combining (17) with (14) yields the theorem.

We next prove a similar result for the spectral norm; note that the factor
√
k is

not present.

Theorem 3. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm. Then

∥∥A−HkH
T
k A

∥∥2

2
≤ ‖A−Ak‖2

2 + 2
∥∥AAT − CCT

∥∥
2
.

Proof. Let Hk = range(Hk) = span(h1, . . . , hk) and let Hm−k be the orthogonal
complement of Hk. Let x ∈ R

m and let x = αy + βz, where y ∈ Hk, z ∈ Hm−k, and

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 169

α2 + β2 = 1; then

∥∥A−HkH
T
k A

∥∥
2

= max
x∈Rm,|x|=1

∣∣xT (A−HkH
T
k A)

∣∣
= max

y∈Hk,|y|=1,z∈Hm−k,|z|=1,α2+β2=1

∣∣(αyT + βzT)(A−HkH
T
k A)

∣∣
≤ max

y∈Hk,|y|=1

∣∣yT (A−HkH
T
k A)

∣∣ + max
z∈Hm−k,|z|=1

∣∣zT (A−HkH
T
k A)

∣∣(18)

= max
z∈Hm−k,|z|=1

∣∣zTA∣∣ .(19)

Inequality (18) follows since α, β ≤ 1 and (19) follows since y ∈ Hk and z ∈ Hm−k.
We next bound (19):

∣∣zTA∣∣2 = zTCCT z + zT
(
AAT − CCT

)
z

≤ σ2
k+1(C) + ‖AAT − CCT ‖2(20)

≤ σ2
k+1(A) + 2‖AAT − CCT ‖2(21)

= ‖A−Ak‖2
2 + 2‖AAT − CCT ‖2.(22)

Inequality (20) follows since maxz∈Hm−k
|zTC| occurs when z is the (k + 1)st left

singular vector, i.e., the maximum possible in the Hm−k subspace. Inequality (21)
follows since σ2

k+1(C) = σk+1(CCT) and since by (9) we have that σ2
k+1(C) ≤

σk+1(AA
T)+‖AAT −CCT ‖2; (22) follows since ‖A−Ak‖2 = σk+1(A). The theorem

then follows by combining (19) and (22).
Theorems 2 and 3 hold regardless of the sampling probabilities {pi}ni=1. Since

‖A−Ak‖ξ, ξ = 2, F , is a property of the matrix A, the choice of sampling probabili-
ties enters into the error of ‖A−HkH

T
k A‖2

ξ only through the term involving the addi-
tional error beyond the optimal rank-k approximation, i.e., the term ‖AAT −CCT ‖ξ.
Although the additional error in Theorem 3 depends on ‖AAT −CCT ‖2, we note that
‖AAT − CCT ‖2 ≤ ‖AAT − CCT ‖F and will use a bound for the latter quantity to
bound the former in the following. Note that the prefactor of the additional error is
2
√
k for ‖·‖2

F , while that for ‖·‖2
2 is only 2.

In the following theorem we specialize the sampling probabilities to be those that
are nearly optimal; by choosing enough columns, the error in the approximation of
the SVD can be made arbitrarily small.

Theorem 4. Suppose A ∈ R
m×n; let Hk be constructed from the Linear-

TimeSVD algorithm by sampling c columns of A with probabilities {pi}ni=1 such that

pi ≥ β
∣∣A(i)

∣∣2 / ‖A‖2
F for some positive β ≤ 1, and let η = 1 +

√
(8/β) log(1/δ). Let

ε > 0. If c ≥ 4k/βε2, then

E
[∥∥A−HkH

T
k A

∥∥2

F

]
≤ ‖A−Ak‖2

F + ε ‖A‖2
F ,(23)

and if c ≥ 4kη2/βε2, then with probability at least 1 − δ,

∥∥A−HkH
T
k A

∥∥2

F
≤ ‖A−Ak‖2

F + ε ‖A‖2
F .(24)

In addition, if c ≥ 4/βε2, then

E
[∥∥A−HkH

T
k A

∥∥2

2

]
≤ ‖A−Ak‖2

2 + ε ‖A‖2
F ,(25)

170 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

and if c ≥ 4η2/βε2, then with probability at least 1 − δ,

∥∥A−HkH
T
k A

∥∥2

2
≤ ‖A−Ak‖2

2 + ε ‖A‖2
F .(26)

Proof. By combining Theorems 2 and 3 with Theorem 1 we have that

E
[∥∥A−HkH

T
k A

∥∥2

F

]
≤ ‖A−Ak‖2

F +

(
4k

βc

)1/2

‖A‖2
F ,(27)

E
[∥∥A−HkH

T
k A

∥∥2

2

]
≤ ‖A−Ak‖2

2 +

(
4

βc

)1/2

‖A‖2
F ,(28)

and that with probability at least 1 − δ,

∥∥A−HkH
T
k A

∥∥2

F
≤ ‖A−Ak‖2

F +

(
4η2k

βc

)1/2

‖A‖2
F ,(29)

∥∥A−HkH
T
k A

∥∥2

2
≤ ‖A−Ak‖2

2 +

(
4η2

βc

)1/2

‖A‖2
F .(30)

The theorem follows by using the appropriate value of c.
Note that alternatively one could sample rows instead of columns of a matrix;

in this case, a modified version of the LinearTimeSVD algorithm leads to results
analogous to Theorems 2 through 4.

5. Constant time SVD approximation algorithm.

5.1. The algorithm. Given a matrix A ∈ R
m×n we now wish to approximate its

top k singular values and the corresponding singular vectors in a constant number of
passes through the data and additional space and time that are O(1), independent of m
and n. The strategy behind the ConstantTimeSVD algorithm is to pick c columns
of the matrix A, rescale each by an appropriate factor to form a matrix C ∈ R

m×c,
and then compute approximations to the singular values and left singular vectors
of the matrix C, which will then be approximations to the singular values and left
singular vectors of A. In the LinearTimeSVD algorithm of section 4, the left singular
vectors of the matrix C are computed exactly; as the analysis of section 4.2 showed,
this computation takes additional space and time that is linear in m + n (assuming
that c is constant). With the ConstantTimeSVD algorithm, in order to use only a
constant O(1) additional space and time, sampling is performed again, drawing rows
of C to construct a matrix W ∈ R

w×c. The SVD of WTW is then computed; let
WTW = ZΣWTWZT = ZΣ2

WZT . The singular values and corresponding singular
vectors so obtained are with high probability approximations to the singular values
and singular vectors of CTC and thus to the singular values and right singular vectors
of C. Note that this is simply using the LinearTimeSVD algorithm to approximate
the right singular vectors of C by randomly sampling rows of C.

The ConstantTimeSVD algorithm is described in Figure 3; it takes as input
a matrix A and returns as output a “description” of an approximation to the top
k left singular values and the corresponding singular vectors. This “description”
of the approximations to the left singular vectors of A may, at the expense of one
additional pass and linear additional space and time, be converted into an explicit

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 171

ConstantTimeSVD Algorithm.

Input: A ∈ R
m×n, c, w, k ∈ Z

+ such that 1 ≤ w ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(w, c), and {pi}ni=1 such that pi ≥ 0 and

∑n
i=1 pi = 1.

Output: σt(W), t = 1, . . . ,
 and a “description” of H̃� ∈ R
m×�.

1. For t = 1 to c,
(a) Pick it ∈ 1, . . . , n with Pr [it = α] = pα, α = 1, . . . , n, and save {(it, pjt) :

t = 1, . . . , c}.
(b) Set C(t) = A(it)/

√
cpit . (Note that C is not explicitly constructed in

RAM.)

2. Choose {qj}mj=1 such that qj =
∣∣C(j)

∣∣2 / ‖C‖2
F .

3. For t = 1 to w,
(a) Pick jt ∈ 1, . . . ,m with Pr [jt = α] = qα, α = 1, . . . ,m.
(b) Set W(t) = C(jt)/

√
wqjt .

4. Compute WTW and its SVD. Say WTW =
∑c

t=1 σ
2
t (W)ztzt

T
.

5. If a ‖·‖F bound is desired, set γ = ε/100k,
Else if a ‖·‖2 bound is desired, set γ = ε/100.

6. Let
 = min{k,max{t : σ2
t (W) ≥ γ ‖W‖2

F }}.
7. Return singular values {σt(W)}�t=1 and their corresponding singular vectors

{zt}�t=1.

Fig. 3. The ConstantTimeSVD algorithm.

approximation to the left singular vectors of A by using C = H̃ΣWZT to compute H̃,
whose columns are approximations of the left singular vectors of C. Note that γ in
the ConstantTimeSVD algorithm is introduced to bound small singular values of
C that may be perturbed by the second level of sampling; as indicated, the particular
value of γ that is chosen depends on the norm bound which is desired. Note also that
the probabilities {qj}mj=1 used in the algorithm are optimal (in the sense of section

3.3), as will be the probabilities {pi}ni=1 which will enter into Theorem 5.

A diagram illustrating the action of the ConstantTimeSVD algorithm is pre-
sented in Figure 4. The transformation represented by the matrix A is represented
along with its SVD, and the transformation represented by the matrix C is also shown
(but note that its SVD is not shown). The transformation represented by the matrix
W , which is constructed from C with the second level of sampling, is also shown along
with its SVD. In addition, approximations to the right singular vectors of C and to
the left singular vectors of C calculated from C = H̃ΣWZT are shown.

In section 5.2 we will show that this algorithm takes O(1), i.e., a constant with
respect to m and n, additional space and time, assuming that c and w are constant.
In section 5.3 we will state Theorem 5, which will establish the correctness of the
algorithm; this theorem is the main result of this section and is the analogue of
Theorem 4. Finally, in section 5.4 we will prove Theorem 5.

5.2. Analysis of the implementation and running time. Assuming that
optimal sampling probabilities (as defined in section 3.3) are used, then in the Con-

stantTimeSVD algorithm the sampling probabilities pk can be used to select columns
to be sampled in one pass and O(c) additional space and time using the Select algo-
rithm of [13]. Given the columns of A to be sampled, we do not explicitly construct the

172 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

R
n

V

{vi}��

ΣA ��
R

m

U

{ui} ��
R

n A ��
R

m
R

mH̃

{h̃i}
��

R
c

C

��

W

����
��

��
��

��
��

�
WTW

��
R

c
Z(=VW)

{zi}��

ΣW

��

ΣW

����
��

��
��

��
��

�

R
w

R
w

UW

��

Fig. 4. Diagram for the ConstantTimeSVD algorithm.

matrix C but instead perform a second level of sampling and select w rows of C with
probabilities {qi}mi=1 (as described in the ConstantTimeSVD algorithm) in order
to construct the matrix W . We do this by performing a second pass and using O(w)
additional space and time, again using the Select algorithm. Then in a third pass we
explicitly construct W ; this requires additional space and time that is O(cw). Then,
given W , computing WTW requires O(cw) additional space and O(c2w) additional
time, and computing the SVD of WTW requires O(c3) additional time. The singular
values and corresponding singular vectors thus computed can then be returned as the
“description” of the solution. The total additional time for the ConstantTimeSVD

algorithm is then O(c3 + cw2); this is a constant if c and w are assumed to be a
constant. To explicitly compute H̃k would require k matrix-vector multiplications
which would require another pass over the data and O(mck) additional space and
time.

5.3. Statement of Theorem 5. This subsection and the next provide an anal-
ysis of the ConstantTimeSVD algorithm similar to the analysis of the Linear-

TimeSVD algorithm found in section 4.3. Recall that in section 4 we were interested

in bounding
∥∥A−HkH

T
k A

∥∥2

ξ
, where ξ = F, 2. In that case, HT

k Hk = Ik, HkH
T
k was

an orthonormal projection, and HkH
T
k A was our rank at most k approximation to A.

In the constant time model, we do not have access to Hk but instead to H̃�, where the
columns of H̃�, i.e., h̃t = Czt/σt(W), t = 1, . . . ,
, do not form an orthonormal set.
However, by Lemma 2 of section 5.4.1, if C and W are constructed by sampling with
optimal probabilities, then with high probability the columns of H̃� are approximately

orthonormal, H̃T
� H̃� ≈ I�, and H̃�H̃

T
� =

∑�
t=1 h̃

th̃tT is approximately an orthonormal
projection. Applying this to A, we will get our low-rank approximation. Note that in
dealing with this nonorthonormality the original proof of [16] contained a small error
which was corrected in the journal version [17].

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 173

In this section and the next we use the following notation. Recall that the SVD
of WTW ∈ R

c×c is

WTW =

c∑
t=1

σ2
t (W)ztzt

T
= ZΣ2

WZT ,(31)

where Z ∈ R
c×c. Define Zα,β ∈ R

c×(β−α+1) to be the matrix whose columns are the
αth through the βth singular vectors of WTW . Then

H̃� = CZ1,�T,(32)

where T ∈ R
�×� is the diagonal matrix with elements Ttt = 1/σt(W). In addition, let

the SVD of H̃� be

H̃� = B�ΣH̃�
DT

� ,(33)

and let us define the matrix Δ ∈ R
�×� to be

Δ = TZT
1,�(C

TC −WTW)Z1,�T.(34)

We will see that Δ is a measure of the degree to which the columns of H̃� are not
orthonormal.

Theorem 5 is the constant time analogue of Theorem 4 and is the main result
of this section. Note that since the results from sampling at the second step, i.e.,
sampling from the matrix C to form the matrix W , depend on the samples chosen
in the first sampling step, we do not state the following results in expectation, but
instead state them with high probability.

Theorem 5. Suppose A ∈ R
m×n; let a description of H̃� be constructed from

the ConstantTimeSVD algorithm by sampling c columns of A with probabilities
{pi}ni=1 and w rows of C with probabilities {qj}mj=1 where pi = |A(i)|2/ ‖A‖2

F and

qj = |C(j)|2/ ‖C‖2
F . Let η = 1 +

√
8 log(2/δ) and ε > 0.

If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-
rithm is run with γ = ε/100k, then by choosing c = Ω(k2η2/ε4) columns of A and
w = Ω(k2η2/ε4) rows of C we have that with probability at least 1 − δ,

∥∥A− H̃�H̃
T
� A

∥∥2

F
≤ ‖A−Ak‖2

F + ε ‖A‖2
F .(35)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm
is run with γ = ε/100, then by choosing c = Ω(η2/ε4) columns of A and w = Ω(η2/ε4)
rows of C we have that with probability at least 1 − δ,

∥∥A− H̃�H̃
T
� A

∥∥2

2
≤ ‖A−Ak‖2

2 + ε ‖A‖2
F .(36)

Proof. See section 5.4 for the proof.
Recall that in section 4 we first proved Theorems 2 and 3, which provided a bound

on
∥∥A−HkH

T
k A

∥∥2

F
and

∥∥A−HkH
T
k A

∥∥2

2
, respectively, for arbitrary probabilities,

and then we proved Theorem 4 for the nearly optimal probabilities. Although a
similar presentation strategy could be adopted in this section, in the interests of
simplicity (due to the technically more complicated proofs in the constant time model)
we instead immediately restrict ourselves in Theorem 5 to the case of optimal sampling
probabilities and defer the proofs of the supporting lemmas to section 5.4.

174 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

5.4. Proof of Theorem 5. In this section, we prove Theorem 5. We start in
section 5.4.1 with several lemmas that are common to both the Frobenius and spectral
norms. Then in section 5.4.2 we provide the proof of (35). Finally, in section 5.4.3
we provide the proof of (36).

5.4.1. General lemmas. In this section, we prove four lemmas that are used
in the proofs of both the Frobenius and spectral norm results.

First, we relate
∥∥A− H̃�H̃

T
� A

∥∥2

ξ
, for ξ = 2, F , to

∥∥A−B�B
T
� A

∥∥2

ξ
plus an error

term; we do so since the columns of B� are orthonormal, which will allow us to bound∥∥A − B�B
T
� A

∥∥2

ξ
using arguments similar to those used to bound

∥∥A −HkH
T
k A

∥∥2

ξ
in

Theorems 2 and 3.

Lemma 1. For ξ = 2, F and for any ε > 0,

∥∥A− H̃�H̃
T
� A

∥∥2

ξ
≤
(
1 +

ε

100

)∥∥A−B�B
T
� A

∥∥2

ξ
+

(
1 +

100

ε

)∥∥B�B
T
� − H̃�H̃

T
�

∥∥2

ξ
‖A‖2

ξ .

Proof. By subadditivity and submultiplicitivity,

∥∥A− H̃�H̃
T
� A

∥∥2

ξ
≤

(∥∥A−B�B
T
� A

∥∥
ξ
+
∥∥B�B

T
� − H̃�H̃

T
�

∥∥
ξ
‖A‖ξ

)2
.

The lemma follows since (α + β)
2 ≤ (1 + ε)α2 + (1 + 1/ε)β2 for all ε ≥ 0.

Second, although the vectors h̃t = Czt/σt(W), t = 1, . . . ,
, do not in general form
an orthonormal set, one would expect from their construction that if the matrix WTW
is close to the matrix CTC, then with high probability they will be approximately
orthonormal. Lemma 2 establishes that Δ, defined in (34), characterizes how far H̃�

is from having orthonormal columns and shows that the error introduced due to this
nonorthonormality is bounded by a simple function of γ and the error introduced at
the second level of sampling.

Lemma 2. When written in the basis with respect to Z,

H̃T
� H̃� = I� + Δ.

Furthermore, for ξ = 2, F

‖Δ‖ξ ≤ 1

γ ‖W‖2
F

∥∥CTC −WTW
∥∥
ξ
.

Proof. Recall that H̃� = CZ1,�T and that TTZT
1,�W

TWZ1,�T = I�, so that

∥∥H̃T
� H̃� − I�

∥∥
ξ

=
∥∥TTZT

1,�C
TCZ1,�T − TTZT

1,�W
TWZ1,�T

∥∥
ξ

(37)

=
∥∥TTZT

1,�

(
CTC −WTW

)
Z1,�T

∥∥
ξ
.(38)

Using the submultiplicativity properties of the 2-norm, and in particular

‖AB‖ξ ≤ ‖A‖2 ‖B‖ξ ,(39)

‖AB‖ξ ≤ ‖A‖ξ ‖B‖2 ,(40)

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 175

for both ξ = 2, F , we get∥∥H̃T
� H̃� − I�

∥∥
ξ
≤

∥∥TTZT
1,�

∥∥
2

∥∥CTC −WTW
∥∥
ξ
‖Z1,�T‖2(41)

≤ ‖T‖2
2

∥∥CTC −WTW
∥∥
ξ

(42)

≤ max
t=1,...,�

(
1/σ2

t (W)
) ∥∥CTC −WTW

∥∥
ξ
,(43)

since ‖Z1,�‖2 = 1. The lemma follows since σ2
t (W) ≥ γ ‖W‖2

F for all t = 1, . . . ,
 by
the definition of
.

Third, we consider the second term in Lemma 1,
∥∥B�B

T
� − H̃�H̃

T
�

∥∥2

ξ
and show

that it can be related to ‖Δ‖ξ.
Lemma 3. For ξ = 2, F ∥∥B�B

T
� − H̃�H̃

T
�

∥∥
ξ

= ‖Δ‖ξ .

Proof. Since H̃� = B�ΣH̃�
DT

� , we have

∥∥B�B
T
� − H̃�H̃

T
�

∥∥
ξ

=
∥∥B�

(
I� − Σ2

H̃�

)
BT

�

∥∥
ξ

=
∥∥I� − Σ2

H̃�

∥∥
ξ

=
∥∥D�

(
I� − Σ2

H̃�

)
DT

�

∥∥
ξ

=
∥∥I� − H̃T

� H̃�

∥∥
ξ
.

Fourth, Lemma 4 considers the special case in which the probabilities {pi}ni=1

that are entered into the ConstantTimeSVD algorithm are optimal, as is the case
for Theorem 5.

Lemma 4. Let A ∈ R
m×n and let H̃� be constructed from the Constant-

TimeSVD algorithm by sampling c columns of A with probabilities {pi}ni=1 and w

rows of C with probabilities {qj}mj=1, where pi = Pr [it = i] = |A(i)|2/ ‖A‖2
F and

qj = Pr [jt = j] = |C(j)|2/ ‖C‖2
F . Then

‖W‖F = ‖C‖F = ‖A‖F .

Proof. If pi =
∣∣A(i)

∣∣2 / ‖A‖2
F , we have that ‖C‖2

F =
∑c

t=1

∣∣C(t)
∣∣2 =

∑c
t=1

|A(it)|2
cpit

= ‖A‖2
F . Similarly, if qj =

∣∣C(j)

∣∣2 / ‖C‖2
F , we have that ‖W‖2

F =
∑w

t=1

∣∣W(t)

∣∣2
=

∑w
t=1

|C(it)|2
wqit

= ‖C‖2
F . The lemma follows.

5.4.2. Lemmas for the Frobenius norm proof. In this section we prove (35).
We do this by first proving lemmas sufficient to bound ‖A−B�B

T
� A‖2

F ; when this is

combined with the lemmas of section 5.4.1 we obtain a bound on ‖A−H̃�H̃
T
� A‖2

F . The
bound on ‖A−B�B

T
� A‖2

F depends on the error for the optimal rank-k approximation
to A, i.e., ‖A−Ak‖2

F , and additional errors that depend on the quality of the sampling
approximations, i.e., on ‖AAT − CCT ‖F and ‖CTC − WTW‖F . This will be the
analogue of Theorem 2 applied to the constant additional space and time model. The
result and associated proof will have a similar structure to that of Theorem 2, but
will be more complicated due to the nonorthonormality of the vectors h̃t, t = 1, . . . ,
,
and will involve additional error terms since two levels of approximation are involved.

We now prove several lemmas which will provide a bound for the first term in

Lemma 1 when applied to the Frobenius norm. We first rewrite the
∥∥A−B�B

T
� A

∥∥2

F
term from Lemma 1. Note that Lemma 5 is the constant time analogue of (14).

176 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Lemma 5.

∥∥A−B�B
T
� A

∥∥2

F
= ‖A‖2

F −
∥∥BT

� A
∥∥2

F
.

Proof.

∥∥A−B�B
T
� A

∥∥2

F
= Tr

((
A−B�B

T
� A

)T (
A−B�B

T
� A

))
= Tr

(
ATA−ATB�B

T
� A

)
.

Next, we want to provide a lower bound for
∥∥BT

� A
∥∥2

F
in terms of the singular

values of W . We do so in several steps. First, we relate ‖BT
� A‖2

F to ‖H̃T
� A‖2

F . We
note that the assumption ‖Δ‖F < 1 is made since in Theorem 5 optimal probabilities
are used and sufficiently many columns and rows are drawn; if this assumption is
dropped, then bounds of the form in Theorem 5 may be obtained with slightly worse
sampling complexity.

Lemma 6. If ‖Δ‖F < 1, then

∥∥BT
� A

∥∥2

F
≥ (1 − ‖Δ‖F)

∥∥H̃T
� A

∥∥2

F
.

Proof. Since H̃� = B�ΣH̃�
DT

�

∥∥H̃T
� A

∥∥2

F
=

∥∥ΣH̃�
BT

� A
∥∥2

F
≤

∥∥ΣH̃�

∥∥2

2

∥∥BT
� A

∥∥2

F
=

∥∥H̃T
� H̃�

∥∥2

2

∥∥BT
� A

∥∥2

F
,(44)

using (39). From the triangle inequality

∥∥H̃T
� H̃�

∥∥
2
≥

∣∣ ‖I�‖2 −
∥∥H̃T

� H̃� − I�
∥∥

2

∣∣ = |1 − ‖Δ‖2| .(45)

The lemma follows since ‖Δ‖2 ≤ ‖Δ‖F < 1 and by observing that 1 + x ≤ 1/(1− x)
for all x ≤ 1.

Second, we relate ‖H̃T
� A‖2

F to ‖H̃T
� C‖2

F .
Lemma 7.

∥∥H̃T
� A

∥∥2

F
≥

∥∥H̃T
� C

∥∥2

F
−
(
k +

√
k ‖Δ‖F

) ∥∥AAT − CCT
∥∥
F
.

Proof. Since ‖H̃T
� A‖2

F = Tr(H̃T
� AAT H̃T

�), we have that

∥∥H̃T
� A

∥∥2

F
= Tr

(
H̃T

� CCT H̃T
�

)
+ Tr

(
H̃T

� (AAT − CCT)H̃T
�

)
≥

∥∥H̃T
� C

∥∥2

F
−

∥∥AAT − CCT
∥∥

2

∥∥H̃�

∥∥2

F
,

where the inequality follows since

∣∣∣Tr
(
H̃T

� (AAT − CCT)H̃T
�

)∣∣∣ ≤ ∑
t

∣∣∣(H̃T
�)(t)(AAT − CCT)(H̃�)

(t)
∣∣∣

≤
∥∥AAT − CCT

∥∥
2

∥∥H̃�

∥∥2

F
.

The lemma follows since ‖·‖2 ≤ ‖·‖F and since

∥∥∥H̃�

∥∥∥2

F
=

�∑
t=1

∣∣∣h̃tT h̃t
∣∣∣ =

�∑
t=1

1 + Δtt ≤ k +
√
k ‖Δ‖F .

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 177

Third, we relate ‖H̃T
� C‖2

F to
∑�

t=1 σ
2
t (W).

Lemma 8.

∥∥∥H̃T
� C

∥∥∥2

F
≥

�∑
t=1

σ2
t (W) − 2

√
γ

∥∥CTC −WTW
∥∥
F
.

Proof. Since ‖H̃T
� C‖2

F = ‖CT H̃�‖2
F = ‖CTCZ1,�T‖2

F , we have

∥∥∥H̃T
� C

∥∥∥2

F
≥

(∥∥WTWZ1,�T
∥∥
F
−

∥∥(CTC −WTW)Z1,�T
∥∥
F

)2

≥

⎛
⎝

(
�∑

t=1

σ2
t (W)

)1/2

− 1
√
γ ‖W‖F

∥∥(CTC −WTW)
∥∥
F

⎞
⎠

2

,

where the second inequality uses that ‖XZ‖F ≤ ‖X‖F for any matrix X if the matrix
Z has orthonormal columns. By multiplying out the right-hand side and ignoring
terms that reinforce the inequality, the lemma follows since (

∑�
t=1 σ

2
t (W))1/2/ ‖W‖F

≤ 1.
By combining Lemmas 6, 7, and 8, we have our desired bound on ‖BT

� A‖2
F in

terms of the singular values of W . Finally, we use matrix perturbation theory to
relate

∑�
t=1 σ

2
t (W) to

∑k
t=1 σ

2
t (A).

Lemma 9.

�∑
t=1

σ2
t (W) ≥

k∑
t=1

σ2
t (A)−

√
k
∥∥AAT − CCT

∥∥
F
−
√
k
∥∥CTC −WTW

∥∥
F
−(k−
)γ ‖W‖2

F .

Proof. Recalling the Hoffman–Wielandt inequality, we see that

∣∣∣∣∣
k∑

t=1

(
σ2
t (C) − σ2

t (A)
)∣∣∣∣∣ ≤

√
k

(
k∑

t=1

(
σ2
t (C) − σ2

t (A)
)2)1/2

≤
√
k

(
k∑

t=1

(
σt(CCT) − σt(AAT)

)2)1/2

≤
√
k
∥∥AAT − CCT

∥∥
F
,(46)

and, similarly, that

∣∣∣∣∣
k∑

t=1

(
σ2
t (W) − σ2

t (C)
)∣∣∣∣∣ ≤

√
k

(
k∑

t=1

(
σ2
t (W) − σ2

t (C)
)2)1/2

≤
√
k

(
k∑

t=1

(
σt(WWT) − σt(CCT)

)2)1/2

≤
√
k
∥∥CTC −WTW

∥∥
F
.(47)

By combining (46) and (47) we see that

∣∣∣∣∣
k∑

t=1

σ2
t (W) −

k∑
t=1

σ2
t (A)

∣∣∣∣∣ ≤
√
k
∥∥AAT − CCT

∥∥
F

+
√
k
∥∥CTC −WTW

∥∥
F
.(48)

178 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Since σ2
t (W) < γ ‖W‖2

F for all t =
 + 1, . . . , k we have that
∑k

t=�+1 σ
2
t (W) ≤ (k −

)γ ‖W‖2
F . Combining this with (48) allows us to relate

∑�
t=1 σ

2
t (W) and

∑k
t=1 σ

2
t (A),

thus establishing the lemma.

Now we combine these results in order to prove (35). Let EAAT = AAT − CCT

and ECTC = CTC − WTW . First, we establish a lower bound on
∥∥BT

� A
∥∥2

F
. By

combining Lemmas 6 and 7 and dropping terms that reinforce the inequality, we have
that

∥∥BT
� A

∥∥2

F
≥

∥∥H̃T
� C

∥∥2

F
− ‖Δ‖F

∥∥H̃T
� C

∥∥2

F
−
(
k +

√
k ‖Δ‖F

)
‖EAAT ‖F .

By combining this with Lemmas 8 and 9 and dropping terms that reinforce the in-
equality, we have that

∥∥BT
� A

∥∥2

F
≥

k∑
t=1

σ2
t (A) −

(
k +

√
k
)
‖EAAT ‖F −

(√
k +

2
√
γ

)
‖ECTC‖F

− ‖Δ‖F
k∑

t=1

σ2
t (A) −

√
k ‖Δ‖F ‖EAAT ‖F − (k −
)γ ‖W‖2

F .

(49)

From Lemma 5 this immediately leads to the upper bound on
∥∥A−B�B

T
� A

∥∥2

F
,

∥∥A−B�B
T
� A

∥∥2

F
≤ ‖A−Ak‖2

F +
(
k +

√
k
)
‖EAAT ‖F +

(√
k +

2
√
γ

)
‖ECTC‖F

+ ‖Δ‖F
k∑

t=1

σ2
t (A) +

√
k ‖Δ‖F ‖EAAT ‖F + (k −
)γ ‖W‖2

F .

(50)

From Lemmas 1 and 3,

∥∥A− H̃�H̃
T
� A

∥∥2

F
≤

(
1 +

ε

100

)∥∥A−B�B
T
� A

∥∥2

F
+

(
1 +

100

ε

)
‖Δ‖2

F ‖A‖2
F .(51)

Recall that γ = ε/100k, that
∑k

t=1 σ
2
t (A) ≤ ‖A‖2

F , that ‖Δ‖F ≤ ‖ECTC‖F /γ ‖W‖2
F

by Lemma 2, and that ‖W‖F = ‖C‖F = ‖A‖F by Lemma 4; (35) then follows by
combining (50) and (51), using the sampling probabilities indicated in the statement
of the theorem, and by choosing c, w = Ω(k2η2/ε4).

5.4.3. Lemmas for the spectral norm proof. In this section we prove (36).
We do this by first proving lemmas sufficient to bound ‖A− B�B

T
� A‖2

2; when this is

combined with the lemmas of section 5.4.1, we obtain a bound on ‖A−H̃�H̃
T
� A‖2

2. The
bound on ‖A−B�B

T
� A‖2

2 depends on the error for the optimal rank-k approximation to
A, i.e., ‖A− Ak‖2

2, and additional errors that depend on the quality of the sampling
approximations, i.e., on ‖AAT − CCT ‖2 and ‖CTC − WTW‖2. This will be the
analogue of Theorem 3 applied to the constant additional space and time model.
The result and associated proof will have a similar structure to that of Theorem 3,
but will be more complicated due to the nonorthonormality of the vectors h̃t, t =
1, . . . ,
, and will involve additional error terms since two levels of approximation are
involved.

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 179

We now prove three lemmas which will provide a bound for the first term in
Lemma 1 when applied to the spectral norm. We first rewrite the ‖A − B�B

T
� A‖2

2

term from Lemma 1.

Lemma 10.

∥∥A−B�B
T
� A

∥∥2

2
≤

∥∥ZT
k+1,cC

TCZk+1,c

∥∥
2
+

∥∥ZT
�+1,kC

TCZ�+1,k

∥∥
2
+

∥∥AAT − CCT
∥∥

2
.

Proof. In order to bound ‖A−B�B
T
� A‖2 we will project onto the subspace spanned

by B� and its orthogonal complement in a manner analogous to that used in the proof
of Theorem 3. Let B� = range(B�) and let Bm−� be the orthogonal complement of
B�. Let x = αy + βz, where y ∈ B�, z ∈ Bm−�, and α2 + β2 = 1. Then

∥∥A−B�B
T
� A

∥∥
2

= max
x∈Rm,|x|=1

∣∣xT (A−B�B
T
� A)

∣∣
= max

y∈B�,|y|=1,z∈Bm−�,|z|=1,α2+β2=1

∣∣(αyT + βzT)(A−B�B
T
� A)

∣∣
≤ max

y∈B�,|y|=1

∣∣yT (A−B�B
T
� A)

∣∣ + max
z∈Bm−�,|z|=1

∣∣zT (A−B�B
T
� A)

∣∣(52)

= max
z∈Bm−�,|z|=1

∣∣zTA∣∣ .(53)

Inequality (52) follows since α, β ≤ 1 and (53) follows since y ∈ B� and z ∈ Bm−�. To
bound (53), let z ∈ Bm−�, |z| = 1; then

∣∣zTA∣∣2 = zT (AAT)z

= zT (CCT)z + zT (AAT − CCT)z

= zT (CCT − CZ1,kZ
T
1,kC

T)z + zT (CZ1,kZ
T
1,kC

T)z + zT (AAT − CCT)z(54)

= zT (CZk+1,cZ
T
k+1,cC

T)z + zT (CZ�+1,kZ
T
�+1,kC

T)z + zT (AAT − CCT)z.(55)

Equation (55) follows since Ic = ZZT = Z1,kZ
T
1,k + Zk+1,cZ

T
k+1,c and, since

CZ1,�Z
T
1,�C

T =

�∑
t=1

Cztzt
T

CT =

�∑
t=1

σ2
t (W)h̃th̃tT ,

implies that

zTCZ1,�Z
T
1,�C

T z = 0(56)

for z ∈ Bm−�. Thus, by combining (53) and (55)

∥∥A−B�B
T
� A

∥∥2

2
≤

∥∥CZk+1,cZ
T
k+1,cC

T
∥∥

2
+

∥∥CZ�+1,kZ
T
�+1,kC

T
∥∥

2
+

∥∥AAT − CCT
∥∥

2
.

The lemma follows since ‖XTX‖2 = ‖XXT ‖2 for any matrix X.

180 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

We next bound the ‖ZT
k+1,cC

TCZk+1,c‖2 term from Lemma 10; note that matrix
perturbation theory is used in (59).

Lemma 11.

∥∥ZT
k+1,cC

TCZk+1,c

∥∥
2
≤ ‖A−Ak‖2

2 +
∥∥AAT − CCT

∥∥
2

+ 2
∥∥CTC −WTW

∥∥
2
.

Proof. First note that

(57)∥∥ZT
k+1,cC

TCZk+1,c

∥∥
2
≤

∥∥ZT
k+1,cW

TWZk+1,c

∥∥
2

+
∥∥ZT

k+1,c(C
TC −WTW)Zk+1,c

∥∥
2
.

Since
∥∥ZT

k+1,c(C
TC −WTW)Zk+1,c

∥∥
2
≤

∥∥CTC −WTW
∥∥

2
‖Zk+1,c‖2

2

=
∥∥CTC −WTW

∥∥
2

and
∥∥ZT

k+1,cW
TWZk+1,c

∥∥
2

= σ2
k+1(W),

it follows from (57) that
∥∥ZT

k+1,cC
TCZk+1,c

∥∥
2
≤ σ2

k+1(W) +
∥∥CTC −WTW

∥∥
2
.(58)

By a double application of (9), we see that

σ2
k+1(W) ≤ σ2

k+1(A) +
∥∥AAT − CCT

∥∥
2

+
∥∥CTC −WTW

∥∥
2
.(59)

The lemma follows by combining (58) and (59) since ‖A−Ak‖2 = σk+1(A).
Finally, we bound the

∥∥ZT
�+1,kC

TCZ�+1,k

∥∥
2

term from Lemma 10; note that if

 = k, it is unnecessary.

Lemma 12.

∥∥ZT
�+1,kC

TCZ�+1,k

∥∥
2
≤

∥∥CTC −WTW
∥∥

2
+ γ ‖W‖2

F .

Proof. First note that

(60)∥∥ZT
�+1,kC

TCZ�+1,k

∥∥
2
≤

∥∥ZT
�+1,k

(
CTC −WTW

)
Z�+1,k

∥∥
2

+
∥∥ZT

�+1,kW
TWZ�+1,k

∥∥
2
.

Since
∥∥ZT

�+1,k

(
CTC −WTW

)
Z�+1,k

∥∥
2
≤

∥∥CTC −WTW
∥∥

2
‖Z�+1,k‖2

2

=
∥∥CTC −WTW

∥∥
2

and
∥∥ZT

�+1,kW
TWZ�+1,k

∥∥
2

= σ2
�+1(W),

it follows from (60) that
∥∥ZT

�+1,kC
TCZ�+1,k

∥∥
2
≤

∥∥CTC −WTW
∥∥

2
+ σ2

�+1(W).(61)

The lemma follows since σ2
t (W) < γ ‖W‖2

F for all t =
 + 1, . . . , k.

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 181

Now we combine these results in order to prove (36). Recall that EAAT = AAT −
CCT and ECTC = CTC − WTW . By combining Lemmas 10, 11, and 12, we have
that

∥∥A−B�B
T
� A

∥∥2

2
≤ ‖A−Ak‖2

2 + 2 ‖EAAT ‖2 + 3 ‖ECTC‖2 + γ ‖W‖2
F .(62)

From Lemmas 1 and 3,

∥∥A− H̃�H̃
T
� A

∥∥2

2
≤

(
1 +

ε

100

)∥∥A−B�B
T
� A

∥∥2

2
+

(
1 +

100

ε

)
‖Δ‖2

2 ‖A‖2
2 .(63)

Recall that γ = ε/100, that ‖·‖2 ≤ ‖·‖F , and that ‖Δ‖2 ≤ ‖ECTC‖2 /γ ‖W‖2
F by

Lemma 2; (36) follows by combining (62) and (63), using the sampling probabilities
indicated in the statement of the theorem, and by choosing c, w = Ω(η2/ε4).

6. Discussion and conclusion. We have presented two algorithms to compute
approximations to the SVD of a matrix A ∈ R

m×n which do not require that A be
stored in RAM, but for which the additional space and time required (in addition
to a constant number of passes over the matrix) is either linear in m + n or is a
constant independent of m and n; we have also proven error bounds for both algo-
rithms with respect to both the Frobenius and spectral norms. Table 1 in section 1
presents a summary of the dependence of the sampling complexity on k and ε. With
the LinearTimeSVD algorithm, the additional error (beyond the optimal rank-k ap-

proximation) in the spectral norm bound can be made less than ε ‖A‖2
F by sampling

Θ(1/ε2) columns, and the additional error in the Frobenius norm can be made less

than ε ‖A‖2
F by sampling Θ(k/ε2) columns. Likewise, with the ConstantTimeSVD

algorithm, the additional error in the spectral norm can be made less than ε ‖A‖2
F by

sampling Θ(1/ε4) columns and rows, and the additional error in the Frobenius norm

can be made less than ε ‖A‖2
F by sampling Θ(k2/ε4) columns and rows. The results

of [16] require Θ(k4/ε3) columns and rows for the Frobenius (and thus the spectral)
norm bound.

Recent work has focused on developing new techniques for proving lower bounds
on the number of queries a sampling algorithm is required to perform in order to
approximate a given function accurately with a low probability of error [4, 5]. In
[5] these methods have been applied to the low-rank matrix approximation problem
(defined as approximating the SVD with respect to the Frobenius norm) and to the
matrix reconstruction problem. It is shown that any sampling algorithm that with
high probability finds a good low-rank approximation requires Ω(m + n) queries. In
addition, it is shown that even if the algorithm is given the exact weight distribution
over the columns of a matrix, it will still require Ω(k/ε2) column queries to approxi-
mate A. Thus, the LinearTimeSVD algorithm (see also the original [10]) is optimal
with respect to Frobenius norm bounds for the rank parameter k and the Constant-

TimeSVD algorithm (see also the original [16]) is optimal with respect to Frobenius
norm bounds up to polynomial factors.

Acknowledgments. We would like to thank the following individuals for com-
ments and fruitful discussions: Dimitris Achlioptas, Alan Frieze, Mauro Maggioni,
Frank McSherry, and Santosh Vempala. We would also like to thank Dimitris Achliop-
tas and Frank McSherry for providing us with a preprint of [1], i.e., the journal version
of [2], which provides a useful comparison of their results with ours. We would like to

182 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

thank the National Science Foundation for partial support of this work. Finally, we
would like to thank an anonymous reviewer for carefully reading the paper and mak-
ing numerous useful suggestions; in particular, the reviewer provided elegant, short
proofs for Lemmas 2 and 6.

REFERENCES

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, J.
ACM, to appear.

[2] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, in
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 611–
618.

[3] O. Alter, P. O. Brown, and D. Botstein, Singular value decomposition for genome-wide
expression data processing and modeling, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 10101–
10106.

[4] Z. Bar-Yossef, The Complexity of Massive Data Set Computations, Ph.D. thesis, University
of California, Berkeley, 2002.

[5] Z. Bar-Yossef, Sampling lower bounds via information theory, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003, pp. 335–344.

[6] M. W. Berry, Z. Drmač, and E. R. Jessup, Matrices, vector spaces, and information re-
trieval, SIAM Rev., 41 (1999), pp. 335–362.

[7] M. W. Berry, S. T. Dumais, and G. W. O’Brian, Using linear algebra for intelligent infor-
mation retrieval, SIAM Rev., 37 (1995), pp. 573–595.

[8] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[9] S. T. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,

Indexing by latent semantic analysis, J. Amer. Soc. Inform. Sci., 41 (1990), pp. 391–407.
[10] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, Clustering in large graphs

and matrices, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1999, pp. 291–299.

[11] P. Drineas and R. Kannan, Fast Monte-Carlo algorithms for approximate matrix multipli-
cation, in Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, 2001, pp. 452–459.

[12] P. Drineas and R. Kannan, Pass efficient algorithms for approximating large matrices, in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2003, pp. 223–232.

[13] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.

[14] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36
(2006), pp. 184–206.

[15] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo Algorithms for Matrices II:
Computing a Low-Rank Approximation to a Matrix, Tech. Report YALEU/DCS/TR-1270,
Department of Computer Science, Yale University, New Haven, CT, 2004.

[16] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank
approximations, in Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, 1998, pp. 370–378.

[17] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank
approximations, J. ACM, 51 (2004), pp. 1025–1041.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1989.

[19] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.

[20] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation, in Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, 2000, pp. 189–197.

[21] J. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions, in Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 599–608.

[22] J. Kleinberg, Authoritative sources in a hyperlinked environment, in Proceedings of the 9th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 668–677.

[23] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, London,

FAST MONTE CARLO ALGORITHMS FOR MATRICES II 183

1979.
[24] H. Murase and S. K. Nayar, Visual learning and recognition of 3-d objects from appearance,

Internat. J. Comput. Vision, 14 (1995), pp. 5–24.
[25] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent semantic indexing:

A probabilistic analysis, in Proceedings of the 17th ACM Symposium on Principles of
Database Systems, 1998, pp. 159–168.

[26] S. Raychaudhuri, J. M. Stuart, and R. B. Altman, Principal components analysis to sum-
marize microarray experiments: Application to sporulation time series, in Proceedings of
the Pacific Symposium on Biocomputing 2000, 2000, pp. 455–466.

[27] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[28] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Bot-

stein, and R. B. Altman, Missing value estimation methods for DNA microarrays, Bioin-
formatics, 17 (2001), pp. 520–525.

[29] M. Turk and A. Pentland, Eigenfaces for recognition, J. Cognitive Neurosci., 3 (1991),
pp. 71–96.

[30] S. Vempala, Random projection: A new approach to VLSI layout, in Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Science, 1998, pp. 389–395.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 184–206

FAST MONTE CARLO ALGORITHMS FOR MATRICES III:
COMPUTING A COMPRESSED APPROXIMATE

MATRIX DECOMPOSITION∗

PETROS DRINEAS† , RAVI KANNAN‡ , AND MICHAEL W. MAHONEY§

Abstract. In many applications, the data consist of (or may be naturally formulated as) an
m× n matrix A which may be stored on disk but which is too large to be read into random access
memory (RAM) or to practically perform superlinear polynomial time computations on it. Two
algorithms are presented which, when given an m×n matrix A, compute approximations to A which
are the product of three smaller matrices, C, U , and R, each of which may be computed rapidly.
Let A′ = CUR be the computed approximate decomposition; both algorithms have provable bounds
for the error matrix A − A′. In the first algorithm, c columns of A and r rows of A are randomly
chosen. If the m× c matrix C consists of those c columns of A (after appropriate rescaling) and the
r×n matrix R consists of those r rows of A (also after appropriate rescaling), then the c× r matrix
U may be calculated from C and R. For any matrix X, let ‖X‖F and ‖X‖2 denote its Frobenius
norm and its spectral norm, respectively. It is proven that∥∥A−A′

∥∥
ξ
≤ min

D:rank(D)≤k
‖A−D‖ξ + poly(k, 1/c) ‖A‖F

holds in expectation and with high probability for both ξ = 2, F and for all k = 1, . . . , rank(A); thus
by appropriate choice of k ∥∥A−A′

∥∥
2
≤ ε ‖A‖F

also holds in expectation and with high probability. This algorithm may be implemented without
storing the matrix A in RAM, provided it can make two passes over the matrix stored in external
memory and use O(m + n) additional RAM (assuming that c and r are constants, independent of
the size of the input). The second algorithm is similar except that it approximates the matrix C
by randomly sampling a constant number of rows of C. Thus, it has additional error but it can be
implemented in three passes over the matrix using only constant additional RAM. To achieve an
additional error (beyond the best rank-k approximation) that is at most ε‖A‖F , both algorithms
take time which is a low-degree polynomial in k, 1/ε, and 1/δ, where δ > 0 is a failure probability;
the first takes time linear in max(m,n) and the second takes time independent of m and n. The
proofs for the error bounds make important use of matrix perturbation theory and previous work
on approximating matrix multiplication and computing low-rank approximations to a matrix. The
probability distribution over columns and rows and the rescaling are crucial features of the algorithms
and must be chosen judiciously.

Key words. randomized algorithms, Monte Carlo methods, massive data sets, CUR matrix
decomposition

AMS subject classification. 68W20

DOI. 10.1137/S0097539704442702

∗Received by the editors April 5, 2004; accepted for publication (in revised form) November 17,
2005; published electronically May 26, 2006. The technical report version of this journal paper
appeared as Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate
Matrix Decomposition, by P. Drineas, R. Kannan, and M. W. Mahoney [12]. A preliminary version
of parts of this paper, in particular the main algorithm and main theorem of section 3, appeared as
Pass efficient algorithms for approximating large matrices, by P. Drineas and R. Kannan [9].

http://www.siam.org/journals/sicomp/36-1/44270.html
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (drinep@cs.

rpi.edu).
‡Department of Computer Science, Yale University, New Haven, CT 06520 (kannan@cs.yale.edu).

This author was supported in part by a grant from the NSF.
§Department of Mathematics, Yale University, New Haven, CT 06520 (mahoney@cs.yale.edu).

184

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 185

1. Introduction. We are interested in developing and analyzing fast Monte
Carlo algorithms for performing useful computations on large matrices. In this paper
we consider a new method for computing a compressed approximate decomposition of
a large matrix; in two related papers we consider matrix multiplication and the sin-
gular value decomposition (SVD) [10, 11]. Since such computations generally require
time which is superlinear in the number of nonzero elements of the matrix, we expect
our algorithms to be useful in many applications where data sets are modeled by ma-
trices and are extremely large. In all of these cases, we assume that the input matrices
are prohibitively large to store in random access memory (RAM) and thus that only
external memory storage is possible. Thus, our algorithms will be allowed to read
the matrices a few, e.g., one, two, or three, times and keep a small randomly chosen
and rapidly computable “sketch” of the matrices in RAM; computations will then be
performed on this “sketch.” We will work within the framework of the pass-efficient
computational model, in which the scarce computational resources are the number
of passes over the data, the additional RAM space required, and the additional time
required [10, 9].

In many applications, an m× n matrix A is stored on disk and is too large to be
read into RAM or to practically perform superlinear polynomial time computations on
it; thus, one may be interested in a succinctly described, easily computed m×n matrix
A′ that is an approximation to A. Let c and r be positive, usually constant, integers
that we choose, and for any matrix X let ‖X‖F and ‖X‖2 denote its Frobenius and
spectral norms (as defined in section 2.1), respectively. We present two algorithms
that compute an approximation A′ to the matrix A that has the following properties:

(i) A′ = CUR, where C is an m×c matrix consisting of c randomly picked columns
of A, R is an r × n matrix consisting of r randomly picked rows of A, and U is
a c× r matrix computed from C,R.

(ii) C, U , and R can be defined after making a small constant number of passes (2
or 3 for the two algorithms presented in this paper) through the whole matrix
A from disk.

(iii) U can be constructed using additional RAM space and time that is O(m + n)
(for the LinearTimeCUR algorithm) or is O(1) (for the ConstantTimeCUR

algorithm), assuming that c and r are constant.
(iv) For every ε > 0 and every k such that 1 ≤ k ≤ rank(A) we can choose c and r

(to be specified below) such that, with high probability, A′ satisfies

‖A−A′‖2 ≤ min
D:rank(D)≤k

‖A−D‖2 + ε ‖A‖F ,

and thus we can choose c and r such that ‖A−A′‖2 ≤ ε ‖A‖F .
(v) For every ε > 0 and every k such that 1 ≤ k ≤ rank(A) we can choose c and r

(to be specified below) such that, with high probability, A′ satisfies

‖A−A′‖F ≤ min
D:rank(D)≤k

‖A−D‖F + ε ‖A‖F .

In the first algorithm, the LinearTimeCUR algorithm of section 3, c columns
of A and r rows of A are randomly sampled. If the m× c matrix C consists of those
c columns of A (after appropriate rescaling) and the r× n matrix R consists of those
R rows of A (also after appropriate rescaling), then from C and R the c × r matrix
U is computed. This algorithm may be implemented without storing the matrix A
in RAM, provided it can make two passes over the matrix stored in external memory

186 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Table 1

Summary of sampling complexity.

Additional error for: LinearTimeCUR ConstantTimeCUR

‖A−A′‖2 c, r = η2

ε4
, k
δ2ε2

c, w, r = η2

ε8
, η2

ε8
, k
δ2ε2

‖A−A′‖F c, r = kη2

ε4
, k
δ2ε2

c, w, r = k2η2

ε8
, k2η2

ε8
, k
δ2ε2

and use O(m+n) additional RAM. The second algorithm, the ConstantTimeCUR

algorithm of section 4, is similar except that it approximates the matrix C by randomly
sampling a constant number w of rows of C. Thus, our second algorithm requires only
constant additional RAM but uses a third pass over the data and has additional error.
To achieve an additional error (beyond the best rank-k approximation) that is at most
ε ‖A‖F , both algorithms take time which is a low-degree polynomial in k, 1/ε, and 1/δ,
where δ > 0 is a failure probability; the first algorithm takes time linear in max(m,n)
and the second takes time independent of m and n. See Table 1 for a summary of
the dependence of the sampling complexity on k and ε, δ, and η = 1 +

√
8 log(1/δ).

(Note that the two algorithms we present in this paper are most interesting when the
matrix A is well approximated by a rank-k matrix, where k is assumed to be constant
with respect to m and n. In this case, c, r, and w are also constant with respect to
m and n. This is assumed throughout the remainder of this paper.)

The proofs for the error bounds make important use of linear algebra and matrix
perturbation theory; see [19, 22, 28, 6] for an overview of these topics. In particular,
the proofs use the approximate matrix multiplication results of [10] and the approxi-
mate SVD results of [11]. As with those previous works, the probability distribution
over the columns, the probability distribution over the rows, and the respective rescal-
ing are crucial features of the algorithms which must be chosen judiciously. In addi-
tion, as a by-product of the CUR decomposition, we can estimate the top k singular
values of A.

Our CUR approximations may be viewed as a “dimension reduction” technique.
Two common techniques for dimension reduction are the SVD and multidimensional
scaling; see [19, 25]. Another method that has attracted renewed interest recently
is the traditional “random projection” method where one projects the problem into
a randomly chosen low-dimensional subspace [24, 29, 23]. These methods do not
share properties (i) and (ii) and thus are not suited for very large problems. Our
algorithms achieve (i) and (ii) at the cost of the ε ‖A‖F error. In addition, our CUR
approximations may be viewed as an approximate decomposition of a matrix A ≈
CUR; as with other decompositions, the CUR decomposition both reveals information
about the structure of the matrix and allows computations to be performed more
efficiently. For example, in applications of the LinearTimeCUR algorithm, A′ could
be stored in RAM since it can be stored in O(m+n) space (instead of O(mn) space);
in addition, A′ could then be operated upon by, e.g., applying A′ = CUR to a query
vector x ∈ R

n, which is an operation that can be performed in O(m+n) space (instead
of O(mn) space if A is used).

Our CUR approximations have been used in applications such as the reconstruc-
tion of a matrix given a sample of the matrix in a recommendation systems context
and for “similarity query” problems which are widely used in areas such as informa-
tion retrieval [14]. In this application, after A has been preprocessed, one gets “query”
vectors x and must find the similarity of x to each row of A. Here, the similarity of

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 187

two vectors is defined to be their dot product or their normalized dot product; our
technique can handle both. See [7] for related discussion. Note that the measure
‖A‖2 is a worst-case measure and that this is more useful in many contexts than an
average-case measure like ‖A‖F , since the relevant query x often comes from a small-
dimensional subspace and is not random. See also [2, 1] for a nice discussion of these
issues. Our CUR approximations have also been used in theoretical applications such
as designing and analyzing approximation algorithms for the max-cut problem [13].
In these applications, the use of the constant additional space and time framework is
essential.

In other related work, Achlioptas and McSherry have also computed succinctly
described matrix approximations using somewhat different sampling techniques [2, 1].
Also included in [2, 1] is a comparison of their methods with those of [8, 9, 18] and
thus with the results we present here. When compared with our LinearTimeCUR

algorithm, they achieve the same results for the Frobenius norm bound and slightly
better results (with respect to 1/ε) for the spectral norm bound [1]; in their work,
however, there is no analogue of our ConstantTimeCUR algorithm.

After this introduction, we provide in section 2 reviews of linear algebra, the
pass-efficient model, and of several previous results from [10, 11] that are used in
this paper. In section 3 we describe and analyze the LinearTimeCUR algorithm
which computes an approximate CUR decomposition of a matrix A using linear (in
m and n) additional space and time, and in section 4 we describe and analyze the
ConstantTimeCUR algorithm which computes a description of an approximate
CUR decomposition of a matrix A using only constant additional space and time.
Finally, in section 5 we provide a discussion and conclusion.

Finally, note that c and r enter into the asymptotic analysis; for improved clarity,
however, we generally take them to be constants that do not vary.

2. Review of relevant background.

2.1. Review of linear algebra. This section contains a review of linear algebra
that will be useful throughout the paper; for more details, see [19, 22, 28, 6] and the
references therein.

For a vector x ∈ R
n we let |x| = (

∑n
i=1 |xi|2)1/2 denote its Euclidean length.

For a matrix A ∈ R
m×n we let A(j), j = 1, . . . , n, denote the jth column of A as a

column vector and A(i), i = 1, . . . ,m, denote the ith row of A as a row vector. We
denote matrix norms by ‖A‖ξ, using subscripts to distinguish between various norms.

Of particular interest will be the Frobenius norm, the square of which is ‖A‖2
F =∑m

i=1

∑n
j=1 A

2
ij , and the spectral norm, which is defined by ‖A‖2 = supx∈Rn, x �=0

|Ax|
|x| .

These norms are related to each other as ‖A‖2 ≤ ‖A‖F ≤
√
n ‖A‖2.

If A ∈ R
m×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ R

m×m

and V = [v1v2 . . . vn] ∈ R
n×n, where {ut}mt=1 ∈ R

m and {vt}nt=1 ∈ R
n are such that

UTAV = Σ = diag(σ1, . . . , σρ),

where Σ ∈ R
m×n, ρ = min{m,n}, and σ1 ≥ σ2 ≥ · · · ≥ σρ ≥ 0. Equivalently,

A = UΣV T . The three matrices U , V , and Σ constitute the SVD of A. The σi

are the singular values of A and the vectors ui, vi are the ith left and the ith right
singular vectors, respectively. If k ≤ r = rank(A) and we define Ak = UkΣkV

T
k =∑k

t=1 σtu
tvt

T
, then the distance (as measured by both ‖·‖2 and ‖·‖F) between A and

188 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

any rank-k approximation to A is minimized by Ak, i.e.,

min
D∈Rm×n:rank(D)≤k

‖A−D‖2 = ‖A−Ak‖2 = σk+1(A),(1)

min
D∈Rm×n:rank(D)≤k

‖A−D‖2
F = ‖A−Ak‖2

F =

r∑
t=k+1

σ2
t (A).(2)

2.2. Review of the pass-efficient model. The pass-efficient model of data-
streaming computation is a computational model that is motivated by the observation
that in modern computers the amount of disk storage, i.e., sequential access memory,
has increased very rapidly, while RAM and computing speeds have increased at a
substantially slower pace [10, 9]. In the pass-efficient model the three scarce compu-
tational resources are number of passes over the data and the additional RAM space
and additional time required by the algorithm. The data are assumed to be stored
on a disk, to consist of elements whose sizes are bounded by a constant, and to be
presented to an algorithm on a read-only tape. See [10] for more details.

2.3. Review of approximate matrix multiplication. The BasicMatrix-

Multiplication algorithm to approximate the product of two matrices is presented
and analyzed in [10]. When this algorithm is given as input two matrices, A ∈ R

m×n

and B ∈ R
n×p, a probability distribution {pi}ni=1, and a number c ≤ n, it returns as

output two matrices, C and R, such that CR ≈ AB; C ∈ R
m×c is a matrix whose

columns are c randomly chosen columns of A (suitably rescaled) and R ∈ R
c×p is a

matrix whose rows are the c corresponding rows of B (also suitably rescaled). An im-
portant aspect of this algorithm is the probability distribution {pi}ni=1 used to choose
column-row pairs. Although one could always use a uniform distribution, superior
results are obtained if the probabilities are chosen judiciously. In particular, a set of
sampling probabilities {pi}ni=1 are the optimal probabilities (with respect to approxi-
mating the product AB) if they are of the form (3); for an explanation and discussion,
see [10], where we prove the following.

Theorem 1. Suppose A ∈ R
m×n, B ∈ R

n×p, c ∈ Z
+ such that 1 ≤ c ≤ n,

and {pi}ni=1 are such that pi ≥ 0 and
∑n

i=1 pi = 1. Construct C and R with the
BasicMatrixMultiplication algorithm of [10] and let CR be an approximation to
AB. If the probabilities {pi}ni=1 are such that

pk =

∣∣A(k)
∣∣ ∣∣B(k)

∣∣∑n
k′=1

∣∣A(k′)
∣∣ ∣∣B(k′)

∣∣ ,(3)

then

E [‖AB − CR‖F] ≤ 1√
c
‖A‖F ‖B‖F .(4)

If, in addition, we let δ ∈ (0, 1) and η = 1+
√

8 log(1/δ), then with probability at least
1 − δ,

‖AB − CR‖F ≤ η√
c
‖A‖F ‖B‖F .(5)

Furthermore, if the probabilities {pi}ni=1 are such that

pk =

∣∣B(k)

∣∣2
‖B‖2

F

,(6)

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 189

then

E [‖AB − CR‖F] ≤ 1√
c
‖A‖F ‖B‖F .(7)

Note that with probabilities of the form (6), we do not get a bound of the form
‖AB − CR‖F ≤ 1√

c
‖A‖F ‖B‖F by sampling O(log(1/δ)) columns without making ad-

ditional, awkward assumptions on the input matrices; see [10]. Of course, by Markov’s
inequality we can (and will) obtain such a bound by sampling O(1/δ) columns.

2.4. Review of approximate SVD. The LinearTimeSVD algorithm is pre-
sented in [11]. It is an algorithm which, when given a matrix A ∈ R

m×n, uses O(m+n)
additional space and time to compute an approximation to the top k singular values
and the corresponding left singular vectors of A by randomly choosing c columns of A
and rescaling each appropriately to construct a matrix C ∈ R

m×c, computing the top
k singular values and corresponding right singular vectors of C, and using them to
construct a matrix Hk ∈ R

m×k consisting of approximations to the top k left singular
vectors of A. In [11] we prove the following.

Theorem 2. Suppose A ∈ R
m×n and let Hk be constructed from the Linear-

TimeSVD algorithm of [11]. Then

∥∥A−HkH
T
k A

∥∥2

F
≤ ‖A−Ak‖2

F + 2
√
k
∥∥AAT − CCT

∥∥
F
,(8) ∥∥A−HkH

T
k A

∥∥2

2
≤ ‖A−Ak‖2

2 + 2
∥∥AAT − CCT

∥∥
2
.(9)

The ConstantTimeSVD algorithm is also presented in [11]. It is an algorithm
which, when given a matrix A ∈ R

m×n, uses constant additional space and time
to compute a description of an approximation to the top k singular values and the
corresponding left singular vectors of A. It does so in a manner similar to that of
the LinearTimeSVD algorithm except that it performs a second level of sampling
in order to estimate (rather than compute exactly) the top k singular values and
corresponding singular vectors of C. The γ in the following theorem is a parameter
of the ConstantTimeSVD algorithm of [11] that is related to the second level of
sampling; it also appears in our ConstantTimeCUR algorithm, and is thus discussed
in section 4. In [11] we prove the following.

Theorem 3. Suppose A ∈ R
m×n; let a description of H̃� be constructed from the

ConstantTimeSVD algorithm of [11] by sampling c columns of A with probabilities
{pi}ni=1 and w rows of C with probabilities {qj}mj=1 where pi = |A(i)|2/‖A‖2

F and

qj = |C(j)|2/‖C‖2
F . Let η = 1 +

√
8 log(2/δ) and ε > 0.

If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-
rithm is run with γ = ε/100k, then by choosing c = Ω(k2η2/ε4) columns of A and
w = Ω(k2η2/ε4) rows of C we have that with probability at least 1 − δ,

∥∥A− H̃�H̃
T
� A

∥∥2

F
≤ ‖A−Ak‖2

F + ε ‖A‖2
F .(10)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm
is run with γ = ε/100, then by choosing c = Ω(η2/ε4) columns of A and w = Ω(η2/ε4)
rows of C we have that with probability at least 1 − δ,

∥∥A− H̃�H̃
T
� A

∥∥2

2
≤ ‖A−Ak‖2

2 + ε ‖A‖2
F .(11)

190 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

3. The linear time CUR decomposition. In this section we describe and
analyze the LinearTimeCUR algorithm, which computes an approximate CUR de-
composition of a matrix A ∈ R

m×n using linear (in m and n) additional space and
time. In section 4 we describe and analyze the ConstantTimeCUR algorithm which
computes a description of an approximate CUR decomposition of a matrix A using
only constant additional space and time. Both algorithms will make extensive use of
the corresponding results from [11] for approximating the SVD of a matrix as well as
results from [10] on approximating the product of two matrices. As with the SVD
algorithms, the ConstantTimeCUR algorithm has a similar flavor to the Linear-

TimeCUR algorithm, but is technically more complex due to the second level of
sampling required. Thus, in this section we provide an extensive description of the
LinearTimeCUR algorithm and the motivation and intuition behind it, and in sec-
tion 4 we highlight the differences between the linear additional time framework and
the constant additional time framework.

3.1. The algorithm. Given a matrix A ∈ R
m×n, we wish to compute a suc-

cinctly described, easily computed matrix A′ that is decomposable as A′ = CUR ∈
R

m×n and that satisfies properties (i)–(v) of section 1. The LinearTimeCUR al-
gorithm, which is presented in Figure 1, accomplishes this by first forming a matrix
C ∈ R

m×c by rescaling a randomly chosen subset of c columns of A; the columns are
chosen in c independent identical trials where in each trial the αth column of A is
chosen with probability qα, and if the αth column is chosen, it is rescaled by 1/

√
cqα

before inclusion in C. The algorithm then forms a matrix R ∈ R
r×n by rescaling a

randomly chosen subset of r rows of A; the rows are chosen in r independent identical
trials where in each trial the αth row of A is chosen with the probability pα, and if
the αth row is chosen, it is rescaled by 1/

√
rpα before inclusion in R. Using the same

randomly chosen rows to construct R from A the algorithm also constructs a matrix
Ψ from C in an identical manner. Thus, Ψ ∈ R

r×c and Ψij = Ait1 jt2
/
√
crpit1 qjt2 ,

where it1 is the element of {1, . . . ,m} selected in the t1th row sampling trial and jt2
is the element of {1, . . . , n} selected in the t2th column sampling trial.

The following sampling matrix formalism provides a convenient representation of
our ideas, and will be used extensively in this section and the next. (See [10] for
another use of this sampling matrix formalism.) Let us define the column sampling
matrix SC ∈ R

n×c to be the zero-one matrix where (SC)ij = 1 if the ith column of
A is chosen in the jth independent random trial, and Sij = 0 otherwise; let us also
define the associated rescaling matrix DC ∈ R

c×c to be the diagonal matrix with
(DC)tt = 1/

√
cpit , where it is the element of {1, . . . , n} chosen in the tth sampling

trial. Let us similarly define SR ∈ R
r×m and DR ∈ R

r×r to be the row sampling
matrix and associated diagonal rescaling matrix, respectively. In this notation,

C = ASCDC and R = DRSRA,(12)

where SCDC postmultiplies (and thus samples and rescales columns of) A to form C,
and where DRSR premultiplies (and thus samples and rescales rows of) A to form R.
Thus, in this notation,

Ψ = DRSRC = DRSRASCDC .(13)

Given C, the LinearTimeCUR algorithm computes the top k singular values,
σ2
t (C), t = 1, . . . , k, and the corresponding singular vectors, yt, t = 1, . . . , k, of CTC.

Note that these are also the squares of the singular values and the corresponding right

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 191

LinearTimeCUR Algorithm.

Input: A ∈ R
m×n, r, c, k ∈ Z

+ such that 1 ≤ r ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(r, c), {pi}mi=1 such that pi ≥ 0 and

∑m
i=1 pi = 1, and {qj}nj=1 such that qj ≥ 0

and
∑n

j=1 qj = 1.

Output: C ∈ R
m×c, U ∈ R

c×r, and R ∈ R
r×n.

1. For t = 1 to c,
(a) Pick jt ∈ {1, . . . , n} with Pr [jt = α] = qα, α = 1, . . . , n.
(b) Set C(t) = A(jt)/

√
cqjt .

2. Compute CTC and its SVD; say CTC =
∑c

t=1 σ
2
t (C)ytyt

T
.

3. If σk(C) = 0, then let k = max{k′ : σk′(C) �= 0}.
4. For t = 1 to r,

(a) Pick it ∈ {1, . . . ,m} with Pr [it = α] = pα, α = 1, . . . ,m.
(b) Set R(t) = A(it)/

√
rpit .

(c) Set Ψ(t) = C(it)/
√
rpit .

5. Let Φ =
∑k

t=1
1

σ2
t (C)

ytyt
T

and let U = ΦΨT .

6. Return C, U , and R.

Fig. 1. The LinearTimeCUR algorithm.

R
n A ��

R

���
��

��
��

��
��

��
��

��
R

m

SR

��
R

c

SC

��

C

�������������������

DC

��
Φ

�� R
r

U,ΨT

		

DR

��

Fig. 2. Diagram for the LinearTimeCUR algorithm.

singular vectors of C. Using these quantities, a matrix Φ ∈ R
c×c may be defined as

Φ =
k∑

t=1

1

σ2
t (C)

ytyt
T

,(14)

from which U ∈ R
c×r is constructed as U = ΦΨT . We could, of course, have defined

a matrix Φ (and thus constructed a matrix U) from the singular vectors and singular
values of RRT in a manner analogous to that described above; in that case, the roles
of the row sampling and column sampling would be reversed relative to the discussion
below.

Figure 2 presents a diagram illustrating the action of the LinearTimeCUR al-
gorithm. The matrix A is shown as operating between the high-dimensional spaces
R

n and R
m. In addition, the matrix C is shown as operating between R

c and R
m and

the matrix R is shown as operating between R
n and R

r. Intuitively, one may think of
R

c and R
r as being the most significant parts of R

n and R
m, respectively, in terms of

the action of A. Indeed, this will be the case when the sampling probabilities {pi}mi=1

192 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

and {qj}nj=1 satisfy certain conditions, as stated, e.g., in Theorem 4. The diagram
also illustrates that C = ASCDC , R = DRSRA, and the matrix U which can be seen
to be U = ΦΨT = ΦCT (DRSR)T .

The matrix A is thus approximated by a matrix A′ = CUR, where C is an m× c
matrix consisting of c randomly chosen columns of A, R is an r×n matrix consisting
of r randomly chosen rows of A, and U = ΦΨT is a c × r matrix computed from
C and R. As we shall see, if the column and row sampling probabilities are chosen
judiciously, then c and r can be chosen to be constants (independent of m and n but
depending on k and ε). Thus, (pictorially) we have that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ U

⎞
⎠

⎛
⎝ R

⎞
⎠ .(15)

The length of our succinct representation is O(m+ n). Note that if C and R are not
explicitly needed, the length of the representation is a constant O(1); this is because
U is of constant size and only a constant number of bits are needed to specify which
columns and rows of A are kept (along with their associated rescaling factors) in the
construction of C and R, respectively.

Before proving the theorem, we would like to give some intuition as to why, if
{pi}mi=1 and {qj}nj=1 satisfy certain conditions, the product CUR, as computed from
the LinearTimeCUR algorithm, then becomes a good approximation to A in the
sense of requirements (iv) and (v) of section 1. Let ht = Cyt/σt(C) be the left singular
vectors of C. Thus, if Hk = (h1 h2 . . . hk) ∈ R

m×k, then HkH
T
k A is the projection of

A onto the subspace spanned by the top k left singular vectors of C. If the column
sampling probabilities {qj}nj=1 satisfy certain conditions, then the top k of the ht’s
are approximations to the top k left singular vectors of A in the sense that their
projection can be shown to “capture” almost as much of A as the projection of A
onto the space spanned by its own top k left singular vectors. Indeed, the content of
the SVD results of [11] (which in turn depend on the matrix multiplication results of
[10]) is that if the column sampling probabilities {qj}nj=1 are chosen judiciously, then
the error in ‖A−HkH

T
k A‖ξ beyond the error for the best rank-k approximation can

be made arbitrarily small both in expectation and with high probability.
Although HkH

T
k A is an approximation to A, one might wonder whether the ap-

proximation HkH
T
k A can be approximated so as to satisfy properties (i)–(v). Indeed,

this is exactly what the CUR decomposition does! Using our sampling matrix for-
malism, let us define

H̃T
k = HT

k (DRSR)T and Ã = DRSRA(16)

to be the column-sampled and rescaled version of HT
k and row-sampled and rescaled

version of A, respectively. (We will see that H̃T
k Ã ≈ HT

k A by Theorem 1.) Lemma 1
states that

CUR = HkH
T
k (DRSR)TDRSRA

= HkH̃T
k Ã.(17)

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 193

R
n

VA

{vi}��

ΣA ��
R

m

UA

{ui} ��
R

n A ��

R

��

R
m

SR

��
��

��
��

��
��

��
��

�
R

m
H(=UC)

{hi}
		

R
r

U,ΨT

��

DR

�� R
c

C

��

SC

�������������������

Φ,DC ,CTC

�� R
c

Y (=VC)

{yi}		

ΣC

��

Fig. 3. Another diagram for the LinearTimeCUR algorithm.

Thus, in order to provide a bound for ‖A− CUR‖ξ for ξ = 2, F we can first note
that by the triangle inequality

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HkH
T
k A− CUR

∥∥
ξ
,(18)

and then we can bound the two terms separately. The first term in (18) can be
bounded using the SVD results of [11] if the column sampling probabilities satisfy
certain conditions; in particular we will require that they be the optimal probabilities.
Since HT

k Hk = Ik, Lemma 2 states that

∥∥HkH
T
k A− CUR

∥∥
F

=
∥∥HT

k A−HT
k (DRSR)TDRSRA

∥∥
F

=
∥∥HT

k A− H̃T
k Ã

∥∥
F
.(19)

Thus, the second term in (18) can be bounded by the matrix multiplication results of
[10]; it will follow that if the sampling probabilities {pi}mi=1 satisfy certain conditions,

then H̃T
k Ã ≈ HT

k A in the sense that the error in ‖HT
k A − H̃T

k Ã‖F can be bounded.
Note that since the optimal probabilities depend on both HT and A, and since we do
not have access to HT , our probabilities will not be optimal; nevertheless, although
we will not obtain bounds with very high probability, as in [10] and [11], we will be
able to apply Markov’s inequality and thus achieve the bounds we desire.

A diagram illustrating the method (just described) that will be used to prove the
correctness of the CUR algorithm is presented in Figure 3. In this figure, the locations
of R

c and R
r and thus the directions of R, SR, C, SC , and U have been switched

relative to their location in Figure 2. This presentation has several advantages: first,
the SVD of C and the SVD of A can both be presented in the same figure as the
CUR decomposition of A; second, one can see that bounding ‖A−HkH

T
k A‖ξ well in

terms of ‖AAT − CCT ‖ξ depends on the probabilities used to sample the columns of

A; and third, one can also see that bounding ‖HT
k A − H̃T

k Ã‖F well depends on the
probabilities used to sample the (columns of HT

k and the corresponding) rows of A.
See the corresponding figures in [10] and [11] for a comparison.

194 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

3.2. Analysis of the implementation and running time. In the Linear-

TimeCUR algorithm the sampling probabilities {pi}mi=1 and {qj}nj=1 (if they are cho-

sen to be of the form used in Theorems 4 and 5) can be computed in one pass and
O(c + r) additional space and time using the Select algorithm of [10]. Given the
elements to be sampled, the matrix C can then be constructed in one additional pass;
this requires additional space and time that is O(mc). Similarly, the matrix R can
then be constructed in the same pass using additional space and time that is O(nr).
Given C ∈ R

m×c, computing CTC requires O(mc) additional space and O(mc2) ad-
ditional time, and computing the SVD of CTC requires O(c3) additional time. The
matrix Ψ can be computed in the same second pass by sampling the same r rows of
C that were used to construct R from A; this requires additional space and time that
is O(cr). The matrix Φ can be explicitly computed using O(c2k) additional time,
and then the matrix U = ΦΨT can be computed using O(c2r) additional time. Thus,
since c, r, and k are assumed to be a constant, overall O(m+n) additional space and
time are required by the LinearTimeCUR algorithm, and requirements (i)–(iii) of
section 1 are satisfied. Note that the “description” of the solution that is computable
in the allotted additional space and time is the explicit matrices C, U , and R.

3.3. Analysis of the sampling step. Before stating and proving the main
theorem of this section, we will first prove two useful lemmas. Lemma 1 will establish
(17) and Lemma 2 will establish (19).

Lemma 1.

CUR = HkH̃T
k Ã.

Proof. Note that the SVD of C is C =
∑c

t=1 σt(C)htyt
T

, that the matrix Ψ =
DRSRC, and that U = ΦΨT , where Φ is given by (14). Thus, we have that

CUR = C

(
k∑

t=1

1

σ2
t (C)

ytyt
T

)
CT (DRSR)TR

=

(∑
t1

σt1(C)ht1yt1
T

)(
k∑

t2=1

1

σ2
t2(C)

yt2yt2
T

)(∑
t3

σt3(C)yt3ht3T

)
(DRSR)TR

=

(
k∑

t=1

hthtT

)
(DRSR)TR.

The lemma follows since
∑k

t=1 h
thtT = HkH

T
k , since R = DRSRA, and from the

definitions (16).
Lemma 2. ∥∥HkH

T
k A− CUR

∥∥
F

=
∥∥HT

k A− H̃T
k Ã

∥∥
F
.

Proof. From Lemma 1 we have that CUR = HkH̃T
k Ã. Let us define the matrix

Ω ∈ R
k×n as

Ω = HT
k A−HT

k (DRSR)TDRSRA = HT
k A− H̃T

k Ã.

In addition, note that

∥∥HkH
T
k A−HkH̃T

k Ã
∥∥2

F
= ‖HkΩ‖2

F = Tr
(
ΩTHT

k HkΩ
)
.

The lemma follows since HT
k Hk = Ik and since Tr

(
ΩTΩ

)
= ‖Ω‖2

F .

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 195

Here is our main theorem regarding the LinearTimeCUR algorithm described in
section 3.1. Note that in this theorem we restrict ourselves to sampling probabilities
that are optimal in the sense of section 2.3.

Theorem 4. Suppose A ∈ R
m×n, and let C, U , and R be constructed from the

LinearTimeCUR algorithm by sampling c columns of A with probabilities {qj}nj=1

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/ ‖A‖2
F and

qj = |A(j)|2/ ‖A‖2
F . Then

E [‖A− CUR‖F] ≤ ‖A−Ak‖F +

((
4k

c

)1/4

+

(
k

r

)1/2
)

‖A‖F ,(20)

E [‖A− CUR‖2] ≤ ‖A−Ak‖2 +

((
4

c

)1/4

+

(
k

r

)1/2
)

‖A‖F .(21)

In addition, if we let ηc = 1 +
√

8 log(1/δc) and let δ = δr + δc, then with probability
at least 1 − δ,

‖A− CUR‖F ≤ ‖A−Ak‖F +

((
4kη2

c

c

)1/4

+

(
k

δ2
rr

)1/2
)

‖A‖F ,(22)

‖A− CUR‖2 ≤ ‖A−Ak‖2 +

((
4η2

c

c

)1/4

+

(
k

δ2
rr

)1/2
)

‖A‖F .(23)

Proof. By the triangle inequality we have that

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HkH
T
k A− CUR

∥∥
ξ

(24)

for both ξ = 2, F ; thus by Lemmas 1 and 2 we have that

‖A− CUR‖ξ ≤
∥∥A−HkH

T
k A

∥∥
ξ
+

∥∥HT
k A−HT

k (DRSR)TDRSRA
∥∥
F

(25)

=
∥∥A−HkH

T
k A

∥∥
ξ
+
∥∥HT

k A− H̃T
k Ã

∥∥
F

(26)

for both ξ = 2, F , where (26) follows from the definitions (16). Then, note that the
column sampling satisfies the requirements for the LinearTimeSVD algorithm of
[11]. Thus, by Theorem 2 it follows from (25) that

‖A− CUR‖F ≤ ‖A−Ak‖F + (4k)
1/4 ∥∥AAT − CCT

∥∥1/2

F
+
∥∥HT

k A− H̃T
k Ã

∥∥
F
,(27)

‖A− CUR‖2 ≤ ‖A−Ak‖2 +
√

2
∥∥AAT − CCT

∥∥1/2

F
+
∥∥HT

k A− H̃T
k Ã

∥∥
F
.(28)

Note that from the LinearTimeCUR algorithm the column sampling probabilities
are of the form (3) with B = AT ; thus, they are optimal and E

[
‖AAT − CCT ‖F

]
≤

1√
c
‖A‖2

F . In addition, although the row sampling probabilities are not optimal, they

are of the form (6); thus, since ‖HT
k ‖F =

√
k we have that

E
[∥∥HT

k A− H̃T
k Ã

∥∥
F

]
≤

√
k

r
‖A‖F .(29)

196 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

Thus, by taking expectations of (27) and (28), by using Jensen’s inequality and The-
orem 1, (20) and (21) follow.

To establish (22) and (23) first let the events Eξ, ξ = c, r be defined as follows:

Ec :
∥∥AAT − CCT

∥∥
F
≤ ηc√

c
‖A‖2

F ,

Er :
∥∥HT

k A− H̃T
k Ã

∥∥
F
≤ 1

δr

√
k

r
‖A‖F .

Thus, from Theorem 1 we have that Pr [Ec] ≥ 1−δc. By applying Markov’s inequality

to
∥∥HT

k A− H̃T
k Ã

∥∥
F

and using (29) we see that

Pr

[∥∥HT
k A− H̃T

k Ã
∥∥
F
≥ 1

δr

√
k

r
‖A‖F

]
≤ δr

and thus that Pr [Er] ≥ 1 − δr. The theorem then follows from (27) and (28) by
considering the event Ec

⋂
Er.

Note that in the proof of Theorem 4 (and similarly in that of Theorem 6 in
section 4) ‖A − CUR‖ξ is bounded by bounding each of the terms ‖A − HkH

T
k A‖ξ

and ‖HkH
T
k A−CUR‖ξ independently. In order to bound ‖A−HkH

T
k A‖ξ, the SVD

results for arbitrary probabilities from [11] are used, and then it is noted that the
column sampling probabilities used in the LinearTimeCUR algorithm are optimal
for bounding ‖AAT −CCT ‖F . Then, independently, ‖HkH

T
k A−CUR‖ξ is bounded

by using the matrix multiplication results of [10]. Since the probabilities that are used

for the row sampling are not optimal with respect to bounding ‖HT
k A− H̃T

k Ã‖F , we
do not obtain that bound with high probability. Due to the use of Markov’s inequality,
we must sample a number of rows that is O(1/δ), whereas we only need to sample a
number of columns that is O(log(1/δ)).

As a corollary of Theorem 4 we have the following theorem. In this theorem, in
addition to using sampling probabilities that are optimal in the sense of section 2.3,
we choose sufficiently many columns and rows to ensure that the additional error is
less than ε′ ‖A‖F .

Theorem 5. Suppose A ∈ R
m×n, and let C, U , and R be constructed from the

LinearTimeCUR algorithm by sampling c columns of A with probabilities {qj}nj=1

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/‖A‖2
F and

qj = |A(j)|2/‖A‖2
F and let ε, ε′ > 0 with ε = ε′/2.

If c ≥ 4k/ε4 and r ≥ k/ε2, then

E [‖A− CUR‖F] ≤ ‖A−Ak‖F + ε′ ‖A‖F ,(30)

and if c ≥ 4/ε4 and r ≥ k/ε2, then

E [‖A− CUR‖2] ≤ ‖A−Ak‖2 + ε′ ‖A‖F .(31)

In addition, if we let ηc = 1 +
√

8 log(1/δc) and let δ = δr + δc, and if c ≥ 4kη2
c/ε

4

and r ≥ k/δ2
rε

2, then with probability at least 1 − δ,

‖A− CUR‖F ≤ ‖A−Ak‖F + ε′ ‖A‖F ,(32)

and if c ≥ 4η2
c/ε

4 and r ≥ k/δ2
rε

2, then with probability at least 1 − δ,

‖A− CUR‖2 ≤ ‖A−Ak‖2 + ε′ ‖A‖F .(33)

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 197

The results of Theorems 4 and 5 for both the Frobenius norm and the spectral
norm hold for all k and are of particular interest when A is well approximated by a
matrix of low rank since then one may choose k = O(1) and obtain a good approxi-
mation. In addition, since ‖A−At‖2 ≤ ‖A‖F /

√
t for all t = 1, 2, . . . , r, the bounds

with respect to the spectral norm have the following interesting property: from (31)
we can see that

E [‖A− CUR‖2] ≤
(
1/
√
k + ε′

)
‖A‖F ,

and similarly for (33). Thus, under the assumptions of Theorem 5 if we choose

k = 1/ε′
2

and let ε′′ = 2ε′, then we have that

E [‖A− CUR‖2] ≤ ε′′ ‖A‖F(34)

and that

‖A− CUR‖2 ≤ ε′′ ‖A‖F(35)

holds with probability at least 1 − δ.

4. The constant time CŨR decomposition.

4.1. The algorithm. The ConstantTimeCUR algorithm is very similar in
spirit to the LinearTimeCUR algorithm; thus, we only highlight its main features
with an emphasis on similarities and differences between the two algorithms. Given
a matrix A ∈ R

m×n, we wish to compute a description of a succinctly described,
easily computed matrix A′ that is decomposable as A′ = CŨR ∈ R

m×n and that
satisfies requirements (i)–(v) of section 1, where the additional RAM space and time
to compute Ũ is O(1). The ConstantTimeCUR algorithm, which is presented in
Figure 4, accomplishes this by forming a matrix C ∈ R

m×c by rescaling a randomly
chosen subset of c columns of A, forming a matrix R ∈ R

r×n by rescaling a randomly
chosen subset of r rows of A, and forming a matrix Ψ ∈ R

r×c from C by choosing the
same randomly chosen rows used to construct R from A and rescaling appropriately.
Given C, the ConstantTimeCUR algorithm randomly chooses and rescales w rows
of C to form a matrix W ∈ R

w×c and then computes the top
 singular values, σ2
t (W),

t = 1, . . . ,
, and the corresponding singular vectors, zt, t = 1, . . . ,
, of WTW . Note
that these are also approximations to the (squares of the) singular values and the
corresponding right singular vectors of C. Using these quantities, a matrix Φ̃ ∈ R

c×c

may be defined as

Φ̃ =

�∑
t=1

1

σ2
t (W)

ztzt
T

,(36)

from which Ũ ∈ R
c×r is constructed as Ũ = Φ̃ΨT . Note that in the constant additional

space and time framework the actual matrices C and R are not explicitly computed;
instead the constant-sized matrix Ũ is computed and only a constant number of bits
are stored to specify which columns and rows of A are kept (along with their associated
rescaling factors) in the construction of C and R, respectively. Thus, the length of
the succinct representation of A is a constant.

Figure 2 of section 3 provides a diagram illustrating the action of LinearTime-

CUR algorithm, but the diagram and associated discussion are also relevant for the
ConstantTimeCUR algorithm. Figure 5 also provides a diagram illustrating the

198 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

ConstantTimeCUR Algorithm.

Input: A ∈ R
m×n, r, c, k ∈ Z

+ such that 1 ≤ r ≤ m, 1 ≤ c ≤ n, and 1 ≤ k ≤
min(r, c), {pi}mi=1 such that pi ≥ 0 and

∑m
i=1 pi = 1, and {qj}nj=1 such that qj ≥ 0

and
∑n

j=1 qj = 1.

Output: Ũ ∈ R
c×r and a “description” of C ∈ R

m×c and R ∈ R
r×n.

1. For t = 1 to c,
(a) Pick jt ∈ {1, . . . , n} with Pr [jt = α] = qα, and save {(jt, qjt) : t =

1, . . . , c}.
(b) Set C(t) = A(jt)/

√
cqjt . (Note that C is not explicitly constructed in

RAM.)

2. Choose {πi}mi=1 such that πi =
∣∣C(i)

∣∣2 / ‖C‖2
F .

3. For t = 1 to w,
(a) Pick it ∈ 1, . . . ,m with Pr [it = α] = πα, α = 1, . . . ,m.
(b) Set W(t) = C(it)/

√
wπit .

4. Compute WTW and its SVD; say WTW =
∑c

t=1 σ
2
t (W)ztzt

T
.

5. If a ‖·‖F bound is desired, set γ = ε/100k,
Else if a ‖·‖2 bound is desired, set γ = ε/100.

6. Let
 = min{k,max{t : σ2
t (W) ≥ γ ‖W‖2

F }}.
7. Keep singular values {σt(W)}�t=1 and their corresponding singular vectors

{zt}�t=1.
8. For t = 1 to r,

(a) Pick it ∈ {1, . . . ,m} with Pr [it = α] = pα, and save {(it, pit) : t =
1, . . . , r}.

(b) Set R(t) = A(it)/
√
rpit . (Note that R is not explicitly constructed in

RAM.)
(c) Set Ψ(t) = C(it)/

√
rpit .

9. Let Φ̃ =
∑�

t=1
1

σ2
t (W)

ztzt
T

and let Ũ = Φ̃ΨT .

10. Return Ũ , c column labels {(jt, qjt) : t = 1, . . . , c}, and r row labels {(it, pit) :
t = 1, . . . , r}.

Fig. 4. The ConstantTimeCUR algorithm.

action of the ConstantTimeCUR algorithm, and is the analogue for the constant
time CŨR of Figure 3; Figure 5 also illustrates that the matrix Y (= VC) (of Figure
3) consisting of the top k right singular vectors of C is not exactly computed, but is
instead approximated by the matrix Z (= VW), where Z is a matrix whose columns
Z(t) = zt consist of the right singular vectors of W . Thus, the matrix Hk consisting
of the left singular vectors of C is not exactly computed but is only approximated by

H̃�, where H̃
(t)
� = h̃t = Czt/σt(W) for t = 1, . . . ,
. Since by construction it is still

the case that R = DRSRA (and also that C = ASCDC and Ψ = DRSRC), where the
sampling matrices and the diagonal rescaling matrices are defined as in section 3.1, it
follows from Lemma 3 that

CŨR = H̃�H̃
T
� (DRSR)TDRSRA.(37)

In the linear time case we had that HT
k Hk = Ik since the columns of Hk were k

of the left singular vectors of C. This allowed us to prove Lemma 2, as described

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 199

R
n

VA

{vi}��

ΣA ��
R

m

UA

{ui} ��
R

n A ��

R

��

R
m

SR

��������������������
R

mH̃

{h̃i}
		

R
r

Ũ,ΨT

��

DR

 R
c

C

��

W

����
��

��
��

��
��

�

SC

��������������������

Φ̃,DC ,WTW

�� R
c

Z(=VW)

{zi}		

��

ΣW

��

ΣW

����
��

��
��

��
��

�

R
w

R
w

UW

		

Fig. 5. Diagram for the ConstantTimeCUR algorithm.

in section 3.1. In the constant additional time setting, the columns of H̃� are only
approximations to k of the left singular vectors of C, but we still have that H̃T

� H̃� ≈ I�.
To quantify this, define Zα,β ∈ R

c×(β−α+1) to be the matrix whose columns are the
αth through the βth singular vectors of WTW and T ∈ R

�×� to be the diagonal
matrix with elements Ttt = 1/σt(W). If we define the matrix Δ ∈ R

�×� to be

Δ = TZT
1,�(C

TC −WTW)Z1,�T,(38)

then Lemma 5 will establish that

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖1/2

F)
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
,(39)

and Lemma 4 establishes that H̃T
� H̃� = I� + Δ. Thus, as in the linear time case, we

can split

∥∥A− CŨR
∥∥
ξ
≤

∥∥A− H̃�H̃
T
� A

∥∥
ξ
+
∥∥H̃�H̃

T
� A− CŨR

∥∥
ξ

for ξ = 2, F and then bound the two terms separately. The first term can be bounded
by the constant time SVD results of [11], the second term can be bounded by the
matrix multiplication results of [10], and bounding the overall error depends on both
results. Due to the two levels of sampling, the additional error will be larger than in
the linear additional time framework, but it can be made arbitrarily small by choosing
a constant number of rows and columns.

4.2. Analysis of the implementation and running time. In the Con-

stantTimeCUR algorithm the sampling probabilities {pi}mi=1 and {qj}nj=1 (if they

are chosen to be of the form used in Theorem 6) can be computed in one pass and
O(c + r) additional space and time using the Select algorithm of [10]. Given the
columns of A to be sampled, we do not explicitly construct the matrix C but instead

200 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

perform a second level of sampling and select w rows of C with probabilities {πi}mi=1

in order to construct the matrix W ; this requires a second pass and O(w) additional
space and time. Then, in a third pass we explicitly construct W ; this requires addi-
tional space and time that is O(cw). Similarly, a description of the matrix R can then
be constructed in the same third pass using additional space and time that is O(r).
Then, given W , computing WTW requires O(c2w) additional time and computing
the SVD of WTW requires O(c3) additional time. The matrix Ψ can be computed
in the same third pass by sampling the same r rows of C that were used to construct
R from A; this requires additional time that is O(cr). The matrix Φ̃ can be explic-
itly computed using O(c2k) additional time and then the matrix U = Φ̃ΨT can be
computed using O(c2r) additional time. Thus, since c, r, and k are assumed to be
constants, overall O(1) additional space and time are required by the Constant-

TimeCUR algorithm, and requirements (i)–(iii) of section 1 are satisfied. Note that
the “description” of the solution that is computable in the allotted additional space
and time is the matrix Ũ , with the labels i1, . . . , ir and j1, . . . , jc indicating the rows
chosen to construct C and R as well as the corresponding probabilities {pit}

r
t=1 and

{qjt}
c
t=1; we note that we need to know pi only for the sampled rows i and qj only for

the sampled columns j.

4.3. Analysis of the sampling step. Before stating and proving the main
theorem of this section, we will first prove several useful lemmas. First, in Lemma 3
we will establish (37).

Lemma 3.

CŨR = H̃�H̃
T
� (DRSR)TDRSRA.

Proof. Since h̃t = Czt/σt(W) for t = 1, . . . ,
, we have that C =
∑c

t=1 σt(W)h̃tzt
T
.

Thus, we have that

CŨR = C

(
�∑

t=1

1

σ2
t (W)

ztzt
T

)
CT (DRSR)TR

=

(
�∑

t=1

h̃th̃tT

)
(DRSR)TR.

The lemma follows since
∑�

t=1 h̃
th̃tT = H̃�H̃

T
� and since R = DRSRA.

Next, Lemma 4 will characterize, in terms of Δ, the degree to which the columns
of H̃� are not orthonormal. Note that it appeared in [11].

Lemma 4. When written in the basis with respect to Z,

H̃T
� H̃� = I� + Δ.

Furthermore, for ξ = 2, F ,

‖Δ‖ξ ≤ 1

γ ‖W‖2
F

∥∥CTC −WTW
∥∥
ξ
.

Proof. Recall that H̃� = CZ1,�T and that TTZT
1,�W

TWZ1,�T = I�, so that

∥∥H̃T
� H̃� − I�

∥∥
ξ

=
∥∥TTZT

1,�C
TCZ1,�T − TTZT

1,�W
TWZ1,�T

∥∥
ξ

(40)

=
∥∥TTZT

1,�

(
CTC −WTW

)
Z1,�T

∥∥
ξ
.(41)

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 201

Using the submultiplicativity properties of the 2-norm, and in particular

‖AB‖ξ ≤ ‖A‖2 ‖B‖ξ ,(42)

‖AB‖ξ ≤ ‖A‖ξ ‖B‖2 ,(43)

for both ξ = 2, F , we get

∥∥H̃T
� H̃� − I�

∥∥
ξ
≤

∥∥TTZT
1,�

∥∥
2

∥∥CTC −WTW
∥∥
ξ
‖Z1,�T‖2(44)

≤ ‖T‖2
2

∥∥CTC −WTW
∥∥
ξ

(45)

≤ max
t=1,...,�

(
1/σ2

t (W)
) ∥∥CTC −WTW

∥∥
ξ
,(46)

since ‖Z1,�‖2 = 1. The lemma follows since σ2
t (W) ≥ γ ‖W‖2

F for all t = 1, . . . ,
 by
the definition of
.

Next, in Lemma 5 we will establish (39).
Lemma 5.

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖1/2

F)
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
.

Proof. From Lemma 3 we have that CŨR = H̃�H̃
T
� (DRSR)TDRSRA. Let us

define the matrix Ω ∈ R
�×n as

Ω = H̃T
� A− H̃T

� (DRSR)TDRSRA.

Thus, since Tr
(
XXT

)
= ‖X‖2

F for a matrix X, we have

∥∥H̃�Ω
∥∥2

F
= Tr(ΩT H̃T

� H̃�Ω)

= Tr(ΩT (I� + Δ)Ω)(47)

= ‖Ω‖2
F + Tr(ΩTΔΩ)

≤ ‖Ω‖2
F + ‖Δ‖2 ‖Ω‖2

F ,(48)

where (47) follows from Lemma 4 and (48) follows since
∣∣Tr(ΩTΔΩ)

∣∣≤‖Δ‖2 Tr(ΩTΩ).
Thus,

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ (1 + ‖Δ‖2)

1/2 ∥∥H̃T
� A− H̃T

� (DRSR)TDRSRA
∥∥
F
,

and the lemma then follows.
Finally, in Lemma 6 we show that ‖W‖F = ‖C‖F = ‖A‖F when optimal prob-

abilities are used. It also appeared in [11].
Lemma 6. Suppose A ∈ R

m×n, and run the ConstantTimeCUR algorithm by
sampling c columns of A with probabilities {qj}nj=1 (and then sampling w rows of C

with probabilities {πi}mi=1 to construct W) and r rows of A with probabilities {pi}mi=1.

Assume that pi = |A(i)|2/ ‖A‖2
F and qj = |A(j)|2/ ‖A‖2

F . Then ‖W‖F = ‖C‖F =
‖A‖F .

Proof. If pi = |A(i)|2/ ‖A‖2
F , then we have that ‖C‖2

F =
∑c

t=1 |C(t)|2 =
∑c

t=1|A(it)|2
cpit

= ‖A‖2
F . Similarly, if qj = |C(j)|2/ ‖C‖2

F , then we have that ‖W‖2
F =∑w

t=1

∣∣W(t)

∣∣2 =
∑w

t=1

|C(it)
|2

wqit
= ‖C‖2

F . The lemma follows.
Here is our main theorem regarding the ConstantTimeCUR algorithm de-

scribed in section 4.1. It is the constant time analogue of Theorem 5. Note that

202 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

in this theorem we restrict ourselves to sampling probabilities that are optimal in the
sense of section 2.3, and to choosing sufficiently many columns and rows to ensure
that the additional error is less than ε ‖A‖F .

Theorem 6. Suppose A ∈ R
m×n, and let C, Ũ , and R be constructed from

the ConstantTimeCUR algorithm by sampling c columns of A with probabilities
{qj}nj=1 (and then sampling w rows of C with probabilities {πi}mi=1 to construct W)

and r rows of A with probabilities {pi}mi=1. Assume that pi = |A(i)|2/ ‖A‖2
F and

qj = |A(j)|2/ ‖A‖2
F . Let η = 1 +

√
8 log(3/δ) and ε > 0.

If a Frobenius norm bound is desired, and hence the ConstantTimeSVD algo-
rithm is run with γ = ε/100k, then if we let c = Ω(k2η2/ε8), w = Ω(k2η2/ε8), and
r = Ω(k/δ2ε2), then with probability at least 1 − δ,

∥∥A− CŨR
∥∥
F
≤ ‖A−Ak‖F + ε ‖A‖F .(49)

If a spectral norm bound is desired, and hence the ConstantTimeSVD algorithm
is run with γ = ε/100, then if we let c = Ω(η2/ε8), w = Ω(η2/ε8), and r = Ω(k/δ2ε2),
then with probability at least 1 − δ,

∥∥A− CŨR
∥∥

2
≤ ‖A−Ak‖2 + ε ‖A‖F .(50)

Proof. Let us define the events:

Ec :
∥∥AAT − CCT

∥∥
F
≤ η√

c
‖A‖2

F ,(51)

Ew :
∥∥CTC −WTW

∥∥
F
≤ η√

w
‖A‖2

F ,(52)

Er :
∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F
≤ 3

δ
√
r

∥∥H̃�

∥∥
F
‖A‖F .(53)

Under the assumptions of this theorem, event Ec holds with probability greater than
1− δ/3 by Theorem 1, and similarly for event Ew. Next, we claim that Er holds with
probability greater than 1 − δ/3. To prove this it suffices to prove that

E
[∥∥H̃T

� A− H̃T
� (DRSR)TDRSRA

∥∥
F

]
≤ 1√

r

∥∥H̃T
�

∥∥
F
‖A‖F ,(54)

since the claim that Pr [Er] ≥ 1 − δ/3 follows immediately from (54) by Markov’s
inequality; but (54) follows from Theorem 1 since the probabilities {pi}mi=1 used to

sample the columns of H̃� and the corresponding rows of A are of the form (6). Thus,
under the assumptions of the theorem,

Pr [Eξ] ≥ 1 − δ/3 for ξ = c, w, r.

Next, from Lemma 4 and the Cauchy–Schwarz inequality, it follows that

∥∥H̃�

∥∥2

F
=

�∑
t=1

∣∣h̃tT h̃t
∣∣ =

�∑
t=1

1 + Δtt ≤ k +
√
k ‖Δ‖F .(55)

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 203

Since
√

1 + x ≤ 1 +
√
x for x ≥ 0 it follows from (55) and (53) that under the event

Er we have

∥∥H̃T
� A− H̃T

� (DRSR)TDRSRA
∥∥
F
≤ 3

δ
√
r

(√
k + k1/4 ‖Δ‖1/2

F

)
‖A‖F .(56)

By combining (56) with Lemma 5 we have that

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ 3

δ
√
r

(
1 + ‖Δ‖1/2

F

)(√
k + k1/4 ‖Δ‖1/2

F

)
‖A‖F

≤
(

9k

δ2r

)1/2 (
1 + ‖Δ‖1/2

F

)2

‖A‖F(57)

≤
(

9k

δ2r

)1/2 (
1 + 3 ‖Δ‖1/2

F

)
‖A‖F(58)

≤
(

9k

δ2r

)1/2
⎛
⎝1 +

3
∥∥CTC −WTW

∥∥1/2

F√
γ ‖W‖F

⎞
⎠ ‖A‖F ,(59)

where (57) follows since k1/4 ≤
√
k, (58) follows by multiplying out terms and since

‖Δ‖F ≤ 1 under the assumptions of the theorem, and (59) follows from the bound on
‖Δ‖F in Lemma 4.

Let us first consider establishing the Frobenius norm bound of (49). Recall that
in this case we have set γ = ε/100k. We will use the triangle inequality to get

∥∥A− CŨR
∥∥
F
≤

∥∥A− H̃�H̃
T
� A

∥∥
F

+
∥∥H̃�H̃

T
� A− CŨR

∥∥
F

(60)

and will bound each term separately. First, using the probabilities {qj}nj=1 and the

values of c, w = Ω(k2η2/ε8), then under the event Ec
⋂
Ew we have that

∥∥A− H̃�H̃
T
� A

∥∥
F
≤ ‖A−Ak‖F +

ε

2
‖A‖F(61)

by Theorem 3; see also [11]. In addition, using the sampling probabilities {pi}mi=1 and
values of r = Ω(k/δ2ε2) and w = Ω(k2η2/ε8), and noting Lemma 6, it follows from
(59) that under the event Er

⋂
Ew,

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ ε

2
‖A‖F .(62)

Thus, under the event Ec
⋂
Ew

⋂
Er, which has probability at least 1−δ, by combining

(61) and (62) we see that (49) follows.
Let us next consider establishing the spectral norm bound of (50). Recall that in

this case we have set γ = ε/100 and that

∥∥A− CŨR
∥∥

2
≤

∥∥A− H̃�H̃
T
� A

∥∥
2

+
∥∥H̃�H̃

T
� A− CŨR

∥∥
F

(63)

by the submultiplicitivity of ‖·‖2 and since ‖·‖2 ≤ ‖·‖F . First, using the probabilities
{qj}nj=1 and the values of c, w = Ω(η2/ε8), under the event Ec

⋂
Ew we have that

∥∥A− H̃�H̃
T
� A

∥∥
2
≤ ‖A−Ak‖2 +

ε

2
‖A‖F(64)

204 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

by Theorem 3; see also [11]. In addition, using the sampling probabilities {pi}mi=1 and
values of r = Ω(k/δ2ε2) and w = Ω(η2/ε8), and noting Lemma 6, it follows from (59)
that under the event Er

⋂
Ew,

∥∥H̃�H̃
T
� A− CŨR

∥∥
F
≤ ε

2
‖A‖F .(65)

Thus, under the event Ec
⋂
Ew

⋂
Er, which has probability at least 1−δ, by combining

(64) and (65) we see that (50) follows.
As in the linear additional time framework, the results of Theorem 6 hold for all

k and are of particular interest when A is well approximated by a matrix of low rank
since then one may choose k = O(1) and obtain a good approximation. In addition,
it follows from (50) that

∥∥A− CŨR
∥∥

2
≤ (1/

√
k + ε′) ‖A‖F .

Thus, under the assumptions of Theorem 6 if we choose k = 1/ε′
2

and let ε′′ = 2ε′,
then we have that

‖A− CUR‖2 ≤ ε′′ ‖A‖F(66)

holds with probability at least 1 − δ.
We note the following lemma. This result is not needed in this paper, but is

included for future reference [13].
Lemma 7.

∥∥Ũ∥∥
2
≤ O(1)

γ ‖A‖F
.

Proof. First note that ‖Ũ‖2 = ‖Φ̃ΨT ‖2 ≤ ‖Φ̃‖2‖ΨT ‖2. Since Φ̃ =
∑�

t=1
1

σ2
t (W)

ztzt
T
, we see that ‖Φ̃‖2 = 1

σ2
�
(W)

≤ 1
γ‖W‖2

F

. The lemma follows since, when using the

probabilities of Theorem 6, we have that ‖ΨT ‖F ≤ O(1)‖A‖F and that 1/‖W‖2
F ≤

O(1)/‖A‖2
F .

5. Discussion and conclusion. To put the CUR decomposition into context,
it will be useful to contrast it with the SVD. The SVD of A expresses A as A =∑ρ

t=1 σt(A)utvt
T
. Keeping the first k terms of this expansion, i.e., keeping Ak =∑k

t=1 σt(A)utvt
T

= UkΣkV
T
k , gives us the “optimal” rank-k approximation to A with

respect to both the spectral norm and the Frobenius norm [19, 22]. Thus, computing
the SVD gives us a good succinct approximation, since it only takes space O(k(m+n))
to write down Uk,Σk, Vk. However, the computational problem of finding the SVD
cannot be carried out in a small constant number of passes. Our theorems say that
weaker bounds, which are similar in spirit, may be achieved by CUR. Note, however,
that although the SVD may be thought of as a rotation followed by a rescaling followed
by a rotation, the CUR decomposition is quite different; both C and R perform an
action like A and thus U must involve a pseudoinverse-like operation. Note also that
the last upper bound, i.e., (v), is much smaller than ‖A‖F when A has a good low-
rank approximation. This is indeed the case for matrices occurring in many contexts,
such as matrices for which principal component analysis is used.

Recent work has focused on developing new techniques for proving lower bounds
on the number of queries a sampling algorithm is required to perform in order to

FAST MONTE CARLO ALGORITHMS FOR MATRICES III 205

approximate a given function accurately with a low probability or error [3, 4]. In [4]
these methods have been applied to the low-rank matrix approximation problem and
to the matrix reconstruction problem. In the latter problem, the input is a matrix
A ∈ R

m×n and the goal is to find a matrix B that is close to A. In [4] it is shown that
finding a B such that ‖A−B‖F ≤ ε ‖A‖F requires Ω(mn) queries and that finding
a B such that ‖A−B‖2 ≤ ε ‖A‖F requires Ω(m+ n) queries. Thus, our algorithm is
optimal for constant ε.

During the time since this manuscript was submitted for journal publication we
have become aware of other low-rank matrix decompositions of the form A ≈ CUR,
where C is a matrix consisting of a small number of columns of A, R is a matrix
consisting of a small number of rows of A, and U is an appropriately defined low-
dimensional matrix. Work by Stewart [26, 27, 5] and independently work by Goreinov,
Tyrtyshnikov, and Zamarashkin [21, 20] have considered matrix decompositions with
structural (but not algorithmic) properties quite similar to the CUR decompositions
we have considered in this paper. Drineas and Mahoney have extended the CUR
decompositions of this paper to kernel-based statistical learning [15, 16] and large
tensor-based data [17]. These latter papers also contain a discussion of the relation-
ship between the work presented in this paper and the related work of Stewart and
Goreinov, Tyrtyshnikov, and Zamarashkin.

Acknowledgments. We would like to thank Dimitris Achlioptas for fruitful
discussions and the National Science Foundation for partial support of this work. In
addition, we would like to thank an anonymous reviewer for carefully reading the
paper and making numerous useful suggestions; in particular, the reviewer provided
an elegant, short proof for Lemma 4.

REFERENCES

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, J.
ACM, to appear.

[2] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, in
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 611–
618.

[3] Z. Bar-Yossef, The Complexity of Massive Data Set Computations, Ph.D. thesis, University
of California, Berkeley, 2002.

[4] Z. Bar-Yossef, Sampling lower bounds via information theory, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003, pp. 335–344.

[5] M. W. Berry, S. A. Pulatova, and G. W. Stewart, Computing Sparse Reduced-Rank Ap-
proximations to Sparse Matrices, Tech. Report UMIACS TR-2004-32 CMSC TR-4589,
University of Maryland, College Park, MD, 2004.

[6] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[7] E. Cohen and D. D. Lewis, Approximating matrix multiplication for pattern recognition tasks,

J. Algorithms, 30 (1999), pp. 211–252.
[8] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, Clustering in large graphs

and matrices, in Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1999, pp. 291–299.

[9] P. Drineas and R. Kannan, Pass efficient algorithms for approximating large matrices, in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2003, pp. 223–232.

[10] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.

[11] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
II: Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp.
158–183.

[12] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo Algorithms for Ma-
trices III: Computing a Compressed Approximate Matrix Decomposition, Tech. Report

206 PETROS DRINEAS, RAVI KANNAN, AND MICHAEL W. MAHONEY

YALEU/DCS/TR-1271, Department of Computer Science, Yale University, New Haven,
CT, 2004.

[13] P. Drineas, R. Kannan, and M. W. Mahoney, Sampling Sub-problems of Heterogeneous
Max-Cut Problems and Approximation Algorithms, Tech. Report YALEU/DCS/TR-1283,
Department of Computer Science, Yale University, New Haven, CT, 2004.

[14] P. Drineas, I. Kerenidis, and P. Raghavan, Competitive recommendation systems, in Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 82–90.

[15] P. Drineas and M. W. Mahoney, Approximating a Gram matrix for improved kernel-based
learning, in Proceedings of the 18th Annual Conference on Learning Theory, 2005, pp. 323–
337.

[16] P. Drineas and M. W. Mahoney, On the Nyström method for approximating a Gram matrix
for improved kernel-based learning, J. Machine Learning, 6 (2005), pp. 2153–2175.

[17] P. Drineas and M. W. Mahoney, A Randomized Algorithm for a Tensor-Based Generaliza-
tion of the Singular Value Decomposition, Tech. Report YALEU/DCS/TR-1327, Depart-
ment of Computer Science, Yale University, New Haven, CT, 2005.

[18] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-rank
approximations, in Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, 1998, pp. 370–378.

[19] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, 1989.

[20] S. A. Goreinov and E. E. Tyrtyshnikov, The maximum-volume concept in approximation
by low-rank matrices, Contemp. Math., 280 (2001), pp. 47–51.

[21] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton
approximations, Linear Algebra Appl., 261 (1997), pp. 1–21.

[22] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York,
1985.

[23] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation, in Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, 2000, pp. 189–197.

[24] J. Kleinberg, Two algorithms for nearest-neighbor search in high dimensions, in Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 599–608.

[25] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Academic Press, London,
1979.

[26] G. W. Stewart, Four algorithms for the efficient computation of truncated QR approximations
to a sparse matrix, Numer. Math., 83 (1999), pp. 313–323.

[27] G. W. Stewart, Error Analysis of the Quasi-Gram-Schmidt Algorithm, Tech. Report UMIACS
TR-2004-17 CMSC TR-4572, University of Maryland, College Park, MD, 2004.

[28] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[29] S. Vempala, Random projection: A new approach to VLSI layout, in Proceedings of the 39th
Annual IEEE Symposium on Foundations of Computer Science, 1998, pp. 389–395.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 207–229

A COMPLETE CLASSIFICATION OF THE COMPLEXITY OF
PROPOSITIONAL ABDUCTION∗

NADIA CREIGNOU† AND BRUNO ZANUTTINI‡

Abstract. Abduction is the process of explaining a given query with respect to some background
knowledge. For instance, p is an explanation for the query q given the knowledge p → q. This
problem is well known to have many applications, particularly in artificial intelligence (AI), and has
been widely studied from both an AI and a complexity-theoretic point of view. In this paper we
completely classify the complexity of propositional abduction in Schaefer’s famous framework. We
consider the case where knowledge bases are taken from a class of formulas in generalized conjunctive
normal form. This means that the propositional formulas considered are conjunctions of constraints
taken from a fixed finite language. We show that according to the properties of this language, deciding
whether at least one explanation exists is either polynomial, NP-complete, or Σ2P-complete. Our
results are stated for a query consisting of a single, positive literal and for assumption-based solutions,
i.e., the solutions must be formed upon a distinguished subset of the variables that is part of the
input. We show, however, that our results can be interpreted “dually” for negative queries, and thus
also for unrestricted (positive or negative) queries.

Key words. abduction, propositional logic, complexity, Boolean constraints

AMS subject classifications. 68Q17, 68Q25, 68T27

DOI. 10.1137/S0097539704446311

1. Introduction. Abduction is a fundamental mode of reasoning which consists
in searching for an explanation, or plausible cause, of a given observed manifestation
and given some background knowledge base. For instance, given the knowledge base
p → q, the fact p is an explanation for the observation q, which means that p may
have caused q. Viewing abduction as an inference problem, the conclusion p can be
inferred from p → q and q; q is usually called the query, since it is the varying part
of the input of the problem, while the background knowledge base is intended to be
more persistent, as a description of how the universe behaves. Finally, an abduction
problem is usually constrained by a set of hypotheses from which the explanations
must be taken; in our framework as in many others, the set of hypotheses will be
given in intension by a set of abducible variables upon which the explanations will
have to be formed.

Note that the abduction process is nonmonotonic, i.e., logically strengthening (or
weakening) the knowledge base may rule out or add some solutions of the problem.
It is also not truth-preserving, in the sense that observing some query and inferring
some explanation for it does not guarantee that the explanation did indeed occur.

From an artificial intelligence (AI) point of view, abduction has many applications.
The most natural one is medical diagnosis (see, e.g., [5, section 6]), where a physician
attempts to identify a patient’s disease from some observed symptoms: here the query
models the symptoms, the knowledge base describes the relations between diseases
and symptoms, and finally the abducible variables model the diseases (since we do

∗Received by the editors October 18, 2004; accepted for publication (in revised form) December
20, 2005; published electronically May 26, 2006.

http://www.siam.org/journals/sicomp/36-1/44631.html
†LIF, UMR CNRS 6166, Université de la Méditerranée, 163, avenue de Luminy, 13288 Marseille

Cedex 9, France (creignou@lif.univ-mrs.fr).
‡GREYC, UMR CNRS 6072, Université de Caen, Boulevard du Maréchal Juin, 14032 Caen Cedex,

France (zanutti@info.unicaen.fr).

207

208 NADIA CREIGNOU AND BRUNO ZANUTTINI

not want to explain a symptom by another symptom). In the same vein, system
diagnosis [6, 27], where one wants to discover the faulty components of a system
that does not behave as desired (e.g., an electronic device), can be modeled as an
abduction problem. Another application is configuration [1], and still another one is
text interpretation [16]. Abduction has also been studied with temporal knowledge
bases [4]. Closer to the reasoning processes themselves, abduction is a fundamental
part of the CMS/ATMS [24], and it has many relations with default reasoning [26].

From a complexity-theoretic point of view, abduction is in general very hard, since
in its full generality propositional abduction as a decision problem is Σ2P-complete;
that is to say, it is at the second level of the polynomial hierarchy. However, many re-
strictions on the syntactic form of the knowledge base have been identified that make
the problem easier, even polynomial for some of them: 2-CNF and monotone knowl-
edge bases (see, e.g., [20]), definite Horn CNF [26, 11] and affine [28] bases, CNF bases
with unit-refutable pseudocompletion [14] or with bounded kernel width [10], Horn
bases given by their characteristic models [19], and some classes of DNF bases [28].
Among those restrictions some impose local properties on the knowledge bases, such
as being in definite Horn CNF, and some impose global properties, such as being in
Horn-renamable DNF or having a unit-refutable pseudocompletion.

Our work takes place in the framework of propositional classes of formulas defined
by local properties. More precisely, we investigate the computational complexity of
propositional abduction in Schaefer’s framework. This now famous framework consists
in considering propositional formulas in generalized conjunctive form. These formulas
are conjunctions of constraints built over a fixed finite set L of Boolean relations. In his
seminal paper [25], Schaefer studied the computational complexity of the satisfiability
problem in this setting, sat(L), and established a dichotomy theorem which asserts
that for each finite set of relations L, sat(L) is either NP-complete or in P. In a
nutshell, Schaefer’s dichotomy theorem asserts that there are exactly four (nontrivial)
polynomial-time cases of sat(L): every relation in L is bijunctive; every relation in L
is Horn; every relation in L is dual Horn; every relation in L is affine. Moreover, this
dichotomy is polynomial-time decidable, that is, there is a polynomial-time algorithm
that, given a finite set of Boolean relations L, decides whether sat(L) is NP-complete
or in P.

Our main contribution is a trichotomy theorem for the computational complexity
of propositional abduction (seen as a decision problem) in Schaefer’s framework. We
consider that hypotheses are the terms formed upon a given set of variables, and
that queries are given by a single positive literal. In this framework, we prove that
depending on the set of relations L the abduction problem is either polynomial or
NP-complete or Σ2P-complete. More precisely, we show that the abduction problem
with positive queries is polynomial-time solvable if every relation in the language is
bijunctive, affine, definite Horn, IHS-B−, or IHS-B+;1 otherwise, NP-complete if
the language is Horn or dual Horn; and, finally, Σ2P-complete in every other case.
The first essential difference from Schaefer’s dichotomy theorem is that, unlike the
satisfiability problem, the abduction problem for Horn relations and for dual Horn
relations need not to be in P. Instead, the abduction problem is in P for certain
classes of Horn relations (namely, definite Horn, IHS-B−) and for certain classes of
dual Horn relations (namely, IHS-B+), while it is NP-complete for all other classes of
Horn relations and all other classes of dual Horn relations. Furthermore, the abduction
problem is Σ2P-complete for every finite set of relations for which the satisfiability is

1See [18] for the definition of IHS-B− and IHS-B+ relations.

COMPLEXITY OF PROPOSITIONAL ABDUCTION 209

NP-complete.
From this result we derive two additional trichotomy results by considering the

variants of abduction in which the query to be explained is a negative literal, or an
unrestricted (positive or negative) literal.

In order to obtain these results, on one hand we exhibit new tractable languages
for abduction (namely, IHS-B− and IHS-B+ languages), and on the other hand we
identify new minimal sets of relations that make abduction within a given language
NP- or Σ2P-hard, in the sense that any language able to express these relations defines
a hard problem.

In addition to these new results, we revisit known ones and unify all of them
into the same framework, while they were originally stated within (slightly) different
formalizations of the abduction process, thus making our classification self-contained.
We also wish to emphasize that our results are constructive, in the sense that we give
efficient algorithms for the polynomial cases and exhibit effective reductions for the
hard ones.

For use in AI applications, our results allow the designers of knowledge-based
systems to choose among different languages for their knowledge bases; this choice
can be made according to the importance of the abduction process for the precise
application and maybe to other constraints.

The paper is organized as follows. Sections 2 and 3 present the basic definitions
and the abduction problem. Sections 4 to 7 are devoted to the proof of our main
result (Theorem 31), which completely classifies the computational complexity of the
abduction problem with a positive query in Schaefer’s framework. In section 8 we
extend these results to negative and unrestricted queries. Finally, in section 9 we
conclude and identify interesting future work.

2. Preliminaries. We introduce in this section the basic definitions and the
main tools that we will use throughout the paper.

2.1. Propositional formulas. Let V be a set of variables. A propositional
formula over V is any well-formed formula built upon the variables in V and the
connectives ¬ (negation), ∨ (disjunction), and ∧ (conjunction); given a propositional
formula ϕ we denote by Vars(ϕ) the set of all the variables that occur in ϕ.

A literal is either a variable x (positive literal) or the negation ¬x of one (negative
literal); we write Lits(V) for the set of all literals over V , and we write � for the
opposite of literal �. A clause is a finite disjunction of literals of the form C =
(�1 ∨ · · · ∨ �k) (k ≥ 0); slightly abusing notation we write, e.g., �1 ∈ C. A formula
is said to be in conjunctive normal form (CNF) if it is written as a conjunction of
clauses, and, dually, in disjunctive normal form (DNF) if it is written as a disjunction
of terms (conjunctions of literals).

An assignment to a set of variables V is a mapping from V to {0, 1}; we also see
a mapping from a superset of V to {0, 1} as an assignment to V by considering its
restriction to V . When the variables under consideration and their order are clear
from the context, we will sometimes denote an assignment m to, say, {x1, . . . , xn} by
the word m(x1) . . .m(xn). A model m of a propositional formula ϕ is an assignment
to Vars(ϕ) that satisfies ϕ with the usual rules for the connectives; we also write
m |= ϕ. Finally, a formula is said to be satisfiable if it has at least one model, and
two formulas ϕ,ϕ′ are said to be logically equivalent, written ϕ ≡ ϕ′, if their sets of
models are equal.

If V is some set of variables, ϕ is a propositional formula over V , and V ′ is a
subset of V , we will sometimes use the notation ∃V ′ϕ. This defines a propositional

210 NADIA CREIGNOU AND BRUNO ZANUTTINI

formula over V \V ′; its models are these assignments m to V \V ′ such that there is an
assignment m′ to V ′ with mm′ |= ϕ; note that this corresponds to projecting the set
of models of ϕ over V \V ′, in the sense of relational algebra. The other notions are
extended in a straightforward manner.

2.2. Relations and L-formulas. An n-ary (logical) relation R is a Boolean
relation of arity n, i.e., a subset of {0, 1}n. Thus the elements of an n-ary relation
R are n-ary Boolean vectors of the form m = (m1, . . . ,mn) ∈ {0, 1}n; we also write
vectors as words, e.g., 011 for the ternary vector (0, 1, 1).

Let V be a set of variables. A constraint over V is an application of an n-ary re-
lation R to an n-tuple (x1, . . . , xn) of variables from V , which we write R(x1, . . . , xn);
note in particular that repetition of variables is allowed. An assignment m to V is
said to satisfy a constraint C = R(x1, . . . , xn) if (m(x1), . . . ,m(xn)) ∈ R holds; we
also write m |= C, and m is said to be a model of C.

Example 1. We will often use some standard relations. First of all, the unary
relations F = {(0)} and T = {(1)}, which force the value of a variable to 0 and 1,
respectively. We will also use the k-ary relation ORk,j , which is defined ∀k ≥ 2, j ≤ k
by

ORk,j = {0, 1}k\{1 . . . 10 . . . 0} (j times 1).

Note that the constraint ORk,j(x1, . . . , xk) has the same models as the formula (¬x1∨
· · · ∨ ¬xj ∨ xj+1 ∨ · · · ∨ xk). In particular, we will use the binary relations OR2,0 =
{0, 1}2\{00}, OR2,1 = {0, 1}2\{10}, and OR2,2 = {0, 1}2\{11}. Finally, we will use
the ternary relation SymOR2,1, which is defined by

SymOR2,1(x, y, z) ≡ (OR2,1(x, y) ∧ T(z)) ∨ (OR2,1(y, x) ∧ F(z)).

Example 2. Given the ternary relations Rnae = {0, 1}3\{000, 111} and R1/3 =
{001, 010, 100}, an assignment m to {x, y, z} satisfies the constraint Rnae(x, y, z) if
m does not map all three variables to the same value, and it satisfies the constraint
R1/3(x, y, z) if it maps exactly one of them to 1.

Now let L be a finite set of Boolean relations, not necessarily of the same arities;
we also call L a (finite) language. An L-formula (over V) is a finite conjunction of
constraints over V with all relations taken from L. An assignment m to V is said
to satisfy an L-formula ϕ if it satisfies every constraint in ϕ; m is then said to be a
model of ϕ, written m |= ϕ. The notions of satisfiability and logical equivalence are
defined as for propositional formulas, and we also define logical equivalence between
a propositional and an L-formula, with obvious meaning.

2.3. Properties of relations. Throughout this paper we study different types
of Boolean relations and languages following Schaefer’s terminology [25]. Let R be
an n-ary relation and (x1, . . . , xn) a tuple of pairwise distinct variables; we say that
a propositional formula ϕ over {x1, . . . , xn} describes R if ϕ is logically equivalent to
the {R}-formula R(x1, . . . , xn). Then R is said to be

• bijunctive if it can be described by a bijunctive formula, i.e., a formula in
CNF having at most two literals in each clause;

• affine if it can be described by an affine formula, i.e., a system of linear
equations over the two-element field {0, 1};

• Horn (resp., dual Horn) if it can be described by a Horn (resp., dual Horn)
formula, i.e., a formula in CNF having at most one positive (resp., negative)
literal in each clause;

COMPLEXITY OF PROPOSITIONAL ABDUCTION 211

• definite Horn (resp., definite dual Horn) if it can be described by a definite
Horn (resp., definite dual Horn) formula, i.e., a formula in CNF having ex-
actly one positive (resp., negative) literal in each clause; note that any definite
(dual) Horn relation (resp., formula) is (dual) Horn;

• IHS-B− (for implicative hitting set-bounded− [18]) if it can be described by
an IHS-B− formula, i.e., a formula in CNF whose clauses are all of one of
the following types: (xi), or (¬xi1 ∨xi2), or (¬xi1 ∨· · ·∨¬xik) for some k ≥ 0
(which is not necessarily the same for every clause); note that any IHS-B−
relation (resp., formula) is Horn;

• IHS-B+ if it can be described by an IHS-B+ formula, i.e., a formula in CNF
whose clauses are all of one of the following types: (¬xi), or (¬xi1 ∨ xi2),
or (xi1 ∨ · · · ∨ xik) for some k ≥ 0; note that any IHS-B+ relation (resp.,
formula) is dual Horn;

• complementive if for all (m1, . . . ,mn) ∈ R the vector (m1 ⊕ 1, . . . ,mn ⊕ 1) is
also in R;

• 1-valid (resp., 0-valid) if the vector (1, . . . , 1) (resp., (0, . . . , 0)) is in R.
Some of these properties have equivalent definitions in terms of closure properties.

Extend any operation op on {0, 1} to the vectors in {0, 1}n by

(m1, . . . ,mn) op (m′
1, . . . ,m

′
n) = (m1 op m′

1, . . . ,mn op m′
n).

Then a relation R is
• bijunctive if and only if ∀m,m′,m′′ ∈ R, (m∧m′)∨(m∧m′′)∨(m′∧m′′) ∈ R;
• affine if and only if ∀m,m′,m′′ ∈ R,m⊕m′ ⊕m′′ ∈ R;
• Horn if and only if ∀m,m′ ∈ R,m ∧m′ ∈ R;
• dual Horn if and only if ∀m,m′ ∈ R,m ∨m′ ∈ R.

The first equivalence is proved in, e.g., [25], the second one is a classical result
from linear algebra, the third one is proved in, e.g., [9], and the fourth one is dual.

We will use them several times in the paper and wish to emphasize that they are
the basis of many results that we will use from, in particular, [7].

We also generalize the above definitions to languages. For instance, a language L
is said to be Horn if every relation in L is Horn. Additionally, we refer to a language
L as a Schaefer language if L is bijunctive, affine, Horn, or dual Horn.

The properties listed above play a central role in determining whether a given
computational task is easy, versus when it is hard (see [7] for a survey). For instance,
Schaefer’s theorem [25] states that the satisfiability problem for the class of all L-
formulas is in P if L is Schaefer or if it is 0- or 1-valid, and that it is NP-complete
otherwise.

A very important problem is the one of deciding whether a given language has a
given property, in particular for identifying the tractable cases of pq-abduction(L).
This problem is called structure identification in [9]. It turns out that all the properties
listed above can be recognized in polynomial time for a given set of relations written
as sets of tuples (in extension).

Proposition 3 (recognizing properties of relations). One can decide in poly-
nomial time whether a relation given in extension is bijunctive, affine, (dual) Horn,
definite (dual) Horn, IHS-B−, IHS-B+, complementive, 1-valid, or 0-valid.

Proof. This is obvious for bijunctive, affine, and (dual) Horn languages given the
closure properties above; more efficient algorithms are also given in [9, 29, 15]. As for
definite Horn languages, simply observe that a relation is definite Horn if and only if
it is Horn and contains the vector (1, . . . , 1), which can again be tested efficiently; the

212 NADIA CREIGNOU AND BRUNO ZANUTTINI

test is dual for definite dual Horn languages. Complementive, 1- and 0-valid relations
can also be recognized efficiently by applying their definition. Finally, IHS-B− and
IHS-B+ relations can be recognized efficiently by testing closure under the mappings
(m,m′,m′′) �→ m∧ (m′ ∨m′′) and (m,m′,m′′) �→ m∨ (m′ ∧m′′), respectively; this is
proved in [8] and can also be derived from [3].2

2.4. Complexity classes. This paper concerns the computational complexity
of the abduction problem and, more precisely, of the associated decision problem. We
assume knowledge of the basic notions of complexity but briefly recall the definition of
the classes we are interested in; for more details we refer the reader to Papadimitriou’s
book [22]. First of all, the class P is the class of all decision problems that are solvable
in deterministic polynomial time. The class NP is that of all decision problems that are
solvable in nondeterministic polynomial time, or, equivalently, for which every positive
instance has a witness of polynomial size and that can be checked in deterministic
polynomial time. A problem A is said to be NP-hard if there is a polynomial-time
reduction from every problem in NP to A, and NP-complete if both NP-hard and in
NP. Finally, the class Σ2P = NPNP is the class of all decision problems that can
be solved in nondeterministic polynomial time with an oracle for a problem in NP,
or, equivalently, such that every positive instance has a witness of polynomial size
and that can be checked in nondeterministic polynomial time; as for NP-hardness,
Σ2P-hardness is established by polynomial-time reductions from already known Σ2P-
complete problems. Note that the prototypical Σ2P-complete problem is the one of
deciding the validity of a formula of the form ∃V ∀V ′ψ, where V and V ′ are disjoint
sets of variables and ψ is a propositional formula in DNF over V ∪ V ′.

3. The abduction problem. We formalize in this section the abduction prob-
lem that we will study, and we give some general, well-known results about its com-
plexity, for use later in the paper.

3.1. Definition. We are interested in the abduction problem that is defined be-
low. Recall from Example 1 that T is the relation {1} and F is the relation {0}. Given
a set of literals E, we write

∧
E for the {T,F}-formula

∧
x∈E T(x) ∧

∧
¬x∈E F(x).

We define and study the problem first for positive literal queries (whence “PQ”),
i.e., the query to be explained consists of a single, positive literal. In section 8 we
will briefly state the complexity of the problem for negative and unrestricted literal
queries.

Problem 4 (pq-abduction(L)). Let L be a language. pq-abduction(L) is
the following decision problem:

• Input: An L-formula ϕ, a set of variables A ⊆ Vars(ϕ), and a variable
q ∈ Vars(ϕ)\A.

• Question: Is there a set E ⊆ Lits(A) such that the L∪{T,F}-formula ϕ∧
∧
E

is satisfiable but the L ∪ {T,F}-formula ϕ ∧
∧
E ∧ F(q) is not?

If one exists, such a set E is called a solution of the abduction problem.

This definition corresponds to the intuition of an abduction problem, where the
goal is to find an explanation for some observed phenomenon, in the following man-
ner. The phenomenon to observe is modeled by the query of the problem and the
explanation by the set E. The first condition on E ensures that the explanation

2We wish to point out that [3] and [8] are posterior to the submission of this article, and that
the results presented here actually motivated the study in [8].

COMPLEXITY OF PROPOSITIONAL ABDUCTION 213

may indeed have occurred, and the second condition, which can be read “ϕ and
∧
E

together entail q,” ensures that E may indeed have caused q.
Example 5. Consider the language L = {OR3,1,OR2,1} and recall that the con-

straint OR3,1(x, y, z) can be read x → y∨ z, while OR2,1(x, y) can be read x → y. Let
V = {x, y, z, t, q} be a set of variables and let ϕ be the following L-formula over V :

OR3,1(x, t, q) ∧ OR2,1(t, y) ∧ OR2,1(z, q) ∧ OR2,1(z, x).

Let A = {x, y, z}; then (ϕ,A, q) is an instance of the problem pq-abduction(L).
It can be seen that {x,¬y} and {z} are both solutions for this problem. On the
other hand, {¬x,¬z} is not a solution, since, e.g., the assignment 00000 to V satisfies
ϕ ∧ F(x) ∧ F(z) ∧ F(q). The set {¬x, z} is not a solution either, since the formula
ϕ ∧ F(x) ∧T(z) is not satisfiable (F(x) ∧T(z) contradicts the constraint OR2,1(z, x)),
and finally {x,¬t} is not a solution because it is not included in Lits(A).

Note that the definition implies that a solution E for an abduction problem
does not contain both x and ¬x for any variable x. Indeed, if this were the case,
then obviously the formula ϕ ∧

∧
E would not be satisfiable, thus violating the first

condition on solutions.
Note also that the problem as defined above is a decision problem, whereas ab-

duction is seen in general as an inference problem, where the goal is to compute a
solution or assert that there is none. It is, however, easily seen that whenever the
decision problem is hard, then so is the inference one, and conversely, as the proofs
in the paper will show, whenever it is easy the inference problem is easy as well. In
the same vein, note that in general the goal of abduction is to compute a preferred
solution, i.e., a solution that is best with respect to some criteria; but obviously, there
is a preferred solution for an abduction problem if and only if there is at least one
(unrestricted) solution, and that is why we ignore that point in our definition.

Finally, we wish to emphasize that the language L parameterizes the problem;
it is not part of the input. Thus, since L is finite, an algorithm for the problem
pq-abduction(L) may include a preliminary step for transforming a input formula ϕ
into any desirable form, at least by enumerating the (finite number of) translations of
every relation in L into the desired form; what we will use most often is translation into
CNF. In all cases it is easily seen that this preliminary step will only take linear time,
since the size of every translated form will be bounded (because L is fixed and finite).

3.2. Prime implicates. An important notion that we will use many times in
the paper is that of a prime implicate. Let ϕ be a propositional formula. A clause C =∨

i∈I �i is said to be a prime implicate of ϕ if ϕ entails C but entails no proper subset
of C, i.e., if the formula ϕ ∧

∧
{¬�i | i ∈ I} is unsatisfiable but ∀i0 ∈ I the formula

ϕ∧
∧
{¬�i | i ∈ I, i �= i0} is satisfiable. The notion is defined similarly for an L-formula

ϕ (given some language L), considering the formula ϕ∧
∧

x∈C F(x)∧
∧

(¬x)∈C T(x). We

will often use the fact that if C =
∨

i∈I xi∨
∨

i′∈I′ ¬xi′ is a prime implicate of ϕ, then
there is no model of ϕ that maps every xi (i ∈ I) to 0 and every xi′ (i′ ∈ I ′) to 1, but
for every i0 ∈ I (resp., i′0 ∈ I ′) there is one that maps every xi to 0 (i ∈ I) except for
xi0 and every xi′ (i′ ∈ I ′) to 1 (resp., every xi to 0 and every xi′ to 1 except for xi′0

).
We will also often use the well-known fact that all the prime implicates of a given

formula ϕ in CNF can be generated by repeatedly applying resolution to ϕ [23]. Recall
that resolution is the process of adding the clause C1 ∨ C2 to ϕ if there is a variable
x such that both clauses (x ∨ C1) and (¬x ∨ C2) are in ϕ and C1, C2 do not contain
two opposite literals.

We will use prime implicates mainly through the following well-known result.

214 NADIA CREIGNOU AND BRUNO ZANUTTINI

Lemma 6. An abduction problem (ϕ,A, q) has a solution if and only if there is a
prime implicate of ϕ of the form (�1 ∨ · · · ∨ �k ∨ q), where ∀i, �i is a literal built upon
a variable in A.

Proof. Let E = {�1, . . . , �n} be a solution for (ϕ,A, q). Then, by definition of a
solution, ϕ ∧

∧
E ∧ ¬q is unsatisfiable but ϕ ∧

∧
E is satisfiable. We conclude that

(without loss of generality) there is a k ≤ n such that (¬�1 ∨ · · · ∨ ¬�k ∨ q) is a prime
implicate of ϕ.

Conversely, if (�1 ∨ · · · ∨ �k ∨ q) is a prime implicate of ϕ, write E = {¬�i |
i = 1, . . . , k}. Then, by definition of a prime implicate, the formula ϕ ∧

∧
E ∧ ¬q

is unsatisfiable and (in particular) the formula ϕ ∧
∧
E is satisfiable. Thus E is a

solution for (ϕ,A, q).

3.3. Preliminary results. We will make heavy use of some results about the
abduction problem for propositional formulas. We define the abduction problem
pq-abduction(C) for a class C of propositional formulas similarly to the problem
pq-abduction(L); in this particular context

∧
E denotes the conjunction of all the

literals in E.
The following result concerns the class of all propositional CNF formulas. Note

that this class captures the whole complexity of abduction since, as can be seen in
the proof, the abduction problem for unrestricted propositional formulas is in Σ2P.

Proposition 7 (general problem [11]). If C is the class of all propositional CNF
formulas, then pq-abduction (C) is Σ2P-complete.

Proof. (Membership.) By definition of the problem, and since the formulas ϕ∧
∧
E

and ϕ ∧
∧
E ∧ ¬q are in CNF as soon as ϕ is in CNF, verifying a solution E for an

instance (ϕ,A, q) can be done in polynomial time with an oracle for the satisfiability
problem of C. Since this problem is in NP and E is obviously of size polynomial in
the one of A, we have the result.

(Hardness.) Let Ψ = ∃V ∀V ′ψ, where V and V ′ are disjoint sets of variables
and ψ is a propositional formula in DNF over V ∪ V ′. Let q be a new variable (i.e.,
q /∈ V ∪ V ′) and let ϕ be a formula in CNF that is logically equivalent to the formula
¬ψ ∨ q. Since ψ is in DNF, such a ϕ can be computed in polynomial time from Ψ
with De Morgan’s laws. We show that Ψ is valid if and only if the abduction problem
(ϕ, V, q) has a solution, which will prove the result since deciding the validity of such
a Ψ is a Σ2P-complete problem.

Assume first that Ψ is valid, and let E be an assignment to V that witnesses this
fact. On one hand, it is easily seen that the formula ¬ψ ∧

∧
E is unsatisfiable, and

thus that the formula (¬ψ∨q)∧
∧
E∧¬q, which is logically equivalent to ϕ∧

∧
E∧¬q,

is unsatisfiable as well. On the other hand, since q is a new variable, any assignment
to V ∪ V ′ ∪ {q} that satisfies

∧
E ∧ q satisfies (¬ψ ∨ q) ∧

∧
E, and thus the formula

ϕ ∧
∧
E is satisfiable. We conclude that E is a solution for the problem (ϕ, V, q).

Conversely, let E be a solution for the problem (ϕ, V, q). In order to obtain a
contradiction suppose that the formula ¬ψ ∧

∧
E is satisfiable; write m for one of

its models. So, it is easily seen that the assignment m′ to V ∪ V ′ ∪ {q} defined by
m(q) = 0 and ∀x ∈ V ∪ V ′,m′(x) = m(x), satisfies ¬ψ ∧

∧
E as well, since q is a

new variable, and thus m′ satisfies ϕ∧
∧
E ∧¬q; this contradicts the fact that E is a

solution. Hence, we deduce that the formula ¬ψ ∧
∧
E is unsatisfiable. Therefore, E

witnesses the fact that the formula ∃V ∀V ′ψ = Ψ is valid.
We now turn to “easier” cases. Recall that a propositional formula in CNF is said

to be Horn (resp., dual Horn) if each of its clauses has at most one positive (resp.,
negative) literal.

COMPLEXITY OF PROPOSITIONAL ABDUCTION 215

Proposition 8 ((dual) Horn abduction [26]). If C is the class of all propositional
Horn formulas, then pq-abduction (C) is NP-complete. The same holds if C is the
class of all propositional dual Horn formulas.

Proof. We first consider the Horn case. Membership in NP follows from the fact
that the satisfiability of a Horn formula can be decided in linear time, and from the
fact that if ϕ is Horn, then so are ϕ ∧

∧
E and ϕ ∧

∧
E ∧ ¬q. As for hardness,

we reduce the satisfiability problem for propositional CNF formulas to this one. Let
Ψ =

∧
i∈I Ci (I �= ∅) be a CNF formula where ∀i ∈ I, Ci is a clause. For all i ∈ I, let

ci be a new variable (i.e., ci /∈ Vars(Ψ)). For every variable x ∈ Vars(Ψ), let px, nx, vx
be three new variables (intuitively, p stands for “positive” and n for “negative”), and
finally let q be a new variable. Let ϕ be the propositional formula∧

x∈Vars(Ψ)

((¬px ∨ ¬nx) ∧ (¬px ∨ vx) ∧ (¬nx ∨ vx))

∧
∧

x∈Ci

(¬px ∨ ci) ∧
∧

(¬x)∈Ci

(¬nx ∨ ci) ∧
(∨

x∈Vars(Ψ)

¬vx ∨
∨
i∈I

¬ci ∨ q

)
.

It is easily seen that ϕ is Horn and can be built in polynomial time from Ψ. Now
let A = {px, nx | x ∈ Vars(Ψ)}; we show that the abduction problem (ϕ,A, q) has a
solution if and only if Ψ is satisfiable.

Assume first that Ψ is satisfiable, write m for one of its models and define E to
be {px | m(x) = 1} ∪ {nx | m(x) = 0}. Let m′ be the assignment to Vars(ϕ) defined
by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀x ∈ Vars(Ψ), m′(px) = m(x),

∀x ∈ Vars(Ψ), m′(nx) = m(x) ⊕ 1,

∀x ∈ Vars(Ψ), m′(vx) = 1,

∀i ∈ I, m′(ci) = 1,

m′(q) = 1.

It is easily seen that m′ is a model of the formula ϕ∧
∧
E, which is therefore satisfiable.

To obtain a contradiction suppose that the formula ϕ ∧
∧
E ∧ ¬q is satisfiable, and

write m′ for one of its models. Since m′ satisfies
∧
E, because of the clauses (¬px∨vx)

and (¬nx ∨ vx) we get ∀x ∈ Vars(Ψ),m′(vx) = 1. Now, since m satisfies Ψ it satisfies
at least one literal in each clause of Ψ, and because of the clauses (¬px ∨ ci) and
(¬nx ∨ ci) we deduce ∀i ∈ I,m′(ci) = 1. Since by assumption m′(q) = 0, we conclude
m′ �|= (

∨
x∈Vars(Ψ) ¬vx ∨

∨
i∈I ¬ci ∨ q), which is a contradiction.

Conversely, let E be a solution for the abduction problem (ϕ,A, q). Then ϕ∧
∧
E

is satisfiable; write m for one of its models. Because of the clauses (¬px∨¬nx) we know
that ∀x ∈ Vars(Ψ), either m(px) = 0 or m(nx) = 0. In order to obtain a contradiction
suppose that for some x0, m(px0) = m(nx0

) = 0, and define the assignment m′ to
Vars(ϕ) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀x ∈ Vars(Ψ), m′(px) = m(px),

∀x ∈ Vars(Ψ), m′(nx) = m(nx),

m′(vx0) = 0,

∀x ∈ Vars(Ψ), x �= x0 ⇒ m′(vx) = 1,

∀i ∈ I, m(ci) = 1,

m(q) = 0.

216 NADIA CREIGNOU AND BRUNO ZANUTTINI

It is easily seen that m′ satisfies the formula ϕ ∧
∧
E ∧ ¬q, a contradiction. Thus

∀x ∈ Vars(Ψ), m(px) �= m(nx). Define the assignment m0 to Vars(Ψ) by ∀x ∈
Vars(Ψ),m0(x) = m(px) or, equivalently, m0(x) = m(nx) ⊕ 1. We show that m0

satisfies Ψ. To obtain a contradiction, suppose that m0 �|= Ψ. Then there is a clause
Ci0 in Ψ such that ∀x ∈ Ci0 ,m0(x) = 0 and ∀(¬x) ∈ Ci0 ,m0(x) = 1. We deduce
∀x ∈ Ci0 ,m(px) = 0 and ∀(¬x) ∈ Ci0 ,m(nx) = 0. Then it is easily seen that
the assignment m′ defined to be equal to m except on ci0 (m′(ci0) = 0) and on q
(m′(q) = 0) satisfies the formula ϕ ∧

∧
E ∧ ¬q, a contradiction. Thus m0 satisfies Ψ,

which concludes the proof for the Horn case since the satisfiability problem for the
class of all formulas in CNF is NP-complete.

As for the dual Horn case, the proof is similar to the one for the Horn case by
replacing every variable except q with its negation, and simplifying double negations,
in the formula ϕ built there. This yields the following formula (for sake of clarity,
nx—resp., px—is now better read “x is positive—resp., negative—” and ci, “Clause
Ci is not satisfied”):∧

x∈Vars(Ψ)

((px ∨ nx) ∧ (px ∨ ¬vx) ∧ (nx ∨ ¬vx))

∧
∧

x∈Ci

(px ∨ ¬ci) ∧
∧

(¬x)∈Ci

(nx ∨ ¬ci) ∧
(∨

x∈Vars(Ψ)

vx ∨
∨
i∈I

ci ∨ q

)
.

Note that this formula is IHS-B+. Obviously, such a renaming of variables (excluding
q) does not affect the existence of a solution for a given abduction problem.

4. Polynomial languages. In this section we identify all the properties of a
language L that make the problem pq-abduction(L) polynomial. We wish to em-
phasize that all the results given here are constructive, in the sense that efficient
algorithms for the problem pq-abduction(L) can be easily derived from the proofs.

We first recall the result for the affine case, which has been considered in [28].
Note that [28] considers the class of all affine propositional formulas instead of classes
of L-formulas, but recall from section 3.1 that since L parameterizes the problem, an
affine formula equivalent to a given L-formula ϕ can be built in linear time from ϕ.

Proposition 9 (affine [28]). If L is an affine language, then the problem
pq-abduction(L) is in P.

Proof. Given an instance (ϕ,A, q), first compute an affine formula ψ equivalent
to ϕ in time linear in the size of ϕ. Next, compute a projection of the (still affine)
formula ψ∧ (q = 0) onto A, i.e., an affine formula ψ′ over A whose models are exactly
the restrictions of the models of ψ ∧ (q = 0) to A. As shown in [28], this step can
be performed in polynomial time by first upper-triangulating ψ ∧ (q = 0) with the
variables in A put rightmost, and second selecting only those resulting equations that
are formed over A. Finally, decide whether the formula ψ ∧ ¬ψ′ has a model by
deciding whether the affine formula ψ ∧ (

⊕
� = a ⊕ 1) has a model for at least one

equation (
⊕

� = a) of ψ′. Indeed, such a model exists if and only if the abduction
problem (ϕ,A, q) has a solution. Since satisfiability of affine formulas can be decided
in polynomial time with Gaussian elimination, the whole algorithm is polynomial.
For more details we refer the reader to [28].

We now use the characterization of explanations through prime implicates (Lem-
ma 6) for deriving the following four results. Note that the first two of them are
well known, although hard to trace back in the literature. Marquis [20] and Eiter
and Gottlob [11], however, prove, respectively, the first and second ones in a slightly
different formalization.

COMPLEXITY OF PROPOSITIONAL ABDUCTION 217

Proposition 10 (bijunctive). If L is a bijunctive language, then the problem
pq-abduction(L) is in P.

Proof. If every relation in L is bijunctive, then given an L-formula one can
compute in linear time an equivalent bijunctive propositional formula. Since all the
prime implicates of a given CNF formula can be generated by resolution alone, it
is easily seen that the only prime implicates that a 2-CNF formula can have are
bijunctive clauses. Therefore Lemma 6 implies that there is a solution for an instance
of pq-abduction(L) if and only if there is one containing zero or one literal. Hence,
if there are n abducible variables, then one can simply test the O(n) literals built
upon them for being a solution. This test can be performed in linear time for each
literal since the satisfiability problem for bijunctive CNF formulas is linear and that
class is stable under conjunction of unary clauses.

Proposition 11 (definite Horn). If L is a definite Horn language, then the
problem pq-abduction(L) is in P.

Proof. Again because the prime implicates of a given formula can be generated by
resolution alone, it is easily seen that every prime implicate of a definite Horn formula
is a definite Horn clause. Since q is assumed to be positive, the other literals in the
clause have to be negative. It follows that if L is definite Horn, any instance (ϕ,A, q)
of pq-abduction(L) has a solution if and only if it has a positive solution. Since
the assignment E of 1 to every variable in A is consistent with a definite Horn CNF
formula ϕ, it is enough to decide whether ϕ ∧

∧
E ∧ ¬q is unsatisfiable (which can

be done in linear time since ϕ is Horn). Indeed, if ϕ∧
∧
E ∧¬q is unsatisfiable, then

E is a solution for the abduction problem, and if it is satisfiable, then ∀E′ ⊆ E the
formula ϕ ∧

∧
E′ ∧ ¬q is also satisfiable (with the same model), and hence (ϕ,A, q)

has no positive solution and, by the remark above, no solution at all.

Finally, the next two propositions examine IHS-B languages. Those languages
can be seen in some sense as maximal (dual) Horn languages that do not have the full
expressive power of the class of all propositional (dual) Horn formulas, which explains
their special properties. As far as we know these results are new, although easy. Note,
however, that the class of IHS-B+ languages includes that of positive languages (i.e.,
sets of relations that can be described by a formula in CNF with only positive literals),
and that it is already known that abduction can be performed efficiently with positive
formulas (this is proved in, e.g., [20]).

Note finally that the proof for the IHS-B+ case can be used for the IHS-B− case
as well, but that the algorithm described for the latter case is more efficient.

Proposition 12 (IHS-B−). If L is an IHS-B− language, then the problem
pq-abduction(L) is in P.

Proof. Since an instance ϕ of this problem is IHS-B− and all the prime implicates
of a given formula can be generated by resolution, it is easily seen that the only prime
implicates of ϕ that can contain at least one positive literal are unary or binary. Thus,
as for the bijunctive case (Proposition 10), any solution for the problem contains zero
or one literal, and such candidates can be tested efficiently since ϕ is Horn.

Proposition 13 (IHS-B+). If L is an IHS-B+ language, then the problem
pq-abduction(L) is in P.

Proof. Since an instance ϕ of this problem is dual Horn, one can generate all
its unary and binary prime implicates in polynomial time by a generate-and-test
algorithm. Now observe that once this is done, the remaining prime implicates of ϕ
cannot be obtained by resolving two positive clauses together, so the only new prime
implicates can be obtained by resolving a binary or unary clause with a positive one.

218 NADIA CREIGNOU AND BRUNO ZANUTTINI

This can only yield a positive clause of size at most that of the original positive one.
Hence, if there are n variables occurring in ϕ and the largest positive clause in the
CNF form of the relations in L is of arity k, then ϕ has O(nk) prime implicates, which
again can be generated efficiently by a generate-and-test algorithm.

Observe that the polynomial complexity obtained here strongly relies on the fact
that L, and thus k, is fixed and finite.

Remark 14. The algorithm given in the proof of Proposition 11 shows that the
following problem is in P:

• Input: A definite Horn formula ϕ in CNF, a set of variables A ⊆ Vars(ϕ),
and a variable q ∈ Vars(ϕ)\A.

• Question: Is there a set E ⊆ Lits(A) such that the propositional formula
ϕ ∧

∧
E is satisfiable but the formula ϕ ∧

∧
E ∧ ¬q is not?

In the same manner, the corresponding problem is polynomial for affine formulas (this
is proved in [28]), for bijunctive formulas in CNF (Proposition 10), and for IHS-B−
formulas in CNF (Proposition 12). On the contrary, the corresponding problem for
IHS-B+ formulas in CNF is NP-complete, as the proof of Proposition 8 shows. This
asymmetric behavior of the abduction problem is due to the fact that q is always a
positive literal; we will observe this asymmetry again for the definite dual Horn case.

5. Useful tools for proving hardness results. We present in this section the
main tools for getting hardness results, which we will use in the two following sections.

5.1. Implementations and reductions. We first introduce the definition of
implementation, which has often been used for exhibiting reductions between various
satisfiability problems (see [7, Definition 5.1]).

Definition 15 (implementation). A language L is said to implement a Boolean
relation R if for all sets of variables V there exist a set of variables V ′ disjoint from
V and an L-formula ϕ over V ∪ V ′ such that R(V) ≡ ∃V ′ϕ.

Example 16. Let L = {OR3,2}. Then for any k ≥ 2, L implements the relation
ORk,k−1. Indeed, for k ≥ 3 it is easily seen that for all variables x1, x2, . . . , xk the
constraint ORk,k−1(x1, . . . , xk) is logically equivalent to the formula

∃y1, y2, . . . , yk−3OR3,2(x1, x2, y1)∧
(

k−3∧
i=2

OR3,2(yi−1, xi+1, yi)

)
∧ OR3,2(yk−3, xk−1, xk)

and for k = 2 we have OR2,1(x, y) = OR3,2(x, x, y).
It can also be seen that the language L∪{F} implements OR2,2, since for any x, y

we have OR2,2(x, y) ≡ ∃zOR3,2(x, y, z) ∧ F(z).
Finally, it can be seen that for any k ≥ 2, the language {OR3,1, T} implements

ORk,0. Indeed, for k ≥ 2 and any variables x1, . . . , xk the constraint ORk,0(x1, . . . , xk)
is logically equivalent to the formula

∃y0, y1, . . . , yk−2T(y0) ∧
(

k−3∧
i=0

OR3,1(yi, xi+1, yi+1)

)
∧ OR3,1(yk−2, xk−1, xk).

As is easily seen, the composition of two implementations is still an implementa-
tion. The following lemma shows a connection between implementations and reduc-
tions.

Lemma 17. Let ϕ,ϕ′, A, q be such that the projection of the models of ϕ and
ϕ′ onto A ∪ {q} are the same, i.e., writing Vars(ϕ)\(A ∪ {q}) = {x1, . . . , xm} and

COMPLEXITY OF PROPOSITIONAL ABDUCTION 219

Vars(ϕ′)\(A ∪ {q}) = {x′
1, . . . , x

′
n}, such that the formulas ∃x1, . . . , xm, ϕ and

∃x′
1, . . . , x

′
n, ϕ

′ are equivalent. Then the instances (ϕ,A, q) and (ϕ′, A, q) for the ab-
duction problem have the same solutions.

Proof. By symmetry, let E be a solution for (ϕ,A, q). Then there is an as-
signment m to Vars(ϕ) that satisfies E. Consider the assignment m′ to A ∪ {q}
defined by ∀x ∈ A ∪ {q},m′(x) = m(x). By construction m′ satisfies both E and
the formula ∃x1, . . . , xm, ϕ. Thus, by assumption m′ satisfies both E and the for-
mula ∃x′

1, . . . , x
′
mϕ′, and hence the formula ϕ′ ∧

∧
E is satisfiable. The proof is dual

for showing that if the formula ϕ′ ∧
∧
E ∧ ¬q is satisfiable, then so is the formula

ϕ∧
∧
E ∧¬q. This shows that every solution E for (ϕ,A, q) is a solution for (ϕ′, A, q)

as well, and by symmetry of the roles of ϕ and ϕ′ this concludes the proof.
As for the CNF forms of relations, if every relation in L can be implemented

by L′, an algorithm can look up these implementations in a catalog, and given an
L-formula one can build in linear time an equivalent L′-formula (modulo existentially
quantified variables). This allows us to state the following corollary of Lemma 17.

Corollary 18. Let L,L′ be two languages. If pq-abduction(L) is NP-hard
(resp., Σ2P-hard) and every relation of L can be implemented by L′, then pq-abduc-

tion(L)′ is also NP-hard (resp., Σ2P-hard).
Proof. Given an instance (ϕ,A, q) for the problem pq-abduction(L), let V ′

be a set of new variables and ϕ′ a L′-formula such that the formulas ∃V ′ϕ′ and
ϕ are equivalent. Lemma 17 shows that the problems (ϕ,A, q) and (ϕ′, A, q) have
the same solutions. Since L′ implements L and L is finite and parameterizes the
problem pq-abduction(L), one can compute ϕ′ in polynomial time given ϕ (at least
by including the finite number of implementations as steps of an algorithm), and
thus we have a polynomial-time reduction from the problem pq-abduction(L) to
the problem pq-abduction(L)′, which completes the proof.

5.2. Useful reductions. We now state three lemmas which allow us to get rid of
some unary constraints that we will introduce in our reductions. Since these lemmas
do not directly add to the understanding of the complexity of abduction, their rather
technical proofs are postponed to the appendices.

Lemma 19. Let L be a language. The problem pq-abduction(L ∪ {T}) is poly-
nomial-time reducible to the problem pq-abduction(L ∪ {OR2,1}).

Lemma 20. Let L be a language. The problem pq-abduction(L ∪ {F}) is poly-
nomial-time reducible to the problem pq-abduction(L ∪ {OR3,1}).

Note that there is a lack of symmetry in the statement of these two lemmas. This
is due to the lack of symmetry with respect to the query literal (q is always a positive
literal).

For the next lemma, recall from section 2 that the ternary relation SymOR2,1 is
defined by

SymOR2,1(x, y, z) ≡ (OR2,1(x, y) ∧ T(z)) ∨ (OR2,1(y, x) ∧ F(z)).

Lemma 21. Let L be a language. The problem pq-abduction(L ∪ {F}) is poly-
nomial-time reducible to the problem pq-abduction(L ∪ {SymOR2,1}).

6. NP-complete languages. The following hardness results for basic Horn and
dual Horn problems will be the cornerstones of the identification of NP-hard cases.

Lemma 22. pq-abduction({OR3,2,F}) is NP-complete.
Proof. As shown in Example 16, {OR3,2,F} implements OR2,2 and ORk,k−1 ∀k ≥

2; moreover, it can be seen that the implementation of ORk,k−1 is linear in k. Thus

220 NADIA CREIGNOU AND BRUNO ZANUTTINI

the problem (ϕ,A, q) built in the proof of Proposition 8 for the Horn case can be
reduced in polynomial time to pq-abduction({OR3,2,F}). Since the former problem
is shown to be NP-complete there, the latter one also is.

For dual Horn relations we can get an even stronger result, which emphasizes the
asymmetric behavior of Horn and dual Horn relations.

Lemma 23. pq-abduction({OR3,1}) is NP-complete.
Proof. We first show that pq-abduction({OR3,1,T}) is NP-complete with a

proof similar to the one of Lemma 22. Indeed, as shown in Example 16, {OR3,1,T}
implements ORk,0 ∀k ≥ 2, and this implementation is linear in k; since it also imple-
ments OR2,1 (OR2,1(x, y) = OR3,1(x, y, y)), we can reduce the problem built in the
proof of Proposition 8 for the dual Horn case to pq-abduction({OR3,1,T}). The
conclusion then follows from Lemma 19.

Based upon these lemmas, the next propositions identify the NP-complete lan-
guages. We wish to point out that a Horn (resp., dual Horn) relation that is not
IHS-B− (resp., IHS-B+) cannot be either bijunctive, affine, or dual Horn (resp.,
Horn). Indeed, if R is both Horn and bijunctive, then by [29, Proposition 3] ev-
ery prime implicate of any formula describing R is both Horn and bijunctive, thus
IHS-B−, and thus R itself is IHS-B−, contradicting the hypothesis. Now if R is
Horn and affine, then by the closure properties given in the preliminaries we get
∀m,m′,m′′ ∈ R, (m∧m′)⊕(m∧m′′)⊕(m′∧m′′) = (m∧m′)∨(m∧m′′)∨(m′∧m′′) ∈ R,
which characterizes bijunctive relations, and R is IHS-B− by the reasoning above.
Finally, if R is both Horn and dual Horn, then by [29, Proposition 3] and the same
reasoning as above, R is once again bijunctive.

Proposition 24 (dual Horn languages). If L is a dual Horn language that is
not IHS-B+, then the problem pq-abduction(L) is NP-complete.

Proof. Membership in NP follows from Proposition 8. We first observe that L is
not complementive. Indeed, if L were complementive, then since it is Horn it would
be dual Horn, which can be concluded easily from the closure properties given in the
preliminaries and from the equality ∀b, b′ ∈ {0, 1}, b∨ b′ = ((b⊕1)∧ (b′⊕1))⊕1. Now
being Horn and dual Horn L would be bijunctive, as pointed out above, and finally it
would be IHS-B+, contradicting the hypothesis. Thus L is not complementive. We
now distinguish two cases.

First, if L is not 1-valid, it follows from [7, Lemma 5.25 (2)] that L implements F.
Then from [7, Lemma 5.27] it follows that L implements OR3,1 (the proof does not use
the constant relation T). The conclusion follows from Corollary 18 and Lemma 23.

Now assume that L is 1-valid. We first show that L∪{OR2,1} implements OR3,1,
which will allow us to conclude that pq-abduction(L ∪ {OR2,1}) is NP-hard with
Lemma 23, and we will then show that L implements OR2,1, thus concluding the proof.

(L ∪ {OR2,1} implements OR3,1.) First observe that by assumption L contains
a relation R which is dual Horn but not IHS-B−. Considering a description ψ of
R over {x1, . . . , xn} it is then easily seen that ψ has a prime implicate C of the
form (without loss of generality) C = (¬x1 ∨ x2 ∨ · · · ∨ xk) with the xij ’s pairwise
distinct and k ≥ 3. Let us consider the formula ψ′ over {x1, . . . , xk} defined by
ψ′ = ∃xk+1, . . . , xnR(x1, . . . , xk). Finally consider the formula ψ′′ over {x1, x2, x3}
defined by

ψ′′ = ∃x4, . . . , xk, ψ
′ ∧

k∧
i=4

OR2,1(xi, x2).

Every model of ψ′′ that maps x2 to 0 maps xi to 0 ∀i ∈ {4, . . . , k} because of the

COMPLEXITY OF PROPOSITIONAL ABDUCTION 221

clauses OR2,1(xi, x2). It follows that 100 �|= ψ′′ by definition of a prime implicate. Now
by definition of a prime implicate again, 110 |= ψ′′, since the clauses OR2,1(xi, x2) do
not impose any constraint on the value of any xi. Finally, still by definition of a prime
implicate, the assignments 0000 . . . 0 and 1010 . . . 0 to {x1, x2, . . . , xk} satisfy ψ′; it is
easily seen that ∀i ∈ {4, . . . , k} they satisfy the clause OR2,1(xi, x2) as well, and thus
000 and 101 satisfy ψ′′. Now denote by R′′ the ternary relation described by ψ′′; R′′

satisfies exactly the assumptions of [7, Lemma 5.27], and it follows that {R,OR2,1},
and a fortiori L ∪ {OR2,1} implements OR3,1.

(L implements OR2,1.) We use once again the prime implicate C exhibited above.
Let us consider the assignments to {x1, x2, . . . , xn}. By definition of a prime implicate
we first get 10 . . . 0 /∈ R. Since C is a prime implicate we also have 00 . . . 0 ∈ R and
∀i ≥ 2, 10 . . . 010 . . . 0 ∈ R (where i is the index of the second variable mapped to 1).
Since R is dual Horn and thus closed under bitwise-or, we also get that for every set
of indices I ⊆ {2, . . . , k}, I �= ∅, the assignment mI that maps x1 and every xi with
i ∈ I to 1 and every other xi to 0 is in R. In particular, 11 . . . 1 ∈ R, and for every
i, 11 . . . 101 . . . 1 ∈ R (where i is the index of the only variable mapped to 0). Now
we only need to distinguish two cases. First assume 01 . . . 1 ∈ R; then for every two
variables x, y we have R(x, y, . . . , y) ≡ OR2,1(x, y). Now assume 01 . . . 1 /∈ R; then
since R is dual Horn and thus closed under bitwise-or, there is at least one index i
such that 00 . . . 010 . . . 0 /∈ R (where i is the index of the only variable mapped to
1); then R(y, y, . . . , y, x, y, . . . , y) ≡ OR2,1(x, y). Hence, in both cases R implements
OR2,1, thus concluding the proof.

Proposition 25 (Horn languages). If L is a Horn language that is neither
definite Horn nor IHS-B−, then the problem pq-abduction(L) is NP-complete.

Proof. A proof symmetric to that of Proposition 24 shows that L can imple-
ment the relation OR3,2. Since L is not definite Horn, L is not 1-valid. Moreover,
as observed in the previous proposition, L is not complementive. Hence, according
to [7, Lemma 5.25] L can implement F. Thus L implements {OR3,2,F}. Finally, the
conclusion follows from Corollary 18 and Lemma 22.

7. Σ2P-complete languages. Recall that a language L is said to be Schaefer
if it is either affine, bijunctive, Horn, or dual Horn. If L is not Schaefer, then it does
not fall in any of the cases explored in the two previous sections. We will prove in this
section that if L is not Schaefer, then the problem pq-abduction(L) is Σ2P-complete.

We first need two lemmas.
Lemma 26. Let S3 be the (finite) set of all ternary relations. The problem

pq-abduction(S3) is Σ2P-complete.
Proof. It is well known that given any CNF formula ψ over some set of variables

V , one can build in polynomial time a formula of the form ∃V ′ϕ such that ϕ is a
propositional formula in CNF over V ∪ V ′, every clause of which is of length at most
3 and such that ψ ≡ ∃V ′ϕ. Lemma 17 then shows that this construction yields a
polynomial-time reduction from the general abduction problem (where the input is
any CNF formula) to the problem pq-abduction(S3), and we can conclude from
Proposition 7.

Lemma 27. Let L be a non-Schaefer language.
1. If L is neither 0- nor 1-valid, nor complementive, then L implements every

Boolean relation.
2. If L is neither 0- nor 1-valid but is complementive, then L implements

SymOR2,1.
3. If L is 0-valid but not 1-valid, then L implements OR2,1.

222 NADIA CREIGNOU AND BRUNO ZANUTTINI

4. If L is 1-valid but not 0-valid, then L implements OR3,1.
5. If L is both 0- and 1-valid, then L implements either SymOR2,1 or OR2,1,

depending on whether L is complementive or not.

Proof. For the sake of completeness we demonstrate or cite the implementations
in the appendices, but the five points may be obtained by techniques from universal
algebra and Post’s lattice [17, 2].

We now make a case distinction depending on whether L is 0-valid (resp., 1-valid)
or not.

Proposition 28 (neither 0- nor 1-valid). If L is neither Schaefer nor 0-valid
nor 1-valid, then the problem pq-abduction(L) is Σ2P-complete.

Proof. According to Lemma 27, if L is not complementive, then L implements
the whole class of Boolean relations. We conclude with Lemma 26 (and Corollary 18).

Now if L is complementive, still according to Lemma 27 L implements SymOR2,1,
and thus pq-abduction(L) is as hard as pq-abduction(L ∪ {F}) by Lemma 21.
Since L∪{F} is neither 0-valid nor 1-valid nor complementive, pq-abduction(L∪{F})
is Σ2P-hard, which concludes the proof.

Proposition 29 (1-valid xor 0-valid). Let L be a 0-valid set of Boolean relations.
If L is neither Schaefer nor 1-valid, then the problem pq-abduction(L) is Σ2P-
complete. The same holds if L is 1-valid but neither Schaefer nor 0-valid.

Proof. Membership in Σ2P is obvious. Observe that L cannot be complementive
since it is either 0-valid or 1-valid but not both.

We first consider the 0-valid case. Obviously L ∪ {T} is neither Schaefer nor
0-valid nor 1-valid. We can thus conclude from Proposition 28 that the problem
pq-abduction(L ∪ {T}) is Σ2P-complete. From Lemma 19 it follows that the prob-
lem pq-abduction(L ∪ {OR2,1}) is Σ2P-complete. Now, according to Lemma 27
we know that L can implement OR2,1. From Corollary 18 we finally deduce that
pq-abduction(L) is Σ2P-complete.

The 1-valid case can be handled in a similar way by first considering the set
L ∪ {F} and then successively using Lemmas 20 and 27 and Corollary 18.

Proposition 30 (0-valid and 1-valid). Let L be a 0-valid and 1-valid set of
Boolean relations. If L is not Schaefer, then the problem pq-abduction(L) is Σ2P-
complete.

Proof. First assume L is not complementive. Then L∪ {T} is 1-valid but neither
Schaefer nor 0-valid. Thus, by Proposition 29 the problem pq-abduction(L ∪ {T})
is Σ2P-complete, and we conclude as in the proof of the previous proposition.

Now if L is complementive, then according to Lemma 27 L can implement
SymOR2,1. We then conclude with Lemma 21 after observing that L ∪ {F} is 0-valid
but neither Schaefer nor 1-valid.

We have finally completely classified the complexity of abduction for the case when
the query is a single, positive literal. Moreover, given any finite set of Boolean relations
L one can efficiently decide whether the abduction problem pq-abduction(L) is
either polynomial, NP-complete, or Σ2P-complete (see Proposition 3).

Theorem 31 (main result). Let L be a language.

• If L is bijunctive, affine, definite Horn, IHS-B+, or IHS-B−, the problem
pq-abduction(L) is polynomial.

• Otherwise, if L is Horn or dual Horn, the problem pq-abduction(L) is NP-
complete.

• In all other cases, the problem pq-abduction(L) is Σ2P-complete.

COMPLEXITY OF PROPOSITIONAL ABDUCTION 223

Each of these conditions can be checked in polynomial time given a language written
in extension.

8. Negative and unrestricted queries. We show briefly in this section how
the previous results can be carried over to the case where the query q is a negative
literal instead of a positive one, and to the case where it is unrestricted. Given
some language L, write nq-abduction(L) for the problem defined as the problem
pq-abduction(L) except that the query q in the instance is a negative literal, and
abduction(L) for that defined for any literal query, i.e., q is either a positive or a
negative literal.

Proposition 32 (negative queries). Let L be a language.
• If L is bijunctive, affine, definite dual Horn, IHS-B+, or IHS-B−, the prob-

lem nq-abduction(L) is polynomial.
• Otherwise, if L is Horn or dual Horn, the problem nq-abduction(L) is NP-

complete.
• In all other cases, the problem nq-abduction(L) is Σ2P-complete.

Each of these conditions can be checked in polynomial time given a language written
in extension.

Proof. Given an n-ary relation R, define the n-ary relation Ren(R) to be {(m1 ⊕
1, . . . ,mn ⊕ 1) | (m1, . . . ,mn) ∈ R}. Given a language L, write Ren(L) = {Ren(R) |
R ∈ L}, and given an L-formula ϕ =

∧
i∈I Ri(xi,1, . . . , xi,ki), define the Ren(L)-

formula Ren(ϕ) to be
∧

i∈I Ren(Ri)(xi,1, . . . , xi,ki). Then all the results can be
derived from those for positive queries by observing that given a language L and
an L-formula ϕ, the problem (ϕ,A, q) has a solution if and only if the problem
(Ren(ϕ), A,¬q) has one. Since a relation R is Horn (resp., dual Horn) if and only
if the relation Ren(R) is dual Horn (resp., Horn), and similarly for the definite and
IHS-B restrictions, and since all the other properties of interest are invariant under
the operator Ren, we get the result.

Proposition 33 (unrestricted queries). Let L be a language.
• If L is bijunctive, affine, IHS-B+, or IHS-B−, the problem abduction(L)

is polynomial.
• Otherwise, if L is Horn or dual Horn, the problem abduction(L) is NP-

complete.
• In all other cases, the problem abduction(L) is Σ2P-complete.

Each of these conditions can be checked in polynomial time given a language written
in extension.

Proof. The result easily follows from that for positive queries and that for negative
ones.

9. Conclusion. We have completely classified the computational complexity of
propositional abduction in Schaefer’s framework of L-formulas. The problem appears
to be either polynomial, NP-complete, or Σ2P-complete depending on the properties
satisfied by the language L. We have given the results for finite languages and for
positive, negative, and unrestricted queries, which gives a fine comprehension of the
influence of the polarity of the query on the complexity of the problem. Our results
are summarized in Table 1.

As evoked in the introduction, various restrictions have been studied on the for-
malization of the abduction problem, mainly depending on the hypotheses and queries
allowed. Our model is certainly one for which the problem is the easiest. At another
extreme, Nordh and Zanuttini have recently studied the formalization in which the
query is a term (conjunction of literals) and abducible literals are given instead of

224 NADIA CREIGNOU AND BRUNO ZANUTTINI

Table 1

Summary of results for the problem pq-abduction(L). Membership of L in one class assumes
it does not belong to any class upper in the table.

Query Pos. Neg. Any

L affine P P P

L bijunctive P P P

L IHS-B− P P P

L IHS-B+ P P P

L definite Horn P NP-c. NP-c.

L definite dual Horn NP-c. P NP-c.

L Horn NP-c. NP-c. NP-c.

L dual Horn NP-c. NP-c. NP-c.

None of the above Σ2P-c. Σ2P-c. Σ2P-c.

variables; that is, the literals occurring in an explanation are restricted, instead of
only the variables upon which they are formed. It turns out that a trichotomy has
also been found for this problem [21]. Current work aims at classifying every inter-
mediate model, considering various restrictions on the queries and hypotheses, with
the goal of understanding what really makes the complexity of abduction jump from
one level to another in the polynomial hierarchy.

Another interesting direction for future work is the study of other problems closely
related to that of deciding the existence of a solution, and an attempt to establish
a trichotomy in the complexity of them as well. Among these problems are those of
deciding the relevance or the necessity of an abducible variable [11]. An abducible
variable is said to be relevant (resp., necessary) to a given abduction problem if it is
part of at least one of its solution (resp., of all its solutions). The necessity problem
is quite close to that of deciding the existence of a solution, since α is necessary
to (ϕ,A ∪ {α}, q) if and only if (ϕ,A, q) has no solution, but no such relation is
known for relevance. Other interesting issues concern the complexity of counting or
enumerating the solutions. For this latter point we refer the reader to Eiter and
Makino’s work [12, 13]. We believe that for such studies one would first need to
determine the properties that are preserved by implementations (e.g., the variables
involved in a solution, the number of solutions, etc.), considering both preferred and
unconstrained solutions.

Appendix A. Proof of Lemma 19. Let (ϕ,A, q) be an instance of pq-abduc-

tion(L ∪ {T}), and write

ϕ = ϕ0 ∧
∧
i∈I

T(xi),

where ϕ0 is an L-formula.
We first assume q /∈ {xi | i ∈ I}. Define the formula

ϕ′ = ϕ0 ∧
∧
i∈I

OR2,1(q, xi)

and define furthermore A′ to be A∪{xi | i ∈ I}. We show that the problem (ϕ′, A′, q)
has a solution if and only if the problem (ϕ,A, q) has one.

(Solution of (ϕ,A, q) → solution of (ϕ′, A′, q).) Let E be a solution of the problem
(ϕ,A, q), and define E′ to be E ∪ {xi | i ∈ I}. It is easily seen that every model of

COMPLEXITY OF PROPOSITIONAL ABDUCTION 225

ϕ′∧
∧
E′ satisfies ϕ∧

∧
E as well, and thus that ϕ′∧

∧
E′∧F(q) is unsatisfiable since

by assumption so is ϕ∧
∧
E ∧F(q). Now let m be a model of ϕ∧

∧
E. Because of the

constraints T(xi) in ϕ we know that for every i ∈ I,m(xi) = 1, and it follows that m
satisfies ϕ′ ∧

∧
E′. Thus E′ is a solution for the problem (ϕ′, A′, q).

(Solution of (ϕ′, A′, q) → solution of (ϕ,A, q).) Let E′ be a solution of the problem
(ϕ′, A′, q), and define E to be E′\{xi,¬xi | i ∈ I, xi /∈ A}. Since ϕ′ ∧

∧
E′ ∧ F(q) is

unsatisfiable, we know that every model of ϕ′ ∧
∧
E′ maps q to 1 and thus, because

of the constraint OR2,1(q, xi) ∀i ∈ I, that it maps xi to 1 ∀i ∈ I. Since by definition
of a solution there is at least one such model, ϕ ∧

∧
E′ is satisfiable, and a fortiori

ϕ ∧
∧
E is. For the same reason, we know that for every i ∈ I, E′ does not contain

¬xi. In order to obtain a contradiction suppose that ϕ ∧
∧
E ∧ F(q) is satisfiable. It

follows from the previous remark that ϕ ∧
∧
E′ ∧ F(q) is satisfiable and, since every

model of ϕ satisfies ϕ′, that ϕ′ ∧
∧
E′ ∧ F(q) is satisfiable as well, which contradicts

the fact that E′ is a solution. Thus E is a solution for the problem (ϕ,A, q), which
concludes the proof for the case q /∈ {xi | i ∈ I}.

We now consider the case q ∈ {xi | i ∈ I}. The reduction above does not
work anymore since the query is not allowed to be abducible in the definition of the
problem. However, we observe that in this case the problem (ϕ,A, q) has a solution
if and only if ϕ is satisfiable. Indeed, if this is the case, then E = ∅ is a solution,
(because the constraint T(q) in ϕ forces the value of q to 1 in every model of ϕ), and if
ϕ is unsatisfiable, then no E can be found such that ϕ∧

∧
E is satisfiable, as required

for a solution. Thus in this case, we introduce a new variable q′ (q′ /∈ Vars(ϕ)) and
reduce the problem (ϕ,A, q) to the problem (ϕ′, A′ = {q}, q′) with

ϕ′ = ϕ0 ∧
∧
i∈I

OR2,1(q, xi) ∧ OR2,1(q, q
′) ∧ OR2,1(q

′, q).

Note first that ϕ′ is an (L∪{OR2,1})-formula. Note also that OR2,1(q, q
′)∧OR2,1(q

′, q)
forces the values of q and q′ to be the same in every model of ϕ′. We show that
(ϕ′, A′, q′) has a solution if and only if ϕ is satisfiable, which will conclude the proof
by the remark above.

If ϕ is satisfiable, write m for one of its models. On one hand, by definition m
satisfies ϕ0 and T(xi) ∀i ∈ I (in particular, T(q)). On the other hand, since q and q′

are forced to the same value by ϕ′, the formula ϕ′ ∧ T(q) ∧ F(q′) is unsatisfiable. It
follows that E = {q} is a solution of (ϕ′, A′, q′). Conversely, if E is a solution of the
problem (ϕ′, A′, q′), let m be a model of ϕ′ ∧

∧
E ∧ T(q′). Because of the constraints

OR2,1(q, q
′) and OR2,1(q

′, q) in ϕ′, m maps q to 1. Thus every xi (i ∈ I) is mapped
to 1 as well because of the constraints OR2,1(q, xi). Therefore, m satisfies ϕ, which is
thus satisfiable.

Appendix B. Proof of Lemma 20. Let (ϕ,A, q) be an instance of pq-abduc-

tion(L ∪ {F}), and write

ϕ = ϕ0 ∧
∧
i∈I

F(xi),

where ϕ0 is an L-formula.

First of all, if q ∈ {xi | i ∈ I}, then the problem cannot have a solution;
hence it can be reduced soundly and in constant time to the constant problem
(ϕ′ = OR3,1(q, q, q), A

′ = ∅, q).

226 NADIA CREIGNOU AND BRUNO ZANUTTINI

Thus we assume without loss of generality that q /∈ {xi | i ∈ I}. Let q′ be a new
variable (i.e., q′ /∈ Vars(ϕ)), write I = {i1, . . . , ik}, and define the formula

ϕ′ = ϕ0 ∧ ORk+2,1(q, xi1 , . . . , xik , q
′).

It is easily seen that ϕ′ can be built in polynomial time from ϕ and that the relation
ORk+2,1 is implemented by {OR3,1} in the usual way. Now define A′ to be A ∪ {xi |
i ∈ I}. We show that the problem (ϕ′, A′, q′) has a solution if and only if the problem
(ϕ,A, q) has one.

(Solution of (ϕ,A, q) → solution of (ϕ′, A′, q′).) Assume that E is a solution
for the problem (ϕ,A, q), and define E′ to be E ∪ {¬xi | i ∈ I}. It is easily seen
that every model of the formula ϕ′ ∧

∧
E′ satisfies ϕ ∧

∧
E as well, and thus that

ϕ′∧
∧
E′∧F(q) is unsatisfiable since ϕ∧

∧
E∧F(q) is also. It follows that ϕ′∧

∧
E′∧

ORk+1,1(q, xi1 , . . . , xik) is unsatisfiable, and thus that ϕ′∧
∧
E′∧F(q′) is unsatisfiable

as well. Now let m be a model of ϕ∧
∧
E. Because of the clauses F(xi) in ϕ we know

that ∀i ∈ I,m(xi) = 0, and it follows that adding m(q′) = 1 to m we get a model of
ϕ′ ∧

∧
E′. Thus E′ is a solution for the problem (ϕ′, A′, q′).

(Solution of (ϕ′, A′, q′) → solution of (ϕ,A, q).) Let E′ be a solution for the abduc-
tion problem (ϕ′, A′, q′). Define E to be E′\{xi,¬xi | i ∈ I, xi /∈ A}. First of all, we
know that ϕ′∧

∧
E′∧F(q′) is unsatisfiable. It follows that ϕ0∧ORk+1,1(q, xi1 , . . . , xik)∧

F(q′) ∧
∧
E′ is unsatisfiable and thus that ϕ0 ∧ ORk+1,1(q, xi1 , . . . , xik) ∧

∧
E′ is un-

satisfiable since q′ /∈ Vars(ϕ0). Since ϕ0 ∧
∧
E′ is satisfiable (because so is ϕ′∧

∧
E′),

we derive that (i) for no i ∈ I, E′ contains xi, and thus that every model of
ϕ ∧

∧
E satisfies ϕ0 ∧

∧
E′ as well, and (ii) ϕ0 ∧

∧
E′ ∧ F(q) is unsatisfiable, since

otherwise any of its models would satisfy F(q), thus ORk+1,1(q, xi1 , . . . , xik) and
finally ϕ0 ∧ ORk+1,1(q, xi1 , . . . , xik) ∧

∧
E′. Finally, by point (i) every model of

ϕ ∧
∧
E ∧ F(q) satisfies ϕ0 ∧

∧
E′ ∧ F(q), and thus the latter is unsatisfiable by

point (ii). On the other hand, since every model of ϕ0 ∧
∧
E′ ∧ ORk,0(xi1 , . . . , xik)

satisfies ϕ0∧
∧
E′∧ORk+1,1(q, xi1 , . . . , xik), which is shown to be unsatisfiable above,

it is unsatisfiable too, and thus we know that any model of ϕ0 ∧
∧
E′ satisfies

ϕ0 ∧
∧
E′ ∧

∧
i∈I F(xi) and, since there is at least one such model, that ϕ ∧

∧
E

is satisfiable, which concludes the proof.

Appendix C. Proof of Lemma 21. Let (ϕ,A, q) be an instance of pq-abduc-

tion(L ∪ {F}), and write

ϕ = ϕ0 ∧
∧
i∈I

F(xi),

where ϕ0 is an L-formula.
First of all, if q ∈ {xi | i ∈ I}, then the problem cannot have a solution;

hence it can be reduced soundly and in constant time to the constant problem
(ϕ′ = SymOR2,1(q, q, q), A

′ = ∅, q).
Thus we assume without loss of generality that q /∈ {xi | i ∈ I}. Let q′, β be two

new variables (i.e., q′, β /∈ Vars(ϕ)), and define the formula

ϕ′ = ϕ0 ∧ SymOR2,1(β, q, q
′) ∧

∧
i∈I

(xi = β).

Moreover, let A′ = A ∪ {β} ∪
⋃
{xi | i ∈ I}. We show that the abduction problem

(ϕ,A, q) has a solution if and only if the problem (ϕ′, A′, q′) has one. This will conclude
the proof since replacing every xi (i ∈ I) with β and removing all the equalities in

COMPLEXITY OF PROPOSITIONAL ABDUCTION 227

ϕ′, one gets an L ∪ {SymOR2,1}-formula ϕ′′, and it is easily seen that the abduction
problems (ϕ′, A, q′) and (ϕ′′, A, q′) have the same solution (β and all the xi’s play the
same role with respect to A and q′).

(Solution of (ϕ,A, q) → solution of (ϕ′, A′, q′).) Let E be a solution for (ϕ,A, q),
and define E′ to be E ∪ {¬β} ∪ {¬xi | i ∈ I}. Let m be a model of ϕ∧

∧
E. Then m

satisfies ϕ0 and q, and it is easily seen that, adding m(β) = 0 and m(q′) = 1 to m, one
gets a model of ϕ′ ∧

∧
E′. Now ϕ′ ∧

∧
E′ ∧ F(q) is unsatisfiable because every model

of ϕ′ ∧
∧
E′ satisfies ϕ ∧

∧
E, and ϕ ∧

∧
E ∧ F(q) is unsatisfiable by assumption.

We conclude that every model of ϕ′ ∧
∧
E′ maps q to 1, and since (¬β) ∈ E′ we

know that no model of ϕ′∧
∧
E′ satisfies OR2,1(q, β) and thus, because of the relation

SymOR2,1(β, q, q
′), that every model m of ϕ′∧

∧
E′ satisfies m(q′) = 1, which finishes

to show that E′ is a solution for (ϕ′, A′, q′).
(Solution of (ϕ′, A′, q′) → solution of (ϕ,A, q).) Let E′ be a solution for (ϕ′, A′, q′),

and let E = E′\({xi,¬xi | i ∈ I, xi /∈ A} ∪ {β,¬β}). Since ϕ′ ∧
∧
E′ ∧ F(q′) is

unsatisfiable and q′ occurs only in the constraint SymOR2,1(β, q, q
′), we know that

ϕ′ ∧
∧
E′ ∧ OR2,1(q, β) is unsatisfiable. Indeed, otherwise there would be a model of

ϕ′ ∧
∧
E′ satisfying OR2,1(q, β) ∧ F(q′) (precisely, a model m of ϕ′ ∧OR2,1(q, β) with

m(q′) changed to 0). We conclude that every model of ϕ′ ∧
∧
E′ satisfies T(q)∧F(β),

and thus F(xi) for every i ∈ I. Hence on one hand, every model of ϕ′ ∧
∧
E′ is a

model of ϕ ∧
∧
E, which is thus satisfiable. On the other hand, in order to obtain a

contradiction, suppose that ϕ ∧
∧
E ∧ F(q) is satisfiable and let m be a model. Then

m satisfies F(xi) for every i ∈ I, and thus satisfies ϕ0 ∧ F(q) ∧
∧
E′. It is easily seen

that, adding m(β) = m(q′) = 0 to m, one gets a model of ϕ′ ∧
∧
E′ ∧ F(q′), which

contradicts the fact that E′ is a solution.

Appendix D. Proof of Lemma 27. The first point is Schaefer’s result [25].
The third and fifth ones are given in [7, Lemma 5.41].

(Second claim.) First remark that L ∪ {T} is neither 0-valid nor 1-valid nor
complementive. Thus by the first claim L∪{T} can implement every Boolean relation.
Consider the ternary relation R = {000, 100, 110}; since L∪{T} can implement every
Boolean relation there is an L-formula ϕ0 over V ∪ {x, y, z, t} with

R(x, y, z) ≡ ∃V ∃t, ϕ0 ∧ T(t).

Note that we assume without loss of generality that there is only one constraint
involving the relation T, since we can replace all the variables that are in the scope
of such a constraint with t (noting that none involves any of x, y, z because 000 ∈
R). By construction the 4-ary relation R′ defined by R′(x, y, z, t) = ∃V ϕ0 contains
0001, 1001, and 1101; moreover, since it is complementive (because so is L) it also
contains 1110, 0110, and 0010. Now assume that there is another 4-ary vector m =
(mx,my,mz,mt) in R′; then if mt = 1, we should have (mx,my,mz) ∈ R, which
is false by assumption. Now if mt = 0, by complementivity of L we should have
(mx ⊕ 1,my ⊕ 1,mz ⊕ 1,mt ⊕ 1) ∈ R′ and thus (mx ⊕ 1,my ⊕ 1,mz ⊕ 1) ∈ R, which
is false as well. It is finally easily seen that the formula ∃tR′(x, y, z, t) is logically
equivalent to the formula SymOR2,1(x, y, z), which concludes the proof.

(Fourth claim.) Since L is not Schaefer there are three relations R, R′, and
R′′ in L that are, respectively, non–dual Horn, non-Horn, and nonaffine. Thus be-
cause of the closure properties given in the preliminaries there are two vectors m1 =
1a1b0c0d,m2 = 1a0b1c0d ∈ R such that m1 ∨ m2 = 1a1b1c0d /∈ R, where, e.g., 1a

indicates that the value 1 is repeated a times; by identifying the components of those
vectors we can see that R implements some 4-ary relation R0 with 1100, 1010 ∈ R0

228 NADIA CREIGNOU AND BRUNO ZANUTTINI

and 1110 /∈ R0. (Note that we can assume a, b, c, d �= 0 since we can introduce
auxiliary, unconstrained variables and check that the assumptions remain true.) In
the same manner, the non-Horn relation R′ implements some 4-ary relation R′

0 with
1100, 1010 ∈ R′

0 and 1000 /∈ R′
0, and finally the 1-valid but nonaffine relation R′′

satisfies ∃m1,m2 ∈ R′′,m1 ⊕m2 ⊕ 1 . . . 1 /∈ R′′ [7, Lemma 4.10], from which we de-
rive as before that R′′ implements some 4-ary relation R′′

0 with 1100, 1010 ∈ R′′
0 and

1001 /∈ R′′
0 . Now consider the ternary relation R1 defined by

R1(x, y, z) = ∃t, R0(t, x, y, z) ∧R′
0(t, x, y, z) ∧R′′

0 (t, x, y, z) ∧ T(t).

By construction, 111, 100, 010 ∈ R1 and 110, 000, 001 /∈ R1. Now consider the ternary
relation R′′′ defined by

R′′′(x, y, z) = ∃t, u,R1(t, x, y) ∧R1(t, z, u).

It is easily seen that 111, 110, 001, 000, 101 ∈ R′′′ and that 100 /∈ R′′′. Observe that
if 010 ∈ R′′′, then so does 011. Indeed, if 010 ∈ R′′′, then either 001 ∈ R1 or
101 ∈ R1, and since 001 /∈ R1 we have 101 ∈ R1, and it is then easily seen that
011 ∈ R′′′. Therefore, there remain only two cases to discuss: either 011 ∈ R′′′, or
both 011 /∈ R′′′ and 010 /∈ R′′′. In the first case we have

OR3,1(x, y, z)∃u1R
′′′(x, u1, u1) ∧R′′′(u1, y, z),

in the second

OR3,1(x, y, z)∃u1∃u2∃u3∃u4R
′′′(x, u1, u2) ∧R′′′(y, u1, u3) ∧R′′′(z, u2, u4).

We conclude that L ∪ {T} implements OR3,1. Since L is 1-valid but not 0-valid, L
implements T, and we finally deduce that L implements OR3,1.

REFERENCES

[1] J. Amilhastre, H. Fargier, and P. Marquis, Consistency restoration and explanations in
dynamic CSPS—Application to configuration, Artificial Intelligence, 135 (2002), pp. 199–
234.

[2] E. Böhler, N. Creignou, S. Reith, and H. Vollmer, Playing with Boolean Blocks, Part II:
Post’s Lattice with Applications to Complexity Theory, in Complexity Theory Column 43,
ACM-SIGACT News, Vol. 35, ACM, New York, 2004, pp. 22–35.

[3] E. Böhler, S. Reith, H. Schnoor, and H. Vollmer, Bases for Boolean co-clones, Inform.
Process. Lett., 96 (2005), pp. 59–66.

[4] M. Bouzid and A. Ligeza, Temporal causal abduction, Constraints, 5 (2000), pp. 303–319.
[5] T. Bylander, D. Allemang, M. Tanner, and J. Josephson, Some results concerning the

computational complexity of abduction, in Proceedings of the 1st Annual International
Conference on Principles of Knowledge Representation and Reasoning (KR’89), Morgan
Kaufmann, San Francisco, CA, 1989, pp. 44–54.

[6] S. Coste-Marquis and P. Marquis, Characterizing consistency-based diagnoses, in Proceed-
ings of the 5th Annual International Symposium on Artificial Intelligence and Mathematics
(AIMATH’98), 1998; available online from http://rutcor.rutgers.edu/˜amai/aimath98/.

[7] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of Boolean Constraint
Satisfaction Problems, SIAM Monogr. Discrete Math. Appl. 7, SIAM, Philadelphia, 2001.

[8] N. Creignou, P. Kolaitis, and B. Zanuttini, Preferred representations of Boolean relations,
Electronic Colloquium on Computational Complexity (ECCC), 2005; available online from
http://eccc.hpi-web.de/eccc-reports/2005/TR05-119/index.html.

[9] R. Dechter and J. Pearl, Structure identification in relational data, Artificial Intelligence,
58 (1992), pp. 237–270.

[10] A. del Val, The complexity of restricted consequence finding and abduction, in Proceedings
of the 17th National Conference on Artificial Intelligence (AAAI’00), AAAI Press, Menlo
Park, CA, 2000, pp. 337–342.

COMPLEXITY OF PROPOSITIONAL ABDUCTION 229

[11] T. Eiter and G. Gottlob, The complexity of logic-based abduction, J. ACM, 42 (1995),
pp. 3–42.

[12] T. Eiter and K. Makino, On computing all abductive explanations, in Proceedings of the
18th Annual National Conference on Artificial Intelligence (AAAI’02), AAAI Press/MIT
Press, 2002, pp. 62–67.

[13] T. Eiter and K. Makino, Generating all abductive explanations for queries on propositional
Horn theories, in Proceedings of the 12th Annual Conference of the EACSL (CSL’03),
Springer Lecture Notes in Comput. Sci., Springer-Verlag, New York, 2003, pp. 197–211.

[14] K. Eshghi, A tractable class of abduction problems, in Proceedings of the 13th Annual Inter-
national Joint Conference on Artificial Intelligence (IJCAI’93), Morgan Kaufmann, San
Francisco, CA, 1993, pp. 3–8.

[15] J.-J. Hébrard and B. Zanuttini, An efficient algorithm for Horn description, Inform. Pro-
cess. Lett., 88 (2003), pp. 177–182.

[16] J. Hobbs, M. Stickel, D. Appelt, and P. Martin, Interpretation as abduction, Artificial
Intelligence, 63 (1993), pp. 69–142.

[17] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM, 44 (1997),
pp. 527–548.

[18] S. Khanna, M. Sudan, and L. Trevisan, Constraint satisfaction: The approximability of min-
imization problems, in Proceedings of the 12th Annual IEEE Conference on Computational
Complexity (CCC’97), IEEE Computer Society, Los Alamitos, CA, 1997, pp. 282–296.

[19] R. Khardon and D. Roth, Reasoning with models, Artificial Intelligence, 87 (1996), pp. 187–
213.

[20] P. Marquis, Consequence finding algorithms, in Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems (DRUMS), Vol. 5, Kluwer Academic, Dordrecht, The Nether-
lands, 2000, pp. 41–145.

[21] G. Nordh and B. Zanuttini, Propositional abduction is almost always hard, in Proceedings
of the 19th Annual International Joint Conference on Artificial Intelligence (IJCAI’05),
IJCAI, Detroit, MI, 2005, pp. 534–539.

[22] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[23] W. Quine, On cores and prime implicants of truth functions, Amer. Math. Monthly, 66 (1959),

pp. 755–760.
[24] R. Reiter and J. de Kleer, Foundations of assumption-based truth maintenance systems:

Preliminary report, in Proceedings of the 6th Annual National Conference on Artificial
Intelligence (AAAI’87), AAAI Pres, Menlo Park, CA, 1987, pp. 183–188.

[25] T. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual
Symposium on the Theory of Computing (STOC’78), ACM, New York, 1978, pp. 216–226.

[26] B. Selman and H. Levesque, Abductive and default reasoning: A computational core, in
Proceedings of the 8th Annual National Conference on Artificial Intelligence (AAAI’90),
AAAI Press, Menlo Park, CA, 1990, pp. 343–348.

[27] M. Stumptner and F. Wotawa, Diagnosing tree-structured systems, Artificial Intelligence,
127 (2001), pp. 1–29.

[28] B. Zanuttini, New polynomial classes for logic-based abduction, J. Artificial Intelligence Res.,
19 (2003), pp. 1–10.

[29] B. Zanuttini and J.-J. Hébrard, A unified framework for structure identification, Inform.
Process. Lett., 81 (2002), pp. 335–339.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 230–246

FULL CONSTRAINT SATISFACTION PROBLEMS∗

TOMÁS FEDER† AND PAVOL HELL‡

Abstract. Feder and Vardi have conjectured that all constraint satisfaction problems to a fixed
structure (constraint language) are polynomial or NP-complete. This so-called dichotomy conjecture
remains open, although it has been proved in a number of special cases. Most recently, Bulatov has
verified the conjecture for conservative structures, i.e., structures which contain all possible unary
relations. We explore three different implications of Bulatov’s result. First, the above dichotomy can
be extended to so-called inclusive structures, corresponding to conservative constraint satisfaction
problems in which each variable comes with its own domain. (This has also been independently
observed by Bulatov.) We prove a more general version, extending the dichotomy to so-called three-
inclusive structures, i.e., structures which contain, with any unary relation R, all unary relations R′

for subsets R′ ⊆ R with at most three elements. For the constraint satisfaction problems in this
generalization we must restrict the instances to so-called 1-full structures, in which each variable
is involved in a unary constraint. This leads to our second focus, which is on restrictions to more
general kinds of “full” input structures. For any set W of positive integers, we consider a restriction
to W -full input structures, i.e., structures in which, for each w ∈ W , any w variables are involved
in a w-ary constraint. We identify a class of structures (the so-called W -set-full structures) for
which the restriction to W -full input structures does not change the complexity of the constraint
satisfaction problem, and hence the family of these restricted problems also exhibits dichotomy. The
general family of three-inclusive constraint satisfaction problems restricted to W -full input structures
contains examples which we cannot seem to prove either polynomial or NP-complete. Nevertheless,
we are able to use our result on the dichotomy for three-inclusive constraint satisfaction problems,
to deduce the fact that all three-inclusive constraint satisfaction problems restricted to W -full input
structures are NP-complete or “quasi-polynomial” (of order nO(log n)). Our third focus deals with
bounding the number of occurrences of a variable, which we call the degree. We conjecture that the
complexity classification of three-inclusive constraint satisfaction problems extends to the case where
all degrees are bounded by three. Using previous results, we are able to verify this conjecture in a
number of special cases. Conservative, inclusive, and three-inclusive constraint satisfaction problems
can be viewed as problems in which each variable is restricted to a “list” of allowed values. This point
of view of lists is frequently encountered in the study of graph colorings, graph homomorphisms, and
graph partitions. Our results presented here, in all three areas, were strongly motivated by these
results on graphs.

Key words. constraint satisfaction problems, dichotomy conjecture, conservative constraint
satisfaction problems, full constraint satisfaction problems, graph homomorphisms, list homomor-
phisms, matrix partitions, bounded degrees, NP-complete problems, quasi-polynomial algorithms

AMS subject classifications. 05C15, 68Q15, 68Q17

DOI. 10.1137/S0097539703427197

1. Introduction. A large class of problems in artificial intelligence and other
areas of computer science can be viewed as constraint satisfaction problems [8, 31, 32,
33, 34, 40]. These include problems in machine vision, belief maintenance, scheduling,
temporal reasoning, type reconstruction, graph theory, and satisfiability.

The standard formulation of the constraint satisfaction problem goes back to
Montanari [36] in 1974. This framework has proved its value over the years by its
wide-ranging applicability [8, 39]. The constraint satisfaction in its full generality is
NP-complete. Thus constraint satisfaction problems have been studied under various

∗Received by the editors May 5, 2003; accepted for publication (in revised form) January 22,
2006; published electronically May 26, 2006.

http://www.siam.org/journals/sicomp/36-1/42719.html
†268 Waverley St., Palo Alto, CA 94301 (tomas@theory.stanford.edu).
‡School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 (pavol@

cs.sfu.ca).

230

FULL CONSTRAINT SATISFACTION PROBLEMS 231

restrictions. The main model [20] considers constraint satisfaction problems with a
fixed template determining the size of the domain and the set of allowed constraint
types in an instance.

Formally, a vocabulary V is a set of pairs (Ri, �i), where the Ri are relation names
and the �i are relation arities. A structure S over the vocabulary V consists of a set
(called the domain) D, together with a collection of relations Ri ⊆ D�i , one �i-ary
relation Ri for each pair (Ri, �i) in V . We say that the structure S is an interpretation
of the vocabulary V and emphasize this, if necessary, by writing V S instead of S. We
also write the domains and relations as DS and RS

i , to indicate the structure in which
they are being interpreted.

The constraint satisfaction problem CSP (H) (or CSP (V H)) for a fixed structure
H = V H over a vocabulary V is given as follows. An instance of CSP (H) is a structure
V G over the same vocabulary V . The question asked by CSP (H) is whether or not
there exists a homomorphism f of G to H, that is, a mapping f : DG → DH such
that if (x1, . . . , x�i) ∈ RG

i , then (f(x1), . . . , f(x�i)) ∈ RH
i for all choices of xi ∈ DG

and (Ri, �i) ∈ V . We shall speak of the elements xi of DG as variables, constrained
by the relations RG

i to be assigned suitable values f(xi) in DH , as allowed by the
constraints RH

i .

This model was studied in its full generality by Feder and Vardi [20], who found
evidence toward the following dichotomy conjecture.

Conjecture 1.1. For each fixed structure H, the problem CSP (H) is NP-
complete or polynomial time solvable.

(Recall that it is known that if P �= NP, there are problems in NP that are
neither NP-complete nor polynomial [30].) This conjecture was supported by earlier
classifications that exhibited dichotomies. Schaefer [38] classified the complexity of
Boolean constraint satisfaction problems, i.e., problems CSP (H) with a two-element
domain DH = {0, 1}. In essence, the polynomial cases consist of Horn or anti-Horn
clauses, two-satisfiability, and linear equations modulo two. The remaining constraint
satisfaction problems CSP (H) for a two-element domain DH are all NP-complete.
Bulatov classified constraint satisfaction problems on a three-element domain [3]. Hell
and Nešetřil [26] classified the complexity of constraint satisfaction problems CSP (H)
where H = V H is a graph (with loops allowed). In other words, V consists of one
pair (R, 2), and the relation RH is symmetric. They showed that this so-called H-
coloring problem is polynomial if H is bipartite or has a loop and is NP-complete
otherwise. Such a result is not known for digraphs (structures V H in which RH is
not necessarily symmetric) [1, 20]. In fact, Feder and Vardi [20] have shown that
dichotomy for digraph H-coloring problems would imply the validity of the entire
dichotomy conjecture.

For this paper, the most relevant special case where the conjecture has been
proved is the following result. We say that a structure H is conservative if it contains
a unary relation R for each subset R of the domain DH . We shall denote the set of
unary relation names (names R involved in pairs (R, 1)) of a vocabulary V by U(V),
and also denote the set of the corresponding relations RH in a structure H = V H

by U(V H) (or just U(H)). (Thus the vocabulary V of a conservative structure V H

with |DH | = n has |U(V)| = 2n, and U(V H) is precisely the power set of DH .)
Bulatov [2] proved that dichotomy holds for all conservative structures, i.e., that for
every conservative structure H, the problem CSP (H) is NP-complete or polynomial
time solvable. His approach is based on tools and techniques of universal algebra
[2, 3, 4, 5, 28, 29]. Problems CSP (H), for conservative structures H, will be called

232 TOMÁS FEDER AND PAVOL HELL

conservative constraint satisfaction problems.
An alternative interpretation of Bulatov’s result is the following. Suppose H is

a conservative structure; we may restrict CSP (H) to those input structures G that
contain each variable v ∈ DG in some unary relation. Such structures G will be called
1-full. The restriction of CSP (H) to 1-full instances G will be denoted by CSP1(H).
Since H is conservative this is not a real restriction, as there exists in U(V) a pair
(R, 1) with the corresponding unary relation RH equal to DH . Thus the relation RG

can be imposed an any variable in DG without changing the problem, and so CSP (H)
and CSP1(H) are equivalent problems. On the other hand, CSP1(V

H) is easily seen
to be equivalent to the following list constraint satisfaction problem. The instance is
a structure V G in which each variable v ∈ DG is equipped with a list L(v) ⊆ DH , and
the question is whether or not there exists a homomorphism f of G to H such that
each f(v) belongs to L(v). List constraint satisfaction problems have been extensively
studied in the case when H is a graph. The problem is polynomial if H is a so-called
bi-arc graph and is NP-complete otherwise [12, 13, 14, 15, 16]. Let C be a fixed circle
with two specified points p and q. A graph H (with loops allowed) is called a bi-arc
graph if there exist pairs of arcs (Nx, Sx), x ∈ V (H), with each Nx being an arc on
C containing p but not q, and each Sx being an arc on C containing q but not p, so
that for any x, y ∈ V (H), not necessarily distinct, the following hold:

• either Nx intersects Sy and Ny intersects Sx, or Nx does not intersect Sy and
Ny does not intersect Sx;

• Nx intersects Sy (and Ny intersects Sx) if and only if x and y are not adjacent
in H.

This class of graphs conveniently generalizes both the class of interval graphs,
and the class of (complements of) circular arc graphs of clique covering number two
[14, 22].

List constraint satisfaction problems involving multiple binary relations were stud-
ied by Feder, Madelaine, and Stewart [19].

Let us say that a structure H is inclusive if for any R ∈ U(H) and any R′ ⊆ R
we also have R′ ∈ U(H). Note that each conservative structure is inclusive. It
was independently observed by the present authors, and by Bulatov, that the above
result for conservative structures H extends to all inclusive structures in the following
sense. For every inclusive structure H, the problem CSP1(H) is NP-complete or
polynomial time solvable. Since for conservative structures H the problems CSP1(H)
and CSP (H) are equivalent, this extends the original result of Bulatov [2]. It is
easy to interpret this result as the dichotomy of a list constraint satisfaction problem
where the variables range over multiple domains. In this context, Feder has previously
classified a family of list problems involving multiple Boolean domains [10].

We prove in this paper a more general version of the dichotomy for inclusive
structures. We say that a structure H is three-inclusive if for any R ∈ U(H) and
all R′ ⊆ R with |R′| ≤ 3 we also have R′ ∈ U(H). Thus each inclusive (and
hence each conservative) structure is also three-inclusive. We shall prove that for
any three-inclusive structure H, the problem CSP1(H) is NP-complete or polynomial
time solvable. Problems CSP1(H), for three-inclusive structures H, will be called
three-inclusive constraint satisfaction problems.

Three-inclusive structures H are the main focus of this paper. Note that a struc-
ture H without unary relations is three-inclusive (in fact inclusive) and thus proving
dichotomy for CSP (H) would yield dichotomy for digraph H-coloring problems and
hence the entire dichotomy conjecture. Therefore we restrict the instances G as well.
The restriction CSP1(H) mentioned above is one natural way—restricting to 1-full

FULL CONSTRAINT SATISFACTION PROBLEMS 233

instances G amounts to assuming the inputs are equipped with lists, as described
above. Thus requiring H to be three-inclusive and G to be 1-full gives the three-
inclusive constraint satisfaction problem CSP1(H) that is the connecting thread of
our paper. (We then consider further restrictions on both G and H.)

This suggests looking at other versions of “fullness.” Let W be a set of positive
integers such that 1 ∈ W , and let V be a vocabulary which contains at least one pair
(R,w) for each w ∈ W . We shall say that a structure G = V G is W -full if for each
w ∈ W , and any distinct variables x1, x2, . . . , xw in DG, there exist a permutation σ
of {1, 2, . . . , w} and a pair (R,w) in V , such that (xσ(1), . . . , xσ(k)) ∈ RG. Note that
the notion of a 1-full structure coincides with the notion of a W -full structure with
W = {1}. We shall also focus on the next natural special case when W = {1, 2}; in
this case we simply say that a W -full structure is pairwise full (remembering that,
despite the suggestive name, it is assumed to be at the same time 1-full and 2-full).
The problem CSPW (H) is the restriction of CSP (H) to W -full instances G.

A W -full structure G = V G is strictly W -full if the above permutation σ and
relation R are unique for each w ∈ W,w ≥ 2, and any distinct variables x1, x2, . . . , xw

in DG. The restriction of CSP (H) to strictly W -full instances G will be denoted by
CSP ∗

W (H). The notion of strictly pairwise full structure refers to, as would be ex-
pected, a strictly W -full structure with W = {1, 2}. A graph G (with loops allowed)
can be viewed as a strictly pairwise full structure with two binary relations, corre-
sponding to the edges and the nonedges of G. (To conform to the definition as given,
we choose an arbitrary orientation of G, i.e., consider each edge uv of G as an oriented
arc—either �uv or �vu—and consider each nonedge in a similar manner.) Under this
interpretation, the problems CSP ∗

{1,2}(H) have been studied as list matrix partition

problems [6, 18, 17, 23, 27]. (The structures H are usually taken to be conservative
structures with two binary relations whose union is (DH)2.)

After the work of Jeavons [28] and Jeavons, Cohen, and Gyssens [29], it is usual,
when studying the complexity of CSP (H), to consider the relations “definable in H”
along with the relations of H. The properties of structures considered in this paper
are somewhat fragile with respect to adding definable relations. Thus to convert a
CSP (H) problem to a full problem CSPW (H), one needs to add to H relations of
the arities in W that hold for all tuples of elements in D. To convert a full problem
CSPW (H) further to a strict problem CSP ∗

W (H) one needs to further add to H
relations of each arity in W corresponding to intersection of relations of this arity in
H.

This family of (strictly) full problems is not directly under the scope of the di-
chotomy conjecture, and many problems in this class resist attempts at classification
[6, 18, 23]. Consider, for instance, the following problem: The vocabulary V consists
of eight unary relation names Ui (in other words, V contains eight pairs (Ui, 1)) and
three binary relation names R0, R1, R2 (additional pairs (R0, 2), (R1, 2), (R2, 2) in V).
Now consider the structure V H with domain D = DH = {0, 1, 2}, where the inter-
pretations of the three binary relations are RH

j = D2 − (j, j) for j = 0, 1, 2, and the
eight unary relations correspond to the eight subsets of D. (Assume that U7 is the
relation name for which UH

7 = DH .) The complexity of CSP ∗
{1,2}(H) is not known.

It will follow from Theorem 3.2 that the problem can be solved in quasi-polynomial
time nO(log n) (where n = |DG|). We first illustrate the idea of the recursive algorithm
from the proof of Theorem 3.2. For simplicity, we shall assume that the instance V G

has all variables only in the unary relation UG
7 (having the lists DH), which does not

restrict them in any way. (It is easy to argue that this version is equivalent to the
original problem.) Thus we want to solve the following combinatorial problem.

234 TOMÁS FEDER AND PAVOL HELL

Given a complete graph G with edges colored 0, 1, 2, can the vertices also be colored
by 0, 1, 2 so that there is no monochromatic edge (an edge of color i, both of whose
endpoints are also colored i)?

For each vertex x of G we choose a majority color m(x) from 0, 1, 2, with the
property that at least a third of the edges incident to x have color m(x). Suppose G
has n vertices. We reduce the problem for G to n + 1 subproblems as follows. In the
first subproblem we assume no vertex x obtains its majority color. In the remaining
n subproblems we assume, for each vertex x in turn, that (at least) x obtains its
majority color. The first subproblem leaves us with two choices of color for each
vertex, with all constraints expressible as clauses with two variables, and hence can
be solved by a two-satisfiability algorithm. Each of the other n problems yields a
vertex that has been colored, and hence can be removed from the graph; moreover,
this implies, for all vertices y adjacent to x along edges of the color m(x), that m(x)
is not a legal choice of color for y. In the general step, we have some vertices with lists
(of allowed values) of size two and some with lists of size three; we define the majority
color m(x) to be the color of at least one-third of the edges from x to vertices with
lists of size three. Therefore the time to solve a problem with p vertices with lists of
size three is

T (p) ≤ (1 + pT (2p/3)) · T2(n),

where T2(n) is the (polynomial) time to solve the two-satisfiability problem aris-
ing from n vertices. The recurrence implies that T (n) is quasi-poynomial nO(log n).
Despite the simplicity of this algorithm we have not been able to find a polyno-
mial time algorithm. We have, however, obtained an algorithm of time complexity
nO(log n/ log log n) [18].

The analogous problem with colors 0, 1 corresponds to the well-known graph
problem of recognition of split graphs, which has a simple polynomial time algorithm
[22] (cf. also [24, 27]). When there are more than three colors, the problem is easily
seen to be NP-complete. (Our problem can be shown to be no easier than the so-called
stubborn problem from [6], which also resists classification.)

We shall conclude, using the dichotomy of CSP (H) for three-inclusive struc-
tures, that for a three-inclusive structure H, each problem CSPW (H) (respectively,
CSP ∗

W (H)) is NP-complete or solvable in quasi-polynomial time nO(log n). Thus
we obtain a new kind of dichotomy—not between problems that are NP-complete
and those that are solvable in polynomial time, but between problems that are NP-
complete and those that are solvable in quasi-polynomial time. For convenience and
brevity we shall call such a result a quasi-dichotomy. Our interest in quasi-dichotomy
is motivated by arguments similar to those for dichotomy. It is generally expected
that no NP-complete problem admits a quasi-polynomial algorithm, and if one NP-
complete problem admitted such an algorithm, then so would all others. The relation-
ship between the dichotomy conjecture and quasi-dichotomies was previously studied
in the case of list matrix partition problems by Feder, Hell, Klein, and Motwani [17].

Megiddo and Vishkin [35] studied a problem on tournaments that has a quasi-
polynomial algorithm. The problem asks for a minimum size dominating set in a
tournament on n vertices. A minimum size dominating set always has at most log n
vertices, so the problem can be solved in time nO(log n). Megiddo and Vishkin showed
that the problem of solving a satisfiability instance with log2 n variables and n clauses
reduces to the dominating set problem in tournaments. Papadimitriou and Yan-
nakakis [37] showed that the dominating set problem for tournaments is complete for

FULL CONSTRAINT SATISFACTION PROBLEMS 235

the class LOGSNP , with the containment of classes LOGSNP ⊆ LOGNP , and both
classes reduce in polynomial time to problems in NP [log2 n]∩DSPACE (log2 n). Here
NP [log2 n] is the class of problems that can be solved in nondeterministic polynomial
time with only O(log2 n) bits of nondeterminism.

The classes LOGNP and LOGSNP are classes of problems in NP involving
guessing only logn elements in an n-element input structure I. More formally,
the classes are defined by setting LOGNP 0 to be defined by a formula {I : ∃S ∈
[n]

logn ∀x ∈ [n]
p ∃y ∈ [n]

q ∀j ∈ [log n]φ(I, sj , x, y, j)} and setting LOGSNP 0 to be

defined by a formula {I : ∃S ∈ [n]
logn ∀x ∈ [n]

p ∃j ∈ [log n]φ(I, sj , x, j)}, where the
S in LOGSNP 0 means strict, I is an input relation, x, y are tuples of first order vari-
ables ranging over [n] = {1, . . . , n}, and φ is a quantifier-free first order expression.
We then define LOGNP to be the class of all languages that can be polynomially
reduced to a problem in LOGNP 0, and similarly for LOGSNP and LOGSNP 0.

All our quasi-polynomial algorithms involve guessing O(log n) vertices and O(log n)
additional bits of information (thus with O(log2 n) bits of nondeterminism) and then
solving a resulting problem in deterministic polynomial time. Our quasi-polynomial
problems are thus in NP [log2 n]. However, some of these problems are complete for
P and are thus unlikely to be in DSPACE (log2 n).

We shall also observe that constraint satisfaction problems for three-inclusive
H show an interesting structure when the degree of the variables, i.e., the number
of occurrences of each variable, is bounded. With maximum degree two, Boolean
constraint satisfaction can express matching and delta-matroid intersection [7, 9, 11],
while with maximum degree three it is the same as with unbounded degree. Similar
results on degree restrictions for the case of graphs can be found in [15, 21, 25].

We conjecture that every three-inclusive list constraint satisfaction problem that
is NP-complete remains NP-complete when restricted to degree three instances. Using
existing results we verify this conjecture in four particular families of three-inclusive
list constraint satisfaction problems.

A structure V H is W -set-full if it is three-inclusive and if for any w ∈ W and
any (not necessarily distinct) pairs (S1, 1), . . . , (Sw, 1) in V such that each |SH

i | ≤ 3
for 1 ≤ i ≤ w, there exists a pair (R,w) in V and a permutation σ on {1, . . . , w},
such that SH

σ(1) × · · · × SH
σ(w) ⊆ RH . These W -set-full structures H define W -set-full

constraint satisfaction problems CSPW (H) and CSP ∗
W (H), which will turn out to be

equivalent to the corresponding constraint satisfaction problem CSP1(H) and hence
exhibit dichotomy just like the three-inclusive constraint satisfaction problems. When
W = {1, 2}, we call a W -set-full structure (and problem) pairwise-set-full.

The degree of x in a tuple t = (t1, . . . , tk) is the number of ti that are equal to
x. The degree of x in a relation Ri is the sum of the degrees of x in the tuples in Ri.
The degree of x in a structure G is the sum of the degrees of x in the relations Ri of
arity �i ≥ 2 in G. The degree of a structure G is the maximum degree of the elements
of DG in G.

2. Three-inclusive constraint satisfaction problems. A polymorphism of a
structure H with domain D = DH is a mapping g : Dk → D such that for all relations
RH

i and all tuples (x1j , . . . , x�ij) ∈ RH
i , for 1 ≤ j ≤ k, we have (y1, . . . , y�i) ∈ RH

i

for yt = g(xt1, . . . , xtk). Jeavons [28] showed that the complexity of a constraint
satisfaction problem CSP (H) is characterized, up to polynomial time reductions, by
the complete set of polymorphisms that H has.

Bulatov [2] classified conservative constraint satisfaction problems CSP (H) as
polynomial or NP-complete. The polynomial cases are characterized by the existence

236 TOMÁS FEDER AND PAVOL HELL

of three polymorphisms of H, namely g1 : D2 → D, g2 : D3 → D, and g3 : D3 → D,
satisfying the following properties:

(1) g1, g2, g3 are conservative; that is, g1(x, y) ∈ {x, y}, g2(x, y, z) ∈ {x, y, z}, and
g3(x, y, z) ∈ {x, y, z} for all x, y, z ∈ D.

For each a, b ∈ D with a �= b, at least one of the following holds:

(2) g1 is commutative on {a, b}; that is, g1(a, b) = g1(b, a) ∈ {a, b};
(3) g2 is majority on {a, b}; that is, g2(a, a, a) = g2(a, a, b) = g2(a, b, a) =

g2(b, a, a) = a and g2(b, b, b) = g2(b, b, a) = g2(b, a, b) = g2(a, b, b) = b; and

(4) g3 is minority on {a, b}; that is, g3(a, a, a) = g3(a, b, b) = g3(b, a, b) =
g3(b, b, a) = a and g3(b, b, b) = g3(b, a, a) = g3(a, b, a) = g3(a, a, b) = b.

Using this classification, we can now prove dichotomy of three-inclusive constraint
satisfaction problems CSP1(H).

Theorem 2.1. If H is three-inclusive, then the constraint satisfaction problem
CSP1(H) is polynomial time solvable or NP-complete.

Proof. Let H be a three-inclusive structure; we define three auxiliary structures
H∗, H ′, H ′′ on the same domain DH∗

= DH′
= DH′′

= DH = D, as follows.

• The structure H∗ is obtained from H by replacing each nonunary relation Ri

of H by the relations Ra
i = Ri ∩ (T1 × · · · × T�i) for each choice a of unary

relations T1, . . . , T�i ∈ U(H).
• The structure H ′ is obtained from H by removing all unary relations S ∈
U(H) with |S| > 3, and replacing each nonunary relation Ri of H by the
relations Ra

i for each choice a of unary relations of the new structure H ′

(thus all |Ti| ≤ 3).
• The structure H ′′ is obtained from H ′ by adding all missing unary relations

S, so that U(H ′′) is the power set of D.

We note that all these structures are three-inclusive and that H ′′ is conservative.
(Also observe that the three structures are over different vocabularies.)

We first prove that CSP1(H) and CSP (H∗) are polynomially equivalent prob-
lems. To reduce CSP1(H) to CSP (H∗), we transform an instance G of CSP1(H) to
an instance G∗ of CSP (H∗); the structure G∗ is obtained from G in a way similar to
how H∗ is obtained from H. (Each nonunary relation Ri is replaced by the relations
Ra

i .) It is easy to see that a homomorphism of G to H is also a homomorphism of
G∗ to H∗. On the other hand, it is also the case that a homomorphism of G∗ to H∗

is a homomorphism of G to H, since G is 1-full. Thus G has a solution in CSP1(H)
if and only if G∗ has a solution in CSP (H∗). To reduce CSP (H∗) to CSP1(H), we
transform an instance G of CSP (H∗) to an instance G′ of CSP1(H) obtained from
G as follows. If a variable x is not constrained in G (does not appear in any rela-
tion), we remove it. For each (x1, x2, . . . , x�i) ∈ Ra

i in G, we impose the constraint
(x1, x2, . . . , x�i) ∈ Ri as well as the unary constraints xi ∈ Ti, i = 1, . . . , �i, in G′. It
follows that G′ is 1-full, i.e., an instance of CSP1(H); it is again easy to check that
G has a solution in CSP (H∗) if and only if G′ has a solution in CSP1(H).

Since H ′′ is conservative, we know by [2] that the problem CSP (H ′′) is polynomial
time solvable (if there are polymorphisms g1, g2, g3 of H ′′ as described above) or NP-
complete. If CSP (H ′′) is polynomial, then the three polymorphisms g1, g2, g3 of
H ′′ are also polymorphisms of H ′, as all relations in H ′ are in H ′′. (In particular,
CSP (H ′) is also polynomial.) Moreover, in this case, g1, g2, g3 are also polymorphisms
of H∗, and hence CSP (H∗) is also polynomial. Indeed, consider a relation Ra

i of
H∗, where a is the choice of unary relations T1, T2, . . . , T�i ∈ U(H). Suppose x =
(x1, . . . , x�i), y = (y1, . . . , y�i), and z = (z1, . . . , z�i) are in Ra

i . Let a′ be the choice

FULL CONSTRAINT SATISFACTION PROBLEMS 237

of unary relations T ′
1, T

′
2, . . . , T

′
�i

∈ U(H), where each T ′
i = {xi, yi, zi}. Since each

T ′
i ⊆ Ti and H is three-inclusive, each T ′

i ∈ U(H) and hence also T ′
i ∈ U(H ′).

Thus x, y, z are also in Ra′

i , and, since g1, g2, g3 are polymorphisms of H ′, we must

also have (g1(x1, y1), . . . , g1(x�i , y�i)) ∈ Ra′

i , (g2(x1, y1, z1), . . . , g2(x�i , y�i , z�i)) ∈ Ra′

i ,

and (g3(x1, y1, z1), . . . , g3(x�i , y�i , z�i)) ∈ Ra′

i . Since Ra′

i ⊆ Ra
i , g1, g2, g3 are also

polymorphisms of H∗, whence CSP (H∗) (and CSP1(H)) is polynomial.

Suppose instead CSP (H ′′) is NP-complete. We will reduce CSP (H ′′) to CSP (H ′)
and then to CSP (H∗), proving that CSP (H∗) (and CSP1(H)) is also NP-complete.
Given an instance G of CSP (H ′′), we may assume that each variable x is constrained
by some nonunary relation of G. (If a variable x is only in unary relations of G, then
either the intersection of all the subsets of H corresponding to these unary relations is
empty, in which case there is no solution, or the intersection is nonempty, and assign-
ing any value from the intersection to x allows us to remove x from consideration.)
Thus each variable x of G occurs in some jth position in some Ra

i in H ′, where a is
the choice of some unary relations T1, T2, . . . , T�i with |Tj | ≤ 3. We form G1 from G
by replacing each unary relation T containing x which is in H ′′ but not in H ′ by the
unary relation T ′ = T ∩ Tj for x. Note that T ′ is a relation of H ′, since T ′ ⊆ Tj .
It is easy to see that G1 has a solution for CSP (H ′) if and only if G has a solu-
tion for CSP (H ′′). Therefore CSP (H ′) is NP-complete. The final reduction from
CSP (H ′) to CSP (H∗) is trivial, as each instance G of CSP (H ′) is also an instance
of CSP (H∗). Therefore CSP (H∗) (and CSP1(H)) is also NP-complete.

Let us call a structure H subunary if each nonunary relation Ri of H is included
in some product T1 × T2 × · · · × T�i of unary relations T1, T2, . . . , T�i ∈ U(H). The
structure H∗ in the above proof is subunary, and this was the only property used in
the proof. Thus we have also proved the following fact.

Corollary 2.2. If H is a subunary three-inclusive structure, then CSP (H) is
polynomial or NP-complete.

The above proof also shows that two structures which differ only in their unary
relations S with |S| > 3 have the same behavior for CSP1.

Corollary 2.3. If H and K are three-inclusive structures on the same domain
DH = DK with the same nonunary relations and the same unary relations S with
|S| ≤ 3, then CSP1(H) and CSP1(K) are both NP-complete or both polynomial.

Proof. In the proof of Theorem 2.1, the problems CSP1(H) and CSP1(K) yield
the same derived problems: CSP (H ′) = CSP (K ′) and CSP (H ′′) = CSP (K ′′).

We can apply the theorem to the following three-inclusive list H-coloring problem,
where H is a fixed graph (with loops allowed). An instance is a graph G, together
with lists L(v), v ∈ V (G), of vertices of H, such that each |L(v)| ≤ 3. The question
is whether or not there exists a homomorphism f of G to H with each f(v) ∈ L(v).

Corollary 2.4 (see [15]). Each three-inclusive list H-coloring problem is NP-
complete or polynomial time solvable.

In fact, in [15] we classify exactly which three-inclusive list H-coloring problems
are polynomial—they turn out to be the same bi-arc graphs defined above.

3. Restriction to pairwise full (and strictly pairwise full) instances.
Our general goal is to study the restriction of three-inclusive constraint satisfaction
problems to W -full instances. For simplicity we shall first state and prove our results
in the special case where W = {1, 2}, i.e., for pairwise full instances G. The general
case will be treated in the next section, mostly just by pointing out the extra effort
required.

238 TOMÁS FEDER AND PAVOL HELL

We begin by observing that each three-inclusive constraint satisfaction problem
CSP1(H) can be viewed as the restricted problem CSP{1,2}(H

′), where H ′ is obtained
from H by adding the binary relation DH ×DH (and the binary relation DG×DG to
any instance G, without changing the problem). We prove a strong converse to this
observation; in particular, this will show that CSP{1,2}(H) and CSP ∗

{1,2}(H) enjoy
dichotomy for pairwise-set-full structures H.

Theorem 3.1. Let H be a pairwise-set-full structure.

The problems CSP{1,2}(H), CSP ∗
{1,2}(H), and CSP1(H) are all polynomial or all

NP-complete.

Proof. The problem CSP1(H) is polynomial or NP-complete by Theorem 2.1 be-
cause the pairwise-set-full structure H is by definition three-inclusive. Every instance
of CSP ∗

{1,2}(H) is an instance of CSP{1,2}(H), and every instance of CSP{1,2}(H) is

an instance of CSP1(H); thus if CSP1(H) is polynomial, then all three problems are
polynomial.

If, on the other hand, CSP1(H) is NP-complete, then by Corollary 2.3 so is
CSP1(K) where K is obtained from H by deleting all unary relations S ∈ U(H) with
|S| > 3. Since each instance of CSP1(K) is 1-full, we can prove, along the lines of
the first part of the proof of Theorem 2.1, that CSP1(K) is polynomially equivalent
to CSP1(K

′) where K ′ is subunary. To simplify the notation, let us assume that K
itself is subunary.

For every pair of variables x, y in an instance G of CSP1(K), we have x and y
constrained by unary relations SG and TG, respectively, such that |SK |, |TK | ≤ 3.
Since H and hence also K are pairwise-set-full, there is a binary relation RK such
that SK × TK ⊆ RK . We may thus add the pair (x, y) to RG without affecting the
existence of a solution. Therefore, for every pair of variables x, y in this modified
instance G′, there exists a binary relation RG′

such that (x, y) ∈ RG′
. Hence G′

is an instance of CSP{1,2}(K) and also of CSP{1,2}(H), and thus CSP{1,2}(H) is
NP-complete.

We can transform the instance G of CSP{1,2}(H) into an instance G′ of CSP ∗
{1,2}(H),

in which each pair (x, y) occurs in only one binary relation Ri, as one of (x, y) ∈ Ri or
(y, x) ∈ Ri. Let r be the number of binary relations in H. For the transformation we
shall use an edge colored complete bipartite graph B with the following properties:

• B has s vertices in each part;
• each edge of B has one of 2r colors;
• between any s/3 vertices in one part of B and any s/3 vertices in the other

part of B, there is an edge of each of the 2r colors.

Given B, we replace each variable x in the instance with s variables xi. Two
variables x and y are joined by some k ≤ 2r choices of binary relations out of the r
binary relations with two possible choices of orientation (from x to y or from y to x)
for these binary relations. We may thus join the xi to the yi with a bipartite graph
obtained from B with edges of k colors, by replacing the remaining 2r−k colors with
some of the k chosen colors. A variable x is constrained by a unary relation S ⊆ DH

with |S| ≤ 3, and since H is pairwise-set-full, there exists a binary relation R in H
such that S × S ⊆ R. We add the pairs (xi, xj) to R for all the copies xi and xj of
x. We now have an instance G′ of CSP ∗

{1,2}(H). In a solution, out of the s variables

xi, at least s/3 of them will have the same value from S, which can then be used as
a value for the original variable x. The k binary relations involving x and y appear
between the s/3 corresponding choices of xi and the s/3 corresponding choices of yi;
a solution to G′ gives a solution to G. This completes the reduction and shows that

FULL CONSTRAINT SATISFACTION PROBLEMS 239

CSP ∗
{1,2}(H) is NP-complete as well.

It remains to show that such a bipartite graph B exists for any r. (Note that
we may choose s as large as we want.) Given a complete bipartite graph with s
vertices on each side, assign a color out of 2r colors to each edge uniformly at random.
The probability that two sets of size s/3 will miss one of the 2r colors is at most

2r(1 − 1/(2r))
(s/3)2

, and the number of choices of such subsets is
(

s
s/3

)2
; hence it

suffices to choose s large enough so that 2r(1 − 1/(2r))
(s/3)2(s

s/3

)2
< 1/2 to guarantee

that with probability at least 1/2 the complete bipartite graph B will be assigned
2r edge colors with the desired property. (The quantity on the left is easily seen to
converge to 0 with increasing s for any constant r.)

Thus pairwise-set-full constraint satisfaction problems enjoy dichotomy when re-
stricted to either the pairwise full or the strictly pairwise full instances G. We have
not succeeded in obtaining a similar dichotomy for three-inclusive constraint satis-
faction in general. We can, however, use Theorem 3.1 to obtain a quasi-dichotomy,
because of the following result.

Theorem 3.2. Let H be a three-inclusive structure, and let H be the set of all
pairwise-set-full structures H ′ with the same domain and the same nonunary relations
as H, and such that each S ∈ U(H ′) with |S| ≤ 3 is also in U(H).

If all CSP1(H
′) for H ′ ∈ H are polynomial, then both CSP{1,2}(H) and CSP ∗

{1,2}(H)

are quasi-polynomial. If some CSP1(H
′) for H ′ ∈ H is NP-complete, then both

CSP{1,2}(H) and CSP ∗
{1,2}(H) are NP-complete.

Corollary 3.3. For each three-inclusive structure H, the problems CSP{1,2}(H)
and CSP ∗

{1,2}(H) are both NP-complete or both quasi-polynomial.

Proof. We shall focus on proving the theorem for CSP{1,2}(H); the proof for
CSP ∗

{1,2}(H) is similar.

We shall transform CSP{1,2}(H) to problems CSP1(H
′) for H ′ ∈ H in such a

way that if any of these problems is NP-complete, then so is CSP{1,2}(H). In the

transformation, each instance G of CSP{1,2}(H) with n variables gives rise to nO(log n)

instances G′ of problems CSP1(H
′), so that if all these problems are polynomial, then

CSP{1,2}(H) is quasi-polynomial.
The problems CSP1(H

′) will have a pairwise-set-full structure H ′ obtained from
H by repeatedly replacing certain unary relations S with all proper subsets T ⊂ S.
In fact, each structure H ′ ∈ H′ will be strongly pairwise-set-full, in the sense that it is
three-inclusive and for any unary relations S1, S2 (not just those with |Si| ≤ 3) there
is a binary relation R with S1 × S2 or S2 × S1 contained in R.

To obtain these nO(log n) instances G′ (and the problems CSP1(H
′) to which they

correspond), we proceed as follows. Let A and B be two subsets of DH such that no
binary relation of H contains A×B or B ×A. Since we want to make our structure
strongly pairwise-set-full, we shall ensure that there is no S ∈ U(H) that contains A,
or no T ∈ U(H) that contains B. (Later on, we shall keep ensuring this property for
other pairs A,B of sets, on structures H ′ previously obtained from H.)

Let L be the set of variables (elements of DG) which are in unary constraints
SG such that A ⊆ SH , and let M be the set of variables (elements of DG) in unary
constraints TG such that B ⊆ TH . Let � = |L|, m = |M |, and let r again denote
the number of binary relations in H. For every variable v ∈ L there exists a binary
relation Ri such that (v, w) or (w, v) is in RG

i for at least m/(2r) variables w ∈ M .
We now transform the instance G of CSP{1,2}(H) (later on, the instance G′ of the
current CSP{1,2}(H

′)) into � + 1 new problems. For each binary relation Ri we

240 TOMÁS FEDER AND PAVOL HELL

choose variables ai, a
′
i ∈ A, bi, b

′
i ∈ B so that (ai, bi) �∈ RH

i , (b′i, a
′
i) �∈ RH

i . In the
first derived problem we change, for each variable v ∈ L, the unary constraint SG

to the unary constraint SG − ai or SG − a′i, depending on whether Ri was chosen
above for pairs (v, w) or (w, v). In the remaining � derived problems, we change, for
one variable v ∈ L, the constraint SG to the constraint {ai}G or {a′i}G, depending
on whether Ri was chosen above for pairs (v, w) or (w, v). We also change, for all
variables w ∈ M such that (v, w) (respectively, (w, v)) is constrained by RG

i , the
constraint TG to the constraint TG − bi (respectively, TG − b′i). Recall that for each
choice of v, the number of such variables w is at least m/(2r). Thus an instance
with (|L|, |M |) = (�,m) has been replaced with one instance with (|L|, |M |) = (0,m)
and � instances with (|L|, |M |) = (� − 1,m(1 − 1/(2r))). Repeating this process
− logm/ log(1 − 1/(2r)) = O(log n) times, we obtain nO(log n) instances that each
have � = 0 or m = 0; that is, either no unary constraint contains A or no unary
constraint contains B. The problem CSP{1,2}(H) is correspondingly replaced by
problems CSP{1,2}(H

′). Note that no unary constraint in H ′ contains A or no unary
constraint in H ′ contains B, and all the unary constraints in H ′ are subsets of unary
constraints in H.

We repeat this process for each pair of sets (A,B) as above. In the end, we
obtain nO(log n) instances and corresponding structures H ′, such that H ′ is strongly
pairwise-set-full. If all such CSP1(H

′) are polynomial, then we can solve each of these
nO(log n) resulting problems, obtaining a quasi-polynomial algorithm for CSP{1,2}(H).
Otherwise, at least one such CSP1(H

′) is NP-complete. Let H ′′ be obtained from
H ′ by removing all unary constraints SH′

with |SH′ | > 3. By Corollary 2.3 the
pairwise-set-full constraint satisfaction problem CSP1(H

′′) is also NP-complete; note
that all the unary constraints of H ′′ are in U(H). By Theorem 3.1 the problem
CSP{1,2}(H

′′) is also NP-complete, and its instances are also instances of the original
problem CSP{1,2}(H); thus this problem is also NP-complete.

Recall the list matrix partition problems CSP ∗
1,2(H) defined in the introduction

and studied in [6, 17, 18, 24, 27]. We obtain the following corollaries. (The first
corollary has been anticipated in [17].)

Corollary 3.4. Each list matrix partition problem is NP-complete or quasi-
polynomial.

We call a list matrix partition problem CSP ∗
1,2(H) three-inclusive if the instances

are graphs G with lists of size at most three.
Corollary 3.5. Each three-inclusive list matrix partition problem is NP-complete

or quasi-polynomial.
The analogue of Corollary 2.3 follows from Theorems 3.1 and 3.2 by an application

of Corollary 2.3.
Corollary 3.6. If H and K are pairwise-set-full structures on the same do-

main DH = DK with the same nonunary relations and the same unary relations
S with |S| ≤ 3, then CSP{1,2}(H) and CSP{1,2}(K) are both NP-complete or both
polynomial.

If H and K are three-inclusive structures on the same domain DH = DK with
the same nonunary relations and the same unary relations S with |S| ≤ 3, then
CSP{1,2}(H) and CSP{1,2}(K) are both NP-complete or both quasi-polynomial.

The same conclusions hold for the strict versions CSP ∗
{1,2}(H) and CSP ∗

{1,2}(K).

4. Restriction to W -full (and strictly W -full) instances. Theorems 3.1
and 3.2 generalize to W -full structures, and the proofs are similar. Here we briefly
state the results and describe the additional effort required to prove them.

FULL CONSTRAINT SATISFACTION PROBLEMS 241

Here is the generalization of Theorem 3.1.
Theorem 4.1. Let H be a W -set-full structure.
The problems CSPW (H), CSP ∗

W (H), and CSP1(H) are all polynomial or all
NP-complete.

Proof. We prove the theorem for W = {1, w} for a single w ≥ 2. For general
W we can carry out this proof for each value w ∈ W with w ≥ 2 in turn. Thus
we assume W = {1, w} and proceed as in Theorem 3.1. If CSP1(H) is polynomial,
then trivially both CSP ∗

W (H) and CSPW (H) are polynomial. If CSP1(H) is NP-
complete, then by Corollary 2.3 we may restrict CSP1(H) to three possible values in
H per variable (using the unary relations) and still obtain an NP-complete problem.
Again, for every collection of distinct variables x1, . . . , xw in DG, where xi has at
most three possible values given by SH

i , there exists a relation RH and a permutation
σ such that SH

σ(1) × · · · × SH
σ(w) ⊆ RH (since H is W -set-full), so the instance G can

be made W -full as before and thus becomes an instance of the W -set-full problem
CSPW (H). Therefore CSPW (H) is also NP-complete.

It remains to enforce strictness to obtain an instance of CSP ∗
W (H). As in Theo-

rem 3.1, we make s copies of each variable and use an auxiliary construction to define
the relations on this enlarged set of variables. Specifically, we apply Lemma 4.2 below,
with t = w!r (corresponding to the w! choices of permutations σ and r choices of rela-
tions RH in the definition of strictly W -full structures). We then obtain an instance
equivalent to G that is strictly W -full, whence CSP ∗

W (H) is also NP-complete.
Lemma 4.2. Let Kws be the structure with ws elements xij, 1 ≤ i ≤ w, 1 ≤ j ≤ s,

and relation R consisting of all ws tuples (x1i1 , . . . , xwiw). For every pair of integers
w ≥ 2 and t ≥ 1, there exists an integer s ≥ 1 and a coloring of the tuples in Kws with
t colors such that for every choice of w subsets S1, . . . , Sw with Si ⊆ {xi1, . . . , xis}
and |Si| ≥ s/3, we have that S1 × · · · × Sw contains tuples of all t colors.

Proof. Assign a color out of t colors to each tuple uniformly at random. The
probability that a choice of w sets Si with |Si| ≥ s/3 will miss one of the t colors is at

most t(1 − 1/t)
(s/3)t

and the number of choices of such subsets is
(

s
s/3

)t
, so it suffices

to choose s large enough so that t(1 − 1/t)
(s/3)w(s

s/3

)w
< 1/2 to guarantee that with

probability at least 1/2 the structure Kws will be assigned t tuple colors with the
desired property.

The generalization of Theorem 3.2 takes the following form.
Theorem 4.3. Let H be a three-inclusive structure, and let H be the set of all

W -set-full structures H ′ that have the same nonunary relations as H and such that
each S ∈ U(H ′) with |S| ≤ 3 is also in U(H).

If all CSP1(H
′) for H ′ ∈ H are polynomial, then both CSPW (H) and CSP ∗

W (H)
are quasi-polynomial. If some CSP1(H

′) for H ′ ∈ H is NP-complete, then both
CSPW (H) and CSP ∗

W (H) are NP-complete.
Corollary 4.4. For each three-inclusive structure H, the problems CSPW (H)

and CSP ∗
W (H) are both NP-complete or both quasi-polynomial.

In the proof of Theorem 4.3 we shall again treat each w ∈ W in turn; thus we
shall assume that W = {1, w}.

Let G be a W -full structure, let L1, . . . , Lw be (not necessarily disjoint) nonempty
subsets of DG, and let α = 1/(w!r), where r is the number of w-ary relations RG

i .
Say that a rooted tree T is a select-tree if the vertices of T at depth 1 ≤ i ≤ w
correspond to the variables in Li, with the root ρ at depth 0. For a w-ary relation
RG

i , a permutation σ of {1, . . . , w}, and 0 < β < 1, let an (Ri, σ, β)-tree be a select-
tree T such that each path (ρ, x1, . . . , xw) in T has (xσ(1), . . . , xσ(w)) ∈ RG

i or has

242 TOMÁS FEDER AND PAVOL HELL

xi = xj for some 1 ≤ i < j ≤ w, and each vertex of T at depth 0 ≤ i < w has at least
β|Li+1| children.

Lemma 4.5. For every W -full structure G and sets L1, . . . , Lw as above, there
exist Ri and σ such that G has an (Ri, σ, β)-tree for β = α/(4w).

Proof. Let z = �1 · · · �w for �i = |Li|. There exist a relation RG
i and a permutation

σ of {1, . . . , w} such that at least αz = z/(w!r) tuples (x1, . . . , xw) with xi ∈ Li have
(xσ(1), . . . , xσ(w)) ∈ RG

i or have xi = xj for some 1 ≤ i < j ≤ w. By Markov’s
inequality, there are at least β�1 elements x ∈ L1 such that the number of w-tuples
(x1, . . . , xw) with x = x1 and xi ∈ Li having (xσ(1), . . . , xσ(w)) ∈ RG

i , or having
xi = xj for some 1 ≤ i < j ≤ w, is at least α′(z/�1) for α′ = (α− β)/(1 − β), for any
β with 0 < β < α. (Markov’s inequality states that a nonnegative random variable
X has value at most tE(X) with probability at least 1 − 1

t for each choice of t > 1.)
By our special choice of β, we have α′′(1− 1/(2(w− 1))) ≥ (α′′ − β)/(1− β) for each
α′′ ≥ α/2. Thus repeatedly replacing α by α′ a total of w − 1 times reduces α by a
factor of at least (1 − 1/(2(w − 1)))w−1 ≥ 1/2, so that at any point in time the new
value α′′ satisfies α′′ ≥ α/2. We therefore obtain at least β�1 children of the root, and
for each chosen child x, we have z replaced with z/�1 and αz replaced with α′(z/�1),
giving again at least β�2 children of x, and by induction, each vertex of T at depth
0 ≤ i < w has at least β�i+1 children for β = α/(4w).

Proof of Theorem 4.3. We again focus on proving the statement for CSPW (H),
the proof for CSP ∗

W (H) being similar. We proceed as in Theorem 3.2. Assume H
is a three-inclusive structure, and transform CSPW (H) to problems CSP1(H

′) for
W -set-full structures H ′ ∈ H such that if any of these problems is NP-complete
then CSPW (H) is also NP-complete. In the transformation, each instance G of
CSPW (H) gives rise to nO(log n) instances G′ of the problems CSP1(H

′), so that if all
these problems are polynomial, then CSPW (H) is quasi-polynomial. Recall that we
assume W = {1, w}. The problems CSP1(H

′) will again have a W -set-full structure
H ′ obtained from H by repeatedly replacing certain unary relations S with all proper
subsets T ⊂ S.

To obtain these nO(log n) instances G′ (and the problems CSP1(H
′) to which they

correspond), we shall ensure that if some elements aijσ ∈ DH , one for each of the r
w-ary relations RH

i , 1 ≤ j ≤ w, and each fixed permutation σ on {1, . . . , w}, are such
that (aiσ(1)σ, . . . , aiσ(w)σ) �∈ RH

i , and we let Aj = {aijσ : 1 ≤ i ≤ r}, then for some
1 ≤ j ≤ w the unary constraints on the instances G′ (and corresponding structures
H ′, both described below) do not contain Aj . This will guarantee that we obtain a
W -set-full problem.

Let Lj be the set of variables with unary constraints SG such that Aj ⊆ SH

for 1 ≤ j ≤ w, and let �j = |Lj |. By Lemma 4.5 G has an (Ri, σ, β)-tree T for
β = 1/(4w!wr). For every solution f to the instance G, there must exist a path
(ρ, x1, . . . , xt−1) in T with 1 ≤ t ≤ w, with the tree vertices xu corresponding to
distinct elements of DG, that gives to xu value aiuσ for 1 ≤ u < t, but does not
give value aitσ to any child xt of xt−1 corresponding to an element distinct from the
elements for these xu, 1 ≤ u < t.

Since the number of such children of xt−1 is at least β�t, and the solution f belongs
to a family of solutions that assigns the values aiuσ for 1 ≤ u < t and removes the
value aitσ from the lists of these children, we obtain a new instance with �t replaced
by (1−β)�t. This simplification can be performed at most − log(�1 · · · �w) log(1−β) ≤
−w log n log(1 − 1/(4w!wr)) = O(log n) times, and the number of possible choices of
paths (ρ, x1, . . . , xt−1) for each iteration is at most 2�1 · · · �w ≤ 2nw = nO(1), so we
obtain nO(log n) instances that have some �j = 0, thus satisfying the condition for the

FULL CONSTRAINT SATISFACTION PROBLEMS 243

corresponding Aj .
We repeat this process for each tuple of sets (A1, . . . , Aw) as above. In the

end, we obtain nO(log n) instances (and corresponding structures H ′) that satisfy
the stated condition for each tuple (A1, . . . , Aw). Thus for each resulting instance
G′ of CSP1(H

′), the structure H ′ is strongly W -set-full. If all such CSP1(H
′) are

polynomial, then we can solve each of these nO(log n) resulting problems. If one such
CSP1(H

′) is NP-complete, then by Corollary 2.3 the W -set-full structure H ′′, ob-
tained from H ′ by restricting all unary relations to subsets of size at most three,
yields a problem CSP1(H

′′) that is also NP-complete, and all these subsets of size at
most three are in the original structure H. By Theorem 4.1 the problem CSPW (H ′′) is
NP-complete, and since the instances of CSPW (H ′′) are also instances of CSPW (H),
the problem CSPW (H) is also NP-complete.

We also obtain the analogue of Corollary 3.6, which follows from Theorems 4.1
and 4.3 by an application of Corollary 2.3.

Corollary 4.6. If H and K are W -set-full structures on the same domain
DH = DK with the same nonunary relations and the same unary relations S with
|S| ≤ 3, then CSPW (H) and CSPW (K) are both NP-complete or both polynomial.

If H and K are three-inclusive structures on the same domain DH = DK with the
same nonunary relations and the same unary relations S with |S| ≤ 3, then CSPW (H)
and CSPW (K) are both NP-complete or both quasi-polynomial.

The same conclusions hold for the strict versions CSP ∗
W (H) and CSP ∗

W (K).
As in the proof of Theorem 4.1, every three-inclusive problem CSPW (H) can be

transformed into a polynomially equivalent problem CSP ∗
W (H). However, it is not

clear how to accomplish the converse transformation in general; so the latter family
of problems may define a more general family, up to polynomial time equivalence.
But the two families of problems are the same, up to quasi-polynomial time equiva-
lence, since all problems considered are either quasi-polynomial (hence equivalent up
to quasi-polynomial reductions) or NP-complete (hence equivalent up to polynomial
reductions).

5. Bounded degree problems. Here we consider restricting the three-inclusive
constraint satisfaction problems CSP1(H) to instances G with bounded degree. We
are led to propose the following conjecture.

Conjecture 5.1. Every three-inclusive list constraint satisfaction problem
CSP1(H) that is NP-complete remains NP-complete when restricted to instances of
degree three.

We denote by CSP 3
1 (H) the restriction of CSP1(H) to instances of degree three.

We now briefly explain four special cases in which the conjecture holds. All are based
on existing results.

We shall say that a three-inclusive constraint satisfaction problem CSP1(H) d-
simulates a three-inclusive constraint satisfaction problem CSP1(H

′) if for every re-
lation RH′

i , there is an instance Gi of CSP1(H) of degree at most d containing �i
particular variables x1, . . . , x�i of degree at most one, such that (a1, . . . , a�i) ∈ RH′

i

if and only if there exists a homomorphism f of Gi to H such that each f(xi) = ai.
If CSP1(H) d-simulates CSP1(H

′) with d ≤ 3, then there is a polynomial reduction
of the problem CSP 3

1 (H ′) to CSP 3
1 (H), obtained by substituting each occurrence of

a relation RH′

i in an instance G′ of CSP 3
1 (H ′) by a copy of the instance Gi corre-

sponding to Ri, thus obtaining an instance G of CSP 3
1 (H). Therefore showing the

conjecture for CSP 3
1 (H ′) implies the conjecture for CSP 3

1 (H).
In the first case, we focus on the case of Boolean constraint satisfaction problems,

244 TOMÁS FEDER AND PAVOL HELL

i.e., CSP1(H), where DH has two elements (0, 1). The theorem stated below was
first proved by Dalmau and Ford [7] and by Feder and Ford [11], using a result of
Feder [9]. We briefly explain the proof as it is the basis for the other cases.

Theorem 5.2 (see [7, 11]). Conjecture 5.1 holds for Boolean constraint satisfac-
tion problems.

Proof. In other words, we claim that if for a three-inclusive H with D = DH =
{0, 1} the problem CSP1(H) is NP-complete, then so is its restriction CSP 3

1 (H) to
instances of degree three. It is shown in [9] that each NP-complete case of Boolean
constraint satisfaction problems CSP1(H) 2-simulates the problem CSP1(H

′) which
contains the ternary relation D3−{(0, 0, 0)} (corresponding to the disjunction x∨y∨z),
the ternary relation D3 − {(1, 1, 1)} (corresponding to the disjunction x∨ y ∨ z), and
the binary relation D2 − {(1, 0)} (corresponding to the implication x → y).

This simulation yields a reduction from the NP-complete problem of 3-satisfiability
to the problem CSP 3

1 (H ′), as we may include a variable x in any number k of
clauses by using k auxiliary variables x1, x2, . . . , xk with implications x1 → x2, x2 →
x3, . . . , xk−1 → xk, xk → x1. These implications involve two occurrences for each xi,
and the third occurrence of each of these k variables xi that all take the same value
can be used for the k occurrences of x in clauses x ∨ y ∨ z or x ∨ y ∨ z.

In the second case, we focus on three-inclusive constraint satisfaction problems
CSP1(H) in which all S ∈ U(H) have |S| ≤ 2. These problems correspond to list
constraint satisfaction problems with lists of size at most two, and we call these
problems small-list constraint satisfaction problems.

Theorem 5.3. Conjecture 5.1 holds for small-list constraint satisfaction prob-
lems.

Proof. It is shown in [10] that each NP-complete case of the small-list con-
straint satisfaction problems 2-simulates a problem CSP1(H

′) for a structure H ′

containing the unary relations {0i, 1i}, for 1 ≤ i ≤ r, and the binary relations
({0i, 1i} × {0j , 1j}) − {(1i, 0j)} (corresponding to the implications xi → xj) or the
binary relations ({0i, 1i} × {0j , 1j}) − {(1i, 0j), (0i, 1j)} (corresponding to the equal-
ities xi = xj) for each 1 ≤ i, j ≤ r, i �= j. It is also shown in [10] that the problem
CSP1(H) with DH = {0, 1}, obtained from CSP1(H

′) by identifying all sets {0i, 1i}
with {0, 1}, is NP-complete.

We may thus represent kr occurrences of a Boolean variable x, with k of these
occurrences having unary relation {0i, 1i} for each 1 ≤ i ≤ r, by a cycle of implications
xi → xj or equalities xi = xj , as in the proof of Theorem 5.2, involving variables
xij having unary relation {0i, 1i} for 1 ≤ i ≤ r and 1 ≤ j ≤ k. This completes
the reduction from the NP-complete problem CSP1(H) obtained by identifying all
{0i, 1i} with {0, 1} to CSP 3

1 (H ′).

The third case concerns list homomorphism problems for graphs (with loops al-
lowed). The problem CSP1(H), where H is three-inclusive and consists of a single
symmetric binary relation, will be called a graph list homomorphism problem. The
following theorem has been proved in [15].

Theorem 5.4 (see [15]). If H is a bi-arc graph, then CSP 3
1 (H) is polynomial;

otherwise, CSP 3
1 (H) is NP-complete.

Since this classification agrees exactly with that for CSP1(H) from [14], we obtain
the desired corollary.

Corollary 5.5. Conjecture 5.1 holds for graph list homomorphism problems.

The last case deals with N -free binary relations. A binary relation B is called N -
free if (x, z), (y, z), (y, t) ∈ B imply either x = y or z = t. A binary N -free constraint

FULL CONSTRAINT SATISFACTION PROBLEMS 245

satisfaction problem is a three-inclusive problem CSP1(H) where U(H) contains all
S with |S| ≤ 3, all binary relations of H are N -free, and H has no relations of higher
arity.

Theorem 5.6. Conjecture 5.1 holds for binary N -free constraint satisfaction
problems.

Proof. It is shown in [19] that each NP-complete binary N -free constraint satisfac-
tion problem 3-simulates a problem CSP1(H) containing the relation {(1A, 0B , 0C),
(0A, 1B , 0C), (0A, 0B , 1C)}, with |{0A, 1A}| = |{0B , 1B}| = |{0C , 1C}| = 2.

This relation may further be used to 3-simulate a problem CSP1(H
′) that also

contains the relation {(1A, 0B), (0A, 1B)} (corresponding to the inequality xA �= xB),
by setting xC to value 0C , and similarly {(1B , 0C), (0B , 1C)} (corresponding to the
inequality xB �= xC , and also contains the relation {(0A, 0C), (1A, 1C)} (corresponding
to the equality xA = xC), obtained by combining xA �= xB with xB �= xC , and
similarly the relation {(0A, 0B), (1A, 1B)} (corresponding to the equality xA = xB).
Thus we may set xA1 = · · · = xAk = xB1 · · ·xBk = xC1 · · ·xCk as a chain of equalities
that uses only two of the three allowed occurrences of each variable. This allows
us to identify the three unary relations {0i, 1i} with a single unary relation {0, 1},
with k occurrences per variable, for the NP-complete Boolean constraint satisfaction
problem one-in-three SAT, with relation {(1, 0, 0), (0, 1, 0), (0, 0, 1)} (obtained from
{(1A, 0B , 0C), (0A, 1B , 0C), (0A, 0B , 1C)} by the identification xA = xB = xC). Thus
CSP 3

1 (H ′) and CSP 3
1 (H), with degree at most three, are also NP-complete.

Acknowledgment. We are grateful to the referees for guiding us to present
these results more clearly.

REFERENCES

[1] J. Bang-Jensen, P. Hell, and G. MacGillivray, On the complexity of coloring by superdi-
graphs of bipartite graphs, Discrete Math., 109 (1992), pp. 27–44.

[2] A. A. Bulatov, Tractable conservative constraint satisfaction problems, in Proceedings of
the 18th IEEE Annual Symposium on Logic in Computer Science (LICS 2003), 2003, pp.
321–330.

[3] A. A. Bulatov, A dichotomy theorem for constraints on a three-element set, in Proceedings
of the 43rd IEEE Symposium on Foundations of Computer Science 2002, pp. 649–658.

[4] A. A. Bulatov and P. Jeavons, Algebraic Structures in Combinatorial Problems, Technical
report MATH-AL-4-2001m, Technische Universität Dresden, Dresden, Germany, 2001.

[5] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints using
finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742.

[6] K. Cameron, E. E. Eschen, C. T. Hoáng, and R. Sritharan, The list partition prob-
lem for graphs, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), New Orleans, LA, 2004, pp. 384–392.

[7] V. Dalmau and D. Ford, Generalized satisfiability with limited occurrences per variable: A
study through delta-matroid parity, in Mathematical Foundations of Computer Science
(MFCS 2003), Lecture Notes in Comput. Sci. 2747, Springer, Berlin, 2003, pp. 358–367.

[8] R. Dechter, Constraint networks, in The Encyclopedia of Artificial Intelligence, Wiley, New
York, 1992, pp. 276–285.

[9] T. Feder, Fanout limitations on constraint systems, Theoret. Comput. Sci., 255 (2001), pp.
281–293.

[10] T. Feder, Classification of homomorphisms to oriented cycles and of k-partite satisfiability,
SIAM J. Discrete Math., 14 (2001), pp. 471–480.

[11] T. Feder and D. Ford, Classification of bipartite Boolean constraint satisfaction through
delta-matroid intersection, SIAM J. Discrete Math., 20 (2006), pp. 372–394.

[12] T. Feder and P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory Ser. B,
72 (1998), pp. 236–250.

[13] T. Feder, P. Hell, and J. Huang, List homomorphisms and circular arc graphs, Combina-
torica, 19 (1999), pp. 487–505.

246 TOMÁS FEDER AND PAVOL HELL

[14] T. Feder, P. Hell, and J. Huang, Bi-arc graphs and the complexity of list homomorphisms,
J. Graph Theory, 42 (1999), pp. 61–80.

[15] T. Feder, P. Hell, and J. Huang, List homomorphisms of graphs with bounded degrees,
Discrete Math., to appear.

[16] T. Feder, P. Hell, and J. Huang, List Homomorphisms to Reflexive Digraphs, manuscript,
2004.

[17] T. Feder, P. Hell, S. Klein, and R. Motwani, List partitions, SIAM J. Discrete Math.,
16 (2003), pp. 449–478.

[18] T. Feder, P. Hell, D. Král, and J. Sgall, Two algorithms for general list matrix parti-
tions, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Vancouver, BC, 2005, pp. 870–876.

[19] T. Feder, F. Madelaine, and I. A. Stewart, Dichotomies for classes of homomorphism
problems involving unary functions, Theoret. Comput. Sci., 314 (2004), pp. 1–43.

[20] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

[21] A. Galluccio, P. Hell, and J. Nešetřil, The complexity of H-coloring of bounded degree
graphs, Discrete Math., 222 (2000), pp. 101–109.

[22] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[23] P. Hell, From graph colouring to constraint satisfaction—there and back again, in Topics in
Discrete Mathematics, Dedicated to Jarik Nešetřil on the occasion of his 60th birthday,
Algorithms Combin. 26, M. Klazar et al., eds., Springer, Berlin, 2006, pp. 407–432.

[24] P. Hell, S. Klein, L. T. Nogueira, and F. Protti, Partitioning chordal graphs into inde-
pendent sets and cliques, Discrete Appl. Math., 141 (2004), pp. 185–194.

[25] P. Hell and J. Nešetřil, Counting list homomorphisms and graphs with bounded degrees,
in Graphs, Morphisms, and Statistical Physics, DIMACS Ser. Discrete Math. Theoret.
Comput. Sci. 63, J. Nešetřil and P. Winkler, eds., AMS, Providence, RI, 2004, pp. 105–
112.

[26] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48
(1990), pp. 92–110.

[27] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford,
UK, 2004.

[28] P. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204.

[29] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM, 44
(1997), pp. 527–548.

[30] R. E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach.,
22 (1975), pp. 155–171.

[31] P. Lincoln and J. C. Mitchell, Algorithmic aspects of type inference with subtypes, in
Proceedings of the 19th ACM Symposium on Principles of Programming Languages,
1992, pp. 293–304.

[32] V. Kumar, Algorithms for constraint-satisfaction problems, AI Magazine, 13 (1992), pp. 32–
44.

[33] P. Meseguer, Constraint satisfaction problems: An overview, AICOM, 2 (1989), pp. 3–16.
[34] J. C. Mitchell, Coercion and type inference (summary), in Proceedings of the 11th ACM

Symposium on Principles of Programming Languages, 1984, pp. 175–185.
[35] N. Megiddo and U. Vishkin, On finding a minimum dominating set in a tournament, The-

oret. Comput. Sci., 61 (1988), pp. 307–316.
[36] U. Montanari, Networks of constraints: Fundamental properties and applications to picture

processing, Inform. Sci., 7 (1974), pp. 95–132.
[37] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity

of the V-C dimension, J. Comput. System Sci., 53 (1996), pp. 161–170.
[38] T. J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual

ACM Symposium on Theory of Computing, 1978, pp. 216–226.
[39] M. Y. Vardi, Constraint satisfaction and database theory: A tutorial, in Proceedings of the

19th Annual ACM Symposium on Principles of Database Systems (PODS 2000), 2000,
pp. 76–85.

[40] M. Wand and P. M. O’Keefe, On the complexity of type inference with coercion, in Con-
ference on Functional Programming Languages and Computer Architecture, 1989, pp.
293–298.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 247–278

RAPIDLY MIXING MARKOV CHAINS FOR SAMPLING
CONTINGENCY TABLES WITH A CONSTANT NUMBER OF ROWS∗

MARY CRYAN† , MARTIN DYER‡ , LESLIE ANN GOLDBERG§ , MARK JERRUM† , AND

RUSSELL MARTIN¶

Abstract. We consider the problem of sampling almost uniformly from the set of contingency
tables with given row and column sums, when the number of rows is a constant. Cryan and Dyer
[J. Comput. System Sci., 67 (2003), pp. 291–310] have recently given a fully polynomial randomized
approximation scheme (fpras) for the related counting problem, which employs Markov chain meth-
ods indirectly. They leave open the question as to whether a natural Markov chain on such tables
mixes rapidly. Here we show that the “2 × 2 heat-bath” Markov chain is rapidly mixing. We prove
this by considering first a heat-bath chain operating on a larger window. Using techniques developed
by Morris [Random Walks in Convex Sets, Ph.D. thesis, Department of Statistics, University of
California, Berkeley, CA, 2000] and Morris and Sinclair [SIAM J. Comput., 34 (2004), pp. 195–226]
for the multidimensional knapsack problem, we show that this chain mixes rapidly. We then apply
the comparison method of Diaconis and Saloff-Coste [Ann. Appl. Probab., 3 (1993), pp. 696–730] to
show that the 2 × 2 chain is also rapidly mixing.

Key words. contingency table, balanced almost-uniform permutation, strongly balanced per-
mutation

AMS subject classifications. 60J20, 05B30, 68W20, 68R05

DOI. 10.1137/S0097539703434243

1. Introduction. Given two vectors of positive integers, r = (r1, . . . , rm) and
c = (c1, . . . , cn), an m × n matrix [X[i, j]] of nonnegative integers is a contingency
table with row sums r and column sums c if

∑n
j=1 X[i, j] = ri for every row i and∑m

i=1 X[i, j] = cj for every column j. We write Σr,c to denote the set of all contingency
tables with row sums r and column sums c. We assume that

∑m
i=1 ri =

∑n
j=1 cj (since

otherwise Σr,c = ∅) and denote by N the common total, called the table sum.
In this paper, we consider the problem of sampling contingency tables almost

uniformly at random. No technique currently exists for polynomial-time sampling
when the row and column sums can be arbitrary. In this paper we consider a particular
restriction, namely, the case in which the number of rows is a constant. We focus on
the Markov chain Monte Carlo (MCMC) method for sampling, which has already been
successfully used to sample contingency tables, for other restrictions of the problem
(see [8, 15, 2, 11]). We prove that a natural Markov chain, which we refer to as M2×2,
is rapidly mixing when the number of rows is constant.

Before we give details of previous work on the MCMC method for sampling con-
tingency tables, we will first discuss recent work on approximate counting of con-

∗Received by the editors September 10, 2003; accepted for publication (in revised form) Octo-
ber 7, 2005; published electronically June 19, 2006. This work was partially supported by the EP-
SRC grant “Sharper Analysis of Randomised Algorithms: a Computational Approach,” the EPSRC
grant GR/R44560/01 “Analysing Markov-chain based random sampling algorithms,” and the IST
Programme of the EU under contracts IST-1999-14186 (ALCOM-FT) and IST-1999-14036 (RAND-
APX). A preliminary version of this paper appeared in Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002, pp. 711–720.

http://www.siam.org/journals/sicomp/36-1/43424.html
†School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ, UK.
‡School of Computing, University of Leeds, Leeds LS2 9JT, UK.
§Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
¶Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK.

247

248 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

tingency tables, when the number of rows is constant. Cryan and Dyer [3] recently
gave a fully polynomial randomized approximation scheme (fpras) for approximately
counting contingency tables in this setting (i.e., for approximating |Σr,c| with given
r, c). It was previously shown by Dyer, Kannan, and Mount [12] that the problem of
exact counting is �P -complete, even when there are only two rows. (Barvinok [1] gave
a polynomial-time algorithm to exactly count contingency tables when the number
of rows and the number of columns is constant.) It is well known that for all self-
reducible problems, finding an fpras for approximate counting is equivalent to finding
a fully polynomial almost uniform sampler (fpaus) (see Jerrum, Valiant, and Vazirani
[17]). Contingency tables are not known to be self-reducible—it is true that the ex-
istence of an fpaus for almost-uniform sampling of contingency tables does imply an
fpras for approximately counting contingency tables (see, for example, [11]), but the
other direction is not known to hold. It is shown in [3] that the fpras does imply
a sampling algorithm, though this algorithm depends on ε−1 rather than on log ε−1.
Recently Dyer [10] developed an elegant dynamic programming technique for contin-
gency tables with a constant number of rows. He applied this technique to design
two algorithms: an fpaus for uniformly sampling contingency tables with a constant
number of rows and an fpras for approximately counting the number of contingency
tables when the number of rows is constant. The running times of his algorithms
significantly improve on the results in [3].

The algorithm in [3] is a mixture of dynamic programming and volume estimation
and uses Markov chain methods only indirectly. The sampling algorithm of [10] is
based on dynamic programming, and samples are generated by a probabilistic trace-
back through the dynamic programming table. It does not use Markov chain methods
at all. Therefore the question still remains as to whether the MCMC method can be
applied directly to this problem. In addition to its intrinsic interest, this question is
important for two reasons. First, previous research in this area has routinely adopted
the MCMC approach. Second, the MCMC method is more convenient, and has been
more widely applied, for practical applications of sampling.

We give here the first proof of rapid mixing for a natural Markov chain when the
number of rows m is a constant. This Markov chain, which we refer to as M2×2, was
introduced by Dyer and Greenhill [11]. During a step of the chain, a 2 × 2 subtable
is selected uniformly at random and is updated randomly. The subtable is updated
according to the “heat-bath” method. In particular, a new subtable is chosen from the
conditional distribution (the uniform distribution, conditioned on the configuration
outside of the subtable). In order to analyze M2×2, we first introduce an alternative
heat-bath chain, MHB, which randomly updates a larger subtable. In particular, for
a constant dm which will be defined later, it updates a subtable of size m× (2dm +1)
(also following the “heat-bath” method of selecting a new subtable chosen uniformly
at random, conditioned on the configuration outside of the subtable). We use the
multicommodity flow technique of Sinclair [24] to analyze the mixing time of MHB.
Using techniques developed by Morris and Sinclair [20] (see also [19]), we show that
this chain mixes in time polynomial in the number of columns and the logarithm
of the table sum. In section 5 we compare MHB to M2×2 and hence show that
M2×2 is also rapidly mixing. This is the first proof that any chain converges in
polynomial time even when the number of columns, as well as the number of rows,
is constant. Establishing mixing in this case is one step of our proof. (See Pak [22]
for an approach to this problem not using MCMC.) We note further that our results
provide an alternative (and very different) fpras for counting contingency tables to
that of Cryan and Dyer [3].

SAMPLING CONTINGENCY TABLES 249

We now review previous work on the MCMC method for sampling contingency
tables.

Contingency tables are important in applied statistics, where they are used to
summarize the results of tests and surveys. The conditional volume test of Diaconis
and Efron [5] is perhaps the most soundly based method for performing tests of
significance in such tables. The Diaconis–Efron test provides strong motivation for
the problem of efficiently choosing a contingency table with given row and column
sums uniformly at random. Other applications of counting and sampling contingency
tables are discussed by Diaconis and Gangolli [6]. See also Mount [21] for additional
information, and De Loera and Sturmfels [4] for the current limits of exact counting
methods.

With the exception of [1, 3] (and a recent result of Dyer [10]), most previous work
on sampling contingency tables applies the MCMC method, as described in the survey
of Jerrum and Sinclair [16]. This method, which has been used to solve many different
sampling problems, is based on a very simple idea. Suppose that we have a Markov
chain on a finite set of discrete structures Ω, defined by the transition matrix P . If the
Markov chain is ergodic, then it will converge to a unique stationary distribution �
on Ω, regardless of the initial state. This gives a nice method for sampling from the
distribution �: Starting in any state, we run the Markov chain for some “sufficiently
long” number of steps. Then the final state is taken as a sample. The key issue with
using the MCMC method is determining how long the chain takes to converge to its
stationary distribution.

The first explicit definition of Markov chains for uniformly sampling contingency
tables apparently occurs in the papers of Diaconis and Gangolli [6] and Diaconis and
Saloff-Coste [8], although it is mentioned in [6] that this chain had already been used
by practitioners. A single step of the chain is generated as follows: An ordered pair of
rows i1, i2 is chosen uniformly at random from all rows of the table, and an ordered
pair of columns j1, j2 is chosen uniformly at random from all columns, giving a 2× 2
submatrix. The entries of the 2 × 2 submatrix are modified as follows:

X ′[i1, j1] = X[i1, j1] + 1, X ′[i1, j2] = X[i1, j2] − 1,

X ′[i2, j1] = X[i2, j1] − 1, X ′[i2, j2] = X[i2, j2] + 1.

If modifying the matrix results in a negative value for any X ′[i, j], the move is not
carried out. Diaconis and Gangolli proved that this Markov chain is ergodic, and
the stationary distribution of the chain is uniform on Σr,c. They did not attempt to
bound the mixing time of the chain, but it is clear that the mixing time is not better
than pseudopolynomial in the input. That is, the mixing time is at least a polynomial
in N (rather than a polynomial in logN). For a discussion of pseudopolynomial time
and approximation algorithms, see Chapter 8 of [26].

Later Diaconis and Saloff-Coste [8] considered the case when the numbers of rows
and columns are both constant and proved that, in this case, their chain converges in
time quadratic in the table sum. Hernek [15] considered the case when the table has
two rows and proved that the same chain mixes in time polynomial in the number
of columns and the table sum. Chung, Graham, and Yau [2] showed that a slightly
modified version of the Diaconis and Saloff-Coste chain converges in time polynomial
in the table sum, the number of rows, and the number of columns, provided that all
row and column sums are sufficiently large.

The first truly polynomial-time algorithm (polynomial in the number of rows, the
number of columns, and the logarithm of the table sum) for sampling contingency

250 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

tables was given by Dyer, Kannan, and Mount [12]. They took a different approach
to the sampling problem, considering Σr,c as the set of integer points within a convex
polytope. They used an existing algorithm for sampling continuously from a convex
polytope, combined with a rounding procedure, to sample integer points from inside
the polytope. For any input with row sums of size Ω(n2m) and column sums of
size Ω(nm2), their algorithm converges to the uniform distribution on Σr,c in time
polynomial in the number of rows, the number of columns, and the logarithm of
the table sum. Their result was later refined by Morris [18], who showed that the
result also holds when the row sums are Ω(n3/2m logm) and the column sums are
Ω(m3/2n log n).

Using different techniques, Dyer and Greenhill [11] considered the problem of
sampling contingency tables when the table has only two rows. They considered the
2×2 heat-bath chain M2×2 and showed that for two-rowed tables, the chain converges
to the uniform distribution on Σr,c in time that is polynomial in the number of columns
and the logarithm of the table sum.

Our paper can properly be viewed as extending Dyer and Greenhill’s results to
any constant number of rows. Thus, our main result is that M2×2 is rapidly mixing
for any constant number of rows. First, however, in section 4, we examine MHB.
Theorem 7 shows that this chain is rapidly mixing. Theorem 8 of section 5 bounds
the mixing time of the M2×2 in terms of the mixing time of MHB. Combining the
two theorems gives the main result.

2. Definitions. First, we define the Markov chain M2×2. The state space is
Σr,c. Given a contingency table X ∈ Σr,c, a move is made as follows. With prob-
ability 1/2, the chain stays at state X. With the remaining probability, a 2 × 2
submatrix is chosen as follows. A pair of rows i1, i2 is chosen uniformly at ran-
dom, and a pair of columns j1, j2 is chosen uniformly at random. The submatrix
X[i1, j1], X[i1, j2], X[i2, j1], X[i2, j2] is then replaced with a submatrix chosen uni-
formly at random from the set of 2 × 2 matrices with row sums X[i1, j1] + X[i1, j2]
and X[i2, j1]+X[i2, j2] and column sums X[i1, j1]+X[i2, j1] and X[i1, j2]+X[i2, j2].

The self-loop probability 1/2 in the definition of M2×2 is introduced for a technical
reason—it simplifies the comparison of M2×2 and MHB in section 5 by ensuring that
the eigenvalues of the transition matrix of M2×2 are not negative.

Next we define the Markov chain MHB. In section 4 we will define a constant dm
(which depends on m but not on n or on the input vectors r and c). The state
space is Σr,c. Given a contingency table X ∈ Σr,c, a move is made as follows. With
probability 3/4, the chain stays at state X. With the remaining probability, an
m× (2dm +1) submatrix is chosen as follows. A set of 2dm +1 columns j1, . . . , j2dm+1

is chosen uniformly at random from all columns of the table. The submatrix involving
these columns is then replaced with a submatrix chosen uniformly at random from
the set of all m × (2dm + 1) matrices with the same row and column sums as the
chosen submatrix.

The self-loop probability 3/4 in the definition of MHB is again introduced for
a technical reason—it ensures that the eigenvalues of the transition matrix of MHB

are all at least 1/2, which is useful in the comparison of M2×2 and MHB. It is not
necessary to make the self-loop probability be 3/4—anything greater than 1/2 suffices.

3. Background. In this section we summarize the techniques that we will use
to bound the mixing time of MHB. Our analysis is carried out using the multicom-
modity flow approach of Sinclair [24] for bounding the mixing time of a Markov chain.
Sinclair’s result builds on some earlier work due to Diaconis and Stroock [9].

SAMPLING CONTINGENCY TABLES 251

In this section, and throughout the rest of the paper, we will use [n] to denote
the set {1, . . . , n} when n is a positive integer. We will use wi to denote the ith
component of a multidimensional weight vector w.

The setting is familiar: We have a finite set Ω of discrete structures and a tran-
sition matrix P on the state space Ω. It is assumed that the Markov chain defined
by P is ergodic; that is, it satisfies the properties of irreducibility and aperiodicity
(see Grimmett and Stirzaker [13]). It is well known that any ergodic Markov chain
has a unique stationary distribution; that is, there is a unique distribution � on Ω
such that �P = �. Furthermore, for any choice of initial state x ∈ Ω and any state
y ∈ Ω, P t(x, y) → �(y) as t → ∞ (see Chapter 6 of Grimmett and Stirzaker [13] for
details). Sinclair also assumes that the Markov chain is reversible with respect to its
stationary distribution; that is, �(x)P (x, y) = �(y)P (y, x) for all x, y ∈ Ω.

For any start state x, we define the variation distance between the stationary
distribution and a walk of length t by V(�,P t(x)) = (1/2)

∑
y∈Ω |�(y) − P t(x, y)|.

For any 0 < ε < 1 and any start state x, let τx(ε) be defined as τx(ε) = min{t :
V(�,P t(x)) ≤ ε}. The mixing time of the chain is given by the function τ(ε), defined
as τ(ε) = max{τx(ε) : x ∈ Ω}.

The multicommodity flow approach is defined in terms of a graph GΩ defined by
the Markov chain. The vertices of GΩ are the elements of Ω, and the graph contains
an edge (u → v) for every pair of states such that P (u, v) > 0. We call this graph the
Markov kernel. For any x, y ∈ Ω, a unit flow from x to y is a set Px,y of simple directed
paths of GΩ from x to y, such that each path p ∈ Px,y has a positive weight αp, and
the sum of the αp over p ∈ Px,y is 1. A multicommodity flow is a family of unit
flows F = {Px,y : x, y ∈ Ω} containing a unit flow for every pair of states from Ω.
The important properties of a multicommodity flow are the maximum flow passing
through any edge and the maximum length of a path in the flow. We define the length
L(F) of the multicommodity flow F by L(F) = maxx,y max{|p| : p ∈ Px,y}, where |p|
denotes the length of p. For any edge e of GΩ, we define F(e) to be the sum of the
αp weights over all p such that e ∈ p and p ∈ Px,y for some x, y ∈ Ω.

The following theorem is an amalgamation of the results of Sinclair [24]. See also
the closely connected work of Diaconis and Stroock [9]. Note that all logarithms in
this paper are taken to be natural logarithms.

Theorem 1 (Sinclair [24]). Let P be the transition matrix of an ergodic, re-
versible Markov chain on Ω whose stationary distribution is the uniform distribution.
Suppose that the eigenvalues of P are nonnegative. Let F be a multicommodity flow
on the graph GΩ. Then the mixing time of the chain is bounded above by

τ(ε) ≤ |Ω|−1L(F) max
e

F(e)

P (e)
(log |Ω| + log ε−1).(1)

Two key ingredients of our analysis of MHB in section 4 are the “balanced almost-
uniform permutations” and the “strongly balanced permutations” used by Morris and
Sinclair [20] for their analysis of the multidimensional knapsack problem. We will use
an interleaving of a balanced almost-uniform permutation and a strongly balanced
permutation to spread flow between each pair of states x, y ∈ Σr,c. The main idea is
this: Given x and y we will use a permutation π of the columns of x to define a path
of contingency tables from x to y. We will route flow from x to y along this path.
Actually, π will be chosen from a distribution, and the amount of flow routed along
the path corresponding to π will be proportional to the probability with which π is
generated.

252 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

We will use the following notation. If π is a permutation of the n columns of a
contingency table, π(i) will denote the original column (in {1, . . . , n}) which gets put
into position i by the permutation. Thus, π{1, . . . , k} = {π(1), . . . , π(k)} denotes the
set of original columns that get put into the first k positions by the permutation.

Definition 2 (Morris and Sinclair [20, Definition 3.2]). Let σ be a random
variable taking values in Sn (i.e., σ is a permutation of {1, . . . , n}) and let λ ∈ R.
Then σ is a λ-uniform permutation if

Pr[σ{1, . . . , k} = U] ≤ λ×
(
n

k

)−1

for every k with k ∈ [n] and every U ⊆ {1, . . . , n} of cardinality k.
Definition 3 (Morris and Sinclair [20, Definition 5.1]). Let w1, . . . , wn ∈ R

d

be any d-dimensional weights satisfying
∑n

j=1 wj = 0 (i.e.,
∑n

j=1 w
i
j = 0 for every

i ∈ [d]). A permutation σ of 1, . . . , n is
-balanced if

∣∣∣∣∣∣
k∑

j=1

wi
σ(j)

∣∣∣∣∣∣ ≤
Mi

for all i ∈ [d] and k ∈ [n], where Mi = max1≤j≤n |wi
j |.

Checking the definition above, we see that a balanced permutation is one in
which the partial sums of the weights (in each dimension) do not vary too much,
where the factor
 gives us a bound on this variation. Morris and Sinclair showed
how to construct balanced almost-uniform permutations when d is constant. (See
also Theorem 3.2 in [19].)

Theorem 4 (Morris and Sinclair [20, Theorem 5.3]). For every positive integer d,
there exist a constant gd and a polynomial function pd such that for any set of weights
{wj}nj=1 in R

d, there exists a gd-balanced, pd(n)-uniform permutation.
The key points which we should keep in mind are (1) the distribution which Morris

constructs is “nearly” uniform (and has a fair amount of entropy) and (2) the permu-
tations satisfy some sort of balance property on multidimensional weights. Roughly,
one should think of these weights as corresponding to the columns of our contingency
tables—the multiple dimensions come from having multiple rows. Loosely speaking,
the “balance” property of these permutations will be used to construct our multicom-
modity flow to generate a path (or a family of paths) of contingency tables to get
from X to Y , each pair of tables along this path differing by a single move of MHB.

Note that the construction of the gd-balanced, pd(n)-uniform permutation of Mor-
ris and Sinclair is carried out by induction on the number of dimensions d. It is clear
from the construction that gd will be no greater than 4d+1 − 1, though it is not easy
to see a way of obtaining a smaller constant. We mention this because gm will appear
in the exponent of n when we bound the mixing time of our Markov chains (where m
is the number of rows).

The “almost uniform” property will help ensure that the flow F(e) through any
edge in GΩ will not be too large (cf. Theorem 1). As mentioned before, we actually
use a combination of permutations, one of which is balanced and almost-uniform, and
a second type called “strongly balanced.”

Definition 5 (Morris and Sinclair [20, Definition 5.4]). Let w1, . . . , wn ∈ R
d

be any d-dimensional weights. Define μ = (μ1, . . . , μd) to be the vector of means
of the wj weights (μi = (

∑n
j=1 w

i
j)/n for all i). A permutation σ of 1, . . . , n is

SAMPLING CONTINGENCY TABLES 253

strongly
-balanced if for all k ∈ [n] and all i ∈ [d], there exists a set S ⊆ [n] with

|S⊕{1, . . . , k}| <
 such that (
∑k

j=1 w
i
σ(j)−kμi) and (

∑
j∈S wi

σ(j)−kμi) have opposite

signs (or either is 0).

The main difference between ordinary balance and “strong balance” is that the
definition of ordinary balance requires that the prefix sum

∑k
j=1 w

i
σ(j) should be

“close” to kμ for every k. However, strong balance requires that for every prefix k
and every row i, it should be possible to find a small number of columns so that
removing those columns changes the sign of (

∑k
j=1 w

i
σ(j) − kμi).

Morris and Sinclair [20] adapted a result of Steinitz [25] (see also Grinberg and
Sevast’yanov [14]) to show that the following theorem holds.

Theorem 6 (Morris and Sinclair [20, Lemma 5.5]). For any sequence {wj}nj=1

in R
d, there exists a strongly 16d2-balanced permutation.

4. Analysis of the generalized chain. We fix r = (r1, . . . , rm), the list of row
sums, and c = (c1, . . . , cn), the list of column sums, and let Ω be the state space Σr,c

of m× n contingency tables with these row and column sums. Recall that N denotes
the table sum

∑m
i=1 ri.

Recall that gm is the constant of Theorem 4 for balanced almost-uniform permu-
tations for columns of dimension m. Let dm = 2m(3gm + 1) + 1 + 34m3. We use PHB

for the transition matrix of the Markov chain MHB which was defined in section 2.

In this section, our goal is to prove the following theorem.

Theorem 7. The mixing time τHB of MHB is bounded from above by a polyno-
mial in n, logN , and log ε−1.

In order to prove Theorem 7, we will show how to define a multicommodity flow F
such that the total flow along any transition (ω, ω′′) is at most 8fn2dm+1PHB(ω, ω′′),
where f is an expression that is at most poly(n) |Ω|. We will also ensure that L(F)
is bounded from above by a polynomial in n. Theorem 7 will then follow from (1) in
Theorem 1. Constructing the flow F is done in a two-stage process. In subsection 4.1,
we will define a multicommodity flow F∗. Then in subsection 4.2, we will first prove
that the total flow through any state ω is at most f . Finally, also in subsection 4.2,
we will construct F by modifying F∗.

In the first subsection we define the multicommodity flow we use in our application
of Theorem 1. The construction uses the balanced, strongly balanced, and almost-
uniform properties of permutations of (some of) the columns of the contingency tables.

The second subsection shows that, with the multicommodity flow we define, each
edge of the graph GΩ is not too congested, and each path length is small. Theorem 7
then follows from Theorem 1.

4.1. Defining the flow. The construction of F in this subsection uses the meth-
ods of Morris and Sinclair [20] introduced in section 3.

Let k be the index of the largest column sum ck. Let X and Y be contingency
tables in Ω. Let Xj denote the jth column of X. We show how to route a unit of
flow from X to Y .

The rough idea is as follows. We first define the notion of a column constrained
table, which is an m × n matrix that has the correct column sums for Σr,c but may
violate the row sum constraints. We will choose a permutation π from an appropriate
distribution. The distribution from which π is chosen will be defined in terms of
an interlacing of the random balanced permutation of Theorem 4 and the strongly
balanced permutation of Theorem 6. π will be a permutation of most of the columns

254 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

of the table. The permutation π will define a path

Z0 = X, . . . , Zn′

(for some n′ < n) of column constrained tables, where each table Zh contains the
column Yj for j ∈ π{1, . . . , h} and the column Xj for all other j (so at each point, we
swap another column of X for the same column of Y). In subsection 4.1.1 we show
that the balance properties of π ensure that for any Zh, we can bring all the row sums
below ri by deleting a constant number of columns. Then in subsection 4.1.2 we will
show how to use this fact to define a path

X = Z ′
0, . . . , Z

′
n′+1 = Y,

where each Z ′
h is in Σr,c and there is a transition in MHB from each Z ′

h to Z ′
h+1.

The amount of flow that we will route along this path will be proportional to the
probability with which π is chosen.

4.1.1. A first step toward building paths. We start building our path(s)
from X to Y by first defining a path of column constrained tables Z0 = X, . . . , Zn′ us-
ing an interlacing of the random balanced permutation of Theorem 4 and the strongly
balanced permutation of Theorem 6. In subsection 4.1.2, we will show how to modify
these columns, in a specific manner, to yield a new path of tables such that (i) the new
tables are contingency tables (i.e., they satisfy the row sums as well as the column
sums) and (ii) each successive pair along this path differs by a transition of MHB.

Let RX
i be the set of indices for the 3gm + 1 largest entries of row i of X.

Let RY
i be the set of indices for the 3gm + 1 largest entries of row i of Y .

Let R =
(
∪iR

X
i

)
∪
(
∪iR

Y
i

)
∪{k} be the union of all the RX

i and RY
i sets, together

with the index k (which was defined earlier to be the index of the largest column sum).
The cardinality of R is at most 2m(3gm + 1) + 1.
The columns in R are “reserved” columns that we identify before permuting the

columns. We do not permute these columns—we need them for something else. For
every row i, define

Mi = min{max{X[i, j] : j
∈ R},max{Y [i, j] : j
∈ R}},
Li = {j : j
∈ R,X[i, j] > Mi} ∪ {j : j
∈ R, Y [i, j] > Mi}.

Note that by definition of Mi, we either have {j : j
∈ R, X[i, j] > Mi} = ∅ or
{j : j
∈ R, Y [i, j] > Mi} = ∅, so each Li corresponds to a set of columns of X or a set
of columns of Y , but not both. Also from their definitions, we see that Mi ≤ X[i, j]
for all j ∈ RX

i , and Mi ≤ Y [i, j] for all j ∈ RY
i . Set L = ∪m

i=1Li and S = [n]−(L∪R).
For every column j ∈ [n] − R, define the m-dimensional weight wj = Yj − Xj .

Let μ be the m-dimensional vector representing the mean of the wj∈[n]−R. Note that

μi =

∑
j∈[n]−R Y [i, j] −X[i, j]

n− |R| =

∑
j∈R X[i, j] − Y [i, j]

n− |R| .

Let π1 be a strongly 16m2-balanced permutation on the set of weights {wj}j∈L.
This exists by Theorem 6. Let π2 be a gm-balanced pm(|S|)-uniform permutation
on {wj}j∈S . This exists by Theorem 4. π2 is a random permutation. We interlace
π1 and π2 in the same way as Morris and Sinclair [20] do to get a permutation π
on {wj}j∈[n]−R. For the benefit of the reader, we restate the rule for performing

SAMPLING CONTINGENCY TABLES 255

this interlacing: Suppose that π(1), π(2), . . . , π(h) have already been assigned and

that π{1, 2, . . . , h} = π1{1, . . . , h1} ∪ π2{1, . . . , h2}. Then either h1

h ≤ |L|
|L|+|S| or

h2

h < |S|
|L|+|S| . We define π(h + 1) by

π(h + 1) =

{
π1(h1 + 1) if h1

h ≤ |L|
|L|+|S| ,

π2(h2 + 1) if h2

h < |S|
|L|+|S| .

This new permutation π satisfies inequalities (5.8) and (5.9) in Morris and Sinclair [20],
reproduced as inequalities (2) and (3) below and proved in [20]. (See also inequalities
(3.8) and (3.9) in [19].) These inequalities state that for every prefix h (h is the index
of a column) and every dimension i (i is the index of a row), there exist sets of column
indices Vi,h and Wi,h such that Vi,h differs from {1, . . . , h} by at most 17m2 indices
and Wi,h differs from {1, . . . , h} by at most 17m2 indices, and

∑
j∈Vi,h

wi
π(j) ≤ (h− 1)μi + 3gmMi for every i = 1, . . . ,m,(2)

∑
j∈Wi,h

wi
π(j) ≥ (h− 1)μi − 3gmMi for every i = 1, . . . ,m.(3)

The sets Vi,h and Wi,h will play an important role for us later.
Now let n′ = n−|R|. For the permutation π constructed above we define the path

of tables X = Z0, Z1, . . . , Zn′ as follows: For every h, Zh contains the columns Xj for
j ∈ R ∪ π{h + 1, . . . , n′} and columns Yj for j ∈ π{1, . . . , h}. We see that Zn′ differs
from Y by at most 2m(3gm + 1) + 1 columns.

It is important to note that Z0, . . . , Zn′ may not be contingency tables in Σr,c

since they need not satisfy the row constraints. Thus, we cannot use this path directly
to define our flow from X to Y . Nevertheless, we may base our path on these tables.
The important point is that π and, in particular, (2) and (3) will allow us to turn
Z0, . . . , Zn′ into a path of contingency tables. In the remainder of this subsection,
we will show that we do not have to change too many columns to turn Zh into
a contingency table. Subsequently in subsection 4.1.2 we will show that if we are
careful about how we map Zh to a contingency table, the resulting collection of paths
will have good congestion.

We introduce the notation (J(X), J(Y)) to denote a set containing columns
from X and from Y : For sets of indices J(X) ⊆ [n] and J(Y) ⊆ [n], (J(X), J(Y))
contains the column Xj for each j ∈ J(X) and the column Yj for each j ∈ J(Y).
For any set of columns (J(X), J(Y)), we represent the “row sum” for row i by
rowi(J(X), J(Y)), which has the value

∑
j∈J(X) X[i, j] +

∑
j∈J(Y) Y [i, j].

Defining Jh(X) = R ∪ π{h + 1, . . . , n′} and Jh(Y) = π{1, . . . , h}, we see that
Zh is the set of columns (Jh(X), Jh(Y)). Each of the Zh tables is a column con-
strained table because, as previously noted, it is possible that some rows i may have
rowi(Jh(X), Jh(Y))
= ri. However, all the column sums are satisfied by Zh.

Step 1. We show we can modify Zh by “deleting” at most dm columns (including
all of the Xj columns for j ∈ R) to bring the row sum for every row i below ri(1−1/n).
We also show a dual result—if we “add” at most dm columns to Zh this brings the
row sum for every row i above ri(1+1/n). The “adding” causes some column indices
to appear in both J(X) and J(Y); thus the resulting configuration isn’t much like a
contingency table, but the construction will be useful below. Let Vi,h and Wi,h be the
sets of inequalities (2) and (3).

256 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

First, instead of considering Zh, consider (π([n′] − Vi,h), π(Vi,h)). This set of
columns is the result of starting with the contingency table X, removing Xj for every
reserved column j ∈ R, and then adding the weights wj for j ∈ π(Vi,h). By (2), we
know that |Vi,h ⊕ {1, . . . , h}| ≤ 17m2 and

rowi(π([n′] − Vi,h), π(Vi,h)) ≤
(
ri −

∑
j∈R

X[i, j]

)
+ (h− 1)μi + 3gmMi

=

(
ri −

∑
j∈R

X[i, j]

)
+ 3gmMi

+
h− 1

n′

(∑
j∈R

X[i, j] − Y [i, j]

)

= ri −
n′ − h + 1

n′

(∑
j∈R

X[i, j]

)

−h− 1

n′

(∑
j∈R

Y [i, j]

)
+ 3gmMi

≤ ri

(
1 − 1

n

)
, (a)

where the last step follows because (i) we know that Mi ≤ X[i, j] for every j ∈ RX
i ,

and RX
i ⊆ R, |RX

i | = 3gm + 1. Also maxj∈RX
i
X[i, j] ≥ ri/n. Thus 3gmMi + ri/n ≤∑

j∈R X[i, j]; (ii) similarly, 3gmMi + ri/n ≤
∑

j∈R Y [i, j]; and (iii) the convex com-

bination ((n′−h+1)
∑

j∈R X[i, j]+(h−1)
∑

j∈R Y [i, j])/n′ is at least 3gmMi +ri/n.

Now suppose we also “delete” π{1, . . . , h}⊕π{Vi,h} from (π([n′]−Vi,h), π(Vi,h)).

Let Bi,h = R ∪ (π{1, . . . , h} ⊕ π{Vi,h}).
Then

Jh(X) −Bi,h = π{h + 1, . . . , n′} ∩ π([n′] − Vi,h),

Jh(Y) −Bi,h = π{1, . . . , h} ∩ π(Vi,h).

By (a), we have rowi(Jh(X) − Bi,h, Jh(Y) − Bi,h) ≤ rowi(π([n′] − Vi,h), π(Vi,h)) ≤
ri(1 − 1/n). Also, |Bi,h| ≤ 2m(3gm + 1) + 1 + 17m2.

For the dual result, consider (π([n′]−Wi,h)∪R, π(Wi,h)∪R). This set of columns
is the result of starting with the contingency table X, adding the Yj columns for
j ∈ R, and then adding the weights wj for j ∈ π(Wi,h). By (3), we know that
|Wi,h ⊕ {1, . . . , h}| ≤ 17m2 and

rowi(π([n′] −Wi,h) ∪R, π(Wi,h) ∪R) ≥
(
ri +

∑
j∈R

Y [i, j]

)
+ (h− 1)μi − 3gmMi

=

(
ri +

∑
j∈R

Y [i, j]

)
− 3gmMi

+
h− 1

n′

(∑
j∈R

X[i, j] − Y [i, j]

)

SAMPLING CONTINGENCY TABLES 257

= ri +
n′ − h + 1

n′

(∑
j∈R

Y [i, j]

)

+
h− 1

n′

(∑
j∈R

X[i, j]

)
− 3gmMi

≥ ri

(
1 +

1

n

)
, (b)

where the last step follows using (i) 3gmMi+ri/n ≤
∑

j∈R X[i, j]; (ii) 3gmMi+ri/n ≤∑
j∈R Y [i, j]; and (iii) the convex combination property mentioned on the previous

page.
Suppose we add π{1, . . . , h} ⊕ π{Wi,h} to (π([n′] −Wi,h) ∪R, π(Wi,h) ∪R).
Let Ci,h = R ∪ (π{1, . . . , h} ⊕ π{Wi,h}).
Then

Jh(X) ∪ Ci,h = π{h + 1, . . . , n′} ∪ π([n′] −Wi,h) ∪R,

Jh(Y) ∪ Ci,h = π{1, . . . , h} ∪ π(Wi,h) ∪R.

By (b), we have rowi(Jh(X)∪Ci,h, Jh(Y)∪Ci,h) ≥ rowi(π([n′]−Wi,h)∪R, π(Wi,h)∪
R) ≥ ri(1 + 1/n). Also, |Ci,h| ≤ 2m(3gm + 1) + 1 + 17m2.

Finally, define Dh to be a set of dm column indices, including any column that
is in (∪iBi,h) ∪ (∪iCi,h). This is possible because dm = 2m(3gm + 1) + 1 + 34m3. In
addition to the set R (of size 2m(3gm + 1) + 1), each set Bi,h contains up to 17m2

indices as does each set Ci,h.
Consider Zh with all of the columns in Dh “deleted.” This is the table

Z∗
h =def (Jh(X) −Dh, Jh(Y) −Dh).

Since Bi,h ⊆ Dh for every i, we have rowi(Jh(X) −Dh, Jh(Y) −Dh) ≤ ri(1 − 1/n)
for all i. Also define

Z̄∗
h =def (Jh(X) ∪Dh, Jh(Y) ∪Dh).

Since Ci,h ⊆ Dh for every i, we have rowi(Jh(X)∪Dh, Jh(Y)∪Dh) ≥ ri(1+1/n) for
all i.

Note that Dh contains all of R, including the index k.

4.1.2. Going from Zh to an element of Ω. Having defined the set Dh,
we now show how to change Zh into a contingency table. This is a crucial step,
actually turning the tables Z0, . . . , Zn′ into a path of elements of Ω that joins the
two contingency tables X and Y . The most critical part in the construction of this
multicommodity flow is to ensure that the flow on any edge e ∈ GΩ is not too large.
Therefore it will be important to prove that we do not map too many of the column
constrained tables Zh to any given element of Ω. We will see below that we will need
to be careful in mapping column constrained tables which have large column sums for
some of the “deleted” columns Dh.

Step 2. We now show how to convert Zh into an element of Ω. We focus on the
“deleted” columns Dh and show that by changing only the entries of the columns
in Dh, we can obtain a contingency table Z ′

h ∈ Σr,c. We also show a dual result: that
if we define Z̄h to be the set of columns which contains Xj for every Yj column in Zh

258 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

and contains Yj for every Xj column in Zh, we can show the same result for Z̄h (we
can construct a Z̄ ′

h in Σr,c by changing at most dm columns).
First let r̂i = rowi(Jh(X)−Dh, Jh(Y)−Dh), the partial row sum for row i of Zh

with the Dh columns removed. Define si = ri − r̂i for all i, the sum for row i of the
subtable that was removed from Zh.

Note that si ≥ ri/n for all i.
Let Nh =

∑m
i=1 si =

∑
j∈Dh

cj , by construction. We have two cases to consider.

Case 1. First suppose Nh < 2(mdm)2. It is well known that whenever the total
of the row sums equals the total of the column sums, there is at least one contingency
table satisfying these row and column sums (see Diaconis and Gangolli [6]). For this
case we choose any set of modified values Z ′

h[i, j] for j ∈ Dh such that
∑m

i=1 Z
′
h[i, j] =

cj for all j ∈ Dh and
∑

j∈Dh
Z ′
h[i, j] = si for all 1 ≤ i ≤ m. Note that because

Nh < 2(mdm)2 we have si < 2(mdm)2 for all i and therefore ri < 2n(mdm)2 for all i.
Case 2. Alternatively, assume that Nh ≥ 2(mdm)2. As above, we are guaranteed

that there is some set of Z ′
h[i, j] values for j ∈ Dh that satisfy the row and column

sums. But, for this case, we need something stronger—we show how we can modify
the values of Zh[i, j] for the j ∈ Dh columns in a structured way to obtain a sub-
table Z ′

h satisfying the induced row sums si and the column sums cj . Performing the
modification in this carefully structured way allows us to ensure that the congestion
on edges in GΩ in our multicommodity flow is not too large, a point we return to
following the definitions in the next paragraph.

By our previous definition of Dh, we already know that k is the index of the
largest column sum cj for j ∈ Dh. Let
 be the index of the biggest si value. For
every i
=
 and every j ∈ Dh − {k}, we define ai,j in terms of the overall row sums
and the column sums:

ai,j =def min{ri, cj}/n(dm)2�.

Since Zh[i, j] is either X[i, j] or Y [i, j], we know Zh[i, j] ≤ min{ri, cj}. Therefore, for
every i
=
 and every j ∈ Dh − {k}, we can write

Zh[i, j] = Q[i, j](ai,j + 1) + R[i, j]

for nonnegative integers Q[i, j], R[i, j], where Q[i, j] < n(dm)2 and 0 ≤ R[i, j] ≤ ai,j .
Q[i, j] and R[i, j] are uniquely determined by Zh[i, j]. We will show that by changing
only the values of the Q[i, j] to new values Q′[i, j], we can obtain a subtable Z ′

h

satisfying the row sums s and the column sums. As promised, however, we first
give the reason why we want to view the entries of Zh in this way, focusing on the
importance of changing only the Q[i, j] terms to obtain the subtable Z ′

h.
Our analysis of the flow we construct will rely on bounding the number of column

constrained tables Zh that can be transformed into the contingency table Z ′
h. In

particular, for each particular choice of Dh, we bound the number of tables Zh that
can be transformed into Z ′

h. If the subtable sum Nh is less than 2(mdm)2, then
ri < 2n(mdm)2 for every i and therefore, for every j ∈ Dh and every row i, there
are at most 2n(mdm)2 possible original values for Zh[i, j]. On the other hand, when
Nh ≥ 2(mdm)2, we do not have an upper bound on the original entries of the subtable.
However, the method above for constructing the Z ′

h[i, j] values using ai,j gives an
indirect upper bound for the number of Zh that could be converted to Z ′

h. For any true
contingency table Z ′

h and any selection of Dh columns which gives Nh ≥ 2(mdm)2,
we can calculate ai,j for all i
=
 and all j ∈ Dh − {k}. Then, for every row i
=

SAMPLING CONTINGENCY TABLES 259

and every column j in Dh − {k}, we can find the original value of R[i, j] using that
R[i, j] = Z ′

h[i, j] mod (ai,j + 1). By the definition of ai,j , there are at most n(dm)2

possible values for the original Q[i, j], so there are only (n(dm)2)(m−1)(dm−1) different
ways of filling in the entire subtable on the Dh − {k} columns. The fact that there
are at most poly(n) possible values for the original Q[i, j] cells is the key that makes
our analysis work in section 4.2.

We now return to our proof, since we still need to show that we can choose values
Q′[i, j] which ensure that the new Z ′

h[i, j] values will satisfy row sums si and column
sums cj . Recall our assumption that Nh ≥ 2(mdm)2. It is well known (see Dyer,
Kanaan, and Mount [12]) that the row and column sums are satisfied by any integer
matrix Z ′

h which has Z ′
h[i, j] ≥ 0 for all i, j, where the Z ′[i, j] also satisfy the following

inequalities:

∑
i �=�

Z ′
h[i, j] ≤ cj for every j ∈ Dh − {k},(4)

∑
j∈Dh−{k}

Z ′
h[i, j] ≤ si for every i
=
,(5)

∑
i �=�

∑
j∈Dh−{k}

Z ′
h[i, j] ≥ Nh − s� − ck.(6)

Now define Q′[i, j] in terms of the induced row sums and the original column
sums:

Q′[i, j] =def sicj/Nh(aij + 1)�

for all i
=
 and all j ∈ Dh − {k}. For those values of i and j, we set Z ′
h[i, j] =

Q′[i, j](ai,j + 1) + R[i, j]. Note that Q′[i, j] ≥ 0 for all i, j. We now prove that
inequalities (4), (5), and (6) are satisfied for these Z ′[i, j].

Inequality (4):

∑
i �=�

Z ′
h[i, j] =

∑
i �=�

Q′[i, j](ai,j + 1) +
∑
i �=�

R[i, j]

=
∑
i �=�

sicj/Nh(aij + 1)�(ai,j + 1) +
∑
i �=�

R[i, j]

≤
∑
i �=�

sicj/Nh +
∑
i �=�

R[i, j]

≤
∑
i �=�

sicj/Nh +
∑
i �=�

ai,j

= cj(1 − s�/Nh) +
∑
i �=�

min{ri, cj}/n(dm)2�

≤ cj(1 − s�/Nh) + cj(m− 1)/n(dm)2

≤ cj(1 − 1/m + 1/ndm)

≤ cj .

The last two steps use the facts that (i) s�/Nh ≥ 1/m (because s� is the largest row
sum) and (ii) dm > m.

260 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

Inequality (5): The early steps are similar to the proof for inequality (4). We get

∑
j∈Dh−{k}

Z ′
h[i, j] ≤ si(1 − ck/Nh) +

∑
j∈Dh−{k}

min{ri, cj}/n(dm)2�

≤ si(1 − ck/Nh) + (dm − 1)ri/n(dm)2

≤ si(1 − 1/dm) + si/dm

≤ si,

where the second-to-last step uses the facts that (i) ck/Nh ≥ 1/dm (because ck is the
largest column sum in the subtable) and (ii) si ≥ ri/n.

Inequality (6):

∑
i �=�

∑
j∈Dh−{k}

Z ′
h[i, j] =

∑
i �=�

∑
j∈Dh−{k}

Q′[i, j](ai,j + 1) +
∑
i �=�

∑
j∈Dh−{k}

R[i, j]

=
∑
i �=�

∑
j∈Dh−{k}

sicj/Nh(ai,j + 1)�(ai,j + 1) +
∑
i �=�

∑
j∈Dh−{k}

R[i, j]

≥
∑
i �=�

∑
j∈Dh−{k}

sicj/Nh −
∑
i �=�

∑
j∈Dh−{k}

(ai,j + 1) +
∑
i �=�

∑
j∈Dh−{k}

0

= (Nh − s�)(Nh − ck)/Nh −
∑
i �=�

∑
j∈Dh−{k}

(ai,j + 1)

= (Nh − s� − ck) + s�ck/Nh −
∑
i �=�

∑
j∈Dh−{k}

(ai,j + 1).

Next, note that

s�ck/Nh ≥ Nh/(mdm),∑
i �=�

∑
j∈Dh−{k}

(ai,j + 1) ≤ mdm + m(Nh − ck)/n(dm)2 ≤ mdm + Nh/(ndmm),

by definition of the ai,j and because dm ≥ m2. Therefore, to show that inequality (6)
holds, it suffices to show

Nh/(mdm) ≥ mdm + Nh/(ndmm).(7)

We note the following statements:

Nh/(mdm) ≥ mdm + Nh/(ndmm)

⇐⇒ Nh(1 − 1/n)/(mdm) ≥ mdm

⇐= Nh/2 ≥ (mdm)2 (using that n ≥ 2)

⇐⇒ Nh ≥ 2(mdm)2.

This last statement holds by our previous assumption on Nh; therefore inequality (7)
holds, and hence (6) is true, as required.

Therefore, in parallel with our path of column constrained tables, we have a
path X = Z ′

0, . . . , Z
′
h, . . . , Z

′
n′ such that Z ′

h differs from Zh in only dm columns and
Z ′

0, Z
′
1, . . . are true contingency tables. We can add a final step to change Z ′

n′ (using
one step of the Markov chain) into Y . The amount of flow from X to Y that is routed

SAMPLING CONTINGENCY TABLES 261

along this path is proportional to the probability that π is chosen. Since n′ ≤ n, we
see that the length of this path from X to Y is at most n + 1.

Remember that the column constrained table Zh contains exactly n columns
and that Xj ∈ Zh ⇔ Yj
∈ Zh. Also, Zh is the pair (Jh(X), Jh(Y)). Then if we
define Z̄h by the pair of sets (Jh(Y), Jh(X)), Z̄h also contains exactly n columns and
Xj ∈ Z̄h ⇔ Xj
∈ Zh. Now to calculate the row sums of Z̄h, consider Z̄h with the
columns of Dh removed. Then

rowi(Jh(Y) −Dh, Jh(X) −Dh) = rowi(([n] − Jh(X)) −Dh, ([n] − Jh(Y)) −Dh)

= rowi([n] − (Jh(X) ∪Dh), [n] − (Jh(Y) ∪Dh))

= 2ri − rowi(Jh(X) ∪Dh, Jh(Y) ∪Dh)

≤ ri(1 − 1/n)

because we proved that rowi(Jh(X) ∪Dh, Jh(Y) ∪Dh) ≥ ri(1 + 1/n) in Step 1.

Therefore, for Z̄h, there also exists a set of dm columns (the same set of indices Dh)
such that we can obtain a true contingency table Z̄ ′

h ∈ Σr,c by modifying these columns
in the structured way described above.

4.2. Analysis of the multicommodity flow. Next we show that the flow
through any state Z ′ ∈ Ω is at most poly(n) |Ω|. (Remark: We actually bound all
of the flow except that due to pairs (X,Y) where Z ′ = Y . The total flow for all
such pairs is only |Ω|. Hence showing a bound of the form poly(n) |Ω| for the flow
between remaining pairs where Z ′
= Y provides us a similar bound for the total flow
through Z ′.) We assume Z ′ occurs as Z ′

h for some pairs of contingency tables (X,Y)
and some values of h and π{1, . . . , h}. Again, we write Z̄h for the column constrained
table with Xj for j ∈ Jh(Y) and Yj for j ∈ Jh(X). We claim that if we are given Z ′

h

and

(1) Z̄ ′
h ∈ Ω, a true contingency table obtained by changing dm of the columns

of Z̄h;
(2) the value of h and the set π{1, . . . , h} of columns already changed from X

to Y in Zh;
(3) the set Dh of dm columns of Zh which were modified to obtain Z ′

h (note that
the columns of Z̄h that were modified are also the columns in Dh);

(4) the index
 of the largest induced row sum s� for the subtable of Zh on Dh

and the index
′ of the largest induced row sum for the subtable of Z̄h on Dh;
(5) two possibilities:

(i) If Nh < 2(mdm)2, then we are given the original values of Zh[i, j] for all i,
for all j ∈ Dh. Note we have Zh[i, j] ≤ 2(mdm)2;
(ii) Otherwise if Nh ≥ 2(mdm)2, we are given the original integers Q[i, j]
obtained from Zh[i, j] for every i
=
 and every j ∈ Dh − {k}. Note we have
0 ≤ Q[i, j] < n(dm)2;

(5′) two possibilities:
(i) If Nh < 2(mdm)2, then we are given the original values of Z̄h[i, j] for all i,
for all j ∈ Dh. Note we have Z̄h[i, j] ≤ 2(mdm)2;
(ii) Otherwise if Nh ≥ 2(mdm)2, we are given the original integers Q̄[i, j]
obtained from Z̄h[i, j] for every i
=
′ and every j ∈ Dh −{k}. Note we have
0 ≤ Q̄[i, j] < n(dm)2;

then we can construct X and Y . We refer to the information in (1)–(5′) as an
“encoding” (for X and Y at the element Z ′ ∈ Ω).

262 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

First we concentrate on recovering Zh. From (3) we know the submatrix Dh

which has to be modified to obtain Zh from Z ′
h. Since we know the Dh columns, we

can calculate Nh. If Nh < 2(mdm)2, then the information in (5) tells us the original
Zh[i, j] values for j ∈ Dh and this gives us the entire column constrained table Zh.
If Nh ≥ 2(mdm)2, then we use (4) to identify
. For every i
=
 and j ∈ Dh − {k}
we calculate ai,j from ri and cj and we calculate R[i, j] = Z ′

h[i, j] mod (ai,j + 1).
Finally, by (5) we have the original values of Q[i, j] for all i
=
 and all j ∈ Dh −{k}.
Therefore we calculate Zh[i, j] = Q[i, j](ai,j + 1) + R[i, j]. We can also calculate
Zh[
, j] for j ∈ Dh − {k} by subtracting the other values of Zh[i, j] (which we just
calculated) from cj . We still need to find the values Zh[i, k], but we defer this for the
moment.

In a similar way, we use (3), (4), and (5′) to obtain all columns except column k
of Z̄h from Z̄ ′

h (given to us in (1)).
We now have all the columns except for column k of Zh and Z̄h. Zh contains

column Xj for every j ∈ Jh(X) = R ∪ π{h + 1, . . . , n′} and contains column Yj for
every j ∈ Jh(Y) = π{1, . . . , h}. Z̄h contains column Xj for every j ∈ Jh(Y) =
[n] − Jh(X) and column Yj for every j ∈ Jh(X) = [n] − Jh(Y). By (2), we are given
π{1, . . . , h}. Then the contingency table X is the set of columns where

Xj =

{
column j of Zh for j ∈ [n] − π{1, . . . , h},
column j of Z̄h for j ∈ π{1, . . . , h}.

The contingency table Y is the set of columns where

Yj =

{
column j of Zh for j ∈ π{1, . . . , h},
column j of Z̄h for j ∈ [n] − π{1, . . . , h}.

Thus for any Z ′
h ∈ Ω, we can construct all columns of X and Y except column k.

Column k of each of these can then be recovered using the original ri values. Thus,
for any Z ′

h ∈ Ω, we can construct X and Y for any pair (X,Y) whose path passes
through Z ′

h, given the encoding (1)–(5′).
Now we bound the flow through our given Z ′

h. Note that the flow through Z ′
h

is (bounded by) the number of possible choices for (1) and for (3)–(5′), times the
amount of flow given by all possible choices for π{1, . . . , h} (given by (2)).

Since Z̄ ′
h ∈ Ω, there are |Ω| choices for (1).

There are
(

n
dm−1

)
possible Dh sets (choices for (3)), since Dh always contains k.

There are m2 choices for (4).
Depending on the value of Nh, either there are at most n(dm)2 possible values

for the original value of Zh[i, j] for j ∈ Dh (obtained via Q[i, j]), or there are at most
2(mdm)2 possible values for the original value of Zh[i, j] for j ∈ Dh. Therefore there
are at most (2n(mdm)2)mdm possible sets of Zh[i, j] for (5). The same upper bound
holds for (5′).

The total number of choices for (4)–(5′) is m2(2n(mdm)2)2mdm . We will write

this as Cmn2mdm , where Cm is the constant 22m(dm)m2(mdm)
4mdm .

Recall that we are shipping one unit of flow from X to Y for all ordered pairs
(X,Y) ∈ Ω2, and we want to find an upper bound on the amount of flow that passes
through a given element Z ′ ∈ Ω. The portion of flow from X to Y passing through Z ′

is determined by the distribution on the choices of permutations in (2). The per-
mutation π defines the sequence Z0, . . . , Zn′ which, in turn, defines Z ′

0, . . . , Z
′
n′ . We

want to know how much flow passes through Z ′
h for the choices (1), (3)–(5′) of the

SAMPLING CONTINGENCY TABLES 263

encoding. Therefore, we see the amount passing through Z ′
h is bounded above by

|Ω|Cm

(
n

dm − 1

)
n2mdm

∑
h

∑
U : |U |=h

Pr[π{1, . . . , h} = U],

where Pr[π{1, . . . , h} = U] is the probability that U is the set of the first h columns
to be changed.

Therefore (as in [20]), we need to bound
∑

h

∑
U : |U |=h Pr[π{1, . . . , h} = U] for

each particular possibility for parts 1, 3, 4, 5, and 5′ of the encoding. As explained
before, these parts of the encoding determine Zh and Z̄h (apart from column k).
Zh and Z̄h together give us the set {Xj , Yj} for any j
= k, but they don’t tell us which
of the two columns is Xj and which is Yj . The relevant parts of the encoding also
determine Dh. For the given value of Dh, there are at most 2dm−1 possibilities for R
(which must include column k), and we shall sum over all of them. We then upper
bound the flow coming from all permutations π{1, . . . , h} on the columns of [n] −R.
There are at most (2(n − |R|))m ≤ (2n)

m
possibilities for the vector M giving the

Mi values and we like likewise sum over all such choices. For each choice of (possible)
values {Mi} we can compute from Zh and Z̄h the set Li = {j : j
∈ R, X[i, j] > Mi}∪
{j : j
∈ R, Y [i, j] > Mi}. Note that this gives us S = [n] − (L ∪ R) as well. By
our remark on page 254, we know that each Li consists solely of columns of X, or
solely of columns of Y . Therefore there are only two possibilities for assigning all the
Li columns to X or Y (2m choices for all of L = ∪iLi).

Let h2 = h − |π{1, . . . , h} ∩ L|. We bound the flow passing through Z ′
h below.

Note that the first summation is over all (2(n − |R|))m possibilities for M and all
2m possible assignments of L.

|Ω|Cm

(
n

dm − 1

)
n2mdm

∑
R,M,L,h2

∑
U⊆S: |U |=h2

Pr[π2{1, . . . , h2} = U]

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

∑
U⊆S: |U |=h2

Pr[π2{1, . . . , h2} = U]

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

∑
U⊆S: |U |=h2

pm(|S|)/
(
|S|
h2

)

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mn

(
|S|
h2

)
pm(|S|)

/(
|S|
h2

)

≤ |Ω|Cm

(
n

dm − 1

)
n2mdm2dm−1(2n)m2mnpm(|S|),

which is poly(n) |Ω|.
Thus we know that the flow through any state is bounded by a quantity f which

is at most poly(n) |Ω|. In the application of Morris and Sinclair [20] this is already
sufficient to prove polynomial time mixing, since the term P (e) in the denominator
of (1) is only polynomially small. However, for our heat-bath chain PHB, this term
may be exponentially small, and a further argument is required to establish rapid
mixing.

To this end, let e = (ω, ω′) (ω, ω′ ∈ Ω2) be a (directed) transition of MHB, with
transition probability PHB(e). Suppose that fe units of flow are shipped along e in
the multicommodity flow F∗ defined above. We will construct a new flow F in which
these fe units are dispersed, travelling from ω to ω′ via a “random destination” ω′′.

264 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

Let B be the set of columns on which ω and ω′ disagree and let W be the set of
all size m × (2dm + 1) heat-bath windows which include B. Let Ω′′ be the set of all
contingency tables ω′′ such that

1. there is a U ∈ W which contains all the columns on which ω and ω′′ differ,
and

2. there is a U ′ ∈ W which contains all the columns on which ω′ and ω′′ differ.
For each ω′′ ∈ Ω′′, the flow F will route fe/|Ω′′| flow from ω to ω′ via ω′′. Note

that this construction doubles the length of our flow paths, but no more. Hence, the
length of the longest path in the new flow F is at most 2(n + 1).

The quantity shipped through (ω, ω′′) in F from the original transition e in the
multicommodity flow F∗ is fe/|Ω′′|, which is at most 4fen

2dm+1PHB(ω, ω′′). To see
this, let K be the (nonempty) set of columns on which ω and ω′′ differ. For every
heat-bath window U , let Ωω(U) denote the set of contingency tables which agree
with ω, except possibly on window U , and write

PHB(ω, ω′′) =
1

4

∑
U⊇K

1(
n

2dm+1

) 1

|Ωω(U)|

≥ 1

4

∑
U⊇K,U∈W

1(
n

2dm+1

) 1

|Ωω(U)|

≥ 1

4

∑
U⊇K,U∈W

1(
n

2dm+1

) 1

|Ω′′|

≥ 1

4

1(
n

2dm+1

) 1

|Ω′′| ,

where the last inequality follows from the fact that ω′′ ∈ Ω′′, so there is at least one U
in the summation.

We call the transition (ω, ω′′) a type 1 transition and a transition (ω′′, ω′) a type 2
transition.

We can now give an upper bound for the total type 1 flow along the transition
(ω, ω′′). For each e = (ω, ω′), we ship at most 4fen

2dm+1PHB(ω, ω′′) flow. Let f be the
bound from above on the total flow that leaves node ω in our original multicommodity
flow F∗ (so f =

∑
e fe, where the sum is over transitions e which start at ω). Then

the total amount routed via ω′′ in F is at most 4fn2dm+1PHB(ω, ω′′).
Using a symmetric argument, we can show that the total type 2 flow along the

transition (ω′′, ω′) in F is at most 4fn2dm+1PHB(ω′′, ω′).
Thus, the total flow in F along transition (ω, ω′′) is at most 8fn2dm+1PHB(ω, ω′′).

Using the fact that the longest flow-carrying path length is at most 2(n + 1), this is
now sufficient for the right-hand side of (1) to be polynomially bounded, since the
(possibly small) PHB(e) term cancels. This completes the proof of Theorem 7.

5. Mixing of the 2×2 chain. Theorem 7 shows that the Markov chain MHB is
rapidly mixing. In this section we use the comparison method of Diaconis and Saloff-
Coste [7] to show that the 2×2 chain M2×2 is also rapidly mixing. We briefly describe
the comparison method, in the context of contingency tables, adapted from [7]. For
more details and other examples of applications of this method, see [7], Randall and
Tetali [23], and Vigoda [27].

5.1. Setting up the comparison. Recall that PHB denotes the transition ma-
trix of the Markov chain MHB which was analyzed in section 4. Let E(PHB) be

SAMPLING CONTINGENCY TABLES 265

the set of edges (excluding loops) in the Markov kernel of that chain. That is,
E(PHB) = {(X,Y) : X
= Y and PHB(X,Y) > 0}. Let P2×2 denote the transition
matrix of M2×2 and let E(P2×2) denote the edge-set of its Markov kernel.

For every (X,Y) ∈ E(PHB) we define a set of paths ΓX,Y where each γ ∈ ΓX,Y is
a path X = η0, η1, . . . , ηk = Y , such that (ηi, ηi+1) ∈ E(P2×2) for all i ∈ {0, . . . , k−1}.
Let |γ| denote the length (number of edges) of the path. We also define a flow fX,Y ,
which is a function from ΓX,Y to the positive reals satisfying the condition

∑
γ∈ΓX,Y

fX,Y (γ) = 1.(8)

It is important to note that this flow need be defined only for pairs (X,Y) ∈ E(PHB),
not for all pairs (X,Y).

For each (Z,Z ′) ∈ E(P2×2), define the quantity

AZ,Z′ =
1

P2×2(Z,Z ′)

∑
(X,Y)∈E(PHB)

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

|γ|fX,Y (γ)PHB(X,Y).

We use the comparison theorem of Diaconis and Saloff-Coste, which says1 that

τ2×2(ε) ∈ O(τHB(ε) log(|Σr,c|) max
(Z,Z′)∈E(P2×2)

AZ,Z′).

In our construction of the flow, we ensure that the length of each path γ ∈ ΓX,Y

is bounded by a constant. Thus, the theorem of Diaconis and Saloff-Coste tells us
that to establish rapid mixing, we need only define fX,Y for every (X,Y) ∈ E(PHB)
such that (8) is satisfied and also, for all (Z,Z ′) ∈ E(P2×2), the following is satisfied:

1

P2×2(Z,Z ′)

∑
(X,Y)∈E(PHB)

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X,Y) ≤ poly(n).(9)

It helps us to rework (9) before defining the flows. For (X,Y) ∈ E(PHB), let
W(X,Y) be the set of all m× (2dm +1) “windows” such that X and Y agree outside
of W , where a “window” is just a set of m rows and 2dm + 1 columns. Note that

PHB(X,Y) =
1

4

∑
W∈W(X,Y)

1(
n

2dm+1

) 1

|ΩX(W)| ,

where ΩX(W) is the set of all contingency tables that agree with X outside of W .
We may view PHB(X,Y) as (a multiple of) the average of the quantities 1/|ΩX(W)|
over all windows W ∈ W(X,Y). Therefore, there is some W (X,Y) ∈ W(X,Y) such
that

PHB(X,Y) ≤ 1

|ΩX(W (X,Y))| .(10)

1The statement of the theorem in this form is from Vigoda [27] and Randall and Tetali [23]. The
derivation of Proposition 4 in [23] required the eigenvalues of PHB to be at least 1/2, which is why
we added the self-loops to MHB. (Actually, bounding the eigenvalues above zero by any amount
suffices.) The comparison uses the fact that the eigenvalues of P2×2 are positive since this method
provides a lower bound for 1 − λ1(P2×2) in terms of 1 − λ1(PHB), and in these situations those
differences directly relate to mixing times.

266 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

The essential idea to keep in mind in what follows is that routing the unit flow fX,Y

from X to Y is done using paths of contingency tables that differ from one another
solely on (a 2 × 2 part of) this specially chosen window W (X,Y) that satisfies (10).

For each m × (2dm + 1) window W , let EW = {(X,Y) : (X,Y) ∈ E(PHB) and
W (X,Y) = W}. Later, when we define our flows, we do the following for every fixed
window W : For every (X,Y) ∈ EW , we define a flow fX,Y such that (8) is satisfied.
We also ensure that for all (Z,Z ′) ∈ E(P2×2), the following is satisfied:

1

P2×2(Z,Z ′)

∑
(X,Y)∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X,Y) ≤ poly(n).(11)

Since there are only polynomially many windows W , by summing over all of them we
see that (11) implies (9), and ensures rapid mixing of M2×2.

For each window W , section 5.2 shows how to define a flow f∗
X,Y for every (X,Y) ∈

EW such that

∑
γ∈ΓX,Y

f∗
X,Y (γ) = 1

and the total flow through any contingency table Z ∈ Σr,c is in O(|ΩX(W)|). At
the end of section 5.1 we will define fX,Y by modifying f∗

X,Y . Let f∗
X,Y (Z) de-

note the amount of flow passing through the contingency table Z in the flow f∗
X,Y .

Let f∗(Z) =
∑

(X,Y)∈EW
f∗
X,Y (Z). Similarly, let fX,Y (Z,Z ′) denote the amount

of flow passing through the transition (Z,Z ′) in the flow fX,Y . Let f(Z,Z ′) =∑
(X,Y)∈EW

fX,Y (Z,Z ′). Our construction of fX,Y from f∗
X,Y will ensure that for

every (Z,Z ′) ∈ E(P2×2), we have

f(Z,Z ′) ≤ 4f∗(Z)P2×2(Z,Z
′)

(
n

2

)(
m

2

)
.(12)

Thus, the left-hand side of (11) is equal to

1

P2×2(Z,Z ′)

∑
(X,Y)∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)PHB(X,Y)

≤ 1

P2×2(Z,Z ′)

∑
(X,Y)∈EW

∑
γ∈ΓX,Y such
that (Z,Z′)∈γ

fX,Y (γ)
1

|ΩX(W)|(13)

=
1

P2×2(Z,Z ′)
· 1

|ΩX(W)|
∑

(X,Y)∈EW

fX,Y (Z,Z ′)

=
f(Z,Z ′)

P2×2(Z,Z ′)
· 1

|ΩX(W)|

≤
4f∗(Z)

(
n
2

)(
m
2

)
|ΩX(W)| ≤ poly(n).(14)

Inequality (13) comes from (10), where ΩX(W) = ΩX(W (X,Y)), and from our
definition of EW . The first inequality in (14) comes from (12) which we estab-
lish shortly, and the second inequality in (14) comes from the fact that f∗(Z) ∈

SAMPLING CONTINGENCY TABLES 267

O(|ΩX(W)|), which is established in section 5.2. We will then have shown that (11)
is satisfied, as required, and thus M2×2 is rapidly mixing on Σr,c.

We finish this section by showing how to construct fX,Y given the flow f∗
X,Y ,

thereby establishing (12). The method is similar to (but simpler than) the one that
we used at the end of section 4.2.

Recall that E(P2×2) excludes self-transitions of the form (Z,Z). Thus, for each
(Z,Z ′′) ∈ E(P2×2), there is a unique 2 × 2 window U(Z,Z ′′) on which Z and Z ′′

disagree. Let ΩZ(U(Z,Z ′′)) denote the set of all contingency tables that agree with
Z (and Z ′′) everywhere outside of the 2×2 window U(Z,Z ′′). Let f∗

X,Y (Z,Z ′′) be the
flow that passes through (Z,Z ′′) in f∗

X,Y . For each Z ′ ∈ ΩZ(U(Z,Z ′′)), some of this
flow is allocated to the path Z,Z ′, Z ′′. In particular, f∗

X,Y (Z,Z ′′)/|ΩZ(U(Z,Z ′′))|
flow is sent this way.

Now fX,Y (Z,Z ′) ≤ 2
∑

Z′′∈U(Z,Z′)

f∗
X,Y (Z,Z′′)

|ΩZ(U(Z,Z′′))| , where the first “2” comes from

the fact that we must consider paths Z,Z ′, Z ′′ above, and also paths that end in edge
Z,Z ′. The right-hand side is at most

2
f∗
X,Y (Z)

|ΩZ(U(Z,Z ′))| ≤ 4f∗
X,Y (Z)P2×2(Z,Z

′)

(
n

2

)(
m

2

)
;

thus (12) holds.
By considering all m × (2dm + 1)-sized windows which contain the two columns

on which Z and Z ′ differ, we can see that for each (Z,Z ′) ∈ E(P2×2), we have

AZ,Z′ ≤ C

(
n

2

)(
n− 2

2dm − 1

)
,

where the constant C accounts for the maximum length of any (X,Y) path for
(X,Y) ∈ E(PHB), and the constant factors arising in the bound for the flow f∗(Z)
over a single m× (2dm + 1) window W . Therefore, we have the following theorem.

Theorem 8.

τM2×2(ε) ∈ O(τMHB(ε) log(|Σr,c|)n2dm+1).

5.2. Defining f∗(X, Y). In this section we define a flow f∗
X,Y for every (X,Y) ∈

EW such that
∑

γ∈ΓX,Y
f∗
X,Y (γ) = 1 and the total flow through any contingency ta-

ble Z, due to pairs in EW , is in O(|ΩX(W)|).
Throughout this entire section, we therefore focus on some fixed m× (2dm + 1)-

sized window W of the larger m × n table. Without loss of generality (and to make
our notation simpler in what follows), we assume that W includes the first 2dm + 1
columns of the table. This window W has induced row sums ρi (for i ∈ [m]) and
induced column sums ζj (for j ∈ [2dm +1]). For convenience we also set δ = 2dm +1.

Let ρ = (ρ1, . . . , ρm), ζ = (ζ1, . . . , ζδ) be the lists of induced row and column
sums. Let Σρ,ζ denote the set of m × δ contingency tables with rows sums ρ and
column sums ζ, and let NW denote the table sum. Let Υ,Ψ ∈ Σρ,ζ . We show how to
route a unit of flow between Υ and Ψ using a path of contingency tables that differ by
moves of M2×2. This flow lifts in the obvious fashion to transitions (X,Y) ∈ E(PHB),
giving us the flow f∗

X,Y required in the previous section. In other words, we simply
use the exact same sequence of 2 × 2 transitions on the window W (X,Y), keeping
everything outside this window fixed (where X and Y agree anyway).

If NW < (2mδ)2, then |Σρ,ζ | ∈ O(1); thus it does not really matter how we route
flow between Υ and Ψ. For example, it suffices to fix each square in the contingency

268 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

table in lexicographic order. Each path in the resulting flow is of length O(1), and
there are O(1) pairs (Υ,Ψ) of contingency tables, so the desired bound is easily
established. This is similar to, but simpler than, what we do later in section 5.2.3.
Thus, from now on we assume NW ≥ (2mδ)2 and show how to construct a flow
between Υ and Ψ in Σρ,ζ .

Without loss of generality we may assume that the row totals are sorted into
nondescending order and that the column totals are also sorted into nondescending
order. Therefore ρm is the largest row sum and ζδ is the largest column sum.

As we did in section 4.1.2, we view the space Σρ,ζ of contingency tables as the
(m− 1)(δ − 1)-dimensional space of integer matrices Φ that satisfy Φ[i, j] ≥ 0 for all
i ∈ [m − 1] and all j ∈ [δ − 1], and also satisfy the following inequalities (see Dyer,
Kannan, and Mount [12]):

m−1∑
i=1

Φ[i, j] ≤ ζj for every j ∈ [δ − 1],(15)

δ−1∑
j=1

Φ[i, j] ≤ ρi for every i ∈ [m− 1],(16)

m−1∑
i=1

δ−1∑
j=1

Φ[i, j] ≥ NW − ρm − ζδ.(17)

Let

αi,j =

⌊
min{ρi, ζj}

m2δ2

⌋
(18)

for all i ∈ [m− 1], j ∈ [δ − 1].
Note that

max
j∈[δ−1]

αi,j = αi,δ−1 for all i;

max
i∈[m−1]

αi,j = αm−1,j for all j;

max
i∈[m−1],j∈[δ−1]

αi,j = αm−1,δ−1.

For any contingency table Φ ∈ Σρ,ζ , and any i ∈ [m− 1], j ∈ [δ− 1], we can write

Φ[i, j] = Q[i, j](αi,j + 1) + R[i, j]

for a unique integer R[i, j] satisfying 0 ≤ R[i, j] ≤ αi,j , and a unique integer Q[i, j].
For all i ∈ [m− 1], j ∈ [δ − 1] we define

Q∗[i, j] =

⌊
ρiζj

NW (αi,j + 1)

⌋
.(19)

Let Υ,Ψ ∈ Σρ,ζ . We are almost ready to start building a path from Υ to Ψ that
uses transitions of M2×2. We use the following lemma.

Lemma 9. Let Φ∗[i, j] be defined by

Φ∗[i, j] = Q∗[i, j](αi,j + 1) + R[i, j]

SAMPLING CONTINGENCY TABLES 269

for any nonnegative integers R[i, j] ≤ αi,j, for all i ∈ [m − 1], j ∈ [δ − 1]. Also, we
set

Φ∗[i, δ] = ρi −
δ−1∑
j=1

Φ∗[i, j] for i ∈ [m− 1],

Φ∗[m, j] = ζj −
m−1∑
i=1

Φ∗[i, j] for j ∈ [δ − 1],

and Φ∗[m, δ] = ζδ −
m−1∑
i=1

Φ∗[i, δ].

Then the following hold.
(i) Φ∗ ∈ Σρ,ζ .
(ii) Under the assumption that NW ≥ (2mδ)2, we have the following:

Φ∗[i, δ] ≥ (αi,δ−1 + 1) for all i ∈ [m− 1],

Φ∗[m, j] ≥ (αm−1,j + 1) for all j ∈ [δ − 1],

Φ∗[m, δ] ≥ 2(αm−1,δ−1 + 1).

Proof. (i) It suffices to show that the inequalities (15), (16), and (17) hold for the
defined values of Φ∗[i, j] with i ∈ [m − 1] and j ∈ [δ − 1]. (Then the definitions of
Φ∗[i, δ], Φ∗[m, j], and Φ∗[m, δ] are such that the entire m × δ table satisfies the row
and column sums ρ and ζ, respectively.)

This proof is analogous to that given in Case 2 in section 4.1.2 when we showed
that inequalities (4), (5), and (6) held there, so we do not repeat that proof here.

(ii) By definition,

Φ∗[i, δ] = ρi −
δ−1∑
j=1

Φ∗[i, j]

= ρi −
δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + R[i, j]

)

≥ ρi −
δ−1∑
j=1

(
ρiζj
NW

+ αi,j

)

=
ρiζδ
NW

−
δ−1∑
j=1

αi,j

≥ ρiζδ
NW

− δρi
m2δ2

≥ ρi
δ

− ρi
m2δ

≥ ρi
mδ

≥ 2αi,δ−1.

Then, if αi,δ−1 ≥ 1, we automatically have Φ∗[i, δ] ≥ (αi,δ−1 + 1). However, if
αi,δ−1 = 0, then αi,j = 0 for all j ∈ [δ − 1], and there are two subcases to consider.

270 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

The first subcase is when ρiζδ < NW . Then ρiζj < NW for all j ∈ [δ − 1], and
Φ∗[i, j] = 0 for all j ∈ [δ − 1]. Therefore Φ∗[i, δ] = ρi ≥ 1. If ρiζδ ≥ NW , then the
fourth line of the derivation above (with αi,j = 0) gives Φ∗[i, δ] ≥ ρiζδ/NW ≥ 1. So
in either subcase we have Φ∗[i, δ] ≥ 1 = (αi,δ−1 + 1).

Using a similar argument we conclude that

Φ∗[m, j] ≥ (αm−1,j + 1).

By definition

Φ∗[m, δ] = ζδ −
m−1∑
i=1

Φ∗[i, δ]

= ζδ −
m−1∑
i=1

⎛
⎝ρi −

δ−1∑
j=1

Φ∗[i, j]

⎞
⎠

= (ρm + ζδ −NW) +

m−1∑
i=1

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + R[i, j]

)

≥ (ρm + ζδ −NW) +

m−1∑
i=1

δ−1∑
j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1)

)

≥ (ρm + ζδ −NW) +

m−1∑
i=1

δ−1∑
j=1

(
ρiζj
NW

− (αi,j + 1)

)

=
ρmζδ
NW

−
m−1∑
i=1

δ−1∑
j=1

(αi,j + 1)

≥ ρmζδ
NW

− m(NW − ζδ)

m2δ2
− (m− 1)(δ − 1)

≥ NW

mδ
− NW

mδ2
− (m− 1)(δ − 1)

≥ NW

4mδ
+

(
NW

2mδ
− NW

mδ2

)
+

(
NW

4mδ
− (m− 1)(δ − 1)

)

≥ 2ζδ−1

4mδ
+ 0 + (δ + m− 1)

≥ 2αm−1,δ−1 + 2,

as required.
Definition 10. If Φ is a contingency table such that Q[i, j] = Q∗[i, j] for every

i ∈ [m− 1], j ∈ [δ − 1], then we say that Φ belongs to the inner domain of Σρ,ζ .
Now we consider a pair Υ,Ψ ∈ Σρ,δ. For every i ∈ [m− 1], j ∈ [δ − 1], we write

Υ[i, j] = QΥ[i, j](αi,j + 1) + RΥ[i, j]

for the unique integer RΥ[i, j] that satisfies 0 ≤ RΥ[i, j] ≤ αi,j .
Similarly, for every i ∈ [m− 1], j ∈ [δ − 1], we write

Ψ[i, j] = QΨ[i, j](αi,j + 1) + RΨ[i, j]

for the unique RΨ[i, j] satisfying 0 ≤ RΨ[i, j] ≤ αi,j .

SAMPLING CONTINGENCY TABLES 271

The routing from Υ to Ψ proceeds in two stages. In the first phase, we route flow
from Υ to the table Υ∗ in the inner domain of Σρ,ζ such that Υ∗[i, j] = Q∗[i, j](αi,j +
1) + RΥ[i, j] holds for every i ∈ [m − 1], j ∈ [δ − 1]. Note that Υ∗ ∈ Σρ,ζ using the
previous lemma.

By defining a similar path between Ψ and Ψ∗ and then reversing all the edges,
we can route flow from some Ψ∗ in the inner domain of Σρ,ζ to Ψ such that Ψ∗[i, j] =
Q∗[i, j](αi,j + 1) + RΨ[i, j] holds for every i ∈ [m− 1], j ∈ [δ − 1]. Similarly, we also
have Ψ∗ ∈ Σρ,ζ .

In the second phase of the routing we show how to route flow from Υ∗ to Ψ∗ by
changing the RΥ[i, j] to the RΨ[i, j] values.

5.2.1. Phase 1. We show how to route Υ to Υ∗ in the inner domain of Σρ,ζ ,
by changing only Q[i, j] values at any step. For our analysis, we define the following
metric on pairs Φ,Φ′ ∈ Σρ,ζ :

d(Φ,Φ′) = d1(Φ,Φ′) + d2(Φ,Φ′) + d3(Φ,Φ′) + d4(Φ,Φ′), where

d1(Φ,Φ′) =

m−1∑
i=1

δ−1∑
j=1

|Φ[i, j] − Φ′[i, j]|

d2(Φ,Φ′) =
NW + 1

3NW

(
m−1∑
i=1

|Φ[i, δ] − Φ′[i, δ]|
)

d3(Φ,Φ′) =
NW + 1

3NW

⎛
⎝δ−1∑

j=1

|Φ[m, j] − Φ′[m, j]|

⎞
⎠

d4(Φ,Φ′) =
NW + 1

3NW
|Φ[m, δ] − Φ′[m, δ]|.

This metric is used to show that the path we construct is moving us closer to Υ∗ and
that the length of this path from Υ to Υ∗ is bounded by a constant.

We route Υ to Υ∗ as a series of moves. Let Υ′ denote some interim contingency
table on the path from Υ to Υ∗. We choose our next move on this path from amongst
four cases.

Case (a). Suppose that Υ′[m, δ] < (αm−1,δ−1 + 1). Then we perform a move to
make Υ′[m, δ] bigger (because we need to “leave room” for our other cases).

We now show there is at least one
 ∈ [m − 1] such that Υ′[
, δ] ≥ Υ∗[
, δ] +
(α�,δ−1 + 1).

Note that by Lemma 9, in this case Υ′[m, δ] < Υ∗[m, δ]−(αm−1,δ−1+1). Suppose
(for contradiction) that there is no
 as described above, so that

Υ′[i, δ] < Υ∗[i, δ] + (αi,δ−1 + 1) for i ∈ [m− 1].

By definition

Υ∗[i, δ] = ρi −

⎛
⎝δ−1∑

j=1

Υ∗[i, j]

⎞
⎠

= ρi −

⎛
⎝δ−1∑

j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + RΥ[i, j]

)⎞
⎠ .

272 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

Now

Υ′[m, δ] = ζδ −
(

m−1∑
i=1

Υ′[i, δ]

)

> ζδ −
m−1∑
i=1

⎛
⎝ρi −

⎛
⎝δ−1∑

j=1

Υ∗[i, j]

⎞
⎠ + (αi,δ−1 + 1)

⎞
⎠

= (ζδ + ρm −NW) +

m−1∑
i=1

⎛
⎝
⎛
⎝δ−1∑

j=1

Υ∗[i, j]

⎞
⎠− (αi,δ−1 + 1)

⎞
⎠ .(20)

We expand
∑m−1

i=1 ((
∑δ−1

j=1 Υ∗[i, j]) − (αi,δ−1 + 1)) as

m−1∑
i=1

⎛
⎝δ−1∑

j=1

(⌊
ρiζj

NW (αi,j + 1)

⌋
(αi,j + 1) + RΥ[i, j]

)
− (αi,δ−1 + 1)

⎞
⎠

≥
m−1∑
i=1

⎛
⎝δ−1∑

j=1

(
ρiζj
NW

− (αi,j + 1)

)
− (αi,δ−1 + 1)

⎞
⎠

= (NW − ρm − ζδ) +
ρmζδ
NW

−
m−1∑
i=1

δ−1∑
j=1

(αi,j + 1) −
m−1∑
i=1

(αi,δ−1 + 1)

≥ (NW − ρm − ζδ) +
ρmζδ
NW

− m(NW − ζδ)

m2δ2
− (m− 1)(δ − 1) − mζδ−1

m2δ2
− (m− 1)

≥ (NW − ρm − ζδ) +
NW

mδ
− NW

mδ2
−mδ + δ

≥ (NW − ρm − ζδ) +
NW

2mδ
−mδ + δ

≥ (NW − ρm − ζδ) +
NW

4mδ
+ δ

≥ (NW − ρm − ζδ) + (αm−1,δ−1 + 1),(21)

where the second-to-last line follows since NW ≥ (2mδ)2, and the last line follows
from the definition of αi,j and because δ ≥ m ≥ 2.

Combining (20) and (21), we have a contradiction to our original assumption that
Υ′[m, δ] < (αm−1,δ−1 + 1). Therefore it must be that Υ′[
, δ] ≥ Υ∗[
, δ] + (α�,δ−1 + 1)
for some
 ∈ [m− 1].

Similarly, there must be some k ∈ [δ − 1] such that Υ′[m, k] ≥ Υ∗[m, k] +
(αm−1,k + 1).

In this case we add the transition (Υ′ → Υ′′) to our path from Υ to Υ∗, where
Υ′′ is identical to Υ′ except for the following entries:

Υ′′[
, k] = Υ′[
, k] + (α�,k + 1), Υ′′[
, δ] = Υ′[
, δ] − (α�,k + 1),

Υ′′[m, k] = Υ′[m, k] − (α�,k + 1), Υ′′[m, δ] = Υ′[m, δ] + (α�,k + 1).

SAMPLING CONTINGENCY TABLES 273

Now we show that d(Υ′′,Υ∗) < d(Υ′,Υ∗):

d1(Υ
′′,Υ∗) =

m−1∑
i=1

δ−1∑
j=1

|Υ′′[i, j] − Υ∗[i, j]| ≤ d1(Υ
′,Υ∗) + (α�,k + 1),

d2(Υ
′′,Υ∗) =

NW + 1

3NW

(
m−1∑
i=1

|Υ′′[i, δ] − Υ∗[i, δ]|
)

= d2(Υ
′,Υ∗) − NW + 1

3NW
(α�,k + 1),

d3(Υ
′′,Υ∗) =

NW + 1

3NW

⎛
⎝δ−1∑

j=1

|Υ′′[m, j] − Υ∗[m, j]|

⎞
⎠ = d3(Υ

′,Υ∗) − NW + 1

3NW
(α�,k + 1),

d4(Υ
′′,Υ∗) =

NW + 1

3NW
|Υ′′[m, δ] − Υ∗[m, δ]| = d4(Υ

′,Υ∗) − NW + 1

3NW
(α�,k + 1).

The equation for d4 follows from Lemma 9.
Thus d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗) + (α�,k + 1)− (α�,k + 1)(NW + 1)/NW ≤ d(Υ′,Υ∗)−

(α�,k + 1)/NW < d(Υ′,Υ∗).
Case (b). We execute (b) whenever Case (a) does not hold and when either

Υ′[
, δ] < Υ∗[
, δ] for some
 ∈ [m − 1] or Υ′[m, j] < Υ∗[m, j] for some j ∈ [δ − 1].
Without loss of generality, assume the former. If this is the case, then there must
be at least one k ∈ [δ − 1] such that Υ′[
, k] > Υ∗[
, k]. Since we change only Q[i, j]
values during our routing, we know that Υ′[
, k] ≥ Υ∗[
, k] + (α�,k + 1). Also, since
we are not in Case (a), we know that Υ′[m, δ] ≥ (αm−1,δ−1 + 1) ≥ (α�,k + 1).

In this case we add the transition (Υ′ → Υ′′) in our path from Υ to Υ∗, where
Υ′′ is identical to Υ′ except for the following entries:

Υ′′[
, k] = Υ′[
, k] − (α�,k + 1), Υ′′[
, δ] = Υ′[
, δ] + (α�,k + 1),

Υ′′[m, k] = Υ′[m, k] + (α�,k + 1), Υ′′[m, δ] = Υ′[m, δ] − (α�,k + 1).

Now we show that d(Υ′′,Υ∗) < d(Υ′,Υ∗):

d1(Υ
′′,Υ∗) =

m−1∑
i=1

δ−1∑
j=1

|Υ′′[i, j] − Υ∗[i, j]| = d1(Υ
′,Υ∗) − (α�,k + 1),

d2(Υ
′′,Υ∗) =

NW + 1

3NW

(
m−1∑
i=1

|Υ′′[i, δ] − Υ∗[i, δ]|
)

≤ d2(Υ
′,Υ∗) +

NW + 1

3NW
(α�,k − 1),

d3(Υ
′′,Υ∗) =

NW + 1

3NW

⎛
⎝δ−1∑

j=1

|Υ′′[m, j] − Υ∗[m, j]|

⎞
⎠ ≤ d3(Υ

′,Υ∗) +
NW + 1

3NW
(α�,k + 1),

d4(Υ
′′,Υ∗) =

NW + 1

3NW
|Υ′′[m, δ] − Υ∗[m, δ]| ≤ d4(Υ

′,Υ∗) +
NW + 1

3NW
(α�,k + 1),

where the expression for d2(Υ
′′,Υ∗) follows because Υ′[
, δ] ≤ Υ∗[
, δ] − 1.

Therefore d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗)− (α�,k +1)+(α�,k +1)(NW +1)/NW −2(NW +
1)/3NW . This is at most d(Υ′,Υ∗)+(α�,k +1)/NW −2(NW +1)/3NW . Then because
α�,k ≤ NW /(δm)2, we have d(Υ′′,Υ∗) ≤ d(Υ′,Υ∗) + 1/(mδ)2 + 1/3NW − 2/3, and
using NW ≥ (2δm)2, we obtain d(Υ′′,Υ∗) < d(Υ′,Υ∗).

Case (c). We execute (c) when Cases (a)–(b) do not hold and either Υ′[
, δ] >
Υ∗[
, δ] for some
 ∈ [m − 1] or Υ′[m, j] > Υ∗[m, j] for some j ∈ [δ − 1]. Assume
the former without loss of generality. Then there must exist some k ∈ [δ − 1] such

274 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

that Υ′[
, k] < Υ∗[
, k], and since we can only change the Υ[
, k] values by factors of
(α�,k + 1), we have Υ′[
, k] ≤ Υ∗[
, k] + (α�,k + 1). Note that since Υ′[
, δ] > Υ∗[
, δ]
and using part (ii) of Lemma 9, we know Υ′[
, δ] ≥ (α�,δ−1 + 1) ≥ (α�,k + 1). Because
Case (b) does not hold, we know Υ′[m, k] ≥ Υ∗[m, k], and, from part (ii) of Lemma 9,
this is at least (αm−1,k + 1) ≥ (α�,k + 1).

Therefore we can perform the transition (Υ′ → Υ′′), where Υ′′ is identical to Υ′

except for the following entries:

Υ′′[
, k] = Υ′[
, k] + (α�,k + 1), Υ′′[
, δ] = Υ′[
, δ] − (α�,k + 1),

Υ′′[m, k] = Υ′[m, k] − (α�,k + 1), Υ′′[m, δ] = Υ′[m, δ] + (α�,k + 1).

As before, we now show that d(Υ′′,Υ∗) < d(Υ′,Υ∗):

d1(Υ
′′,Υ∗) =

m−1∑
i=1

δ−1∑
j=1

|Υ′′[i, j] − Υ∗[i, j]| = d1(Υ
′,Υ∗) − (α�,k + 1),

d2(Υ
′′,Υ∗) =

NW + 1

3NW

m−1∑
i=1

|Υ′′[i, δ] − Υ∗[i, δ]| ≤ d2(Υ
′,Υ∗) +

NW + 1

3NW
(α�,k − 1),

d3(Υ
′′,Υ∗) =

NW + 1

3NW

δ−1∑
j=1

|Υ′′[m, j] − Υ∗[m, j]| ≤ d3(Υ
′,Υ∗) +

NW + 1

3NW
(α�,k + 1),

d4(Υ
′′,Υ∗) =

NW + 1

3NW
|Υ′′[m, δ] − Υ∗[m, δ]| ≤ d4(Υ

′,Υ∗) +
NW + 1

3NW
(α�,k + 1),

where the bound on d2(Υ
′′,Υ∗) follows, using that Υ′[
, δ] ≥ Υ∗[
, δ] + 1.

Case (d). This is the case when Υ′[i, δ] = Υ∗[i, δ] for all i ∈ [m−1], and Υ′[m, j] =
Υ∗[m, j] for all j ∈ [δ − 1] (so neither Case (b) nor (c) holds), but Υ′[
, k]
= Υ∗[
, k]
for some
 ∈ [m − 1], k ∈ [δ − 1]. We also assume Case (a) does not hold; otherwise
we would not consider Case (d). In this case we will specify two transitions of M2×2,
Υ′ → Υ′′ and Υ′′ → Υ′′′, so that d(Υ′′′,Υ∗) < d(Υ′,Υ∗).

Assume without loss of generality that Υ′[
, k] > Υ∗[
, k]. Hence, there must be
some k′ ∈ [δ − 1] such that Υ′[
, k′] < Υ∗[
, k′].

Now because we change only Q[i, j] values on the path from Υ to Υ∗, Υ′[
, k] >
Υ∗[
, k] implies Υ′[
, k] ≥ Υ∗[
, k] + (α�,k + 1), and Υ′[
, k′] ≤ Υ∗[
, k′] + (α�,k′ + 1).

By Lemma 9 and Υ′[m, δ] = Υ∗[m, δ] we know Υ′[m, δ] ≥ (α�,k + 1). Therefore
we can perform the transition (Υ′ → Υ′′), where Υ′′ is identical to Υ′ except for the
following entries:

Υ′′[
, k] = Υ′[
, k] − (α�,k + 1), Υ′′[
, δ] = Υ′[
, δ] + (α�,k + 1),

Υ′′[m, k] = Υ′[m, k] + (α�,k + 1), Υ′′[m, δ] = Υ′[m, δ] − (α�,k + 1).

By Lemma 9 we also know Υ′[
, δ] ≥ (α�,k′ + 1) and Υ′[m, k′] ≥ (α�,k′ + 1). Then
we can perform the transition (Υ′′ → Υ′′′) by changing the following entries:

Υ′′′[
, k′] = Υ′′[
, k′] + (α�,k′ + 1), Υ′′′[
, δ] = Υ′′[
, δ] − (α�,k′ + 1),

Υ′′′[m, k′] = Υ′′[m, k′] − (α�,k′ + 1), Υ′′′[m, δ] = Υ′′[m, δ] + (α�,k′ + 1).

SAMPLING CONTINGENCY TABLES 275

Finally we show that d(Υ′′′,Υ∗) < d(Υ′,Υ∗).

d1(Υ
′′′,Υ∗) = d1(Υ

′,Υ∗) − (α�,k + α�,k′ + 2),

d2(Υ
′′′,Υ∗) = d2(Υ

′,Υ∗) + NW +1
3NW

|α�,k − α�,k′ |,
d3(Υ

′′′,Υ∗) = d3(Υ
′,Υ∗) + NW +1

3NW
(α�,k + α�,k′ + 2),

d4(Υ
′′′,Υ∗) = d4(Υ

′,Υ∗) + NW +1
3NW

|α�,k − α�,k′ |.

Therefore

d(Υ′′′,Υ∗) = d(Υ′,Υ∗) − (2/3 − 1/3NW)(α�,k + α�,k′ + 2)

+ (2/3 + 2/3NW)|α�,k − α�,k′ |
≤ d(Υ′,Υ∗) − (2/3 − 1/3NW)(α�,k + α�,k′ + 2)

+ (2/3 + 2/3NW)(α�,k + α�,k′)

≤ d(Υ′,Υ∗) + (α�,k + α�,k′)/NW − (2 − 1/NW)(2/3)

≤ d(Υ′,Υ∗) + 2/m2δ2 − (2/3)

< d(Υ′,Υ∗).

By a repeated application of these cases, we construct a path joining Υ to some
Υ∗ that is in the inner domain of Σρ,ζ . As mentioned, we can also construct such a
path joining Ψ to some Ψ∗ in the inner domain, and then reverse all of the edges.
Following a brief analysis of the flow for this first phase in the next section, we show
how to join pairs of elements in the inner domain.

5.2.2. Analysis of flow for Phase 1. The definition of αi,j defines an equiva-
lence class on the set Σρ,ζ , where Φ ≡ Φ′ if and only if Φ[i, j] = Φ′[i, j] mod (αi,j + 1)
for every i ∈ [m − 1], j ∈ [δ − 1] (i.e., all the remainders R[i, j] and R′[i, j] are the
same).

Note that by definition of the αi,j values, and since Φ[i, j] ≤ {ρi, ζj} for all
i ∈ [m − 1], j ∈ [δ − 1] for every Φ ∈ Σρ,ζ , any equivalence class contains at most
(m2δ2)mδ contingency tables (there are at most m2δ2 choices for each Q[i, j] with
i ∈ [m− 1], j ∈ [δ− 1]). Therefore each equivalence class contains a constant number
of contingency tables.

The routing scheme given in Cases (a)–(d) defines a path Υ = Φ0,Φ1, . . . ,Φt = Υ∗

from Υ to Υ∗ for every Υ ∈ Σρ,ζ . We know Φh lies in the same equivalence class as
Υ and Υ∗ for every h. By our analysis of Cases (a)–(d), we know that for every
h ≥ 0, either d(Φh+1,Υ

∗) < d(Φh,Υ
∗) or d(Φh+2,Υ

∗) < d(Φh,Υ
∗). This means we

can define a subsequence of the path {Φh} such that (i) the subsequence contains at
least every second element of {Φh} and (ii) no contingency table ever appears twice
in the subsequence. Thus the length of the path from Υ to Υ∗ is at most 2(m2δ2)mδ.

To analyze the amount of flow from Phase 1 that may pass through Φ ∈ Σρ,ζ , we
rely on the fact that for any Υ ∈ Σρ,ζ the path from Υ to Υ∗ lies in the equivalence
class of Υ. Therefore, for any fixed Ψ, there are at most (m2δ2)mδ different contin-
gency tables Υ that may pass through Φ on the way to Υ∗. Also, by our bound on
the length of the path, we know that for any fixed Ψ and Υ, Φ may occur at most
(m2δ2)mδ times on the path from Υ to Υ∗.

Putting all of this information together, we see that for any fixed Ψ, the flow
through any Φ during Phase 1 is at most (m2δ2)2mδ. This implies that the total flow
through Φ during Phase 1 is at most |Σρ,ζ | (m2δ2)2mδ.

276 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

5.2.3. Phase 2. In this phase we describe how to route Υ∗ to Ψ∗, i.e., route
flow between any pair of elements in the inner domain of Σρ,ζ . We know that

Υ∗[i, j] = Q∗[i, j](αi,j + 1) + RΥ[i, j],

Ψ∗[i, j] = Q∗[i, j](αi,j + 1) + RΨ[i, j]

for all i ∈ [m− 1], j ∈ [m− 1], where Q∗[i, j] was defined in (19).

In this phase we route Υ∗ to Ψ∗ in (m−1)(δ−1) steps, by “fixing” one remainder
at a time. The key to this approach is part (i) of Lemma 9, which shows that for any
remainders R[i, j] satisfying R[i, j] ≤ αi,j for i ∈ [m−1], j ∈ [δ−1], if Φ is defined by

Φ[i, j] = Q∗[i, j](αi,j + 1) + R[i, j]

for i ∈ [m− 1], j ∈ [δ − 1], then Φ ∈ Σρ,ζ (where Φ[m, j] and Φ[i, δ] are defined as in
Lemma 9 to satisfy the row and column sums).

Suppose we order the “boxes” of the m × δ contingency tables in lexicographic
order: (1, 1), (1, 2), . . . , (1, δ − 1), (2, 1), . . . , (m − 1, 1), . . . , (m − 1, δ − 1). Letting
h = (h1, h2) denote any point in this lexicographic order, we use h+ to denote the
successor to h in this ordering.

Then we can define a series of tables

Υ∗ = Φ(1,1),Φ(1,2), . . . ,Φh, . . . ,Φ(m−1,δ−1) = Ψ∗

by

Φh[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ∗[i, j] if (i, j) ≤ h (and i
= m and j
= δ),
Υ∗[i, j] if (i, j) ≥ h+ (and i
= m and j
= δ),

ρi −
δ−1∑
j=1

Φh[i, j] if j = δ,

ζj −
m−1∑
i=1

Φh[i, j] if i = m.

By part (i) of Lemma 9 we know that Φh ∈ Σρ,ζ for all h, and therefore Φh → Φh+

is a transition of M2×2. (“Fixing” the (i, j) remainder, i.e., changing RΥ[i, j] into
RΨ[i, j], uses a transition of M2×2 that involves the four “boxes” (i, j), (i, δ), (m, j),
and (m, δ).)

Note that if we define a dual table Φ̄h by

Φ̄h[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Υ∗[i, j] if (i, j) ≤ h (and i
= m and j
= δ),
Ψ∗[i, j] if (i, j) ≥ h+ (and i
= m and j
= δ),

ρi −
δ−1∑
j=1

Φ̄h[i, j] if j = δ,

ζj −
m−1∑
i=1

Φ̄h[i, j] if i = m,

then Lemma 9(i) also tells us that Φ̄h ∈ Σρ,ζ .

Therefore we have a path of length (m− 1)(δ − 1) connecting Υ∗ to Ψ∗ in Σρ,ζ .

SAMPLING CONTINGENCY TABLES 277

5.2.4. Analysis of flow for Phase 2. We bound the amount of flow from
Phase 2 that can pass through any Φ ∈ Σρ,ζ . Similar to section 4.2, we do this using
an encoding. Suppose that we are given

(1) a pair of indices h = (h1, h2) specifying that Φ occurs as Φh on the path from
Υ∗ to Ψ∗ during phase 2;

(2) the dual contingency table Φ̄h;
(3) the integers QΥ[i, j] for all i ∈ [m], j ∈ [δ];
(4) the integers QΨ[i, j] for all i ∈ [m], j ∈ [δ].

Then we can construct the original pair of tables Υ and Ψ exactly. The information
in (1) and (2) first allows us to reconstruct Υ∗ and Ψ∗. Then using Υ∗, we may
reconstruct RΥ[i, j] for all i, j since we know (or may compute) Q∗[i, j]. Knowing
RΥ[i, j], together with the information in (3), we can find Υ exactly, and in a like
manner we can reconstruct Ψ. There are at most (m2δ2)mδ possible values for the
QΥ[i, j], and the same number for the QΨ[i, j].

Therefore, for any Φ ∈ Σρ,ζ , the total amount of flow that may pass through Φ
during Phase 2 is at most (mδ)(m2δ2)2mδ|Σρ,ζ |.

5.2.5. Finishing up. Combining Phases 1 and 2, the length of any (Υ,Ψ)-path
is at most 4(mδ)2mδ +(m−1)(δ−1). The total amount of flow that can pass through
any Φ ∈ Σρ,ζ is at most |Σρ,ζ |(2(mδ)4mδ + mδ(m2δ2)2mδ).

This establishes the condition on the flow f∗ that was cited in section 5.1. As
explained in that section we can alter this flow to get the new flow f , letting us
establish Theorem 8, proving rapid mixing of M2×2 on the set of m× n contingency
tables Σr,c.

REFERENCES

[1] A. I. Barvinok, A polynomial-time algorithm for counting integral points in polyhedra when
the dimension is fixed, Math. Oper. Res., 19 (1994), pp. 769–779.

[2] F. K. R. Chung, R. L. Graham, and S.-T. Yau, On sampling with Markov chains, Random
Structures Algorithms, 9 (1996), pp. 55–77.

[3] M. Cryan and M. Dyer, A polynomial time algorithm to approximately count contingency
tables when the number of rows is constant, J. Comput. System Sci., 67 (2003), pp. 291–
310.

[4] J. A. De Loera and B. Sturmfels, Algebraic unimodular counting, Math. Program., 96
(2003), pp. 183–203.

[5] P. Diaconis and B. Efron, Testing for independence in a two-way table: New interpretations
of the chi-square statistic (with discussion), Ann. Statist., 13 (1995), pp. 845–913.

[6] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, in Discrete Probability
and Algorithms, IMA Vol. Math. Appl. 72, D. Aldous, P. P. Varaiya, J. Spencer, and J.
M. Steele, eds., Springer-Verlag, New York, 1995, pp. 15–41.

[7] P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann.
Appl. Probab., 3 (1993), pp. 696–730.

[8] P. Diaconis and L. Saloff-Coste, Random Walk on Contingency Tables with Fixed Row
and Column Sums, Technical report, Department of Mathematics, Harvard University,
Cambridge, MA, 1995.

[9] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl.
Probab., 1 (1991), pp. 36–61.

[10] M. Dyer, Approximate counting by dynamic programming, in Proceedings of the 35th ACM
Symposium on Theory of Computing, San Diego, 2003, pp. 693–699.

[11] M. Dyer and C. Greenhill, Polynomial-time counting and sampling of two-rowed contingency
tables, Theoret. Comput. Sci., 246 (2000), pp. 265–278.

[12] M. Dyer, R. Kannan, and J. Mount, Sampling contingency tables, Random Structures Al-
gorithms, 10 (1997), pp. 487–506.

[13] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford University
Press, Oxford, UK, 1992.

278 CRYAN, DYER, GOLDBERG, JERRUM, AND MARTIN

[14] V. S. Grinberg and S. V. Sevast’yanov, Value of the Steinitz constant, Funktsional. Anal.
i Prilozhen., 14 (1980), pp. 56–57.

[15] D. Hernek, Random generation of 2 × n contingency tables, Random Structures Algorithms,
13 (1998), pp. 71–79.

[16] M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An approach to ap-
proximate counting and integration, in Approximation Algorithms for NP-Hard Problems,
D. S. Hochbaum, ed., PWS, Boston, 1996, pp. 482–520.

[17] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[18] B. Morris, Improved bounds for sampling contingency tables, in 3rd International Workshop
on Randomization and Approximation Techniques in Computer Science, Lecture Notes in
Comput. Sci. 1671, Springer-Verlag, New York, 1999, pp. 121–129.

[19] B. Morris, Random Walks in Convex Sets, Ph.D. thesis, Department of Statistics, University
of California, Berkeley, CA, 2000.

[20] B. Morris and A. Sinclair, Random walks on truncated cubes and sampling 0-1 knapsack
solutions, SIAM J. Comput., 34 (2004), pp. 195–226.

[21] J. Mount, Application of Convex Sampling to Optimization and Contingency Table Gen-
eration, Ph.D. thesis, Technical report CMU-CS-95-152, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, 1995.

[22] I. Pak, On sampling integer points in polyhedra, in Foundations of Computational Mathemat-
ics, World Scientific, River Edge, NJ, 2002, pp. 319–324.

[23] D. Randall and P. Tetali, Analyzing Glauber dynamics by comparison of Markov chains, J.
Math. Phys., 41 (2000), pp. 1598–1615.

[24] A. J. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow,
Combin. Probab. Comput., 1 (1992), pp. 351–370.

[25] E. Steinitz, Bedingt konvergente Reihen und konvexe Systeme, J. Reine Angew. Math., 143
(1913), pp. 128–175.

[26] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, New York, 1999.
[27] E. Vigoda, Improved bounds for sampling colorings, J. Math. Phys., 41 (2000), pp. 1555–1569.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 1, pp. 279–280

ERRATUM: DISTRIBUTED ANONYMOUS MOBILE ROBOTS:
FORMATION OF GEOMETRIC PATTERNS∗

ICHIRO SUZUKI† AND MASAFUMI YAMASHITA‡

Abstract. In this note we make a minor correction to a scheme for robots to broadcast their
private information. All major results of the paper [I. Suzuki and M. Yamashita, SIAM J. Comput.,
28 (1999), pp. 1347–1363] hold with this correction.

Key words. anonymous robots, broadcast

AMS subject classification. 68Q99

DOI. 10.1137/050631562

1. Correction. Algorithms ψf−point(2) in section 3 and ψgetview in section 4
of [1] use the following technique for all robots ri to simultaneously “broadcast” to
the other robots a privately chosen directed line �i (e.g., the positive x-axis of its
local coordinate system Zi). As outlined in the paragraph that follows the proof
of Theorem 3.4, the basic idea is that each ri moves repeatedly along �i in a fixed
direction each time it becomes active until, for each j �= i, it has seen rj at two or more
distinct locations. Robot ri can then figure out �j based on two distinct locations that
rj has occupied. In an effort to ensure at the same time that rj has also seen ri at two
or more distinct locations (so that it can figure out �i), we made an incorrect claim
that if ri has observed rj at three or more distinct locations, then rj has observed ri
at two or more distinct locations. This claim must be replaced by the following.

Proposition 1. For any integer m ≥ 1, if ri has seen rj at 2m distinct locations
in the time interval [0, t], then rj has seen ri at m or more distinct locations in [0, t).

Proof. Suppose ri becomes active at times t1 and t2, t1 < t2, and observes rj
at two distinct locations. Since rj occupies distinct locations at t1 and t2, rj must
become active in [t1, t2) and observe ri at a location on the line segment p1p2, where
p1 and p2 are the locations of ri on line �i at t1 and t2, respectively. This means that
rj observes ri at a distinct location each time ri observes rj at two distinct locations,
since ri moves along �i in a fixed direction each time it becomes active.

Therefore, to ensure that rj has seen ri at two distinct locations, ri must continue
to move along �i until it has seen rj at four or more distinct locations. However, if we
allow ri to simply stop moving as soon as it has observed rj at four or more distinct
locations, then rj may not be able to observe ri at four or more distinct locations.
This means that rj may never finish the broadcast.

Fortunately, broadcasting a line is usually a preliminary step that precedes a
main task. In the case of ψf−point(2), the ultimate goal of ri and rj is to move to
the midpoint p of their initial positions. (Because of the way �i and �j are chosen in
ψf−point(2), both ri and rj can compute p from �i and �j .) Note that when ri has seen
rj at four or more distinct locations, ri knows not only �j , but also that rj knows �i
(because by Proposition 1 rj has seen ri at two or more distinct locations). Thus ri

∗Received by the editors May 13, 2005; accepted for publication (in revised form) February 22,
2006; published electronically June 19, 2006.

http://www.siam.org/journals/sicomp/36-1/63156.html
†EECS, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (suzuki@cs.uwm.edu).
‡Department of Computer Science and Communications Engineering, Kyushu University, Fukuoka

812-8581, Japan (mak@csce.kyushu-u.ac.jp).

279

280 ERRATUM

can now safely quit broadcasting �i and move to (or toward) p, regardless of whether
rj has seen ri at four or more distinct locations. By moving to a point not on �i, ri
effectively “announces” to rj that it now knows �j . Robot rj eventually observes ri
at a location not on �i and learns that it can quit broadcasting �j as well and proceed
to p.

Based on the above discussion, ri can use the following scheme to broadcast �i to
all other robots:

1. ri moves along �i in a fixed direction each time it becomes active until, for
each j �= i, either
(a) it has seen rj at four or more distinct locations, or
(b) it observes that rj is at a location not on �j . (Note that ri knows �j by

the time this case occurs.)
2. Then it moves to a point not on �i.

Algorithm ψf−point(2), the proof of Theorem 3.3, and the paragraph that follows the
proof of Theorem 3.4 should be revised accordingly.

Algorithm ψgetview must be modified using a similar idea. In ψgetview, each robot
ri, initially located at the origin oi of its local coordinate system Zi, broadcasts three
lines: its x-axis, y-axis, and line Li through oi in direction f(di), where di is the
minimum distance between any two initial positions of the robots, and for x > 0,
f(x) = (1 − 1/2x) × 90◦ is a monotonically increasing function with range (0◦, 90◦).
(This function replaces f(x) = (1 − 1/2x) × 360◦ used in the paper. Both f(di) and
di are measured in terms of Zi.) Note that the orientations of the three lines are all
distinct.

Each robot ri first broadcasts its x-axis by moving along it in the positive direc-
tion. When ri knows that all other robots know ri’s x-axis and its orientation, i.e.,
for each j �= i, either

(a) ri has seen rj at four or more distinct locations, or
(b) ri observes that rj has changed the direction of its motion (ri knows the

x-axis of rj by the time this occurs),
it returns straight to oi and starts broadcasting its y-axis by moving along it in
the positive direction (thereby changing its direction of motion and announcing to
others that it now knows the x-axes of all other robots). Eventually all robots finish
broadcasting their x-axes and start broadcasting their y-axes. ri ends the broadcast
of its y-axis when it knows that all other robots know its y-axis and its orientation,
returns straight to oi, and starts broadcasting line Li by moving in direction f(di)
(thereby changing its direction of motion again, announcing to others that it knows
the y-axes of all other robots). Eventually all robots rj start broadcasting their lines
Lj . Once again, ri terminates this broadcast when it knows that all other robots
know Li, and returns to its initial position oi. By returning to oi, ri announces to
others that it has finished the broadcast of Li.

REFERENCE

[1] I. Suzuki and M. Yamashita, Distributed anonymous mobile robots: Formation of geometric
patterns, SIAM J. Comput., 28 (1999), pp. 1347–1363.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 281–309

DOMINATING SETS IN PLANAR GRAPHS: BRANCH-WIDTH AND
EXPONENTIAL SPEED-UP∗

FEDOR V. FOMIN† AND DIMITRIOS M. THILIKOS‡

Abstract. We introduce a new approach to design parameterized algorithms on planar graphs
which builds on the seminal results of Robertson and Seymour on graph minors. Graph minors
provide a list of powerful theoretical results and tools. However, the widespread opinion in the
graph algorithms community about this theory is that it is of mainly theoretical importance. In this
paper we show how deep min-max and duality theorems from graph minors can be used to obtain
exponential speed-up to many known practical algorithms for different domination problems. Our
use of branch-width instead of the usual tree-width allows us to obtain much faster algorithms. By
using this approach, we show that the k-dominating set problem on planar graphs can be solved in

time O(215.13
√
k + n3).

Key words. branch-width, tree-width, dominating set, planar graph, fixed-parameter algorithm

AMS subject classifications. 05C35, 05C69, 05C83, 05C85, 68R10

DOI. 10.1137/S0097539702419649

1. Introduction. Dominating Set is a classic NP-complete graph problem
which fits into the broader class of domination and covering problems on which hun-
dreds of papers have been written. (The book of Haynes, Hedetniemi, and Slater [32]
is a nice source for further references on the dominating set problem.) The problem
Planar Dominating Set asks, given a planar graph G and a positive k, whether G
has a dominating set of size at most k. It is well known that the Planar Dominating

Set (as well as several variants of it) is NP-complete. In this paper we design exact
fixed-parameter algorithms (which run fast provided that the parameter k is small).
The theory of fixed-parameter algorithms and parameterized complexity has been
thoroughly developed over the past few years; see, e.g., [1, 3, 4, 8, 12, 13, 21, 23, 24].

The last six years have seen dramatic developments and improvements to the

design of subexponential algorithms with running times of 2O(
√
k)nO(1) for different

planar graph problems; see, e.g., [1, 4, 8, 9, 13, 14, 22, 31, 35]. For example, the
first algorithm for the Planar Dominating Set appeared in [2], with running time
O(8kn). The first algorithm with a sublinear exponent was given by Alber et al. in [1]

and its running time was O(269.98
√
kn). A time O(249.88

√
kn) algorithm was obtained

in [4], and Kanj and Perković [35] announced an algorithm of running time O(227
√
kn).

A common method for solving Planar Dominating Set is to prove that every
planar graph with a dominating set of size at most k has tree-width at most c

√
k, where

c is a constant. With some work (sometimes very technical) a tree decomposition
of width at most c

√
k + O(1) is constructed, and standard dynamic programming

techniques on graphs of bounded tree-width are implemented. Currently, the fastest

∗Received by the editors December 17, 2002; accepted for publication (in revised form) December
6, 2005; published electronically June 19, 2006. An extended abstract of the results of this paper
appeared in [25].

http://www.siam.org/journals/sicomp/36-2/41964.html
†Department of Informatics, University of Bergen, N-5020 Bergen, Norway (fomin@ii.uib.no).

The work of this author was supported by the Norwegian Research Council.
‡Department of Mathematics, National and Capodistrian University of Athens Panepistimioupo-

lis, GR-15784, Athens, Greece (sedthilk@lsi.upc.edu). The work of this author was supported by the
Spanish CICYT project TIN-2004-07925 (GRAMMARS).

281

282 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

dynamic programming algorithm for a dominating set on graphs of tree-width at most

t runs in O(22tn) steps and was given by Alber et al. in [1]. This implies an O(22c
√
kn)

step algorithm for the Planar Dominating Set. Let

ctw= min{c | if G is planar and dominated by k vertices, then tw(G)≤ c
√
k+O(1)}.

The challenge in this approach is that a small bound for ctw is required for most
practical applications. The first bound for ctw appeared in [1] and was ctw < 6

√
34 =

34.98, while the next improvement was given by Kanj and Perković in [35], who proved
that ctw < 16.5.

The main tool of this paper is the branch-width of a graph. Branch-width was
introduced by Robertson and Seymour in their graph minors series of papers sev-
eral years after tree-width. These parameters are rather close, but surprisingly many
theorems of the graph minors series are easier to prove when one uses branch-width
instead of tree-width. Nice examples of the use of branch-width in proof techniques
can be found in [38] and [39]. Another powerful property of branch-width is that it
can be naturally generalized for hypergraphs and matroids. A good example of gen-
eralization of Robertson and Seymour theory for matroids by using branch-width is
the paper by Geelen, Gerards, and Whittle [29]. Algorithms for problems expressible
in monadic second-order logic on matroids of bounded branch-width are discussed
by Hlinĕný [34]. Alekhnovich and Razborov [5] use branch-width of hypergraphs to
design algorithms for SAT.

From a practical point of view, branch-width is also promising. For some prob-
lems, branch-width is more suitable for actual implementations. Cook and Seymour
[10, 11] used branch decompositions to solve the ring routing problem, related to the
design of reliable cost-effective SONET networks and to solving TSP (see also [7, 19]).
In theory, there is not a big difference between tree-width and branch-width based
algorithms. However in practice, branch-width is sometimes easier to use. The ques-
tion due to Bodlaender (private communication) is the following: Are there examples
where the constant factors for branch-width algorithms are significantly smaller than
for their tree-width counterparts? This paper is partially motivated1 by this question.

Our results. In this paper we introduce a new approach for solving the Planar

Dominating Set problem. Our approach is based on branch-width and provides

an algorithm of running time O(215.13
√
k + n3), which is a significant step toward a

practical algorithm. Instead of constructing a tree decomposition and proving that
the width of the obtained tree decomposition is upper bounded by c

√
k, we prove

a combinatorial result relating the branch-width with the domination number of a
planar graph. The proof of the combinatorial bounds is complicated and is based on
nice properties of branch-width, which follow from deep results of the graph minors
series.

Our proof is not constructive, in the sense that it cannot be turned into a polyno-
mial algorithm that constructs the corresponding branch decomposition. Fortunately,
there is a well-known algorithm due to Seymour and Thomas for computing an opti-
mal branch decomposition of a planar graph in O(n4) steps. We stress that this algo-
rithm does not have the so-called enormous hidden constants and is really practical.

1One of the challenges that appeared during the workshop “Optimization Problems, Graph
Classes and Width Parameters” (Centre de Recerca Matemàtica, Bellaterra, Spain, November 15–
17, 2001), was the following question: Is it possible, using bounded branch-width instead of bounded
tree-width, to obtain more efficient solutions for Planar Dominating Set and other parameterized
problems?

DOMINATING SETS IN PLANAR GRAPHS 283

(We refer to the work of Hicks [33] on implementations of the Seymour and Thomas
algorithm; see also [30] for a recent algorithm that runs in O(n3) steps.)

Our main combinatorial result is that for every planar graph G with a dominating
set of size ≤ k, the branch-width of G is at most 3

√
4.5

√
k < 6.364

√
k. We combine

this bound with the following algorithmic results: (i) the algorithm of Seymour and
Thomas for planar branch-width, (ii) the results of Alber, Fellows, and Niedermeier
[3] on a linear problem kernel for Planar Dominating Set, and (iii) a new dynamic
programming algorithm for solving the dominating set problem on graphs of bounded
branch-width (see subsection 4.2). As a result, we obtain an algorithm of running

time O(215.13
√
k + n3).

According to Robertson and Seymour [36], for any graph G with at least three
edges, the tree-width of G is always bounded by 3

2 times its branch-width. This result,
in combination with our bound, implies that ctw < 9.546. To our knowledge, this gives
an improvement on any other bound for the tree-width of planar graphs dominated
by k vertices.

Organization of the paper. In section 2, we give basic definitions and state
some known theorems. We also present how a theorem of Robertson, Seymour, and
Thomas can be directly used to prove that every planar graph with a dominating
set of size ≤ k has branch-width at most ≤ 12

√
k + 9. This observation (combined

with the results discussed in section 4) already implies an algorithm for the Planar

Dominating Set problem with running time O(228.56
√
k+n3), where n is the number

of vertices of G. This is already a strong improvement (for large k) on the result of

Alber et al. in [1] and is close to the running time O(227
√
kn) of the algorithm of Kanj

and Perković in [35].

Section 3 is devoted to the proof of Theorem 3.22, the main combinatorial result
of the paper. The proof of this result is complicated, and we split it into several
parts. In subsection 3.1, we give technical results about branch decompositions. These
results are based on the powerful theorem of Robertson and Seymour on the branch-
width of dual graphs. We emphasize that these results are crucial for our proof. In
subsection 3.2, we define the notion of the extension of a graph and prove that the
branch-width of an extension is at most three times the branch-width of the original
graph. In section 3.3 we introduce the notion of nicely dominated graphs, which
is a suitable “normalization” of the structure of the dominated planar graphs. In
subsection 3.4, we explain how nicely dominated graphs can be gradually decomposed
into simpler ones so that the branch-width of the original graph is bounded by the
branch-width of some “enhanced version” of the simpler ones. In subsection 3.5 we
introduce the prime nicely dominated graphs as those that are “the simplest possible”
with respect to the decomposition of subsection 3.4. In subsection 3.6, we prove that
any prime nicely dominated graph G is “contained” in the extension of a simpler
planar graph denoted as red(G). In subsection 3.7 we use this fact along with the
results of subsections 3.2, 3.4, and 3.6 to prove that bw(G) ≤ 3 · bw(red(G)). By
its construction, all the vertices of red(G) are vertices of the dominating set D. The
result follows because, according to [28], bw(red(G)) ≤

√
4.5 · |D|.

Section 4 contains discussions on algorithmic consequences of the combinatorial
result. Subsection 4.1 describes the general algorithmic scheme that we follow. Sub-
section 4.2 contains a dynamic programming algorithm for the solving dominating set
problem on graphs of branch-width ≤ � and m edges, in time O(31.5·�m).

In section 5 we discuss the optimality of our results (subsection 5.1) and provide
some concluding remarks and open problems (subsection 5.2).

284 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

2. Definitions and preliminary results. Let G be a graph with vertex set
V (G) and edge set E(G). For every nonempty W ⊆ V (G), the subgraph of G induced
by W is denoted by G[W]. A vertex v ∈ V (G) of a connected graph G is called a cut
vertex if the graph G − {v} is not connected. A connected graph on at least three
vertices without a cut vertex is called 2-connected. Maximal 2-connected subgraphs of
a graph G or induced edges whose two endpoints are cut vertices are called 2-connected
components.

Let Σ be a sphere. By Σ-plane graph G we mean a planar graph G with the vertex
set V (G) and the edge set E(G) drawn in Σ. To simplify notations, we usually do not
distinguish between a vertex of the graph and the point of Σ used in the drawing to
represent the vertex, or between an edge and the open line segment representing it. If

Δ ⊆ Σ, then Δ denotes the closure of Δ, and the boundary of Δ is Δ̂ = Δ ∩ Σ − Δ.
We denote the set of the faces of the drawing by R(G). (Every face is an open set.)
An edge e (a vertex v) is incident to a face r if e ⊆ r̄ (v ⊆ r̄). We do not distinguish
between a boundary of a face and the subgraph of the drawing induced by edges
incident to the face. The length of a face r is the number of edges incident to r.
Δ ⊆ Σ is an open disc if it is homeomorphic to {(x, y) : x2 + y2 < 1}. Let C be
a cycle in a Σ-plane graph G. By the Jordan curve theorem, C bounds exactly two
discs. For a vertex x ∈ V (G), we call a disc Δ bounded by C x-avoiding if x �∈ Δ.
We call a face r ∈ R(G) square face if r̂ is a cycle of length four.

A set D ⊆ V (G) is a dominating set in a graph G if every vertex in V (G)−D is
adjacent to a vertex in D. Graph G is D-dominated if D is a dominating set in G.

For a hypergraph G we denote by V (G) its vertex (ground) set and by E(G) the set
of its hyperedges. A branch decomposition of a hypergraph G is a pair (T, τ), where T
is a tree with vertices of degree one or three and τ is a bijection from E(G) to the set
of leaves of T . The order function ω : E(T) → 2V (G) of a branch decomposition maps
every edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists
of all vertices v ∈ V (G) such that there exist edges f1, f2 ∈ E(G) with v ∈ f1 ∩ f2,
and such that the leaves τ(f1), τ(f2) are in different components of T − {e}.

The width of (T, τ) is equal to maxe∈E(T) |ω(e)|, and the branch-width of G, bw(G),
is the minimum width over all branch decompositions of G.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y and remove
all loops and duplicate edges. A graph H obtained by a sequence of edge contractions
is said to be a contraction of G. H is a minor of G if H is a subgraph of a contraction
of G. We use the notation H 	 G (resp., H 	c G) when H is a minor (a contraction)
of G. It is well known that H 	 G or H 	c G implies bw(H) ≤ bw(G). Moreover,
the fact that G has a dominating set of size k and H 	c G imply that H has a
dominating set of size ≤ k (which is not true for H 	 G).

For planar graphs the branch-width can be bounded in terms of the domination
number by making use of the following result of Robertson, Seymour, and Thomas
(Theorems 4.3 in [36] and 6.3 in [38]).

Theorem 2.1 (see [38]). Let k ≥ 1 be an integer. Every planar graph with no
(k, k)-grid as a minor has branch-width ≤ 4k − 3.

To give an idea on how results from graph minors can be used on the study
of dominating sets in planar graphs, we present the following simple consequence of
Theorem 2.1.

Lemma 2.2. Let G be a planar graph with a dominating set of size ≤ k. Then
bw(G) ≤ 12

√
k + 9.

DOMINATING SETS IN PLANAR GRAPHS 285

Proof. Suppose that bw(G) > 12
√
k+9. By Theorem 2.1, there exists a sequence

of edge contractions or edge/vertex removals reducing G to a (ρ, ρ)-grid where ρ =
3
√
k+3. We apply to G only the contractions from this sequence and call the resulting

graph J . J contains a (ρ, ρ)-grid as a subgraph. As J 	c G, J also has a dominating
set D of size ≤ k. A vertex in D cannot dominate more than nine internal vertices
of the (ρ, ρ)-grid. Therefore, k ≥ (ρ − 2)2/9, which implies ρ ≤ 3

√
k + 2 = ρ − 1, a

contradiction.
In the remaining part of the paper we show how the above upper bound for

the branch-width of a planar graph in terms of its dominating set number can be
strongly improved. Our results will use as a basic ingredient the following theorem,
which is a direct consequence of the Robertson and Seymour min-max Theorem 4.3 in
[36] relating tangles and branch-width and Theorem 6.6 in [37] establishing relations
between tangles of dual graphs. Since the result is not mentioned explicitly in the
articles of Robertson and Seymour, we provide here a short explanation of how it can
be derived.

We denote as K2
2 the graph consisting of two vertices connected by a double edge.

Notice that K2
2 is a dual of itself; therefore, if G contains K2

2 as a minor, then its dual
G∗ also contains K2

2 as a minor.
Theorem 2.3. Let G be a Σ-plane graph that contains K2

2 as a minor and let
Gd be its dual. Then bw(G) = bw(Gd).

Proof. A separation of a graph G is a pair (A,B) of subgraphs with A ∪ B = G
and E(A ∩B) = ∅, and its order is |V (A ∩B)|. A tangle of order θ ≥ 1 is a set T of
separations of G, each of order less than θ, such that

1. for every separation (A,B) of G of order less than θ, T contains one of (A,B)
and (B,A);

2. if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪A2 ∪A3 �= G; and
3. if (A,B) ∈ T , then V (A) �= V (G).

The tangle number θ(G) of G is the maximum order of tangles in G. By the result
of Robertson and Seymour [36, Theorem 4.3], for any graph G of branch-width at least
two, θ(G) = bw(G). Since bw(K2

2) = 2 and K2
2 	 G, we have that θ(G) = bw(G).

By similar arguments, θ(Gd) = bw(Gd).
Let G be a graph 2-cell embedded in a connected surface Σ. A subset of Σ meeting

the drawing only at vertices of G is called G-normal. The length of a G-normal arc
is the number of vertices it meets. A tangle T of order θ is respectful if, for every
homeomorphic to a circle G-normal arc N in Σ of length less than θ, there is a closed
disk Δ ⊆ Σ with Δ̂ = N such that the separation (G ∩ Δ, G ∩ Σ − Δ) ∈ T . By the
first tangle property, every tangle T of a graph embedded in a sphere is respectful.

By [37, Theorem 6.6], for every 2-cell embedded graph G on a connected surface
Σ, G has a respectful tangle of order θ if and only if its dual Gd does. This implies
that θ(G) = θ(Gd) and the theorem follows.

For our bounds, we need an upper bound on the size of branch-width of a planar
graph in terms of its size. The best published bound for the branch-width that we
were able to find in the literature is bw(G) ≤ 4

√
|V (G)| − 3 which follows directly

from Theorem 2.1. An improvement of this inequality can be found in [28]. This proof
is based on a relation between slopes and majorities, the two notions introduced by
Robertson and Seymour in [36] and Alon, Seymour, and Thomas in [6], respectively.

Theorem 2.4 (see [28]). For any planar graph G, bw(G) ≤
√

4.5 · |V (G)|.

3. Bounding branch-width of D-dominated planar graphs. This section
is devoted to the proof of the main combinatorial result of this paper: The branch-

286 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

width of any planar graph with a dominating set of size k is at most 3
√

4.5
√
k. The

idea of the proof is to show that for every planar graph G with a dominating set of
size k there is a graph H on at most k vertices such that bw(G) ≤ 3 · bw(H). Then
Theorem 2.4 will do the rest of the job.

The construction of the graph H and the proof of bw(G) ≤ 3 · bw(H) is not
direct. First we prove that every planar graph with a dominating set D is a minor
of some graph with a nice structure. We call these “structured” graphs nicely D-
dominated. For a nicely D-dominated planar graph G we show how to define a graph
red(G) on |D| vertices. The most complicated part of the proof is the proof that
bw(G) ≤ 3 · bw(red(G)) (clearly this implies the main combinatorial result). The
proof of this inequality is based on a more general result about isomorphism of special
hypergraphs obtained from G and red(G) (Lemma 3.16) and the structural properties
of nicely D-dominated graphs.

3.1. Auxiliary results. In this section we obtain some useful technical results
about branch-width.

Lemma 3.1. Let G1 and G2 be hypergraphs with one hyperedge in common, i.e.,
V (G1) ∩ V (G2) = f and {f} = E(G1) ∩ E(G2). Then bw(G1 ∪ G2) ≤ max{bw(G1),
bw(G2), |f |}. Moreover, if every vertex v ∈ f has degree ≥ 2 in at least one of the
hypergraphs (i.e., v is contained in at least two edges in G1 or in at least two edges in
G2), then bw(G1 ∪ G2) = max{bw(G1),bw(G2)}.

Proof. Clearly, bw(G1 ∪ G2) ≥ max{bw(G1),bw(G2)}.
For i = 1, 2, let (Ti, τi) be a branch decomposition of Gi of width ≤ k and let

ei = {xi, yi} be the edge of Ti having as endpoint the leaf τi(f) = xi. We construct
tree T as follows. First we remove the vertices xi and add edge {y1, y2}. Then we
subdivide {y1, y2} by introducing a new vertex y. Finally we add vertex x and make
it adjacent to y.

We set τ(f) = x. For any other edge g ∈ E(G1) ∪ E(G2) we set τ(g) = τ1(g) if
g ∈ E(G1) and τ(g) = τ2(g) otherwise.

Because |ω({y1, y})| = |ω({y2, y})| = |ω({x, y})| ≤ |f | and for any other edge of
T , its order is equal to the order of the corresponding edge in one of the Ti’s, we have
that (T, τ) is a branch decomposition of width ≤ max{k, |f |}.

If every vertex v of f has degree ≥ 2 in one of the hypergraphs, then |f | ≤
max{|ω(e1)|, |ω(e2)|} ≤ k. Thus in this case, (T, τ) is a branch decomposition of
width ≤ k.

Let G be a connected Σ-plane graph with all vertices of degree at least two. For
a vertex x of G and a pair (z, y) of two of its neighbors, we call (z, y) a pair of
consecutive neighbors of x if edges {x, z}, {x, y} appear consecutively in the cyclic
ordering of the edges incident to x. (Notice that if x has only two neighbors y and z,
then both (y, z) and (z, y) are pairs of consecutive neighbors of x.)

Lemma 3.2. Let G be a planar graph. Then G is the minor of a planar 2-
connected graph H such that bw(H) = max{bw(G), 2}.

Proof. We use induction on the number of vertices in G. Every graph on at most
three vertices is the minor of a complete graph on three vertices, which is 2-connected
and has branch-width two. Suppose that the lemma is correct for every planar graph
on at most n vertices.

Let G be a graph on n + 1 vertices.
Case A. G is 2-connected. In this case the lemma trivially holds.
Case B. G is connected (but not 2-connected). Then G has a cut vertex x. Let

V1, V2, . . . , Vk be the vertex sets of the connected components of G− {x}. Let G1 be

DOMINATING SETS IN PLANAR GRAPHS 287

the subgraph of G induced by V1 ∪ {x} and let G2 be the subgraph of G induced by
V2 ∪ V3 ∪ · · · ∪ Vk ∪ {x}.

By the induction assumption, there are 2-connected planar graphs Hi, i = 1, 2,
such that bw(Hi) = max{bw(Gi), 2}, and Gi ≺ Hi.

Planar graphs H1 and H2 have only one common vertex x, and thus the graph
H1 ∪ H2 is also planar. Let H be a Σ-plane graph which is a drawing of H1 ∪ H2.
Let a and b be two consecutive neighbors of x in H (i.e., vertices such that the edges
{a, x}, {b, x} are incident to the same face), where a ∈ V (H1) and b ∈ V (H2). We
denote by H ′ the graph obtained from H by drawing the edge {a, b} so that it does
not intersect other edges of H (this is possible because {a, x}, {b, x} are incident to
the same face). Let us remark that H ′ is 2-connected and contains H (and therefore
G) as a minor.

The complete graph K on three vertices {a, b, x} has one common edge {a, b} with
H1. The degrees of a and x in K are two, and at least two in H1 (H1 is 2-connected).
By Lemma 3.1, we have that

bw(H1 ∪K) = max{bw(H1), 2} = max{bw(G1), 2}.
By applying Lemma 3.1, for H1 ∪K and H2, we arrive at

bw(H ′) = bw(H1 ∪H2 ∪K) = max{bw(G1),bw(G2), 2} ≤ max{bw(G), 2}.
Since G is the minor of H ′, we have that bw(H ′) = max{bw(G), 2}.

Case C. G is not connected. Let F be the graph obtained from G by adding
an edge connecting two connected components. By making use of Lemma 3.1, it
is easy to show that bw(F) ≤ max{bw(G), 2}, and this case can be reduced to
Case B.

A graph G is weakly triangulated if all its faces are of length two or three. A graph
is (2, 3)-regular if all its vertices have degree two or three. Notice that the dual of a
weakly triangulated graph is (2, 3)-regular and vice versa.

Lemma 3.3. Every 2-connected Σ-plane graph G has a weak triangulation H such
that bw(H) = bw(G).

Proof. Because G is 2-connected every face of G is bounded by a cycle. Suppose
that there is a face r of G bounded by a cycle C = (x0, . . . , xs−1), s ≥ 4. We show
that there are vertices xi and xj that are not adjacent in C such that the graph G′

obtained from G by adding the edge {xi, xj} has bw(G′) = bw(G). By applying this
argument recursively, one obtains a weak triangulation of G of the same branch-width.

If there are vertices xi and xj that are adjacent in G and are not adjacent in C,
then we can draw a chord joining xi and xj in r. Because G is 2-connected it holds
that bw(G) ≥ 2 and, therefore, the addition of multiple edges does not increase the
branch-width. Suppose now that the cycle C is chordless. Let (T, τ) be a branch
decomposition of G and let ω be its order function. Every edge f of T corresponds
to the partition of E(G) into two sets. One of these sets contains at least �|C|/2�≥ 2
edges of C. By induction on the number of edges in G, it is easy to show that there is
always an edge f of T such that for the corresponding partition (E1, E2) of E(G), the
set E1 contains exactly two edges of C. Let e1, e2 be such edges. Because C is chordless
and its length is at least four, we have that ω(f) contains at least two vertices, say
xi and xj , of C that are not adjacent. Then adding edge {xi, xj} does not increase
the branch-width. (The decomposition can be obtained from T by subdividing f and
adding the leaf corresponding to {xi, xj} to the vertex subdividing f .)

In the next lemma we use powerful duality results of Robertson and Seymour.
Moreover, the implications of these results play the crucial role in our proof.

288 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Fig. 1. The steps 1, 2, and 3 of the definition of the function ext.

Lemma 3.4. Every 2-connected Σ-plane graph G is the contraction of a (2, 3)-
regular Σ-plane graph H such that bw(H) = bw(G).

Proof. Let Gd be the dual graph of G. By Theorem 2.3, bw(Gd) = bw(G) (the
dual of a 2-connected graph is 2-connected, and any 2-connected graph contains K2

2 as
a minor). By Lemma 3.3, there is a weak triangulation Hd of Gd such that bw(Hd) =
bw(Gd). The dual of Hd, which we denote by H, contains G as a contraction (each
edge removal in a planar graph corresponds to an edge contraction in its dual and vice
versa). Applying Theorem 2.3 the second time, we obtain that bw(H) = bw(Hd).
Hence, bw(H) = bw(G). Since Hd is weakly triangulated, we have that H is (2, 3)-
regular.

3.2. Extensions of Σ-plane graphs. Let G be a connected Σ-plane graph
where all the vertices have degree at least two. We define the exension of G, ext(G),
as the hypergraph obtained from G by making use of the following three steps (see
Figure 1 for an example).

Step 1. For each edge e ∈ E(G), duplicate e and then subdivide each of its two
copies twice. That way, each edge e = {x, y} of G is replaced by a cycle denoted
as Cx,y = (x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) (indexed in clockwise order). Let G1 be the

resulting graph.
Step 2. For each vertex x ∈ V (G) and each pair (y, z) of consecutive neighbors of x

(in G), identify the edges {x, x−
x,y} and {x, x+

x,z} in G1. Let G2 be the resulting graph.
Step 3. The hypergraph ext(G) is defined by setting ext(G) = (V (G2), {Cx,y |

{x, y} ∈ E(G)}).
From the above construction, if H = ext(G), then there exists a bijection θ :

E(G) → E(H) mapping each edge e = {x, y} to the hyperedge formed by the vertices
of Cx,y. See Figure 1 for an example of the definition of ext.

Lemma 3.5. For any (2, 3)-regular Σ-plane graph G, bw(ext(G)) ≤ 3 · bw(G).
Proof. Let (T, τ) be a branch decomposition of G of width ≤ k. By the definition

of ext(G), there is a bijection θ : E(G) → E(ext(G)) defining which edge of G is
replaced by which hyperedge of ext(G). Let L be the set of leaves in T . For ext(G)
we define a branch decomposition (T, τ ′) with a bijection τ ′ : E(ext(G)) → L such
that τ ′(t) = θ(τ(t)). We use the notations ω and ω′ for the order functions of (T, τ)
and (T, τ ′), respectively.

We claim that (T, τ ′) is a branch decomposition of ext(G) of width ≤ 3k. To
prove the claim we show that for any f ∈ E(T), |ω′(f)| ≤ 3 · |ω(f)|. In other words, we
need to show that it is possible to define a function σf mapping each vertex v ∈ ω(f)
to a set of three vertices of ω′(f) such that every vertex y ∈ ω′(f) is contained in
σf (x) for some x ∈ ω(f).

DOMINATING SETS IN PLANAR GRAPHS 289

Fig. 2. The construction of the value of σf (v) in the proof of Lemma 3.5.

Fig. 3. The construction of the branch decomposition of clE(H) in the proof of Lemma 3.6.

Let T1 and T2 be the components of T − {f}. We construct σf by distinguishing
two cases.

• The degree of v is three in G. We can assume that two of its incident edges,
say e1, e2, are images of leaves of T1 and one, say e3, is an image of a leaf in T2. We
define σf (v) = (θ(e1) ∩ θ(e3)) ∪ (θ(e2) ∩ θ(e3)). (This process is illustrated in the left
half of Figure 2.)

• The degree of v is two in G. We can assume that one of its incident edges, say
e1, is an image of some leaf of T1 and the other, say e2, is an image of a leaf in T2.
We define σf (v) = θ(e1) ∩ θ(e2) (this is illustrated in the right half of Figure 2).

Note that in both cases |σf (v)| = 3. Suppose now that y is a vertex in ω′(f).
Then y should be an endpoint of at least two hyperedges α and β of ext(G) and
without loss of generality we assume that τ ′(α) is a leaf of T1 and τ ′(β) is a leaf of
T2. By the definition of τ ′, this means that τ(θ−1(α)) is a leaf of T1 and τ(θ−1(β))
is a leaf of T2. By the construction of ext(G), θ−1(α) and θ−1(β) have a vertex x in
common; therefore x ∈ ω(f). From the definition of σf , we get that y ∈ σf (x). This
proves the relation |ω′(f)| ≤ 3 · |ω(f)|, and the lemma follows.

Let H be a planar hypergraph and let E ⊆ E(H). We set clE(H) = (V (H), EH),
where EH = E(H) − E ∪ {{x, y} ⊆ V (H) | ∃e∈E(H) : {x, y} ∈ e} (in other words, we
replace each hyperedge e ∈ E by a clique formed by connecting each pair of endpoints
of e).

Lemma 3.6. Let H be a hypergraph with every vertex of degree at least two. Then
for any E ⊆ E(H), bw(clE(H)) ≤ bw(H).

Proof. If (T, τ) is a branch decomposition of H, then we construct a branch
decomposition of clE(H) by identifying each leaf t where τ(t) ∈ E with the root of

a binary tree Tt that has
(|τ(t)|

2

)
leaves. The leaves of Tt are mapped to the edges of

the clique made up by pairs of endpoints in τ(t) (see also Figure 3).
Lemma 3.7. Let G and H be connected Σ-plane graphs with all vertices of mini-

mum degree at least two and such that G 	 H. Then bw(ext(G)) ≤ bw(ext(H)).
Proof. Let E′ (resp., E′′) be the set of edges that one should contract (resp.,

remove) in H in order to obtain G (clearly, we can assume that E′ ∩ E′′ = ∅). Let

290 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Fig. 4. The construction of the branch decomposition of clE(H) in the proof of Lemma 3.7.

θ be the bijection mapping edges of G to hyperedges of ext(G). If we prove that
ext(G) is a minor of clθ(E′∪E′′)(ext(H)), then the result will follow from Lemma 3.6.
To see this, for each e = {x, y} ∈ E′, we separate the edges of the clique re-
placing θ(e) = (x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) into two categories: We call {x+

x,y, y
−
x,y},

{x, y}, and {y+
x,y, x

−
x,y} horizontal and we call the rest unimportant. Moreover, for

any edge e = {x, y} ∈ E′′, we separate the edges of the clique replacing θ(e) =
(x, x+

x,y, y
−
x,y, y, y

+
x,y, x

−
x,y, x) into two categories: We call {x+

x,y, x
−
x,y} and {y+

x,y, y
−
x,y}

vertical and the rest useless. To obtain ext(G) from clE′(ext(H)) we first remove the
useless and the unimportant edges and then contract all the horizontal and vertical
ones (see Figure 4).

We are ready to state the main property of ext.

Lemma 3.8. Let G be a connected Σ-plane graph with all vertices of degree at
least two. Then bw(ext(G)) ≤ 3 · bw(G).

Proof. The branch-width of G is at least two, and by Lemma 3.2, G is the minor
of a 2-connected Σ-plane graph G′ such that bw(G′) = bw(G). By Lemma 3.4, G′ is
the contraction of a (2, 3)-regular Σ-plane graph H where bw(H) ≤ bw(G′). Notice
that G is a minor of H and both G and H are Σ-plane and connected and have all
vertices of degree at least two. By Lemma 3.7, bw(ext(G)) ≤ bw(ext(H)). Note
also that H is (2, 3)-regular. By Lemma 3.5, bw(ext(H)) ≤ 3 ·bw(H), and the result
follows.

3.3. Nicely D-dominated Σ-plane graphs. An important tool spanning all
of our proofs is the concept of unique D-domination. We call a D-dominated graph G
uniquely dominated if there is no path of length < 3 connecting two vertices of D. Let
us remark that this implies that each vertex x ∈ V (G) −D has exactly one neighbor
in D (i.e., is uniquely dominated).

We call a multiple edge {a, b} represented by lines l1, l2, . . . , lr of a D-dominated
Σ-plane graph G exceptional if

• a, b �∈ D;
• a and b are both adjacent to the same vertex in D;
• for any i, j, i �= j, each of the open discs bounded by li ∪ lj contains at least

one vertex of D.

For example, all the multiple edges in the graphs in Figure 5 are exceptional.

Lemma 3.9. For every 2-connected D-dominated Σ-plane graph G without mul-
tiple edges, there exists a Σ-plane graph H such that the following hold:

(a) G is a minor of H.
(b) H is uniquely D-dominated.
(c) All multiple edges of H are exceptional.

DOMINATING SETS IN PLANAR GRAPHS 291

Fig. 5. Example of the transformations T1, T2, and T3 in the proof of Lemma 3.9.

(d) For any face r of H, r̂ is either a triangle or a square.
(e) If the distance between vertices x, y ∈ D in H is three, then there exist at

least two distinct (x, y)-paths in H of length three.
(f) If a (closed) face r of H contains a vertex of D, then r̂ is a triangle.
(g) Every square face of H contains two edges ei, i = 1, 2, without common ver-

tices such that for each i = 1, 2, there exists a vertex xi ∈ D adjacent to both
endpoints of ei.

(h) If x, y ∈ D, then every two distinct (x, y)-paths of H of length three are
internally disjoint.

Proof. We construct a graph H, satisfying properties (a)–(f), by applying, one
after the other, on G the following transformations:

• T1. As long as there exists in G a vertex x with more than one neighbor y in
D, subdivide the edge {x, y}.

We call the resulting graph G1.
As G1 does not have multiple edges, properties (a), (c) are trivially satisfied.

Moreover, notice that, if G1 is not uniquely dominated, then T1 can be further
applied. Therefore, (b) holds for G1. For an example of the application of T1, see
the first step of Figure 5.

• T2. As long as G1 has a face r bounded by a cycle r̂ = (x0, . . . , xq−1), q ≥ 4,
and such that xi ∈ D for some i, 0 ≤ i ≤ q − 1, add in G1 the edge {xi−1, xi+1}
(indices are taken modulo q).

We call the resulting graph G2.
Notice that the vertices of r̂ are distinct because G2 is 2-connected. Clearly, G2

satisfies property (a). Recall now that G1 satisfies property (b). Therefore, if some
vertex xi ∈ r̂ is in D, then its neighbors xi−1 and xi+1 (the indices are taken modulo
q) are not in D. Therefore, property (b) holds also for G2. Notice that, if T2 creates
a multiple edge, then this can be only an exceptional multiple edge. Therefore, (c)
holds for G2. For an example of the application of T2, see the second step of Figure 5.

Finally note that none of the vertices of D is in a face of G2 of length ≥ 4.
We call a square face that satisfies property (g) solid.
• T3. As long as G2 has a face r that is not a solid square and such that r̂ =

(x0, . . . , xq−1), r ≥ 4, choose an edge in {{x1, x3}, {x0, x2}} that is not already present
in G2 and add it to G2.

We call the resulting graph G3.
The above transformation can always be applied because it is impossible that

both {x1, x3} and {x0, x2} are in the planar graph G3. Therefore, property (c) is an
invariant of T3. Clearly, G3 satisfies property (a). Property (b) is an invariant of T3
as the added edge has no endpoints in D. We have that all the faces of G3 are either

292 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Fig. 6. The transformations T4 and T5 in the proof of Lemma 3.6.

Fig. 7. Example of the transformation T4 in the proof of Lemma 3.6.

triangles or solid squares and therefore G3 also satisfies (d) and (g). For an example
of the application of T3, see the third step of Figure 5.

• T4. As long as G3 has a unique (x, y)-path P = (x, a, b, y), where x, y ∈ D,
apply the first transformation of Figure 6 on P .

We call the resulting graph G4.
It is easy to verify that properties (a)–(d) are invariants of T4. Also, it is easy

to see that the transformation of Figure 6 creates square faces with property (g) and
does not alter property (g) for square faces that already have been created. Moreover,
G4 satisfies (e) because each time we apply the transformation of Figure 6 the number
of pairs in D connected by unique paths decreases. Finally, none of the square faces
appearing (because of T4) contains a vertex in D. Thus (f) holds. For an example
of the application of T4, see Figure 7.

In order to give the transformation that enforces property (h) we need some defi-
nitions. Observe that if property (h) does not hold for G4, this implies the existence of
some pair of paths Pi = (x, a, bi, y), i = 1, 2. We call the graph O defined by this pair
an (h)-obstacle and we define its (h)-disc as the x-avoiding closed disc ΔO bounded
by the cycle (a, b1, y, b2, a). An (h)-obstacle is minimal if no (x, y)-path has vertices
contained in its (h)-disc. Notice that if G4 has an (h)-obstacle it also has a minimal
(h)-obstacle and vice versa. We call an (h)-obstacle hollow if its (h)-disc contains no
neighbor of a except b1 and b2. Notice that a hollow (h)-obstacle is always minimal.
We claim that in any hollow (h)-disc, vertices b1 and b2 are adjacent. Indeed, by
property (b), a is not adjacent to y in G4. Therefore b1, a, b2 are in a face of G4

that, from property (g), cannot be a square face (otherwise, property (b) would be
violated). Therefore, (b1, a, b2) is a triangle and the claim follows.

• T5. As long as G4 has a hollow (h)-obstacle O, apply the second transformation
of Figure 6 on edge {a, x} and the face bounded by (b1, b2, a).

We call the resulting graph G5.

DOMINATING SETS IN PLANAR GRAPHS 293

Fig. 8. Example of the transformation T5 in the proof of Lemma 3.6.

Fig. 9. Simple examples of nicely D-dominated Σ-plane graphs.

Notice that after T5 none of the properties (a)–(g) is altered by the application
of T5 (the arguments are the same as those used for the previous transformations).
Moreover, each time the second transformation of Figure 6 is applied, the number of
hollow (h)-obstacles decreases and no new nonhollow (h)-obstacles appear. For an
example of the application of T5, see Figure 8. To finish the proof, we show that T5
is able to eliminate all the (h)-obstacles. It remains to prove the following claim.

Claim. If a 2-connected D-dominated Σ-plane graph satisfies properties (b)–(g)
and contains a minimal (h)-obstacle, then it also contains a hollow (h)-obstacle.

Proof of claim. Let O = (P1, P2) be a minimal nonhollow (h)-obstacle with (h)-
disc ΔO and let O be the set containing O along with of all the minimal (h)-obstacles
that contain the edge {a, x} and whose (h)-disc is a subset of ΔO. If O1, O2 ∈ O and
ΔO1 ⊂ ΔO2 , then we say that O1 < O2 (clearly, for any O′ ∈ O − {O}, O′ < O).
Let us remark that relation “<” is a partial order on O and that all its minimal
elements are hollow (h)-obstacles. The claim follows and thus T5 is able to enforce
property (h).

Let G be a connected D-dominated Σ-plane graph satisfying properties (b)–(h)
of Lemma 3.9. We call such graphs nicely D-dominated Σ-plane graphs. For example,
the graphs of Figure 9 and the last graph in Figure 8 are nicely D-dominated Σ-plane
graphs (see also Figure 10 and all the graphs of Figure 11).

Given a nicely D-dominated Σ-plane graph G, we define T (G) as the set of all
the triangles (cycles of length three) containing a vertex of D. By property (f), for
every face r with r̂ ∩D �= ∅, r̂ ∈ T (G). (The inverse is not always correct; i.e., not
every triangle in T (G) bounds a face.) We call the triangles in T (G) D-triangles.

We also define C(G) as the set of all cycles consisting of two distinct paths of
length three connecting two vertices of D (these are indeed cycles because of property
(h) of nicely dominated graphs). Thus each cycle C in C(G) is of length six and is
the union of two length-three paths connecting its two dominating vertices.

We call the cycles in C(G) D-hexagons. The poles of a cycle C ∈ C(G) are the
vertices in D ∩ C. We call a D-triangle T (D-hexagon C) empty if one of the open
discs bounded in Σ by T (C) does not contain vertices of G. Notice that all empty

294 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Fig. 10. D-triangles and D-hexagons of the last graph of Figure 8.

D-triangles are boundaries of faces of G. For some examples of the above definitions
see Figure 10.

3.4. Decomposing nicely D-dominated Σ-planar graphs. In this subsec-
tion we show how nicely D-dominated planar graphs can be simplified. The idea is
based on the structure imposed by properties (b)–(h): Any nicely D-dominated pla-
nar graph can be seen as the result of gluing together two simpler structures of the
same type. This is described by the following two lemmata.

Lemma 3.10. Let G be a nicely D-dominated Σ-plane graph G and let T ∈ T (G)
be a nonempty D-triangle bounding the closed discs Δ1,Δ2. Let also Gi, i = 1, 2, be
the subgraph of G containing all vertices and edges included in Δi. Then Gi, i = 1, 2,
is a nicely Di-dominated graph for some Di ⊆ D and Gi has fewer vertices than G.

Proof. Let Di = D ∩ Δi, i = 1, 2. Clearly, Di ⊆ D. Moreover, as T is non-
empty, we have that |V (Gi)| < |V (G)|. Let us verify that properties (b)–(h) hold for
Gi, i = 1, 2. First of all we observe that, by the construction of Gi, two vertices in Gi

are adjacent if and only if they are adjacent in G. We will refer to this fact saying
that Gi preserves the adjacency of G. (Note that since G can have multiple edges, Gi

is not necessary an induced subgraph of G.)
To prove property (b), we show first that Gi is Di-dominated. For the sake of

contradiction, suppose that there exists a vertex a ∈ V (Gi) that is not dominated
by Di. As property (b) holds for G, there exists a vertex w ∈ D − Di so that a is
uniquely dominated by w in G. This means that w ∈ Σ − Δi and a ∈ Δi. Therefore,
a is a vertex of T . Because T is a D-triangle, there is some x ∈ D ∩ T . Since a is
adjacent in Gi to x and x �= w, we have a contradiction to the property (b) on G.
Now it remains to prove that Gi is uniquely D′-dominated and that this is a direct
consequence of the fact that Gi preserves the adjacency of G.

For property (c), let e = {v, u} be some multiple edge in Gi represented by edges
l1, . . . , lr, and suppose that x is the dominating vertex of T . As e is an exceptional
multiple edge in G and because of property (b), none of its endpoints is in D and
also x �∈ e. Let Δl,Δ

∗
l be the two closed discs defined by some pair lh, lj of edges

representing e. By the definition of Gi, lh ∪ lj ⊆ Δi, therefore one, say Δl, of Δl,Δ
∗
l

includes T . As x �∈ e, we have that x �∈ Δ̂l and Δl − Δ̂l contains some vertex of D.
Observe now that Δ∗

l ⊆ Δi. Therefore, if Δ∗
l − Δ̂∗

l does not contain vertices of D in
Gi, then the same holds also for G, which is a contradiction as e is exceptional in G.
It remains now to prove that v and u are adjacent to the same vertex of D in Gi.

DOMINATING SETS IN PLANAR GRAPHS 295

Fig. 11. Examples of the application of Lemmata 3.10 and 3.11.

Indeed, this is the case for G, and we let w be this vertex. If w �∈ Δi, then both v, u
should be vertices of T , which contradicts property (b). Therefore, w ∈ V (Gi) and
property (c) holds for Gi.

For (d), we stress that all the faces of Gi that are in Δi are also the faces of G.
Therefore, property (d) holds for all these faces. Also, it holds for the unique new
face r = Σ − Δi of Gi because r̂ is a triangle.

For property (e), let x, y be two vertices in Di of distance three in Gi. Let P 1
i

and P 2
i be two internally disjoint paths connecting x and y in G (these paths exist

because of properties (e) and (h) in G). Notice that (e) holds if we prove that both
P j
i , j = 1, 2, are paths of Gi, i = 1, 2, as well. Suppose to the contrary that one,

say P 1
i = (x, a, b, y), of P j

i , j = 1, 2, is not a path in Gi. This means that at least
one of a, b is in (Σ − Δi) ∩ V (G). It follows that two nonconsecutive vertices of P 1

i

are vertices of T . Therefore, the distance between x and y in G is at most two, a
contradiction to property (b) for G.

Suppose now that (f) does not hold for Gi. As (d) holds for Gi we have that
there exists a square in Gi containing a vertex of D. As Gi preserves the adjacency
of G, this square also should exist in G, a contradiction to (f) for G.

To prove (g), suppose that (a, b, c, d) is a square of Gi. As Gi preserves the
adjacency of G, (a, b, c, d) is also a square of G; therefore we may assume that there
are vertices z, w ∈ D where (z, a, b) and (w, c, d) are triangles of G. It is enough to
prove that {z, a}, {z, b}, {w, c}, and {w, d} are edges of Gi. Suppose to the contrary
that one of them, say {a, z}, is not an edge of Gi. As Gi preserves the adjacency of
G, this means that z �∈ V (Gi). In other words, we have that (z, a, b) is a triangle of
G where z ∈ (Σ−Δi)∩V (G) and {a, b} ∈ Δi ∩V (G). If this is true, then a, b should
be vertices of T ; therefore the distance in G between z and the dominating vertex
belonging in T is at most two, a contradiction to property (b).

Finally, if there exist two paths violating (h) in Gi the same also should happen
in G as Gi preserves the adjacency of G.

For an example of the application of Lemma 3.10, see the second step of Figure 11.
Lemma 3.11. Let G be a nicely D-dominated Σ-plane graph G and let C =

(x, a, b, y, c, d, x) be a nonempty D-hexagon with poles x, y bounding the closed discs
Δ1,Δ2. Let also Gi, i = 1, 2, be the graph containing all the edges and vertices included
in Δi and extended by adding the edges {b, c} and {a, d} (edges {b, c} and {a, d} are
placed outside Di to ensure planarity of Gi). Then Gi, i = 1, 2, is a nicely Di-
dominated graph for some Di ⊆ D and Gi, i = 1, 2, has fewer vertices than G.

Proof. Let G−
i be a graph where V (G−

i) = Δi ∩ V (G) and E(G−
i) = {e ∈ E(G) |

e is included in Δi}; i.e. G−
i , contains all edges and vertices included in Δi. Set

Di = D ∩ Δi, i = 1, 2. Therefore, Gi can be seen as the graph with V (Gi) = V (G−
i)

296 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

and E(Gi) = E(G−
i)∪{{b, c}∪{a, d}}. As in the proof of Lemma 3.10, we will say that

G−
i preserves the adjacency of G in the sense that two vertices in G−

i are adjacent if
and only if they are adjacent in G. We also have that Di ⊆ D and |V (Gi)| < |V (G)|.

Let us verify properties (b)–(h) for Gi, i = 1, 2.

To prove (b) we first claim that Gi is Di-dominated. If some vertex α ∈ V (Gi)−Di

is not dominated by Di, then it is dominated by some vertex w ∈ D −Di (property
(b) for G). This means that w ∈ Σ − Δi implying α ∈ C. Thus α ∈ {a, b, c, d}. But
this means that the distance between w, x ∈ D or the distance between w, y ∈ D
in G is ≤ 2, which also violates (b) for G. Therefore Gi is Di-dominated. Clearly,
as Gi preserves the adjacency of G, Gi should be uniquely dominated and (b) holds
for Gi.

For property (c), we will first prove that it holds for G−
i . Let e = {v, u} be some

multiple edge in G−
i represented by edges l1, . . . , lr. As e is an exceptional multiple

edge in G and because of property (b), none of its endpoints is in D and also x, y �∈ e.
Let Δl,Δ

∗
l be the two closed discs defined by some pair lh, lj of edges representing e.

By the definition of G−
i , lh ∪ lj ⊆ Δi, therefore one of Δl,Δ

∗
l , say Δl, includes C. As

x, y �∈ e, we have that x, y �∈ Δ̂l and Δl− Δ̂l contains some vertex of D. Observe now
that Δ∗

l ⊆ Δi. Therefore, if Δ∗
l − Δ̂∗

l does not contain vertices of D, then the same
holds also for G, which is a contradiction, as e is exceptional in G. It remains now
to prove that v and u are adjacent to the same vertex of D in G−

i . Since this holds
for G, we have that there exists a vertex w ∈ D such that {u,w}, {v, w} ∈ E(G).
If w �∈ Δi, then both v, u should be vertices of C, which contradicts property (b).
Therefore, w ∈ V (G−

i) and property (c) holds for G−
i . If now the addition of any, say

{b, c}, of {b, c}, {a, d} creates a multiple edge, then {b, c} should already be an edge
in G−

i . Suppose then that lold, lnew are two lines in Gi, representing {b, c}, and lnew

is the newly added one. As lnew �⊆ Di and lold ⊆ Di, it follows that the one of the
open discs defined by lold ∪ lnew contains y and the other contains x. Therefore, (c)
holds also for Gi.

Notice that all the faces of Gi that are included in Δi are also faces of Gi. The
boundaries of the new faces are the cycles (y, a, b), (a, b, c, d), and (x, c, b) that are all
either triangles or squares. Therefore, (d) holds for Gi.

If property (e) holds for G−
i , then it also holds for Gi. Let P be a (w, v)-path in

G−
i of length three. Property (e) holds trivially for G−

i if {w, v} = {x, y}. So suppose
that it is violated for some pair {w, v} �= {x, y}. Because (e) holds for G, we can find
a {w, v}-path P ′ = (w,α, β, v) of length three in G that is not a path in G−

i . As
{w, v} �= {x, y}, only one, say α, of α, β can be outside Δi. This means that w and β
are vertices of C. Since β ∈ {a, b, c, d}, we have that v is adjacent in G to a vertex in
{a, b, c, d}. This contradicts property (b) for G, as it implies the existence of a path
of length ≤ 2 connecting v ∈ D and one of the vertices x, y ∈ D.

It is easy to verify (f) for the new faces (x, a, d), (a, b, c, d), and (y, c, d) of Gi.
Suppose now that (f) is violated for some face of Gi that is also a face of G. As (d)
holds for Gi, we have that there exists a square in Gi containing a vertex of Gi. As
Gi preserves the adjacency of G, this square should exist also in G, a contradiction
to (f) for G.

Property (g) is trivial for the new square face of Gi bounded by (a, b, c, d). Let
us prove that (g) also holds for all the square faces of G−

i . Let r̂ = (α, β, γ, δ) be
the boundary of some square face r of G−

i . As G−
i preserves the adjacency of G,

(α, β, γ, δ) is also the boundary of some square face of G. Therefore, we may assume
that there are vertices z, w ∈ D where (z, α, β) and (w, γ, δ) are triangles of G. It is

DOMINATING SETS IN PLANAR GRAPHS 297

enough to prove that {z, α}, {z, β}, {w, γ}, and {w, δ} are all edges of G−
i . Suppose,

to the contrary, that one of them, say {a, z}, is not an edge of G−
i . As G−

i preserves
the adjacency of G, this means that z �∈ V (G−

i). In other words, we have that (z, α, β)
is a triangle of G, where z ∈ (Σ − Δi) ∩ V (G) and {α, β} ∈ Δi ∩ V (G). Then α, β
should be vertices of C different from x and y. Therefore, either z, x or z, y are at
distance at most two in G, contradicting property (b).

For (h), we observe that no path of length three in Gi connecting two vertices
of D can use the edges {a, d} and {b, c} in Gi. Indeed, if this is possible for one,
say {a, d}, of the edges {a, d} and {b, c}, then such a path would have extremes in
distance two from x, a contradiction to property (b) for Gi. Therefore, if there exist
two paths violating (h) in Gi, they should be paths of G−

i and also paths of G as G−
i

preserves the adjacency of G, a contradiction to property (b).
For an example of the application of Lemma 3.10, see steps 1, 3, and 4 of Figure 11.

3.5. Prime D-dominated Σ-plane graphs. A nicely D-dominated Σ-plane
graph G is a prime D-dominated Σ-plane graph (or just prime) if all its D-triangles
and D-hexagons are empty. For example, all the graphs in Figure 9 are prime.

Lemma 3.12. Let G be a prime D-dominated Σ-plane graph. If G contains two
vertices x, y ∈ D connected by three paths of length three, then V (P1)∪V (P2)∪V (P3) =
V (G).

Proof. By property (h), the paths Pi, i = 1, 2, 3, are mutually internally disjoint.
Then Σ − (P1 ∪ P2 ∪ P3) contains three connected components that are open discs.
We call them Δ1,2, Δ2,3, and Δ1,3 assuming that they do not contain vertices of
P3, P1, and P2, respectively. Let i, j, h be any three distinct indices of {1, 2, 3}. As
Pi ∪ Pj forms an empty D-hexagon, all the vertices of G should be contained in one,
say Δ, of the closed discs bounded by the cycle Pi ∪ Pj . Notice that Ph should be
entirely included in Δi,j because of its internal vertices. Therefore, Δ = Δi,j and thus
V (G) = V (G) ∩ Δi,j . Resuming, we have that V (G) = V (G) ∩ (Δ1,2 ∩ Δ2,3 ∩ Δ1,3)
and the lemma follows as Δ1,2 ∩Δ2,3 ∩Δ1,3 contains exactly the vertices of the paths
Pi, i = 1, 2, 3.

The graph Σ3
2 of Figure 11 is a graph satisfying the conditions of Lemma 3.12.

Let us recall that C(G) is the set of all cycles consisting of two distinct paths of
length three connecting two vertices of D. For a nicely D-dominated Σ-plane graph
G, we define its reduced graph, red(G), as the graph with vertex set D and where two
vertices x, y ∈ D are adjacent in red(G) if and only if the distance between x and y
in G is three. Let us stress that red(G) is a connected graph. The main idea of our
proof is that red(G) expresses a “good” part of the structure of a nicely D-dominated
graph G.

An important relation of a prime graph and its reduced graph is provided by the
following lemma.

Lemma 3.13. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3. Then
the mapping

φ :E(red(G))→C(G), where φ(e) =C if and only if the endpoints of e are in D∩C,

is a bijection.
Proof. Clearly, any D-hexagon C with poles x and y implies the existence of

a (x, y)-path in G and therefore C is the image of {x, y} ∈ E(red(G)). In or-
der to show that φ is a bijection, we have to show that for every e = {x, y} ∈
E(red(G)), there exists a unique D-hexagon C with poles x and y. By the definition
of red(G), x and y are within distance three in G. By properties (e) and (h) of nicely

298 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

D-dominated Σ-plane graphs, there are at least two internally disjoint paths connect-
ing x and y. Suppose to the contrary that G has at least three (x, y)-paths P1, P2, P3.
As |D| ≥ 3, G contains vertices that are not in V (P1)∪V (P2)∪V (P3), a contradiction
to Lemma 3.12.

Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3 and let φ be the
bijection defined in Lemma 3.13. For every edge e = {x, y} ∈ E(red(G)), we choose
a vertex w ∈ D−{x}− {y} and define Δ(e) as the w-avoiding open disc bounded by
φ(e) (because G is prime, the definition does not depend on the choice of w). Observe
that for any two different e1, e2 ∈ E(red(G)), it holds that Δ(e1) ∩ Δ(e2) = ∅.

Some of the properties of prime D-dominated Σ-plane graphs are given by the
next two lemmata.

Lemma 3.14. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 2. For
any D-triangle T = (x, a, b) with x ∈ D, the edges {x, a} and {x, b} are also the edges
of some D-hexagon of G with poles x and y ∈ D. Moreover, if |D| ≥ 3, the edge {a, b}
is in Δ({x, y}).

Proof. Because G is a prime graph, one of the open discs bounded by T is a face
of G. Let rx, r̂x = T = (x, a, b), be such a face. Let r, r �= rx, be the (unique) face
incident to {a, b}, i.e., {a, b} ⊆ r̂. By (d), r is either a triangle or a square face.

We claim that it is a square face. Suppose to the contrary that r̂ = (a, b, c).
Then, from property (b), c �∈ D. Let y ∈ D be the unique vertex dominating c. We
distinguish two cases:

Case 1. x = y. In this case all vertices in V (G)−{x, a, b, c} are covered (in Σ) by
four open discs bounded by triangles (x, a, b), (x, a, c), (x, b, c), and (a, b, c). Since G
is prime, all D-triangles (x, a, b), (x, a, c), (x, b, c) are empty. Therefore, all vertices in
V (G) − {x, a, b, c} are in the x-avoiding open disc Δ bounded by (a, b, c). As Δ = r
is a face of G, we have that V (G) − {x, a, b, c} = ∅, a contradiction to the fact that
|D| ≥ 2.

Case 2. x �= y. Then G contains the paths (x, a, c, y) and (x, b, c, y), a contradic-
tion to property (h), and the claim holds.

As r is a square face, we assume that r̂ = (a, b, c, d). Property (g), together with
the fact that a, b are adjacent to x, implies that either all vertices a, b, c, d are adjacent
to x, or there is y ∈ D, y �= x, that is adjacent to c and d.

We claim that the first case is impossible. Indeed, if a, b, c, d are adjacent to x,
then all the vertices in V (G) − {x, a, b, c, d} should be included in the five open discs
bounded by triangles (x, a, b), (x, a, c), (x, b, d), (c, d, x) and square (a, b, c, d). Four
discs bounded by D-triangles are faces of G (G is prime); thus all the vertices of
V (G)−{x, a, b, c, d} are in the x-avoiding open disc r bounded by (a, b, c, d). Because
r is a face of G, we conclude that V (G) − {x, a, b, c, d} = ∅. Since by property
(b), a, b, c, d �∈ D, we have a contradiction to the fact that |D| ≥ 2, and the claim
holds.

Therefore, there is y ∈ D, y �= x, and y is adjacent to c and d. Because (y, c, d)
is a D-triangle in a prime graph, one of the discs ry bounded by (y, c, d) is the face
of G. Hence C = (x, a, c, y, d, b, x) is a D-hexagon containing edges {x, a} and {x, b},
as required. Notice now that Δ = rx ∪ {a, b} ∪ r ∪ {c, d} ∪ ry is one of the open discs
bounded by C (here an edge represents an open set). As V (G)∩Δ = ∅, we have that
Δ({x, y}) = Δ and thus the edge {a, b} is contained in Δ({x, y}).

Lemma 3.15. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 2. Then
the endpoints of each edge of G are the vertices of some D-hexagon.

Proof. Let e = {x, y} be an edge of G.

DOMINATING SETS IN PLANAR GRAPHS 299

Fig. 12. An example of the proof of Lemma 3.17.

Case 1. {x, y}∩D = {x} (by property (b), |{x, y}∩D| ≤ 1). Let r be the face of
G incident to e = {x, y}. From property (f), r is a D-triangle and the result follows
from Lemma 3.14.

Case 2. {x, y} ∩D = ∅. Let dx and dy be the vertices of D-dominating x and y,
respectively. If dx = dy, then e is incident to the D-triangle (dx, x, y), and the result
follows from Lemma 3.14. Suppose now that dx �= dy. Then (dx, x, y, dy) is the path
connecting two vertices in D. From property (e), {x, y} belongs to the union of two
distinct paths connecting dx and dy. Therefore, {x, y} should be an edge of some
D-hexagon and the lemma follows.

3.6. On the structure of nicely D-dominated Σ-plane graphs. For a given
nicely D-dominated Σ-plane graph G, we define hypergraph G∗ with the vertex set
V (G∗) = V (G) and edge set E(G∗) = E(G)∪T (G)∪C(G); i.e., G∗ is obtained from G
by adding all D-triangles and D-hexagons as hyperedges. We also define hypergraph
Gh with the vertex set V (Gh) = V (G) and the edge set E(Gh) = C(G); i.e., Gh has
the vertices of G as vertices and each of its hyperedges contains the vertices of some
D-hexagon of G. Observe that Gh can be obtained from G∗ by removing all the
(hyper)edges of size two and three.

Lemma 3.16. For any prime D-dominated Σ-plane graph G with |D| ≥ 2,
bw(G∗) ≤ max{bw(Gh), 3}.

Proof. By Lemmata 3.14 and 3.15, we have that for each hyperedge in G∗ there
exists some D-hexagon containing all its endpoints. In other words, each hyperedge
of G∗ is a subset of some hyperedge of Gh. By applying Lemma 3.1 recursively
for every hyperedge f of G∗ that is an edge or a triangle, we arrive at bw(G∗) ≤
max{bw(Gh), 3}.

The following structural result will serve as a base for the recursive application
of Lemmata 3.10 and 3.11 in the proof of Lemma 3.21.

Lemma 3.17. Let G be a prime D-dominated Σ-plane graph with |D| ≥ 3. Then
red(G) is a connected Σ-plane graph, all vertices of G have degree at least two, and
Gh is isomorphic to ext(red(G)).

Proof. We define the joined drawing of G and red(G) in Σ as follows:
Take a drawing of G on Σ and draw the vertices of red(G) identically to the

vertices of G. For each edge ei = {x, y} ∈ E(red(G)) we draw {x, y} as an I-arc
connecting x and y and contained in Δ(ei).

For an example of joined drawing, see the second drawing of Figure 12. The
following three auxiliary propositions are used in the proof of the lemma.

Proposition 3.18. If G is a prime D-dominated Σ-plane graph, then red(G) is
a Σ-plane graph.

300 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

To prove the proposition, let us take the joined drawing of G and red(G) in Σ.
Observe that, for any pair of edges ei, ei ∈ E(red(G)), Δ(ei)∩Δ(ei) = ∅. Therefore,
if in this drawing we delete all the points that are not points of vertices or edges of
red(G), what remains is a planar drawing of red(G).

Proposition 3.19. Let G be a prime D-dominated Σ-plane graph where |D| ≥ 3
and let φ be the bijection defined in Lemma 3.13. In the joined drawing of G and
red(G) in Σ, for any vertex x ∈ D, of degree at least three, two edges {x, y} and
{x, z} are consecutive if and only if the D-hexagons φ({x, y}) and φ({x, z}) have
exactly one edge in common. In the special case where x ∈ D has degree two, the
D-hexagons φ({x, y}) and φ({x, z}) have exactly two edges in common.

In fact, let φ({x, y}) and φ({x, z}) be two hexagons sharing only x as a common
vertex. By property (f), all faces of G incident to x are bordered by triangles that
in turn are cyclically ordered according to the cyclic ordering of their edges incident
to x. This ordering contains one triangle from φ({x, y}) and one from φ({x, z}).
The removal of these triangles from the cyclic ordering breaks it into two nonempty
subintervals, such that each of the subintervals contains one of the triangles T1 and T2.
By Lemma 3.14, each of T1, T2 is a part of some D-hexagon φ({x, z1}) and φ({x, z2}),
respectively, and this implies that the edges {x, y} and {x, z} cannot be consecutive in
red(G). The inverse direction follows directly by the definition of the joined drawing
of G and red(G).

Proposition 3.20. Let G be a prime D-dominated Σ-plane graph where |D| ≥ 3.
Then all vertices of red(G) have degree at least two.

In fact, let x ∈ D be a vertex of G incident to a face r. By property (f) of
Lemma 3.9, the boundary of r is a triangle r̂ = (x, a1, a2). By Lemma 3.14, the edges
{x, a1} and {x, a2} are also the edges of some D-hexagon with poles x and y. We
distinguish the following cases:

Case 1. x has a neighbor a3, distinct from a1 and a2. We choose a3 so that a2

and a3 are consecutive in the cyclic ordering of the neighbors of x. Note also that the
unique face whose boundary contains x, a2, and a3 should be a triangle (otherwise we
have a contradiction to property (f)). By Lemma 3.14, the edges {x, a2} and {x, a3}
are contained in some D-hexagon with poles x and w. Clearly w �= y (otherwise x
and y are connected by three internally disjoint paths), and from Lemma 3.12 we
have that |D| = 2, a contradiction. We conclude that {x,w} is an edge of red(G),
different from {x, y}.

Case 2. The only neighbors of x are the vertices a1 and a2. From property (f),
e = {a1, a2} is an exceptional edge; i.e., there are two lines l1 and l2, representing e,
whose extremes are a1 and a2. Let T 1, T 2 be the triangles containing x and lines l1
and l2, respectively. For i = 1, 2, we apply Lemma 3.14 for T i and derive that both
{x, ai}, i = 1, 2, belong to some D-hexagon Ci of G with poles x and yi. Moreover, as
|D| ≥ 3, the line li is contained in Δ({x, yi}). Therefore, for the case y1 = y2 we have
that both lines l1, l2 are in Δ({x, yi}), which is impossible. So, x has two neighbors
in red(G), which completes the proof of Proposition 3.20.

Now we are in position to prove Lemma 3.17.

By Proposition 3.18, G is a Σ-plane graph. By Proposition 3.20, all vertices
of red(G) have degree at least two. Therefore, the three transformation steps of
ext can be applied on red(G). Consider now the joint drawing of G and red(G)
in Σ. For each edge e = {x, y} ∈ E(red(G)), we use the notation φ(x, y) =
(x, x+

x,y, y
−
x,y, y, x

+
x,y, x

−
x,y, x) (the ordering is clockwise). Apply Steps 1 and 2 of the

definition of ext on red(G). During Step 2, identify vertices x−
x,y, x+

x,z with the

DOMINATING SETS IN PLANAR GRAPHS 301

vertices of G that are denoted in the same way. This is possible because of Proposi-
tion 3.19 and because the graph G2 created after Step 2 has exactly the same vertex
set as the graph G. Let us recall that there exists a bijection θ : E(G) → E(ext(G))
mapping each edge e = {x, y} to the hyperedge formed by the vertices of Cx,y. More-
over, for any edge e = {x, y} ∈ E(red(G)), the cycle θ(x, y) = Cx,y is identical to the
D-hexagon φ(x, y). Notice now that the application of Step 3 of the definition of red
on G2 ignores the edges of G2 and adds as edges all the cycles φ(e), e ∈ E(red(G)).
As these cycles are exactly those added toward constructing Gh, the graph Gh is also
identical to the result of Step 3. Thus Gh is isomorphic to ext(red(G)).

3.7. Main combinatorial result.
Lemma 3.21. For any nicely D-dominated Σ-plane graph G, bw(G) ≤ 3 ·√

4.5 · |D|.
Proof. For |D| = 1, G−D is outerplanar. It is well known that the branch-width

of an outerplanar graph is at most two, implying bw(G) ≤ 3.
Suppose that |D| ≥ 2. Clearly, bw(G) ≤ bw(G∗), and to prove the lemma we

show that bw(G∗) ≤ 3 ·
√

4.5 · |D|.
Prime case. We first examine the special case where G is a prime D-dominated

Σ-plane graph. There are two subcases:
• If |D| = 2, then we set D = {x, y}. If there are only two (x, y)-paths in G,

then G = Σ2
2. If there are three (x, y)-paths in G, then G = Σ3

2 (see Figure 9).
Moreover, G cannot contain more than three (x, y)-paths; otherwise it would not be
prime. Therefore, |V (G)| ≤ 8 and thus bw(G∗) ≤ 8 ≤ 3 ·

√
4.5 · 2 = 9.

• Suppose now that G is a prime D-dominated Σ-plane graph and |D| ≥ 3. By
Theorem 2.4, bw(red(G)) ≤

√
4.5 · |D|. By Lemma 3.17, all the vertices red(G) have

degree ≥ 2. Therefore, we can apply Lemma 3.8 on red(G) (recall that red(G) is
connected) and get bw(ext(red(G))) ≤ 3 · bw(red(G)). By Lemma 3.17, bw(Gh) =
bw(ext(red(G))) and by Lemma 3.16, bw(G∗) ≤ max{bw(Gh), 3}. Resuming, we
conclude that if G is prime, then bw(G∗) ≤ 3 ·

√
4.5 · |D|.

General case. Suppose that G is a nicely D-dominated Σ-plane graph. We use
induction on the number of vertices of G. If |V (G)| = 3, then G is a triangle (the graph
Σ1 of Figure 9) and bw(G∗) = 3 ≤ 3 ·

√
4.5. Suppose that bw(G∗) ≤ 3 ·

√
4.5 · |D|

for every nicely D-dominated graph on < n vertices. Let G be a nicely D-dominated
Σ-plane graph where |V (G)| = n and let q be a nonempty D-triangle or D-hexagon
(if q does not exist, then the induction step follows by the prime case above). By
Lemmata 3.10 and 3.11, we have that if Δ1,Δ2 are the discs bounded by q, then, for
i = 1, 2, Gi = G[V (G)∩Δi] is a subgraph of a nicely Di-dominated Σ-plane graph for
some Di ⊆ D, i = 1, 2, and that |V (Gi)| < n (we use the expression “subgraph” in
order to capture the case when q is a D-hexagon). Applying the induction hypothesis,
we get that bw(G∗

i) ≤ 3 ·
√

4.5 · |Di|, i = 1, 2. Notice also that G∗ = G∗
1 ∪G∗

2 and that
V (G∗

1)∩V (G∗
2) = q ∈ E(G∗

1)∩E(G∗
2). Therefore, we can apply Lemma 3.1 and we get

bw(G∗) ≤ 3 ·
√

4.5 · |Di| (recall that |q| ≤ 6).
For an example of the induction of the general case in the proof of Lemma 3.21,

see Figure 11.
The following is the main combinatorial result of this paper.
Theorem 3.22. Let G be a D-dominated Σ-plane graph. Then bw(G) ≤

3
√

4.5 · |D|.
Proof. If the branch-width of G is at most one, the theorem is trivial. Suppose

that bw(G) ≥ 2. Then removing multiple edges does not decrease the branch-width
of G, and we can assume that G is simple.

302 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Let A be the set of cut vertices of G. Let Gi be the 2-connected components of
G, Di = D ∩ V (Gi), and Ai = A ∩ V (Gi), 1 ≤ i ≤ r. Let also Ni be the vertices of
Gi that are not dominated by Di, 1 ≤ i ≤ r.

Note also that each vertex of Ni is dominated in G by some vertex from V (G)−
V (Gi). Moreover, a vertex from V (G) − V (Gi) cannot dominate more than one
vertex in Gi. Therefore, |Ni| ≤ |D −Di|. Thus for D′

i = Ni ∪Di, we have that Gi is
D′

i-dominated and |D′
i| ≤ |D|.

Consider now two cases for the graph Gi, 1 ≤ i ≤ r.
Case 1. Gi is a D′

i-dominated 2-connected planar graph. We take a drawing
of this graph in a sphere Σ and apply Lemma 3.9. In this way, we construct a
nicely D′

i-dominated Σ-plane graph Hi containing (property (a)) Gi as a minor. By
Lemma 3.21, bw(Hi) ≤ 3 ·

√
4.5 · |D′

i|. Since Gi is a minor of Hi, we have that

bw(Gi) ≤ 3
√

4.5 · |D′
i| ≤ 3

√
4.5 · |D|.

Case 2. Gi is an induced edge. Clearly, in this case, bw(Gi) ≤ 3
√

4.5 · |D|.
Each graph Gi can be treated as a hypergraph with the ground set V (Gi) and the

edge set E(G)∪{{v} | v ∈ V (G)}. As hypergraphs, graphs Gi have at most one edge
(edge consisting of one vertex) in common, and by applying Lemma 3.1 recursively
we obtain that bw(G) ≤ max{1,max1≤i≤r bw(Gi)} ≤ 3

√
4.5 · |D|.

4. Algorithmic consequences. In this section we discuss an algorithm that,
given a planar graph G on n vertices and an integer k, decides whether G has a
dominating set of size at most k.

4.1. The general algorithm. The algorithm runs in O(212.75
√
k + n3) steps

and works in three phases as follows.
Phase 1. We use the known reduction of Planar Dominating Set problem to a

linear problem kernel as a preprocessing procedure. Alber, Fellows, and Niedermeier
[3] designed a procedure that, for a given integer k and planar graph G on n vertices,
outputs a planar graph H on ≤ 335k vertices such that G has a dominating set of size
≤ k if and only if H has a dominating set of size ≤ k. Later, Chen, Fernau, Kanj,
and Xia [9] improved this result, providing a reduction to a kernel of a size ≤ 67k.
Each of the aforementioned reductions can be performed in O(n3) steps.

Phase 2. We compute an optimal branch decomposition of the graph H. For this
step, one can use the algorithms due to Seymour and Thomas (algorithms 7.3 and 9.1
of sections 7 and 9 in [39]—for an implementation, see the work of Hicks in [33]).
These algorithms need O(n2) steps for checking and O(n4) steps for constructing the
branch decomposition for graphs on n vertices. We stress that there are no large
hidden constants in the running time of these algorithms, which is important for
practical applications. Thus a branch decomposition of H can be constructed in
O(k4) steps. Check whether bw(H) ≤ (3

√
4.5)

√
k < 6.364

√
k. If the answer is “no,”

then by Theorem 3.22 we conclude that there is no dominating set of size k in G. If
the answer is “yes,” then we proceed with the next phase.

Phase 3. Here we use a dynamic programming approach to solve the Planar

Dominating Set problem on graph H. Alber et al. [1] suggested a dynamic pro-
gramming algorithm based on the so-called monotonicity property of the domination
problem. For a graph G on n vertices with a given tree decomposition of width �, the
algorithm of Alber et al. can be implemented in O(22�n) steps. There is a well known
transformation due to Robertson and Seymour [36] that, given a branch decomposi-
tion of width ≤ � of a graph with m edges, constructs a tree decomposition of width
≤ (3/2)� in O(m2) steps. Thus the result of Alber et al. immediately implies that

DOMINATING SETS IN PLANAR GRAPHS 303

the Dominating Set problem on graphs with n vertices and m edges and of branch-
width ≤ � can be solved in O(23�n + m2) steps. Notice now that for planar graphs

m = O(n). This phase requires O(23·3
√

4.5·kk+k2) steps. As 3·3
√

4.5 < 19.1, we obtain

an O(219.1
√
k +n3)-step algorithm that finds in planar graph on n vertices a dominat-

ing set of size at most k, or reports that no such dominating set exists. However, in
the next subsection (Theorem 4.1) we construct a dynamic programming algorithm
solving the Dominating Set problem on graphs of branch-width ≤ � in O(31.5�m)
steps, where m is the number of edges in a graph. Because (1.5 · log2 3) ·3

√
4.5 < 15.13

and m = O(k), we can reduce the cost of this phase to O(215.13
√
k) steps and conclude

with a time O(215.13
√
k + n3) algorithm.

4.2. Dynamic programming on graphs of bounded branch-width. Let
(T ′, τ) be a branch decomposition of a graph G with m edges and let ω′ : E(T ′) →
2V (G) be the order function of (T ′, τ). We choose an edge {x, y} in T ′, put a new
vertex v of degree two on this edge, and make v adjacent to a new vertex r. By
choosing r as a root in the new tree T = T ′ ∪ {v, r}, we turn T into a rooted tree.
For every edge of f ∈ E(T) ∩ E(T ′) we put ω(f) = ω′(f). Also we put ω({x, v}) =
ω({v, y}) = ω′({x, y}) and ω({r, v}) = ∅.

For an edge f of T we define Ef (Vf) as the set of edges (vertices) that are “below”
f , i.e., the set of all edges (vertices) g such that every path containing g and {v, r} in
T contains f . With this notation, E(T) = E{v,r} and V (T) = V{v,r}. Every edge f
of T that is not incident to a leaf has two children that are the edges of Ef incident
to f . We also denote by Gf the subgraph of G formed by edges of G corresponding
to the leaves of Vf .

For every edge f of T we color the vertices of ω(f) in three colors:
black (represented by 1, meaning that the vertex is in the dominating set),
white (represented by 0, meaning that the vertex is dominated at the current step

of the algorithm and is not in the dominating set), and
grey (represented by 0̂, meaning that at the current step of the algorithm we still

have not decided to color this vertex white or black).
For every edge f of T we use mapping

Af : {0, 0̂, 1}|ω(f)| → N ∪ {+∞}.

For a coloring c ∈ {0, 0̂, 1}|ω(f)|, the value Af (c) stores the minimum cardinality of
a set Df ⊆ V (Gf) such that every nongrey vertex of Gf is dominated by a vertex
from Df and all black vertices are in Df . More formally, Af (c) stores the minimum
cardinality of a set Df (c) such that

• every vertex of V (Gf) \ ω(f) is adjacent to a vertex of Df (c),
• for every vertex u ∈ ω(f), c(u) = 1 ⇒ u ∈ Df (c) and c(u) = 0 ⇒ (u �∈ Df (c)

and u is adjacent to a vertex from Df (c)).
We put Af (c) = +∞ if there is no such set Df (c). Because ω({r, v}) = ∅ and
G{r,v} = G, we have that A{r,v}(c) is the smallest size of a dominating set in G.

Let f be a nonleaf edge of T and let f1, f2 be the children of f . Define X1 = ω(f)−
ω(f2), X2 = ω(f)−ω(f1), X3 = ω(f)∩(ω(f1)∩ω(f2)), and X4 = (ω(f1)∪ω(f2))−ω(f).

Notice that Xi ∩Xj �= ∅, 1 ≤ i �= j ≤ 4, and

ω(f) = X1 ∪X2 ∪X3.(1)

Notice now that by the definition of ω it is impossible that a vertex belongs in exactly
one of ω(f), ω(f1), ω(f2). Therefore, condition u ∈ X4 implies that u ∈ ω(f1)∩ω(f2).

304 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Hence

ω(f1) = X1 ∪X3 ∪X4,(2)

and

ω(f2) = X2 ∪X3 ∪X4.(3)

We say that a coloring c of ω(f) is formed from coloring c1 of ω(f1) and coloring
c2 of ω(f2) if the following hold:

[F1] For every u ∈ X1, c(u) = c1(u).
[F2] For every u ∈ X2, c(u) = c2(u).
[F3] For every u ∈ X3, (c(u) ∈ {0̂, 1} ⇒ c(u) = c1(u) = c2(u)) and (c(u) = 0 ⇒

[c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) = 0 ∨ c2(u) = 0)]). (The color 1 (0̂) can appear
only if both colors in c1 and c2 are 1 (0̂). The color 0 appears when both
colors in c1, c2 are not 1 and at least one of them is 0.)

[F4] For every u ∈ X4, (c1(u) = c2(u) = 1) ∨ (c1(u) = c2(u) = 0) ∨ (c1(u) =
0∧ c2(u) = 0̂)∨ (c1(u) = 0̂∧ c2(u) = 0). This property says that every vertex
u of ω(f1) and ω(f2) that does not appear in ω(f) (and hence does not appear
further) should be finally colored either by 1 (if both colors of u in c1 and c2
are 1) or 0 (0 can appear if both colors of u in c1 and c2 are not 1 and at
least one color is 0).

Notice that every coloring of f is formed from some colorings of its children f1

and f2. We start computations of values Af (c) from leaves of T . For every leaf f ,
|ω(f)| ≤ 1, and the number of colorings of ω(f) is at most three. Thus all possible
values of Af (c) can be computed in O(m) steps.

Then we compute the values of the corresponding functions in bottom-up fashion.
The main observation here is that if f1 and f2 are the children of f , then the vertex sets
ω(f1), ω(f2) “separate” subgraphs G1 and G2; thus the value Af (c) can be obtained
from the information on colorings of ω(f1) and ω(f2). More precisely, let #1(Xi, c),
1 ≤ i ≤ 4, be the number of vertices in Xi colored by color 1 in coloring c. For a
coloring c we assign

Af (c) = min{Af1
(c1) + Af2

(c2) − #1(X3, c1) − #1(X4, c1)|c1, c2 form c}.(4)

(Every 1 from X3 and X4 is counted in Af1(c1) + Af2(c2) twice, and X3 ∩X4 = ∅.)
The number of steps to compute the minimum in (4) is given by

O

(∑
c

|{c1, c2} : c1, c2 form c|
)
.

Let xi = |Xi|, 1 ≤ i ≤ 4. For a fixed coloring c of ω(f), let p be the number of
vertices of X3 colored with 0. By [F3], every 0 of a vertex u ∈ X3 can be “formed”
in three ways, from 0̂ and 0, or from 0 and 0, or from 0 and 0̂. By [F4], a color of
u ∈ X4 can be obtained in four ways: 1 can be obtained from 1 and 1; 0 can be
obtained either from 0 and 0, or from 0 and 0̂, or from 0̂ and 0. Then by [F1]–[F4],
the number of colorings that form a fixed coloring c with exactly p vertices of X3 of
color 0 is equal to 3p4x4 . Every vertex of ω(f) = X1 ∪X2 ∪X3 can be colored in one
of the three colors. The number of operations needed to estimate (4) for all possible
colorings of ω(f) is

x3∑
p=0

3x1+x2 · 2x3−p · 3p
(
x3

p

)
4x4 = 3x1+x25x34x4 .

DOMINATING SETS IN PLANAR GRAPHS 305

The obtained bound can be reduced by using the trick due to Alber et al. [1].
The trick is based on the following observation. If for some coloring c of f we replace
a color of a vertex u from 0̂ to 0, then for the new coloring c′, Af (c) ≤ Af (c′). Thus
in (4) we can replace “c1, c2 form c” with “c1 and c2 satisfies [F1], [F2], [F3′], and
[F4′],” where [F3′] and [F4′] are as follows:

[F3′] For every u ∈ X3, (c(u) ∈ {0̂, 1} ⇒ c(u) = c1(u) = c2(u)) and (c(u) = 0 ⇒
[c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) �= c2(u))]).

[F4′] For every u ∈ X4, (c1(u) = c2(u) = 1) ∨ [c1(u), c2(u) ∈ {0̂, 0} ∧ (c1(u) �=
c2(u))].

The purpose of properties [F3′] and [F4′] is to reduce the search space from
all coloring forming c to the smaller set of colorings. Thus the number of steps for
evaluating Af (c) is bounded by

x3∑
p=0

3x1+x2 · 2x3−p · 2p
(
x3

p

)
3x4 = 3x1+x24x33x4 .

Let � be the branch-width of G. By (1), (2), and (3),

x1 + x2 + x3 ≤ �,

x1 + x3 + x4 ≤ �,(5)

x2 + x3 + x4 ≤ �.

The maximum value of the linear function x1 + x2 + x4 + x3 · log34 subject

to constraints (5) is 3log43
2 �. (This is because the value of the corresponding linear

program achieves maximum in x1 = x2 = x4 = 0.5�, x3 = 0.) Thus

3x1+x24x33x4 ≤ 4
3 log43

2 � = 3
3�
2 .

It is easy to check that the number of edges in T is O(m) and the number of steps

needed to evaluate A{r,v}(c) is O(3
3�
2 m). Summarizing, we get the following theorem.

Theorem 4.1. For a graph G on m edges and given a branch decomposition of
width ≤ �, the dominating set of G can be computed in O(3

3�
2 m) time.

5. Concluding remarks and open problems. We start this section with a
discussion on the optimality of our results. We then give a presentation on several
open problems and results that were motivated by this work.

5.1. Can Theorem 3.22 be improved? We have proved that for any planar
graph with a dominating set of size ≤ k, bw(G) ≤ 3

√
4.5 · k < 6.364

√
k. The first of

the multiplicative factors 3 follows from our results on the structure of planar graphs
with a given dominating set in section 3. The second factor

√
4.5 ≈ 2.121 follows

from [28] and is the bound on branch-width of planar graphs (Theorem 2.4). Any
improvement to any of these two factors immediately implies an improvement to the
time analysis of our fixed-parameter algorithm for a dominating set. However, our
approach cannot be strongly improved because the upper bound of Theorem 3.22 is
not far from the optimal.

Lemma 5.1. There exist planar graphs with a dominating set of size ≤ k and
with branch-width > 3

√
k.

Proof. Let G be a (3n + 2, 3n + 2)-grid for any n ≥ 1. Let V ′ be the vertices
of G of degree < 4. Let also V ′′ be the set of all vertices adjacent to V ′ in G. We
define D as the unique S ⊆ V (G) − V ′ − V ′′, where |S| = n2 and such that the

306 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

Fig. 13. An example of the proof of Lemma 5.1.

distance in G of all pairs v, u ∈ D in G is a multiple of three. Then for any vertex
v ∈ D, and for any possible cycle (square) (v, x, y, z, v) add the edge {x, z}. The
construction is completed by connecting all the vertices in V ′ with a new vertex vnew

(see Figure 13). We call the resulting graph Jn. Clearly, D ∪ {vnew} is a dominating
set of Jn of size k = n2 + 1 ≥ 2. As the (3n + 2, 3n + 2)-grid is a subgraph of Jn
we have that bw(Jn) ≥ 3n + 2 ≥ 3

√
k − 1 + 2 > 3

√
k (from [36], the (ρ, ρ)-grid has

branch-width ρ).

5.2. Open problems and extensions of our results. A (k, r)-center in a
graph G is a set of at most k vertices, which we call centers, such that any vertex of
G is within distance at most r from some center. Extending the results of section 4,
[13] gives an algorithm that outputs, if it exists, a (k, r)-center of a planar graph in

rO(r
√
k) + nO(1) steps (according to [13], the same result also holds for map graphs).

The constants hidden in the first O-notation are based on an extension of Lemma 2.2,
bounding the branch-width of any planar graph containing a (k, r)-center by 4(2r +
1)
√
k + O(r). We conjecture that this bound (and subsequently the running time

of the algorithm in [13]) can be improved to (2r + 1)
√

4.5 · k. We also suspect that
a proof of this conjecture could be based on the same steps as those we used for
Theorem 3.22.

An approach similar to the one of section 4 has been applied for a wide num-
ber of problems related to the Planar Dominating Set problem. In this way,
our upper bound improves the algorithm complexity analysis for a series of problems
when their inputs are restricted to planar graphs. As a sample we mention the fol-
lowing: Independent Dominating Set, Perfect Dominating Set, Perfect

Code, Weighted Dominating Set, Total Dominating Set, Edge Dominat-

ing Set, Face Cover, Vertex Feedback Set, Vertex Cover, Minimum Max-

imal Matching, Clique Transversal Set, Disjoint Cycles, and Digraph

Kernel (see [17] for details and extensions to more general graph classes). How-
ever, in all of the aforementioned problems, the time analysis is based on algorithms
and combinatorial bounds for tree-width. It is an interesting problem whether bet-
ter speed-up is possible using branch-width instead of tree-width, as we did in this
paper. To our knowledge, not much progress has been noted so far on the design of
algorithms on graphs of bounded branch-width (see [11, 13, 20]).

It appears that the planarity is not a limit for the existence of bounds like the
one in Theorem 3.22. In [27], it was proved that for any D-dominated graph G,

DOMINATING SETS IN PLANAR GRAPHS 307

bw(G) ≤ 3(
√

4.5+2
√

2 · eg(G))
√
|D| + 6 · eg(G) = O(

√
|D| · eg(G)+eg(G)), where

eg(G) is the Euler genus of G. The proof of this bound uses Theorem 3.22 as a
basic ingredient. As a consequence of [27], most of the applications mentioned in the
previous paragraph also can be extended for graphs of bounded genus. For discussions
on the limits of this approach, see [26].

Finally, the idea behind Lemma 2.2 offers a mechanism for proving similar bounds
for a wide family of parameters. This is the general family of bidimensional parameters
introduced in [12] that unified the framework where the algorithmic paradigm of
section 4 can be applied. Recent research on bidimensionality extends to several
results such as [14, 15, 16, 18].

Acknowledgments. We are grateful to Hans Bodlaender, Ton Kloks, and Robin
Thomas for answering our questions.

REFERENCES

[1] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed parameter
algorithms for dominating set and related problems on planar graphs, Algorithmica, 33
(2002), pp. 461–493.

[2] J. Alber, H. Fan, M. R. Fellows, H. Fernau, R. Niedermeier, F. A. Rosamond, and

U. Stege, Refined search tree technique for dominating set on planar graphs, in Pro-
ceedings of the 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2001), Lecture Notes in Comput. Sci. 2136, Springer, Berlin, 2001, pp. 111–
122.

[3] J. Alber, M. R. Fellows, and R. Niedermeier, Polynomial-time data reduction for domi-
nating set, J. ACM, 51 (2004), pp. 363–384.

[4] J. Alber, H. Fernau, and R. Niedermeier, Parameterized complexity: Exponential speed-up
for planar graph problems, J. Algorithms, 52 (2004), pp. 26–56.

[5] M. Alekhnovich and A. A. Razborov, Satisfiability, branch-width and Tseitin tautologies,
in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2002), IEEE Computer Society, 2002, pp. 593–603.

[6] N. Alon, P. Seymour, and R. Thomas, Planar separators, SIAM J. Discrete Math., 7 (1994),
pp. 184–193.

[7] H. L. Bodlaender and D. M. Thilikos, Graphs with branchwidth at most three, J. Algorithms,
32 (1999), pp. 167–194.

[8] M. S. Chang, T. Kloks, and C. M. Lee, Maximum clique transversals, in Proceedings of
the 27th International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2001), Lecture Notes in Comput. Sci. 2204, Springer, Berlin, 2001, pp. 32–43.

[9] J. Chen, H. Fernau, I. A. Kanj, and G. Xia, Parametric duality and kernelization: Lower
bounds and upper bounds on kernel size, in Proceeding of the 22nd Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2005), Lecture Notes in Comput. Sci.
3404, Springer, Berlin, 2005, pp. 269–280.

[10] W. Cook and P. D. Seymour, An algorithm for the ring-routing problem, Bellcore technical
memorandum, Bellcore, Morristown, NJ, 1993.

[11] W. Cook and P. D. Seymour, Tour merging via branch-decomposition, INFORMS J. Com-
put., 15 (2003), pp. 233–248.

[12] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Subexponential param-
eterized algorithms on graphs of bounded genus and H-minor-free graphs, J. ACM, 52
(2005), pp. 866–893.

[13] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Fixed-parameter al-
gorithms for (k, r)-center in planar graphs and map graphs, ACM Trans. Algorithms, 1
(2005), pp. 33–47.

[14] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos, Bidimensional parameters
and local treewidth, SIAM J. Discrete Math., 18 (2004), pp. 501–511.

[15] E. D. Demaine and M. T. Hajiaghayi, Equivalence of local treewidth and linear local treewidth
and its algorithmic applications, Proceedings of the 15th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2004), 2004, pp. 833–842.

308 FEDOR V. FOMIN AND DIMITRIOS M. THILIKOS

[16] E. D. Demaine and M. T. Hajiaghayi, Graphs excluding a fixed minor have grids as large
as treewidth, with combinatorial and algorithmic applications through bidimensionality, in
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2005), 2005, pp. 682–689.

[17] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos, Exponential speedup of fixed-
parameter algorithms for classes of graphs excluding single-crossing graphs as minors,
Algorithmica, 4 (2005), pp. 245–267.

[18] E. D. Demaine, M. T. Hajiaghayi, and D. M. Thilikos, The bidimensional theory of bounded-
genus graphs, in Proceedings of the 29th International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2004), Lecture Notes in Comput. Sci. 3153, Springer,
Berlin, 2004, pp. 191–203.

[19] F. Dorn, E. Penninkx, H. Bodlaender, and F. V. Fomin, Efficient exact algorithms on
planar graphs: Exploiting sphere cut branch decompositions, in Proceedings of the 13th
Annual European Symposium on Algorithms (ESA 2005), Lecture Notes in Comput. Sci.
3669, Springer, Berlin, 2005, pp. 95–106.

[20] F. Dorn and J. A. Telle, Two birds with one stone: The best of branchwidth and treewidth
with one algorithm, in Proceedings of the 7th Latin American Theoretical Informatics
Symposium (LATIN 2006), Lecture Notes in Comput. Sci. 3887, Springer, Berlin, 2006,
pp. 386–397.

[21] R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, New York, 1999.
[22] H. Fernau and D. W. Juedes, A geometric approach to parameterized algorithms for domi-

nation problems on planar graphs, in Proceedings of the 29th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2004), Lecture Notes in Comput.
Sci. 3153, Springer, Berlin, 2004, pp. 488–499.

[23] M. R. Fellows, Parameterized complexity: The main ideas and some research frontiers, in
Proceedings of the 12th Annual International Symposium on Algorithms and Computation
(ISAAC 2001), Lecture Notes in Comput. Sci. 2223, Springer, Berlin, 2001, pp. 291–307.

[24] J. Flum and M. Grohe, The parameterized complexity of counting problems, SIAM J. Com-
put., 33 (2004), pp. 892–922.

[25] F. V. Fomin and D. M. Thilikos, Dominating sets in planar graphs: Branch-width and expo-
nential speed-up, in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2003), pp. 168-177.

[26] F. V. Fomin and D. M. Thilikos, Dominating sets and local treewidth, in Proceedings of the
11th Annual European Symposium on Algorithms (ESA 2003), Lecture Notes in Comput.
Sci. 2832, Springer, Berlin, 2003, pp. 221–229.

[27] F. V. Fomin and D. M. Thilikos, Fast parameterized algorithms for graphs on surfaces: Linear
kernel and exponential speed-up, in Proceedings of the 31st International Colloquium on
Automata, Languages and Programming (ICALP 2004), Lecture Notes in Comput. Sci.
3142, Springer, Berlin, 2004, pp. 581–592.

[28] F. V. Fomin and D. M. Thilikos, New upper bounds on the decomposability of planar graphs,
J. Graph Theory, 51 (2006), pp. 53–81.

[29] J. F. Geelen, A. M. H. Gerards, and G. Whittle, Branch-width and well-quasi-ordering
in matroids and graphs, J. Combin. Theory Ser. B, 84 (2002), pp. 270–290.

[30] Q.-P. Gu and H. Tamaki, Optimal branch-decomposition of planar graphs in O(n3) time,
in Proceedings of the 32nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2005), Lecture Notes in Comput. Sci. 3580, Springer, Berlin, 2005,
pp. 373–384.

[31] G. Gutin, T. Kloks, C. M. Lee, and A. Yeo, Kernels in planar digraphs, J. Comput. System
Sci., 71 (2005), pp. 174–184.

[32] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs,
Marcel Dekker, New York, 1998.

[33] I. V. Hicks, Planar branch decompositions. I. The ratcatcher, INFORMS J. Comput., 17
(2005), pp. 402–412.

[34] P. Hliněný, Branch-width, parse trees, and monadic second-order logic for matroids over
finite fields, in Proceedings of the 20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2003), Lecture Notes in Comput. Sci. 2607, Springer, Berlin,
2003, pp. 319–330.

[35] I. Kanj and L. Perković, Improved parameterized algorithms for planar dominating set, in
Proceedings of the 27th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2002), Lecture Notes in Comput. Sci. 2420, Springer, Berlin, 2002,
pp. 399–410.

[36] N. Robertson and P. D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J.
Combin. Theory Ser. B, 52 (1991), pp. 153–190.

DOMINATING SETS IN PLANAR GRAPHS 309

[37] N. Robertson and P. D. Seymour, Graph minors. XI. Circuits on a surface, J. Combin.
Theory Ser. B, 60 (1994), pp. 72–106.

[38] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J. Combin.
Theory Ser. B, 62 (1994), pp. 323–348.

[39] P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, 14 (1994),
pp. 217–241.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 310–325

BETWEEN O(nm) AND O(nα)∗

DIETER KRATSCH† AND JEREMY SPINRAD‡

Abstract. This paper uses periodic matrix multiplication to improve the time complexities for
a number of graph problems. The time for finding an asteroidal triple is reduced from O(nm) to
O(n2.82), and the time for finding a star cutset, a two-pair, and a dominating pair is reduced from
O(nm) to O(n2.79). It is also shown that each of these problems is at least as hard as one of three
basic graph problems for which the best known algorithms run in times O(nm) and O(nα). We note
that the fast matrix multiplication algorithms do not seem to be practical because of the enormous
constants needed to achieve the asymptotic time bounds. These results are important theoretically
for breaking the n3 barrier rather than giving efficient algorithms for a user.

Key words. algorithms, graphs, reductions, AT-free graphs, two-pair, star cutset, dominating
pair

AMS subject classification. 05C85

DOI. 10.1137/S0097539704441435

1. Introduction. We will describe a method which takes an undirected graph
G = (V,E) as input and finds for all vertices x ∈ V the connected components of
G − N[x]. Here N(x) = {y ∈ V : (x, y) ∈ E} denotes the open neighborhood,
and N[x] = N(x) ∪ {x} denotes the neighborhood. We will call the set of connected
components for G − N[x] for all x ∈ V the neighborhood-deleted components of G.
Clearly, the neighborhood-deleted components can be found in O(nm) time by simply
computing for each x the components of G − N[x] using breadth-first search. Our
algorithm will use fast matrix multiplication to reduce the time complexity on dense
graphs to O(n2.79). The computation of the neighborhood-deleted components is the
bottleneck step for a number of apparently unrelated algorithms on graphs. Thus we
improve the best known running time for a collection of graph problems. We describe
some of these applications below.

Three vertices x, y, z are an asteroidal triple in a graph if they are pairwise non-
adjacent and between any two of them there is a path avoiding the neighborhood of
the third. This concept was introduced by Lekkerkerker and Boland [18] to charac-
terize interval graphs. It was also used by Gallai in his study of comparability graphs
[14, 10]. Graphs without asteroidal triple, called AT-free graphs, were first studied
as a separate class of graphs by Corneil, Olariu, and Stewart [6]. Many interesting
properties and characterizations of AT-free graphs have been discovered [7, 19], and
these are now recognized as an important graph class. It is not hard to see that x, y, z
form an asteroidal triple iff x and y are in the same component of G − N[z], x and
z are in the same component of G − N[y], and y and z are in the same component
of G − N[x]. Thus, the running time of algorithms for recognizing AT-free graphs
was given as O(n3). Early efforts to establish a linear time recognition algorithm for

∗Received by the editors February 27, 2004; accepted for publication (in revised form) December 9,
2005; published electronically June 19, 2006. A preliminary version appeared in Proceedings of the
14th Annual SIAM-ACM Symposium on Discrete Algorithms [16].

http://www.siam.org/journals/sicomp/36-2/44143.html
†LITA, Université de Metz, 57045 Metz Cedex 01, France (kratsch@sciences.univ-metz.fr).
‡Department of EECS, Vanderbilt University, Nashville, TN 37235 (spin@vuse.vanderbilt.edu).

This author started research on this work while visiting the University of Metz and was supported
by NSF grant 9820840.

310

BETWEEN O(nm) AND O(nα) 311

AT-free graphs were dismissed after Spinrad showed that recognizing AT-free graphs
is at least as hard as recognizing a triangle [21] (see our Theorem 5.1). We note that
triangle recognition is a fundamental and well-studied graph problem and that its best
known algorithm on dense graphs has running time O(nα).1 Using Gallai’s concept of
the knotting graph, Köhler [15] obtained a recognition algorithm for AT-free graphs
with running time O(n2.82) plus the time to compute the neighborhood-deleted com-
ponents. Thus we reduce the time bound for recognizing AT-free graphs to O(n2.82).
It remains an interesting open question whether there is a recognition algorithm for
AT-free graphs with running time O(nβ) such that α ≤ β < 2.82.

A two-pair in a graph is a pair of vertices x, y such that every chordless path
between x and y has length two. Hayward [12] showed that every weakly chordal
graph is either a clique or has a two-pair. Two-pairs are fundamental for recognition
and optimization algorithms on weakly chordal graphs; they are also used as a tool
for showing perfection in graph classes. We show that the neighborhood-deleted
components can be used to reduce the time complexity of finding a two-pair in a
graph.

Similar results can be obtained for problems on dominating pairs, star cutsets,
and extremities; these terms will be defined in section 3.

We note that an earlier version of this paper [16] also gave an algorithm which
used periodic matrix multiplication to improve the running time of an algorithm for
finding a clique cutset in a graph. Since that time, we have discovered an improved
algorithm for finding a minimal fill in a graph [17], which leads to a simpler algorithm
achieving the same time bound for the clique cutset problem.

The problems solved in this paper all make use of fast matrix multiplication to
beat bounds of O(nm). It is natural to ask whether these problems can be solved
even faster (perhaps in linear time), or solved efficiently without using matrix mul-
tiplication. Motivated by the reduction from triangle recognition to AT-free graph
recognition (Theorem 5.1), we show that each of the abovementioned problems is as
hard as one of the following three basic graph problems:

• determining whether a graph has a triangle;
• determining whether a graph has a simplicial vertex,

i.e., a vertex x such that N(x) is a clique;
• determining whether a graph has a dominated vertex,

i.e., a vertex x such that for some y, N(x) ⊂ N[y].

This gives evidence that significant improvements over our results, e.g., solving any
of our problems in time o(nα), or solving any of our problems in O(n3−ε), ε > 0, time
without using matrix multiplication, would require a major breakthrough (such as,
e.g., a faster algorithm for finding a triangle).

2. Neighborhood-deleted components. Before presenting our algorithm for
finding the neighborhood-deleted components of G, we introduce some notation. Let
G = (V,E) be a graph. For A ⊆ V , we denote by G[A] the subgraph of G induced by
A. We write G−A instead of G[V −A]. We denote by N(A) the set of all neighbors
of A, i.e., N(A) =

⋃
a∈A N(a). A connected component C of a graph G is a maximal

subset of vertices of G such that G[C] is connected, thus components are vertex sets.
We also call B ⊆ V a connected subset of a graph G = (V,E) if G[B] is a connected
graph. For standard graph theory notation we refer to [2, 11].

1α denotes the best known exponent of an algorithm to multiply two binary n by n matrices.
Currently α = 2.376... [5].

312 DIETER KRATSCH AND JEREMY SPINRAD

To understand the motivation of several steps of our algorithm, we first discuss
its fundamental idea. Suppose we have found a partition of V − N[v] into connected
subsets of G− N[v] for all v ∈ V ; initially we might have a partition into singletons.
We can perform a single matrix multiplication and get all subset pairs which are
joined by at least one edge when using a vertex-subset incidence matrix, as we will
show later. However, if this is done from the initial condition, each G−N[v] may have
Θ(n) components, and we would be performing matrix multiplication on two Θ(n) by
Θ(n) matrices, which is too expensive.

Therefore, we want to reduce the number of initial connected subsets for each G−
N[v]. To do this, for each pair v, w we want to find a large enough set of edges (u,w) ∈
E with u ∈ N(w)−N[v] such that after using these edges only for merging connected
subsets, w is guaranteed to be in a large component of G − N[v]. The difficulty lies
in finding N(w)−N[v] without stepping through N[v] and N(w). Instead, we will use
matrix multiplication to determine regions of a suitable matrix which contain at least
one vertex of N(w)−N[v], thus avoiding the O(n) expense of identifying N(w)−N[v].

We now make the outline above more specific. We want to select a function f(n),
and for each pair of vertices v, w we will find either all vertices of N(w) − N[v] if
|N(w) − N[v]| < f(n), or f(n) vertices from N(w) − N[v] otherwise. Let MM(i, j, k)
be the time of an algorithm which multiplies an i by j matrix and a j by k matrix.

Lemma 2.1. Let G be a graph with n vertices, and let f(n), g(n) be functions
of n. There is an O((n/g(n))MM(n, g(n), n) + n2f(n)g(n)) time algorithm to find
for all pairs of vertices v, w of G a set Sv,w such that Sv,w ⊆ N(w) − N[v] and
|Sv,w| = min {f(n), |N(w) − N[v]|}.

Proof. We describe the procedure to search for vertices of N(w) − N[v] for all
pairs v, w. Partition V into subsets of size g(n) (possibly one subset will be of smaller
size). Let S be a set of g(n) vertices. For each vertex v in G, count the number of
neighbors of v in S. Create an n by g(n) binary matrix MS with a row for each vertex
of G and a column for each vertex of S, with MS [v, j] = 1 iff vertex v of G is adjacent
to the jth vertex of S. Let M ′

S be the result of multiplying MS by its transpose;
thus M ′

S [v, w] = |N(v)∩N(w)∩S|. Determine for each pair v, w whether there is any
vertex of N(w) − N[v] in S using M ′

S [v, w] and the number of neighbors of w in S;
store this information for each set S.

Let v, w be a pair of vertices. Consider each set S in turn until we have found
f(n) vertices from N(w)−N[v] or considered all sets S. If there is at least one vertex
of N(w)−N[v] in S, look at every s ∈ S, and add each vertex s ∈ S to Sv,w (initially
empty) if (s, w) ∈ E, (s, v) �∈ E, and s �= v. At the end of this procedure for each
pair of vertices v, w, clearly the set Sv,w has min {f(n), |N(w) − N[v]|} vertices and
Sv,w ⊆ N(w) − N[v].

We now analyze the running time of the procedure. We first analyze the time
needed to find whether N(w)−N[v] is empty for all pairs of vertices v, w. The number
of neighbors of a vertex v in S can be computed in O(|S|) time, so all these values, for
all v and all S, can be computed in time O(n2). The dominant cost of the procedure
is finding the matrices M ′

S for each S. Each of these n/g(n) matrices is the result of
multiplying an n by g(n) matrix by a g(n) by n matrix, giving us the first term in
the statement of the theorem.

It takes time O(n3/g(n)) to determine for which sets S N(v) ∩ N(w) ∩ S �= ∅.
Since n3/g(n) is the size of the output matrices of n/g(n) matrix multiplications
as above, this term can be ignored with respect to order notation complexity of the
algorithm. Then some of these sets S are checked to find actual vertices of N(w)−N[v].

BETWEEN O(nm) AND O(nα) 313

For each pair v, w, at most f(n) sets are checked, taking O(g(n)) time for a set; thus,
the total time is O(n2f(n)g(n)).

Lemma 2.2. Let G be a graph with n vertices, and let f(n) and g(n) be functions
of n. There is an O(n/g(n)MM(n, g(n), n) + n2f(n)g(n) + MM(n2/f(n), n, n)) time
algorithm to compute the neighborhood-deleted components of G.

Proof. In phase 1 of our algorithm the procedure of Lemma 2.1 is used to compute
the sets Sv,w. In phase 2, initial connected subsets for all G − N[v] are created as
follows. For each v, start with each vertex of G−N[v] in its own connected subset and
label each connected subset by the corresponding v. For each x in Sv,w, unify those
connected subsets of G − N[v] containing x and w. At the end of phase 2, suppose
that some connected subset C of G − N[v] contains fewer than f(n) vertices. Then
|N(c) − N[v]| < f(n) and N(c) − N[v] = Sv,c for every vertex c of C. Thus, there is
no edge joining (a vertex of) C and a vertex of V − (C ∪N[v]), and C is a connected
component of G− N[v].

For the remainder, the algorithm treats only connected subsets of size at least
f(n). In phase 3, create a directed graph D with 3 levels of vertices as follows. At the
first level of D, create a vertex for each connected subset of size at least f(n) found
in phase 2. At the second and third levels of D, create a vertex for each vertex in G.
Add an edge from C at the first level to x at the second level if x is in C. Add an
edge from x at the second level to y at the third level if x is adjacent to y. Now there
is an edge joining a connected subset C and a vertex u in G iff there is a path from C
in the first level of D to the copy of u in the third level of D. Let MCtoG be a binary
matrix with a row for each connected subset and a column for each vertex of G, with
MCtoG[C, u] = 1 iff (u, v) /∈ E (here v is the vertex that C is labeled with) and there
is an edge joining C and u in G. Computing MCtoG involves multiplying an n2/f(n)
by n matrix representing the edges between the first two levels of D and an n by n
matrix representing the edges between the second and third levels of D.

Recall that C is a connected subset of G − N[v] for some specific vertex v and
that C is labeled by v. In phase 4, for every vertex u and every connected subset
C, if there is an edge joining u and C in G, then unify C and the connected subset
containing u in G − N[v]. Since each vertex u is compared to n2/f(n) connected
subsets there are n3/f(n) such operations; the cost of performing these union and
find operations is dominated by the time for performing the matrix multiplication in
phase 3. Therefore, the running time of the algorithm is O(n/g(n)MM(n, g(n), n) +
n2f(n)g(n) + MM(n2/f(n), n, n)).

Theorem 2.3. The neighborhood-deleted components of G can be computed in
O(n2.79) time.

Proof. Let f(n) = n.575, g(n) = n.2125. It is clear that n2f(n)g(n) is O(n2.79)
for these values. It is known that MM(n, g(n), n)) is O(n2+o(1)) whenever g(n) <
n.294 [13, 4], so the n/g(n) multiplications of n by g(n) and g(n) by n matrices take
O(n2.79) time. The best algorithm for multiplying rectangular matrices of the form
n2/f(n) by n and n by n is given in [13].

The time complexity from [13, p. 273] is somewhat complex to state. For chosen
values of q, the exponent of MM(n, n1.425, n) is at most (1/logq)log(2.4252.45(q +
2)3.425/3.4253.425). Using q = 7, as suggested on page 280 of [13], this works out to
approximately 2.787, implying that the overall cost of the algorithm for computing
neighborhood-deleted components is O(n2.79).

3. Algorithmic consequences. We show that the neighborhood-deleted com-
ponents of G can be used to solve a variety of well-known graph problems.

314 DIETER KRATSCH AND JEREMY SPINRAD

Our first application is recognition of AT-free graphs.

The knotting graph K(G) is defined as follows. For each vertex v of G and each
connected component i of G[N(v)] (i.e., the complement of the graph induced by
N(v)), there is a vertex vi of K(G). If (u, v) is an edge of G, K(G) has an edge
between the copy of u corresponding to the connected component containing v in
G[N(u)] and the copy of v corresponding to the connected component containing u in
G[N(v)].

Knotting graphs were first defined by Gallai [10], who showed that G is a com-
parability graph iff K(G) is bipartite.

Corollary 3.1. AT-free graphs can be recognized in O(n2.82) time.

Proof. Köhler [15] showed that you can recognize AT-free graphs in O(n2.82)
time plus the time to compute a graph known as the knotting graph. Components of
G[N(v)] correspond exactly to neighborhood-deleted components caused by deletion
of neighbors of v in G. Therefore, we can compute K(G) by finding neighborhood-
deleted components in G, and using our earlier theorem knotting graphs can be con-
structed in O(n2.79) time.

An extremity of a graph is a vertex v such that G − N[v] is connected. Thus,
knowing the neighborhood-deleted components, we can easily identify the extremities.

Corollary 3.2. All extremities of a graph can be listed in time O(n2.79).

A star cutset in a graph is a set S of vertices such that G−S is disconnected, and
there is a vertex s in S which is adjacent to every other vertex in S. Chvátal showed
that a minimal imperfect graph cannot have a star cutset [3], and generalizations
of this star cutset lemma played a crucial role in resolving the strong perfect graph
conjecture. Since the generalizations, called skew partitions, can only be found us-
ing algorithms with incredibly high time complexity [8], algorithms can be simplified
greatly on classes which can be decomposed using the simpler star cutset decompo-
sition. Chvátal also gave a lemma which showed that star cutsets can be found in
polynomial time; a star cutset corresponds either to a pair of neighbors x, y such that
N(x) is a subset of N[y], or to a nonextremity.

Corollary 3.3. It is possible to determine whether a graph has a star cutset in
O(n2.79) time.

Proof. Since we can determine all neighborhood containments N(x) ⊆ N[y] for
all pairs x, y in a graph from a single matrix multiplication, the time complexity of
finding a star cutset is dominated by the time needed to find whether the graph has
a nonextremity.

A dominating pair in a graph is a pair x, y of vertices such that for every path P
from x to y and every vertex z of G, z is adjacent to at least one vertex of P .

Corollary 3.4. It is possible to determine whether x, y is a dominating pair in
O(n2.79) time.

Proof. The vertices x, y are a dominating pair exactly when x and y are not in
the same connected component of G− N[z] for any z.

The following theorem needs a more sophisticated use of the neighborhood-deleted
components.

Theorem 3.5. All dominating pairs of G can be listed in O(n2.79) time.

Proof. First, we note that all adjacent dominating pairs can be determined in
O(n2) time given the square of the adjacency matrix. The number of vertices adjacent
to x or y for neighbors x, y is equal to a(x, y) = |N(x)| + |N(y)| − A2[x, y]; the latter
term is equal to the number of common neighbors of x and y. Neighbors x and y
form a dominating pair iff a(x, y) = n.

BETWEEN O(nm) AND O(nα) 315

In the remainder of this proof, we show how to determine whether nonadjacent
vertices are dominating pairs.

Construct a graph G′ with a vertex w for each vertex of G, and a vertex c for
each component of all G − N[v]. Add an edge from c to w iff w is in component
c. Determining whether w and x are in a common component (and thus are not
a dominating pair) is equivalent to asking whether there is a path from w to x of
length 2 in this graph, which can be solved by matrix multiplication. However, if the
number of components is large, then the cost of these multiplications is too high; we
will reduce the number by solving the problem in a different way for components with
a small number of vertices.

We will not optimize this step, since it takes less time than the bottleneck step
of computing the components. For any component c with fewer than n0.7 vertices,
we step through all pairs of vertices w, x in c, and mark w, c in a matrix to indicate
that these cannot form a dominating pair. On each vertex we spend at most n1.7

time marking other vertices during this step (at most n0.7 time for each G−N[v]), so
the time spent eliminating vertex pairs as candidates because they are in a common
small component is O(n2.7). Vertices corresponding to components with fewer than
n0.7 vertices are then removed from G′.

Testing whether vertices are in a common large component is equivalent to testing
for paths of length 2 in G′, and can be solved using matrix multiplication of an n by
n1.3 matrix by an n1.3 by n matrix, which takes o(n2.7) time.

Therefore, the bottleneck step for determining whether a graph has a dominating
pair is the computation of neighborhood-deleted components of G, and this also takes
O(n2.79) time.

4. Two-pairs. A more sophisticated algorithm based on our fast algorithm for
finding neighborhood-deleted components is an improved algorithm to list all two-
pairs of a graph. The current best algorithm for finding either a single two-pair, or
all two-pairs, in a graph is based on the following observation [1]: v, w is a two-pair of
G iff N(w) ∩ N(v) = N(C) ∩ N(v), where C is the connected component of G−N(v)
containing w. This gave an O(nm) algorithm for finding all two-pairs of G.

Suppose that all neighborhood-deleted components of G are known. It is not
hard to identify for all vertices v a subset of vertices Sv such that v, w form a two-pair
implies w ∈ Sv. We call a vertex w a candidate for v if w has the maximum number
of common neighbors with v from any vertex in the component of G−N[v] containing
w. The number of common neighbors |N(v)∩N(w)| for each pair of vertices v, w can
be determined from the square of the adjacency matrix of G. It is also not hard to see
that if two vertices w, x in the same component are candidates, then v, w is a two-pair
iff v, x is a two-pair. Assuming that we know the number of common neighbors of each
pair of vertices (which takes O(nα) time), it takes O(n2) time to find all candidates;
simply step through each neighborhood-deleted component C of v and choose the
vertex of C which has the most common neighbors with v. We may limit our further
search to one candidate for each component of G−N[v]. If the number of components
is too large, the time complexity can become too large. Therefore, we must once again
use balancing, finding the candidates in large components using one form of matrix
multiplication, and using a different technique for small components.

Theorem 4.1. There is an O(n2.79) algorithm to list all two-pairs in G.
Proof. Recall that each component C is associated with a vertex v, such that C

is a connected component of G− N(v).
Let f(n) be a function to be fixed later. For a candidate w in a small component

316 DIETER KRATSCH AND JEREMY SPINRAD

C of G−N[v], i.e., |C| < f(n), test as follows whether v, w is a two-pair of G. Compute

|N(w) ∩ N(w′) ∩ C| for all vertices w′ ∈ C. This takes O(|C|2) time for a component
C. To test whether v, w is a two-pair of G, for each w′ ∈ C calculate the number of
common neighbors of w and w′ in N(v) (which is |N(w)∩N(w′)|−|N(w)∩N(w′)∩C|).
If there is a w′ ∈ C such that |N(v) ∩ N(w′)| > |N(w) ∩ N(w′) ∩ N(v)|, then v, w is
not a two-pair of G, otherwise v, w is a two-pair of G.

To test candidates from large components C, i.e., |C| ≥ f(n), set up the following
digraph D. At level 1 of D, make a copy of each vertex of G. At level 2, make a
second copy of each vertex of G, with an edge from x at level 1 to y at level 2 in D
iff x is adjacent to y in G. At level 3 of D, create a vertex for each component of
size at least f(n). Add an edge from a vertex at level 2 to a component at level 3 in
D iff the vertex belongs to the component. Perform a single multiplication of an n
by n matrix representing the edges between levels 1 and 2 of D by an n by n2/f(n)
matrix representing the edges between levels 2 and 3 of D. (Note that there are at
most n/f(n) large components.) The resulting matrix tells you which vertices have
a neighbor in component C for each component C; for a vertex u which is not in C,
entry [u,C] of the result matrix is nonzero iff u has an edge to a vertex in C. Create
a matrix E by changing every nonzero value of the result matrix to 1.

Perform another matrix multiplication, multiplying the adjacency matrix of G
with E. Entry v, C of this matrix tells you how many neighbors of v have an edge to
component C, i.e., |N(v) ∩ N(C)|.

Finally v, w is a two-pair in G for a candidate w belonging to a component C of
G− N[v] iff |N(v) ∩ N(w)| = |N(C) ∩ N(v)|.

The total time for testing candidates from large components is O(n3.376/f(n)).
The time for testing candidates from small components is the sum of the squares of
the component sizes. Maximizing the sum of squares given a fixed sum of numbers
is achieved by making the numbers as large as possible; thus the time spent on small
components can be bounded by making each component size f(n), taking time f2(n)
on n2/f(n) components, for an overall bound of O(n2f(n)). By choosing f(n) from a
particular range (f(n) = n0.6 is one possible value), the time for finding all two-pairs
given the components is smaller than the time to compute the neighborhood-deleted
components of G. Hence all two-pairs of a graph can be listed in O(n2.79) time.

5. Reductions. The problems solved in this paper all make use of fast matrix
multiplication algorithms to beat bounds of O(nm). It is natural to ask whether
these problems can be solved even faster (perhaps in linear time), or solved efficiently
without using matrix multiplication. In this section, we give evidence that finding an
o(nα) time algorithm for solving any of the problems solved in this paper by using fast
matrix multiplication, or solving them efficiently without using matrix multiplication
in time O(n3−ε) for some ε > 0, would require a major breakthrough. We do this
by showing that certain simple, famous problems currently solved most efficiently
by matrix multiplication can be reduced to our problems. This still leaves open the
question as to whether the time complexity for any of these problems can be reduced
to the time for performing a single matrix multiplication of n by n matrices.

Our first basic problem which can be solved using matrix multiplication is recog-
nizing triangle-free graphs. It is easy to see that G has a triangle iff there is a pair of
vertices x, y joined by both a path of length 2 and a path of length 1. Therefore, it is
easy to determine whether a graph is triangle-free in O(n2) time if we are given both
the adjacency matrix and the square of the adjacency matrix. There is no known
algorithm which solves the problem in O(n3−ε) time for some ε > 0 without using

BETWEEN O(nm) AND O(nα) 317

matrix multiplication.

Our second basic problem which can be solved using matrix multiplication is
determining whether there is a pair of vertices x, y such that N(x) ⊂ N[y]; we call this
the problem of determining whether a graph has a dominated vertex. It is not hard
to see that the dominated vertex problem can be solved using matrix multiplication;
N(x) is a subset of N[y] iff the number of paths of length 1 or 2 from x to y is equal
to the degree of x.

Our third basic problem is the problem of determining whether a graph has a
simplicial vertex. This can be solved easily in O(n2) time if the cube of the adjacency
matrix is given, since v is simplicial iff the number of paths of length 3 from v to v is
equal to |N(v)|(|N(v)| − 1).

Although no faster algorithm is known to solve the second and third problems,
these are not as well studied as triangle-free recognition. For each of the problems Π
solved in the previous sections of the paper, we will show that there is an O(n2) time
reduction which takes a graph G as input and produces a graph G′ with O(n) vertices
as output, where either G has a triangle iff G′ has property Π, G has a dominated
vertex iff G′ has property Π, or G has a simplicial vertex iff G′ has property Π. This
will show that faster algorithms to solve problem Π may be hard to find, since they
would imply faster algorithms for one of our fundamental problems.

Theorem 5.1 (see [21]). Testing whether a graph with 2n vertices has an as-
teroidal triple is at least as hard as testing whether a graph with n vertices has a
triangle.

Proof. We reduce the triangle finding problem to the asteroidal triple finding
problem.

Let G be a graph with n vertices. Create a graph G′ as follows. Create n vertices
corresponding to vertices of G, where x and y are adjacent in G′ iff x and y are
nonadjacent in G. Add n new vertices, where each new vertex has degree 2n− 2, and
new vertex i is nonadjacent only to the vertex of G′ corresponding to the ith vertex
of G; we will call this new vertex i′.

Suppose that G has a triangle x, y, z. Then x, y, z are pairwise nonadjacent in G′,
and the paths x, y′, z; x, z′, y; y, x′, z show that G′ has an asteroidal triple. Suppose
that G′ has an asteroidal triple. Since each new vertex (i.e., the vertices labeled v′) of
G′ is nonadjacent only to one vertex of G′, the independent vertices of this asteroidal
triple in G′ must correspond to a triangle in G.

Theorem 5.2. Determining whether a graph with 3n+4 vertices has a dominating
pair (or whether a particular pair of vertices b, z is a dominating pair of a graph with
3n+4 vertices) is at least as hard as determining whether a graph with n vertices has
a triangle.

Proof. Let G be a graph with n vertices. Create a graph G′ with vertices x1, x2, x3

for each x in G, and vertices b, c, y, z. Add edges from b to c, y to z, c to x1 for all
x, and x3 to y for all x. For all v, w ∈ V , add edges (v1, w1), (v2, w2), and (v3, w3).
Add edges between v1 and w2, v2 and w3 if v and w are adjacent in G and from v1

and w3 iff v and w are distinct and nonadjacent in G.

Suppose that G has an independent set v, w, x. Then the path b, c, v1, x3, y, z
avoids all neighbors of w2, so b, z is not a dominating pair. Suppose that b, z is not
a dominating pair. Since any path from b to z which uses vertices of all 3 indices is
a dominating path, there must be some path from b to z which uses an edge (v1, x3)
such that there is a vertex w2 being nonadjacent to v1 and to x3. Hence there is an
independent set v, w, x in G.

318 DIETER KRATSCH AND JEREMY SPINRAD

Therefore, G has an independent set of size 3 iff b, z is not a dominating pair in
G′. It is clear that if there is a dominating pair in G′, then b, z is a dominating pair,
so G′ has a dominating pair iff G has no independent set of size 3.

We note that it is easy to find a dominating pair in linear time in a graph which
is known to have no asteroidal triples [7]. Since the above reductions show that
neither AT-free recognition nor dominating pair recognition can be solved in linear
time without a major breakthrough, it is an interesting open question as to whether
there is a robust linear time algorithm for finding a dominating pair in an AT-free
graph. Robust is used here in the sense of [20]; a robust linear time algorithm must
take an arbitrary (i.e., not necessarily AT-free) graph, and should in linear time either
find a dominating pair or answer that the graph is not AT-free. The difference from
other algorithms is that if the input graph is not AT-free but has a dominating pair,
such an algorithm is allowed to answer either that G has a dominating pair or that
G is not AT-free.

Theorem 5.3. Identifying all extremities in a graph on 3n vertices is at least as
hard as determining whether a graph with n vertices has a triangle.

Proof. We reduce the triangle recognition problem to the question of identifying
all extremities.

Let G be a graph with n vertices. Create 3 copies x1, x2, x3 in G′ for every x in
G. Add edges from x1 to y2 and from x2 to y3 iff x is nonadjacent to y in G, or if
x = y. Add edges from x1 to y3 iff x and y are adjacent in G. Add edges (x1, y1),
(x2, y2), and (x3, y3) for all x, y.

We will show that x is in some triangle of G iff x2 is an extremity of G′. Note
that vertices of G′ −N[x2] correspond to u1 and u3 such that u is adjacent to x in G.

Suppose that x, y, z form a triangle in G. Since there is an edge from y1 to z3,
and vertices with each index 1 and 3 form a clique, x2 is an extremity of G′.

Suppose that x is not part of a triangle in G. Then there is no edge between
vertices with index 1 and vertices with index 3 in G′ − N[x2]; any such edge between
neighbors of x would be a triangle in G. Therefore, x2 is a nonextremity of G′.

We note that the important special case of determining whether a graph has
a nonextremity can be solved more efficiently than recognizing triangle-free graphs
remains open.

Theorem 5.4. Testing whether a graph with 4n+ 6 vertices has a two-pair is at
least as hard as testing whether a graph with n vertices has a dominated vertex.

Proof. Let G be a graph with n vertices; we will assume that G has at least one
edge, or finding a dominated vertex is trivial. Create a graph G′ as follows. For each
vertex x of G, create vertices x1, x2, x3, x4 in G′. G′ will consist of two disconnected
subgraphs, one containing each x1 and x2, the other containing x3 and x4. The two
disconnected subgraphs of G′ are constructed similarly, but differ in one detail.

Add an edge from x1 to y2 iff x and y are adjacent in G. Similarly, add an edge
from x3 to y4 iff x and y are adjacent in G.

Add a vertex w1 which is adjacent to every vertex x1, and a vertex z2 adjacent to
every vertex y2. Add a vertex v adjacent only to w1 and z2. Similarly, add a vertex
w3 which is adjacent to every vertex x3, a z4 which is adjacent to every vertex y4,
and a vertex u which is adjacent only to w3 and x4.

The constructions of the two subgraphs differ only in that we now add edges
from x3 to x4 for every x in G; i.e., the two copies of a vertex are made adjacent
in one subgraph, but not the other. Intuitively, one subgraph translates nonadjacent
pairs N(x) ⊂ N[y] into two-pairs, while the other translates adjacent pairs with the

BETWEEN O(nm) AND O(nα) 319

property into two-pairs.

Suppose that G has a dominated vertex x, i.e., that N(x) ⊂ N[y]. If x and y
are nonadjacent, then every neighbor of x1 is a neighbor of y1 in G′, so x1,y1 form a
two-pair in G′. If x and y are adjacent, then every neighbor of x3 is adjacent to y3,
and x3,y3 forms a two-pair of G′.

Suppose that G′ has a two-pair b′, c′. Neither b′ nor c′ can be w1; w1 is adjacent
to every vertex x1, has a path w1, v, z2, y2 to every vertex y2, is adjacent to v, and
has a path of length 3 to z2 using any edge (x1, y2). Symmetrically, neither b′ nor c′

can be z2, and similar arguments show that neither b′ nor c′ can be v, u, w3, or z4. It
is also impossible to have b′ = x1, c

′ = y2, since either x1 is adjacent to y2 or there
is a chordless path x1, w, v, z, y2 between the vertices; the same reasoning shows that
we cannot have b′ = x3, c

′ = y4. Thus, we assume without loss of generality that the
two-pair is of the form x1, y1 or x3, x4.

Suppose that b′ = x1 and c′ = y1. If there is a vertex i adjacent to x but not y
and a vertex j adjacent to y but not x, then the path x1, i2, z2, j2, y1 contradicts the
assumption that x1, y2 is a two-pair. Similarly, two-pairs x3, y3 must correspond to
dominated vertices, or we get a path from x3 to y3 using i4, z4, j4.

Therefore, G′ has a two-pair iff G has a dominated vertex.

Theorem 5.5. Testing whether a graph on 8n+ 2 vertices has a star cutset is at
least as hard as testing whether a graph G with n vertices has a dominated vertex.

Proof. Let G be a connected graph with n vertices, such that all vertices have
degree at least 2.

Our construction is similar to that of the previous theorem, in that we create two
subgraphs, one to deal with adjacent pairs such that N(x) ⊂ N[y], and the other when
x and y are nonadjacent. In this construction, the two subgraphs are connected by a
complete join between the vertex sets, rather than being disconnected. We give the
construction for the first subgraph before discussing the modification for the second
subgraph.

The first subgraph is created as follows. Create four vertices x1, x2, x3, x4 of G′

for each vertex x of G. Add an edge from x1 to y2 in G′ iff x and y are adjacent in
G. Add an edge from x2 to x3 and from x3 to x4 for each x in G. Add edges (x4, y4)
for every x, y. Add a single vertex w, with edges from w to x1 for all x.

The second subgraph is created in the same fashion as the first, except that x1 is
adjacent to x2 in the second subgraph. The entire graph G′ is formed by adding all
edges between the first and second subgraphs.

Suppose that N(x) ⊂ N[y] in G. If x and y are nonadjacent, then G′ contains the
star cutset {y1}∪ N(x1). If x and y are adjacent, then G′ contains the star cutset
consisting of the copies of {y1}∪ N(x1) from the second subgraph. This is because if
we exclude x2 and y2, x1’s neighborhood is contained in y1’s neighborhood in both
subgraphs. If x and y are nonadjacent, then x1 is not adjacent to either x2 or y2 in
the first subgraph, so we get neighborhood containment, while if x is adjacent to y,
then the copy of y1 in the second subgraph is adjacent to both x2 and y2, and thus
its neighborhood contains that of the corresponding x1.

Suppose that G′ has a star cutset. Then by Chvátal’s theorem [3] G′ has either
a vertex which is dominated by a neighbor, or a nonextremity. It is not hard to see
that no vertex can dominate a neighbor in G′, so G′ must contain a vertex v such
that G − N[v] is disconnected. One cannot disconnect G′ by removing neighbors of
a vertex with index 3 or 4; all remaining vertices clearly have a path to w. One
cannot disconnect G′ by removing w, since all remaining vertices can reach a vertex

320 DIETER KRATSCH AND JEREMY SPINRAD

with index 4, and these vertices form a clique. G′ cannot become disconnected by
removing any vertex x2; all remaining vertices with index 2 remain connected since
they have paths to level 4, and all remaining vertices with index 1 remain connected
through w. Since x1 remains in G′ −N[x2] and has an edge to some y2, G

′ −N[x2] is
connected.

Therefore, we can assume that G′ can be disconnected by removing all neighbors
of some vertex x1. If there is no vertex y such that N[x] ⊆ N(y), then every vertex
of G′ − N[x1] has a path to a vertex with index 4 (any v2 is adjacent to v3 and v3

to v4, and any y1 has an edge to some z2 which is nonadjacent to x1, and we can
reach z4 from z2); since vertices with index 4 form a clique, G′ − N[x1] is connected.
Therefore, if G′ has a star cutset, G has a dominated vertex.

In the conference version of this paper, we presented an algorithm using periodic
matrix multiplication to determine whether a graph has a clique cutset. Since that
time, we devised a new algorithm to find a minimal fill and a clique cutset in a graph.
These algorithms became sufficiently different from the techniques used here (they
were based on an implementation of Tarjan’s LEX-M algorithm, and were unrelated to
neighborhood-deleted components) so that the algorithms were put in a separate paper
[17]. However, the evidence that the problem requires the use of matrix multiplication
seems to be much more closely related to this paper than the algorithmic work in the
other paper; we feel that it is more consistent to talk about difficulty of the clique
cutset problem here.

Theorem 5.6. Determining whether a graph on 4n + 2 vertices has a clique
cutset is at least as hard as determining whether an n vertex graph has a simplicial
vertex.

Proof. Let G = (V,E) be a connected n vertex graph. Create a graph G′ =
(V ′, E′) as follows. For every x in G, create vertices x1, x2, x3, x4 in G′. Add edges
from x1 to x2 and from x3 to x4 for every x in G. Add edges (x1, y3) and (x2, y3)
to G′ iff x is adjacent to y in G. Add adjacent vertices b and z, and edges (b, x1)
and (x4, z) for all x. Add edges (x3, y3) iff x and y are adjacent in G. Note that
NG′ [x1] = NG′ [x2] ∪ {b} for each x in G.

Suppose that G has a simplicial vertex v. Then K ′ = {v1} ∪ {w3 : (v, w) ∈ E}
is a clique, and a cutset since {v2} is a component of G′ −K ′.

Suppose that G′ has a clique cutset. It is clear that no clique cutset contains
one or more of the vertices b,z, or any x4; the only cliques involving these vertices
correspond to edges, and it is easy to see that removing any adjacent vertex pair
cannot disconnect G′. Any K ′ ⊆ {x2, x3 : x ∈ V } is not a cutset, since each
remaining vertex w2 would have an edge to w1 and thus a path to b, while each
remaining vertex w3 has an edge to w4 and thus to z. Therefore, any clique cutset
contains a vertex v1. The only vertex which could not have a path to b if neighbors
of v1 are removed is v2, and this will have a path to b unless all w3 adjacent to v1 are
removed. Therefore, the only possible clique cutset in G′ corresponds to a simplicial
vertex v and its neighbors in G. Thus G has a simplicial vertex.

It would be nice if we could show that all these problems were at least as hard as
a single problem, of which the most natural would seem to be determining whether a
graph has a triangle, which would be used as general evidence of difficulty. Although
we were not able to show that determining whether a graph has a simplicial vertex
is as hard as recognizing triangle-free graphs, the following theorem is an attempt to
show a relationship between triangle-free recognition and finding simplicial vertices.

Theorem 5.7. The problem of counting the number of simplicial vertices in a

BETWEEN O(nm) AND O(nα) 321

graph with 3n + 2 vertices is at least as hard as determining whether a graph on n
vertices has a triangle.

Proof. Let G be a graph on n vertices, none of which is isolated. Create three
vertices x1, x2, x3 for each vertex x in G. Add edges (w1, x2) and (w2, x3) iff w is
adjacent to x in G, and add an edge (w1, x3) iff w is nonadjacent to x in G, or w = x.
Add edges (w1, x1) and (w3, x3) for all vertices w, x of G. Add adjacent vertices b and
z, where b is adjacent to all vertices x1 of G′ and z is adjacent to all vertices x3.

Suppose that v is contained in a triangle v, w, x of G. Then v2 is not simplicial
in G′, since w1 is nonadjacent to x3.

Suppose that v is not contained in a triangle of G. Then v2 is simplicial in G′,
since all neighbors w1 of v2 are adjacent to all neighbors x3 of v2, and vertices of the
same index form a clique.

No vertex x1 is simplicial in G′, since b and v2 are nonadjacent for any neighbor
v2 of x1. Similarly, no x3 is simplicial in G′, and clearly b and z are nonsimplicial.

Therefore, the number of simplicial vertices in G′ is equal to the number of vertices
which are not contained in a triangle of G′, and G is triangle-free iff G′ has n simplicial
vertices.

The final reduction is related to comments received about clique cutset decompo-
sition. Some researchers seem to feel that clique cutsets are so closely tied to minimal
elimination orderings that fast algorithms to compute a minimal elimination ordering
would give fast algorithms for finding a clique cutset. The following reduction shows
that beyond a certain speed, faster minimal elimination orderings are not the only
issue in finding a clique cutset.

Theorem 5.8. Finding a clique cutset in a graph with 2n+2 vertices is at least as
hard as finding a simplicial vertex in an n vertex graph, even if a minimal elimination
ordering is given as part of the input.

Proof. Let G be an arbitrary graph. Let G′ be a graph with two copies x1, x2 of
each x in G, plus two nonadjacent vertices y, z such that y and z are adjacent to every
vertex x2. Let X1 be the set of vertices of G′ with index 1, and let X2 be the vertices
with index 2. v1 is adjacent to w2 iff v is adjacent to w in G, and v2 is adjacent to w2

iff v is adjacent to w in G. A minimal elimination ordering of G′ can be formed by
adding edges between every pair of vertices from X2 (all fill edges (v, w) are unique
chords of 4-cycles v, y, w, z in G′), and y, z, X1, X2 is a minimal elimination ordering
of G′.

The only possible clique cutset of G′ is the set of all neighbors of x1 such that x
is simplicial in G. We know a minimal elimination ordering of G′, but any algorithm
for finding a clique cutset in G′ given this minimal elimination ordering would give a
fast algorithm for finding a simplicial vertex in G.

6. Comments on reductions. We begin this section by summarizing the re-
sults of the previous section.

Problems as hard as triangle-free graph recognition:
(1) Recognizing AT-free graphs.
(2) Determining whether a graph has a dominating pair.
(3) Determining whether a specific vertex pair u, v is a dominating pair.
(4) Identifying all extremities in a graph.
(5) Counting the number of simplicial vertices.
Problems as hard as testing for a dominated vertex:
(1) Determining whether a graph has a two-pair.
(2) Determining whether a graph has a star cutset.

322 DIETER KRATSCH AND JEREMY SPINRAD

Problems as hard as testing for a simplicial vertex:

(1) Determining whether a graph has a clique cutset.

Ideally, we would have a single problem P , and show that all these problems are
as hard as problem P . Since triangle-free graph recognition seems more fundamental
than the other problems, we might try to show that all the problems above are as
hard as triangle-free graph recognition. We now explain why we believe it would be
very difficult to show that all these problems were as difficult as determining whether
a graph has a triangle. Fundamentally, this deals with incomparability of proof sizes
with respect to the question of whether a graph does/does not satisfy a particular
property.

Let us consider certificates which prove whether a graph does/does not have each
of the properties in question. The measurements size of the certificate and time to
verify that a property holds are often used interchangeably in the literature; we will
phrase the issues in terms of size of the certificate.

There is a certificate of constant size which shows that a graph has a triangle.
No deterministic certificate of size o(n2.376) is known for showing that a graph has
no triangle. We note that although there is a randomized O(n2) certificate showing
that a graph has no triangle (one provides the square of the adjacency matrix, and
multiply by random n-vectors to verify that the results are the same for your proposed
A2 times the vector and A times (A times the vector)) [9], this involves producing the
square of the matrix as part of your certificate.

For each problem P , Certsize(P) will be a pair, consisting of the best times known
for a deterministic certificate for yes instances of P and a deterministic certificate for
no instances of P . Thus, Certsize(triangle-free) = (O(1),O(n2.376)). We will order
the pair so that the smaller of these two values comes first in the ordered pair.

Let us consider Certsize(P) for other problems P which were considered in this
paper. For simplicity, we limit ourselves to the decision problems, as opposed to
counting and enumeration problems.

There is a certificate of size O(n) that a graph has an asteroidal triple (the
paths between each pair of vertices in the triple), but no o(n2.376) certificate is
known for showing that a graph has no asteroidal triple. Thus Certsize(AT-free)
= (O(n),Ω(n3.376)).

There is a certificate of size O(n) showing that x, y is not a dominating pair; it
is only necessary to check that a path from x to y has no neighbors of z. There is no
known certificate of size o(n2.376) proving that x, y is a dominating pair. For showing
that G has no dominating pair, we do not know of any certificate of either yes or
no of size o(n2.376). Thus, Certsize(xy-dominating pair) = (O(n),Ω(n2.376)), while
Certsize(Exists dominating pair) = (Ω(n2.376),Ω(n2.376)).

For all these problems P , Certsize(triangle-free) ≤ Certsize(P), in the sense that
both the first and second values of the ordered pair Certsize(triangle-free) were less
than or equal to the corresponding values for Certsize(P). In all of these cases, we
were able to find a reduction showing that these problems were as hard as recognizing
triangle-free graphs.

We now consider some of the problems which we chose to reduce from existence
of a dominated vertex or existence of a simplicial vertex rather than triangle-free
recognition. First, let us examine the “basic” problems themselves with respect to
certificate size.

There is a certificate of size O(n) showing that G has a dominated vertex; given
x and y, it takes only O(n) time to verify that N(x) ⊂ N[y]. There is also an O(n2)

BETWEEN O(nm) AND O(nα) 323

certificate showing that a graph has no dominated vertex; for each x, y, give a neighbor
of x but not y and a neighbor of y but not x. Thus, Certsize(dominated vertex) =
(O(n),O(n2)).

There is a certificate of size O(n2) that G contains a simplicial vertex (the sim-
plicial vertex plus the list of all edges between its neighbors) and a certificate of size
O(n2) that G has no simplicial vertex (a pair of nonadjacent neighbors of each vertex).
Thus, Certsize(simplicial vertex) = (O(n2),O(n2)).

The star cutset problem also has certificates of both yes and no of size O(n2).
One certificate is obvious; to verify that G has a star cutset, we verify that a set is
a star and that the vertices not in the cutset induce a disconnected graph. Verifying
that the graph has no star cutset uses Chvátal’s theorem on star cutsets being either
nonextremities or neighbors such that one neighborhood dominates the other; we give
vertices in N[x] − N[y] and N[y] − N[x] for each pair of adjacent vertices x, y, and we
show that each vertex is an extremity by providing a spanning tree for G − N[v] for
each v. Thus, Certsize(star cutset) = (O(n2),O(n2)).

Showing that x, y form a two-pair can be done in O(n2) time, by showing that
there is no path from x to y in G− (N(x) ∩N(y)). An O(n2) certificate that a graph
has no two-pair can also be given, though since it is more involved we will simply
outline it here. For each v, one can provide an O(n) certificate that v is not part
of a two-pair. A spanning tree is given for each connected component of G − N(v).
For each nonneighbor w of v, give an edge from some x in the same component as
w to a nonneighbor of w which is adjacent to both x and v. It is not difficult to
argue that such an x exists iff v, w is not a two-pair. Therefore, Certsize(two-pair) =
(O(n2),O(n2)).

Similarly, Certsize(clique cutset) = (O(n2),O(n2)), though this is not obvious
unless you are familiar with an algorithm such as that of [24] for constructing a clique
cutset.

In all these cases, Certsize(triangle-free) is incomparable with Certsize(P), in the
sense that the first value in the pair was smaller for Certsize(triangle-free), while the
second value was smaller for Certsize(P).

These observations about certificate sizes made us realize that it would be very
difficult to find an O(n2) reduction from triangle-free graph recognition to the prob-
lems of finding a clique cutset, star cutset, or a two-pair in a graph. Suppose that such
a reduction existed for one of these problems; for example, assume that there was an
O(n2) reduction which took an n vertex graph G and produced an O(n) vertex graph
G′ such that G contains a triangle iff G′ contains a two-pair. Any such reduction
would give us an O(n2) proof that a graph contains no triangle, since this would be
equivalent to proving that G′ has no two-pair, and we gave a simple proof of this fact
above. Therefore, finding a reduction from recognizing two-pair free graphs would
involve a major breakthrough, and the same would be true if two-pair was replaced
by clique cutset or star cutset.

Therefore, for each of our problems solved, we either showed the problem was as
hard as triangle-free recognition or are able to show using certificate sizes that such
a reduction is likely to be difficult to find.

We were left with the problem of showing difficulty of the problems star cutset
and existence of a two-pair. We introduce as a new concept the problems of being as
hard as finding a simplicial vertex or as hard as finding a dominated vertex. There
seems to be no particular reason to prefer one over the other as a basic problem for
evidence of difficulty. We also would like to raise the general issue of which problems

324 DIETER KRATSCH AND JEREMY SPINRAD

that have O(n2) yes and no certificates, but can be solved using matrix multiplication,
are appropriate to use as evidence of difficulty of beating matrix multiplication.

Finally, we would like to note that we also believe it will be difficult to find
reductions in either direction between triangle-free recognition and dominated ver-
tex/simplicial vertex existence. We explain above why we believe that reducing
triangle-free recognition to the other problems is hard. However, reductions in the
other direction may also prove to be difficult, since there is a constant size certificate
that a graph contains a triangle. Suppose we had a reduction from G to G′ such that
G contains a two-pair iff G′ is triangle-free. It would be possible to show that G has
no two-pair by showing a triangle in G′, although it is impossible to prove that G has
no two-pair in constant time. Thus, any such reduction cannot be “local”; by this, we
mean that there must be vertex pairs x, y of G′ such that adjacency between x and
y in G′ cannot be determined from G in constant time. Such transformations cannot
be ruled out but would necessarily be more complex than those that generally come
to mind when the term reduction is used, and reductions in this direction will not be
as simple as the reduction used in this paper.

It might be possible, however, to find reductions in one or both directions between
finding a dominated vertex and finding a simplicial vertex. It might also be possible to
find reductions from one of these problems to such problems as finding an asteroidal
triple for which we chose a reduction from triangle-free recognition. In our opinion, it
is perhaps too soon to consider such reductions; while it seems to be generally agreed
upon that recognizing triangle-free graphs in less time than matrix multiplication is
hard, we would like to find a community consensus on fundamental hard problems
with short certificates before producing too many reductions which might not convince
other researchers of the hardness of a problem.

Acknowledgment. We would like to thank one of the referees for a particularly
careful reading of the manuscript, leading to a number of improvements in the paper.

REFERENCES

[1] S. R. Arikati and C. P. Rangan, An efficient algorithm for finding a two-pair, and its
applications, Discrete Appl. Math., 31 (1991), pp. 71–74.

[2] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[3] V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory Ser. B, 39 (1985), pp. 189–199.
[4] D. Coppersmith, Rectangular matrix multiplication revisited, J. Complexity, 13 (1997), pp. 42–

49.
[5] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.

Symbolic Comput., 9 (1990), pp. 251–280.
[6] D. G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete

Math., 10 (1997), pp. 399–430.
[7] D. G. Corneil, S. Olariu, and L. Stewart, Linear time algorithms for dominating pairs in

asteroidal triple-free graphs, SIAM J. Comput., 28 (1999), pp. 1284–1297.
[8] C. M. H. de Figueiredo, S. Klein, Y. Kohayakawa, and B. A. Reed, Finding skew partitions

efficiently, J. Algorithms, 37 (2000), pp. 505–521.
[9] R. Freivalds, Fast Probabilistic Algorithms, Lecture Notes in Comput. Sci. 74, Springer,

Berlin, 1979, pp. 57–69.
[10] T. Gallai, Transitiv orientbare Graphen, Acta Math. Acad. Sci. Hungar., 18 (1967), pp. 25–66.
[11] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[12] R. B. Hayward, Weakly triangulated graphs, J. Combin. Theory Ser. B, 39 (1985), pp. 200–208.
[13] X. Huang and V. Y. Pan, Fast rectangular matrix multiplication and applications, J. Com-

plexity, 14 (1998), pp. 257–299.

BETWEEN O(nm) AND O(nα) 325

[14] D. Kelly, Comparability graphs, in Graphs and Order, NATO Adv. Sci. Inst. Ser. C Math
Phys. Sci. 147, I. Rival, ed., Reidel, Dordrecht, 1985, pp. 3–40.

[15] E. Köhler, Recognizing graphs without asteroidal triples, in Graph-Theoretic Concepts in
Computer Science (Konstanz, 2000), Lecture Notes in Comput. Sci. 1928, Springer, Berlin,
2000, pp. 255–266.

[16] D. Kratsch and J. Spinrad, Between O(nm) and O(nα), in Proceedings of the 14th Annual
SIAM-ACM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2003, pp. 709–716.

[17] D. Kratsch and J. Spinrad, Minimal fill in O(n2.69) time, Discrete Math., 306 (2006), pp.
366–371.

[18] C. G. Lekkerkerker and J. Ch. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962/1963), pp. 45–64.

[19] R. H. Möhring, Triangulating graphs without asteroidal triples, Discrete Appl. Math., 64
(1996), pp. 281–287.

[20] V. Raghavan and J. Spinrad, Robust algorithms for restricted domains, in Proceedings of the
12th Annual SIAM-ACM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2001,
pp. 460–467.

[21] J. P. Spinrad, Efficient Graph Representations, AMS, Providence, RI, 2003.
[22] R. E. Tarjan, Decomposition by clique separators, Discrete Math., 55 (1985), pp. 221–232.
[23] M. Thorup, Decremental dynamic connectivity, J. Algorithms, 33 (1999), pp. 229–243.
[24] S. H. Whitesides, An algorithm for finding clique cut-sets, Inform. Process. Lett., 12 (1981),

pp. 31–32.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 326–353

CERTIFYING ALGORITHMS FOR RECOGNIZING INTERVAL
GRAPHS AND PERMUTATION GRAPHS∗

DIETER KRATSCH† , ROSS M. MCCONNELL‡ , KURT MEHLHORN§ , AND

JEREMY P. SPINRAD¶

Abstract. A certifying algorithm for a problem is an algorithm that provides a certificate with
each answer that it produces. The certificate is a piece of evidence that proves that the answer has
not been compromised by a bug in the implementation. We give linear-time certifying algorithms
for recognition of interval graphs and permutation graphs, and for a few other related problems.
Previous algorithms fail to provide supporting evidence when they claim that the input graph is not
a member of the class. We show that our certificates of nonmembership can be authenticated in
O(|V |) time.

Key words. certificates, certifying algorithms, interval graphs, permutation graphs

AMS subject classifications. 68W40, 05C85, 68N30

DOI. 10.1137/S0097539703437855

1. Introduction. A recognition algorithm is an algorithm that decides whether
some given input (graph, geometrical object, picture, etc.) has a certain property.
Such an algorithm accepts the input if it has the property or rejects it if it does not. A
certifying algorithm for a decision problem is an algorithm that provides a certificate
with each answer that it produces. The certificate is a piece of evidence that proves
that the answer has not been compromised by a bug in the implementation.

We give linear-time certifying algorithms for recognition of interval graphs and
permutation graphs. Previous algorithms fail to provide supporting evidence of non-
membership. We show that our certificates of nonmembership can be authenticated
in O(n) time, where n is the number of vertices.

A familiar example of a certifying recognition algorithm is a recognition algorithm
for bipartite graphs that computes a 2-coloring for bipartite input graphs and an
odd cycle for nonbipartite input graphs. A more complex example is the linear-time
planarity test which is part of the library of efficient data structures and algorithms
(LEDA) system [19, section 8.7]. It computes a planar embedding for planar input
graphs and a Kuratowski subgraph (a subdivision of K5 or K3,3) for nonplanar input
graphs.

Certifying versions of recognition algorithms are highly desirable in practice;
see [28, 20, 21] and [19, section 2.14] for general discussions on result checking. Con-
sider a planarity testing algorithm that produces a planar embedding if the graph
is planar, and simply declares it nonplanar otherwise. Though the algorithm may
have been proven correct, the implementation may contain bugs. When the algorithm

∗Received by the editors November 23, 2003; accepted for publication (in revised form) August
12, 2005; published electronically June 19, 2006.

http://www.siam.org/journals/sicomp/36-2/43785.html
†Université de Metz, LITA, 57045 Metz Cedex 01, France (kratsch@sciences.univ-metz.fr).
‡Computer Science Department, Colorado State University, Fort Collins, CO 80523-1873 (rmm@

cs.colostate.edu).
§Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany (mehlhorn@

mpi-sb.mpg.de).
¶Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville,

TN 37235 (spin@vuse.vanderbilt.edu).

326

CERTIFYING ALGORITHMS 327

declares a graph nonplanar, there is no way to check whether it did so because of a bug.

Given the reluctance of practitioners to assume on faith that a program is bug-
free, it is surprising that the theory community has often ignored the question of
requiring an algorithm to certify its output, even in cases when the existence of
adequate certificates is well known.

An authentication algorithm is an algorithm that check the validity of the certifi-
cate. In contrast to the case of an algorithm that solves the problem from scratch,
an authentication algorithm may reject the certificate if it is invalid, leaving open the
answer to the original problem. However, it must be the case that the authentication
algorithm provides a correct answer to the original problem if the certificate is valid,
and never declares an incorrect answer to the problem due to an invalid certificate.
The certificate has practical value when the algorithm for solving the problem from
scratch is difficult but the authentication algorithm is trivial.

For instance, in the case of planarity testing, the authentication algorithm cycles
through the edges of the Kuratowski subgraph, verifying that they are, in fact, present
in the graph and form a Kuratowski subgraph as claimed. Though planarity testing
in linear time is a complicated problem, checking a Kuratowski subgraph is a trivial
task, especially if the edges are supplied in a convenient order by the certificate.

The notion of a certifying algorithm is related to the concept of run-time checking.
Typically, run-time checking has been applied to very small fragments of code; for
example, a program to calculate square roots might check at run-time that the square
of the result equals the input value. An attempt to create a corresponding model
of run-time checking for more complex algorithms is given in [28] with motivations
which are very similar to our own. The authors conceive of a method for checking
whether a (possibly complex) program that computes a function has produced a
correct output. Their model does not require an algorithm to provide supporting
evidence with its answer, but subsequent calls to it are allowed in order to present it
with nondeterministically generated challenges after it has already returned a solution.
If it has answered incorrectly, it can pass with only a certain probability of success.
Confidence in the answer to within any desired probability can be attained through
a sufficiently large set of challenges.

An important distinction between run-time checking and certifying algorithms
is that run-time checking is generally conceived as being separate from the process
of producing the output, while certifying algorithms produce proofs of correctness
together with their output.

To clarify the difference between these two approaches, let us consider two valid,
but opposing, views on proofs of output correctness. One can take the view that it is
desirable to have a mechanism that uses as little information as possible in verifying
the correctness of the output, preferably only the standard format of the solution.
This approach has the advantage of enabling a user to check, using a single program,
the correctness of the output of any program that has been designed to solve the
problem.

Papers such as [1] have devised clever mechanisms of this form for verifying that
the output of any program that solves a diverse set of problems, including such prob-
lems as graph isomorphism and equivalence search, is correct. If such a mechanism
exists, one can take the position that there is no reason for the creator of the program
to work on a technique for verifying that the output is correct, since any errors will
be caught in a separate checking phase.

We instead want to shift the burden of creating proof of correctness to the software

328 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

a

b c d gf

e

a

b c

d e

f g

Fig. 1. An interval graph is the intersection graph of a set of intervals on a line. The graph
has one vertex for each of the intervals, and two vertices are adjacent if the corresponding intervals
intersect.

engineering phase as part of the design of the algorithm for solving the problem upon
which to base the program. In finding the solution to the problem, the algorithm often
goes through steps that can be used to create a simple certificate of correctness of the
output. We believe that it should be part of the routine process of algorithm design
to look for this certificate, and provide one wherever possible, rather than leaving this
to a separate checking phase.

An interval graph is the intersection graph of intervals on a line (see Figure 1).
That is, each vertex corresponds to an associated interval, and two vertices are ad-
jacent iff the corresponding intervals intersect. The intervals constitute an inter-
val model of the graph. Interval graphs have applications in molecular biology and
scheduling.

Several linear-time recognition algorithms for interval graphs are known [2, 4, 9,
11, 12, 13, 18]. These graphs come up in the context of a variety of problems in
scheduling and molecular biology; see [8, 24] for surveys. When a graph is an interval
graph, these algorithms produce a certificate in the form of an interval model. When
a graph is not an interval graph, none of these algorithms provides a certificate. How-
ever, the existence of certificates of rejection in the form of a forbidden substructure
characterization is also well known. We extend the linear-time algorithm of Korte
and Möhring [13] so that it also produces a certificate when a graph is not an interval
graph; see section 5.

A permutation graph is the graph of inversions in a permutation. That is, each
vertex corresponds to an element of the ground set of a permutation, and two vertices
are adjacent iff the permutation reverses the relative order of the two corresponding
elements (see Figure 2). If a graph is a permutation graph, we may show this by
giving a permutation model, which consists of two linear orderings (v1, v2, . . . , vn) and
(vπ(1), vπ(2), . . . , vπ(n)) of the vertices, such that two vertices vi and vj are adjacent
iff vi is before vj in exactly one of the orderings.

The only previous linear-time algorithm for recognizing permutation graphs is
given in [18]. This algorithm produces a permutation model if the graph is a member
of the class, and presents its failure to produce such a model as the only evidence that
a graph is not a member of the class. We give a linear-time algorithm that produces
a certificate also in the case of nonmembership; see section 6. The algorithm is based
on the following connection to comparability graphs. A graph G is a permutation
graph iff G and its complement G are comparability graphs.

A dag is transitive if, whenever (a, b) and (b, c) are directed edges of the dag,
(a, c) is also a directed edge. A transitive dag is a graphical representation of a

CERTIFYING ALGORITHMS 329

1

2

3

5

6
4

654321

3 5 2 641

Fig. 2. When a permutation acts on a sequence of elements, the corresponding permutation
graph has one vertex for each of the elements. Two vertices are adjacent if the permutation swaps
the relative order of the two elements.

1 7 5

4

3

628

1

2 3

4

5
67

1

2 3

4

5
67

8 8

BA C

Fig. 3. A comparability graph is a graph whose edges can be oriented so that the resulting digraph
is acyclic and transitive. Part A depicts a comparability graph, part B is a transitive orientation,
and part C is a redrawing of part B that makes it easy to see that the result is transitive.

partial order (poset) relation. A graph is a comparability graph if orientations can be
assigned to its edges so that the resulting digraph is a transitive dag (see Figure 3).
Such an orientation is called a transitive orientation. A transitive orientation of a
comparability graph can be found in linear time [18].

Gallai gave a forbidden substructure characterization of comparability graphs [7].
Since a graph G is a permutation graph iff G and G are comparability graphs, this
forbidden structure in G or in G serves as a certificate that a graph is not a com-
parability graph. We do not know how to obtain this certificate in linear time for
noncomparability graphs; no linear-time recognition algorithm is known. However,
we show that when G is not a permutation graph, we may produce this certificate for
G or for G in linear time. The algorithm fails to give a linear-time certifying algorithm
for comparability graphs only because we cannot control whether the algorithm will
find the certificate in G or in G when both G and G fail to be comparability graphs.

Certifying algorithms also exist for optimization problems; linear programming
duality is a prime example. Primal and dual optimal solutions of a linear program
certify each other. A proper coloring of a graph is a coloring of the vertices such that no
adjacent vertices have the same color, and it is minimum if there is no proper coloring
that uses fewer colors. A linear-time algorithm is known for finding a maximum clique
and a minimum proper coloring of a comparability graph [18]. In a comparability
graph, the size of the maximum clique is always the same as the minimum number of
colors in a proper coloring. Since the vertices of a clique must all be colored differently
in any proper coloring, the clique is a certificate of minimality of the coloring, and the
coloring is a certificate that the clique is of maximum size. We give an algorithm that

330 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

provides a certificate that the input graph is not a comparability graph whenever this
algorithm fails to find the desired coloring and clique.

2. Preliminaries. We consider only finite, undirected, and simple graphs. Let
G = (V,E) be a graph. We let n denote the number of vertices and m denote the
number of edges.

For W ⊆ V we denote by G[W] the subgraph of G induced by W and we write
G − W instead of G[V − W]. The neighborhood of v is N(v) = {u ∈ V |uv ∈ E}
and N [v] = N(v) ∪ {v}. If G is a directed graph, N−(v) = {u ∈ V |(u, v) ∈ E} and
N+(v) = {u ∈ V |(v, u) ∈ E}.

If P = (v1, v2, . . . , vk) is a path, u ∈ N(v1), and w ∈ N(vk), then uP denotes
the path (u, v1, v2, . . . , vk), and Pw denotes the path (v1, v2, . . . , vk, w). A P4 is an
induced subgraph on four vertices that is a path.

For an arc e = (a, b), let its transpose eT denote (b, a).

2.1. Representation of graphs. Analysis of the running time of an algorithm
requires an agreement between the user and the designer of an algorithm about an
appropriate format for the input data. No graph algorithm can claim an O(n +
m) running time if the input is provided in the form of an adjacency matrix, so a
consensus has arisen that it is reasonable to require that the input be an adjacency
list representation of the graph. If the user must spend Θ(n2) time converting an
adjacency matrix representation to this form before giving it as an input to the graph
algorithm, this cost is not attributed to the running time of the graph algorithm.

Let us view a graph as an abstract data type that supports the following queries,
possibly in addition to other queries:

• Neighbors(x): Given a vertex x, find its neighbors.
• Adjacency(x, y): Given two vertices, x and y, determine whether they are

adjacent.

Algorithm texts usually contain a discussion of the trade-offs in space and time
bounds for these two operations that arise in choosing an adjacency matrix represen-
tation or an adjacency list representation of a graph. The list of neighbors of a vertex
in an adjacency list representation is typically unordered. This gives an extremely
poor time bound for the Adjacency operation (Θ(n) in the worst case as opposed to
O(1) for the adjacency matrix).

This can easily be remedied by assuming that the adjacency lists are represented
by a standard representation of an ordered set, such as a sorted array or a balanced
binary search tree. This improves the time for the Adjacency query from Θ(n) in the
worst case to O(log n), without increasing the space requirements or the time bound
for the Neighbors operation. Moreover, it is possible to convert the unsorted variant
to the sorted variant in O(n + m) time by labeling the vertices with identifiers from
1 to n and then radix sorting the set of all edges according to the identifiers of their
endpoints.

The only disadvantages to adopting this ordered adjacency list representation as
a standard representation for sparse graphs seem to be cases where the data type
must also support dynamic graph operations such as insertion of edges or contraction
of vertices. Maintaining the sorted variant of the data structure can add an O(log n)
factor to the cost of such operations. However, most graph algorithms deal with static
graphs, and in the cases where the costs of these dynamic operations are an issue,
an algorithm can ignore the ordering in the input data and neglect to maintain the
invariant that it remain ordered as it executes.

CERTIFYING ALGORITHMS 331

Why has this ordered adjacency list representation not been adopted as a standard
representation over the seemingly less desirable unordered one? This is probably
because any algorithm that makes repeated use of the Adjacency query can produce
the ordered representation from the unordered one in linear time before beginning
work on the problem. Since a graph algorithm is assumed to run in Ω(n + m) time,
the issue has been deemed inconsequential to the analysis of running times.

The possibility of graph algorithms that run in sublinear time, however, requires
a reexamination of this issue. In contrast to algorithms that solve a problem on a
graph from scratch, it is often the case that authentication algorithms can run in
sublinear time.

An example of this occurs in connection with the class of cographs, which are the
class of graphs that have no induced subgraph that is a P4. That is, they have no
induced subgraph that consists of exactly three edges forming a path (v1, v2, v3, v4)
on four vertices. It takes O(n + m) time to determine whether a given graph G is a
cograph without the aid of a certificate [5]. However, given a legitimate P4 that has
been pointed out by a distrusted source, it takes O(n) time to verify it on an unordered
adjacency list representation, and O(log n) time on the ordered representation, since
the Adjacency query takes O(log n) time. We therefore have a case where the choice
of an unordered adjacency list representation versus an ordered one makes a difference
in the analysis of the time bound of an algorithm.

We think that an ordered adjacency list representation would be a reasonable
alternative to the unsorted one as a general-purpose representation of sparse graphs.
In any case, there are compelling reasons to use the ordered representation when
analyzing sublinear algorithms, and we will assume this representation throughout
the paper. To be specific, since we deal only with problems involving static graphs,
let us assume that each adjacency list is implemented as a sorted array of neighbors.

Before leaving this topic, we should mention that although the Adjacency opera-
tion takes O(log n) time, we can improve this to O(1) by supplying what amounts to
a certificate of the answer to the Adjacency query. If the answer to Adjacency(x, y)
is true, the certificate consists of the location of the edge in the data structure, and
if the answer is false, the certificate consists of the location where it would appear if
it occurred. In either case, the user can check the result in O(1) time. The certificate
of a false answer cannot be made to work in this way on an unordered adjacency
list representation.

Given this, it is easy to see that verifying the presence of a P4 in a graph can
be improved to O(1) by building a certificate out of a collection of “subcertificates”
for individual Adjacency queries on all pairs of elements of {v1, v2, v3, v4}. The same
technique is useful for checking any induced subgraph that has been pointed out as a
certificate of an answer to a graph problem.

3. What constitutes a certificate. Since software that generates a certificate
could have a bug, a proposed certificate must be authenticated by verifying that it
does, in fact, prove the result. For instance, if an odd cycle in a graph is presented as
a certificate that the graph is not bipartite, authentication consists of verifying that
it is a cycle, it has odd length, and that the claimed edges occur in the graph. The
cycle can be given as a sequence of pointers to its edges in the input data structure,
and takes O(n) time for the user to authenticate, which is better than the O(n + m)
bound for checking whether a graph is bipartite.

A good certificate has an authentication algorithm that is conceptually simpler
than algorithms for the original problem, or has a better time bound, or has both. If

332 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

the authentication step is simple and efficient enough, it may be possible to perform
the check by visual inspection.

When the certificate is checked automatically, determining reliability of the im-
plementation of the authentication algorithm is an obvious goal. Otherwise, consider
the following scenario. The implementations of the certifying algorithm and of the
authentication algorithm are both faulty. The certifying algorithm produces both an
erroneous answer to the decision problem and an erroneous certificate, while the faulty
authentication algorithm then claims that the certificate proves the given answer. The
user is led to believe an erroneous conclusion.

A certificate is sublinear if its authentication algorithm has a tighter time bound
than a linear one. For instance, for a problem where arbitrary graphs can be given
as input, a certificate with an O(n) authentication algorithm is sublinear, since this
bound is never worse than linear and is often better. A certificate is strong (with
respect to current algorithmic knowledge) if its authentication algorithm has a better
time bound than that of the current fastest algorithm that solves the problem without
a certificate. It is weak if it takes the same time to authenticate as it does to solve
the original problem without the certificate, but may have other advantages such as
greatly simplifying the task conceptually.

One of the anonymous referees has inquired about the possibility of certifying
algorithms or authentication algorithms that require asymptotically more time or
space than a noncertifying algorithm. Given the importance of software reliability in
some industrial settings, the advantages of using these algorithms might outweigh the
extra costs. We have not yet found interesting examples to support this, however.

Some of these notions are related to concepts that come up in the theory of NP-
completeness. The class NP of decision problems are those for which, whenever the
answer is true, this answer can be confirmed in polynomial time if one is supplied
an appropriate certificate. The question of whether this is always possible without a
certificate is the famous question of whether P = NP. The notion of a certificate and
the time bound that it makes possible provides a precise mathematical definition of
the class NP.

A certifying algorithm that returns a strong or sublinear certificate can be dis-
tinguished on objective mathematical grounds from a noncertifying algorithm. To be
able to claim that certifying algorithms are a formal class of algorithms, we could
require all certifying algorithms to produce sublinear certificates. Unfortunately, this
restriction excludes many algorithms that produce certificates that are clearly useful
in practice.

In addition, though sublinear certificates appear to be common, if the rejection
certificate is sublinear, the acceptance certificate often fails to be sublinear, and if the
acceptance certificate is sublinear, the rejection certificate often fails to be sublinear.
For instance, the problem of recognizing bipartite graphs has a sublinear rejection
certificate (an odd cycle) and a weak acceptance certificate (a 2-coloring). Recog-
nizing connected graphs has a sublinear acceptance certificate (a spanning tree) and
a weak rejection certificate (a cut {V ′, V − V ′} that has no edges across it). Di-
rected acyclic graphs have a weak acceptance certificate (a topological sort) and a
sublinear rejection certificate (a directed cycle). A similar phenomenon is seen in
interval graphs and permutation graphs where the rejection certificate can be checked
in O(n) time, whereas the acceptance certificate is an O(n) representation of G that
defines the graph class and that requires O(n + m) time to verify that it faithfully
represents G.

CERTIFYING ALGORITHMS 333

What constitutes a weak certificate lacks the formal criteria that define sublinear
or strong certificates. A weak certificate has value if it dramatically simplifies the
task of solving the problem, without necessarily yielding a better time bound. There
is no satisfactory formal measure of the conceptual difficulty of an algorithm, though
differences are often obvious.

The value of proposed weak certificates must therefore be debated on a case-
by-case basis in much the way that the ill-defined notion of “significance” of any
new mathematical result is debated and evaluated through the peer-review process.
The certificates in our examples were recognized previously as having theoretical
relationships to the problems in question, independently of their use in algorithm
design or error checking.

We would therefore describe certifying algorithms as embodying an algorithm-
design philosophy, rather than a formal class of algorithms. We show through ex-
amples that the approach has been largely overlooked by both algorithm designers
and software engineers, and we argue that it can have significant economic impact
when algorithms are implemented. Moreover, in the case of graph algorithms, there
is an extensive literature on forbidden subgraph characterizations of graph classes
that promises to be a rich source of potential certificates for future work on certifying
variants of existing graph algorithms.

3.1. Proofs of correctness of authentication algorithms. An interesting
question raised by one of the anonymous referees of this paper is what relevance the
simplicity of the proof of the authentication algorithm should have. Suppose the input
is x, the correct output is y = f(x), and the certificate, w, proves that y = f(x). The
proof that the authentication algorithm accepts only valid triples (x, y, w) should be
trivial. The proof that the existence of such a triple proves that y = f(x) does not
need to be easy for the certificate to be useful.

Consider the question of deciding whether a graph is planar. A noncertifying
algorithm for solving this problem inputs a graph G and outputs a bit y = f(G) that
is equal to 1 iff the graph is connected and planar. A certifying algorithm for planarity
testing implemented in the LEDA package returns a Kuratowski subgraph when the
input graph is nonplanar. A Kuratowski subgraph K is difficult to find, but easy to
check once it is pointed out. Therefore, the proof that the authentication algorithm
accepts only valid triples (G, 0,K) is trivial. However, that K proves that f(G) = 0
is also easy to understand. It is not necessary for a user to understand why such a K
appears in every nonplanar graph in order to understand that it proves that such an
instance of a graph is nonplanar and that the program has answered truthfully.

What happens when G is planar gives a better illustration of the point raised
by the referee. In this case, LEDA returns a planar combinatorial embedding. The
validity of a planar combinatorial embedding is also easy to authenticate once it is
pointed out, but it is more difficult to explain why it proves that the graph is planar.

For simplicity, assume for the moment that G is connected. Each undirected
edge uv of G can be viewed as consisting of two directed edges (u, v) and (v, u); let
twin((u, v)) = (v, u). A planar embedding of G induces a cyclic order on the directed
edges directed out of each vertex. Let πv((u, v)) be the permutation of the edges that
maps in clockwise order each edge out of a vertex to the next edge out of the vertex.
Clearly, πv has one cycle for each vertex. Given πv, let πf ((u, v)) = πv(twin((u, v));
it is easy to see that this is a permutation that maps each edge to the next edge about
the face that lies immediately to the left of the edge. Therefore, πf has a cycle for
each face.

334 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

An abstraction of this is a combinatorial embedding of G, which consists of an
arbitrary cyclic order πv of the directed edges emanating from each vertex, but which
may or may not correspond to the cyclic orders induced by any embedding of G in the
plane. This nevertheless defines a second permutation πf ((u, v)) = πv(twin((u, v)))
as before. By a well-known theorem of Euler, a combinatorial embedding is planar iff
2c−m−n− f = 0, where f is the number of cycles πf , c is the number of connected
components of G, m is the number of edges, and n is the number of vertices.

To present this certificate, it is necessary only to give πv as a cyclic order of edges
out of each vertex and a pointer from each directed edge (u, v) to its twin (v, u).
An authentication algorithm must verify that πv induces a cyclic order on the edges
directed out of each vertex, count the cycles in πv and πf , and verify that Euler’s
relation applies.

Though this test is simple, the proof that it implies that G is planar is not easy
to explain to an unsophisticated programmer or user. (See [14] for a typical proof.)
The usefulness of the certificate lies in the fact that Euler’s formula applies to all
instances of the problem and has received the thorough scrutiny of many experts. A
person who trusts the theorem does not need to understand its proof in order to make
use of the certificate. The certificate is useful because it allows trust in a well-known
theorem to be substituted for trust in a program of dubious origin.

3.2. Preconditions and postconditions. One can imagine programs where
different subproblems are solved by procedures that produce certificates, and where
the program contains embedded code to authenticate each certificate before proceed-
ing.

Suppose that an O(log n) binary search procedure is asked to search a sorted array
of integers for an element i, and that the procedure returns with the answer that i
does not occur in the array. It could be the case that the array was not correctly
sorted, causing the binary search procedure to falsely declare that i does not occur
in it, even though the binary search procedure is correctly implemented. Checking
for this error would take O(n) time, which would obviate the advantages of using a
binary search procedure instead of a linear search.

Instead of this, we could define the binary search procedure as one that has a
precondition that the input array be sorted and a postcondition that its answer is
correct whenever the precondition is met. An error has occurred in the binary search
procedure only if the precondition is met and the returned answer is incorrect.

Let us formally define an error in the binary search procedure to be a circumstance
where the precondition is met but the returned value is incorrect. As in the case
of all certifying algorithms, the question of whether a procedure has erred in some
circumstance is separated from the question of whether it contains bugs. The binary
search procedure can provide a certificate that it has not erred by returning either
the index where i occurs, or else the index where i would occur if it is absent in the
array. If the procedure claims that i occurs, the authentication algorithm checks the
location to make sure that it is there. If the procedure claims that i does not occur,
the authentication algorithm checks the location to make sure that the element at that
position is smaller than i and the element at the next position is larger i. (Trivial
special cases occur when the index is the last in the array.)

Though this example is trivial, it illustrates the possibility of designing certificates
that show that either the returned value is correct or that the preconditions were
not met, without distinguishing which of these cases occurred. This exonerates a
procedure as the ultimate source of an error.

CERTIFYING ALGORITHMS 335

As a nontrivial example of such a certificate, the transitive orientation algorithm
of [18] finds a transitive orientation of a comparability graph in O(n + m) time. If a
graph is given to the procedure that is not a comparability graph, then no transitive
orientation exists, and the procedure produces an orientation in O(n + m) time that
is not transitive, without recognizing this. Various nonlinear bounds for checking
whether an orientation is transitive are known, such as O(nm), O(m3/2), and the time
to multiply two n× n matrices, O(n2.376). These are the best bounds for recognizing
comparability graphs.

However, it is reasonable to view as a precondition the requirement that the input
to the transitive orientation algorithm be a comparability graph, since the orientation
is meaningless if this is not the case. Below, we show how to provide a certificate,
called an orientation tree, that shows that either the precondition has not been met
or the returned orientation is transitive. This certificate is quite simple to check in
O(n + m) time.

4. Chordal bipartite graphs. A chord in a simple cycle is an edge that is not
an edge of the cycle, but whose endpoints are both vertices in the cycle. In a bipartite
graph, every cycle is even, so every cycle has length at least four. A graph is chordal
bipartite if it has no chordless cycle of length greater than four.

Chordal bipartite graphs provide an easy introduction to techniques that we will
use to produce certifying algorithms. Lubiw [16] gives an O(n+m log2 n) noncertifying
algorithm for recognizing them. We show how to modify it to obtain a certifying
algorithm.

If M is a matrix, let Mi,j denote the element in row i, column j. The rows of a
matrix M are in lexical order if they are sorted in dictionary order. That is, whenever
{i, i+1} are a consecutive pair of rows and j is the first column where the rows differ,
then Mi+1,j > Mi,j . The columns are in lexical order if, as rows, they are in lexical
order in the transpose of the matrix.

A bipartite graph G with bipartition U,W can be represented with a Boolean
bipartite adjacency matrix A, which has one row i for each element of ui ∈ U , one
column for each element wi ∈ W , and for each pair {ui, wj}, Ai,j = 1 if uiwj is an
edge of G, and Ai,j = 0 otherwise.

Given a graph G, Lubiw’s algorithm tests whether G is bipartite, and, if so, finds
a bipartition and a doubly lexical ordering of the resulting bipartite adjacency matrix.
A doubly lexical ordering of a matrix is a permutation of the rows and columns such
that the resulting matrix passes the following two tests:

1. When the order of the columns is reversed, the rows are in lexical order.
2. When the order of the rows is reversed, the columns are in lexical order.

Every matrix has a doubly lexical ordering, so this is not a test of whether G is
chordal bipartite. Lubiw’s algorithm then searches this doubly lexical matrix A for
a configuration called a Gamma (Γ). A Γ is a pair (h, i) of rows and a pair (j, k) of
columns such that h < i, j < k, Ah,j = Ah,k = Ai,j = 1, and Ai,k = 0.

The critical theorem is that a bipartite graph is chordal bipartite iff a doubly
lexical ordering of its bipartite adjacency matrix has no Γ. Lubiw’s algorithm for
finding the doubly lexical ordering and testing for Γ’s uses a sparse representation of A
and takes O(n+m log2 n), which gives this bound for recognition of chordal bipartite
graphs. The bound for finding the doubly lexical ordering has been improved to
O(n+m log n) by Paige and Tarjan [22], and to O(n2) by Spinrad [26], and these give
bounds of O(n + m log n) and O(n2), respectively, for recognizing chordal bipartite
graphs.

336 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

Though its proof of correctness is not obvious, Lubiw’s algorithm for searching
for a Γ with respect to given orderings of the bipartition classes is trivial to program
and runs in O(n+m) time. Therefore, a doubly lexical ordering is a strong certificate
that a graph is chordal bipartite. The certificate is represented by a bipartition of the
vertices and two orderings of the bipartition classes. The authentication algorithm
verifies that each of the two bipartition classes is an independent set and that the
graph has no Γ with respect to the given orderings of the bipartition classes. All of
this takes O(n+m) time. The doubly lexical ordering is therefore a strong certificate,
but not a sublinear one.

When a graph is not chordal bipartite, the same certificate can be used to show
this, so it is a strong certificate for this case also. However, with some additional
effort, we can obtain a sublinear certificate. Note that this precludes verifying the
correctness of a doubly lexical ordering, which requires Θ(n + m) time.

Lubiw [16] proves that when a Γ occurs in a doubly lexical ordering, it is part of a
chordless cycle that has at least six vertices. To find such a cycle, let {(a, b), (b, c), (c, d)}
be the Γ, and remove N(b)∪{b}∪N(c)∪{c}−{a, d} from the graph. Since the Γ is part
of a chordless cycle, there exists a path from a to d in this induced subgraph. Using
breadth-first search (BFS) starting at a, we may find a shortest path P from a to d in
this induced subgraph. Since {(a, b), (b, c), (c, d)} is a P4 and all members of P other
than a and d are nonneighbors of b and c, the union of P and the {(a, b), (b, c), (c, d)}
is a chordless cycle of length at least six. This chordless cycle can be returned as a
certificate that the input graph is not chordal bipartite.

On first inspection, this does not seem like a sublinear certificate. To verify
that the returned cycle C is indeed chordless, a skeptical user must spend O(n + m)
time in the worst case to verify that the cycle has no chords. The key to an O(n)
authentication algorithm is the observation that its purpose is to verify that the graph
has a chordless cycle and to not verify that C is an example of one.

An O(n) authentication algorithm first verifies that C is a cycle in G of size greater
than four. It then selects any four consecutive vertices (u, x, y, w) on the cycle and
verifies that x and y have no neighbors on C other than the ones that are supposed
to have. That is, it verifies that x has no neighbors on C other than u and y, and
y has no neighbors on C other than x and w, and that u and w are nonadjacent. If
these tests fail, the certificate is ruled faulty. Otherwise, even if C still has undetected
chords, the existence of a path from u to w that avoids the neighborhoods of x and y
proves the existence of a shortest such path, P . The union of (u, x, y, w) and such a
shortest path is a chordless cycle of length greater than four. Therefore, the user may
be certain that the graph has a chordless cycle based on this authentication algorithm,
even though the algorithm does not fully verify that C is itself chordless.

5. Interval graphs. An undirected graph is chordal if it has no chordless cycle
of length at least four. Three independent vertices x, y, z of a graph G are an asteroidal
triple (AT) of G if, between each pair of these vertices, there is a path that contains
no neighbors of the third. A graph is said to be AT-free if it has no AT. For more
information on these and other graph classes we refer the reader to [3, 8]. We will
rely on the following well-known theorem.

Theorem 5.1 (see [15]). A graph is an interval graph iff it is chordal and AT-
free.

A graph is chordal iff it has a perfect elimination ordering, which is an order-
ing (v1, v2, . . . , vn) of the vertices such that for each vi, N(vi) ∩ {vi+1, vi+2, . . . , vn}
is a clique [6]. A perfect elimination ordering of a chordal graph can be found in

CERTIFYING ALGORITHMS 337

linear time by the lexicographical BFS (LexBFS) algorithm [25, 8]. A modification
of this algorithm points out a chordless cycle of length at least four as a certificate of
nonmembership [27]. Hence, this is a linear-time certifying recognition algorithm for
chordal graphs.

5.1. The certificates. When the graph is an interval graph, we produce an
interval model, just as the prior algorithms do. For the authentication step, it is easy
to check whether this model corresponds to the input graph in time that is linear in
the size of the input graph. The basic trick is to work left-to-right through the model,
generating edges implied by the model and rejecting the certificate immediately if the
number of edges exceeds the number of edges in the graph. Otherwise, when finished,
verify that the generated edges are the same as those in the graph by labeling the
vertices with identifiers from 1 to n, and then radix sorting the set of all edges of G
according to the identifiers of their endpoints. Since authentication takes linear time,
the interval model is a weak certificate.

When the graph is not an interval graph, Theorem 5.1 provides the basis of our
certificate: we produce either a chordless cycle or an AT. Despite initial appearances,
these can be turned into sublinear certificates. For the AT, we accomplish this by
returning not only the triple, but for each pair in the triple, the sequence of edges of
a simple path between them that avoids the neighborhood of the third. The sequence
of edges may be given by pointers to the corresponding edge structures in the user-
supplied data. Given the triple, it is easy to find these three paths in linear time.
The authentication algorithm must verify that each proposed path is, in fact, a path,
that its edges occur in G, and that no neighbors of the third vertex occur on it. If
each path is given by pointers to edges in the input structure in the order in which
they occur on the path, this is accomplished in O(n) time by marking the neighbors
of each vertex in the triple. This is a sublinear certificate because O(n) is a better
bound than O(n + m).

As in the case of chordal bipartite graphs, a chordless cycle can be used to verify
in O(n) time that such a cycle exists, without fully verifying that the given cycle
is an example of one. The authentication algorithm is the same as in the chordal
bipartite case, except that when (u, x, y, w) are consecutive vertices, the certificate is
not rejected if u and w are adjacent.

5.2. Generating the certificates. For our certifying algorithm, we use the
linear-time algorithm of Korte and Möhring [13] as a subroutine. Though this is not
a certifying algorithm, it produces a certificate in the form of an interval representation
in the case where the graph is an interval graph.

Suppose the input graph is not an interval graph. Using the algorithm of [27], we
return a chordless cycle if the graph is not chordal.

It remains to show how to produce a certificate in the case where the graph is
chordal, but not an interval graph. Henceforth, we will assume that this case applies.

The algorithm of Korte and Möhring produces a perfect elimination ordering
(v1, v2, . . . , vn), and incrementally decides whether the subgraph induced by the ver-
tices {vn, . . . , vi} is an interval graph. Since we now assume that the graph is not
an interval graph, it fails when considering a particular vertex vi−1. The subgraph
induced by the vertices {vn, . . . , vi} is an interval graph and the subgraph induced by
{vn, . . . , vi, vi−1} is not.

In the remainder of this section, we use G to denote the subgraph induced by
{vn, . . . , vi} and we let x = vi−1. The graph G + x is a chordal graph, but not an
interval graph, and hence it must contain an AT by Theorem 5.1. The neighbors of x

338 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

form a clique in G since (v1, v2, . . . , vn) is a perfect elimination ordering of the input
graph.

The Korte–Möhring algorithm provides an interval model of G. We may assume
without loss of generality that all endpoints in the interval model of G are pairwise
distinct, since, when they are not, they can be perturbed to make this true without
altering the represented graph. Let us then number the endpoints in left-to-right
order, and for each vertex, let l(v) and r(v) denote the numbers of the left and
right endpoints of the interval corresponding to v. This gives a “normalized” interval
model where I(v) = [l(v), r(v)] is the interval that corresponds to v, all endpoints are
distinct, and l() and r() are integer-valued functions from V (G) to {1, 2, . . . , 2n}.

Lemma 5.2. Let G be an interval graph such that G′ = G + x is not an interval
graph and N(x) is a clique. Then x is a member of every AT of G′.

Proof. Suppose {a, b, c} is an AT of G′ and x �∈ {a, b, c}. There is a path P
from a to b in G′ that avoids the neighborhood of c. If P contains x, then, since the
neighborhood of x is a clique, x’s predecessor and successor on P must be adjacent,
and x can be spliced out of P to yield a path in G. Thus, there is a path in G from a
to b that avoids the neighborhood of c. By symmetry among the members of {a, b, c},
{a, b, c} is an AT of G, contradicting the assumption that G is an interval graph.

Definition 5.3. Let us say that interval [x1, x2] precedes interval [y1, y2] iff
x1 < y1 and x2 < y2. Let P be a path in G. Let the rightward extent R(P) of P
denote max {r(u)|u is a vertex on P}, and let the leftward extent L(P) of P denote
min {l(w)|w is a vertex in P}. Let D(x) =

⋂
{I(v)|v ∈ N(x)} be the intersection of

the intervals representing the neighbors of x. Then D(x) �= ∅ since the neighbors of x
form a clique.

Since an AT is an independent set, in any AT {x, y, z} of G′, one of I(y) and I(z)
precedes the other, and if I(y) precedes I(z), then r(y) < l(z).

Lemma 5.4. Let {x, y, z} be an AT in G′, where I(y) precedes I(z). Then

r(y) < l(D(x)) < r(D(x)) < l(z).

Proof. Assume otherwise, say, l(D(x)) < r(y), and consider any path P from z to
v ∈ N(x) avoiding N(y). Then v �∈ N(y). Together with l(v) ≤ l(D(x)), this implies
r(v) < l(y). Since r(y) < l(z), P must contain a neighbor of y, a contradiction.

Definition 5.5. If r(y) < l(D(x)), then let R(y) = min {R(P)|P is a path from
y to a neighbor of x}. That is, R(y) is the minimum rightward extent of any path
from y to a neighbor of x. Similarly, if r(D(x)) < l(z), then let L(z) = max {L(P)|P
is a path from z to a neighbor of x}. That is, L(z) is the maximum leftward extent
of any path from z to a neighbor of x.

Lemma 5.6. If r(y) < l(D(x)) < r(D(x)) < l(z), then {x, y, z} is an AT in G′ iff
y and z are in the same component of G−N(x) and [r(y), R(y)] precedes [L(z), l(z)].

Proof. If {x, y, z} is an AT in G′, then y and z are in the same component of
G − N(x), since there is a path of G′ that avoids the neighborhood of x. There is
a path from y to x in G′ that avoids the neighborhood of z, and hence a path to a
neighbor of x in G that contains no neighbor of z. Since r(y) < l(z), the intervals
of all vertices on this path have their right endpoint to the left of l(z). Therefore,
R(y) < l(z). By mirror symmetry, r(y) < L(z).

If {x, y, z} is not an AT in G′, then since {x, y, z} is an independent set, every
path of G′ between some pair of the vertices contains a neighbor of the third. If
every path between y and z contains a neighbor of x, then y and z are in different
components of G−N(x). If all paths from y to a neighbor of x contain a neighbor of

CERTIFYING ALGORITHMS 339

z, then the rightward extent of all such paths is greater than l(z), and R(y) > l(z).
By mirror symmetry, r(y) < L(z).

Lemma 5.6 gives the strategy of our approach for finding an AT in G′. Removing
the intervals corresponding to N(x) from the interval model of G gives an interval
model of G−N(x). We look for a component whose intervals span [l(D(x)), r(D(x))].
For each y in the component such that r(y) < l(D(x)) we compute R(y), and for
each z in the component such that r(D(x)) < l(z) we compute L(z). We then look
for a pair [r(y), R(y)], [L(z), l(z)], such that [r(y), R(y)] precedes [L(z), l(z)], using
Lemma 5.7, which we give first.

Lemma 5.7. Given two sets X and Y of intervals, where the right endpoints of
X are given in ascending order and the left endpoints of Y are given in descending
order, it takes O(|X | + |Y|) time to either determine that no interval in X precedes
any interval in Y, or else return a ∈ X and b ∈ Y such that a precedes b.

Proof. As a base case, if X or Y is empty, there is no such pair. Otherwise, select
u ∈ X that minimizes r(u), and select w ∈ Y that maximizes l(w). If l(u) < l(w) and
r(u) < r(w), then return (u,w) as (a, b). Otherwise, if l(u) ≥ l(w), then u is not a
candidate for a since its left endpoint does not lie to the left of any left endpoint in Y.
Let X := X −{u}. By mirror symmetry, if r(u) ≥ r(w), then w is not a candidate for
b, so let Y := Y − {w}. By induction on the size of |X | + |Y|, a recursive call on the
new X and Y solves the original problem. Because of the way the data are sorted, it
takes O(1) time to select u and w and to prepare the recursive call, in which |X |+ |Y|
has been reduced by at least 1.

To use Lemma 5.7, we let X = {[r(y), R(y)]|r(y) < l(D(x))} and let Y =
{[L(z), l(z)]|r(D(x)) < l(z)}. Since r() and l() are integer functions from 1 to 2n,
sorting the endpoints as required by the lemma takes O(n) time.

Therefore, by Lemmas 5.6 and 5.7, the problem of finding an AT reduces in linear
time to computing R(y) at each y such that r(y) < l(D(x)) and L(z) at each z such
that r(D(x)) < l(z). We give the procedure for R(), and by mirror symmetry, this
gives the procedure for L().

Definition 5.8. A path P in G is increasing if, whenever u is earlier than v on
P , r(u) < r(v). Let Dr be the orientation of G−N(x), where (u, v) is an arc in Dr

iff uv is an edge in G−N(x) and r(u) < r(v).

Our strategy for computing R() is to find a way to restrict our attention to
increasing paths from y to N(x), which allows us to work in Dr rather than in G.
Since Dr is a dag, this simplifies the problem.

Lemma 5.9. If there is a path P from u to v with rightmost extent R(P) = r(v),
then there is an increasing path P ′ from u to v such that R(P ′) = R(P).

Proof. If u = v, P is vacuously increasing. Suppose P has length greater than
0 and the lemma is true for shorter paths. Let w be the first vertex on P with
r(w) > r(u). R(P) = r(v) implies r(u) < r(v), so w exists. Then I(u) and I(w)
intersect, and hence u and w are neighbors. By induction, there is an increasing path
P ′′ from w to v and P ′ = uP ′′ satisfies the lemma.

Lemma 5.10. Let r(y) < l(D(x)) and let P be a path in G from y to a neighbor
v of x. Then there is a path P ′v from y to v such that R(P ′v) ≤ R(P) and P ′ is
increasing.

Proof. If R(P) = r(v), then the claim follows from Lemma 5.9. Otherwise, let w
be the first vertex on P such that I(w) intersects D(x), and let P ′′ be the portion of
P from y to w. Since R(P ′′) = r(w), there is an increasing path P ′ from y to w, and
since I(w) intersects D(x), w and v are adjacent.

340 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

Lemma 5.11. It takes linear time to compute R(y) for every y ∈ V (G) such that
r(y) < l(D(x)).

Proof. By Lemma 5.10, we need only consider well-behaved paths in G that consist
of a directed path in Dr, followed by a single edge of G to a neighbor of x. For any such
well-behaved path P , R(P) is the maximum of the last two values of r() on the path.
For each y ∈ V (G)−N(x), let Ri(y) = min{R(P)|P is a well-behaved path of length
at most i}, or ∞ if there is no such path. The value of R1(y) is trivial to compute
at all nodes in V − N(x) in linear time. Let (up, up−1, . . . , u1) be a topological sort
of Dr. Then Ri(ui) = min {R1(ui)} ∪ {Rj(uj)|(ui, uj) is an arc of Dr}. This may be
computed by induction on i in linear time. For any y = uk such that r(y) < l(D(x)),
R(y) = Rk(uk), since y has at most k − 1 successors in Dr.

5.3. Comparison with the original Korte–Möhring algorithm. One of the
anonymous referees has asked for a clarification of why the Korte–Möhring algorithm
is not already a certifying algorithm, producing a sublinear certificate of rejection,
just as ours does.

Answering this question requires more details about how the algorithm works.
The Korte–Möhring algorithm paper [13] defines a modified PQ tree (MPQ tree) for
an interval graph G, which gives a way of representing implicitly all possible interval
representations of G. Vertices of G are associated with nodes of the MPQ tree; details
about this representation are given in the paper.

As described above, the Korte–Möhring algorithm works by induction on a per-
fect elimination order (v1, v2, . . . , vn). Let Gi denote the subgraph of G induced by
{vn, vn−1, . . . , vi}, and let Ti be its MPQ tree. At each step i − 1 it produces the
MPQ tree Ti−1 of Gi−1 from the MPQ tree Ti of Gi, unless Gi−1 fails to be an
interval graph, in which case it rejects Gi−1, and hence G is not an interval graph.

At each step, recognizing whether Gi−1 is an interval graph is trivial, since this is
the case iff the neighbors of vi−1 in Gi have a certain relationship to Ti that is quite
easy to check in O(n) time. If G is not an interval graph, the test will fail at some
step i− 1.

Since it is possible to verify that G is not an interval graph in O(n) time using Ti

and vi−1, the referee has suggested that (Ti, Vi−1) be returned as a sublinear certificate
of rejection.

Though compelling, this idea has the subtle flaw that it violates the principle
that it must not be possible for an authentication algorithm to be induced to make
a false declaration by an erroneous or counterfeit certificate. It must either declare a
correct answer to the original problem, or it must correctly declare that the claimed
certificate contains an error and fails to show what it claims to show. Showing that
(Ti, vi−1) fails the simple O(n) test demonstrates only that either Gi−1 is not an
interval graph, or that Ti is not the correct MPQ tree for Gi, or that Ti is the correct
MPQ tree for Gi but that (v1, v2, . . . , vn) is not a perfect elimination order. In fact,
the authors make clear that an additional requirement for the algorithm to work is
for (v1, v2, . . . , vn) to be a special case of a perfect elimination order produced by the
LexBFS algorithm.

Therefore, in addition to verifying that (Ti, vi−1) fails to have the required simple
relationship to Ti, it is also necessary to verify that Ti is the correct MPQ tree for Gi

and that (v1, v2, . . . , vn) is a LexBFS order.
A necessary step in checking that Ti is the correct MPQ tree for Gi is to check

that an interval model it implies correctly reflects every edge of Gi. Otherwise, it
leaves open the possibility that Ti is the MPQ tree for some interval graph G′

i �= Gi.

CERTIFYING ALGORITHMS 341

The authentication algorithm will falsely declare that Gi−1 is not an interval graph if
G′

i + vi−1 is not an interval graph, but Gi + vi−1 is. There is little hope of finding a
sublinear algorithm for checking whether a given interval model faithfully represents
a given graph G, though this is easily accomplished in linear time. The claim that it
is a sublinear certificate cannot be made, given what is currently known, and there
are reasons to believe that this will not change in the future.

Whether (Ti, vi−1) is useful as a weak certificate depends on the question of
whether it clearly simplifies conceptually the task of verifying that G is not an interval
graph. In constructing Ti, checking whether Tj and vj−1 satisfy the required test for
j > i is quite simple, but updating Tj to produce Tj−1 when it passes this test is
considerably more complicated. Though it takes linear time, the problem of checking
that an interval model Ii implied by the MPQ tree Ti faithfully represents Gi is a
fairly simple task. However, once this has been accomplished, one must still verify
that Ti is the correct MPQ tree for Ii. This problem is one of the main subjects
of a forthcoming paper [17]; it is shown there that it can be solved in O(n) time.
The algorithm is quite involved, though it is possible that a simpler algorithm could
accomplish the task in O(n + m) time. As for verifying the LexBFS order, there is
an algorithm for checking whether an order is a perfect elimination order [8], but we
do not know of an algorithm for verifying a LexBFS order other than rerunning the
LexBFS algorithm that produced it. An interesting question is whether the interval
representation could help.

In summary, the usefulness of (Ti, vi−1) in simplifying the problem significantly
without leaving open the possibility of giving erroneous output has not been demon-
strated. If this is accomplished, it appears unlikely that the resulting authentication
will compete in simplicity with the one for checking a given AT or given chordless
cycle, or that it will be sublinear.

6. Comparability graphs. Let us consider an undirected graph G to be a
special case of a digraph, namely, the symmetric digraph where if (x, y) is a directed
arc, then so is (y, x). The undirected edge xy is just the pair {(x, y), (y, x)}. Finding
a transitive orientation of an undirected graph G amounts to deleting one arc from
each symmetric pair so that the remaining arcs form a transitive digraph.

Suppose (a, b) and (b, c) are arcs of G and (a, c) is not. Any orientation of G where
both (a, b) and (b, c) appear must fail to be transitive, due to the forced absence of
(a, c) in the orientation. Then (b, c) is incompatible with (a, b), as is (b, a), since a
transitive orientation must be antisymmetric. We may represent the incompatibility
relation with an incompatibility graph whose vertices are the arcs of G and whose
(undirected) edges are the incompatible pairs of arcs of G. (See Figure 4.)

We show in section 6.3 that the following is an immediate corollary of a result
from [7, 8].

Theorem 6.1. An undirected graph G is a comparability graph iff its incompati-
bility graph is bipartite.

The following is a consequence of Theorem 6.18, which we give in section 6.3, and
gives a sublinear certificate that a graph is not a comparability graph, since it can be
checked in O(n) time.

Theorem 6.2. When G fails to be a comparability graph, its incompatibility
graph has an odd cycle of length O(n).

A linear-time algorithm for finding a transitive orientation of a comparability
graph is given in [18]. This transitive orientation algorithm represents the orientation
it assigns to the edges implicitly by giving a linear extension (topological sort) of the

342 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

cd

a b

e

Comparability
Graph

Incompatible pairs of orientations

cd

a b

e

cd

a b

e

(e,b) (c,b)(a,b) (a,d) (c,d) (c,e)

(b,e) (b,a) (b,c) (d,a) (e,c)(d,c)

Transitive orientations:

Fig. 4. The incompatibility graph of a graph. There is one vertex for each directed edge, and
two are adjacent if one is the transpose of the other, or if they are of the form {(a, b), (b, c)} and (a, c)
is not an edge. Two adjacent edges cannot appear in a transitive orientation. Therefore, a transitive
orientation must be an independent set in the incompatibility graph. Reversing the direction of the
edges in a transitive orientation yields a new transitive orientation. From this observation, it is
easy to see that the incompatibility graph of a comparability graph is bipartite.

orientation that it produces. This allows it to be applied to G in time linear in the
size of G.

When the transitive orientation algorithm is asked to provide a transitive orienta-
tion of a graph G that is not a comparability graph, it produces an acyclic orientation
of the graph, which it represents with a linear extension. This orientation must con-
tain an incompatible pair, namely, a pair {(a, b), (b, c)} of directed edges in series such
that ac is not an edge of G, and hence (a, c) is not a directed edge in the orienta-
tion. No general linear-time algorithm for finding an incompatible pair in a dag is
known. Because of this, no linear-time algorithm is known for recognizing compara-
bility graphs, even though a linear-time algorithm for transitively orienting them is
available.

We prove the following lemma in section 6.3.

Lemma 6.3. Given an incompatible pair in the orientation of a graph G produced
by the transitive orientation algorithm of [18], it takes O(n + m) time to find an odd
cycle of length O(n) in G’s incompatibility graph, and given an incompatible pair in
an orientation of G by the algorithm, it takes O(n + m) time to find an odd cycle of
length at O(n) in G’s incompatibility graph.

6.1. Minimum proper coloring and maximum clique. The algorithm of [18]
for finding a minimum proper coloring and maximum clique in a comparability graph
proceeds as follows. Given an arbitrary input graph G, it finds an acyclic orientation
that will be transitive if the input is a comparability graph. It then labels each vertex

CERTIFYING ALGORITHMS 343

0

2

2

3

1

2

0

1

2

01

2

2

3
01

Fig. 5. Finding a maximum clique and minimum proper coloring in a comparability graph. The
color of each vertex is the length of the longest directed path originating in a transitive orientation.
A longest path is a clique. Since the size of a clique is a lower bound on the number of colors in a
proper coloring, the coloring is a certificate that the clique is of maximum size and the clique is a
certificate that the proper coloring is a minimum one.

with the length of the longest directed path originating at the vertex in the result-
ing directed acyclic graph. This labeling is easily accomplished in O(n + m) time
by labeling each vertex as it finishes during a depth-first search of the graph. (See
Figure 5.) Each neighbor of the vertex is already labeled at that point, so the vertex
can be labeled with one plus the maximum of the labels of its neighbors. This is a
proper coloring, since for any edge xy of G, the label of one of x and y will exceed
the other’s by at least 1.

If the longest path is a clique, then the coloring is a minimum one and the path is
a maximum clique. This is because the size of a clique is a lower bound on the number
of colors needed, and since the clique has the same number of vertices as the number
of colors used, the coloring serves as a certificate that the clique is a maximum one
and the clique serves as a certificate that the coloring is a minimum one. These are
weak certificates, since it takes O(n+m) time for a user to verify that the coloring is
a proper one and that the path is a clique.

If G is not a comparability graph, the algorithm still assigns an acyclic orientation,
which allows the vertices to be colored as before, and finds a maximum-length directed
path P . If P is a clique in G, then it is a maximum clique and the coloring is a
minimum proper coloring, so these may be returned as each other’s certificate just
as in the case where G is a comparability graph. If P is not a clique in G, then
there exist two consecutive arcs (a, b) and (b, c) on P such that (a, c) is not an edge,
and these are easy to find in linear time. Since (a, b) and (b, c) are an incompatible
pair, an odd cycle in the incompatibility graph may then be found in O(n+m) time,
by Lemma 6.3. As pointed out above, this is a sublinear certificate that G is not a
comparability graph.

6.2. Permutation graphs. In [18], it is shown that the transitive orientation
algorithm given there gives rise to a linear-time bound for recognizing permutation
graphs. The algorithm is based on the following characterization of permutation
graphs.

Theorem 6.4 (see [23, 8]). An undirected graph G is a permutation graph iff G
and its complement G are both comparability graphs.

When G is a permutation graph, the algorithm finds a topological sort of a tran-
sitive orientation D of G and a topological sort of a transitive orientation D′ of G.
D∪D′ is a tournament (an orientation of a complete graph) and acyclic. It then finds
the unique topological sort of D ∪D′ to yield a linear ordering of V , and the unique

344 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

topological sort of DT ∪ D′ to give a second linear arrangement of V . By results
from [23, 8], these two linear arrangements are a permutation model of G.

When G is not a permutation graph, the procedure in [18] produces a faulty
permutation model of G. Success or failure of an authentication algorithm on the
permutation model it produces provides the basis for deciding whether the graph
is a permutation graph in that algorithm. The procedure is not a certifying algo-
rithm, since the permutation model could also have been faulty due to a bug in the
implementation.

A linear-time authentication algorithm for a proposed permutation model is given
in [18]. The permutation model is therefore a weak certificate.

The algorithm for recognizing permutation graphs given in [18] uses the transitive
orientation algorithm to find linear extensions of orientations D and D′ of G and of
G. Since it provides a certificate if G is a permutation graph, we will assume in the
remainder of the paper that G is not. In this case, at least one of D and D′ has an
incompatible pair.

We now describe how to find an incompatible pair in D or D′ in time linear in the
size of G, given G and linear extensions π and τ of D and of D′. This constitutes proof
that the implementation of the transitive orientation algorithm failed to produce an
orientation of G or of G that is transitive. However, it is not a certificate that G is not
a permutation graph, since the failure could be due to a bug in the implementation
of the algorithm.

Lemma 6.5. Let G be a graph, and let D and D′ be acyclic orientations of G
and G. Then D ∪D′ and DT ∪D′ are both acyclic iff D and D′ are each transitive.

Proof. Since D ∪D′ is a tournament, then if it has a cycle, it has a three-cycle.
Suppose there is a directed three-cycle (x, y), (y, z), (z, x) in D ∪D′. Since D and D′

are both acyclic, one of these arcs belongs to D and another belongs to D′. Suppose
without loss of generality that (x, y), (y, z) belong to D. Then since (x, z) �∈ D,
D is not transitive. An identical argument applies if DT ∪ D′ contains a directed
three-cycle.

Next, suppose that one (or both) of D and D′ fails to be transitive. Assume with-
out loss of generality that D fails to be transitive. Then there exists an incompatible
pair {(a, b), (b, c)}. Therefore (a, c) is not an arc of D, and since D is acyclic, (c, a) is
not an arc of D. Therefore, (a, c) or (c, a) is an arc of D′; if (a, c) is an arc of D′, then
{a, b, c} induces a three-cycle in DT ∪D′, and if (c, a) is an arc of D′, then {a, b, c}
induces a three-cycle in D ∪D′.

Lemma 6.6. Let G, D, and D′ be as in Lemma 6.5. Given a three-cycle in D∪D′

or DT ∪D′, it takes O(1) time to return an incompatible pair in D or in D′.

Proof. Suppose the three-cycle occurs in D∪D′. Since each of D and D′ is acyclic,
two of the arcs of the cycle occur in one of D and D′ and give an incompatible pair
in it.

Let p(x) be the number of predecessors of x ∈ V in D ∪D′. This is just |N−(x)|
in D plus |N−(x)| in D′.

Lemma 6.7. If for each i ∈ {0, 1, . . . , n−1} there exists x ∈ V such that p(x) = i,
then D ∪D′ is acyclic.

Proof. (By induction on i.) Suppose D ∪ D′ has n vertices and satisfies the
conditions of the lemma. The claim is immediate if n = 1. Suppose n > 1 and the
claim holds for n−1. There is a vertex s in D∪D′ such that p(s) = n−1. Since every
other vertex is a predecessor of s, no directed cycle of D ∪D′ contains s. However,
removal of s leaves an induced subgraph of D ∪ D′ on n − 1 vertices that satisfies

CERTIFYING ALGORITHMS 345

the condition of the lemma, so by the induction hypothesis, there can be no directed
cycle that excludes s.

Lemma 6.8. Let G, D, and D′ be as in Lemma 6.5, and let π and τ be topological
sorts of D and D′, respectively. Given G, π, and τ , it takes O(n + m) time to find a
three-cycle in D ∪D′ or else determine that D ∪D′ is acyclic.

Proof. In O(n) time, we may label the elements of V with their position numbers
in π and in τ . In O(n + m) time, we can then label every x ∈ V with the value of
|N−(x)| in D by counting, for each vertex, the neighbors in G with earlier position
numbers. To find N−(x) in D′ we cannot do this directly in linear time, since D′ is
an orientation of G, which might not have O(n + m) size. Instead, let i(x) be the
number of predecessors of x in τ ; i(x) is just the position number of x in τ , minus
one. Let q(x) denote the number of neighbors of x in G that have earlier position
numbers in τ . We can then compute |N−(x)| in D′ as i(x)− q(x). It takes O(n+m)
time to compute q(x) for all x ∈ V , and hence O(n + m) time to label each x ∈ V
with |N−(x)| in D′.

If the condition of Lemma 6.7 holds, then D ∪ D′ is acyclic. Otherwise, there
exist x, y ∈ V such that p(x) = p(y). Without loss of generality, suppose that
(x, y) ∈ D ∪D′. Since y has x as a predecessor, and x and y have the same number
of predecessors, then in D∪D′, x must have a predecessor z that y does not have. In
O(n) time, we may list the predecessors of x in D and in D′, do the same for y, and
compare these two lists to find such a z. Then (x, y), (y, z), (z, x) is a three-cycle.

By symmetry, Lemma 6.8 also applies to DT ∪ D′. The linear time bound for
finding the incompatible pair now follows by Lemma 6.6.

6.3. Proof of Theorem 6.1, Theorem 6.2, and Lemma 6.3. In this sub-
section, we give a linear-time algorithm to find an odd cycle of length O(n) in the
incompatibility graph of G, given an incompatible pair in the orientation assigned to
it by the transitive orientation algorithm. We show how to apply the algorithm to G
in time linear in the size of G.

Let Γ be the relation on arcs, where (u,w)Γ(x, y) if u = x and w and y are
nonadjacent or w = y and u and x are nonadjacent. (This accepted term has nothing
to do with the Γ’s defined in section 4.) When (u,w)Γ(x, y), any transitive orientation
that contains one of the arcs must also contain the other. Let G = (V,E) be an
arbitrary undirected graph, and let AG be its directed arcs. Let ΓG be the graph
(AG,Γ) whose vertices are the arcs of G and whose edges are the pairs of elements
in Γ.

Definition 6.9. A transposed path is a path in ΓG between an arc (x, y) of G
and its transpose (y, x).

The following is well known.
Theorem 6.10 (see [7, 8]). An undirected graph G is a comparability graph iff

it has no transposed path.
Lemma 6.11. If there is a transposed path of length at most k in ΓG, then there

is an odd cycle in G’s incompatibility graph of length at most k + 1.
Proof. Note that e1Γe2 iff e1 �= eT2 and e1e

T
2 is an edge of the incompatibility

graph. A path (e0, e1, . . . , ek) in ΓG can be turned into a path in ΓG by replacing
each edge of odd index with its transpose. An odd-length path from e0 to eT0 in
Γ maps to an odd-length cycle from e0 to e0 in the incompatibility graph, and an
even-length path from e0 to eT0 in Γ maps to an even-length path from e0 to eT0 in the
incompatibility graph, which, together with the edge (eT0 , e0), defines an odd cycle in
the incompatibility graph.

346 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

Proof of Theorem 6.1. The proof is immediate from Lemma 6.11.

Re-expressing Theorem 6.10 as Theorem 6.1 makes it immediately obvious to a
user that the certificate proves that G has no transitive orientation. Since a skeptical
user can check an edge of the incompatibility graph in O(1) time, an odd cycle of size
O(n) in the incompatibility graph is a sublinear certificate that G is not a compara-
bility graph if the odd cycle has size O(n). However, ΓG is useful for explaining the
algorithm to generate the certificate. The constructive proof of Lemma 6.11 shows
how to convert a transposed path to an odd cycle of the incompatibility graph in time
proportional to the length of the transposed path.

A module of an undirected graph G = (V,E) is a set X of vertices such that for
each vertex y ∈ V −X, either every element of X is a neighbor of y or no member of
X is a neighbor of y. V , the empty set, and the singleton subsets {{x}|x ∈ V } are
trivial modules. G is prime if it has only trivial modules. A set of vertices in G is a
module iff it is a module in G, and hence G is prime iff its complement is prime.

The problem of verifying that G is a comparability graph reduces in linear time to
the problem of verifying that a set of prime induced subgraphs is a set of comparability
graphs [7, 18]. A transposed path in an induced subgraph is also a transposed path
in G. Therefore, when G or G is not a comparability graph, producing a transposed
path in G or in G reduces in linear time to the same problem in the special case where
G is prime.

Theorem 6.12 (see [7, 8]). Let G be a prime undirected graph. If G is not a
comparability graph, then ΓG has one connected component. Otherwise, ΓG has two
components, where one component contains the transposes of the arcs in the other
component.

We show how to modify the transitive orientation algorithm of [18] so that it
creates a record that allows us to find a path of length O(n) in ΓG between any two
arcs that are included in its orientation of a prime graph G.

The transitive orientation algorithm of [18] begins with a partition P = {{v}, V −
{v}} of the vertices V of a prime graph G, where v is a selected initial lone vertex.
In a process called vertex partitioning, it iteratively refines the partition using the
following step, until P is the partition of V into one-element subsets:

• Select a vertex x as a pivot, and a partition class Y that does not contain
x. Split Y into two classes, Ya = Y ∩ N(x) of vertices that are adjacent
to x and Yn = Y − N(x) of vertices that are nonadjacent to x. Let P :=
(P − {Y }) ∪ {Ya, Yn}.

Figure 6 gives an example. Performing the first pivot on the initial lone vertex
v splits V − {v} into nonneighbors {c, f, g} and neighbors {a, e, w}. Performing a
pivot on w then splits the class {c, f, g} into neighbors {c, f} and nonneighbor {g}.
Performing a pivot on {f} then splits {a, e, w} into nonneighbor {a} and neighbors
{e, w}, etc. Since G is prime, any partition class of size greater than one fails to
be a module, so it is always possible to find a pivot that will split it. The vertex
partitioning procedure halts when all partition classes are of size 1.

During the partitioning, a linear arrangement of the partition classes is main-
tained, so that when a set Y is split into two sets, Yn and Ya, these two sets occupy
consecutive places at the former position of Y , with Ya placed farther than Yn from
the partition class that contains the pivot. Initially, the lone vertex {v} is placed first.
For example, in Figure 6, when v splits {a, c, e, f, g, w}, it is in a class that precedes
{a, c, e, f, g, w}, so the neighbors {a, e, w} are placed after the nonneighbors, {c, f, g}.
In the next step, when w then splits {c, f, g}, w is in a class that follows {c, f, g}, so

CERTIFYING ALGORITHMS 347

v | a c e f g w

v | c f g | a e w

v | c f | g | a e w

v | c f | g | a | e w

v | f | c | g | a | e w

v | f | c | g | a | e | w

w | a g | c e f v

w | g | a | c e f v

w | g | a | f v | c e

w | g | a | f v | c | e

w | g | a | f | v | c | e

w | a c e f g v

a v c g

f
e

wa v c g

f
e

w

First run of the partitioning
procedure:

Second run of the partitioning
procedure:

Orientation implied by final
ordering of vertices

Input graph G

Fig. 6. The transitive orientation algorithm of [18] performs two vertex partition refinements
on a prime comparability graph in order to find a linear ordering of the vertices that gives a topo-
logical sort of a transitive orientation of the graph. The final ordering given by the second partition,
(w, g, a, f, v, e, c) in this example, is the topological sort, which gives implicitly the transitive ori-
entation of the graph. Arrows indicate pivot vertices that are used for the next refinement of the
partition.

the neighbors {c, f} are placed before the nonneighbor {g} in the ordering.
It is shown in [18] that if the initial lone vertex v is a source or sink in a transitive

orientation of G, then the final ordering of vertices will be a topological sort of that
transitive orientation. Moreover, it is shown that if v is an arbitrary vertex, then
the rightmost vertex in the final ordering must be a source or sink in a transitive
orientation of G. (The reasons will become apparent below.) Therefore, the procedure
is run twice, once starting with arbitrary initial lone vertex v to identify a source/sink
w, and once starting with w as the initial lone vertex to find a topological sort of the
transitive orientation. Since the topological sort implies the orientations of the edges,
this gives the transitive orientation if G is a comparability graph. In the illustration,
the ordering (w, g, a, f, v, c, e) produced by the second run of the vertex partitioning
gives the transitive orientation depicted in the graph at the bottom.

Let us now examine what happens when G is not a comparability graph. The
procedure still produces an ordering of the vertices. Since G has no transitive ori-
entation, this orientation must contain a pair (a, b) and (b, c) of directed edges such
that (a, c) is not an edge, namely, an incompatible pair. An incompatible pair does
not serve as a certificate that G is not a comparability graph, since it shows only
that either G is not a comparability graph or the implementation of the transitive
orientation algorithm has a bug.

We therefore seek a mechanism to turn an incompatible pair into a certificate

348 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

that G is not a comparability graph.

To accomplish this, we define a parent relation on the directed arcs of G that
results from the vertex partitioning procedure. Suppose a set Y is split into Yn and
Ya by a pivot vertex x. Let (y, z) be an arc from Yn to Ya. By the definition of Yn

and Ya, xy is not an edge of G, and xz is, so (y, z)ΓG(x, z) and (z, y)ΓG(z, x). Let
(x, z) be the parent of (y, z), and let (z, x) be the parent of (z, y).

Lemma 6.13. If arc a1 is the parent of arc a2, then a1ΓGa2.

Clearly, every arc has a unique parent except those that are incident to the initial
lone vertex, which have no parents. At a given point in the partition refinement, let us
say that a directed arc is protected if both of its endpoints are currently within a single
partition class, and exposed if its endpoints are in two different partition classes. The
parent relation is acyclic, since the parent is always exposed earlier than the child. All
arcs are assigned a parent except those that are incident to the initial lone vertex, so
the parent relation arising from one run of the vertex partitioning procedure defines
a forest of rooted trees on the arcs of G, and the roots of these trees are the arcs
incident to the initial lone vertex.

Let P1 be the parent relation arising from the first run of the vertex partitioning
procedure, which begins with partition {{v}, V −{v}} and discovers a source/sink w.
Let P2 be the parent relation arising from the partition {{w}, V − {w}}. The arcs
incident to v are the tree roots in P1, and the arcs incident to w are the tree roots
in P2. Therefore, the only arcs that fail to have parents in both P1 and P2 are (v, w)
and (w, v). Moreover, since w is in the rightmost class after every pivot during the
first run of the partitioning procedure, every time it is in a class that is split by a
pivot, it is in the class that contains neighbors of the pivot. Since it is a neighbor of
the pivot, the parent of each edge incident to w that gets exposed by the pivot is also
incident to w.

Therefore, all arcs incident to w lie in the two trees of P1 that are rooted at (v, w)
and (w, v). Let P ′

1 be the restriction of P1 to arcs incident to w; that is, P ′
1 is two

trees rooted at (v, w) and (w, v) that span the arcs incident to w.

It follows that P ′
1∪P2 consists of exactly two trees T(v,w) and T(w,v) that are rooted

at (v, w) and (w, v) and that span all directed arcs of G. Whenever a1 and a2 are arcs
of G where a1 is a parent of a2, a1ΓGa2. By Lemma 6.13, any transitive orientation of
G that contains (v, w) must contain every arc in T(v,w) and any transitive orientation
of G that contains (w, v) must contain every arc in T(w,v). The arcs spanned by the
two trees are the two transitive orientations of G if G has a transitive orientation. Let
us therefore call T(v,w) and T(w,v) the orientation trees.

Figure 7 depicts one of the two orientation trees produced by the two runs of the
vertex partitioning algorithm in Figure 6. Each node is labeled with two vertices and
represents the arc from the first vertex label to the second. (The other orientation tree
is identical except that the directions of all of the edges are reversed.) The parent
relation on arcs determined by the second run (P2) is shown with solid edges; the
parent relation on edges incident to w determined by the first run (P ′

1) are shown
with dashed edges.

Given a parent arc a1 and child arc a2, it is easy to check in O(1) time that a1ΓGa2.
Performing this on all parent-child pairs allows a user to confirm in O(n + m) time
that if G has a transitive orientation, then it must be the orientation consisting of
the nodes of one of the two trees. It therefore serves as a certificate either that the
precondition that G was a comparability graph was violated or that the orientation
is transitive, without identifying which of these two cases occurred. In either case, it
exonerates an implementation of the transitive orientation algorithm of providing a

CERTIFYING ALGORITHMS 349

(w,f) (a,v)

(a,e)

(w,e)

(g,e)

(g,c)

(w,c)

(w,v)

(v,e)(f,e)

Fig. 7. The orientation tree defined by the two runs of the vertex partitioning procedure shown
in Figure 6. Solid edges depict the parent relation implied by the second run of the partitioning
procedure and form a forest of trees rooted at arcs incident to w. Dashed edges give the parents of
edges incident to w that are implied by the first run of the partitioning procedure. Together, these
edges link this forest together into a tree rooted at (w, v).

nontransitive orientation of a comparability graph.
In contrast to a simple transitive orientation, the orientation trees contain infor-

mation that allows us to find a transposed path if G is not a comparability graph.
In this case, each of the trees must contain two edges (a, b) and (b, c) that form an
incompatible pair, which implies that ac is not an edge of G, and (b, a)ΓG(b, c).

Suppose without loss of generality that (a, b) and (b, c) occur within T(v,w). To
document that G is not a comparability graph, we may find the least common ancestor
(d, e) of (a, b) and (b, c) in T(v,w). Let P(a,b) be the path from (a, b) to (d, e) and P(b,c)

be the path from (b, c) to (d, e) in T(v,w). P(a,b) ∪ P(b,c) defines a path in ΓG from
(a, b) to (b, c). Taking these together with (b, a)ΓG(b, c), we get a transposed path
from (a, b) to (b, a)—a certificate that G is not a comparability graph.

For instance, suppose edge ae is removed from the graph of Figure 6. The resulting
graph is no longer a comparability graph, but it is easy to see that the removal of this
particular edge does not affect any of the steps of either of the two runs of the vertex
partitioning procedure. Therefore, the transitive orientation algorithm still produces
the topological sort (w, g, a, f, v, c, e) of an orientation that contains the incompatible
pair ((a, v), (v, c)). The least common ancestor of (a, v) and (v, e) in the orientation
tree of Figure 7 is (w, v). The union of the paths from (a, v) and (v, c) to this least com-
mon ancestor forms the path ((v, e), (g, e), (w, e), (w, c), (w, v), (a, v)) which, together
with ((e, v)ΓG(a, v)), is a transposed path ((v, e), (g, e), (w, e), (w, c), (w, v), (a, v), (e, v))
from (v, e) to (e, v). A skeptic can check each of the links of this path once they are
pointed out and conclude that the graph is not, in fact, a comparability graph.

T(v,w) and T(w,v) have size O(m); we now show how to construct them in O(m)
time. For this, we modify the vertex partitioning procedure to produce the data
structure pictured on the right side of Figure 8. The construction is illustrated for
the run of the vertex partitioning procedure, where w is the initial lone vertex; the
data structure, where v is the initial lone vertex, is constructed in the same way. The
data structure is a tree whose nodes represent subsets of V . The root of the tree is
V , its children are {w} and V −{w} if w is the initial lone vertex, and the remaining

350 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

a v c g

f
e

w

V

w | a g | c e f v

w | g | a | c e f v

w | g | a | f v | c e

w | g | a | f v | c | e

w | g | a | f | v | c | e

w | a c e f g v

{c,e,f,v}(g)

{f,v}(a)

{f} {v} {c} {e}

{a}{g}

{w}
{a,c,e,f,g,v}(w)

{a,g}(c)

{c,e}(f)

Fig. 8. The Hasse diagram of a run of the vertex partitioning procedure. If a set Y is split into
two sets Yn and Ya by a pivot, Yn and Ya are its children. In the figure, each set is labeled with its
members, as well as the pivot that split it if it is an internal node. For the data structure, it is not
necessary to label internal nodes with their members, so the data structure requires O(n) space.

nodes are the remaining sets that appear at some point during the vertex partitioning
procedure. When a partition class Y is split into Yn and Ya by a pivot x, Yn and Ya

are the children of Y . In other words, the tree is the Hasse diagram of the subset
relation on the partition classes that appear at some point during the refinement. Let
us refer to it as the Hasse diagram of the run of the partition refinement algorithm.

Each node is labeled with the identity of the pivot, in parentheses, that caused
it to split into its two children during the refinement. For instance, when {c, e, f, v}
is split into {f, v} and {c, e} by pivot g, {f, v} and {c, e} become the children of
{c, e, f, v}, and {c, e, f, v} is labeled with the pivot (g) that split it.

To represent this tree with a data structure, we label each leaf with its sole
member, and label each internal node only with the pivot that caused it to split, but
not with a list of members. The members of the set X represented by an internal
node can be found in O(|X|) time by visiting its leaf descendants, which is just as
efficient as labeling the node explicitly with the members of X. This allows each
internal node to take O(1) space, so the data structure for the Hasse diagram takes
O(n) space. The time to construct it does not affect the O(n + m) time to run the
vertex partitioning procedure, since it requires creating two children of size O(1) each
time a partition class is split by the procedure.

Lemma 6.14. Suppose (a, b) is an arc of G. Let Y be the least common ancestor
of {a} and {b} in the Hasse diagram.

• If Y = V , then (a, b) has no parent.
• Otherwise, let c be the pivot that split Y into nonneighbors Yn and neighbors
Ya of c. Then if a ∈ Yn and b ∈ Ya, then (c, b) is the parent of (a, b), and if
b ∈ Ya and a ∈ Yn, then (a, c) is the parent of (a, b).

Proof. The proof is immediate from the definition of the parent function.

Corollary 6.15. Given the Hasse diagram and a set A of arcs of G, it takes
O(|A| + n) time to find the parents of the members of A.

CERTIFYING ALGORITHMS 351

Proof. Numbering the leaves from 1 to n in left-to-right order allows one to find,
for any two vertices, which is earlier on the leaf order in O(1) time. By the off-line
least common ancestors algorithm of Harel and Tarjan [10], given k pairs of nodes
in a rooted tree with O(n) nodes, it takes O(k + n) time to find the least common
ancestor of each of the k pairs. By the rule for ordering partition classes, for an arc
(a, b) with a least common ancestor split by pivot c, a ∈ Yn if a is in between b and
c in this order, and b ∈ Yn otherwise. In the former case, (c, b) is the parent and, in
the latter case, (a, c) is the parent.

Corollary 6.16. It takes O(n+m) time to find the two orientation trees implied
by the transitive orientation algorithm.

Proof. It takes O(n+m) time to get the parents of all arcs not incident to the lone
initial vertex w in the parent relation defined by the second run of the partitioning
procedure by Corollary 6.15, and it takes O(n) time to get the parents of arcs incident
to w, but not v in the first run. The union of these two sets of parent pointers is
formed by the two orientation trees.

Since the arcs of G are nodes of the orientation trees, these trees have Θ(m)
nodes. However, we can now state the following.

Corollary 6.17. The orientation trees have height O(n).

Proof. Recall that an arc is exposed during partitioning at the point when its
endpoints are separated into two different partition classes. Each time a partition
class splits, the number of partition classes increases by one, and this number is
initially equal to one when the initial lone vertex is separated from V and equal to n
when the partitioning procedure terminates. Therefore, classes are split at most n−1
times. When a split of a class exposes an arc, this means that the parent of the arc
was exposed by an earlier split. Therefore, there is no chain longer than n− 1 in the
parent relation implied by one run of the partitioning procedure.

Each path from an arc of G to the arc (w, v) or (v, w) that is the root of the
orientation tree follows zero or more parent pointers defined by the second run of the
partitioning procedure to arrive at an arc incident to w, followed by zero or more
parent pointers defined by the first run of the partitioning procedure, through arcs
incident to w, to arrive at (w, v) or (v, w). The height of the tree is therefore at most
2n− 2.

Theorem 6.18. Given an incompatible pair ((a, b), (b, c)) in the orientation of a
graph G produced by the transitive orientation algorithm, it takes O(n + m) time to
find an odd cycle of length O(n) in G’s incompatibility graph.

Proof. It takes O(n+m) time to find the orientation tree that contains (a, b) and
(b, c) by Corollary 6.16. It takes O(n) time to find the path from (a, b) to (b, c) in this
tree by Corollary 6.17. By Lemma 6.13, this path, together with (b, c)ΓG(b, a), is a
transposed path from (a, b) to (b, a). The constructive proof of Lemma 6.11 shows
how to turn this into an odd cycle of the incompatibility graph of size O(n).

Proof of Theorem 6.2. The proof is immediate from Theorem 6.18 and Lemma 6.11.

Note that we do not claim an O(n+m) certifying algorithm for recognizing com-
parability graphs, and no such bound is known for recognizing them, with or without
a certificate. The bottleneck for recognition of comparability graphs is finding an in-
compatible pair in the orientation produced by the algorithm of [18]. It is noteworthy,
however, that this gives a certifying algorithm for recognizing comparability graphs
that is as fast as any currently known, and that produces a sublinear certificate of
rejection.

Lemma 6.19 (see [18]). Given a graph G with n vertices and m edges, it takes

352 D. KRATSCH, R. M. MCCONNELL, K. MEHLHORN, AND J. P. SPINRAD

O(n+m) time to find an ordering of the vertices that is a topological sort of a transitive
orientation of G if G is a comparability graph.

The algorithm works by symmetry in the roles of edges and nonedges. It performs
the pivots exactly as it does for orienting G, but reverses the roles of the set Yn of
nonneighbors and the set Ya of neighbors of the pivot. The only effect of this is that it
reverses the relative order of Yn and Ya when we replace Y with these two sets in the
ordering of partition classes. This trick is used in [18] to get linear-time recognition
of permutation graphs.

However, one difficulty we now face in producing a certificate that G is not a
comparability graph in this time bound is that the number of arcs in G, hence the
number of nodes of its orientation trees, is Θ(n2 −m), which does not conform to our
desired O(n + m) time bound. We cannot construct the orientation trees for G and
stay within our time bound.

Fortunately, given an incompatible pair ((a, b), (b, c)), the construction of Theo-
rem 6.18 requires us only to find the paths from (a, b) and (b, c) to their least common
ancestor in the orientation tree, not the whole orientation tree. These paths have
length O(n) by Corollary 6.17.

Lemma 6.20. Given an incompatible pair ((a, b), (b, c)) in the orientation of G
produced by the algorithm of Lemma 6.19, it takes O(n) time to find an odd cycle of
size O(n) in the incompatibility graph of G.

Proof. Creation of the Hasse diagram is not affected by the modification of the
partitioning algorithm for Lemma 6.19. To find the parent of an arc (a, b) of G in one
run of the partitioning algorithm, mark the ancestors of a in the Hasse diagram. This
takes O(n) time. Search upward from b until a marked node is encountered. This
is the least common ancestor A1 of {a} and {b} in the Hasse diagram. Suppose by
induction that the least common ancestor Ak in the Hasse diagram has been found
for {x} and {y}, where (x, y) is some ancestor of (a, b) in the parent relation. Let z
be the pivot label of this ancestor. Search upward from z until a marked node of the
Hasse diagram is encountered. This is the least common ancestor Ak+1 in the Hasse
diagram of the parent of (x, y) in T1. Since this Ak+1 is higher in the Hasse diagram
than any other least common ancestor found so far, the search upward from z uses
a different set of edges of the Hasse diagram from those used by previous upward
searches. The cost of this search can be charged to the edges traversed during the
search. The cost of finding all ancestors in the Hasse diagram is O(n), and the length
of the path is O(n).

Acknowledgments. The authors would like to thank the two anonymous ref-
erees for generous observations, questions, and comments that we have made ample
use of in the paper.

REFERENCES

[1] M. Blum and S. Kannan, Designing programs that check their work, in Proceedings of the
21st Symposium on the Theory of Computation, ACM, New York, 1989, pp. 86–97.

[2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, SIAM Monogr.
Discrete Math. Appl. 3, SIAM, Philadelphia, 1999.

[4] D. G. Corneil, S. Olariu, and L. Stewart, The ultimate interval graph recognition algo-
rithm?, in Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, ACM, New York, SIAM, Philadelphia, 1998, pp. 175–180.

CERTIFYING ALGORITHMS 353

[5] D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs,
SIAM J. Comput., 14 (1985), pp. 926–934.

[6] G. A Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[7] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar., 18 (1967), pp. 25–

66.
[8] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[9] M. Habib, R. M. McConnell, C. Paul, and L. Viennot, Lex-BFS and partition refinement,

with applications to transitive orientation, interval graph recognition, and consecutive ones
testing, Theoret. Comput. Sci., 234 (2000), pp. 59–84.

[10] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338–355.

[11] W. L. Hsu, A simple test for interval graphs, in Graph-theoretic Concepts in Computer Science,
Lecture Notes in Comput. Sci. 657, Springer, Berlin, 1993, pp. 11–16.

[12] W. L. Hsu and R. M. McConnell, PC trees and circular-ones arrangements, Theoret. Com-
put. Sci., 296 (2003), pp. 99–116.

[13] N. Korte and R. H. Möhring, An incremental linear-time algorithm for recognizing interval
graphs, SIAM J. Comput., 18 (1989), pp. 68–81.

[14] D. C. Kozen, The Design and Analysis of Algorithms, Springer, Berlin, 1991.
[15] C. Lekkerkerker and D. Boland, Representation of finite graphs by a set of intervals on

the real line, Fund. Math., 51 (1962), pp. 45–64.
[16] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput., 16 (1987), pp. 854–879.
[17] R. M. McConnell and F. de Montgolfier, On the Common Factors in a Set of Linear

Orders, Technical report CS-04-102, Colorado State University, Fort Collins, CO, 2004.
[18] R. M. McConnell and J. P. Spinrad, Modular decomposition and transitive orientation,

Discrete Math., 201 (1999), pp. 189–241.
[19] K. Mehlhorn and S. Näher, The LEDA Platform for Combinatorial and Geometric Com-

puting, Cambridge University Press, Cambridge, UK, 1999.
[20] K. Mehlhorn, S. Näher, T. Schilz, M. Seel, R. Seidel, and C. Uhrig, Checking geometric

programs or verification of geometric structures, Comput. Geom., 12 (1999), pp. 85–103.
[21] K. Mehlhorn, S. Näher, and C. Uhrig, The LEDA platform for combinatorial and geometric

computing, in Proceedings of the 24th International Colloquium on Automata, Languages,
and Programming (ICALP ’97), Lecture Notes in Comput. Sci. 1256, Springer-Verlag,
Berlin, 1997, pp. 7–16.

[22] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Comput., 16
(1987), pp. 973–989.

[23] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and identification of
permutation graphs, Canad. J. Math., 23 (1971), pp. 160–175.

[24] F. S. Roberts, Graph Theory and Its Applications to Problems of Society, SIAM, Philadelphia,
1978.

[25] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[26] J. P. Spinrad, Doubly lexical ordering of dense 0–1 matrices, Inform. Process. Lett., 45 (1993),
pp. 229–235.

[27] R. E. Tarjan and M. Yannakakis, Addendum: Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,
SIAM J. Comput., 14 (1985), pp. 254–255.

[28] H. Wasserman and M. Blum, Software reliability via run-time result-checking, J. ACM, 44
(1997), pp. 826–849.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 354–393

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS WITH
APPLICATION TO ON-LINE CIRCUIT AND OPTICAL ROUTING∗

YAIR BARTAL† , AMOS FIAT‡ , AND STEFANO LEONARDI§

Abstract. We present lower bounds on the competitive ratio of randomized algorithms for a wide
class of on-line graph optimization problems, and we apply such results to on-line virtual circuit and
optical routing problems. Lund and Yannakakis [The approximation of maximum subgraph problems,
in Proceedings of the 20th International Colloquium on Automata, Languages and Programming,
1993, pp. 40–51] give inapproximability results for the problem of finding the largest vertex induced
subgraph satisfying any nontrivial, hereditary property π—e.g., independent set, planar, acyclic,
bipartite. We consider the on-line version of this family of problems, where some graph G is fixed
and some subgraph H of G is presented on-line, vertex by vertex. The on-line algorithm must choose
a subset of the vertices of H, choosing or rejecting a vertex when it is presented, whose vertex induced
subgraph satisfies property π. Furthermore, we study the on-line version of graph coloring whose off-
line version has also been shown to be inapproximable [C. Lund and M. Yannakakis, On the hardness
of approximating minimization problems, in Proceedings of the 25th ACM Symposium on Theory of
Computing, 1993], on-line max edge-disjoint paths, and on-line path coloring problems. Irrespective
of the time complexity, we show an Ω(nε) lower bound on the competitive ratio of randomized on-line
algorithms for any of these problems. As a consequence, we obtain an Ω(nε) lower bound on the
competitive ratio of randomized on-line algorithms for virtual circuit routing on general networks,
in contrast to the known results for some specific networks. Similar lower bounds are obtained for
on-line optical routing as well.

Key words. on-line computation, graph problems, network optimization, competitive analysis,
randomized algorithms, lower bounds

AMS subject classifications. 68W20, 90B18, 05C85

DOI. 10.1137/S009753979833965X

1. Introduction.

1.1. On-line graph problems. On-line graph optimization problems have been
previously considered in several works: the problem of obtaining a maximal on-line
matching in a bipartite graph is considered in [KVV90], the on-line coloring of a three
colorable graph is studied in [V90], the problem of coloring an inductive graph is
studied in [I90], and randomized lower bounds for on-line graph coloring are given in
[HS92].

In all the previous papers, vertices and/or edges arrive on-line, and the on-line
algorithm has to make some relevant decision when this happens. The adversary
has total freedom to decide what graph will be presented, and in what order the
edges/vertices will arrive.

In this paper, we consider a different model, where the graph presented by the

∗Received by the editors June 1, 1998; accepted for publication (in revised form) February 5,
2006; published electronically June 23, 2006. A preliminary version of this work appeared in the
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996.

http://www.siam.org/journals/sicomp/36-2/33965.html
†School of Computer Science, Hebrew University, Jerusalem (yairb@cs.huji.ac.il). This author’s

research was supported in part by a Rotschild Postdoctoral fellowship.
‡Department of Computer Science, Tel Aviv University, Tel Aviv (fiat@math.tau.ac.il). This

author’s research was supported in part by two grants from the Israel Academy of Sciences.
§Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” Rome, Italy

(leon@dis.uniroma1.it). This author’s work was partly supported by EU ESPRIT Long Term Re-
search Project ALCOM-IT under contract 20244, and by Italian Ministry of Scientific Research
Project 40% “Algoritmi, Modelli di Calcolo e Strutture Informative.”

354

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 355

adversary is a subgraph of some (larger) graph that is known in advance to the on-line
algorithm. Upper bounds that hold for the models of [KVV90, V90, I90, HS92] clearly
also hold for the model where the presented graph is a subgraph of some known graph.
Lower bounds do not. Lower bounds for the unknown graph model can be trivially
translated into our model simply by considering a much larger graph that contains
all possible subgraphs. However, the large graph is now exponentially larger than the
subgraph, which implies that the lower bound is exponentially smaller.

The motivation for this model is not only theoretical. It allows one to capture
problems such as on-line routing in networks. We effectively translate routing prob-
lems onto graph problems on a graph related to the original network. It is reasonable
to assume that the on-line routing algorithm does not know anything about future
communication requests. It is not reasonable to assume that it does not know any-
thing about the routing network itself.

We consider a large set of on-line graph optimization problems. Some of the
problems are benefit problems (e.g., find the largest subgraph satisfying a property),
and others are cost problems (e.g., color a graph with as few colors as possible).

The graph optimization problems that we consider are listed below. For each
such problem we first give the off-line version and then give the on-line variant. The
performance of an algorithm for an on-line problem is measured by its competitive
ratio [ST85]. The competitive ratio for benefit problems is defined as the worst case
ratio between the optimal off-line benefit and the on-line benefit. For cost problems
the competitive ratio is defined as the worst case ratio between the on-line cost and
the optimal off-line cost.

Off-line induced subgraph. Let π be a graph property that is nontrivial (i.e., true
for infinitely many graphs and false for infinitely many graphs) and hereditary (i.e., if
a graph G satisfies it, then also any vertex induced subgraph of G satisfies it). Given a
graph G = (V,E), find the subset of V of maximum cardinality whose vertex induced
subgraph satisfies π.

Such problems include complete graph, independent set, k-colorable, planar, out-
erplanar, bipartite, complete bipartite, acyclic, degree-constrained, interval, circular-
arc, circle graph, chordal, perfect, etc.

Lund and Yannakakis [LY93a] give inapproximability results for this family of
problems. Note that in on-line computation, time complexity is not considered, and
thus our results do not follow from [LY93a].

On-line induced subgraph. The graph G = (V,E) is known to the on-line algo-
rithm. Vertices v ∈ V are presented in arbitrary order. The adversary may choose to
stop the sequence at any time. The on-line algorithm has to decide whether to accept
v or not. The induced graph of the accepted vertices must satisfy property π. The
benefit of the on-line algorithm is the cardinality of the set of accepted vertices.

We define the on-line independent set problem as the on-line induced subgraph
problem for the hereditary property π = independent set.

Off-line graph coloring. Given a graph G = (V,E), color its vertices with as few
colors as possible so that no two adjacent nodes receive the same color.

Lund and Yannakakis [LY93b] also prove inapproximability results for minimum
graph coloring.

On-line graph coloring. The graph G = (V,E) is known to the algorithm. At
every step, a new vertex v ∈ V is presented to the on-line algorithm and assigned a
color. The adversary may choose to stop the sequence at any time. The coloring must
be valid. The cost of the on-line algorithm is given by the number of colors used.

The on-line graph coloring problem has been studied extensively, and determin-

356 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

istic and randomized algorithms have been proposed, but only in the setting where
the graph is unknown [I90, V90, HS92].

Off-line edge-disjoint paths. The instance is a graph G = (V,E) and a collec-
tion C = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices. We say that a set of pairs
{(sij , tij)}mj=1 is consistent if there exist edge-disjoint paths {pij}mj=1, where pi� con-
nects si� to ti� . The problem is to find a maximum cardinality consistent subset of C.

On-line edge-disjoint paths. The graph G is known to the algorithm, and at every
step the adversary presents a pair of vertices to the on-line algorithm. The on-line
algorithm may accept or reject this pair, and for every accepted pair must commit to a
route connecting the two vertices, but the set of all accepted pairs must be consistent.
The benefit of the on-line algorithm is here defined as the cardinality of the set of
accepted pairs.

A variation of this problem is the edge-disjoint fixed paths problem, where an
entire path, rather than just its endpoints, is given. The goal is to accept a maximal
set of pairwise nonoverlapping paths.

Off-line path coloring. Given a graph G = (V,E) and a collection C = {(s1, t1), . . . ,
(sk, tk)} of k pairs of vertices in G, what is the minimum number of consistent sets
of pairs so that their union gives C? This is equivalent to minimizing the number
of colors required to color paths between the k endpoints (si, ti) so that no edge is
contained in two paths colored with the same color.

On-line path coloring. The graph G = (V,E) is known to the on-line algorithm,
and at every step the adversary presents a pair of vertices. The on-line algorithm
chooses a color for the two vertices and commits to a route connecting the two vertices.
The set of pairs accepted with the same color has to be consistent. The on-line cost
is the number of colors used.

For all of the problems above we prove a lower bound of Ω(nε) on the compet-
itive ratio of any on-line algorithm, for some ε > 0. This is fairly easy to show for
deterministic algorithms; our main contribution is showing that this holds even for
randomized on-line algorithms against an oblivious adversary (cf. [BBKTW90]).1

We complement these lower bounds results by presenting an algorithm for the
on-line induced subgraph problem that achieves a competitive ratio of O(n√

α
), given

a black-box O(n
α)-approximation algorithm for the induced subgraph problem, and an

O(n√
α
)-competitive algorithm for graph coloring if an O(n

α)-approximation algorithm

for independent sets is available.

1.2. Virtual circuit routing problems. The benefit or throughput version of
the virtual circuit routing problem is where communication requests require the as-
signment of a specified bandwidth on a path that connects a transmitter to a receiver,
for a given duration and offering a given benefit. Each call can be either accepted and
scheduled, observing the bandwidth constraints on all links, or rejected. Following
[GG92], we call this problem the call control problem.

1In a recent paper Kaplan and Szegedy [KS98] pointed out an error in our original proof of
Lemma 10 (presented as the proof of an analogous claim in [BFL96]) and gave a corrected version.
A correct proof of Lemma 10, along slightly different lines from those in [KS98], is also presented in
this paper.

In the conference version of this paper [BFL96] we showed that similar lower bounds also hold
in the context of benefit problems for the on-line independent set and the on-line edge-disjoint paths
problems when the use of preemption is allowed to the randomized algorithm. This means that the
on-line algorithm is allowed to discard a previously chosen element (a vertex or a pair) but cannot
later change its mind again. These results can be viewed in the on-line version of that report (see
[BFL96]).

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 357

[GGKMY93] considered the call control problem when the algorithm is allowed
to preempt previously accepted calls. They give deterministic preemptive algorithms
with a competitive ratio of O(log n) for a line network, and show that no deterministic
algorithm can achieve a better ratio. [BCK+95] studied a preemptive algorithm for
a single link and a line topology when the benefit of a call is proportional to the
bandwidth duration product. Lower bounds for randomized preemptive algorithms

for a single link were given in [CI95]. The authors show an Ω
(√

log μ
log log μ

)
lower bound,

where μ is either the ratio between the maximum and the minimum duration or the
ratio between the maximum and the minimum benefit of a call.

Nonpreemptive call control was first considered in [AAP93]. They gave through-
put competitive algorithms, O(log n) competitive, for arbitrary networks (not requir-
ing preemption), if every call request bandwidth was for no more than a logarithmic
fraction of the minimal link capacity. They also prove an Ω(n) lower bound on the
competitive ratio of deterministic on-line algorithms on general networks if calls may
request arbitrary bandwidth.

[ABFR94] considered randomized nonpreemptive algorithms for call control, on
tree networks, getting a competitive ratio of O(log n) when all edge capacities are 1, all
bandwidth requests are 1, all durations are infinite, and all benefits are 1. [ABFR94]
also showed that problem parameters such as variable bandwidth, call benefit, and call
duration can be dealt with by a randomized algorithm at the expense of logarithmic
factors in the competitive ratio.

The call control problem when all links have capacity 1, all calls require bandwidth
1, duration is infinite, and all call benefits are 1 is thus a central problem to be
considered. This problem is equivalent to the edge-disjoint paths graph problem
stated above. Thus, any lower bound on the competitive ratio for edge-disjoint paths
is a lower bound for the call control problem. Similarly, an upper bound on the
competitive ratio for edge-disjoint paths gives an upper bound on the more general
problem using the techniques of [ABFR94].

[AGLR94] give a randomized call control algorithm for the mesh, with a compet-
itive ratio of O(log2 n) and an O(logD) competitive algorithm for trees, where D
is the diameter of the tree. In a later paper, [KT95] gave an O(log n) competitive
randomized call control algorithm for the mesh, and extended this result to more gen-
eral “densely embedded nearly Euclidean” planar graphs. The issue of the variance
of randomized on-line algorithms was considered in [LMPR98]. The authors propose
randomized on-line competitive algorithms for trees and meshes that both achieve
optimal competitive ratio and produce a solution concentrated with good probability
around the expectation.

We show an Ω(nε) lower bound on the competitive ratio of nonpreemptive ran-
domized on-line algorithms for general networks. We give specific networks where this
occurs, including a network of degree Ω(logn).

1.3. Routing problems in optical networks. In optical networks the band-
width available on any link is split into many channels, each at a different wavelength.
Each transmission is associated with exactly one wavelength that must be available
on all links forming a path from the transmitter to the receiver.

The routing problem on optical networks varies considerably, depending on the
network model considered. There are a number of models, differing in the nature of
network switches.

The basic classification is into the following types:
• Nonreconfigurable networks—also called passive or switchless networks—

358 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

where a wavelength originating from a transmitting node will always follow a
fixed pattern. There may be “switches” that mix and match incoming wave-
lengths to outgoing links, but these cannot be changed during the operation
of the network.

• Reconfigurable networks, which use two different types of switches:
– elementary switches, which can direct signals coming along one of the

input lines to one or more output links, but which cannot differentiate
between wavelengths when performing the switch;

– generalized switches, which are capable of splitting the incoming stream
based upon the wavelength.

In all models, the key restriction is that if more than one data item is transmitted
along an edge on the same wavelength (color), then they are all unusable.

Optical routing was considered in [RU94, ABC+94, BH93, P92]. Most of that
work focuses on the question of how many wavelengths are required to accommodate
a given communication traffic.

We consider a number of on-line optical routing problems on both reconfigurable
optical networks, where all vertices are generalized switches, and switchless optical
networks. We consider benefit problems, where calls can be accepted or rejected,
analogous to the call control problem, and coloring problems, whose goal is to mini-
mize the number of wavelengths (colors) used.

On-line routing in reconfigurable optical networks—benefit version. Calls are pre-
sented one-by-one, and calls can be either accepted or rejected. Every accepted call
is assigned with a wavelength and can be routed using the generalized switches along
a path to be chosen. All calls transmitted along the same wavelength cannot share
an edge. If only one wavelength is available, this problem is identical to on-line edge-
disjoint paths.

On-line routing in reconfigurable optical networks—coloring version. Calls are
presented one-by-one, and all calls have to be accepted and assigned a wavelength
and a path linking source to destination. The goal is to minimize the number of
wavelengths used, in order to preserve the rule that no two calls on the same wave-
length can share an edge. The problem is identical to on-line path coloring.

In the switchless cases described below, the routing decisions are very restricted.
What does have to be decided is the wavelength to be assigned to any call so that
calls do not interfere with one another. Switchless optical networks are modeled as
directed acyclic graphs in order to prevent self-interference of transmissions.

Off-line routing in switchless optical networks—benefit version. Consider a di-
rected graph D = (V,E) and a collection C = {(s1, t1), . . . , (sk, tk)} of k pairs of
vertices. Denote by R(v) the set of vertices of V reachable from v in D via a directed
path. We say that two pairs (si, ti), (sj , tj) of terminal vertices are noninterfering if
tj /∈ R(si) and ti /∈ R(sj). The problem on a single wavelength consists of finding a
maximum cardinality pairwise noninterfering subset of C.

On-line routing in switchless optical networks—benefit version. The graph D
is known to the algorithm. At every step a pair is communicated to the on-line
algorithm, which can either accept or reject it; the set of accepted pairs should be
pairwise noninterfering. The benefit of the on-line algorithm is the cardinality of the
set of accepted calls.

Off-line routing in switchless optical networks—coloring version. Given a directed
graph D = (V,E) and a collection C = {(si, ti), . . . , (sk, tk)} of pairs of vertices, what
is the minimum number of pairwise noninterfering sets of pairs so that their union

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 359

gives C? This can be seen minimizing the number of colors necessary to color the
pairs in C, where two pairs with the same color must be noninterfering.

On-line routing in switchless optical networks—coloring version. The on-line al-
gorithm knows some graph D. At each step a new pair of vertices is chosen by the
adversary and assigned a color by the on-line algorithm. The on-line algorithm assigns
a color so that the pair is noninterfering with all pairs previously assigned with the
same color. The on-line cost is the number of colors used.

We show for all these on-line optical routing problems an Ω(nε) lower bound on
the competitive ratio of randomized algorithms.

The results for reconfigurable networks are directly derived from the analogous
results for on-line edge-disjoint paths and on-line path coloring.

The results for switchless networks are derived by showing that an independent
set is a subproblem of routing in switchless optical networks (benefit version), and
that graph coloring is a subproblem of routing in optical switchless networks (coloring
version).

1.4. Structure of the paper. In section 2 we give formal definitions of com-
petitive analysis and explain the use of Yao’s lemma [Y77] for lower bounds for on-line
randomized algorithms.

Section 3 deals with the on-line induced subgraph problem. In section 3.1 we
present the lower bound for randomized algorithms for the on-line induced subgraph
problem. Finally, section 3.2 gives upper bounds for the on-line induced subgraph
problem. We then show in section 4 how the lower bounds for on-line independent
sets can be transformed into a lower bound for on-line edge-disjoint paths (and thus
for call control).

Section 5 deals with the on-line graph coloring problem. The lower bound for the
problem is presented in section 5.1, and upper bounds are presented in section 5.2.
The lower bound for on-line graph coloring is then transformed into a lower bound
for on-line path coloring in section 6.

Section 7 deals with optical routing. The section contains all the lower bound
results that follow from the results in the previous sections. Finally, in section 8 we
present the lower bounds for the on-line edge-disjoint fixed paths problem.

2. Competitive analysis of randomized on-line algorithms. We consider
problems that consist of a set of request sequences and a set of possible corresponding
answers. Given a specific request sequence, an algorithm for the problem must provide
an answer in response to each of the requests in the sequence. If the algorithm is on-
line, it must base its answer for a particular request upon only the requests presented
prior to the current request and the current request itself. A randomized algorithm
may use coin tosses to decide upon its answers. An objective function is defined that
maps request/answer sequences into the nonnegative reals.

Let A be an algorithm, and let σ be a request sequence. The value of the objective
function of algorithm A associated with σ is denoted by A(σ).

Problems are divided into cost problems and benefit problems.
Cost problems. In the case of cost problems, A(σ) denotes the cost of algorithm

A, and the goal of the algorithm is to minimize its cost. If A is randomized, the goal
is to minimize its expected cost over its coin tosses, E[A(σ)].

Let ON be an on-line algorithm (possibly randomized) and OPT be an optimal
algorithm for some problem.

We say that ON is ρ-competitive [ST85] for a cost problem (against an oblivious

360 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

adversary (cf. [BBKTW90])) if there exists a constant a so that for every sequence σ,

E[ON(σ)] ≤ ρ · OPT(σ) + a.

The value ρ is called the competitive ratio of the algorithm.
Benefit problems. In the case of benefit problems, A(σ) denotes the benefit of algo-

rithm A, and the goal of the algorithm is to maximize its benefit. If A is randomized,
the goal is to maximize its expected benefit over its coin tosses, E[A(σ)].

Let ON be an on-line algorithm (possibly randomized) and OPT be an optimal
algorithm for some problem.

We say that ON is ρ-competitive for a benefit problem (against an oblivious
adversary) if there exists a constant a so that for every sequence σ,

OPT(σ) ≤ ρ · (E[ON(σ)] + a).

The value ρ is called the competitive ratio of the algorithm.

2.1. Lower bounds using the minimax principle. Lower bounds for on-line
randomized algorithms can be proved using Yao’s lemma based on the von Neumann
minimax principle (see [Y77]) applied to on-line algorithms. We need consider only
the case where the sequences are finite and the number of deterministic algorithms is
finite.

In [BE97] it is shown that in this case the following corollaries can be derived
from Yao’s lemma.

Corollary 1. Given a cost problem, the following three statements are equiva-
lent:

1. ρ is a lower bound on the competitive ratio of randomized on-line algorithms.
2. For every constant a ≥ 0, there exists a probability distribution over request

sequences σ such that OPT(σ) ≥ a and for any deterministic on-line algo-
rithm

E

[
ON(σ)

OPT(σ)

]
≥ ρ.

3. For every constant a ≥ 0, there exists a probability distribution over request
sequences σ such that OPT(σ) ≥ a and for any deterministic on-line algo-
rithm

E[ON(σ)]

E[OPT(σ)]
≥ ρ.

Corollary 2. Given a benefit problem, the following three statements are equiv-
alent:

1. ρ is a lower bound on the competitive ratio of randomized on-line algorithms.
2. For every constant a ≥ 0, there exists a probability distribution over request

sequences σ such that OPT(σ) ≥ a and for any deterministic on-line algo-
rithm

E

[
ON(σ)

OPT(σ)

]
≤ 1

ρ
.

3. For every constant a ≥ 0, there exists a probability distribution over request
sequences σ such that OPT(σ) ≥ a and for any deterministic on-line algo-
rithm

E[OPT(σ)]

E[ON(σ)]
≥ ρ.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 361

Note that the expectation in the above corollaries is over the probability distri-
bution on the input sequences.

In the remainder of the paper we sometime slightly abuse notation by using “input
sequence from the probability distribution D” in place of the more accurate “input
sequence having nonzero probability according to probability distribution D.”

In this paper we give lower bounds based on statement 3 in the above corollaries.

3. The on-line induced subgraph problem. In this section we give lower
and upper bounds on the competitive ratio of randomized algorithms for the on-line
induced subgraph problem.

We start with some properties concerning induced subgraph problems, which will
be used later in our proofs.

A graph property π is hereditary if, when satisfied for a given graph G, it is also
satisfied for any vertex induced subgraph of G. Property π is nontrivial if it is satisfied
for infinitely many graphs and not satisfied for infinitely many graphs.

Given a graph G = (V,E) and a nontrivial hereditary property π, the induced
subgraph problem consists of finding the maximum cardinality induced subgraph sat-
isfying the property π. Any graph H that does not satisfy a hereditary property π is
called a forbidden graph for π. Observe that any graph G that has H as an induced
subgraph does not satisfy π.

For any hereditary property there exists a set of “minimal” forbidden graphs, i.e.,
forbidden graphs for which every induced proper subgraph satisfies the property. For
instance, a K5 (a clique of 5 vertices) is a minimal forbidden graph for planarity, and
a K2 is a minimal forbidden graph for an independent set.

Given a nontrivial hereditary property π, there is a complementary property πc

that is satisfied for a graph G if and only if π is satisfied for the complemented graph
Gc (the graph that contains an edge if and only if G does not contain that edge). The
complementary property is also a nontrivial hereditary property. Ramsey’s theorem
implies that any nontrivial hereditary property is satisfied by all independent sets or by
all cliques [LY93a]. Thus, as observed in [LY93a], it is possible to restrict our attention
to hereditary nontrivial graph properties that are satisfied for all independent sets.

The graph instances for our lower bounds are based on an application of the
following variant of Lemma 9 in [LY93a].

Lemma 3 (Lund and Yannakakis). Given any graph H, there exist constants
M and α such that for all n > M there exists a graph G on n vertices such that
any induced subgraph of G on at least l = α log n vertices contains H as an induced
subgraph.

Observe that if the graph H of the lemma is a Kc, then G can be a Kn and l = c.
Let the graph H of Lemma 3 be a forbidden graph for a nontrivial, hereditary,

property π. We base our lower bound constructions on a graph G = (V,E) of n
vertices, whose existence is guaranteed by Lemma 3 applied with the specific graph
H.

On the basis of this graph G, we build the instance G̃ for the lower bound for the
on-line induced subgraph problem.

Recall that in the on-line version of the induced subgraph problem we assume
that the graph G̃, from which the adversary draws vertices, is known to the on-line
algorithm.

The graph G̃ is built recursively. The vertex set of G̃ is V . In fact, G̃ is simply the
graph G with some edges removed. We remove edges so that the “clever” adversary
can choose vertices carefully while avoiding including the forbidden graph H as an

362 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

induced subgraph of the solution, whereas the on-line algorithm cannot do so well.
We next need to define sequences of requests to the vertices in G̃. Recall that

at every step a new vertex is presented to the on-line algorithm, which must decide
whether to choose to include it or choose to reject it.

The lower bounds are based on Yao’s lemma (see section 2). We recursively
define a probability distribution on request sequences in G̃ so that the ratio between
the expected benefit of an optimal off-line algorithm and the expected benefit of any
deterministic on-line algorithm is Ω(nε).

Section 3.1 describes the graph construction, the definition of the probability dis-
tribution, and the analysis of the lower bound on the competitive ratio. In section 3.2
we give upper bounds for the on-line induced subgraph problem.

3.1. Lower bound for randomized algorithms for on-line induced sub-
graph. Let π be a hereditary nontrivial graph property. Let G = (V,E) be a graph
of n vertices such that every induced subgraph of at least l = α log n vertices is a
forbidden graph for property π. As mentioned before, the existence of such a graph
for a large enough value of n is given by Lemma 3. For clarity of exposition, we
assume that n is a power of 4.

We consider a sequence of log4 n partitions of the vertices of V = {v1, v2, . . . , vn}.
The level 0 partition,

P0 = {V 1
0 = {v1}, V 2

0 = {v2}, . . . , V n
0 = {vn}},

consists of n disjoint singleton sets of vertices from V . The level i partition, 0 < i ≤
log4 n,

Pi = {V 1
i , V

2
i , . . . , V

n/4i

i },

is a partition of the vertices of V , where

V j
i = ∪4

k=1V
4(j−1)+k
i−1 .

As a shorthand notation we may use the definition V
4(j−1)+k
i−1 = V k

i−1,j , for 1 ≤ i ≤
log4 n, 1 ≤ j ≤ n/4i, 1 ≤ k ≤ 4. Note that V 1

log4 n = V . Note too that the set

V j
i = {v(j−1)4i+1, . . . , vj·4i}.

We now describe the construction of G̃ recursively. The vertex set of G̃ is V . The
graph G̃ can be viewed as the graph G with some edges removed.

For all 0 ≤ i ≤ log4 n and all V j
i ∈ Pi we define graphs G̃i(V

j
i) with vertex set

equal to V j
i . The final graph is G̃ = G̃log4 n(V). The graph G̃0(V

j
0) is simply the

single vertex vj and has no edges.

The graph G̃i(V
j
i), i > 0, j = 1, . . . , n/4i, is constructed from four graphs

G̃k
i−1,j = G̃i−1(V

k
i−1,j), for k = 1, 2, 3, 4.

The set of edges of G̃i(V
j
i) (see Figure 1) is recursively defined as the union of

the set of edges in G̃1
i−1,j , . . . , G̃

4
i−1,j and three new sets of edges:

• E12—edges (u,w), u ∈ V 1
i−1,j , w ∈ V 2

i−1,j , if and only if (u,w) ∈ E;

• E13—edges (u,w), u ∈ V 1
i−1,j , w ∈ V 3

i−1,j , if and only if (u,w) ∈ E;

• E24—edges (u,w), u ∈ V 2
i−1,j , w ∈ V 4

i−1,j , if and only if (u,w) ∈ E.

Graph G̃i(V
j
i) has n(i) = 4i vertices.

Note that in general it is not true that the graphs G̃i(V
j
i), V j

i ∈ Pi, are isomorphic.
This will be true if G = Kn.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 363

~Gi-1
1 ~Gi-1

2
E 12

E 13 E24

G~ i-1 Gi-1
~3 4

Fig. 1. The construction of graph G̃i(V
j
i).

We say that two graphs of level i− 1 connected by edges are adjacent. (Observe
that in the case that G = Kn a vertex of a graph is connected to all the vertices of
an adjacent graph).

We say that H ⊆ V induces a subgraph of G, with respect to G̃i(V
j
i), of size m

if the following condition holds: There exist m different vertices {u1, u2, . . . , um} ⊆
H ∩ V j

i such that, for all 1 ≤ l, k ≤ m, if (ul, uk) ∈ E, then (ul, uk) is an edge of

G̃i(V
j
i).
For a set H ⊆ V and for any 0 ≤ i ≤ log4 n, 1 ≤ j ≤ n/4i, we define

s(G̃i(V
j
i), H)

= max{m|H induces a subgraph of G, with respect to G̃i(V
j
i), of size m};

i.e., s(G̃i(V
j
i), H) is the size of the largest vertex induced subgraph of G(V j

i) that is
also a vertex induced subgraph of G̃i and whose vertices all belong to H. Note that
H may contain other vertices not in V j

i .
Assume that H induces a subgraph I1 of G with respect to G̃1

i−1,j , and that H

also induces a subgraph I2 of G with respect to G̃2
i−1,j ; then H induces a subgraph

of G of size |I1| + |I2| with respect to G̃i(V
j
i). This follows since H ∩ V j

i ⊇ H ∩
V 1
i−1,j ∪ H ∩ V 2

i−1,j , and G̃j
i contains all the edges of G̃1

i−1,j and G̃2
i−1,j and all the

edges between V 1
i−1,j and V 2

i−1,j that belong to E. A similar argument can be made

for the subgraphs induced by H with respect to the pair of graphs G̃1
i−1,j , G̃3

i−1,j ,

respectively, and likewise for the pair G̃2
i−1,j , G̃

4
i−1,j .

364 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

To summarize the argument above, the purpose of the edges E12, E13, and E24

is to ensure that for all H ⊆ V , 1 ≤ i ≤ log4 n, and 1 ≤ j ≤ n/4i

s(G̃i(V
j
i), H) ≥ max{s(G̃1

i−1,j , H) + s(G̃2
i−1,j , H),

s(G̃3
i−1,j , H) + s(G̃1

i−1,j , H),

s(G̃2
i−1,j , H) + s(G̃4

i−1,j , H)}.

We will now define the probability distribution on the request sequences of vertices
of G̃. We will prove for any on-line algorithm ON a lower bound on the ratio ρ
between the expected optimal off-line benefit E[|OPT (σ)|] and the expected on-line
benefit E[|ON(σ)|]. We remark that for our distribution over sequences, the off-line
benefit is independent of the choice of sequence.

The probability distribution over the sequences will be a uniform distribution over
a set of sequences of vertices. The set of sequences is defined recursively as follows.
The set of sequences for the graph G̃0(u), u ∈ V , consists of the single sequence 〈u〉.
Let S(V j

i) denote the set of sequences over V j
i , 0 ≤ i ≤ log4 n, V j

i ∈ Pi. Also, let ‖
denote the concatenation operator on sequences.

Given S(V 1
i−1,j), S(V 2

i−1,j), S(V 3
i−1,j), and S(V 4

i−1,j), 1 ≤ i ≤ log4 n, we define the

set S(V j
i) as the result of the following process:

S12 = {x‖y |x ∈ S(V 1
i−1,j), y ∈ S(V 2

i−1,j)},
S123 = {x‖y|x ∈ S12, y ∈ S(V 3

i−1,j)},(1)

S124 = {x‖y|x ∈ S12, y ∈ S(V 4
i−1,j)},(2)

S(V j
i) = S123 ∪ S124.

Claim 4. In any outcome of the above process (to generate S(V j
i)), |S123| =

|S124|.
Proof. From step (1) above we have that |S123| = |S12| · |S(V 3

i−1,j)|, and from step

(2) |S124| = |S12| · |S(V 4
i−1,j)|. For any two sets V k

i−1,j , V
�
i−1,j , 1 ≤ k < � ≤ 4, we can

find a mapping f(u) → w, u ∈ V k
i−1,j , w ∈ V �

i−1,j , such that both sets and their recur-
sive partitions into subsets are isomorphic under f . Specifically, f(vt) = vt+(�−k)4i−1

will be such a mapping. Thus, |S(V 3
i−1,j)| = |S(V 4

i−1,j)|, and it now follows that
|S123| =
|S124|.

Define the probability distribution U(S), where S is a set of sequences to be the
uniform distribution over S. Let T ⊂ V ; the notation σ|T denotes the sequence
derived from σ by removing all elements in V − T . Let T ′ ⊆ T ⊆ V , where S(T) and

S(T ′) are defined (i.e., T = V j
i and T ′ = V j′

i′ for some i, j, i′, j′). Define the restriction
of S(T) to T ′, i.e., S(T |T ′) = {σ|T ′|σ ∈ S(T)}. U(S(T |T ′)) is a distribution over
S(T ′).

Claim 5. U(S(V j
i |V k

i−1,j)) = U(S(V k
i−1,j)) for k = 1, . . . , 4.

Proof. Every sequence in S(V k
i−1,j) appears as a subsequence of the same number

of sequences in S(V j
i).

Let A be any algorithm (on-line or off-line), and let σ be a sequence of vertices
from V . Let A(σ) denote the set of vertices chosen by the algorithm. (A(σ) induces
a subgraph of G̃(V) satisfying property π.)

Lemma 6. For any 0 ≤ i ≤ log4 n, 1 ≤ j ≤ n/4i, and any sequence σ ∈ S(V j
i),

|OPT(σ)| ≥ 2i.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 365

Proof. Given any sequence σ ∈ S(V j
i), we will prove by induction on i that the

set of vertices in σ contains a subset of vertices I(σ) ⊆ V j
i , |I(σ)| = 2i, where I(σ)

is an independent set in G̃i(V
j
i). (And thus I(σ) obeys property π—OPT can choose

all vertices in I(σ) giving |OPT(σ)| ≥ 2i.)
The claim is clearly true for i = 0. Assume that the inductive hypothesis holds

for i− 1: Let τ be any sequence in S(V �
i−1), 1 ≤ � ≤ n/4i−1. The set of vertices in τ

contain a subset of vertices I(τ) ⊆ V �
i−1, |I(τ)| ≥ 2i−1, where I(τ) is an independent

set in G̃i−1(V
�
i−1).

Without loss of generality, assume that σ ∈ S123 from the construction. By
construction (of S123) there are disjoint subsequences of σ, τ2 ∈ S(V 2

i−1,j) and τ3 ∈
S(V 3

i−1,j). By the inductive hypothesis, there exist I(τ2) ⊆ V 2
i−1,j , I(τ3) ⊆ V 3

i−1,j ,

|I(τ2)| = 2i−1, and |I(τ3)| = 2i−1, where I(τ2) is an independent set in G̃i−1(V
2
i−1,j),

and I(τ3) is an independent set in G̃i−1(V
3
i−1,j).

Letting I(σ) = I(τ2)∪ I(τ3), we claim that I(σ) is an independent set in G̃i(V
j
i);

this follows because there are no edges in G̃i(V
j
i) between the sets V 2

i−1,j and V 3
i−1,j .

It is also true that |I(σ)| = |I(τ2)| + |I(τ3)| = 2i.
If σ ∈ S124, then the same argument works, with V 1

i−1,j taking the place of V 2
i−1,j

and V 4
i−1,j taking the place of V 3

i−1,j .
Let Ex∈RD[r(x)] denote the expectation of the random variable r(x), where x is

chosen from the distribution D.
Claim 7. Given an online algorithm ON , a subset T ⊆ V , and sequences τ ′, τ ′′

of vertices from V − T , then for any sequence τ of vertices from T there is an online
algorithm ONτ ′

such that

ON(τ ′‖τ‖τ ′′) ∩ T = ONτ ′
(τ).

Proof. ONτ ′
emulates the execution of ON as follows. For any τ , ONτ ′

accepts
τ� if and only if ON would accept τ� after seeing the input sequence τ ′‖〈τ1, τ2, . . . , τ�〉.
Note that any vertices accepted in τ ′ or τ ′′ are not in T , and therefore

ON(τ ′‖τ‖τ ′′) ∩ T = ONτ ′
(τ).

Example. Let ON be an online algorithm, and assume that σ ∈ S123 from the
construction. By construction (of S123), σ is the concatenation of three disjoint sub-
sequences: τ1 ∈ S(V 1

i−1,j), τ2 ∈ S(V 2
i−1,j), and τ3 ∈ S(V 3

i−1,j). We have ON(τ1) =

ON(σ) ∩ V 1
i−1,j , ONτ1(τ2) = ON(σ) ∩ V 2

i−1,j , and ONτ1‖τ2(τ3) = ON(σ) ∩ V 3
i−1,j .

Lemma 8. For any deterministic online algorithm ON and a sequence of vertices
from V j

i , 0 ≤ i ≤ log4 n, 1 ≤ j ≤ n/4i, the following hold:

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 1
i−1,j |](3)

= Eτ1∈RU(S(V 1
i−1,j

))[|ON(τ1)|],

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 2
i−1,j |](4)

= Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[|ONτ1(τ2)|],

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 3
i−1,j |](5)

=
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))[|ONτ1‖τ2(τ3)|],

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 4
i−1,j |](6)

=
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ4∈RU(S(V 4

i−1,j
))[|ONτ1‖τ2(τ4)|].

366 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Proof. Let σ = τ1‖τ2‖τ ′, where τ1 ∈ S(V 1
i−1,j), τ2 ∈ S(V 2

i−1,j), and τ ′ ∈
S(V 3

i−1,j) ∪ S(V 4
i−1,j).

To prove (3) above we have

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 1
i−1,j |](7)

=

∑
σ∈S(V j

i
) |ON(σ) ∩ V 1

i−1,j |

|S(V j
i)|

=

∑
τ1‖τ2‖τ ′∈S(V j

i
) |ON(τ1‖τ2‖τ ′) ∩ V 1

i−1,j |

|S(V j
i)|

(8)

=

∑
τ1‖τ2‖τ ′∈S(V j

i
) |ON(τ1)|

|S(V j
i)|

(9)

=
|S(V 2

i−1,j)| · (|S(V 3
i−1,j)| + |S(V 4

i−1,j)|) ·
∑

τ1∈S(V 1
i−1,j

) |ON(τ1)|
|S(V 1

i−1,j)| · |S(V 2
i−1,j)| · (|S(V 3

i−1,j)| + |S(V 4
i−1,j)|)

(10)

= Eτ1∈RU((V 1
i−1,j

))|ON(τ1)|.(11)

Equation (7) follows from the definition of the expectation. In (8) we substitute
τ1‖τ2‖τ ′ for σ. As τ2 ∩ V 1

i−1,j = τ ′ ∩ V 1
i−1,j = ∅, we get that ON(τ1‖τ2‖τ ′) ∩ V 1

i−1,j =
ON(τ1), giving (9). Using that

|S(V j
i)| = |S(V 1

i−1,j)| · |S(V 2
i−1,j)| · (|S(V 3

i−1,j)| + |S(V 4
i−1,j)|),

we derive (10) and (11).
To prove (4) above we have

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 2
i−1,j |](12)

=

∑
σ∈S(V j

i
) |ON(σ) ∩ V 2

i−1,j |

|S(V j
i)|

=

∑
τ1‖τ2‖τ ′∈S(V j

i
) |ON(τ1‖τ2‖τ ′) ∩ V 2

i−1,j |

|S(V j
i)|

(13)

=

∑
τ1‖τ2‖τ ′∈S(V j

i
) |ONτ1(τ2)|

|S(V j
i)|

(14)

=
(|S(V 3

i−1,j)| + |S(V 4
i−1,j)|) ·

∑
τ1∈S(V 1

i−1,j
),τ2∈S(V 2

i−1,j
) |ONτ1(τ2)|

|S(V 1
i−1,j)| · |S(V 2

i−1,j)| · (|S(V 3
i−1,j)| + |S(V 4

i−1,j)|)
(15)

= Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))|ONτ1(τ2)|.

We derive (12) by definition of the expectation, (13) substitutes τ1‖τ2‖τ ′ for σ,
and using Claim 7, we get (14). Next, we note that

∑
τ1‖τ2‖τ ′∈S(V j

i
)

f(τ1, τ2) = (|S(V 3
i−1,j)| + |S(V 4

i−1,j)|)
∑

τ1∈V 1
i−1,j

,τ2∈V 2
i−1,j

f(τ1, τ2).

Our final simplification (15) follows from the definition of the expectation.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 367

Next we prove (5). Equation (6) is analogous and can be derived similarly. We
have

Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 3
i−1,j |](16)

=

∑
σ∈S(V j

i
) |ON(σ) ∩ V 3

i−1,j |

|S(V j
i)|

=

∑
τ1‖τ2‖τ ′∈S(V j

i
) |ON(τ1‖τ2‖τ ′) ∩ V 3

i−1,j |

|S(V j
i)|

(17)

=

∑
τ1∈S(V 1

i−1,j
),τ2∈S(V 2

i−1,j
),τ3∈S(V 3

i−1,j
) |ONτ1‖τ2(τ3)|

|S(V 1
i−1,j)| · |S(V 2

i−1,j)| · (|S(V 3
i−1,j)| + |S(V 4

i−1,j)|)
(18)

=
1

2

∑
τ1∈S(V 1

i−1,j
),τ2∈S(V 2

i−1,j
),τ3∈S(V 3

i−1,j
) |ONτ1‖τ2(τ3)|

|S(V 1
i−1,j)| · |S(V 2

i−1,j)| · |S(V 3
i−1,j)|

(19)

=
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))[|ONτ1‖τ2(τ3)|].(20)

We derive (16) by definition of the expectation, (17) substitutes τ1‖τ2‖τ ′ for σ, by
noting that ON(τ1‖τ2‖τ ′) ∩ V 3

i−1,j is empty when τ ′ ∈ S(V 4
i−1,j), and using Claim 7,

we get (18). Equation (19) follows from Claim 4. Our final simplification (20) follows
from the definition of the expectation.

Given an on-line algorithm ON , define sji (σ,ON) to be s(G̃i(V
j
i), ON(σ)), the

size of the largest subgraph of G induced by ON(σ) with respect to G̃i(V
j
i). Likewise

define ski−1,j(σ,ON) to be s(G̃i−1(V
k
i−1,j), ON(σ)), for k = 1, 2, 3, 4.

Claim 9. For any deterministic on-line algorithm ON defined on sequences of
vertices from V j

i , 0 ≤ i ≤ log4 n, 1 ≤ j ≤ n/4i, and for any τ1 ∈ S(V 1
i−1,j), τ2 ∈

S(V 2
i−1,j), τ3 ∈ S(V 3

i−1,j), τ4 ∈ S(V 4
i−1,j) the following hold:

s2
i−1,j(τ2, ONτ1) = s2

i−1,j(τ1‖τ2, ON),(21)

s3
i−1,j(τ3, ONτ1‖τ2) = s3

i−1,j(τ1‖τ2‖τ3, ON),(22)

s4
i−1,j(τ4, ONτ1‖τ2) = s4

i−1,j(τ1‖τ2‖τ4, ON).(23)

Proof. The proof follows from the definitions of ONτ and sji .
Lemma 10. For any 0 ≤ i ≤ log4 n, 1 ≤ j ≤ n/4i, the expected benefit of any

deterministic on-line algorithm over the distribution U(S(V j
i)) satisfies

Eσ∈RU(S(V j
i

))[|ON(σ)|] ≤
(

3

2

)i

Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)].

Proof. We prove the claim by induction on i. Consider an algorithm ON . The
claim holds for i = 0, and any 1 ≤ j ≤ n (V j

0 is a single vertex). We assume

by induction that the claim holds for all probability distributions U(S(V j
i−1)), 1 ≤

j ≤ n/4i−1, which means in particular that it holds for the probability distributions
U(S(V k

i−1,j)), 1 ≤ j ≤ n/4i, k = 1, 2, 3, 4.

368 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

We prove the claim as follows:

Eσ∈RU(S(V j
i

))[|ON(σ)|]

= Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 1
i−1,j |]

+Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 2
i−1,j |]

+Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 3
i−1,j |]

+Eσ∈RU(S(V j
i

))[|ON(σ) ∩ V 4
i−1,j |]

= Eτ1∈RU(S(V 1
i−1,j

))[|ON(τ1)|]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[|ONτ1(τ2)|]

+
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))[|ONτ1‖τ2(τ3)|]

+
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ4∈RU(S(V 4

i−1,j
))[|ONτ1‖τ2(τ4)|].(24)

By the inductive hypothesis we get that (24) is at most

(
3

2

)i−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Eτ1∈RU(S(V 1
i−1,j

))[s
1
i−1,j(τ1, ON)]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[s
2
i−1,j(τ2, ONτ1)]

+ 1
2Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))[s

3
i−1,j(τ3, ONτ1‖τ2)]

+ 1
2Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ4∈RU(S(V 4

i−1,j
))[s

4
i−1,j(τ4, ONτ1‖τ2)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(25)
We have

Eτ1∈RU(S(V 1
i−1,j

))[s
1
i−1,j(τ1, ON)]

=
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))[s

1
i−1,j(τ1, ON)]

+
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))[s

1
i−1,j(τ1, ON)],

Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[s
2
i−1,j(τ2, ONτ1)]

=
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))[s

2
i−1,j(τ2, ONτ1)]

+
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ4∈RU(S(V 4

i−1,j
))[s

2
i−1,j(τ2, ONτ1)].

Thus, we get that (25) is equal to

(
3

2

)i−1
1

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))Eτ3∈RU(S(V 3
i−1,j

))

·[s1
i−1,j(τ1, ON) + s3

i−1,j(τ3, ONτ1‖τ2)]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))Eτ4∈RU(S(V 4
i−1,j

))

·[s2
i−1,j(τ2, ONτ1) + s4

i−1,j(τ4, ONτ1‖τ2)]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[s
1
i−1,j(τ1, ON) + s2

i−1,j(τ2, ONτ1)]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(26)

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 369

Using Claim 9, we get that (26) is equal to((
3

2

)i−1

· 1

2

)
·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))Eτ3∈RU(S(V 3
i−1,j

))[s
1
i−1,j(τ1‖τ2‖τ3, ON)

+ s3
i−1,j(τ1‖τ2‖τ3, ON)]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))Eτ4∈RU(S(V 4
i−1,j

))[s
2
i−1,j(τ1‖τ2‖τ4, ON)

+ s4
i−1,j(τ1‖τ2‖τ4, ON)]

+Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[s
1
i−1,j(τ1‖τ2, ON) + s2

i−1,j(τ1‖τ2, ON)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

We now have

Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

≥ 1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ3∈RU(S(V 3

i−1,j
))

·[s1
i−1,j(τ1‖τ2‖τ3, ON) + s3

i−1,j(τ1‖τ2‖τ3, ON)]

+
1

2
Eτ1∈RU(S(V 1

i−1,j
))Eτ2∈RU(S(V 2

i−1,j
))Eτ4∈RU(S(V 4

i−1,j
))

·[s2
i−1,j(τ1‖τ2‖τ4, ON) + s4

i−1,j(τ1‖τ2‖τ4, ON)](27)

and

Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

≥ Eτ1∈RU(S(V 1
i−1,j

))Eτ2∈RU(S(V 2
i−1,j

))[s
1
i−1,j(τ1‖τ2, ON) + s2

i−1,j(τ1‖τ2, ON)].(28)

The lemma follows from (27) and (28).
We then conclude with the following result.
Theorem 11. Any randomized algorithm for the on-line induced subgraph prob-

lem has competitive ratio Ω(n1−log4 3−o(1)). For a hereditary property having a Kc as
forbidden graph the competitive ratio is Ω(n1−log4 3).

Proof. By Lemmas 6 and 10 we have the following. For any 0 ≤ i ≤ log4 n,
1 ≤ j ≤ n/4i, and any sequence σ ∈ S(V j

i), |OPT(σ)| ≥ 2i. For any 0 ≤ i ≤ log4 n,
1 ≤ j ≤ n/4i, the expected benefit of any deterministic on-line algorithm over the
distribution U(S(V j

i)) satisfies

Eσ∈RU(S(V j
i

))[|ON(σ)|] ≤
(

3

2

)i

Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)].

The ratio ρ(i, j) between the expected optimal benefit and the expected on-line
benefit for the probability distribution on the input sequences U(S(V j

i)), 1 ≤ i ≤
log4 n, 1 ≤ j ≤ n/4i, is

ρ(i, j) =
Eσ∈RU(S(V j

i
))[|OPT(σ)|]

Eσ∈RU(S(V j
i

))[|ON(σ)|] ≥ 2i(
3
2

)i
Eσ∈RU(S(V j

i
))[s

j
i (σ,ON)]

≥ 4i

3iEσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

=
n(i)

3log4 n(i)Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

=
n(i)

n(i)log4 3Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

=
n(i)1−log4 3

Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)]

.

370 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

From Lemma 3 it follows that Eσ∈RU(S(V j
i

))[s
j
i (σ,ON)] < l = α log n. Therefore,

for i = log4 n, we obtain the Ω(n1−log4 3−o(1)) lower bound on the competitive ratio.
If the forbidden graph is a Kc and G is a Kn, then l = c and we get an Ω(n1−log4 3)
lower bound.

3.2. Upper bounds for the on-line induced subgraph problem. In this
section we give upper bounds for the on-line induced subgraph problem. The upper
bounds are based on algorithms that compute an approximate solution for the off-line
maximum induced subgraph problem.

We present a randomized algorithm based on the “classify and randomly select”
method of [ABFR94].

Let G = (V,E) be the graph that we assume is known to the on-line algorithm.
The algorithm requires a preprocessing phase in which a collection of k solutions
I1, I2, . . . , Ik of the induced subgraph problem for the graph G are computed, as
follows.

Let G1 = G, and Gi+1 = Gi− Ii be the result of the operation that removes from
Gi all vertices in Ii and all the incident edges.

Ii is the set of vertices forming the solution of the induced subgraph problem
returned by applying the n

α -approximation algorithm to the graph Gi. The process of

computing solutions is continued until |Ik+1| ≤
√
α. Let I = V − {I1 ∪ I2 ∪ · · · ∪ Ik}

be the set of vertices of Gk+1.
Finally, the algorithm performs the following random choice.
Toss a fair coin:
1. If heads, choose at random with equal probability one of the sets I1, I2, . . . , Ik,

and then accept only presented vertices that belong to that set.
2. If tails, then greedily accept vertices from I.

Theorem 12. Suppose that there is some n
α -approximation algorithm for the

induced subgraph problem and that there exists an O(n√
α
)-competitive randomized al-

gorithm for the on-line version of the problem. If the original algorithm is polynomial,
so is the on-line algorithm.

Proof. First observe that k is at most n√
α
. Next, observe that the optimal

solution over the set I is at most n√
α
, as the solution produced by the n

α -approximation

algorithm applied to the graph induced by I has size not bigger than
√
α.

Let OPT(I) be the size of the optimal solution in the subgraph of I induced by
the vertices in I presented. Then

OPT ≤
k∑

i=1

OPT(Ii) + OPT(I).

The expected number of vertices accepted by the on-line algorithm is

ON ≥ 1

2

(
1

k

k∑
i=1

OPT(Ii) + 1

)

≥
√
α

2n

(
k∑

i=1

OPT(Ii) + OPT(I)

)
≥

√
α

2n
OPT.

The current best known polynomial time algorithms have an approximation ratio
of O(n

logn) for the induced subgraph problem [Hal94], and O(n
(log n)2) for the indepen-

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 371

t

s s’

t’

Fig. 2. The brick wall network.

dent set [BH92]. In particular, using the optimal (nonpolynomial time) algorithm for
the problem (e.g., α = n), we obtain the following result.

Corollary 13. There exists an O(
√
n)-competitive randomized algorithm for

the on-line induced subgraph problem.

4. On-line edge-disjoint paths. In this section we present Ω(nε) lower bounds
on the competitive ratio of nonpreemptive randomized algorithms for on-line edge-
disjoint paths. As a consequence (see section 1.2), we obtain an Ω(nε) lower bound
for on-line call control. For this reason, in the following we refer to pairs of vertices
as calls.

The lower bounds are derived from the lower bounds for the on-line induced sub-
graph problem presented in section 3 when the hereditary property is an independent
set. Recall that the forbidden graph of Lemma 3 for an independent set can be a K2,
and thus the proofs of section 3 can be carried out with the graph G of n vertices
being a Kn.

We say two calls are consistent if they can be connected with two edge-disjoint
paths; otherwise they are inconsistent.

The lower bounds for on-line edge-disjoint paths we derive are obtained by em-
bedding the graph G̃ and all input sequences used in the lower bounds proof for the
on-line independent set within a network W with the following two properties:

1. Every vertex u in G̃ corresponds to one call (s(u), t(u)) in W .
2. Two vertices u, v in G̃ are not adjacent if and only if the two corresponding

calls (s(u), t(u)), (s(v), t(v)) in W are consistent.
The network constructions we will present are based on the brick wall network. A

brick wall means a portion of the hexagonal lattice as indicated in Figure 2. A brick
wall of height h and width w consists of h horizontal paths with w edges between
consecutive pairs of them.

We restrict our attention to calls from top vertices to bottom vertices of the brick
wall. Top and bottom vertices of the network are numbered from left to right. We
can easily observe in Figure 2 the following property.

372 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Fig. 3. Three consistent calls in a brick wall of height 3.

Lemma 14. Let c = (s, t) and c′ = (s′, t′) be two top-to-bottom calls in W with
s < s′. The calls c and c′ are consistent if and only if t < t′.

The following lemma gives a bound on the maximum number of top-to-bottom
calls that can be routed in a brick wall network.

Lemma 15. Let h be the height of the brick wall, and let w be its width. Any set
of up to � = min(h,w) pairwise consistent top-to-bottom calls can be routed in a brick
wall network of height h and width w.

Proof. Consider a set of pairwise consistent top-to-bottom calls. A feasible routing
of the set of calls is as follows. Consider the calls from left to right. Assign at each
call the leftmost available path that does not intersect a path assigned to any previous
considered call. Figure 3 gives an example for a set of three calls in a brick wall of
height 3.

In section 4.1 we present a lower bound on the competitive ratio of nonpreemptive
algorithms for on-line edge-disjoint paths, obtained by embedding the on-line indepen-
dent set lower bounds of section 3 in a network of O(n

3
2) vertices. This result is then

improved using a more complicated embedding in a network of O(nlog4 6) vertices.

4.1. A lower bound for on-line edge-disjoint paths. In this section we
present the embedding in a brick wall W of the graph G̃ used in the lower bound
for nonpreemptive randomized algorithms for on-line independent sets presented in
section 3.

Let n be the number of vertices in G̃. The number of vertices at both top and
bottom rows of W (indicated with dots in Figure 2) is n. The largest independent set
in the graph G̃ of n vertices of the randomized lower bound for an on-line independent
set has size

√
n. By setting the height of W to

√
n, we can ensure, by Lemma 15,

that the optimal solution can be consistently routed. Thus, the number of vertices of
the network W is N = O(n

3
2).

We associate every vertex u ∈ G̃ with a top-to-bottom call (s(u), t(u)) in W . The
mapping will be such that two vertices are adjacent in G̃ if and only if the two calls
are inconsistent. Each of the top and bottom vertices will appear in exactly one call.

Figure 4 shows how such embedding can be done at the ith level. For each of the
four graphs of level i− 1, G̃1

i−1, G̃
2
i−1, G̃

3
i−1, and G̃4

i−1 that make up G̃i, a slice of the
brick wall is reserved. The mapping of vertices to calls observes the same rules as for
the embedding in the nonpreemptive lower bound of the previous subsection.

Observe in Figure 4 that the slices associated with adjacent graphs of Figure 1
intersect, while the slices associated with nonadjacent graphs are disjoint.

Since W has N = n
3
2 vertices, from Theorem 11 we get the following theorem.

Theorem 16. Any nonpreemptive randomized algorithm for the on-line edge-
disjoint paths problem (and hence for call control) on general networks of N vertices

has competitive ratio Ω(N
2
3 (1−log4 3)).

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 373

Gi-1
~ 1

Gi-1
~ 3

Gi-1
~ 4

Gi-1
~ 2

Fig. 4. The mapping of the sequence in the graph G̃i on the brick wall.

In the next section we will present a better lower bound for preemptive randomized
algorithms.

4.2. Better results for on-line edge-disjoint paths. In this section we present
an improved randomized lower bound for nonpreemptive on-line edge-disjoint paths.

As for the lower bounds for on-line edge-disjoint paths described in the previous
subsections, the lower bound is obtained by embedding the lower bound for an on-line
independent set (section 3) on a particular network. The transformation associates a
call with every vertex in the instance of the on-line independent set lower bound.

Let n(i) denote the number of vertices in the i-level graph of the on-line indepen-
dent set lower bound. We describe a network construction with N(i) = O(n(i)log4 6)
nodes.

The construction is built recursively. The network is associated with a set of calls,
only some of which can be routed consistently. The construction of a certain i-level
network is composed of (i− 1)-level networks.

The network Hi has 4i input nodes and 3i output nodes.
H0 is the network having a single vertex, representing both one input and one

output of the network.
The network Hi (Figure 5) is recursively composed of four instances of (i−1)-level

networks, H1
i−1, H

2
i−1, H

3
i−1, H

4
i−1, and one brick-wall network of width 4 · 3i−1 and

height 2i.
The input of Hi is formed by the union of the sets of inputs for the four (i−1)-level

networks.
The outputs of H1

i−1, H
2
i−1, H

3
i−1, and H4

i−1 are directed into the appropriate
four slices of the brick wall network, while maintaining the respective order of the
outputs within a slice. The slices are chosen to intersect in such a way that the calls
associated with H1

i−1 intersect with those associated with H2
i−1 and H3

i−1, and the
calls associated with H2

i−1 intersect with H4
i−1.

We now describe in detail the transformation from the instance of the independent
set lower bound to the network described above.

Let G̃i denote the i-level graph of the independent set lower bound. Recall that
the graph G̃i is recursively composed of four (i−1)-level graphs, G̃1

i−1, G̃
2
i−1, G̃

3
i−1, G̃

4
i−1.

374 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

i-144i-1 4i-14 4i-1 4i-1

i-13i-13 i-13 i-13

44 i-1i-1

i-13 i-13 i-13

i-1

����
����
����

����
����
����

����
����
����
����

Hi-1 Hi-1 Hi-1 Hi-1
4 1 2 3

H i

Fig. 5. The construction of the network Hi.

With each vertex v of G̃i we associate a corresponding call in the network Hi

recursively.
If v ∈ G̃j

i−1, then v is recursively associated with a call in Hj
i−1 (1 ≤ j ≤ 4).

For i = 0, the single vertex of G̃0 is associated with the degenerate call (u, u),
where u is the single vertex of H0.

Let v ∈ G̃j
i−1. Consider the associated call ci−1(v) = (si−1(v), ti−1(v)) in Hj

i−1.
We define the associated call in Hi as the call ci(v) = (si(v), ti(v)), where si(v) =
si−1(v) and ti(v) is the output in the slice of the brick wall contained in Hi corre-
sponding to the input on which ti−1(v) is directed.

Lemma 17.

1. Two nodes v1, v2 of G̃i are adjacent if and only if ci(v1), ci(v2) are inconsistent
in Hi.

2. Given an independent set T in G̃i, all calls in the set C(T) = {ci(v); v ∈ T}
can be routed consistently in Hi.

Proof. The proof is by induction on i. For i = 0 the claims are trivial.
Assume that the claim holds for i− 1. First we prove the first part of the lemma.

Let us consider first the case in which two nodes v1 and v2 are in the same (i−1)-level
graph. The corresponding calls ci−1(v1) and ci−1(v2) in the associated (i − 1)-level
network enter the brick wall of Hi in the same slice, and the order between ti−1(v1)
and ti−1(v2) is maintained between ti(v1) and ti(v2). Therefore, ci(v1) and ci(v2) are
consistent if and only if ci−1(v1) and ci−1(v2) are consistent, and thus the claim holds
for the inductive hypothesis.

We are left to consider pairs of nodes in different (i− 1)-level graphs.
Let v1 and v2 be nodes from two different (i− 1)-level graphs, with the exception

of G̃3
i−1 and G̃4

i−1 which are never presented together in the on-line independent set
lower bound. Therefore ci−1(v1) and ci−1(v2) enter the brick wall of network Hi in

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 375

two different slices. It follows that the two calls ci(v1) and ci(v2) are inconsistent if
and only if the two corresponding slices are intersecting and thus if and only if the
two graphs are nonadjacent. This ends the proof of the first part of the lemma.

Now we turn to the second part of the lemma. We will prove the claim by
induction on the level i of the network construction. For level i the independent set
T is of size at most 2i. For i = 0 there is only one call, and the claim is obvious.

Consider i > 0. The vertices of T can be partitioned into two subsets T1 and T2,
belonging to two nonadjacent level (i− 1) graphs (each of size at most 2i−1). Notice
that the two nonadjacent graphs are either G̃1

i−1 and G̃4
i−1 or G̃2

i−1 and G̃3
i−1.

Therefore, without loss of generality, we can assume that T1 belongs to G̃1
i−1 and

T2 belongs to G̃4
i−1, and thus for every vertex v ∈ T1, ci−1(v) belongs to H1

i−1, and
for every vertex v ∈ T2, ci−1(v) belongs to H4

i−1.
By induction, the set of calls {ci−1(v); v ∈ T1} can be routed consistently through

H1
i−1, and the set of calls {ci−1(v); v ∈ T2} can be routed consistently through H4

i−1.
The output vertices of these calls in H1

i−1 and H4
i−1 are all distinct, and so are

the input vertices in the brick wall of Hi into which these calls are directed. Since
the slices of the brick wall associated with H1

i−1 and H4
i−1 are nonintersecting, and

since for each slice the order of the corresponding outputs in the brick wall of Hi

is maintained, we have that every pair of calls in C(T) can be routed consistently
through the brick wall of Hi.

Since the number of such calls is at most 2i, and thus at most the height of the
brick wall of Hi, all calls in C(T) can be routed consistently.

The case in which T1 belongs to G̃2
i−1 and T2 belongs to G̃3

i−1 can be similarly
proved.

The next lemma gives a bound on the number of vertices in an i-level network.
Claim 18. The number of vertices/edges in Hi is N(i) = O(6i).
Proof. Let α be some constant such that a brick wall of height h and width w has

at most αhw vertices/edges. We show by induction on i that N(i) ≤ 4α ·6i. For i = 0
the claim is clearly satisfied. Assume that N(i− 1) ≤ α · 6i−1. Since Hi is composed
of four Hi−1 networks and a brick wall of width 4 · 3i−1 and height 2i, we obtain

N(i) ≤ 4α · 3i−1 · 2i + 4 · 4α · 6i−1 ≤ 4α · 6i.

Using the network construction described, we derive from Theorem 11 the follow-
ing result.

Theorem 19. Any randomized nonpreemptive algorithm for on-line edge-disjoint
paths (and thus for call control) on general networks of N vertices has competitive ratio

Ω(N
1−log4 3

log4 6).

4.3. Lower bounds for networks of high degree. The brick wall network
has degree 3. However, we prove the following theorem, which extends any lower
bound for on-line edge-disjoint paths to networks of minimum degree δ.

Theorem 20. Given an Ω(f(N)) lower bound on the competitive ratio of nonpre-
emptive algorithms for on-line edge-disjoint paths (and thus for on-line call control)
on networks of N vertices, there exists an Ω(f(Nδ)) lower bound for the problem on
networks of minimum degree δ.

Proof. We transform the network H of N vertices on which the lower bound
is achieved into a network H ′ of minimum degree δ as follows. To every vertex
corresponds a clique of size δ in the new network, and to every edge of H corresponds
a single edge between two arbitrary vertices in the two associated cliques.

376 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Let us consider the input sequence σ for the Ω(f(n)) lower bound in H. We
transform σ into an input sequence σ′ for H ′ by replacing every call in σ formed by
two vertices with a call formed by two arbitrary vertices in the two associated cliques.
Under this transformation, any solution for σ′ in H ′ corresponds to a solution for σ
in H with equal size. Since H ′ has more vertices than H by a factor δ, the Ω(f(N))
lower bound in the network H with input sequence σ yields an Ω(f(Nδ)) lower bound
in H ′ with input sequence σ′.

5. The on-line graph coloring problem. In this section we will consider the
on-line graph coloring problem. We present a lower bound of Ω(nε) on the competitive
ratio of randomized on-line algorithms. We recall that in our model the algorithm
knows the graph G = (V,E) from which the instance of the problem is drawn.

Vertices of V are presented over time. Each time a new vertex is communicated,
the algorithm must answer with a color for the vertex. The goal is to color the set
of vertices presented with as few colors as possible, so that any two adjacent vertices
have different colors.

In section 5.1 we present an Ω(nε) lower bound for the on-line graph coloring
problem, and in section 5.2 we give upper bounds for the problem.

5.1. Lower bounds for on-line graph coloring. The structure of the graph
G from which the input sequence is chosen is recursive. Given a set of vertices
V = {v0, v1, . . . , vn−1}, where n is a power of 5, we define subsets V j

i ⊂ V , |V j
i | = 5i,

V j
i = {vj5i , vj5i+1, . . . , v(j+1)5i−1},

for all 0 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i−1. We also define the graphs Gj
i = (V j

i , E
j
i), 0 ≤

i ≤ log5 n, 0 ≤ j ≤ n/5i−1, where Ej
i is the set of edges in E5j

i−1∪E
5j+1
i−1 ∪· · ·∪E5j+4

i−1 , to

which we add all edges between V 5j+k
i−1 and V

5j+((k+1) mod 5)
i−1 , 0 ≤ k ≤ 4. The recursive

construction of Gj
i is given pictorially in Figure 6.

Note that V 0
log5 n = V , and we set G = G0

log5 n for all 0 ≤ i ≤ log5 n and 0 ≤ j ≤
n/5i − 1; Gj

i is a vertex induced subgraph of G.
As in section 3.1 we define a probability distribution on the request sequences

of G. For any on-line vertex coloring algorithm ON we give a lower bound on the
ratio between the number of different colors required by the online algorithm and the
optimal number of colors (which is constant for all sequences with nonzero probability
in the distribution).

The probability distribution over the sequences will be a uniform distribution over
a set of sequences of vertices. The set of sequences is defined recursively as follows.
The set of sequences for the graph Gj

0, 0 ≤ j ≤ n− 1, consists of the single sequence

〈vj〉. Let S(V j
i) denote the set of sequences over V j

i , 0 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i−1.
Also, let ‖ denote the concatenation operator on sequences.

Given S(V 5j
i−1), S(V 5j+1

i−1), S(V 5j+2
i−1), S(V 5j+3

i−1), and S(V 5j+4
i−1), 1 ≤ i ≤ log5 n,

0 ≤ j ≤ n/5i − 1, we define the set S(V j
i) as the result of the following process:

Set

S023 = {x‖y‖z|x ∈ S(V 5j
i−1), y ∈ S(V 5j+2

i−1), z ∈ S(V 5j+3
i−1)},

S0231 = {x‖y|x ∈ S023, y ∈ S(V 5j+1
i−1)},(29)

S0234 = {x‖y|x ∈ S023, y ∈ S(V 5j+4
i−1)},(30)

S(V j
i) = S0231 ∪ S0234.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 377

5
1
j

i
G

5
1
j

i
G

5
1
j

i
G

 5
1
j

i
G

5
1
j

i
G

Full Bipartite
edges

0
:mG

A Single Vertex
for all m

:jiG -

-

- -

-
4 1

3 2 + +

++

Fig. 6. The recursive definition of Gi.

Claim 21. In any outcome of the above process (to generate S(V j
i)), |S0231| =

|S0234|.
Proof. From step (29) above we have that |S0231| = |S023| · |S(V 5j+1

i−1)|, and

by step (30) above we have |S0234| = |S023| · |S(V 5j+4
i−1)|. For any two sets V 5j+k

i−1 ,

V 5j+�
i−1 , 0 ≤ k < � ≤ 4, we can find a mapping f(u) → w, u ∈ V 5j+k

i−1 , w ∈ V 5j+�
i−1 ,

such that both sets and their recursive partition into subsets are isomorphic under
f . Specifically, f(vt) = vt+(�−k)5i−1 will be such a mapping. Thus, |S(V 5j+1

i−1)| =

|S(V 5j+4
i−1)|, and it now follows that |S0231| = |S0234|.
Claim 22. U(S(V j

i |V
5j+k
i−1)) = U(S(V 5j+k

i−1)) for k = 0, . . . , 4.

Proof. Every sequence in S(V 5j+k
i−1) appears as a subsequence of the same number

of sequences in S(V j
i).

Given a sequence σ of vertices from V , let T (σ) denote the set of vertices in σ.
For any algorithm A (online or offline) and any sequence of vertices σ from V , let
AC(σ) : T (σ) → Z+ denote the function mapping vertices of T (σ) onto colors.2 Let
A#(σ) denote the number of different colors used by A to color the vertices of T (σ):

A#(σ) = |{AC(σ)(u) : u ∈ T (σ)}|.

Given a sequence σ of vertices from V and a set V ′ ⊂ V , we let A(σ, V ′) denote

2For online algorithms, the function AC(σ) cannot depend on yet unseen parts of σ; i.e., if
σ = 〈σ1, σ2, . . . , σ|σ|〉, AC(σ)(σi) cannot depend on the suffix 〈σi+1, . . . , σ|σ|〉.

378 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

the set of colors assigned by AC(σ) to the vertices of V ′ ∩ T (σ),

A(σ, V ′) = {AC(σ)(u) : u ∈ V ′ ∩ T (σ)}.

We also define

A#(σ, V ′) = |A(σ, V ′)|.

For example, A#(σ, V) = A#(σ, T (σ)) = A#(σ).
Lemma 23. For any 0 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i − 1, and any sequence

σ ∈ S(V j
i), OPT#(σ) ≤ 2i.

Proof. Given any sequence σ ∈ S(V j
i), we will prove by induction on i that the

number of colors used to color the vertices of σ is no more than 2i. For i = 0, σ is a
single vertex and can be colored with one color.

For i ≥ 1, σ ∈ V j
i , either σ ∈ S0231 or σ ∈ S0234, as defined in (29) and (30). If

σ ∈ S0231, then we can use the same set of 2i−1 colors to color both the vertices in
V 5j
i−1 and V 5j+2

i−1 ; likewise, we can use the same set of 2i−1 colors to color the vertices

in V 5j+1
i−1 and in V 5j+3

i−1 . Thus, if σ ∈ S0231, then we can color the vertices of V j
i with

2i colors. A similar argument works for the case where σ ∈ S0234.
Let Ex∈RD[r(x)] denote the expectation of the random variable r(x), where x is

chosen from the distribution D.
Let T ⊂ V , the notation σ|T denotes the sequence derived from σ by removing

all elements in V − T .
Claim 24. Given an online algorithm ON , for any sequences of vertices τ , τ ′,

and τ ′′ from V , such that T (τ), T (τ ′), and T (τ ′′) are pairwise disjoint, there is an
online algorithm ONτ ′

such that

ONC(τ ′‖τ‖τ ′′)(u) = ONτ ′C
(τ)(u) for all u ∈ T (τ),

ON(τ ′‖τ‖τ ′′, T (τ)) = ONτ ′
(τ, T (τ)),

ON#(τ ′‖τ‖τ ′′, T (τ)) = ONτ ′#
(τ, T (τ)).

Proof. Let τ = τ1, τ2, . . . , τ|τ |. ONτ ′
emulates the execution of ON as follows:

ONτ ′
colors vertex τ�, 1 ≤ � ≤ |τ |, with the same color that ON would have given τ�

after coloring τ ′‖〈τ1, τ2, . . . , τ�−1〉. Thus,

ONτ ′C
(τ)(τ�) = ONC(τ ′‖τ)(τ�).

Lemma 25. For any deterministic online algorithm ON defined on sequences of
vertices from V j

i , 0 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i − 1, the following hold:

(31)

Eσ∈RU(S(V j
i

))[ON#(σ, V 5j
i−1)] = Eτ0∈RU(S(V 5j

i−1
))[ON#(τ0)],

(32)

Eσ∈RU(S(V j
i

))[ON#(σ, V 5j+2
i−1)] = Eτ0∈RU(S(V 5j

i−1
))Eτ2∈RU(S(V 5j+2

i−1
))[ONτ0#(τ2)],

(33)

Eσ∈RU(S(V j
i

))[ON#(σ, V 5j+3
i−1)]

= Eτ0∈RU(S(V 5j
i−1

))Eτ2∈RU(S(V 5j+2
i−1

))Eτ3∈RU(S(V 5j+3
i−1

))[ONτ0‖τ2#
(τ3)],

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 379

(34)

Eσ∈RU(S(V j
i

))[ON#(σ, V 5j+1
i−1)]

=
1

2
Eτ0∈RU(S(V 5j

i−1
))Eτ2∈RU(S(V 5j+2

i−1
))Eτ3∈RU(S(V 5j+3

i−1
))Eτ1∈RU(S(V 5j+1

i−1
))[ONτ0‖τ2‖τ3#

(τ1)],

(35)

Eσ∈RU(S(V j
i

))[ON#(σ, V 5j+4
i−1)]

=
1

2
Eτ0∈RU(S(V 5j

i−1
))Eτ2∈RU(S(V 5j+2

i−1
))Eτ3∈RU(S(V 5j+3

i−1
))Eτ4∈RU(S(V 5j+4

i−1
))[ONτ0‖τ2‖τ3#

(τ4)].

Proof. The proof follows from Claim 24 and follows arguments similar to those
made in Lemma 8.

Claim 26. For any function f such that

f : {τ0 × τ2 × τ3|τk ∈ S(V 5j+k
i−1), k = 0, 2, 3} → Z+

we have

Eσ∈S0231 [f(τ0, τ2, τ3)]

= Eσ∈S0234
[f(τ0, τ2, τ3)]

= Eτ0‖τ2‖τ3‖τ ′∈U(S(V j
i

)),τk∈S(V 5j+k
i−1

),k=0,2,3[f(τ0, τ2, τ3)].

For any function f such that

f : {τ ′|τ ′ ∈ S(V 5j+1
i−1)} → Z+

we have

Eσ∈S0231 [f(τ ′)] = 2 Eτ0‖τ2‖τ3‖τ ′∈U(S(V j
i

)),τk∈S(V 5j+k
i−1

),k=0,2,3[f(τ ′)].

For any function f such that

f : {τ ′|τ ′ ∈ S(V 5j+4
i−1)} → Z+

we have

Eσ∈S0234
[f(τ ′)] = 2 Eτ0‖τ2‖τ3‖τ ′∈U(S(V j

i
)),τk∈S(V 5j+k

i−1
),k=0,2,3[f(τ ′)].

Proof. We have

Eσ∈S0231
[f(τ0, τ2, τ3)] =

∑
τ0‖τ2‖τ3‖τ1∈S0231

f(τ0, τ2, τ3)

|S0231|

=
|S(V 5j+1

i−1)| ·
∑

τ0‖τ2‖τ3∈S023
f(τ0, τ2, τ3)

|S023| · |S(V 5j+1
i−1)|

=

∑
τ0‖τ2‖τ3∈S023

f(τ0, τ2, τ3)

|S023|

=
|S(V 5j+1

i−1) ∪ S(V 5j+4
i−1)|

|S(V 5j+1
i−1) ∪ S(V 5j+4

i−1)|
·
∑

τ0‖τ2‖τ3∈S023
f(τ0, τ2, τ3)

|S023|

=

∑
τ0‖τ2‖τ3‖τ ′∈S(V j

i
) f(τ0, τ2, τ3)

|S(V j
i)|

= Eτ0‖τ2‖τ3‖τ ′∈S(V j
i

)[f(τ0, τ2, τ3)].

380 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Similar arguments prove the other claims.
Lemma 27. For any 1 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i − 1, and any deterministic

online algorithm ON defined over sequences from V j
i ,

Eσ∈RU(S(V j
i

))[ON#(σ)] ≥
(

5

2

)i

.

Proof. We prove the claim by induction on i. The claim holds for i = 0 and any
1 ≤ j ≤ n (V j

0 is a single vertex). We assume by induction the claim holds for all
probability distributions U(S(V �

i−1)), 0 ≤ � ≤ n/5i−1 − 1, which means in particular

that it holds for the probability distributions U(S(V 5j+k
i−1)), 0 ≤ j ≤ n/5i − 1, 0 ≤

k ≤ 4.
From Claim 21 we have that |S0231| = |S0234| and so

Eσ∈S(V j
i

)[ON#(σ)] = (1/2)Eσ∈S0231
[ON#(σ)] + (1/2)Eσ∈S0234 [ON#(σ)].(36)

The set of colors used to color V j
i is the union of the sets of colors used to color

V 5j+k
i , 0 ≤ k ≤ 4. For σ ∈ S(V j

i), where σ ∈ S0231 as described in the construction of

S(V j
i), we have σ = τ0‖τ2‖τ3‖τ1, where τk ∈ S(V 5j+k

i−1), k = 0, 1, 2, 3. For σ ∈ S(V j
i),

where σ ∈ S0234 as described in the construction of S(V j
i), we have σ = τ0‖τ2‖τ3‖τ4,

where τk ∈ S(V 5j+k
i−1), k = 0, 2, 3, 4.

From (31), (32), (33), (34), and (35) we can now derive the following:

(37)

Eσ∈S0231 [ON#(σ)] ≥ Eσ∈S0231

⎡
⎢⎢⎢⎢⎢⎣

ON#(σ, T (τ0)) + ON#(σ, T (τ2))

+ON#(σ, T (τ3)) + ON#(σ, T (τ1))

− |ON(σ, T (τ0)) ∩ (ON(σ, T (τ2)) ∪ON(σ, T (τ3)))|

− |ON(σ, T (τ1)) ∩ON(σ, T (τ3))|

⎤
⎥⎥⎥⎥⎥⎦
,

(38)

Eσ∈S0234 [ON#(σ)] ≥ Eσ∈S0234

⎡
⎢⎢⎢⎢⎢⎣

ON#(σ, T (τ0)) + ON#(σ, T (τ2))

+ON#(σ, T (τ3)) + ON#(σ, T (τ4))

− |ON(σ, T (τ0)) ∩ (ON(σ, T (τ2)) ∪ON(σ, T (τ3)))|

− |ON(σ, T (τ4)) ∩ON(σ, T (τ2))|

⎤
⎥⎥⎥⎥⎥⎦
.

Now,

|ON(σ, T (τ0)) ∩ (ON(σ, T (τ2)) ∪ON(σ, T (τ3)))| =

|ON(σ, T (τ0)) ∩ON(σ, T (τ2))|

+ |ON(σ, T (τ0)) ∩ON(σ, T (τ3))|

− |ON(σ, T (τ2)) ∩ON(σ, T (τ3))|

=
|ON(σ, T (τ0)) ∩ON(σ, T (τ2))|

+ |ON(σ, T (τ0)) ∩ON(σ, T (τ3))| ,
(39)

because the colors used for V 5j+2
i−1 and V 5j+3

i−1 must be distinct.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 381

By substituting (37) and (38) into (36) and making use of the equalities in (39),
we obtain

Eσ∈S(V j
i

)[ON#(σ)] ≥ (1/2)Eσ∈S0231

[
ON#(σ, T (τ0)) + ON#(σ, T (τ2))
+ON#(σ, T (τ3)) + ON#(σ, T (τ1))

]
(40)

+ (1/2)Eσ∈S0234

[
ON#(σ, T (τ4))

]

+ (1/2)Eσ∈S0234

⎡
⎣ON#(σ, T (τ0))
− |ON(σ, T (τ0)) ∩ON(σ, T (τ2))|
− |ON(σ, T (τ0)) ∩ON(σ, T (τ3))|

⎤
⎦

+ (1/2)Eσ∈S0234

[
ON#(σ, T (τ2))
− |ON(σ, T (τ4)) ∩ON(σ, T (τ2))|

]

− (1/2)Eσ∈S0231

[
|ON(σ, T (τ0)) ∩ON(σ, T (τ2))|

]
+ (1/2)Eσ∈S0234

[
ON#(σ, T (τ3))

]

− (1/2)Eσ∈S0231

[
|ON(σ, T (τ0)) ∩ON(σ, T (τ3))|
+ |ON(σ, T (τ1)) ∩ON(σ, T (τ3))|

]
.

The following equations are derived from Claim 26 and by observing that the
colors assigned to vertices V 5j+k

i−1 must be distinct from the colors assigned to vertices

V
5j+(k+1)mod5
i−1 , k = 0, . . . , 4:

Eσ∈S0234

⎡
⎣ ON#(σ, T (τ0))

− |ON(σ, T (τ0)) ∩ON(σ, T (τ2))|
− |ON(σ, T (τ0)) ∩ON(σ, T (τ3))|

⎤
⎦ ≥ 0,(41)

Eσ∈S0234

[
ON#(σ, T (τ2))
− |ON(σ, T (τ4)) ∩ON(σ, T (τ2))|

]
(42)

−Eσ∈S0231

[
|ON(σ, T (τ0)) ∩ON(σ, T (τ2))|

]

= Eσ∈S0234

⎡
⎣ ON#(σ, T (τ2))

− |ON(σ, T (τ4)) ∩ON(σ, T (τ2))|
− |ON(σ, T (τ0)) ∩ON(σ, T (τ2))|

⎤
⎦ ≥ 0,

Eσ∈S0234

[
ON#(σ, T (τ3))

]
(43)

−Eσ∈S0231

[
|ON(σ, T (τ0)) ∩ON(σ, T (τ3))|
+ |ON(σ, T (τ1)) ∩ON(σ, T (τ3))|

]

= Eσ∈S0234

⎡
⎣ ON#(σ, T (τ3))

− |ON(σ, T (τ0)) ∩ON(σ, T (τ3))|
− |ON(σ, T (τ1)) ∩ON(σ, T (τ3))|

⎤
⎦ ≥ 0.

Using (41), (42), (43) and Claim 26, we derive the following from (40):

Eσ∈S(V j
i

)[ON#(σ)] ≥ (1/2)Eσ∈S0231

[
ON#(σ, T (τ0)) + ON#(σ, T (τ2))
+ON#(σ, T (τ3)) + ON#(σ, T (τ1))

]
(44)

+ (1/2)Eσ∈S0234

[
ON#(σ, T (τ4))

]

= (1/2)Eσ∈S(V j
i

)

[
ON#(σ, T (τ0)) + ON#(σ, T (τ2))
+ON#(σ, T (τ3))

]

+Eσ∈S(V j
i

)

[
ON#(σ, T (τ1)) + ON#(σ, T (τ4))

]
.

382 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Now, observe that for every σ = τ0‖τ2‖τ3‖τ1 ∈ U(S(V j
i)), τk ∈ U(S(V 5j+k

i−1)),
k =, 0, 2, 3, 1, we have

T (σ) ∩ V 5j+k
i−1 = T (τk),

and for every σ = τ0‖τ2‖τ3‖τ4 ∈ U(S(V j
i)), τk ∈ U(S(V 5j+k

i−1)), k =, 0, 2, 3, 4,

T (σ) ∩ V 5j+k
i−1 = T (τk).

The two relations above allow us to apply Lemma 25 to (44), to obtain

(45)

Eσ∈S(V j
i

)[ON#(σ)]

≥
(

1

2

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eτ0∈RU(S(V 5j+k
i−1

))[ON#(τ0)]

+Eτ0∈RU(S(V 5j+k
i−1

))Eτ2∈RU(S(V 5j+2
i−1

))[ONτ0#(τ2)]

+Eτ0∈RU(S(V 5j+k
i−1

))Eτ2∈RU(S(V 5j+2
i−1

))Eτ3∈RU(S(V 5j+3
i−1

))[ONτ0‖τ2#
(τ3)]

+Eτ0∈RU(S(V 5j+k
i−1

))Eτ2∈RU(S(V 5j+2
i−1

))Eτ3∈RU(S(V 5j+3
i−1

))Eτ1∈RU(S(V 5j+1
i−1

))

·[ONτ0‖τ2‖τ3#
(τ1)]

+Eτ0∈RU(S(V 5j+k
i−1

))Eτ2∈RU(S(V 5j+2
i−1

))Eτ3∈RU(S(V 5j+3
i−1

))Eτ4∈RU(S(V 5j+4
i−1

))

·[ONτ0‖τ2‖τ3#
(τ4)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

By the inductive hypothesis we get that (45) is at least

Eσ∈S(V j
i

)[ON#(σ)] ≥ 5

2

(
5

2

)i−1

=

(
5

2

)i

,

thus proving the lemma.
We then conclude with the following result.
Theorem 28. Any randomized algorithm for the on-line vertex coloring problem

has a competitive ratio of Ω(n1−log5 4).
Proof. By Lemmas 23 and 27 we have the following. For any 0 ≤ i ≤ log5 n,

0 ≤ j ≤ n/5i−1, and any sequence σ ∈ S(V j
i), OPT#(σ) = 2i. For any 0 ≤ i ≤ log5 n

and 0 ≤ j ≤ n/5i − 1, the number of colors required by any deterministic on-line
algorithm over the distribution U(S(V j

i)) satisfies

Eσ∈RU(S(V j
i

))[ON#(σ)] ≥
(

5

2

)i

.

The ratio ρ(i, j) between the expected on-line number of colors and the expected
optimal number of colors and for the probability distribution on the input sequences
U(S(V j

i)), 0 ≤ i ≤ log5 n, 0 ≤ j ≤ n/5i − 1, is

ρ(i, j) =
Eσ∈RU(S(V j

i
))[ON#(σ)]

Eσ∈RU(S(V j
i

))[OPT#(σ)]

≥
(

5
2

)i
2i

(46)

=

(
5

4

)i

.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 383

For i = log5 n we obtain that for any online algorithm the ratio ρ(log5 n, 0) for
sequences drawn from the probability distribution U(S(V 0

log5 n)) is

ρ(log5 n, 0) ≥ n

4log5 n

= n1−log5 4.

Using Yao’s lemma (Lemma 1) yields the claimed result.

5.2. Upper bounds for on-line graph coloring. Using techniques similar to
those in section 3.2, we show that off-line algorithms for maximum independent sets
can also be used to obtain deterministic on-line graph coloring algorithms.

Let G = (V,E) be the graph that we assume is known to the on-line algorithm.
The algorithm requires a preprocessing phase similar to the algorithm presented
in section 3.2 for an on-line induced subgraph. A collection of k independent sets
I1, I2, . . . , Ik of the graph G are computed as follows:

Let G1 = G, and Gi+1 = Gi− Ii be the result of the operation that removes from
Gi all the vertices of the independent set Ii and all the incident edges.

In particular, Ii is the set of vertices forming the solution of the independent set
problem returned by applying the n

α -approximate algorithm to the graph Gi. The

process of computing solutions is continued until |Ik+1| ≤
√
α. Let I = V −{I1 ∪ I2 ∪

· · · ∪ Ik} be the set of vertices of Gk+1.
The algorithm colors every presented vertex v as follows:
1. If there exist i ≤ k such that v ∈ Ii, assign color i to vertex v.
2. Otherwise, if v ∈ I, assign the first color j > k not used for any previously

presented vertex u ∈ I, (u, v) ∈ E.
Theorem 29. Given an n

α -approximation (deterministic) algorithm for a maxi-
mum independent set, there exists a (deterministic) O(n√

α
)-competitive algorithm for

on-line minimum graph coloring. If the original algorithm is polynomial and deter-
ministic, so is the on-line algorithm.

Proof. First note that k is at most n√
α
. Next, observe that the maximum size

of an independent set in I is at most n√
α
, since the size of the solution of the n

α -

approximate algorithm applied to the graph induced by I is less than
√
α. Let I

′
be

the subset of I presented in the sequence.
If the sequence is not empty, the number of colors of the optimal solution is at

least the size of I
′
divided by the size of a maximum independent set in I

′
. Therefore

OPT ≥ max

{
1,

√
α

n
|I ′|

}
.

The number of colors used by the on-line algorithm is bounded by

ON ≤ k + |I ′| ≤ 2
n√
α

OPT,

thus proving the theorem.
Using the optimal (nonpolynomial time) algorithm for a maximum independent

set (e.g., α = n) we obtain the following.
Corollary 30. There exists a deterministic O(

√
n)-competitive algorithm for

the on-line graph coloring problem.

384 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

N N d Nd dN

N d

d
1 3 2 4

N s
30

sNN sN sN s
4102

Fig. 7. The mapping on the brick wall of a sequence of graph Gj
i .

6. Lower bound for on-line path coloring. In this section we derive an
Ω(nε) competitive randomized lower bound for on-line path coloring. In the on-line
path coloring problem, a pair of vertices of the network is presented at every step.
The algorithm must reply with a color before the pairs following in the sequence are
known. The coloring must obey the constraint that any collection of pairs assigned
the same color can be connected with edge-disjoint paths.

The lower bound for on-line path coloring is obtained by transforming every
sequence of vertices in the graph G (see Figure 6) used for the graph coloring lower
bound into a sequence of pairs in the brick wall W shown in Figure 7. We say that two
pairs are consistent if they can be connected through edge-disjoint paths; otherwise
they are inconsistent. To derive the result it is sufficient to show that the embedding
satisfies the two following properties:

1. Any two adjacent vertices of G are mapped to two inconsistent pairs.
2. Every independent set of G is mapped to a collection of mutually consistent

pairs.
Consider a graph Gj

i , i = 1, . . . , log5 n, j = 0, . . . , n/5i−1, as defined in section 5.

Gj
i is formed of five graphs G5j+k

i−1 , k = 0, . . . , 4. The embedding, described in Figure 7,

associates a top-to-bottom call in the brick wall of level i to each vertex of graph G5j+k
i−1 ,

k = 1, . . . , 4, and a top-to-top call to every vertex of graph G5j
i−1. More precisely, the

vertices of Gi are recursively associated with calls from vertices Ns
i to vertices Nd

i .
Property 1 then immediately follows, since every two adjacent vertices are mapped to
inconsistent pairs.

It is also rather simple to see that property 2 holds if the brick wall of level i has
height 2i and width 6i. Every sequence of S(V j

i) contains an independent set of size
at most 2i. The independent set is formed of vertices from at most two nonadjacent
sets of vertices of Gj

i , e.g., V 5j+1
i−1 and V 5j+3

i−1 or V 5j
i−1 and V 5j+2

i−1 . If all vertices of the
independent set are mapped to top-to-bottom calls, as in the case when they belong to

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 385

N

N d

0
dN s N s

N d
02

2 0

Fig. 8. The routing of top-to-top calls.

V 5j+1
i−1 and V 5j+3

i−1 , by Lemma 15, the associated pairs are mutually consistent in a brick
wall of height 2i. Alternatively, consider the case of an independent set containing
vertices of V 5j

i−1 mapped to top-to-top calls, and vertices mapped to top-to-bottom

calls, for instance, of set V 5j+2
i−1 .

For the sake of the analysis, assume for the moment that every vertex of V 5j
i−1 is

mapped, as shown in Figure 8, to two top-to-bottom calls, rather than one top-to-top

call. The first call is from a vertex of Ns
0 to a vertex of N

d

0, while the second call is

from a vertex of N
s

0 to a vertex of Nd
0 . (Observe that the vertices of N

d

0 and N
s

0 are
not endpoints of other calls of the sequence.) By Lemma 15, a collection of calls from

Ns
0 to N

d

0 and from Ns
2 to Nd

2 associated with an independent set G of size at most
2i can be consistently routed.

Consider also the edge-disjoint paths connecting pairs, associated with vertices
of V 5j

i−1 in the independent set, formed of a vertex in N
s

0 and a vertex in Nd
0 . A

set of edge-disjoint paths connecting the top-to-top pairs associated with vertices of
V 5j
i−1 is then obtained as follows: For every vertex of the independent set, let x be

the intersection of the two paths connecting the associated pairs from Ns
0 to N

d

0 and
from N

s

0 to Nd
0 . The path from Ns

0 to Nd
0 is then formed, as shown in Figure 8, by

the segment between the vertex of Ns
0 and x, followed by the segment between x and

the vertex of Nd
0 . Every such path is disjoint from any other path from Ns

0 to Nd
0

and from Ns
2 to Nd

2 connecting pairs associated with vertices of the independent set.
Property 2 is then proved.

Let n be the number of vertices of graph G. Every input sequence for the graph
G = G0

log5 n is therefore mapped in a brick wall W of size N = 6i × 2i. We then
conclude with the following theorem.

Theorem 31. Any randomized algorithm for on-line path coloring on general

386 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

networks of N vertices has competitive ratio Ω(N
log 5
log 12 log5 4).

Proof. The theorem follows from Theorem 28 and by observing that any input
sequence of vertices of the graph G of n vertices can be mapped into a brick wall of

N = n
log 12
log 5 vertices.

7. Lower bounds for optical networks. As pointed out in the introduction, a
lower bound for on-line edge-disjoint paths is also a lower bound for on-line routing in
reconfigurable networks (benefit version), and a lower bound for on-line path coloring
is also a lower bound for on-line routing in reconfigurable networks (coloring version).
Therefore, from Theorems 19 and 31, we derive the following two corollaries.

Corollary 32. Any nonpreemptive randomized algorithm for on-line routing in
reconfigurable optical networks (benefit version) on general networks of N vertices has

competitive ratio Ω(N
1−log4 3

log4 6).
Corollary 33. Any randomized algorithm for on-line routing in reconfigurable

optical networks (coloring version) on general networks of N vertices has competitive

ratio Ω(N
2
3 (1−log4 3)).

In what follows we present a simple result (Lemma 36) that allows us to reduce
maximum independent sets to routing in switchless optical networks (benefit version)
and minimum graph coloring to routing in switchless optical networks (coloring ver-
sion). This reduction is from a graph of n vertices to a network of O(n) vertices.
Therefore, from Theorems 11 and 28 we respectively derive the following two corol-
laries.

Corollary 34. Any nonpreemptive randomized algorithm for on-line routing
in switchless optical networks (benefit version) on general networks of N vertices has
competitive ratio Ω(N1−log4 3).

Corollary 35. Any randomized algorithm for on-line routing in switchless
optical networks (coloring version) on general networks of N vertices has competitive
ratio Ω(N1−log4 3).

The required reductions are derived from the following lemma.
Lemma 36. For any undirected graph G = (V,E) there exist a directed network

D′ = (V ′, E′) and a one-to-one mapping from vertices v in G to calls (s(v), t(v)) in
D′ so that two vertices vi, vj ∈ V are adjacent if and only if the two corresponding
calls (s(vi), t(vi)), (s(vj), t(vj)) are conflicting.

Proof. Let n be the number of vertices of V = {v1, . . . , vn}. D′ is a bipartite
graph whose set of vertices V ′ is formed by the union of two sets of n vertices, S =
{s1, . . . , sn} and T = {t1, . . . , tn}. The one-to-one mapping is defined by s(vi) = si
and t(vi) = ti, i = 1, . . . , n. The set of directed edges of D′ is E′ = {(s(v), t(v))|v ∈
V } ∪ {(s(vi), t(vj))|(vi, vj) ∈ E}.

For any two vertices vi, vj ∈ V consider the two calls (s(vi), t(vi)) and (s(vj), t(vj))
in D′. If vi and vj are adjacent in E, then the bipartite graph D′ contains the two
edges (s(vi), t(vj)) and (s(vj), t(vi)). Therefore, t(vj) ∈ R(s(vi)) and t(vi) ∈ R(s(vj)),
implying that the two calls are interfering. For the other direction, if vi and vj
are nonadjacent, then t(vj) /∈ R(s(vi)) and t(vj) /∈ R(s(vi)). Since the graph D′

is bipartite, with all edges directed from S to T , it follows that u2 /∈ R(v1) and
u1 /∈ R(v2), implying that the two calls are noninterfering.

8. Lower bounds for on-line edge-disjoint fixed paths. In this section we
present tight lower bounds for on-line edge-disjoint fixed paths, an Ω(

√
n) lower bound

for meshes and an Ω(n) lower bound for general networks. We use the terminology of
call control.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 387

We make use of Yao’s lemma (see section 2) and establish a lower bound for any
deterministic algorithm on a given probability distribution. First we describe the
probability distribution we use in proving the lower bounds.

The generic call ci of an input sequence is specified by a path pi connecting
endpoints si and ti. Two calls ci and cj from the input sequence are said to be
inconsistent if pi and pj intersect on at least one edge (pi ∩ pj �= ∅), and consistent
otherwise (pi ∩ pj = ∅).

Every input sequence having nonzero probability is formed of 2k calls presented
in k steps according to the following probability distribution:

1. At step j, j = 1, . . . , k, two inconsistent calls c1j and c2j are presented.
2. Toss a fair coin.

• If heads, all the calls presented later will be consistent with c1j and

inconsistent with c2j .

• If tails, all the calls presented later will be consistent with c2j and incon-

sistent with c1j .
Lemma 37. Any nonpreemptive randomized algorithm for on-line edge-disjoint

fixed paths has competitive ratio Ω(k) on the probability distribution of k steps de-
scribed above.

Proof. There is a maximal set of k mutually consistent calls. This set is formed
by selecting for every step of the sequence the call that is consistent with all the calls
presented in the future. The claim then follows by proving an O(1) upper bound on
the expected on-line benefit.

Let p(i) be the probability that an on-line algorithm has accepted i calls, i ≥ 1,
at some point along the execution of the algorithm. We prove by induction on i that
p(i) ≤ 1

2i−1 . For the base of the induction, p(1) ≤ 1. Assume p(i−1) ≤ 1
2i−2 , i ≥ 2. Let

Ai, i ≥ 2, be the event “The algorithm is able to accept one additional call after having
already accepted i − 1 calls.” Let c be the (i − 1)th call accepted by the algorithm.
The probability of event Ai is p(Ai) ≤ 1/2 since, with probability 1/2, all the calls
presented after c are inconsistent with c itself. We then have p(i) ≤ p(Ai)p(i − 1) ≤

1
2i−1 . Let p(= i) be the probability that the on-line algorithm has accepted exactly
i calls along its execution. We clearly have p(= i) ≤ p(i). Therefore, the expected

on-line benefit is bounded by E[ON] ≤
∑k

i=1 ip(= i) ≤
∑k

i=1 i
1

2i−1 = O(1).
We will present in the following two sections the embedding of the probability

distribution described in this section on a mesh topology and a general network. The
obvious goal is to have k as large as possible with respect to the size of the network.
In the two following subsections we will implement the probability distribution on
specific networks to provide lower bounds on mesh topologies and general networks.

8.1. Lower bound on meshes. Consider a two-dimensional
√
n ×

√
n mesh.

Let the set of nodes be {(u, v)|1 ≤ u ≤
√
n, 1 ≤ v ≤

√
n}. Every vertex is denoted

with a pair; the first item is the row index, and the second item is the column index.
For our construction we use a network (see Figure 9, where the row index in-

creases from top to bottom, the column index from left to right) derived from a
two-dimensional mesh via the two following operations:

1. Remove all vertices (u, v) with v > u, and the adjacent edges.
2. Insert the edges {((u, v), (u− 1, v + 1))|3 ≤ u ≤

√
n, 1 ≤ v ≤

√
n− 1}.

Such network can always be embedded in a mesh of size 2
√
n× 2

√
n.

We prove that any instance drawn from the probability distribution for the Ω(k)
lower bound of the previous section can be implemented on this network with k =

388 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

t t t t t

s

s

s

s

s
5

4

3

2

1

1 2 3 4 5

Fig. 9. The network for the lower bound on meshes.

√
n−1
2 . This is done by presenting a sequence of

√
n− 1 calls; the path of each call is

chosen in order to make it consistent or inconsistent with any other previous call in
the sequence, as required from the outcome of the coin tosses.

Call ci in the sequence is defined by a pair of vertices (si, ti) and by a path pi
that connects si to ti. Let Ci = {j : j < i, pi ∩ pj = ∅} be the set of previous calls in
the input sequence from the probability distribution that are consistent with ci, and
let Ii = {j : j < i, pi ∩ pj �= ∅} be the set of previous calls that are inconsistent with
ci.

Call ci of the sequence, i = 1, . . . ,
√
k − 1, is defined as follows:

• si = (i, 1);
• ti = (

√
n, i);

• pi is formed by the following sets of edges:
1. E1

i = {((i, j), (i, j + 1))|j ∈ Ci};
2. E2

i = {((i, j), (i + 1, j)) and ((i + 1, j), (i, j + 1))|j ∈ Ii};
3. E3

i = {((j, i), (j + 1, i))|i ≤ j ≤
√
n− 1}.

Observe that the set of edges forming pi, i.e., E1
i ∪ E2

i ∪ E3
i , is actually a path

from si to ti. For j = 1, . . . , i − 1, vertex (i, j) is connected to vertex (i, j + 1),
either directly if j ∈ Ci or through the two-edge path formed by ((i, j), (i+ 1, j)) and
((i+ 1, j), (i, j + 1)) if j ∈ Ii. For j = i, . . . ,

√
n− 1, vertex (j, i) is directly connected

to vertex (j + 1, i). Moreover, the first vertex of the path is si = (i, 1), and the last
vertex is (

√
n, i).

Figure 9 shows a network with a sequence of five calls and the relative paths,
where c1 and c3 are inconsistent and c2 and c4 consistent with respect to following
calls.

Lemma 38. Let cj and ci, j < i, be two calls in the sequence. Calls pi and pj do
not intersect if and only if j ∈ Ci.

Proof. First we show that if j ∈ Ii, then ci and cj intersect in one edge, namely
((i, j), (i+ 1, j)). In fact, this edge always belongs to pj , while it belongs to pi only if
cj is inconsistent with ci.

Next, we show that if j ∈ Ci, then pi and pj do not intersect in any edge. For any
h, all edges in E1

h ∪ E2
h are either between two vertices in row h or connect a vertex

in row h to a vertex in row h+ 1. Hence, the set E1
i ∪E2

i does not intersect with the
set E1

j ∪ E2
j .

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 389

Since all edges in pj have endpoints of column at most j, and all edges in E3
i have

endpoints of column i > j, the two sets do not intersect.
It remains to show that the edges in E3

j do not intersect with the edges in E1
i ∪E2

i .

This follows since every edge of E3
j has both endpoints on column j, whereas since

j ∈ Ci, no edge in E1
i ∪ E2

i has both endpoints on column j.
We then conclude with the following theorem.
Theorem 39. Any nonpreemptive randomized algorithm for on-line edge-disjoint

with fixed paths on meshes of n nodes has competitive ratio Ω(
√
n).

8.2. Lower bound on general networks. We prove an Ω(n) lower bound
on the competitive ratio of randomized algorithms for the on-line edge-disjoint fixed
paths problem in general networks by showing that the probability distribution at the
basis of Lemma 37 can be constructed for a sequence of Ω(n) steps, in a complete
graph with O(n) vertices.

Let n be a prime number, and let V ∪ V ′ with V = {v(0), . . . , v(n − 1)} and
V ′ = {v′(0), . . . , v′(n− 1)} be the set of vertices of a complete graph G.

We define

nl
h = (h · l) mod n,

with h = 1, . . . , �n−1
2 � and l = 1, . . . , n.

The two following lemmas follow from simple algebraic properties of prime num-
bers.

Lemma 40. Let (h, l) and (h′, l′) be such that h, h′ ∈ {1, . . . , n−1
2 }, h �= h′, and

l, l′ ∈ {1, . . . , n− 1}. Then, {nl
h, n

l+1
h } �= {nl′

h′ , n
l′+1
h′ }.

Lemma 41. For any integer h = 1, . . . , n−1
2 it holds that

{nl
h|l = 0, . . . , n− 1} = {0, 1, . . . , n− 1}.

Let ci be the ith call of the sequence, let Ci = {j : j < i, pi ∩ pj = ∅} be the set
of previous calls that are consistent with ci, and let Ii = {j : j < i, pi ∩ pj �= ∅} be
the set of previous calls that are inconsistent with ci.

With every pair of calls ci, cj , i = 1, . . . , j − 1, j = 1, . . . , k, two values sij and
s′ij are associated, sij ∈ {0, . . . , n− 2} and s′ij ∈ {0. . . . , n− 1}.

The idea behind the construction presented in the remainder of this section is the
following. The generic path pi associated with call ci crosses all vertices of set V in
the sequence v(n0

i), . . . , v(n
n−1
i). (By Lemma 41 such a sequence spans the set V .)

Consider two calls ci and cj , i < j, with associated values sij and s′ij . By Lemma 41,
there exist two integer values q and r such that nq

i = nr
j = sij . In our construction,

path pi always contains edges (v(sij), v
′(s′ij)) and (v′(s′ij), v(n

q+1
i)). If ci ∈ Cj , then

path pj must not share any edge with pi. In this case vertex v(sij) is followed by
v(nr+1

j) in pj . Otherwise, if ci ∈ Ij , then path pj contains edges (v(sij), v
′(s′ij)) and

(v′(s′ij), v(n
r+1
j)), the first of which is common with pi.

To ensure that two consistent calls do not share any edge we use Lemma 40,
which states that two integers between 0 and n−1 are adjacent only in one sequence;
furthermore, the association of values sij and s′ij with any pair of calls ci, cj is to
guarantee that any edge between a vertex in V and a vertex in V ′, included in some
path pi and dedicated to the possible intersection with path pj , does not appear in
any other path.

Values sij and s′ij are assigned to any pair of calls ci, cj , i < j, in order of
increasing j, and for a fixed j in order of increasing i. Let nq

i = nr
j = sij .

390 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

Consider a pair x, y, x < y ≤ j, for which the values sxy and s′xy have been

assigned prior to the assignment for i, j. Let l and m be integers such that nl
x =

nm
y = sxy. The conditions on the assignment for ci, cj are as follows:

1. Assign value sij different from sxy with y = i, y = j, or x = i.

2. Assign value s′ij different from s′xy if {sxy, nl+1
x , nm+1

y }∩{sij , nq+1
i , nr+1

j } �= ∅
for any previously assigned pair xy.

Lemma 42. There exists a sequence of k = Ω(n) calls such that for every pair
ci, cj, i < j, values sij and s′ij can be assigned obeying conditions 1 and 2.

Proof. We prove that there exists a value k = Ω(n) such that, in the worst case,
at least one possibility to assign values sij and s′ij is left for any pair of calls ci, cj
with i < j ≤ k.

Denote by x, y any pair considered before i, j in the designed order. Then either
x < y < j or y = j and x < i.

Following condition 1, we can bound the number of pairs such that y = i, y = j,
or x = i by (i− 1) + (j − 1) + (j − i) ≤ 2(k − 2). Therefore, if n > 2(k − 2), at least
one possibility is left for assigning sij .

Following condition 2, we would like to bound the number of pairs cx, cy for which

one of the three values in {sij , nq+1
i , nr+1

j } appears in {sxy, nl+1
x , nm+1

y }.
For fixed h < k, each of the values in {sij , nq+1

i , nr+1
j } is equal to nd

h for some

integer d. By condition 1 there could be either one y for which shy = nd
h or one x

such that sxh = nd
h. Similarly, there could be either one y for which shy = nd−1

h or

one x such that sxh = nd−1
h . Thus we get that h can be involved in at most six pairs

for which the above restriction holds.
Hence, if n > 6(k − 1), there is still a possibility left for assigning s′ij .
The above observations show that by setting k = n/6, values sij and s′ij can be

assigned to each pair of calls ci, cj .
In the following we formally define call ci, i = 1, . . . , k. The endpoints si, ti of

call ci are
• si = v(n0

i),
• ti = v(nn−1

i).
Path pi associated with call ci contains the following set of edges:
1. (v(nl

i), v(n
l+1
i)), for any l ∈ {1, . . . , n− 1} such that

(a) For all j < i, nl
i �= sji and for all j > i, nl

i �= sij .
(b) There exists j < i such that nl

i = sji and j ∈ Ci.
2. (v(nl

i), v
′(s′ij)) and (v′(s′ij), v(n

l+1
i)), for any l ∈ {1, . . . , n−1} such that there

exists j > i for which sij = nl
i.

3. (v(nl
i), v

′(s′ji)) and (v′(s′ji), v(n
l+1
i)), for any l ∈ {1, . . . , n−1} such that there

exists j < i for which sji = nl
i and j ∈ Ii.

Lemma 43. Let ci, cj, with i < j be two calls in the sequence. pi and pj do not
intersect if and only if i ∈ Cj.

Proof. First we prove that, for any i ∈ Ij , the paths pi and pj intersect. Then
the edge (v(sij), v

′(s′ij)) is in pi by rule 2 and in pj by rule 3.
We now turn to proving that if ci ∈ Cj , then the two paths pi and pj do not

intersect. Lemma 40 ensures that the edges between two vertices in V (rule 1) cannot
be shared by two paths.

Edges in pi connecting vertices of V to vertices of V ′ are either (by rule 2) of the
form (v(sih), v′(s′ih)) or (v′(s′ih), v(nd+1

i)) for some h > i and d such that sih = nd
i ,

or (by rule 3) (v(shi), v
′(s′hi)) or (v′(s′hi), v(n

d+1
i)) for some h < i and d such that

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 391

shi = nd
i (by rule 3). Thus, one endpoint of each such edge is a vertex v′(s′xy), and

the other one has index in {sxy, nl+1
x , nm+1

y } for a pair in which one of x, y is equal to

i and nl
x = nm

y = sxy. A similar statement holds for path pj . By condition 2 of the
assignment procedure for s′ij , such edges cannot appear in more than one path, and
hence the claim follows.

We conclude with the following theorem.
Theorem 44. Any nonpreemptive randomized algorithm for on-line edge-disjoint

fixed paths in a network of n nodes has competitive ratio Ω(n).

Acknowledgments. The authors would like to thank Yossi Azar, Anna Karlin,
and Alberto Marchetti-Spaccamela. We also thank Allan Borodin, Ran El-Yaniv,
Haim Kaplan, Mario Szegedy, and two anonymous referees for very helpful comments
and for helping us avoiding errors.

REFERENCES

[AAFLR96] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosén, On-line competitive
algorithms for call admission in optical networks, in Proceedings of the 4th
Annual European Symposium on Algorithms, Barcelona, Spain, 1996, Lecture
Notes in Comput. Sci. 1136, Springer, New York, pp. 431–444.

[AAFPW92] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line load bal-
ancing with applications to machine scheduling and virtual circuit routing, in
Proceedings of the 33rd Annual Symposium on Foundations of Computer Sci-
ence, Pittsburgh, PA, 1992, IEEE Computer Society Press, Piscataway, NJ,
1992, pp. 164–173.

[AAP93] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput competitive on-line routing,
in Proceedings of the 34th Annual Symposium on Foundations of Computer
Science, Palo Alto, CA, 1993, IEEE Computer Society Press, Piscataway, NJ,
1993, pp. 32–40.

[AAPW94] B. Awerbuch, Y. Azar, S. Plotkin, and O. Waarts, Competitive routing of
virtual circuits with unknown duration, in Proceedings of the 5th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1994, SIAM, Philadelphia, 1994,
pp. 321–327.

[ABC+94] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami, B. Schieber, and

M. Sudan, Efficient routing and scheduling algorithms for optical networks, in
Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
Arlington, VA 1994, SIAM, Philadelphia, 1994, pp. 412–423.

[ABFR94] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call
control, in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Arlington, VA 1994, SIAM, Philadelphia, 1994, pp. 312–320.

[AGLR94] B. Awerbuch, R. Gawlick, F. T. Leighton, and Y. Rabani, On-line admission
control and circuit routing for high performance computing and communication,
in Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, NM, 1994, IEEE Computer Society Press, Piscataway, NJ,
1994, pp. 412–423.

[AKPPW93] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts, Online
load balancing of temporary tasks, in Proceedings of the 3rd Workshop on Al-
gorithms and Data Structures, Montreal, QC, 1993, Lecture Notes in Comput.
Sci. 709, Springer, New York, 1993, pp. 119–130.

[BBKTW90] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Widgerson, On the
power of randomization in on-line algorithms, in Proceedings of the 22nd An-
nual ACM Symposium on Theory of Computing, Baltimore, MD, 1990, pp. 379–
386.

[BCK+95] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber, Bandwidth
allocation with preemption, in Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, Las Vegas, 1995, ACM, New York, pp. 616–625.

[BE98] A. Borodin and R. El-Yaniv, On-Line Computation and Competitive Analysis,
Cambridge University Press, Cambridge, UK, 1998.

[BE97] A. Borodin and R. El-Yaniv, On randomization in on-line computation, Inform.
Comput., 150 (1999), pp. 244–267.

392 YAIR BARTAL, AMOS FIAT, AND STEFANO LEONARDI

[BFL96] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph prob-
lems with application to on-line circuit and optical routing, in Proceed-
ings of the 28th ACM Symposium on Theory of Computing, Philadelphia,
1996, ACM, New York, pp. 531–540; also available online at http://www.dis.
uniroma1.it/∼leon/bfl.ps.

[BH92] R. B. Boppana and M. M. Halldorson, Approximating maximum independent set
by excluding subgraphs, BIT, 32 (1992), pp. 180–196.

[BH93] R. A. Barry and P. A. Humblet, On the number of wavelengths and switches in
all optical networks, IEEE Trans. Communication, 42 (1994), pp. 583–591.

[BL97] Y. Bartal and S. Leonardi, On-line routing in all-optical networks, in Proceedings
of the 24th International Colloqium on Automata, Languages and Programming,
Bologna, Italy, 1997, Lecture Notes in Comput. Sci. 1256, Springer, New York,
1997, pp. 516–526.

[CI95] R. Canetti and S. Irani, On the power of preemption in randomized scheduling,
in Proceedings of the 27th Annual ACM Symposium on Theory of Computing,
Las Vegas, 1995, ACM, New York, pp. 606–615.

[GG92] J. Garay and I. S. Gopal, Call preemption in communications networks, in Pro-
ceedings of INFOCOM 92, Florence, Italy, 1992, IEEE Computer Society Press,
Piscataway, NJ, 1992, pp. 2332–2342.

[GGKMY93] J. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung, Efficient on-line
call control algorithms, in Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, 1993, pp. 285–293.

[Hal94] M. M. Halldórsson, Approximations of weighted independent set and hereditary
subset problems, J. Graph Algorithms Appl., 4 (2000), pp. 1–16.

[HS92] M. M. Halldórsson and M. Szegedy, Lower bounds for on-line graph coloring, in
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
Orlando, FL, 1992, SIAM, Philadelphia, 1992, pp. 211–216.

[I90] S. Irani, Coloring inductive graphs on-line, in Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, MO, 1990, IEEE Com-
puter Society Press, Piscataway, NJ, 1990, pp. 470–479.

[KS98] H. Kaplan and M. Szegedy, On-line complexity of monotone set systems, in Pro-
ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
Baltimore, 1999, SIAM, Philadelphia, 1999, pp. 507–516.

[KS95] V. Kapoulas and P. Spirakis, Randomized competitive algorithms for admission
control in general networks, in Proceedings of the 14th Annual ACM Symposium
on Principles of Distributed Computing, Ottawa, ON, 1995, ACM, New York,
1995, p. 253.

[KT95] J. Kleinberg and E. Tardos, Disjoint paths in densely embedded graphs, in Pro-
ceedings of the 36th IEEE Annual Symposium on Foundations of Computer
Science, Milwaukee, WI, 1995, IEEE Press, Piscataway, NJ, pp. 52–61.

[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, An optimal algorithm for on-
line bipartite matching, in Proceedings of the 22nd Annual ACM Symposium on
Theory of Computing, Baltimore, MD, 1990, ACM, New York, 1990, pp. 352–
358.

[LMPR98] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén, On-line
randomized call control revisited, in Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, 1998, SIAM, Philadelphia,
1998, pp. 323–332.

[LY93a] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems,
in Proceedings of the 20th International Colloquium on Automata, Languages
and Programming, Lund, Sweden, 1993, Lecture Notes in Comput. Sci. 700,
Springer, New York, 1993, pp. 40–51.

[LY93b] C. Lund and M. Yannakakis, On the hardness of approximating minimization
problems, in Proceedings of the 25th ACM Symposium on Theory of Computing,
1993, ACM, New York, pp. 40–51.

[P92] R. K. Pankay, Architectures for Linear Light-Wave Networks, Ph.D. thesis, De-
partment of Electrical Engineering and Computer Science, MIT, Cambridge,
MA, 1992.

[RU94] P. Raghavan and U. Upfal, Efficient routing in all-optical networks, in Proceedings
of the 26th Annual Symposium on Theory of Computing, Montréal, 1994, ACM,
New York, pp. 133–143.

[ST85] D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules,
Comm. ACM, 28 (1985), pp. 202–208.

LOWER BOUNDS FOR ON-LINE GRAPH PROBLEMS 393

[V90] S. Vishwanathan, Randomized on-line graph coloring, in Proceedings of the 31st
IEEE Annual Symposium on Foundations of Computer Science, St. Louis, MO,
1990, IEEE Computer Society Press, Piscataway, NJ, 1990, pp. 464–469.

[Y77] A. C. Yao, Probabilistic computations: Towards a unified measure of complexity,
in Proceedings of the 18th Annual Symposium on Foundations of Computer
Science, Providence, RI, 1977, IEEE Computer Society Press, Piscataway, NJ,
1977, pp. 222–227.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 394–410

EFFICIENT BUNDLE SORTING∗

YOSSI MATIAS† , ERAN SEGAL‡ , AND JEFFREY SCOTT VITTER§

Abstract. Many data sets to be sorted consist of a limited number of distinct keys. Sorting
such data sets can be thought of as bundling together identical keys and having the bundles placed in
order; we therefore denote this as bundle sorting. We describe an efficient algorithm for bundle sorting
in external memory, which requires at most c(N/B) logM/B k disk accesses, where N is the number
of keys, M is the size of internal memory, k is the number of distinct keys, B is the transfer block
size, and 2 < c < 4. For moderately sized k, this bound circumvents the Θ((N/B) logM/B(N/B))

I/O lower bound known for general sorting. We show that our algorithm is optimal by proving a
matching lower bound for bundle sorting. The improved running time of bundle sorting over general
sorting can be significant in practice, as demonstrated by experimentation. An important feature of
the new algorithm is that it is executed “in-place,” requiring no additional disk space.

Key words. sorting, external memory, bundle sorting, algorithms

AMS subject classification. 68W01

DOI. 10.1137/S0097539704446554

1. Introduction. Sorting is a frequent operation in many applications. It is
used not only to produce sorted output, but also in many sort-based algorithms such
as grouping with aggregation, duplicate removal, and sort-merge join, as well as set
operations including union, intersect, and except [Gra93, IBM95]. In this paper, we
identify a common external memory sorting problem, present an algorithm to solve
it while circumventing the lower bound for general sorting for this problem, prove a
matching lower bound for our algorithm, and demonstrate the improved performance
through experiments.

External merge sort is the most commonly used algorithm for large-scale sorting.
It has a run formation phase, which produces sorted runs, and a merge phase, which
merges the runs into sorted output. Its running time, as in most external memory
algorithms, is dominated by the number of input/outputs (I/Os) performed, which
is O((N/B) logM/B(N/B)), where N is the number of keys, M is the size of internal

memory, and B is the transfer block size. It was shown in [AV88] (see also [Vit99])
that there is a matching lower bound within a constant factor.

The number of passes over the sequence performed by sorting algorithms is
�logM/B(N/B)� in the worst case. When the available memory is large enough com-
pared to the size of the sequence, the sorting can be performed in one or two passes
over the sequence (see [ADADC+97] and references therein). However, there are many

∗Received by the editors November 22, 2004; accepted for publication (in revised form) Febru-
ary 24, 2006; published electronically June 23, 2006. A preliminary version of this paper was pre-
sented at the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms [MSV00].

http://www.siam.org/journals/sicomp/36-2/44655.html
†School of Computer Science, Tel-Aviv University, Tel-Aviv 69978 Israel (matias@cs.tau.ac.il).

This author’s work was supported in part by an Alon Fellowship, by the Israel Science Foundation
founded by the Academy of Sciences and Humanities, and by the Israeli Ministry of Science.

‡Department of Computer Science, Stanford University, Stanford, CA 94305 (eran@cs.stanford.
edu). Much of this author’s work was done while the author was at Tel-Aviv University.

§Department of Computer Science, Purdue University, West Lafayette, IN 47907-2066 (jsv@
purdue.edu). Much of this author’s work was done while the author was on sabbatical at I.N.R.I.A. in
Sophia Antipolis, France, and was supported in part by Army Research Office MURI grant DAAH04–
96–1–0013 and DAAD19–01–1–0725, and by the National Science Foundation research grant CCR–
9522047.

394

EFFICIENT BUNDLE SORTING 395

settings in which the available memory is moderate, at best. For instance, in multi-
threading and multiuser environments, an application, process, or thread which may
execute a sorting program might be allocated only a small fraction of the machine
memory. Such settings may be relevant to anything from low-end servers to high-end
decision support systems. For moderate size memory, logM/B(N/B) may become
large enough to imply a significant number of passes over the data. As an example,
consider the setting N = 256 GB, B = 128 kB, and M = 16 MB. Then we have
logM/B(N/B) = 3, and the number of I/Os per disk block required by merge sort is
at least 6. For smaller memory allocations, the I/O costs will be even greater.

Our contributions. Data sets that are to be sorted often consist of keys taken
from a bounded universe. This fact is well exploited in main memory algorithms such
as counting sort and radix sort, which are substantially more efficient than general
sort. In this paper we consider the extent to which a limit, k, on the number of
distinct keys can be exploited to obtain more effective sorting algorithms in external
memory on massive data sets, where the attention is primarily given to the number
of I/Os. Sorting such data sets can be thought of as bundling together identical keys
and having the bundles placed in order; we therefore denote this as bundle sorting. It
is similar to partial sorting, which was identified by Knuth [Knu73] as an important
problem. While many algorithms are given for partial sorting in main memory, to the
best of our knowledge, there exist no efficient algorithms for solving the problem in
external memory. As we shall see, bundle sorting can be substantially more efficient
than general sorting.

A key feature of bundle sorting is that the number of I/Os performed per disk
block depends solely on the number k of distinct keys. Hence, in sorting applications
in which the number of distinct keys is constant, the number of I/Os performed per
disk block remains constant for any data set size. In contrast, merge sort or other
general sorting algorithms will perform more I/Os per disk block as the size of the
data set increases. In settings in which the size of the data set is large this can be
significant. In the example given earlier, six I/Os per data block are needed to sort in
the worst case. For some constant k < 100, bundle sorting performs only two I/Os per
disk block, and for some constant k < 10000, only four I/Os per disk block, regardless
of the size of the data set.

The algorithm that we present requires at most 3 logM/B k passes over the se-
quence. It performs the sorting in-place, meaning that the input data set can be
permuted as needed without using any additional working space in external memory.
When the number k of distinct keys is less than N/B, our bundle sorting algorithm
circumvents the lower bound for general sorting. The lower bound for general sorting
is derived by a lower bound for permuting the input sequence, which is an easier
problem than general sorting. In contrast to general sorting, bundle sorting is not
harder than permuting; rather than requiring that a particular key be moved to a
specific location, it is required that the key be moved to a location within a specified
range, which belongs to its bundle. This so-called bundle-permutation consists of a set
of permutations, and implementing bundle-permutation can be done more efficiently
than implementing a particular permutation.

For cases in which k � N/B, the improvement in the running time of bundle
sorting over general sorting algorithms can be significant in practical sorting settings,
as supported by our experimentation done on U.S. Census data and on synthetic data.
In fact, the number of passes over the sequence executed by our algorithm does not
depend at all on the size of the sequence, in contrast to general sorting algorithms.

To complement the algorithmic component, we prove a matching lower bound

396 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

for bundle sorting. In particular, we show that the number of I/Os required in the
worst case to sort N keys consisting of k distinct key values is Ω((N/B) logM/B k).
This lower bound is realized by proving lower bounds on two problems that are both
easier than bundle sorting, and the combination of the lower bounds gives the desired
result. The first special case is bundle-permutation, and the second is a type of matrix
transposition. Bundle-permutation is the special case of bundle sorting in which we
know the distribution of key values beforehand, and thus it is easier than bundle
sorting for much the same reason that permuting is easier than general sorting. The
other special case of bundle sorting is a type of matrix transposition, in which we
transpose a k × N/k matrix, but the final order of the elements in each row is not
important. This problem is a special case of bundle sorting of N keys consisting
of exactly N/k records for each of k different keys and is thus easier than bundle
sorting. Interestingly, these two problems, when combined, capture the difficulty of
bundle sorting.

Our bundle sorting algorithm is based on a simple observation: If the available
memory, M , is at least kB, then we can sort the data in three passes over the sequence,
as follows. In the first pass, we count the size of each bundle. After this pass we
know the range of blocks in which each bundle will reside upon termination of the
bundle sorting. The first block from each such range is loaded to main memory.
The loaded blocks are scanned concurrently, while swapping keys so that each block
is filled only with keys belonging to its bundle. Whenever a block is fully scanned
(i.e., it contains only keys belonging to its bundle), it is written back to disk, and
the next block in its range is loaded. In this phase, each block is loaded exactly
once (except for at most k blocks in which the ranges begin), and the total number
of accesses over the input sequence in the entire algorithm is hence 3. Whenever
memory is insubstantial to hold the k blocks in memory, we group bundles together
into M/B superbundles, implementing the algorithm to sort the superbundles to M/B
subsequences and reiterate within each subsequence, incurring a total of logM/B k
iterations over the sequence to complete the bundle sorting.

There are many applications and settings in which bundle sorting may be applied,
resulting in a significant speed-up in performance. For instance, any application that
requires partial sorting or partitioning of a data set into value independent buckets can
take advantage of bundle sorting since the number of buckets (k in bundle sorting)
is small, thus making bundle sorting very appealing. Another example would be
accelerating sort join computation for suitable data sets: Consider a join operation
between two large relations, each having a moderate number of distinct keys; then our
bundle sorting algorithm can be used in a sort join computation, with performance
improvement over the use of general sort algorithm.

Finally, we consider a more performance-sensitive model that, rather than just
counting the number of I/Os as a measurement for performance, differentiates between
a sequential I/O and a random I/O and assigns a reduced cost for sequential I/Os.
We study the tradeoffs that occur when we apply bundle sorting in this model, and
show a simple adaptation of bundle sorting that results in an optimal performance.
In this sense, we also present a slightly different algorithm for bundle sorting, which
is more suitable for sequential I/Os.

The rest of the paper is organized as follows. In section 2 we explore related
work. In section 3 we describe the external memory model in which we will analyze
our algorithm and prove the lower bound. Section 4 presents our algorithm for bundle
sorting along with the performance analysis. In section 5 we prove the lower bound
for external bundle sorting. In section 6 we consider a more performance-sensitive

EFFICIENT BUNDLE SORTING 397

model, which takes into account a reduced cost for sequential I/Os and shows the
modifications in our bundle sorting algorithm required to achieve an optimal algorithm
in that model. Section 7 describes the experiments we conducted, and section 8 is
our conclusions.

2. Related work. External memory sorting is an extensively researched area.
Many efficient in-memory sorting algorithms have been adapted for sorting in exter-
nal memory, such as merge sort, and much of the recent research in external memory
sorting has been dedicated to improving the run time performance. Over the years,
numerous authors have reported the performance of their sorting algorithms and im-
plementations (cf. [Aga96, BBW86, BGK90]). We note a recent paper [ADADC+97]
that shows external sorting of 6 GB of data in under one minute on a network of
workstations. For the problem of bundle sorting where k < N/B we note that our
algorithm will reduce the number of I/Os that all these algorithms perform and hence
can be utilized in benchmarks. We also consider a more performance-sensitive model
of external memory, in which rather than just counting the I/Os for determining the
performance, there is a reduced cost for sequential I/Os compared to random access
I/Os. We study the tradeoffs there, and show the adaptation in our bundle sorting
algorithm to arrive at an optimal algorithm in that model. We also note that another
recent paper [ZL98] shows in detail how to improve the merge phase of the exter-
nal merge sort algorithm, a phase that is completely avoided by using our in-place
algorithm.

In the general framework of external memory algorithms, Aggarwal and Vitter
showed a lower bound of Ω((N/B) logM/B(N/B)) on the number of I/Os needed in

the worst case for sorting [AV88, Vit99]. In contrast, since our algorithm relies on
the number k of distinct keys for its performance, we are able to circumvent this
lower bound when k � N/B. Moreover, we prove a matching lower bound for bundle
sorting, which shows that our algorithm is optimal.

Finally, sorting is used not only to produce sorted output, but also in many
sort-based algorithms such as grouping with aggregation, duplicate removal, and
sort-merge join, as well as set operations including union, intersect, and except
[Gra93, IBM95]. In many of these cases the number of distinct keys is relatively
small, and hence bundle sorting can be used for improved performance. We identify
important applications for bundle sorting, but note that since sorting is such a com-
mon procedure, there are probably many more applications for bundle sorting that
we did not consider.

3. External memory model. In our main bundle sorting algorithm and in
the lower bound that we prove, we use the external memory model from Aggarwal
and Vitter [AV88] (see also [Vit99]). The model is as follows. We assume that there
is a single central processing unit, and we model secondary storage as a generalized
random-access magnetic disk. (For completeness, the model is also extended to the
case in which the disk has some parallel capabilities.) The parameters are

N = # records to sort,

M = # records that can fit into internal memory,

B = # records transferred in a single block,

D = # blocks that can be transferred concurrently,

where 1 ≤ B ≤ M/2, M < N , and 1 ≤ D ≤ �M/B�. For brevity we consider only
the case of D = 1, which corresponds to a single conventional disk.

398 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

The parameters N , M , and B are referred to as the file size, memory size, and
transfer block size, respectively. Each block transfer is allowed to access any contiguous
group of B records on the disk. We will consider the case where D = 1, meaning that
there is no disk parallelism. Performance in this model is measured by the number
of I/O accesses performed where the cost of all I/Os is identical. In section 6 we
consider a more performance-sensitive model in which we differentiate between costs
of sequential and random-access I/Os and assign a reduced cost for sequential I/Os.

4. External bundle sorting algorithm. In this section we present our bundle
sorting algorithm, which sorts in-place a sequence that resides on disk and contains
k distinct keys. We start by defining the bundle sorting problem:

Input: A sequence of keys {a1, a2, . . . , an} from an ordered universe U of size k.
Output: A permutation {a′1, a′2, . . . , a′n} of the input sequence such that a′1 ≤

a′2 ≤ · · · ≤ a′n.
In our algorithm, it will be easy, and with negligible overhead, to compute and

use an order-preserving mapping from U to {1, . . . , k}; we discuss the implementation
details of this function in section 4.2. This enables us to consider the problem at hand
as an integer sorting problem in which the keys are taken from {1, . . . , k}. Hence, we
assume that U = {1, . . . , k}.

We use the external memory model from section 3, where performance is deter-
mined by the number of I/Os performed. Our goal is to minimize the number of
disk I/Os. In section 6 we consider a more performance-sensitive model in which
rather than simply counting I/Os as a measurement of performance, we differentiate
between a sequential I/O and a random I/O and assign a reduced cost to sequential
I/Os. We show the necessary modifications to the bundle sorting presented in this
section required to achieve an optimum in that model.

4.1. {1, . . . , k} integer sorting. We start by presenting “one-pass sorting”—a
procedure that sorts a sequence into μ = �M/B� distinct keys. It will be used by our
bundle sorting algorithm to perform one iteration that sorts a chunk of data blocks
into μ ranges of keys.

The general idea is this: Initially we perform one pass on the sequence, loading
one block of size B at a time, in which we count the number of appearances of each of
the μ distinct keys in the sequence. Next, we keep in memory μ blocks and a pointer
for each block, where each block is of size B. Using the count pass, we initialize the
μ blocks, where the ith block is loaded from the exact location in the sequence where
keys of type i will start residing in the sorted sequence. We set each block pointer
to point to the first key in its block. When the algorithm runs, the ith block pointer
is advanced as long as it encounters keys of type i. When a block pointer is “stuck”
on a key of type j, it waits for the jth block pointer until it too is stuck (this will
happen since a block pointer yields only to keys of its block), in which case a swap is
performed and at least one of the two block pointers may continue to advance. When
any of the μ block pointers reaches the end of its block, we write that block back to
disk to the exact location from which it was loaded, and load the next contiguous
block from disk into memory (and of course set its block pointer again to the first
key in the block). We finish with each of the μ blocks upon crossing the boundaries
of the next adjacent block. The algorithm terminates when all blocks are done with.
The following is a pseudocode of the algorithm. See also Figure 1.

One-pass sorting algorithm.

procedure one-pass-sort (sequence, k,M,B)
for i = 0 to �M/B�

EFFICIENT BUNDLE SORTING 399

Fig. 1. Initialization of the M/B blocks in the One-pass sorting algorithm. After the counting
pass, we know where the sorted blocks reside, and load blocks from these locations. Swaps are
performed in memory. When any of the blocks is full, we write it to disk to the location from which
it was loaded, and load the next block from disk.

current block = ith block of sequence
for j = 0 to B of current block

Count[sequence[i ·B + j]]++
Count[k + 1] = M
for i = 1 to k

μ[i] = block at position Count[i] from sequence
μblock pointer[i] = 0
μglobal pointer[i] = Count[i]

blocks done = 0
while blocks done < k

for i = 1 to k
if μglobal pointer[i] < Count[i + 1]

while μblock pointer[i] < B and μ[i][μblock pointer[i]] = i
μblock pointer[i]++
μglobal pointer[i]++

stuck[i] = (μblock pointer[i] < B and μglobal pointer[i] < Count[i + 1])
stuck value = μ[i][μblock pointer[i]]
if stuck[i] and stuck[stuck value] then

swap μ[i][μblock pointer[i]] with
μ[stuck value][μblock pointer[stuck value]]

if μblock pointer[i] = B
Write μ[i] as a block to the location from which it was loaded
μ[i] = block at position μglobal pointer[i] from sequence
μblock pointer[i] = 0

if μglobal pointer[i] = Count[i + 1]
blocks done++;

Lemma 4.1. Let S be a sequence of N keys from {1, . . . , μ}, let B be the trans-
fer block size, and let M be the available memory such that M ≥ μB. Then the
sequence can be sorted in-place using the procedure “one-pass sorting” with a total of
�3N/B + 2M/B� I/Os.

Proof. We first show that the algorithm indeed sorts the input sequence. The
algorithm allocates one pointer in memory for each of the μ distinct keys, and the ith

400 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

such pointer writes only contiguous blocks of records whose keys consist solely of the
ith key. Thus, to show that the sequence is sorted by “one-pass sorting,” it suffices to
show that the algorithm terminates and that, upon termination, the ith pointer writes
its blocks in a physical location that precedes the blocks written by any j pointer for
j > i. The ordering between the pointers is ensured by setting the contiguous block
of the ith pointer to write to the exact location where keys of its type should reside
in the sorted sequence. This location is derived from the first pass in which we count
the number of appearances of each of the μ distinct keys. Termination is guaranteed,
since at each step at least one of the pointers encounters keys of its type, or a swap
will be performed and at least one of the pointers can proceed. Note that such a swap
will always be possible, since if the ith pointer is “stuck” on a key of type j, then the
jth pointer will necessarily get stuck at some step. Since at each step one of the keys
is written and there are N keys, the algorithm will terminate.

For computing the number of I/Os, note that the first counting pass reads each
block once and thus requires �N/B� I/Os. All the μ pointers combined read and write
each block once, adding another �2N/B� I/Os. Finally, if the number of appearances
of each distinct key is not an exact multiple of B, then every pair of consecutive
pointers may overlap by one block at the boundaries, thus requiring an additional
�2M/B� I/Os.

We now present the complete integer sorting algorithm. We assume that the
sequence contains keys in the range 1, . . . , k, where k is the number of distinct keys.
In section 4.2 we discuss the adaptation needed if the k distinct keys are not from
this integer range. We use the above one-pass sorting procedure. The general idea
is this: We initially perform one sorting iteration in which we sort the sequence into
k′ = �M/B� keys. We select a mapping function f such that for all 1 ≤ i ≤ k we have
f(i) = �ik′/k�, and we apply f to every key when the key is examined. This ensures
that we are actually in the range of 1, . . . , k′. Moreover, it will create sorted buckets
on disk such that the number of distinct keys in each of the buckets is roughly k/k′.
We repeat this procedure recursively for each of the sorted blocks obtained in this
iteration until the whole sequence is sorted. Each sorting iteration is done by calling
the procedure for one-pass sorting. We give a pseudocode of the algorithm below,
followed by an analysis of its performance.

The integer sorting algorithm.

procedure sort (sequence, k,M,B)
k′ = max(�M/B�, 2) // compute k′

if (k > 2) then
call one-pass sorting (sequence, k′,M,B)
for i = 1 to k′

bucket = the ith bucket sorted
call sort (bucket, �k/k′�,M,B)

Theorem 4.1. Let S be a sequence of N keys from {1, . . . , k}, let M be the
available memory, and let B be the transfer block size. A sequence residing on disk
can be sorted in-place using the bundle sorting algorithm, while the number of I/Os is
at most

⌈
3N

B
log�M/B� k

⌉
+ 4k

⌊
M

B

⌋
.

Proof. We first show that bundle sorting results in a sorting of the input sequence.
Since we map each key i to �ik′/k�, it follows from the correctness of the one-pass

EFFICIENT BUNDLE SORTING 401

sorting that, after the first call to one-pass sorting, the sequence will be sorted such
that for all i, keys in the range {�(i−1)k′/k�+1, . . . , �ik′/k�} precede all keys greater
than �ik′/k�. Each of the resulting range of keys is then recursively sorted. After at
most log�M/B� k recursive iterations, the number of distinct keys will be less than k′,
in which case the one-pass sorting will result in a full sorting of the sequence.

For the number of I/Os, we can view the bundle sorting algorithm as proceeding
in levels of recursion, where at the first level of recursion bundle sorting is applied
once, at the second level it is applied k′ times, and at the ith level it is applied k′i−1

times. The total number of levels of recursion is log�M/B� k. Even though at the

ith recursive level bundle sorting is applied k′i−1 times, each application is given a
disjoint sequence shorter than N as input, and all applications of bundle sorting at the
same recursive level cover the N input sequence exactly once. Thus, the counting pass
of all applications at the same recursive level will still require �N/B� I/Os, and all
such applications will result in a read and write of each block, incurring an additional
�2N/B� I/Os. Finally, since in general the number of distinct keys will not be a
multiple of B, there might be an overlap of at most one block between every pair
of consecutive pointers in one-pass sorting. Thus, we require an additional 2�M/B�
I/Os for each application of one-pass sorting. One-pass sorting is called once for the
first level of recursion, k′ for the second level, and k′i−1 for the ith level, and thus

the total number of times that one-pass sorting is called is k′1+log
k′k−1

k′−1 = k′k−1
k′−1 ≤ 2k.

Hence, we add an additional 4k�M/B� I/Os, which results in the desired bound on
the number of I/Os.

4.2. General bundle sorting. In section 4.1 we assumed that the input was
in the range 1, . . . , k, where k is the number of distinct keys in the sequence. We now
discuss how to construct a mapping function when the input is not in this range.

In the simple case where the input is from a universe that is not ordered (i.e.,
the sorting is done just to cluster keys together), we can simply select any universal
hash function as our mapping function. This ensures that the number of distinct keys
that will be distributed to each bucket is fairly equal and that our algorithm performs
without any loss of performance.

For the general case we assume that the input is from an ordered universe U and
consists of k distinct keys. We show how to construct a mapping function from U to
1, . . . , k. More specifically, we need a way to map the keys into the range [1,M/B]
at every application of the one-pass sorting procedure. A solution to this mapping is
to build an M/B-ary tree, whose leaves are the k distinct keys in sorted order and
each internal node stores the minimum and the maximum values of its M/B children.
Each application of one-pass sorting in integer sorting corresponds to an internal node
in the tree (starting from the root) along with its children, and so the tree provides
the appropriate mapping. This is because in each run of one-pass sorting the keys are
within the range of the minimum and maximum values stored in the corresponding
internal node, and the mapping into 1, . . . ,M/B is done according to the ranges of
the internal node’s children.

Constructing the sorted leaves can be done via count sort, in which we are given
a sequence of size N with k distinct keys and we need to produce a sorted list of the
k distinct keys and their counts. An easy way to do count sort is via merge sort,
in which identical keys are combined together (and their counts summed) whenever
they appear together. In each merge sort pass, the output run will never be longer
than k/B blocks. Initially, the runs contain at most M/B blocks. After logM/B(k/B)
passes, the runs will be of length at most k/B blocks, and after that point the number

402 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

of runs decreases geometrically, and the running time is thus linear in the number of
I/Os. The rest of the tree can be computed in at most one extra scan of the leaves-
array and lower order postprocessing. We can show the following.

Lemma 4.2 (see [WVI98]). A sequence of size N consisting of k distinct keys
can be count-sorted, using a memory of size M and block transfer size B, within an
I/O bound of

2N

B
logM/B

k

B
.

An interesting observation is that by adding a count to each leaf representing its
frequency in the sequence, and a count to each internal node which is the sum of
the counts of its children, we can eliminate the count phase of the one-pass sorting
procedure in the integer sorting algorithm. Thus, the general bundle sorting algorithm
is as follows. Initially, we use count sort and produce the tree. We now traverse the
tree, and on each internal node we call one-pass sorting, where the mapping function
is simply the ranges of values of the node’s M/B children. By combining Theorem 4.1
and Lemma 4.2 we can prove the bound for general bundle sorting.

Theorem 4.2. Let S be a sequence of size N , which consists of k distinct keys;
let M be the available memory; and let B be the transfer block size. Then we can
in-place sort S using the bundle sorting algorithm, while the number of I/Os is at
most

2N

B

(
log�M/B� k + log�M/B�

k

B

)
.

For all k < B2, this bound would be better than the bound for integer sorting.
Note that we can traverse the tree in either BFS (breadth first search) or DFS (depth
first search). If we choose BFS, the sorting will be done concurrently, and we get
an algorithm that gradually refines the sort. If we choose DFS, we get fully sorted
items quickly, while the rest of the items are left completely unsorted. The overhead
we incur by using the mapping will be in memory, where we now have to perform
a search over the M/B children of the internal node that we are traversing in order
to determine the mapping of each key into the range 1, . . . ,M/B. Using a simple
binary search over the ranges, the overhead will be an additional log2(M/B) memory
operations per key.

5. Lower bound for external bundle sorting. In this section we present a
lower bound for the I/O complexity of bundle sorting. We let k be the number of
distinct keys, M be the available memory, N be the size of the sequence, and B be
the transfer block size. We then differentiate between the following two cases:

1. k/B = BΩ(1) or M/B = BΩ(1). We prove the lower bound for this case by
proving a lower bound on bundle permutation, which is an easier problem
than bundle sorting.

2. k/B = Bo(1) and M/B = Bo(1). We prove the lower bound for this case
by proving a lower bound on a special case of matrix transposition, which is
easier than bundle sorting.

Lower bound using bundle-permutation. We assume that k/B = BΩ(1) or M/B =
BΩ(1) and use a similar approach as in the lower bound for general sorting of Ag-
garwal and Vitter [AV88] (see also [Vit99]). They proved the lower bound on the
problem of computing an arbitrary permutation, which is easier than sorting. Bun-
dle sorting is not necessarily harder than computing an arbitrary permutation, since

EFFICIENT BUNDLE SORTING 403

the output sequence may consist of one out of a set of permutations, denoted as a
bundle-permutation. A bundle-permutation is an equivalence class of permutations,
where two permutations can be in the same class if one can be obtained from the other
by permuting within bundles. Computing a permutation from an arbitrary bundle-
permutation, which we will refer to as the bundle-permutation problem, is easier than
bundle sorting.

Lemma 5.1. Under the assumption that k/B = BΩ(1) or M/B = BΩ(1), the
number of I/Os required in the worst case for sorting N data items of k distinct keys,
using a memory of size M and block transfer size B, is

Ω

(
N

B
logM/B k

)
.

Proof. Given a sequence of N data items consisting of k bundles of sizes α1, α2,
. . . , αk, the number of distinct bundle-permutations is

N !

α1! · α2! · · · · · αk!
≥ N !((

N
k

)
!
)k ;

the inequality is obtained using a convexity argument.
For the bundle-permutation problem, for each t ≥ 0 we measure the number of

distinct orderings that are realizable by at least one sequence of t I/Os. The value
of t for which the number of distinct orderings first exceeds the minimum orderings
needed to be considered is a lower bound on the worst-case number of I/Os needed
for the bundle-permutation problem and thus on the bundle sorting on disks.

Initially, the number of different permutations defined is 1. We consider the effect
of an output operation. There can be at most N/B + t− 1 full blocks before the tth
output, and hence the tth output changes the number of permutations generated by
at most a multiplicative factor of N/B+t, which can be bounded trivially by N logN .

For an input operation, we consider a block of B records input from a specific
block on disk. The B data keys in the block can intersperse among the M keys in
the internal memory in at most

(
M
B

)
ways, so that the number of realizable orderings

increases by a factor of
(
M
B

)
. If the block has never before resided in internal memory,

the number of realizable orderings increases by an extra factor of B!, since the keys in
the block can be permuted among themselves. This extra contribution can occur only
once for each of the N/B original blocks. Hence, the number of distinct orderings
that can be realized by some sequence of t I/Os is at most

(B!)
N/B

(
N logN

(
M

B

))t

.

We want to find the minimum t for which the number of realizable orderings exceeds
the minimum orderings required. Hence we have

(B!)
N/B

(
N logN

(
M

B

))t

≥ N !((
N
k

)
!
)k .

Taking the logarithm and applying Stirling’s formula, with some algebraic manipula-
tions, we get

t

(
logN + B log

M

B

)
= Ω

(
N log

k

B

)
.

404 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

By solving for t, we get

number of IOs = Ω

(
N

B
logM/B

k

B

)
.

Recall that we assume either k/B = BΩ(1) or M/B = BΩ(1). In either case, it is easy
to see that logM/B(k/B) = Θ(logM/B k), which gives us the desired bound.

Lower bound using a special case of matrix transposition. We now assume that
k/B = Bo(1) and M/B = Bo(1) (the case not handled earlier) and prove a lower bound
on a special case of matrix transposition, which is easier than bundle sorting. Our
proof proceeds under the normal assumption that the records are treated indivisibly
and that no compression of any sort is utilized.

Lemma 5.2. Under the assumption that k/B = Bo(1) and M/B = Bo(1), the
number of I/Os required in the worst case for sorting N data items of k distinct keys,
using a memory of size M block transfer size B, is

Ω

(
N

B
logM/B k

)
.

Proof. Consider the problem of transposing a k ×N/k matrix, in which the final
order of the elements in each row is not important. More specifically, let us assume
that the elements of the matrix are originally in column-major order. The problem
is to convert the matrix into row-major order, but the place in a row to which the
element goes can be arbitrary, as long as it is transferred to the proper row. Each
element that ends up in row i can be thought of as having the same key i. This
problem is a special case of sorting N keys consisting of exactly N/k records for each
of the k distinct keys. Hence, this problem is easier than bundle sorting. We now
prove a lower bound for this problem of

Ω

(
N

B
logM/B min(k,B)

)

I/Os. Under our assumption that k/B = Bo(1), this proves the desired bound for
bundle sorting.

We can assume that k ≤ N/B, since otherwise bundle sorting can be executed
by using any general sorting algorithm. We assume, without loss of generality, by the
assumption of the indivisibility of records, that there is always exactly one copy of
each record, and it is either on disk or in memory but not in both. At time t, let Xij

for 1 ≤ i ≤ k and 1 ≤ j ≤ N/B be the number of elements in the jth block on disk
that need to end up on the ith row of the transposed matrix. At time t, let Yi be the
number of elements currently in internal memory that need to go on the ith row in
the transposed matrix. We use the potential function f(x) = x log x for all x ≥ 0. Its
value at x = 0 is f(0) = 0. We define the overall potential function POT to be

POT =
∑
i,j

f(Xij) +
∑
i

f(Yi).

When the algorithm terminates, we have Yi = 0 for all i, and the final value of
potential POT is

N

B
(B logB) + 0 = N logB.

EFFICIENT BUNDLE SORTING 405

If k < B, the initial potential is

N

B
k

(
B

k
log

B

k

)
= N log

B

k
,

and the initial potential is 0 otherwise (if k ≥ B).
Note that our potential function satisfies

f(a + b) = (a + b) log(a + b) ≥ f(a) + f(b)

for all a, b ≥ 0. Consider an output operation that writes a complete block of size B
from memory to disk. If we write xi records that need to go to the ith row and there
are yi such records in memory, then the change in potential is

∑
i

(
f(xi) + f(yi) −

f(xi + yi)
)
≤ 0. Hence, output operations can only decrease the potential, and thus

we need to consider only how much an input operation increases the potential.
If we read during an input operation a complete block of B records that contains

xi records that need to go to the ith row and there are yi such records already in
memory, then the change in the potential is

∑
1≤i≤k

(f(xi + yi) − f(xi) − f(yi)) .

By a convexity argument, this quantity is maximized when xi = B/k and yi =
(M − B)/k for each 1 ≤ i ≤ k, in which case the change in potential is bounded by
B log(M/B).

We get a lower bound on the number of read operations by dividing the difference
of the initial and final potentials by the bound on the maximum change in potential
per read. For k < B, we get the I/O bound

N logB −N log B
k

B log M
B

=
N

B
logM/B k.

For k ≥ B, we get the I/O bound

N logB − 0

B log M
B

=
N

B
logM/B B.

We have thus proved a lower bound of Ω((N/B) logM/B min(k,B)) I/Os. Under our

assumption that k/B = Bo(1), this gives us an I/O lower bound for this case of bundle
sorting of

Ω

(
N

B
logM/B k

)
.

Theorem 5.1 for the lower bound of bundle sorting follows from Lemmas 5.1
and 5.2, since together they cover all possibilities for k, M , and B.

Theorem 5.1. The number of I/Os required in the worst case for sorting N data
items of k distinct keys, using a memory of size M and block transfer size B, is

Ω

(
N

B
logM/B k

)
.

406 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

6. The disk latency model. In this section we consider the necessary mod-
ifications in the external bundle sorting algorithm in order to achieve an optimum
number of I/Os in a more performance-sensitive model, as in [FFM98]. In this model,
we differentiate between two types of I/Os: sequential I/Os and random I/Os, where
there is a reduced cost for sequential I/Os. We start by presenting the model, followed
by the modifications necessary in the bundle sorting, as presented in section 4.2. We
also provide an additional, slightly different integer sorting algorithm that, depending
on the setting, may enhance performance by up to 33% in this model for the integer
sorting problem.

6.1. The model. The only difference between this model and the external mem-
ory model presented in section 3 is that we now differentiate between costs of two types
of I/O: sequential and random I/Os. We define � to be the latency to move the disk
read/write head to a new position during a random seek. We define r to be the cost of
reading a block of size B into internal memory once the read/write head is positioned
at the start of the block.

The parameters N , M , and B, as before, are referred to as the file size, memory
size, and transfer block size, respectively, and they satisfy 1 ≤ B ≤ M/2 and M < N .
We will consider the case where D = 1, meaning that there is no disk parallelism. It
should be clear, from the above parameters, that the cost of a random I/O that loads
one transfer block into memory is � + r, and the cost of a sequential I/O is simply r.

6.2. Optimal bundle sorting in the disk latency model. The modification
for bundle sorting is based on the observation that in the worst-case scenario of the
algorithm as described in section 4.2, every I/O in the sorting pass can be a random
I/O. This is because we are loading �M/B� blocks from disk into �M/B� buckets,
and in the worst case they may be written back in a round robin fashion resulting
solely in random I/Os. However, if we decide to read more blocks into each bucket,
we will increase the total number of I/Os, which will result in the worst case with
sequential I/Os in addition to random I/Os.

Let α be the number of blocks that we load into each bucket, where clearly,
1 ≤ α ≤ (M/2B). Thus, in each call to one-pass sorting of bundle sorting we sort into
�M/(αB)� distinct keys, resulting in a total of logM/(αB) k passes over the sequence.
However, we are now sure that at least (α − 1)/α of the I/Os are sequential. We
differentiate between the I/Os required in the external count sort, in which we perform
only sequential I/Os, and the sorting pass, in which we also have random I/Os. Using
Theorem 4.2, the performance is now

2N

B

(
1

α
(� + αr) logM/αB k + r logM/B

k

B

)

I/Os, and the optimal value of α can be determined via an optimization procedure.
In section 7 we show experimentally how the execution time varies in this model as
we change α.

7. Experiments. We conducted several experiments with various data sets and
settings, while changing the size of the data sets N , the available memory M , the
transfer block size B, and the number of distinct items k. The data sets were generated
by the IBM test data generator (http://www.almaden.ibm.com/cs/quest), or taken
from the U.S. Census data, and the following experiments were executed on both
data sources. In all our experiments, the records consisted of 10-byte keys in 100-byte
records. All experiments were run on a Pentium2, 300 MHz, 128 MB RAM machine.

EFFICIENT BUNDLE SORTING 407

Fig. 2. Bundle sorting versus regular sorting (best merge sort, for instance). The x-axis is the
size of the data set drawn on a log scale. The y-axis is the number of I/Os performed per block of
input. As can be seen, in contrast to merge sort, the number of I/Os per block in bundle sorting
remains the same for a constant k as N increases.

We first demonstrate an important feature of bundle sorting: As long as the
number k of distinct keys remains constant, it performs the same number of I/O
accesses per disk block with no dependence on the size of the data set. This is in
contrast to general sort algorithms such as merge sort, which require more I/Os per
disk block as the size of the data set increases. See Figure 2. The parameter B was
set to 10 kB, and we tested for a memory of 1 MB and a memory of 20 MB. In both
these cases merge sort, as expected, increased the number of I/Os per disk block as the
size of the data set increased. In contrast, bundle sort performed a constant number
of I/O accesses per disk block. As N increases, the improvement in performance
becomes significant, demonstrating the advantages of bundle sorting. For instance,
even when k = 10000 and the available memory is 20 MB, the break-even point occurs
at N = 1 GB. As N increases, bundle sorting will perform better. If k ≤ 500, then in
the setting above, the break-even point occurs at N = 10 MB, making bundle sorting
most appealing.

The next experiments demonstrate the performance of bundle sort as a function
of k. See Figure 3. We set N at a fixed size of 1 GB and B at 10 kB. We ran
the tests with a memory of 1 MB and 20 MB and counted the number of I/Os. We
let k vary over a wide range of values from 2 to 109 (k ≤ N is always true). Since
merge sort does not depend on the number of distinct keys, it performed the same
number of I/O accesses per disk block in all these settings. In all these runs, as
long as k ≤ N/B, bundle sort performed better. When k is small the difference in
performance is significant.

As for the disk-latency model, we show the optimal α values for various settings.
Recall that in this model we attribute different costs to sequential and random I/Os.
See Figure 4. We measured α for different ratios between �, the cost of moving the
disk reader to a random location (the latency), and r, the cost of reading a transfer
block of size B. Parameter α also depends on the relation between M and B, so we
plot M/B on the x-axis of the graph. As can be seen, when the ratio is 1, the optimal
algorithm is exactly our bundle sorting algorithm, which counts only I/Os (hence it

408 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

Fig. 3. Bundle sorting versus regular sorting (best merge sort, for instance). The x-axis is the
number of distinct keys (k) in the sequence drawn on a log scale. The y-axis is the number of I/Os
per disk block. As can be seen, for k ≤ N/B, bundle sorting performs better than merge sort, and
the difference is large as k is smaller.

0
20
40
60
80

100
120
140
160
180

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

r/l = 1
r/l = 10
r/l = 100

M/B

O
pt

im
al

α

Fig. 4. Optimum bundle sorting in the disk latency model—resolving α as a function of r, �,
and M/B.

assumes that the cost of a random and a sequential I/O are equivalent). As this ratio
increases, α increases, calling for a larger adaptation of our algorithm. Also affecting
α, but in a more moderate way, is M/B. As this ratio increases, the optimum is
achieved for a larger α.

8. Conclusions. We considered the sorting problem for large data sets with a
moderate number of distinct keys, which we denote as bundle sorting, and identi-
fied it as a problem that is inherently easier than general sorting. We presented a
simple in-place sorting algorithm for external memory, which may provide significant
improvement over current sorting techniques. We also provided a matching lower
bound, indicating that our solution is optimal.

Sorting is a fundamental problem, and any improvement in its solution may have

EFFICIENT BUNDLE SORTING 409

many applications. For instance, consider the sort join algorithm that computes join
queries by first sorting the two relations that are to be joined, after which the join
can be done efficiently in only one pass on both relations. Clearly, if the relations are
large and their keys are taken from a universe of moderate size, then bundle sorting
could provide more efficient execution than general sort.

It is interesting to note that the nature of the sorting algorithm is such that after
the ith pass over the data set, the sequence is fully sorted into (�M/B�)i keys. In
effect, the sequence is gradually sorted, where after each pass a further refinement is
achieved, until finally the sequence is sorted. We can take advantage of this feature
and use it in applications that benefit from quick, rough estimates that are gradually
refined as we perform additional passes over the sequence. For instance, we could use
it to produce intermediate join estimates, while refining the estimates by additional
passes over the sequence. We can estimate the join after each iteration over the data
set, improving the estimate after each such pass, and arrive at the final join after
bundle sorting has completely finished.

The bundle sorting algorithm can be adapted efficiently and in a most straight-
forward way in the parallel disk model (PDM) described in [Vit99]. We now assume,
in the external memory model, that D > 1, meaning that we can transfer D blocks
into memory concurrently. This is like having D independent parallel disks. Assume
that the data to be stored is initially located on one of the disks. In the first step we
sort the data into exactly D buckets, writing each bucket into a distinct disk. Next,
we sort, in parallel on each of the disks, the data set that was partitioned into each
of the disks. Except for the initial partitioning step, we make full utilization of the
parallel disks, thus enhancing performance by a factor of nearly D over all the bounds
given in this paper. Note that extending bundle sorting to fit the PDM model was
straightforward because of its top-down nature. Bundle sorting can also be utilized
to enhance the performance of general sorting when the available working space is
substantially smaller than the input set.

Bundle sorting is a fully in-place algorithm, which in effect causes the available
memory to be doubled as compared to non–in-place algorithms. The performance
gain from this feature can be significant. For instance, even if M/B = 1000, the
performance gain is 10% and can be much higher for a smaller ratio. In some cases,
an in-place sorting algorithm can avoid the use of high cost memory such as virtual
memory.

We considered the disk latency model, which is a more performance-sensitive
model where we differentiate between two types of I/Os—sequential and random
I/Os—with a reduced cost for sequential I/Os. This model can be more realistic
for performance analysis, and we have shown the necessary adaptation in the bundle
sorting algorithm to arrive at an optimal solution in this model.

We have shown experimentation with real and synthetic data sets, which demon-
strates that the theoretical analysis gives an accurate prediction of the actual perfor-
mance.

REFERENCES

[ADADC+97] A. C. Arpaci-Dussaeu, R. H. Arpaci-Dussaeu, D. E. Culler, J. M. Heller-

stein, and D. A. Patterson, High-performance sorting on networks of work-
stations, in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1997, ACM, New York, 1997, pp. 243–254.

[Aga96] R. C. Agarwal, A super scalar sort algorithm for RISC processors, in Proceed-

410 YOSSI MATIAS, ERAN SEGAL, AND JEFFREY SCOTT VITTER

ings of the ACM SIGMOD International Conference on Management of Data,
Montral, QC, 1996, ACM, New York, 1996, pp. 240–246.

[AV88] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and re-
lated problems, Comm. ACM, 31 (1988), pp. 1116–1127.

[BBW86] M. Beck, D. Bitton, and W. K. Wilkinson, Sorting Large Files on a Backend
Multiprocessor, Technical Report 86-741, Department of Computer Science,
Cornell University, Ithaca, NY, 1986.

[BGK90] B. Baugsto, J. Greipsland, and J. Kamerbeek, Sorting large data files on
POMA, in Proceedings of CONPAR-90: Proceedings of the Joint Interna-
tional Conference on Vector and Parallel Processing, Zurich, Switzerland, 1990,
Springer-Verlag, pp. 536–547.

[FFM98] M. Farach, P. Ferragina, and S. Muthukrishnan, Overcoming the memory
bottleneck in suffix tree construction, in Proceedings of the 39th IEEE Annual
Symposium on Foundations of Computer Science, Palo Alto, CA, 1998, IEEE
Press, Piscataway, NJ, 1998, pp. 174–183.

[Gra93] G. Graefe, Query evaluation techniques for large databases, ACM Comput. Sur-
veys, 25 (1993), pp. 73–170.

[IBM95] IBM, Database 2, Administration Guide for Common Servers, Version 2, 1995.
[Knu73] D. E. Knuth, The Art of Computer Programming. Vol. 3. Sorting and Searching,

Addison Wesley Longman Publishing, Redwood City, CA, 1973.
[MSV00] Y. Matias, E. Segal, and J. S. Vitter, Efficient bundle sorting, in Proceedings

of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, 2000, SIAM, Philadelphia, 2000, pp. 839–848.

[Vit99] J. S. Vitter, External memory algorithms and data structures, in External Mem-
ory Algorithms and Visualization, J. Abello and J. S. Vitter, eds., AMS, Prov-
idence, RI, 1999; updated version available online at http://www.cs.duke.edu/
∼jsv/.

[WVI98] M. Wang, J. S. Vitter, and B. R. Iyer, Scalable mining for classification rules
in relational databases, in Proceedings of the International Database Engineer-
ing & Application Symposium, Cardiff, Wales, 1998, IEEE Computer Society
Press, Washington, DC, pp. 58–67.

[ZL98] W. Zhang and P.-A. Larson, Buffering and read-ahead strategies for external
mergesort, in Proceedings of the International Conference on Very Large Data
Bases (VLDB), 1998, Morgan Kaufmann, San Francisco, CA, pp. 523–533.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 411–432

APPROXIMATION ALGORITHMS FOR METRIC FACILITY
LOCATION PROBLEMS∗

MOHAMMAD MAHDIAN† , YINYU YE‡ , AND JIAWEI ZHANG§

Abstract. In this paper we present a 1.52-approximation algorithm for the metric uncapaci-
tated facility location problem, and a 2-approximation algorithm for the metric capacitated facility
location problem with soft capacities. Both these algorithms improve the best previously known
approximation factor for the corresponding problem, and our soft-capacitated facility location algo-
rithm achieves the integrality gap of the standard linear programming relaxation of the problem.
Furthermore, we will show, using a result of Thorup, that our algorithms can be implemented in
quasi-linear time.

Key words. approximation algorithms, facility location problem, greedy method, linear pro-
gramming

AMS subject classifications. 90C59, 90C27, 90B80

DOI. 10.1137/S0097539703435716

1. Introduction. Variants of the facility location problem (FLP) have been
studied extensively in the operations research and management science literatures
and have received considerable attention in the area of approximation algorithms (see
[21] for a survey). In the metric uncapacitated facility location problem (UFLP),
which is the most basic FLP, we are given a set F of facilities, a set C of cities (i.e.,
clients), a cost fi for opening facility i ∈ F , and a connection cost cij for connecting
client j to facility i. The objective is to open a subset of the facilities in F and connect
each city to an open facility so that the total cost, that is the cost of opening facilities
and connecting the clients, is minimized. We assume that the connection costs form
a metric, meaning that they are symmetric and satisfy the triangle inequality.

Since the first constant factor approximation algorithm due to Shmoys, Tardos,
and Aardal [22], a large number of approximation algorithms have been proposed
for UFLP [23, 12, 25, 14, 2, 4, 6, 8, 15]. Table 1 shows a summary of these results.
Prior to this work, the best known approximation factor for UFLP was 1.58, given by
Sviridenko [23], which was achieved using linear programming (LP) rounding. Guha
and Khuller [8] proved that it is impossible to get an approximation guarantee of
1.463 for UFLP, unless NP ⊆ DTIME[nO(log log n)]. In this paper, we give a 1.52-
approximation algorithm for UFLP, which can be implemented in quasi-linear time,
using a result of Thorup [24]. Our algorithm combines the greedy algorithm of Jain,
Mahdian, and Saberi [13] and Jain et al. [12] with the idea of cost scaling, and is
analyzed using a factor-revealing linear program.

The growing interest in UFLP is not only due to its applications in a large number
of settings [7], but also due to the fact that UFLP is one of the most basic models

∗Received by the editors October 6, 2003; accepted for publication (in revised form) February 7,
2006; published electronically June 30, 2006. This paper is based on preliminary versions [18, 19].

http://www.siam.org/journals/sicomp/36-2/43571.html
†Microsoft Research, One Microsoft Way, Redmond, WA 98052 (mahdian@microsoft.com).
‡Department of Management Science and Engineering, School of Engineering, Stanford University,

Stanford, CA 94305 (yinyu-ye@stanford.edu). This author’s research was supported in part by NSF
grant DMI-0231600.

§IOMS-Operations Management, Stern School of Business, New York University, 44 West 4th St.,
Suite 8-66, New York, NY 10012-1126 (jzhang@stern.nyu.edu).

411

412 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

Table 1

Approximation algorithms for UFLP.

Approx. factor Reference Technique/running time

O(lnnc) [10] Greedy algorithm/O(n3)
3.16 [22] LP rounding
2.41 [8] LP rounding + greedy augmentation
1.736 [6] LP rounding
5 + ε [15] Local search/O(n6 log(n/ε))

3 [14] Primal-dual method/O(n2 logn)
1.853 [4] Primal-dual method + greedy augmentation/O(n3)
1.728 [4] LP rounding + primal-dual method + greedy augmentation
1.861 [16, 12] Greedy algorithm/O(n2 logn)
1.61 [13, 12] Greedy algorithm/O(n3)
1.582 [23] LP rounding

1.52 This paper Greedy algorithm + cost scaling/Õ(n)

among discrete location problems. The insights gained in dealing with UFLP may
also apply to more complicated location models, and in many cases the latter can be
reduced directly to UFLP.

In the second part of this paper, we give a 2-approximation algorithm for the
soft-capacitated facility location problem (SCFLP) by reducing it to UFLP. SCFLP
is similar to UFLP, except that there is a capacity ui associated with each facility i,
which means that if we want this facility to serve x cities, we have to open it �x/ui�
times at a cost of fi�x/ui�. This problem is also known in the operations research
literature as the facility location problem with integer decision variables (see [3] and
[20]). Chudak and Shmoys [5] gave a 3-approximation algorithm for SCFLP with
uniform capacities (i.e., ui = u for all i ∈ F) using LP rounding. For nonuniform
capacities, Jain and Vazirani [14] showed how to reduce this problem to UFLP, and
by solving UFLP through a primal-dual algorithm, they obtained a 4-approximation.
Arya et al. [2] proposed a local search algorithm that achieves an approximation
ratio of 3.72. Following the approach of Jain and Vazirani [14], Jain and coworkers
[13, 12] showed that SCFLP can be approximated within a factor of 3. This was
the best previously known algorithm for this problem. We improve this factor to 2,
achieving the integrality gap of the natural LP relaxation of the problem. The main
idea of our algorithm is to consider algorithms and reductions that have separate (not
necessarily equal) approximation factors for the facility and connection costs. We will
define the concept of bifactor approximate reduction in this paper, and show how it
can be used to get an approximation factor of 2 for SCFLP. The idea of using bifactor
approximation algorithms and reductions can be used to improve the approximation
factor of several other problems.

The rest of this paper is organized as follows: In section 2 the necessary definitions
and notation are presented. In section 3, we present the algorithm for UFLP and its
underlying intuition, and we prove the upper bound of 1.52 on the approximation
factor of the algorithm. In section 4 we present a lemma on the approximability
of the linear-cost FLP. In section 5 we define the concept of a bifactor approximate
reduction between facility location problems. Using bifactor reductions to the linear-
cost FLP and the lemma proved in section 4, we present algorithms for SCFLP and
the concave SCFLP. Concluding remarks are given in section 6.

2. Preliminaries. In this paper, we will define reductions between various FLPs.
Many such problems can be considered as special cases of the universal FLP, as de-
fined below. This problem was first defined in [9] and further studied in [17].

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 413

Definition 1. In the metric universal FLP, we are given a set C of nc cities,
a set F of nf facilities, a connection cost cij between city j and facility i for every
i ∈ F , j ∈ C, and a facility cost function fi : {0, . . . , nc} �→ R+ for every i ∈ F .
Connection costs are symmetric and obey the triangle inequality. The value of fi(k)
equals the cost of opening facility i if it is used to serve k cities. A solution to the
problem is a function φ : C → F assigning each city to a facility. The facility cost Fφ

of the solution φ is defined as
∑

i∈F fi(|{j : φ(j) = i}|), i.e., the total cost for opening
facilities. The connection cost (or service cost) Cφ of φ is

∑
j∈C cφ(j),j, i.e., the total

cost of opening each city to its assigned facility. The objective is to find a solution φ
that minimizes the sum Fφ + Cφ.

For the metric universal FLP, we distinguish two models by how the connection
costs are given. In the distance oracle model, the connection costs are explicitly given
by a matrix (cij) for any i ∈ F and j ∈ C. In the sparse graph model, C and F are
nodes of an undirected graph (which may not be complete) in which the cost of each
edge is given, and the connection cost between a facility i and a client j is implicitly
given by the shortest distance between i and j.

Now we can define the uncapacitated and soft-capacitated FLPs as special cases
of the universal FLP, as follows.

Definition 2. The metric uncapacitated facility location problem (UFLP) is
a special case of the universal FLP in which all facility cost functions are of the
following form: for each i ∈ F , fi(k) = 0 if k = 0, and fi(k) = fi if k > 0, where fi
is a constant which is called the facility cost of i.

Definition 3. The metric soft-capacitated facility location problem (SCFLP) is
a special case of the universal FLP in which all facility cost functions are of the form
fi(k) = fi�k/ui�, where fi and ui are constants for every i ∈ F , and ui is called the
capacity of facility i.

The algorithms presented in this paper build upon an earlier approximation algo-
rithm of Jain and coworkers [13, 12], which is sketched below. We call this algorithm
the JMS algorithm.

the jms algorithm.

1. At the beginning, all cities are unconnected, all facilities are unopened, and the
budget of every city j, denoted by Bj , is initialized to 0. At every moment,
each city j offers some money from its budget to each unopened facility i.
The amount of this offer is equal to max(Bj − cij , 0) if j is unconnected, and
max(ci′j − cij , 0) if it is connected to some other facility i′.

2. While there is an unconnected city, increase the budget of each unconnected
city at the same rate, until one of the following events occurs:
(a) For some unopened facility i, the total offer that it receives from cities

is equal to the cost of opening i. In this case, we open facility i, and for
every city j (connected or unconnected) which has a nonzero offer to i,
we connect j to i.

(b) For some unconnected city j, and some facility i that is already open,
the budget of j is equal to the connection cost cij . In this case, we
connect j to i.

The analysis of the JMS algorithm has the feature that allows the approximation
factor for the facility cost to be different from the approximation factor for the con-
nection cost, and gives a way to compute the tradeoff between these two factors. The
following definition captures this notion.

Definition 4. An algorithm is called a (γf , γc)-approximation algorithm for the
universal FLP if, for every instance I of the universal FLP and for every solution

414 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

SOL for I with facility cost FSOL and connection cost CSOL, the cost of the solution
found by the algorithm is at most γfFSOL + γcCSOL.

Recall the following theorem of Jain and coworkers [13, 12] on the approximation
factor of the JMS algorithm.

Theorem A (see [13, 12]). Let γf ≥ 1 be fixed and γc := supk{zk}, where zk is
the solution of the following optimization program, referred to as the factor-revealing
LP:

maximize

∑k
i=1 αi − γff∑k

i=1 di
(LP1)

subject to ∀ 1 ≤ i < k : αi ≤ αi+1,(1)

∀ 1 ≤ j < i < k : rj,i ≥ rj,i+1,(2)

∀ 1 ≤ j < i ≤ k : αi ≤ rj,i + di + dj ,(3)

∀ 1 ≤ i ≤ k :

i−1∑
j=1

max(rj,i − dj , 0) +

k∑
j=i

max(αi − dj , 0) ≤ f,(4)

∀ 1 ≤ j ≤ i ≤ k : αj , dj , f, rj,i ≥ 0.(5)

Then the JMS algorithm is a (γf , γc)-approximation algorithm for UFLP. Further-
more, for γf = 1 we have γc ≤ 2.

3. The uncapacitated facility location algorithm.

3.1. Description of the algorithm. We use the JMS algorithm to solve the
UFLP with an improved approximation factor. Our algorithm has two phases. In the
first phase, we scale up the opening costs of all facilities by a factor of δ (which is a
constant that will be fixed later) and then run the JMS algorithm to find a solution.
The technique of cost scaling has been previously used by Charikar and Guha [4] for
the FLP in order to take advantage of the asymmetry between the performance of
the algorithm with respect to the facility and that with respect to the connection
costs.

Here we give a different intuitive reason: Intuitively, the facilities that are opened
by the JMS algorithm with the scaled-up facility costs are those that are very econom-
ical, because we weigh the facility cost more than the connection cost in the objective
function. Therefore, we open these facilities in the first phase of the algorithm.

One important property of the JMS algorithm is that it finds a solution in which
there is no unopened facility that one can open to decrease the cost (without closing
any other facility). This is because for each city j and facility i, j offers to i the
amount that it would save in the connection cost if it gets its service from i. This
is, in fact, the main advantage of the JMS algorithm over a previous algorithm of
Mahdian et al. [16].

However, the facility costs have been scaled up in the first phase of our algorithm.
Therefore, it is possible that the total cost (in terms of the original cost) can be reduced
more by opening an unopened facility and by reconnecting each city to its closest open
facility. This motivates the second phase of our algorithm.

In the second phase of the algorithm, we decrease the scaling factor δ at rate 1,
so that at time t the cost of facility i has reduced to (δ − t)fi. If at any point during
this process a facility could be opened without increasing the total cost (i.e., if the
opening cost of the facility equals the total amount that cities can save by switching
their “service provider” to that facility), then we open the facility and connect each

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 415

city to its closest open facility. We stop when the scaling factor becomes 1. This is
equivalent to a greedy procedure introduced by Guha and Khuller [8] and Charikar
and Guha [4]. In this procedure, in each iteration we pick a facility u of opening
cost fu such that if by opening u the total connection cost decreases from C to C ′

u,
the ratio (C − C ′

u − fu)/fu is maximized. If this ratio is positive, then we open the
facility u and iterate; otherwise we stop. It is not hard to see that the second phase of
our algorithm is equivalent to the Charikar–Guha–Khuller procedure: in the second
phase of our algorithm, the first facility u that is opened corresponds to the minimum
value of t, or the maximum value of δ − t, for which we have (δ − t)fu = C − C ′

u. In
other words, our algorithm picks the facility u for which the value of (C − C ′

u)/fu is
maximized, and stops when this value becomes less than or equal to 1 for all u. This is
the same as what the Charikar–Guha–Khuller procedure does. The original analysis
of our algorithm in [18] was based on a lemma by Charikar and Guha [4]. Here we give
an alternative analysis of our algorithm that uses only a single factor-revealing LP.

We call our two-phase algorithm Algorithm A. In the remainder of this section,
we analyze Algorithm A and prove that it always outputs a solution to the UFLP of
cost at most 1.52 times the optimum. The analysis is divided into three parts. First,
in section 3.2, we derive the factor-revealing linear program whose solution gives the
approximation ratio of our algorithm. Next, in section 3.3, we analyze this linear
program, and compute its solution in terms of the approximation factors of the JMS
algorithm. This gives the following result.

Theorem 1. Let (γf , γc) be a pair obtained from the factor-revealing linear
program (LP1). Then for every δ ≥ 1, Algorithm A is a (γf + ln(δ) + ε, 1 + γc−1

δ)-
approximation algorithm for the UFLP.

Finally, we analyze the factor-revealing linear program (1) and show that the JMS
algorithm is a (1.11, 1.78)-approximation algorithm for the UFLP. This, together with
the above theorem for δ = 1.504, implies that Algorithm A is a 1.52-approximation
algorithm for the UFLP. We will show in section 3.4 that this algorithm can be
implemented in quasi-linear time, both for the distance oracle model and for the
sparse graph model.

3.2. Deriving the factor-revealing LP. Recall that the JMS algorithm, in
addition to finding a solution for the scaled instance, outputs the share of each city
in the total cost of the solution. Let αj denote the share of city j in the total cost.
In other words, αj is the value of the variable Bj at the end of the JMS algorithm.
Therefore the total cost of the solution is

∑
j αj . Consider an arbitrary collection S

consisting of a single facility fS and k cities. Let δf (f in the original instance) denote
the opening cost of facility fS ; αj denote the share of city j in the total cost (where
cities are ordered such that α1 ≤ · · · ≤ αk); dj denote the connection cost between city
j and facility fS ; and rj,i (i > j) denote the connection cost between city j and the
facility that it is connected to at time αi, right before city i gets connected for the first
time (or if cities i and j get connected at the same time, define rj,i = αi = αj). The
main step in the analysis of the JMS algorithm is to prove that for any such collection
S, the δf , dj , αj , and rj,i values constitute a feasible solution to the program (LP1),
where f is now replaced with δf since the facility costs have been scaled up by δ.

We implement and analyze the second phase as the following. Instead of decreas-
ing the scaling factor continuously from δ to 1, we decrease it discretely in L steps,
where L is a constant. Let δi denote the value of the scaling factor in the ith step.
Therefore, δ = δ1 > δ2 > · · · > δL = 1. We will fix the value of the δi’s later. After
decreasing the scaling factor from δi−1 to δi, we consider facilities in an arbitrary or-

416 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

der, and open those that can be opened without increasing the total cost. We denote
this modified algorithm by AL. Clearly, if L is sufficiently large (depending on the
instance), the algorithm AL computes the same solution as Algorithm A.

In order to analyze the above algorithm, we need to add extra variables and
inequalities to the inequalities in the factor-revealing program (LP1) given in Theo-
rem A. Let rj,k+i denote the connection cost that city j in S pays after we change
the scaling factor to δi and process all facilities as described above. (Thus, rj,k+1 is
the connection cost of city j after the first phase.) Therefore, by the description of
the algorithm, we have

∀ 1 ≤ i ≤ L :

k∑
j=1

max(rj,k+i − dj , 0) ≤ δif.

This is because if the above inequality is violated and if fS is not open, we could
open fS and decrease the total cost. If fS is open, then rj,k+i ≤ dj for all j, and the
inequality holds.

Now, we compute the share of the city j in the total cost of the solution that
algorithm AL finds. In the first phase of the algorithm, the share of city j in the total
cost is αj . Of this amount, rj,k+1 is spent on the connection cost, and αj − rj,k+1 is
spent on the facility costs. However, since the facility costs are scaled up by a factor
of δ in the first phase, therefore the share of city j in the facility costs in the original
instance is equal to (αj − rj,k+1)/δ. After we reduce the scaling factor from δi to δi+1

(i = 1, . . . , L − 1), the connection cost of city j is reduced from rj,k+i to rj,k+i+1.
Therefore, in this step, the share of city j in the facility costs is rj,k+i − rj,k+i+1 with
respect to the scaled instance, or (rj,k+i − rj,k+i+1)/δi+1 with respect to the original
instance. Thus, at the end of the algorithm, the total share of city j in the facility
costs is

αj − rj,k+1

δ
+

L−1∑
i=1

rj,k+i − rj,k+i+1

δi+1
.

We also know that the final amount that city j pays for the connection cost is rj,k+L.
Therefore, the share of the city j in the total cost of the solution is

αj − rj,k+1

δ
+

L−1∑
i=1

rj,k+i − rj,k+i+1

δi+1
+ rj,k+L+1 =

αj

δ
+

L−1∑
i=1

(
1

δi+1
− 1

δi

)
rj,k+i.(6)

This, together with a dual fitting argument similar to [12], implies the following.
Theorem 2. Let (ξf , ξc) be such that ξf ≥ 1 and ξc is an upper bound on the

solution of the following maximization program for every k:

maximize

∑k
j=1

(
αj

δ +
∑L−1

i=1

(
1

δi+1
− 1

δi

)
rj,k+i

)
− ξff∑k

i=1 di
(LP2)

subject to ∀ 1 ≤ i < k : αi ≤ αi+1,(7)

∀ 1 ≤ j < i < k : rj,i ≥ rj,i+1,(8)

∀ 1 ≤ j < i ≤ k : αi ≤ rj,i + di + dj ,(9)

∀ 1 ≤ i ≤ k :

i−1∑
j=1

max(rj,i − dj , 0) +

k∑
j=i

max(αi − dj , 0) ≤ δf,(10)

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 417

∀ 1 ≤ i ≤ L :

k∑
j=1

max(rj,k+i − dj , 0) ≤ δif,(11)

∀ 1 ≤ j ≤ i ≤ k : αj , dj , f, rj,i ≥ 0.(12)

Then, algorithm AL is a (ξf , ξc)-approximation algorithm for UFLP.

3.3. Analyzing the factor-revealing LP. In the following theorem, we an-
alyze the factor-revealing linear program (LP2) and prove Theorem 1. In order to
do this, we need to set the values of the δi’s. Here, for simplicity of computations,

we set δi to δ
L−i
L−1 ; however, it is easy to observe that any choice of δi’s such that

δ = δ1 > δ2 > · · · > δL = 1 and the limit of maxi(δi − δi+1) as L tends to infinity is
zero will also work.

Theorem 3. Let (γf , γc) be a pair given by the maximization program (LP1) in
Theorem A, and δ ≥ 1 be an arbitrary number. Then for every ε, if L is a sufficiently
large constant, algorithm AL is a (γf + ln(δ) + ε, 1 + γc−1

δ)-approximation algorithm
for the UFLP.

Proof. Since the inequalities of the factor-revealing program (7) are a superset of
the inequalities of the factor-revealing program (1), by Theorem A and the definition
of (γf , γc), we have

k∑
j=1

αj ≤ γfδf + γc

k∑
j=1

dj .(13)

By inequality (11), for every i = 1, . . . , L we have

k∑
j=1

rj,k+i ≤
k∑

j=1

max(rj,k+i − dj , 0) +

k∑
j=1

dj ≤ δif +

k∑
j=1

dj .(14)

Therefore,

k∑
j=1

(
αj

δ
+

L−1∑
i=1

(
1

δi+1
− 1

δi

)
rj,k+i

)

=
1

δ

(
k∑

j=1

αj

)
+

L−1∑
i=1

((
1

δi+1
− 1

δi

) k∑
j=1

rj,k+i

)

≤ 1

δ

(
γfδf + γc

k∑
j=1

dj

)
+

L−1∑
i=1

((
1

δi+1
− 1

δi

)(
δif +

k∑
j=1

dj

))

= γff +
γc
δ

k∑
j=1

dj +

L−1∑
i=1

(
δi

δi+1
− 1

)
f +

(
1

δL
− 1

δ1

) k∑
j=1

dj

=
(
γf + (L− 1)(δ1/(L−1) − 1)

)
f +

(
γc
δ

+ 1 − 1

δ

) k∑
j=1

dj .

This, together with Theorem 2, shows that AL is a (γf+(L−1)(δ1/(L−1)−1), 1+ γc−1
δ)-

approximation algorithm for the UFLP. The fact that the limit of (L−1)(δ1/(L−1)−1)
as L tends to infinity is ln(δ) completes the proof.

418 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

We observe that the proof of Theorem 3 goes through as long as the limit of∑L−1
i=1 (δi

δi+1
− 1) as L tends to infinity is ln(δ). This condition holds if we choose the

δi’s such that δ = δ1 > δ2 > · · · > δL = 1 and the limit of maxi(δi − δi+1) as L
tends to infinity is zero. It can be seen as follows. Let xi = δi

δi+1
− 1 > 0. Then, for

i = 1, 2, . . . , L− 1,

xi − o(xi) ≤ ln

(
δi

δi+1

)
≤ xi.

It follows that

L−1∑
i=1

xi

(
1 − o(xi)

xi

)
≤ ln(δ) ≤

L−1∑
i=1

xi.

Since limL→∞
o(xi)
xi

= limxi→0
o(xi)
xi

= 0, we conclude that limL→∞
∑L−1

i=1 xi = ln(δ).
Now we analyze the factor-revealing linear program (LP1) and show that the JMS

algorithm is a (1.11, 1.78)-approximation algorithm.
Lemma 4. Let γf = 1.11. Then for every k, the solution of the factor-revealing

linear program (LP1) is at most 1.78.
Proof. For the proof, see the appendix.
Remark 1. Numerical computations using CPLEX show that z500 ≈ 1.7743 and

therefore γc > 1.774 for γf = 1.11. Thus, the estimate provided by the above lemma
for the value of γc is close to its actual value.

3.4. Running time. The above analysis of Algorithm A, together with a recent
result of Thorup [24], enables us to prove the following result.

Corollary 5. For every ε > 0, there is a quasi-linear time (1.52 + ε)-approxi-
mation algorithm for the UFLP, both in the distance oracle model and in the sparse
graph model.

Proof sketch. We use the algorithm AL for a large constant L. Thorup [24] shows
that for every ε > 0, the JMS algorithm can be implemented in quasi-linear time (in
both the distance oracle and the sparse graph models) with an approximation factor
of 1.61+ε. It is straightforward to see that his argument actually implies the stronger
conclusion that the quasi-linear algorithm is a (γf + ε, γc + ε)-approximation, where
(γf , γc) are given by Theorem A. This shows that the first phase of algorithm AL

can be implemented in quasi-linear time. The second phase consists of a constant
number of rounds. Therefore, we need to show only that each of these rounds can be
implemented in quasi-linear time. This is easy to see in the distance oracle model. In
the sparse graph model, we can use the exact same argument as that used by Thorup
in the proof of Lemma 5.1 of [24].

4. The linear-cost FLP. The linear-cost FLP is a special case of the universal
FLP in which the facility costs are of the form

fi(k) =

{
0, k = 0,
aik + bi, k > 0,

where ai and bi are nonnegative values for each i ∈ F . ai and bi are called the
marginal (or incremental) and setup costs, respectively, of facility i.

We denote an instance of the linear-cost FLP with marginal costs (ai), setup
costs (bi), and connection costs (cij) by LFLP (a, b, c). Clearly, the regular UFLP is

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 419

a special case of the linear-cost FLP with ai = 0, i.e., LFLP (0, b, c). Furthermore, it
is straightforward to see that LFLP (a, b, c) is equivalent to an instance of the regular
UFLP in which the marginal costs are added to the connection costs. More precisely,
let c̄ij = cij + ai for i ∈ F and j ∈ C, and consider an instance of UFLP with facility
costs (bi) and connection costs (c̄ij). We denote this instance by UFLP (b, c + a). It
is easy to see that LFLP (a, b, c) is equivalent to UFLP (b, c + a). Thus, the linear-
cost FLP can be solved using any algorithm for UFLP, and the overall approximation
ratio will be the same. However, for applications in the next section, we need bifactor
approximation factors of the algorithm (as defined in Definition 4).

It is not necessarily true that applying a (γf , γc)-approximation algorithm for
UFLP on the instance UFLP (b, a + c) will give a (γf , γc)-approximate solution for
LFLP (a, b, c). However, we will show that the JMS algorithm has this property. The
following lemma generalizes Theorem A for the linear-cost FLP.

Lemma 6. Let (γf , γc) be a pair obtained from the factor-revealing LP in Theo-
rem A. Then applying the JMS algorithm on the instance UFLP (b, a+ c) will give a
(γf , γc)-approximate solution for LFLP (a, b, c).

Proof. Let SOL be an arbitrary solution for LFLP (a, b, c), which can also be
viewed as a solution for UFLP (b, c̄) for c̄ = c + a. Consider a facility f that is open
in SOL and the set of clients connected to it in SOL. Let k denote the number
of these clients, f(k) = ak + b (for k > 0) be the facility cost function of f , and
d̄j denote the connection cost between client j and the facility f in the instance
UFLP (b, a + c). Therefore, dj = d̄j − a is the corresponding connection cost in the
original instance LFLP (a, b, c). Recall the definition of αj and rj,i in the factor-
revealing linear program of Theorem A. By inequality (3) we also know that αi ≤
rj,i + d̄j + d̄i. We strengthen this inequality as follows.

Claim 7. αi ≤ rj,i + dj + di.
Proof. The claim is true if αi = αj , since it happens only if rj,i = αj . Otherwise,

consider clients i and j(< i) at time t = αi − ε. Let s be the facility to which j is
assigned at time t. By the triangle inequality, we have

c̄si = csi + as ≤ csj + di + dj + as = c̄sj + di + dj ≤ rj,i + di + dj .

On the other hand, αi ≤ c̄si since otherwise i could have connected to facility s at a
time earlier than t.

Also, by inequality (4), we know that

i−1∑
j=1

max(rj,i − d̄j , 0) +

k∑
j=i

max(αi − d̄j , 0) ≤ b.

Notice that max(a− x, 0) ≥ max(a, 0) − x if x ≥ 0. Therefore, we have

i−1∑
j=1

max(rj,i − dj , 0) +

k∑
j=i

max(αi − dj , 0) ≤ b + ka.(15)

Claim 7 and inequality (15) show that the values αj , rj,i, dj , a, and b constitute a
feasible solution of the following optimization program:

maximize

∑k
i=1 αi − γf (ak + b)∑k

i=1 di

420 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

subject to ∀ 1 ≤ i < k : αi ≤ αi+1,

∀ 1 ≤ j < i < k : rj,i ≥ rj,i+1,

∀ 1 ≤ j < i ≤ k : αi ≤ rj,i + di + dj ,

∀ 1 ≤ i ≤ k :

i−1∑
j=1

max(rj,i − dj , 0) +

k∑
j=i

max(αi − dj , 0) ≤ b + ka,

∀ 1 ≤ j ≤ i ≤ k : αj , dj , a, b, rj,i ≥ 0.

However, it is clear that the above optimization program and the factor-revealing
linear program in Theorem A are equivalent. This completes the proof of this
lemma.

The above lemma and Theorem A give us the following corollary, which will be
used in the next section.

Corollary 8.There is a (1, 2)-approximation algorithm for the linear-cost FLP.
It is worth mentioning that Algorithm A can also be generalized for the linear-

cost FLP. The only trick is to scale up both a and b in the first phase by a factor of
δ, and scale them both down in the second phase. The rest of the proof is almost the
same as the proof of Lemma 6.

5. The SCFLP. In this section we will show how the SCFLP can be reduced to
the linear-cost FLP. In section 5.1 we define the concept of reduction between FLPs.
We will use this concept in sections 5.2 and 5.3 to obtain approximation algorithms
for SCFLP and a generalization of SCFLP and the concave-cost FLP.

5.1. Reduction between FLPs.
Definition 5. A reduction from an FLP A to another FLP B is a polynomial-

time procedure R that maps every instance I of A to an instance R(I) of B. This
procedure is called a (σf , σc)-reduction if the following conditions hold:

1. For any instance I of A and any feasible solution for I with facility cost F ∗
A

and connection cost C∗
A, there is a corresponding solution for the instance

R(I) with facility cost F ∗
B ≤ σfF

∗
A and connection cost C∗

B ≤ σcC
∗
A.

2. For any feasible solution for the instance R(I), there is a corresponding fea-
sible solution for I whose total cost is at most as much as the total cost of
the original solution for R(I). In other words, cost of the instance R(I) is
an overestimate of cost of the instance I.

Theorem 9. If there is a (σf , σc)-reduction from an FLP A to another FLP
B, and a (γf , γc)-approximation algorithm for B, then there is a (γfσf , γcσc)-approx-
imation algorithm for A.

Proof. On an instance I of the problem A, we compute R(I), run the (γf , γc)-
approximation algorithm for B on R(I), and output the corresponding solution for
I. In order to see why this is a (γfσf , γcσc)-approximation algorithm for A, let
SOL denote an arbitrary solution for I, ALG denote the solution that the above
algorithm finds, and F ∗

P and C∗
P (FALG

P and CALG
P , respectively) denote the facility

and connection costs of SOL (ALG, respectively) when viewed as a solution for
the problem P (P = A,B). By the definition of (σf , σc)-reductions and (γf , γc)-
approximation algorithms, we have

FALG
A + CALG

A ≤ FALG
B + CALG

B ≤ γfF
∗
B + γcC

∗
B ≤ γfσfF

∗
A + γcσcC

∗
A,

which completes the proof of the lemma.
We will see examples of reductions in the rest of this paper.

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 421

5.2. The SCFLP. In this subsection, we give a 2-approximation algorithm for
the soft-capacitated FLP by reducing it to the linear-cost FLP.

Theorem 10. There is a 2-approximation algorithm for the SCFLP.
Proof. We use the following reduction. Construct an instance of the linear-cost

FLP, where we have the same sets of facilities and clients. The connection costs
remain the same. However, the facility cost of the ith facility is (1 + k−1

ui
)fi if k ≥ 1

and 0 if k = 0. Note that, for every k ≥ 1, � k
ui
� ≤ 1 + k−1

ui
≤ 2 · � k

ui
�. Therefore, it is

easy to see that this reduction is a (2, 1)-reduction. By Corollary 8, there is a (1, 2)-
approximation algorithm for the linear-cost FLP, which together with Theorem 9
completes the proof.

Furthermore, we now illustrate that the following natural LP formulation of the
SCFLP has an integrality gap of 2. This means that we cannot obtain a better
approximation ratio using this LP relaxation as the lower bound.

minimize
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijxij

subject to ∀ i ∈ F , j ∈ C : xij ≤ yi,

∀ i ∈ F :
∑
j∈C

xij ≤ uiyi,

∀ j ∈ C :
∑
i∈F

xij = 1,

∀ i ∈ F , j ∈ C : xij ∈ {0, 1},(16)

∀ i ∈ F : yi is a nonnegative integer.(17)

In a natural linear program relaxation, we replace the constraints (16) and (17) by
xij ≥ 0 and yi ≥ 0. Here we see that even if we relax only constraint (17), the
integrality gap is 2. Consider an instance of the SCFLP that consists of only one
potential facility i and k ≥ 2 clients. Assume that the capacity of facility i is k − 1,
the facility cost is 1, and all connection costs are 0. It is clear that the optimal integral
solution has cost 2. However, after relaxing constraint (17), the optimal fractional
solution has cost 1+ 1

k−1 . Therefore, the integrality gap between the integer program

and its relaxation is 2(k−1)
k , which tends to 2 as k tends to infinity.

5.3. The concave SCFLP. In this subsection, we consider a common general-
ization of the SCFLP and the concave-cost FLP. This problem, which we refer to as
the concave SCFLP, is the same as the SCFLP except that if r ≥ 0 copies of facility
i are open, then the facility cost is gi(r)ai, where gi(r) is a given concave increasing
function of r. In other words, the concave SCFLP is a special case of the univer-
sal FLP in which the facility cost functions are of the form fi(x) = aigi(�x/ui�) for
constants ai, ui and a concave increasing function gi. It is also a special case of the
so-called staircase cost FLP [11]. On the other hand, it is a common generalization
of the SCFLP (when gi(r) = r) and the concave-cost FLP (when ui = 1 for all i).
The concave-cost FLP is a special case of the universal FLP in which facility cost
functions are required to be concave and increasing (see [9]). The main result of this
subsection is the following.

Theorem 11. The concave SCFLP is (maxi∈F
gi(2)
gi(1)

, 1)-reducible to the linear-

cost FLP.

422 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

The above theorem is established by the following lemmas, which show the re-
ductions between the concave SCFLP, the concave-cost FLP, and the linear-cost FLP.

Notice that maxi∈F
gi(2)
gi(1)

≤ 2.

Lemma 12. The concave soft-capacitated FLP is (maxi∈F
gi(2)
gi(1)

, 1) reducible to

the concave-cost FLP.
Proof. Given an instance I of the concave SCFLP, where the facility cost function

of the facility i is fi(k) = gi(�k/ui�)ai, we construct an instance R(I) of the concave-
cost FLP as follows. We have the same sets of facilities and clients and the same
connection costs as in I. The facility cost function of the ith facility is given by

f ′
i(k) =

{(
gi(r) + (gi(r + 1) − gi(r))(

k−1
ui

− r + 1)
)
ai if k > 0, r := �k/ui�,

0 if k = 0.

Concavity of gi implies that the above function is also concave, and therefore R(I) is
an instance of the concave-cost FLP. Also, it is easy to see from the above definition
that

gi(�k/ui�)ai ≤ f ′
i(k) ≤ gi(�k/ui� + 1)ai.

By the concavity of the function gi, we have gi(r+1)
gi(r)

≤ gi(2)
gi(1)

for every r ≥ 1. Therefore,

for every facility i and number k,

fi(k) ≤ f ′
i(k) ≤ gi(2)

gi(1)
fi(k).

This completes the proof of the lemma.
Now, we will show a simple (1, 1)-reduction from the concave-cost FLP to the

linear-cost FLP. This, together with the above lemma, reduces the concave SCFLP
to the linear-cost FLP.

Lemma 13. There is a (1, 1)-reduction from the concave-cost FLP to the linear-
cost FLP.

Proof. Given an instance I of concave-cost FLP, we construct an instance R(I)
of linear-cost FLP as follows: Corresponding to each facility i in I with facility cost
function fi(k), we put n copies of this facility in R(I) (where n is the number of
clients) and let the facility cost function of the lth copy be

f
(l)
i (k) =

{
fi(l) + (fi(l) − fi(l − 1))(k − l) if k > 0,
0 if k = 0.

In other words, the facility cost function is the line that passes through the points
(l−1, f(l−1)) and (l, f(l)). The set of clients and the connection costs between clients
and facilities are unchanged. We prove that this reduction is a (1, 1)-reduction.

For any feasible solution SOL for I, we can construct a feasible solution SOL′

for R(I) as follows. If a facility i is open and k clients are connected to it in SOL,
we open the kth copy of the corresponding facility in R(I) and connect the clients to

it. Since fi(k) = f
(k)
i (k), the facility and connection costs of SOL′ are the same as

those of SOL.
Conversely, consider an arbitrary feasible solution SOL for R(I). We construct

a solution SOL′ for I as follows. For any facility i, if at least one of the copies of i

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 423

is open in SOL, we open i and connect to it all clients that were served by a copy
of i in SOL. We show that this does not increase the total cost of the solution as
follows. Assume that the l1th, l2th, . . . , and lsth copies of i were open in SOL,
serving k1, k2, . . . , and ks clients, respectively. By the concavity of fi and the fact

that f
(l)
i (k) ≥ f

(k)
i (k) = fi(k) for every l, we have

fi(k1 + · · · + ks) ≤ fi(k1) + · · · + fi(ks) ≤ f
(l1)
i (k1) + · · · + f

(ls)
i (ks).

This shows that the facility cost of SOL′ is at most the facility cost of SOL.

6. Conclusion. We have obtained the best approximation ratios for two well-
studied facility location problems, 1.52 for the UFLP and 2 for the SCFLP, respec-
tively. The approximation ratio for the UFLP almost matches the lower bound of
1.463, and the approximation ratio for the SCFLP achieves the integrality gap of the
standard LP relaxation of the problem. An interesting open question in this area is
how to close the gap between 1.52 and 1.463 for the UFLP.

Although the performance guarantee of our algorithm for the UFLP is very close
to the lower bound of 1.463, it would be nice to show that the bound of 1.52 is actually
tight. In [12], it was shown that a solution to the factor-revealing linear program for
the JMS algorithm provides a tight bound on the performance guarantee of the JMS
algorithm. It is reasonable to expect that a solution to linear program (LP2) may also
be used to construct a tight example for our 1.52-approximation algorithm. However,
we were unsuccessful in constructing such an example.

Our results (Theorem 1 and Lemma 4) for the UFLP and/or the idea of bifactor
reduction have been used to get the currently best known approximations ratios for
several multilevel FLPs [1, 26]. Since the UFLP is the most basic FLP, we expect to
see more applications of our results.

Appendix. Proof of Lemma 4.
Proof. By doubling a feasible solution of the factor-revealing program (LP1) (as

in the proof of Lemma 12 in [13]), it is easy to show that for every k, zk ≤ z2k.
Therefore, without loss of generality, we can assume that k is sufficiently large.

Consider a feasible solution of the factor-revealing linear program. Let xj,i :=
max(rj,i−dj , 0). Inequality (4) of the factor-revealing linear program implies that for
every i ≤ i′,

(i′ − i + 1)αi − f ≤
i′∑

j=i

dj −
i−1∑
j=1

xj,i.(18)

Now, we define li as follows:

li =

{
p2k if i ≤ p1k,
k if i > p1k,

where p1 and p2 are two constants with p1 < p2 that will be fixed later. Consider
inequality (18) for every i ≤ p2k and i′ = li:

(li − i + 1)αi − f ≤
li∑
j=i

dj −
i−1∑
j=1

xj,i.(19)

424 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

For every i = 1, . . . , k, we define θi as follows. Here p3 and p4 are two constants
with p1 < p3 < 1 − p3 < p2 and p4 ≤ 1 − p2 that will be fixed later.

θi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
li−i+1 if i ≤ p3k,

1
(1−p3)k

if p3k < i ≤ (1 − p3)k,
p4k

(k−i)(k−i+1) if (1 − p3)k < i ≤ p2k,

0 if i > p2k.

(20)

By multiplying both sides of inequality (19) by θi and adding up this inequality
for i = 1, . . . , p1k, i = p1k + 1, . . . , p3k, i = p3k + 1 . . . , (1− p3)k, and i = (1− p3)k +
1, . . . , p2k, we get the following inequalities:

p1k∑
i=1

αi −
(

p1k∑
i=1

θi

)
f ≤

p1k∑
i=1

p2k∑
j=i

dj
p2k − i + 1

−
p1k∑
i=1

i−1∑
j=1

max(rj,i − dj , 0)

p2k − i + 1
,(21)

p3k∑
i=p1k+1

αi −
(

p3k∑
i=p1k+1

θi

)
f ≤

p3k∑
i=p1k+1

k∑
j=i

dj
k − i + 1

−
p3k∑

i=p1k+1

i−1∑
j=1

max(rj,i − dj , 0)

k − i + 1
,

(22)

(1−p3)k∑
i=p3k+1

k − i + 1

(1 − p3)k
αi −

(
(1−p3)k∑
i=p3k+1

θi

)
f

≤
(1−p3)k∑
i=p3k+1

k∑
j=i

dj
(1 − p3)k

−
(1−p3)k∑
i=p3k+1

i−1∑
j=1

max(rj,i − dj , 0)

(1 − p3)k
,(23)

p2k∑
i=(1−p3)k+1

p4k

k − i
αi −

(
p2k∑

i=(1−p3)k+1

θi

)
f ≤

p2k∑
i=(1−p3)k+1

k∑
j=i

p4kdj
(k − i)(k − i + 1)

−
p2k∑

i=(1−p3)k+1

i−1∑
j=1

p4kmax(rj,i − dj , 0)

(k − i)(k − i + 1)
.(24)

We define si := maxl≥i(αl − dl). Using this definition and inequalities (2) and
(3) of the factor-revealing linear program (LP1), we obtain

∀i : rj,i ≥ si − dj =⇒ ∀i : max(rj,i − dj , 0) ≥ max(si − 2dj , 0),(25)

∀i : αi ≤ si + di,(26)

s1 ≥ s2 ≥ · · · ≥ sk (≥ 0).(27)

We assume sk ≥ 0 here because, if instead αk < dk, we can always set αk equal to dk
without violating any constraint in the factor-revealing (LP1) and increase zk.

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 425

Inequality (26) and p4 ≤ 1 − p2 imply

(1−p3)k∑
i=p3k+1

(
1 − k − i + 1

(1 − p3)k

)
αi +

p2k∑
i=(1−p3)k+1

(
1 − p4k

k − i

)
αi +

k∑
i=p2k+1

αi

≤
(1−p3)k∑
i=p3k+1

i− p3k − 1

(1 − p3)k
(si + di) +

p2k∑
i=(1−p3)k+1

(
1 − p4k

k − i

)
(si + di) +

k∑
i=p2k+1

(si + di).

(28)

Let ζ :=
∑k

i=1 θi. Thus,

ζ =

p1k∑
i=1

1

p2k − i + 1
+

p3k∑
i=p1k+1

1

k − i + 1
+

(1−p3)k∑
i=p3k+1

1

(1 − p3)k

+

p2k∑
i=(1−p3)k+1

(
p4k

k − i
− p4k

k − i + 1

)

= ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+

p4

1 − p2
− p4

p3
+ o(1).(29)

By adding the inequalities (21), (22), (23), (24), (28) and using (25), (27), and the
fact that max(x, 0) ≥ δx for every 0 ≤ δ ≤ 1, we obtain

k∑
i=1

αi − ζf

≤
p1k∑
i=1

p2k∑
j=i

dj
p2k − i + 1

−
p1k∑
i=1

i−1∑
j=1

si − 2dj
2(p2k − i + 1)

+

p3k∑
i=p1k+1

k∑
j=i

dj
k − i + 1

−
p3k∑

i=p1k+1

i−1∑
j=1

si − 2dj
k − i + 1

+

(1−p3)k∑
i=p3k+1

k∑
j=i

dj
(1 − p3)k

−
(1−p3)k∑
i=p3k+1

i−1∑
j=1

si − 2dj
(1 − p3)k

+

p2k∑
i=(1−p3)k+1

k∑
j=i

p4kdj
(k − i)(k − i + 1)

−
p2k∑

i=(1−p3)k+1

i−1∑
j=1

p4kmax(sp2k+1 − 2dj , 0)

(k − i)(k − i + 1)

+

(1−p3)k∑
i=p3k+1

i− p3k − 1

(1 − p3)k
(si + di)

+

p2k∑
i=(1−p3)k+1

(
1 − p4k

k − i

)
(si + di) +

k∑
i=p2k+1

(sp2k+1 + di)

=

p2k∑
j=1

min(j,p1k)∑
i=1

dj
p2k − i + 1

−
p1k∑
i=1

i− 1

2(p2k − i + 1)
si +

p1k∑
j=1

p1k∑
i=j+1

dj
p2k − i + 1

426 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

+

k∑
j=p1k+1

min(j,p3k)∑
i=p1k+1

dj
k − i + 1

−
p3k∑

i=p1k+1

i− 1

k − i + 1
si +

p3k∑
j=1

p3k∑
i=max(j,p1k)+1

2dj
k − i + 1

+
k∑

j=p3k+1

min(j,(1−p3)k)∑
i=p3k+1

dj
(1 − p3)k

−
(1−p3)k∑
i=p3k+1

i− 1

(1 − p3)k
si

+

(1−p3)k∑
j=1

(1−p3)k∑
i=max(j,p3k)+1

2dj
(1 − p3)k

+
k∑

j=(1−p3)k+1

min(j,p2k)∑
i=(1−p3)k+1

(
1

k − i
− 1

k − i + 1

)
p4kdj

−
p2k∑
j=1

p2k∑
i=max(j,(1−p3)k)+1

p4k

(
1

k − i
− 1

k − i + 1

)
max(sp2k+1 − 2dj , 0)

+

(1−p3)k∑
i=p3k+1

i− p3k − 1

(1 − p3)k
(si + di) +

p2k∑
i=(1−p3)k+1

(
1 − p4k

k − i

)
(si + di) +

k∑
i=p2k+1

di

+ (1 − p2)ksp2k+1

=

p2k∑
j=1

(Hp2k − Hp2k−min(j,p1k))dj −
p1k∑
j=1

j − 1

2(p2k − j + 1)
sj +

p1k∑
j=1

(Hp2k−j − H(p2−p1)k)dj

+

k∑
j=p1k+1

(H(1−p1)k − Hk−min(j,p3k))dj

−
p3k∑

j=p1k+1

j − 1

k − j + 1
sj +

p3k∑
j=1

2(Hk−max(j,p1k) − H(1−p3)k)dj

+

k∑
j=p3k+1

min(j, (1 − p3)k) − p3k

(1 − p3)k
dj −

(1−p3)k∑
j=p3k+1

j − 1

(1 − p3)k
sj

+

(1−p3)k∑
j=1

2((1 − p3)k − max(j, p3k))

(1 − p3)k
dj

+

k∑
j=(1−p3)k+1

(
1

k − min(j, p2k)
− 1

p3k

)
p4kdj

−
p2k∑
j=1

(
p4

1 − p2
− p4k

k − max(j, (1 − p3)k)

)
max(sp2k+1 − 2dj , 0)

+

(1−p3)k∑
j=p3k+1

j − p3k − 1

(1 − p3)k
(sj + dj) +

p2k∑
j=(1−p3)k+1

(
1 − p4k

k − j

)
(sj + dj)

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 427

+

k∑
j=p2k+1

dj + (1 − p2)ksp2k+1

≤
p1k∑
j=1

(
Hp2k −Hp2k−j + Hp2k−j −H(p2−p1)k + 2H(1−p1)k − 2H(1−p3)k +

2(1 − 2p3)

1 − p3

)
dj

+

p3k∑
j=p1k+1

(
Hp2k−H(p2−p1)k+H(1−p1)k−Hk−j+2Hk−j−2H(1−p3)k+

2(1 − 2p3)

1 − p3

)
dj

+

(1−p3)k∑
j=p3k+1

(
Hp2k − H(p2−p1)k + H(1−p1)k − H(1−p3)k +

j − p3k

(1 − p3)k

+
2((1 − p3)k − j)

(1 − p3)k
+

j − p3k − 1

(1 − p3)k

)
dj

+

p2k∑
j=(1−p3)k+1

(
Hp2k − H(p2−p1)k + H(1−p1)k − H(1−p3)k +

1 − 2p3

1 − p3

+
p4k

k − j
− p4k

p3k
+

(1 − p4)k − j

k − j

)
dj

+

k∑
j=p2k+1

(
H(1−p1)k − H(1−p3)k +

1 − 2p3

1 − p3
+

p4k

(1 − p2)k
− p4k

p3k
+ 1

)
dj

−
p3k∑
j=1

(
p4

1 − p2
− p4

p3

)
max(sp2k+1 − 2dj , 0) −

(1−p3)k∑
j=p3k+1

(
p4

1 − p2
− p4

p3

)
(sp2k+1 − 2dj)

−
p1k∑
j=1

j − 1

2(p2k − j + 1)
sj −

p3k∑
j=p1k+1

j − 1

k − j + 1
sj −

(1−p3)k∑
j=p3k+1

p3k

(1 − p3)k
sj

+

p2k∑
j=(1−p3)k+1

(
1 − p4k

k − j

)
sj + (1 − p2)ksp2k+1.

(30)

Let us denote the coefficients of dj in the above expression by λj . Therefore, we have

k∑
i=1

αi − ζf

≤
k∑

j=1

λjdj −
p1k∑
j=1

j − 1

2(p2k − j + 1)
sj −

p3k∑
j=p1k+1

j − 1

k − j + 1
sj −

(1−p3)k∑
j=p3k+1

p3k

(1 − p3)k
sj

+

p2k∑
j=(1−p3)k+1

(
1 − p4k

k − j

)
sj +

(
1 − p2 − (1 − 2p3)

(
p4

1 − p2
− p4

p3

))
ksp2k+1

−
(

p4

1 − p2
− p4

p3

) p3k∑
j=1

max(sp2k+1 − 2dj , 0),(31)

428 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

where

λj :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln

(
p2

p2 − p1

)
+ 2 ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+ o(1)

if 1 ≤ j ≤ p1k,

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+ Hk−j − H(1−p3)k + o(1)

if p1k < j ≤ p3k,

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+

2p4

1 − p2
− 2p4

p3
+ o(1)

if p3k < j ≤ (1 − p3)k,

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+ 1 − p4

p3
+ o(1)

if (1 − p3)k < j ≤ p2k,

ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+ 1 +

p4

1 − p2
− p4

p3
+ o(1)

if p2k < j ≤ k.

For every j ≤ p3k, we have

(32)

λ(1−p3)k − λj ≤
2p4

1 − p2
− 2p4

p3
⇒ δj := (λ(1−p3)k − λj)

/(
2p4

1 − p2
− 2p4

p3

)
≤ 1.

Also, if we choose p1, p2, p3, p4 in such a way that

ln

(
1 − p1

1 − p3

)
<

2p4

1 − p2
− 2p4

p3
,(33)

then for every j ≤ p3k, λj ≤ λ(1−p3)k and therefore δj ≥ 0. Then, since 0 ≤ δj ≤ 1,
we can replace max(sp2k+1 − 2dj , 0) by δj(sp2k+1 − 2dj) in (31). This gives us

k∑
i=1

αi − ζf

≤
k∑

j=1

λjdj −
p1k∑
j=1

j − 1

2(p2k − j + 1)
sj −

p3k∑
j=p1k+1

j − 1

k − j + 1
sj −

(1−p3)k∑
j=p3k+1

p3k

(1 − p3)k
sj

+

p2k∑
j=(1−p3)k+1

(
1 − p4k

k − j

)
sj +

(
1 − p2 − (1 − 2p3)

(
p4

1 − p2
− p4

p3

))
ksp2k+1

− 1

2

p3k∑
j=1

(λ(1−p3)k − λj)(sp2k+1 − 2dj).(34)

Let μj denote the coefficient of sj in the above expression. Therefore the above
inequality can be written as

k∑
i=1

αi − ζf ≤ λ(1−p3)k

(1−p3)k∑
j=1

dj +

k∑
j=(1−p3)k+1

λjdj +

p2k+1∑
j=1

μjsj ,(35)

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 429

where

μj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− j − 1

2(p2k − j + 1)
if 1 ≤ j ≤ p1k,

− j − 1

k − j + 1
if p1k < j ≤ p3k,

− p3

1 − p3
if p3k < j ≤ (1 − p3)k,

1 − p4k

k − j
if (1 − p3)k < j ≤ p2k,

(36)

and

(37)

μp2k+1

=

(
1 − p2 − (1 − 2p3)

(
p4

1 − p2
− p4

p3

))
k − 1

2
λ(1−p3)kp3k +

1

2

p3k∑
j=1

λj

=

(
1 − p2 − (1 − 2p3)

(
p4

1 − p2
− p4

p3

))
k − 1

2
λ(1−p3)kp3k

+
p1k

2

(
ln

(
p2

p2 − p1

)
+ 2 ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+ o(1)

)

+
(p3 − p1)k

2

(
ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+ o(1)

)

+
1

2

p3k∑
j=p1k+1

k−j∑
i=(1−p3)k+1

1

i

=

(
ln

(
1 − p1

1 − p3

)
+ 2 − 2p2 − p3 + p1 − 2(1 − p3)

(
p4

1 − p2
− p4

p3

)
+ o(1)

)
k

2
.

Now, if we pick p1, p2, p3, p4 in such a way that λj ≤ γ for every j ≥ (1 − p3)k, i.e.,

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

2(1 − 2p3)

1 − p3
+

2p4

1 − p2
− 2p4

p3
< γ,(38)

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+ 1 − p4

p3
< γ,(39)

and

ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+ 1 +

p4

1 − p2
− p4

p3
< γ,(40)

then the term λ(1−p3)k

∑(1−p3)k
j=1 dj +

∑k
j=(1−p3)k+1 λjdj on the right-hand side of (35)

is at most γ
∑k

j=1 dj . Also, if for every i ≤ p2k + 1 we have

μ1 + μ2 + · · · + μi ≤ 0,(41)

430 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

then by inequality (27) we have
∑p2k+1

j=1 μjsj ≤ 0. Therefore, if p1, p2, p3, p4 are chosen
in such a way that, in addition to the above inequalities, we have

ln

(
p2

p2 − p1

)
+ ln

(
1 − p1

1 − p3

)
+

1 − 2p3

1 − p3
+

p4

1 − p2
− p4

p3
< 1.11,(42)

then inequality (35) can be written as

k∑
i=1

αi − 1.11f ≤ γ

k∑
j=1

dj ,(43)

which shows that the solution of the maximization program (LP1) is at most γ.
From (36), it is clear that μj ≤ 0 for every j ≤ (1 − p3)k and μj ≥ 0 for every
(1 − p3)k ≤ j ≤ p2k. Therefore, it is enough to check inequality (41) for i = p2k and
i = p2k + 1. We have

p2k∑
j=1

μj = −
p1k∑
j=1

p2k − p2k + j − 1

2(p2k − j + 1)
−

p3k∑
j=p1k+1

k − k + j − 1

k − j + 1
− p3(1 − 2p3)k

1 − p3

+ (p2 − 1 + p3)k −
p2k∑

j=(1−p3)k+1

p4k

k − j

= − p2k

2
(Hp2k − H(p2−p1)k) +

p1k

2
− k(H(1−p1)k − H(1−p3)k) + (p3 − p1)k

− p3(1 − 2p3)k

1 − p3
+ (p2 − 1 + p3)k − p4k(Hp3k − H(1−p2)k)

=

(
−p1

2
+ p2 + 2p3 − 1 − p2

2
ln

(
p2

p2 − p1

)
− ln

(
1 − p1

1 − p3

)
− p3(1 − 2p3)

1 − p3

− p4 ln

(
p3

1 − p2

)
+ o(1)

)
k.(44)

Therefore, inequality (41) is equivalent to the following two inequalities:

(45)

−p1

2
+ p2 +2p3 −1− p2

2
ln

(
p2

p2 − p1

)
− ln

(
1 − p1

1 − p3

)
− p3(1 − 2p3)

1 − p3
− p4 ln

(
p3

1 − p2

)
< 0,

−p1

2
+ p2 + 2p3 − 1 − p2

2
ln

(
p2

p2 − p1

)
− ln

(
1 − p1

1 − p3

)
− p3(1 − 2p3)

1 − p3
− p4 ln

(
p3

1 − p2

)

+
1

2
ln

(
1 − p1

1 − p3

)
+ 1 − p2 −

p3

2
+

p1

2
− (1 − p3)

(
p4

1 − p2
− p4

p3

)
< 0.(46)

Now, it is enough to observe that if we let p1 = 0.225, p2 = 0.791, p3 = 0.30499,
p4 = 0.06984, and γ = 1.7764, then p1 < p3 < 1 − p3 < p2 and p4 < 1 − p2, as
specified earlier, and inequalities (33), (38), (39), (40), (42), (45), and (46) are all sat-
isfied. Therefore, the solution of the optimization program (LP1) is at most 1.7764 <
1.78.

Acknowledgments. We would like to thank Asaf Levin for pointing out that
our analysis of the 2-approximation algorithm for the SCFLP is tight. We also want

APPROXIMATION ALGORITHMS FOR FACILITY LOCATION 431

to mention that an idea for deriving better approximation factors for the UFLP using
the (1, 2) bifactor guarantee was independently proposed earlier by Kamal Jain in a
private communication to the first author, and by the last two authors. We thank
the anonymous referees for their helpful suggestions that significantly improved the
exposition of our paper.

REFERENCES

[1] A. Ageev, Y. Ye, and J. Zhang, Improved combinatorial approximation algorithms for the
k-level facility location problem, SIAM J. Discrete Math., 18 (2004), pp. 207–217.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit, Local
search heuristics for k-median and facility location problems, SIAM J. Comput., 33 (2004),
pp. 544–562.

[3] P. Bauer and R. Enders, A capacitated facility location problem with integer decision vari-
ables, in Proceedings of the International Symposium on Mathematical Programming
(ISMP), 1997.

[4] M. Charikar and S. Guha, Improved combinatorial algorithms for facility location and k-
median problems, in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, New York, 1999, IEEE Press, Piscataway, NJ, pp. 378–388.

[5] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the capacitated
facility location problem, in Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, Baltimore, 1999, SIAM, Philadelphia, 1999, pp. S875–S876.

[6] F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated
facility location problem, SIAM J. Comput., 33 (2003), pp. 1–25.

[7] G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey, The uncapacitated facility location
problem, in Discrete Location Theory, P. Mirchandani and R. Francis, eds., John Wiley
and Sons, New York, 1990, pp. 119–171.

[8] S. Guha and S. Khuller, Greedy strikes back: Improved facility location algorithms, J. Algo-
rithms, 31 (1999), pp. 228–248.

[9] M. Hajiaghayi, M. Mahdian, and V. S. Mirrokni, The facility location problem with general
cost functions, Networks, 42 (2003), pp. 42–47.

[10] D. S. Hochbaum, Heuristics for the fixed cost median problem, Math. Programming, 22 (1982),
pp. 148–162.

[11] K. Holmberg, Solving the staircase cost facility location problem with decomposition and piece-
wise linearization, European J. Oper. Res., 74 (1994), pp. 41–61.

[12] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani, Approximation algo-
rithms for facility location via dual fitting with factor-revealing LP, J. ACM, 50 (2003),
pp. 795–824.

[13] K. Jain, M. Mahdian, and A. Saberi, A new greedy approach for facility location problems,
in Proceedings of the 11th Annual European Symposium on Algorithms (ESA), G. Di
Battista and U. Zwick, eds., Lecture Notes in Comput. Sci. 2832, Springer, New York,
2003, pp. 409–421.

[14] K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and Lagrangian relaxation, J. ACM, 48
(2001), pp. 274–296.

[15] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, Analysis of a local search heuristic
for facility location problems, J. Algorithms, 37 (2000), pp. 146–188.

[16] M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani, A greedy facility location algo-
rithm analyzed using dual fitting, in Proceedings of 5th International Workshop on Ran-
domization and Approximation Techniques in Computer Science, Lecture Notes in Comput.
Sci. 2129, Springer-Verlag, New York, Berlin, 2001, pp. 127–137.

[17] M. Mahdian and M. Pál, Universal facility location, in Proceedings of the 11th Annual
European Symposium on Algorithms (ESA), 2003.

[18] M. Mahdian, Y. Ye, and J. Zhang, Improved approximation algorithms for metric facility
location problems, in Proceedings of the 5th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX 2002), Lecture Notes in Comput.
Sci. 2462, Springer-Verlag, New York, Berlin, 2002, pp. 229–242.

[19] M. Mahdian, Y. Ye, and J. Zhang, A 2-approximation algorithm for the soft-capacitated
facility location problem, in Proceedings of 6th International Workshop on Approximation
Algorithms for Combinatorial Optimization (APPROX 2003), Lecture Notes in Comput.
Sci. 2764, Springer-Verlag, New York, Berlin, 2003, pp. 129–140.

432 MOHAMMAD MAHDIAN, YINYU YE, AND JIAWEI ZHANG

[20] C. S. Revell and G. Laporte, The plant location problem: New models and research
prospects, Oper. Res., 44 (1996), pp. 864–874.

[21] D. B. Shmoys, Approximation algorithms for facility location problems, in Approximation
Algorithms for Combinatorial Optimization, K. Jansen and S. Khuller, eds., Lecture Notes
in Comput. Sci. 1913, Springer, Berlin, 2000, pp. 27–33.

[22] D. B. Shmoys, E. Tardos, and K. I. Aardal, Approximation algorithms for facility location
problems, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
El Paso, TX, 1997, ACM, New York, 1997, pp. 265–274.

[23] M. Sviridenko, An improved approximation algorithm for the metric uncapacitated facility
location problem, in Integer Programming and Combinatorial Optimization: 9th Interna-
tional IPCO Conference, Cambridge, MA, 2002, W. J. Cook and A. S. Schulz, eds., Lecture
Notes in Comput. Sci. 2337, Springer, New York, 2002, pp. 240–257.

[24] M. Thorup, Quick and good facility location, in Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Baltimore, 2003, SIAM, Philadelphia, 2003, pp.
178–185.

[25] M. Thorup, Quick k-median, k-center, and facility location for sparse graphs, SIAM J. Com-
put., 34 (2005), pp. 405–432.

[26] J. Zhang, Approximating the two-level facility location problem via a quasi-greedy approach,
Math. Programming, 108 (2006), pp. 159–176.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 433–456

AN UNCONDITIONAL LOWER BOUND ON THE
TIME-APPROXIMATION TRADE-OFF FOR THE DISTRIBUTED

MINIMUM SPANNING TREE PROBLEM∗

MICHAEL ELKIN†

Abstract. The design of distributed approximation protocols is a relatively new and rapidly
developing area of research. However, so far, little progress has been made in the study of the
hardness of distributed approximation. In this paper we initiate the systematic study of this subject
and show strong unconditional lower bounds on the time-approximation trade-off of the distributed
minimum spanning tree problem, and show some of its variants.

Key words. minimum spanning tree, distributed algorithms, hardness of approximation

AMS subject classifications. 05C05, 05C85, 90C27

DOI. 10.1137/S0097539704441058

1. Introduction.

1.1. Distributed computing. Consider a synchronous network of processors
with unbounded computational power, modeled by an undirected n-vertex graph. The
initial knowledge of the processors (henceforth, vertices) is very limited. Specifically,
each of them has its own local perspective of the network (henceforth, graph), which
is confined to its immediate neighborhood. The vertices, however, have to compute
some global function of the graph, such as its minimum spanning tree (henceforth,
MST).

To this end, distributed algorithms (henceforth, protocols) are designed. There
are several measures of efficiency of protocols, but in this paper we restrict our atten-
tion to the running time, defined as the worst-case number of rounds of distributed
communication. On each round of communication at most B bits can be sent through
each edge, where B is a parameter of the model. The running time efficiency measure
of protocols naturally gives rise to a complexity measure of problems, called the time
complexity.

The design of efficient protocols for this model, as well as proving lower bounds
on their efficiency, is a lively area of study known as locality-sensitive distributed
computing (henceforth, distributed computing); see [31] and references therein.

1.2. Distributed approximation and hardness of approximation. While
traditionally the research in the area of distributed computing concentrated on de-
signing protocols that solve the problem at hand exactly, some of the more recent
research focuses on providing approximate solutions for various distributed problems.
Most notably, several approximation protocols were recently devised for the mini-
mum dominating set problem [22, 9, 25, 35], for the minimum edge-coloring problem
[33, 20, 5], for the maximum matching problem [15, 21, 7], and for the distance estima-
tion problem [10, 14]. Another relevant important direction is the study of distributed

∗Received by the editors February 16, 2004; accepted for publication (in revised form) February
9, 2006; published electronically June 30, 2006. This work was done in the Department of Computer
Science, Yale University, New Haven, CT, and in the School of Mathematics, Institute for Advanced
Study, Princeton, NJ. A preliminary version of this paper was published as [12].

http://www.siam.org/journals/sicomp/36-2/44105.html
†Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

(elkinm@cs.bgu.ac.il).

433

434 MICHAEL ELKIN

algorithms for finding approximate solutions for positive linear programs initiated by
Papadimitriou and Yannakakis in [34] and continued with the works of Bartal, Byers,
and Raz [4] and Kuhn and Wattenhofer [26]. Recently Moscibroda and Wattenhofer
[30] and Grandoni et al. [19] used techniques based on linear programming for devel-
oping distributed approximation algorithms for several natural problems.

However, the situation with lower bounds on approximability of distributed prob-
lems is by far less satisfactory. Specifically, the existing results on hardness of dis-
tributed approximation can be divided into two categories.

First, there are inapproximability results that are based on lower bounds on the
time required for the exact solution of certain problems, and on integrality of the
objective functions of these problems. For example, there is a fundamental result
due to Linial [27] saying that 3-coloring an n-vertex ring requires Ω(log∗ n) time. In
particular, it implies that any 3/2-approximation protocol for vertex-coloring problem
requires Ω(log∗ n) time.

Second, there are inapproximability results that assume that the vertices are
computationally limited, e.g., are allowed to perform at most polynomial in n number
of operations. Obviously, under this assumption any NP-hardness inapproximability
result immediately gives rise to an analogous result in the distributed model.

Note, however, that results of this sort are just somewhat different semantic
interpretations of already known lower bounds, and as such, they provide no new
insights that were not provided by the original lower bounds. Moreover, we believe
that the study of the role of locality in distributed computing should be conducted in
the cleanest possible model, and, consequently, restricting the computational power
of the vertices is obstructive to the goals of this study (see [27, 31]).

To summarize, while sophisticated distributed approximation protocols were de-
veloped for various problems, so far no real progress has been made in the study of
the hardness of distributed approximation. In this paper we initiate the systematic
study of this subject. Specifically, we study the inapproximability of the distributed
MST problem and show strong unconditional lower bounds on the time-approximation
trade-offs for this problem and some of its variants.

1.3. Distributed MST problem. The (distributed) MST problem is one of
the most important problems in the area of distributed computing and has been the
subject of extensive research [16, 8, 18, 1, 17, 23, 32, 28, 11].

The most time-efficient protocol known for this problem was devised in [11], and

its running time is O(μ(G,ω) · log3 n +
√

n log∗ n
B log n), where μ(G,ω) stands for the

MST -radius of the weighted graph (G = (V,E), ω), ω : E → R+. The definition of the
MST -radius μ(G,ω) is somewhat involved (see [11]), but for the rest of this discussion
it is sufficient to keep in mind that for any graph (G,ω), μ(G,ω) ≤ Λ(G) ≤ n, where
Λ(G) stands for the unweighted diameter of the graph G.

On the negative side, Peleg and Rubinovich [32] have shown a lower bound of

Ω(
√
n

B) on the time complexity of the MST problem restricted to graphs of small
diameter (at most O(nδ) for an arbitrarily small positive δ > 0).

In this paper we show that approximating the MST problem within a ratio H
on graphs of small diameter requires T = Ω(

√
n

H·B) time. (The result applies to

graphs of diameter Ω(nδ) for an arbitrarily small constant δ > 0, exactly like the
result of [32]; see section 2 for the formal definitions of the notions of approximation
and randomization in this context.) In other words, we derive an unconditional lower
bound on the time-approximation trade-off for the MST problem, specifically, T 2·H =

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 435

Ω(n
B). Substituting H = O(1) into this formula shows that approximating the MST

problem within any constant factor requires Ω(
√

n
B) time, improving the lower bound

of [32] by a factor of
√
B (recall that the lower bound of [32] applies only for the exact

solution of the MST problem).

Moreover, our lower bound implies that for any 0 < ε < 1, approximating the

MST problem within a factor of
(
n
B

)1−ε
requires Ω

((
n
B

)ε/2)
time. The latter means,

in particular, that the
(
n
B

)1−ε
-approximate MST problem is not a local problem, i.e.,

cannot be solved in time polylogarithmic in n. This lower bound, like all the other
lower bounds that we prove in this paper, applies even to randomized protocols. We
also remark that our lower bounds, as well as the lower bounds of [32, 28], apply to the
scenario when the vertices have their own distinct identity numbers at the beginning
of computation.

1.4. Additional results. One direction of recent research on the distributed
MST problem was to refine the lower bound of Peleg and Rubinovich [32] that applies
to the exact computation of the MST on graphs G with diameter Λ(G) = O(nδ),
0 < δ < 1/2, and to prove similar lower bounds for the MST problem restricted to
graphs of even smaller diameter. Specifically, Peleg and Rubinovich themselves [32]

have shown a lower bound of Ω(
√
n

B·logn) for the MST problem restricted to graphs G

of diameter Λ(G) = O(log n), and Lotker, Patt-Shamir, and Peleg [28] have shown

lower bounds of Ω(n
1/3

B) (resp., Ω(n
1/4
√
B

)) for the MST problem restricted to graphs

of diameter Λ(G) ≤ 4 (resp., Λ(G) ≤ 3). For graphs of diameter Λ(G) ≤ 2 (resp.,
Λ(G) = 1) upper bounds of O(log n) (resp., O(log log n)) were shown in [28] (resp.,
[29]). Recall that all the aforementioned lower bounds apply only to the exact MST
problem.

In addition to the lower bound on the time-approximation trade-off for the general
variant of the MST problem, in this paper we also show a lower bound on the time-
approximation trade-off for the MST problem restricted to graphs of diameter Λ(G) ≤
Λ, for Λ = 3 and all even Λ in the range 4 ≤ Λ = O(log n). Specifically, denoting the
running time of an approximation protocol by T , and its approximation ratio by H,

we show that T 2+ 2
Λ−2 ·H = Ω(n

Λ·B).

Note that this result improves all the previous lower bounds for the exact com-
putation of the MST . Specifically, it improves the result of [32] for Λ = O(log n) by
a factor of

√
B · log n, and the results of [28] for Λ = 4 (resp., Λ = 3) by a factor of

B2/3 (resp., B1/4). Moreover, our result gives rise to a lower bound of Ω((n
B)1/2−ε)

for the exact computation (or even approximation within any constant factor) of the
MST on graphs of constant diameter O(1/ε), significantly improving the previously

best-known lower bound of Ω(n
1/3

B). Table 1.1 summarizes the previously known lower
bounds on the time complexity of the MST problem restricted to graphs of diame-
ter at most Λ, parameterized by Λ, along with our improved lower bounds on this
problem.

On the positive side, we devise an H-approximation protocol for the MST problem
with running time O(Λ(G) + ωmax

H−1 · log∗ n), where ωmax is the ratio between the
maximal and the minimal weight of an edge in the input graph (G,ω). It follows that
the approximate MST problem becomes easy when ωmax is small (our lower bounds
on the H-approximate MST problem apply for ωmax = Ω(

√
n ·H3/2)). Finally, our

techniques enable us to derive some similar upper and lower bounds on the time-

436 MICHAEL ELKIN

Table 1.1

The summary of previously known and new lower bounds on the MST problem restricted to
graphs of diameter at most Λ.

Diameter Previous lower bound New lower Lower bound on the

Λ on the exact bound on the time-approximation

computation exact computation trade-off

nδ , Ω(
√
n

B
) [32] Ω(

√
n
B

) T 2 ·H = Ω(n
B

)

0 < δ < 1/2

Θ(logn) Ω(
√
n

B·log n
) [32] Ω(

√
n

B·log n
) T 2 ·H = Ω(n

B·log n
)

Constant Ω(n1/3

B
) [28] Ω((n

B
)
1
2
− 1

2Λ−2) T
2+ 2

Λ−2 ·H = Ω(n
B·Λ)

(at least 3)

4 Ω(n1/3

B
) [28] Ω((n

B
)1/3) T 3 ·H = Ω(n

B
)

3 Ω(n1/4
√
B

) [28] Ω((n
B

)1/4) T 4 ·H = Ω(n
B

)

approximation trade-off of the shortest-path tree problem, but they are omitted for
the sake of brevity.

Structure of the paper. Our main result (the lower bound of T 2 ·H = Ω(n
B)

on the time-approximation trade-off for the general variant of the MST problem) is
proved in section 3. In section 4 we present the extensions of this result to the MST
problem restricted to graphs of diameter smaller than nδ. In section 5 we generalize
our lower bounds even further and show that they apply for ωmax = Ω(

√
n · H3/2).

In section 6 we describe our approximation protocol for the MST problem.

Related work. Our line of research was continued in a recent work of Kuhn,
Moscibroda, and Wattenhofer [24], who proved remarkable lower bounds on time-
approximation trade-offs for several problems, including the maximum dominating
set and maximum matching. See also the recent survey [13] and references therein.

2. Preliminaries. For an undirected graph G = (V,E), a spanning tree is an
acyclic connected subgraph τ = (V,E′), E′ ⊆ E. For a weighted graph (G = (V,E), ω)
with a nonnegative weight function ω : E → R+, an MST is a spanning tree τ = (V,E′)
with minimum weight ω(τ) =

∑
e∈E′ ω(e).

An H-approximate MST τ for a graph (G,ω) is a spanning tree of weight that is
at most H times greater than the weight of the MST of the graph (G,ω). A protocol
Π is said to be an H-approximation for the MST problem if for every input graph
(G,ω) it outputs an H-approximate MST τ .

In a distributed exact (resp., H-approximate) MST problem, at the beginning of
computation each vertex v knows its own identity number, the identity numbers of
all its neighbors, and the weights of the edges adjacent to v. Let Ev denote the set
of these edges. A correct protocol Π must guarantee that at the end of computation
every vertex v will know which edges of Ev end up belonging to the computed exact
(resp., H-approximate) MST . Formally, the output sets Kv of different vertices v
should satisfy (1) that for every v ∈ V , Kv ⊆ Ev; (2)

⋃
v∈V Kv = T , where T is

the exact (resp., H-approximate) MST tree; and (3) for every edge e = (v, w) ∈ E,
either (e ∈ Kv and e ∈ Kw) or (e �∈ Kv and e �∈ Kw).

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 437

Our lower bounds apply to randomized protocols with bounded worst-case running
time. In other words, these protocols necessarily terminate within specified time
bounds, but they are allowed to err with some constant probability 0 ≤ q < 1/2. Two
possible types of error are allowed. First, a protocol may produce a subgraph of the
input graph (G,ω) that is not an H-approximate MST of (G,ω). This subgraph may
contain cycles or multiple connectivity components. Second, the protocol may return
⊥, indicating that it failed to compute the correct answer.

For a pair of vertices u,w ∈ V , we denote by distG(u,w) the unweighted distance
between u and w in the graph G = (V,E).

3. A lower bound on the time-approximation trade-off. In this section
we show a lower bound on the trade-off between the possible approximation ratio for
the MST problem and the running time of a distributed protocol that may achieve
this approximation ratio.

3.1. Preliminaries, overview, and discussion. We start with describing the
family of graphs that will be used in the proof of our lower bounds. For a sufficiently
large positive integer n, let Γ, m, and p be positive integer parameters that satisfy

p ≤ log n and (m+1)Γ+ (m+1)1+1/p−1
(m+1)1/p−1

= n. Note that n = Θ(Γ·m). Let d = (m+1)1/p

(assume that d is integer; nonintegrality issues affect only lower-order terms of our
results, and are, therefore, ignored).

Consider a family G of graphs that contains one unweighted n-vertex graph Gn =
(Vn, En) for infinitely many positive integers n. The vertex set Vn is comprised of Γ
vertex-disjoint paths P1, P2, . . . , PΓ with m + 1 vertices each, and a d-regular tree τ
of depth p with its own vertex set V (τ) (that is disjoint from

⋃Γ
i=1 V (Pi)). Observe

that |V (τ)| = 1 + d + · · · + dp = dp+1−1
d−1 = (m+1)1+1/p−1

(m+1)1/p−1
. Let rt denote the root of

τ , i.e., the only vertex that had degree d in τ ; all the other vertices have either d
children and a parent, or they have only a parent. The latter vertices are called leaves
of τ . Let s = z0, z1, . . . , zm = r denote the leaves of τ . The edge set of the graph Gn

consists of the edge set E(τ) of the tree τ , the edge set
⋃Γ

j=1 E(Pj) of the Γ paths

P1, P2, . . . , PΓ, and m + 1 stars Si, i ∈ {0, 1, . . . ,m}. Let Pj = (v
(0)
j , v

(1)
j , . . . , v

(m)
j),

j ∈ {1, 2, . . . ,Γ}, denote the vertices of the path Pj , j ∈ {1, 2, . . . ,Γ}. Then the edge

set of the star Si, for i ∈ {0, 1, . . . ,m}, is the set {(zi, v(i)
j) | j ∈ {1, 2, . . . ,Γ}}. (See

Figure 3.1.)

A family Gω of weighted graphs contains 2Γ n-vertex graphs for each n such that
Gn ∈ G. Each of these 2Γ graphs has the vertex set Vn and the edge set En, but the
weights of edges are different for at least one edge in any two distinct graphs of Gω.
The edges of the paths P1, P2, . . . , PΓ, as well as the edges of the tree τ , are all of
weight zero in all the 2Γ graphs. The edges of the stars Si for i ∈ {1, 2, . . . ,m − 1}
are all of weight infinity in all the 2Γ graphs. All the edges of the star Sm have unit
weight in all the 2Γ graphs. Each of the Γ edges of the star S0 may have weight zero
or infinity. This induces 2Γ different n-vertex graphs in Gω.

The family G of unweighted graphs generalizes the family (that we refer to as
G′′) of unweighted graphs that was used in [28] to prove a lower bound of Ω(n1/3/B)
on the number of rounds that are required for a distributed protocol to compute
exact MST on graphs of diameter 4. However, the choice of weights above is in-
herently different from the one used in [28], and this difference will be discussed
below.

438 MICHAEL ELKIN

���
�

�

���� ����
����

�
�

��
���

			

v
(m)
Γ

z2

∞

r = zms = z0

0

0

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Γ

p

P1

S0 S2

PΓ

Sm

τ

Fig. 3.1. The family G. The edges of the tree τ and of the paths P1, . . . , PΓ have weight zero.
The edges of the “internal” stars S1, . . . , Sm−1 have infinite weights. The edges of the rightmost
star Sm have unit weights, and the edges of the leftmost star S0 have weights zero or one, depending
on the particular graph.

Consider the MST problem restricted to the family Gω of graphs. We will show
that for any 1 ≤ H = o(n/B), any distributed protocol that, given a graph G ∈ Gω

constructs an H-approximate MST for G, requires Ω((n
p·B·H)

1
2−

1
2(2p+1)) rounds.

This proof is done by a reduction from a problem of distributed delivery of in-
formation throughout the graphs of family G. The problem, referred by us as the
CorruptedMail problem, generalizes the mailing problem of [32, 28] in two senses.
First, the family G of graphs is somewhat more general than the corresponding families
G′ and G′′ in [32, 28], and this enables us to get lower bounds that are parameterized
on the diameter. Second, the mailing problem of [32, 28] requires exact delivery of all
the input bits, whereas our CorruptedMail problem allows the protocol to make a
restricted number of one-sided errors (i.e., some zero input bits might be delivered as
ones, but not vice versa). This modification is geared toward capturing the situation
when the (oracle) protocol for the MST problem (its existence is assumed by the
reduction) does not compute the exact MST , as it is assumed in [32, 28], but rather
provides the reduction to some (possibly very loose) approximation of it.

For a bit string χ ∈ {0, 1}Γ and an index j ∈ {1, 2, . . . ,Γ}, let χj denote the
jth bit of χ. The Hamming weight of χ, denoted ||χ||, is the number of indices
j ∈ {1, 2, . . . ,Γ} such that χj = 1. For two bit strings χ, χ′ ∈ {0, 1}Γ, the string χ′ is
said to dominate χ if for each j ∈ {1, 2, . . . ,Γ}, χj = 1 implies χ′

j = 1. Consider some

mapping φ : {0, 1}Γ → {0, 1}Γ, and suppose φ(χ) = χ′. The mapping φ is said to
make an error of the first (resp., second) type in the jth position if χj = 0 and χ′

j = 1
(resp., χj = 1 and χ′

j = 0).

Let α and β, 0 < α < β < 1, be two additional parameters of the construction
that will be fixed later. The CorruptedMail(α, β) problem is defined on unweighted
graphs Gn ∈ G. Recall that for each graph G ∈ G, there are two designated vertices
s and r, s, r ∈ Vn. The input to this problem is a bit string χ ∈ {0, 1}Γ of length Γ
with Hamming weight ||χ|| = αΓ. The input is provided to the vertex s only. The
output, returned by the vertex r, is a string χ′ ∈ {0, 1}Γ of Hamming weight at most
βΓ, and it is required that the output string χ′ dominate the input string χ. As the
parameters α and β are fixed throughout this and the next sections, we will refer to
the CorruptedMail(α, β) problem as the CorruptedMail problem.

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 439

Observe, however, that the restriction that χ′ should dominate χ guarantees that
the errors that are done throughout the delivery of the bit string χ are one-sided (i.e.,
all the errors are of the first type). This is in contrast to the usual setting of error-
correcting codes, where a two-sided error is allowed. One of the crucial properties
required for a reduction from the CorruptedMail problem to the approximate
MST problem to work is that approximating the MST with sufficiently small factor
causes only one-sided errors in the delivery of the bit string χ. In our reduction, the
latter is ensured by an appropriate choice of the weights of the edges in Gω. This is
the essential difference between our choice of weights of edges for Gω and the choices
of weights of edges in analogous families of graphs in [32] and [28].

We remark that allowing a symmetric two-sided error in the CorruptedMail

problem, and using error-correcting codes (possibly with list-decoding) directly would
also lead to a proof of hardness of distributed approximation of the MST problem
within some small constant factor (smaller than 2, to the best of our knowledge). The
bottleneck in this case is the fact that corrupting a bit string χ that has Hamming
weight αΓ in at least αΓ arbitrary positions in an arbitrary way may make the string
almost indistinguishable from a string that is drawn out of the uniform distribution
over all the strings of Hamming weight at most 2αΓ, even from an information-
theoretic point of view. However, this is not the case when only a one-sided error
is allowed. Then, as we will show, one can allow (β − α)Γ corrupted positions for
1 > β
 α > 0, and still the corrupted string χ′ will carry on a significant amount
of information (roughly, Γ · α · log(1/β) bits for sufficiently small positive α > 0; note
that the amount of information carried by χ is Γ · Entropy(α) = Γ · (α log(1/α) +
(1 − α) log(1/(1 − α)))). This way, we are able to prove hardness of distributed
approximation of the MST problem within a factor of, roughly, 1/α, for an arbitrarily
small α > 0.

As we mentioned, to ensure a one-sided error of the reduction, an appropriate
setting of the weights of edges of graphs in Gω is required. The setting that we
described has, however, the drawback of a very high ratio, denoted ωmax, between
the largest weight of an edge and the smallest one. Specifically, this ratio is Θ(n2).
If one wants to prove a similar lower bound for instances of the MST problem with
smaller ωmax ratios, it is no longer possible to guarantee a one-sided error in the
delivery of the bit string χ in the reduction. Nevertheless, as we will show in section
5, controlling the ratio between n2 and ωmax also controls the number of errors of
the second type. In this case we get into a situation when the delivery may suffer an
asymmetric two-sided error, with a huge possible number of errors of the first type
(specifically, (β − α)Γ for some 1 > β
 α > 0) and a reasonably small number
of errors of the second type (specifically, some constant fraction of αΓ). We will
show that this way one can achieve the same lower bound on time-approximation
trade-off as in the case that ωmax = Θ(n2) (that is, T 2 · H = Ω(n/B)), but with
ωmax =

√
n · H3/2, which is significantly smaller than n2 for H(n) = o(n). We

remark that one cannot expect to achieve such a trade-off with ωmax = o(

√
nH/B

log∗ n).
This is because, as we will show in section 6, one can approximate the MST on an
n-vertex graph G within a ratio of O(ωmax/T

′) in O(T ′ log∗ n + Λ(G)) rounds. For

ωmax = o(

√
nH/B

log∗ n), the approximation ratio is H = O(ωmax/T
′) = o(

√
nH/B

T ′ log∗ n). The

number of rounds is T = T ′ log∗ n = o(
√
nH/B), i.e., T 2H = o(

√
n/B), contradicting

our lower bound.

440 MICHAEL ELKIN

3.2. A lower bound for the CORRUPTEDMAIL problem. In this section
we prove a lower bound on the time complexity of the CorruptedMail problem.

For 0 < α < β < 1, let

l(α, β) = (β − α) log(β − α) − (1 − α) log(1 − α) − β log β .(1)

Lemma 3.1. For any α, β, 0 < α < β < 1,

l(α, β) ≥ α · log(1/β).(2)

Proof. Let f(α, β) = l(α, β) + α · log β. It is easy to verify that for a fixed β,
0 < β < 1, it holds that f(0, β) = 0. Also,

∂f

∂α
(α, β) =

∂l

∂α
(α, β) + log β = log

(
β − βα

β − α

)
> 0

for any α, β in the range 0 < α < β < 1, and ∂f
∂α (0, β) = 0 for any β, 0 < β < 1.

Hence,

f(α, β) = f(0, β) +

∫ α

0

∂f

∂α
(x, β)dx ≥ 0

for any α, β in the same range.
In the following lemma the Ω-notation hides a universal constant.
Lemma 3.2. For any deterministic protocol Π for the CorruptedMail(α, β)

problem, its set of all possible outputs {Π(χ) | χ ∈ {0, 1}Γ, ||χ|| = αΓ} contains at
least Ω(2l(α,β)Γ) elements.

Proof. Let A = {χ ∈ {0, 1}Γ | ||χ|| = α · Γ} be the set of all possible bit strings
that may serve as input for the vertex s. Let Υ = {χ′ ∈ {0, 1}Γ | ||χ′|| ≤ β · Γ} be
the set of all possible bit strings that may be returned by the vertex r. Consider the
bipartite graph (A,Υ, E(A,Υ)) with A serving as the set of the left-hand vertices, Υ
serving as the set of the right-hand vertices, and E(A,Υ) = {(χ, χ′) | χ ∈ A, χ′ ∈
Υ s.t. χ′ dominates χ}. Observe that |A| =

(
Γ
αΓ

)
= Γ!

(αΓ)!((1−α)Γ)! . Consider some

bit string χ′ ∈ Υ. The number of the bit strings χ ∈ A that are dominated by χ′ is

at most D =
(
βΓ
αΓ

)
= (βΓ)!

((β−α)Γ)!(αΓ)! .

A subset Υ′ ⊆ Υ is said to dominate the set A if for each bit string χ ∈ A there
exists a bit string χ′ ∈ Υ′ that dominates χ. As each bit string χ′ ∈ Υ may dominate
at most D bit strings of A, it follows that any subset Υ′ ⊆ Υ that dominates A has
cardinality at least

|Υ′| ≥ |A|
D

=
Γ!((β − α)Γ)!

((1 − α)Γ)!(βΓ)!
.

Using the Stirling formula to approximate the factorials, we get

|Υ′| ≥
(

(β − α)β−α

(1 − α)1−αββ

)Γ

·
√

β − α

(1 − α)β
· (1 − o(1)) .

For β and α such that β − α > 0 is at least some constant, it follows that |Υ′| =

Ω
(((β−α)β−α

(1−α)1−αββ

)Γ)
.

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 441

Let h(α, β) = (β−α)β−α

(1−α)1−αββ , and note that l(α, β) = log h(α, β). It follows that

|Υ′| = Ω(2l(α,β)Γ) for any subset Υ′ ⊆ Υ of bit strings that dominate A.
We next show that for any protocol Π with worst-case running time at most t

for t in a certain range, its set of possible outputs (over all possible inputs) is at
most exponential in t. To argue this we use the determinism of the protocol and the
fact that the vertex r that returns the output could not get “too much” information
about the input. It will follow that the running time t of a protocol Π cannot be too
small, unless the protocol Π is incorrect. To prove an upper bound on the size of the
set of possible outputs of any correct protocol, we show that the set of all possible
configurations of the vertex r is relatively small as a function of t.

For some fixed sufficiently large n, consider again a graph G = (V,E) = Gn ∈ G
that was described in section 3.1. Intuitively, we next argue that information can be
delivered through Gn from s to r in a quite slow rate. A similar statement was proved
in [32, 28] regarding somewhat different families of graphs G′ and G′′.

Our proof has a similar structure to that of [32], but as the structure of the family
G is somewhat more complicated than that of G′ or G′′, the proof requires a more del-
icate argument. Basically, all three proofs (due to [32, 28] and this paper) construct
a sequence of low-capacity cuts and argue that each bit has to cross all these cuts. As
the cuts have low capacities, no cut can be crossed by “many” bits simultaneously,
implying a lower bound on the number of rounds of distributed computation. How-
ever, while the choice of the cuts and the proof that they have low capacity are rather
straightforward in [32, 28], it is somewhat more involved in our case.

We first need a few definitions. For a rooted tree (τ ′, rt ′), let the ancestor-
descendent (resp., parent-child) relation, denoted AD(τ ′, rt ′) (resp., PC (τ ′, rt ′)), be
the set of pairs of distinct vertices (u,w) ∈ V (τ ′)×V (τ ′) such that the vertex u is an
ancestor (resp., parent) of the vertex w in the tree (τ ′, rt ′). For a vertex u ∈ V (τ ′),
let par (τ ′,rt′)(u) denote the parent of u in the rooted tree (τ ′, rt ′).

Recall that the graph G = Gn contains as a subgraph the d-regular rooted tree
(τ, rt) of height p, with m+1 leaves s = z0, z1, . . . , zm = r. For i ∈ {0, 1, 2, . . . ,m}, let
τ(i) denote the connected subtree of τ with minimal number of vertices, such that its
set of leaves, Leaves(τ(i)), is equal to {zi, zi+1, . . . , zm}. Let the root of τ(i), denoted
rt(τ(i)), be the closest vertex of τ(i) to the root rt of the tree τ .

Observe that for a pair of vertices x, y ∈ V (τ(i)) such that x is an ancestor of y in
the rooted tree (τ, rt), x is an ancestor of y in the rooted tree (τ(i), rt(τ(i))) as well;
i.e., (x, y) ∈ AD(τ, rt) and x, y ∈ V (τ(i)) imply that (x, y) ∈ AD(τ(i), rt(τ(i))). Also,
AD(τ(i), rt(τ(i))) ⊆ AD(τ, rt) for each i ∈ {0, 1, . . . ,m}. Note that both statements
are true for the parent-child relation PC as well.

Let Cut i denote the subset of edges of E(τ) that are in the cut between V (τ(i))
and the rest of V (τ) for i ∈ {1, 2, . . . ,m}. We next argue that the size of this cut is
never greater than p · d.

Lemma 3.3. For i ∈ {1, 2, . . . ,m}, |Cut i| ≤ p · d.
Proof. Fix an index i ∈ {1, 2, . . . ,m}. Let Lj = {(u,w) ∈ Cut i ∩ AD(τ, rt) |

distτ (rt, u) = j}, for j ∈ {0, 1, . . . , p− 1}, be the jth layer of the edge set Cut i. Note

that Cut i =
⋃p−1

j=0 Lj . It remains to argue that |Lj | ≤ d for j ∈ {0, 1, . . . , p− 1}.
To this end, we will show that for any pair of edges e1 = (u1, w1), e2 = (u2, w2) ∈

Lj (assume, without loss of generality, that u1 = par (τ,rt)(w1) and u2 = par (τ,rt)(w2)),
u1 is equal to u2. It will follow that all the edges of Lj share a common endpoint,
and, furthermore, this endpoint is a parent of all the other endpoints of these edges.
As every vertex has at most d children in the tree τ , this would imply |Lj | ≤ d.

442 MICHAEL ELKIN

Consider a pair of edges e1, e2 as above. First, suppose u1 �∈ V (τ(i)), w1 ∈
V (τ(i)). As the parent-child relation in τ(i) is a subset of the parent-child relation in
τ , it follows that w1 = rt(τ(i)). In this case it is easy to see that (u1, w1) is the only
edge in Lj , and consequently, e1 = e2, and |Lj | = 1.

It remains to consider the case when u1, u2 ∈ V (τ(i)) and w1, w2 ∈ V (τ)\V (τ(i)).
However, in this case u1 �= u2 and u1, u2 ∈ V (τ(i)) imply that either all the descen-
dents of u1 or all the descendents of u2 belong to V (τ(i)), and both of them contradict
w1, w2 ∈ V (τ) \ V (τ(i)).

We define the tail sets, T0, T1, . . . , Tm as follows. The tail set T0 contains the
entire vertex set V of G except the vertex s, i.e., T0 = V \ {s}. For i ∈ {1, 2, . . . ,m},
Ti = {v(i′)

j | j ∈ {1, 2, . . . ,Γ}, i′ ∈ {i, i + 1, . . . ,m}} ∪ V (τ(i)). It will be more
convenient to view the vertex sets Ti as sequences of vertices. The order of the
vertices in these sequences can be arbitrary, and for simplicity we will assume that
the vertices are ordered as a monotone increasing sequence of their (distinct) identity
numbers.

Consider some protocol Π for the CorruptedMail problem, and consider an
execution ϕχ of this protocol on some input bit string χ. Let the state of the vertex
v at the beginning of round t during the execution ϕχ of the protocol Π, denoted
σ(v, t, χ), be the deg(v)-tuple of sequences of messages that the vertex v received on
its incoming links. For the vertex s, the state of s also includes the input string χ.
Other vertices receive no input in the CorruptedMail problem.

For some subset U = (u1, u2, . . . , u
) ⊆ V of vertices, let the configuration of U in
the execution ϕχ at the beginning of round t, denoted C(U, t, χ), be the sequence of
states (σ(u1, t, χ), σ(u2, t, χ), . . . , σ(u
, t, χ)). Let C(U, t) denote the collection of all
possible configurations of the subset U at the beginning of round t over all possible
executions ϕχ (i.e., for all possible legal input bit strings χ; given a bit string, the
execution ϕχ is fixed). Let ρ(U, t) denote the cardinality of C(U, t). We remark that
our proof does not attempt to analyze the actual sets of configurations, but rather
only the cardinalities of those sets.

In what follows let us assume that the rounds are indexed starting from 0 and
not from 1. Obviously, this may affect the lower bounds by at most an additive term
of 1. At the beginning of round t = 0, i.e., at the beginning of the execution of the
protocol, all the vertices except s are in some fixed initial state, that is, independent
of the input bit string χ. Hence, ρ(T0, 0) = ρ(V \ {s}, 0) = 1. We next prove an
upper bound on the number of configurations of the tail set Tt after a relatively small
number of rounds t ≤ m− 1.

Lemma 3.4. For t ∈ {0, 1, . . . ,m− 1}, ρ(Tt, t) ≤ (2B+1 − 1)t·p·d.

Remark. To provide some intuition for the proof of Lemma 3.4, we illustrate its
central idea on a simple example. Consider a path P = (v0, v1, . . . , vn) with the vertex
v0 serving as a sender, and vn serving as a receiver, that is, s = v0, r = vn. Also, let
Ti = {vi+1, vi+2, . . . , vn} be the tail sets, for i ∈ {0, 1, . . . , n− 1}.

Suppose we are given a configuration C of the vertices of Ti at the beginning of
round i. This configuration uniquely determines the messages sent on round i by the
vertices of Ti, and, in particular, by the vertex vi+1. Hence, the unique configuration
of T0 at the beginning of round 0 (note that T0 = V \ {s}, and s is the only vertex
that receives input) determines the unique configuration of T1 at the beginning of
round 1. This is because the only link that connects T1 to V \ T1 is the edge (v1, v2),
but the message sent by the vertex v1 over this link on round 0 is determined by the

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 443

zi zi+1

w
El

El

1

2

Fig. 3.2. The sets V (τ) \ V (τ(i)) and V (τ(i+ 1)) are depicted by ellipses El1 and El2, respec-
tively. Edges of Ei,i+1 are depicted by thick solid lines. Note that, somewhat surprisingly, the edge
(zi, w) does not belong to Ei,i+1 because zi ∈ V (τ(i)).

configuration of T0 at the beginning of round 0, and this configuration is independent
of the bit string χ that the sender s accepts as input.

Applying this consideration inductively we conclude that the configuration of the
tail set Tn−1 = {r} = {vn} at the beginning of round n− 1 is uniquely determined by
the initial configuration of the vertices of the set T0 = V \ {s} and is independent of
the input string χ.

For a more elaborate example consider the graph H = P ∪ S, where P is the
n-vertex path that we have just discussed, and S = {(v0, vi) | i ∈ {2, 3, . . . , n}} is the
star rooted at v0. The tail sets are left unchanged.

In this graph the unique configuration of the vertices of T0 at the beginning of
round 0 branches into roughly 2B(n−2) possible configurations of the vertices of T1

at the beginning of round 1, because the vertices of T1 could receive up to B(n − 2)
different bits from the vertex v0 on this round, and each distinct combination of these
bits may determine a new configuration of the vertices of T1. Repeating this argument
we derive that there are roughly 2B(n−2) · 2B(n−3) possible configurations of T2 at the
beginning of round 2, and, ultimately, at most 2O(B·n2) possible configurations of the
tail set Tn−1 = {r} at the beginning of round n − 1. In other words, intuitively, at
most O(Bn2) bits could have been delivered through this network in n− 1 rounds.

Proof. The proof is by induction on t. The induction base was argued above.
We next prove the induction step. Observe that T0 ⊇ T1 ⊇ · · · ⊇ Tm. Suppose
we are given a configuration C ∈ C(Ti, i). Note that C uniquely determines the
messages that are sent at round i by vertices of Ti. Therefore, the only messages
that are not yet determined are those that are sent by the vertices of V \ Ti to the
vertices of Ti+1. Denote this set of edges by Ei,i+1. Observe that the edges of the

paths P1, P2, . . . , PΓ do not belong to
⋃m−1

i=0 Ei,i+1. It follows that Ei,i+1 ⊆ E(τ) for
i ∈ {0, 1, . . . ,m − 1}. For i = 0, clearly, E0,1 = {(z0, par (τ,rt)(z0))}. More generally,
Ei,i+1 is a subset of edges of E(τ) that are incident both to V (τ(i + 1)) and to
V \ V (τ(i)), i ∈ {0, 1, . . . ,m− 1}. See Figure 3.2 for an illustration.

Note that Ei,i+1 ⊆ Cut i+1 for i ∈ {0, 1, . . . ,m − 1}. Hence, by Lemma 3.3,
|Ei,i+1| ≤ p · d for i ∈ {0, 1, . . . ,m − 1}. In other words for i ∈ {0, 1, . . . ,m − 1},
there are at most p · d edges that are incident to the tail set Ti+1, such that given a
configuration C in C(Ti, i) of the vertices of Ti at the beginning of round i, the messages
that are sent over these edges at round i are not determined by this configuration.

Recall that at most B bits can be delivered through an edge in each round.
Therefore, the number of possible messages that may be sent through an edge in a

444 MICHAEL ELKIN

given direction in one round is at most
∑B

=0 2
 = 2B+1 − 1. (In this summation, the
case � = 0 reflects the possibility of transmitting nothing through a certain edge on a
certain round.)

Observe that there is only one relevant direction of sending messages in our case,
that is, towards the vertices of the tail set Ti+1. Hence, the number of possible
messages that may be sent through at most p · d edges in one round is at most
(2B+1 − 1)p·d. It follows that for i ∈ {0, 1, . . . ,m− 1}, ρ(Ti+1, i+ 1) ≤ (2B+1 − 1)p·d ·
ρ(Ti, i). Along with ρ(T0, 0) = 1, this implies the statement of the lemma.

Note that the proof argument that counts the number of configurations holds
when each vertex knows its unique identity number at the beginning of computation.

In the following lemma and its proof, the asymptotic Ω- and O-notations hide
universal constants.

Lemma 3.5. The deterministic complexity of the CorruptedMail problem is
Ω(min{m, Γ

p·B·m1/p · α · log(1
β)}).

Proof. Consider a protocol Π for the CorruptedMail problem, and let t denote
its worst-case running time on inputs of fixed size Γ. By Lemma 3.4, it follows that if
t ≤ m−1, then ρ(Tt, t) ≤ (2B+1−1)t·p·d. On the other hand, observe that the number
of possible configurations of the vertex r upon the termination of the protocol Π is at
least the cardinality of some subset Υ′ ⊆ Υ of a subset of bit strings that dominates
A. By Lemma 3.2, |Υ′| = Ω(2l(α,β)Γ). It follows that the (worst-case) running time t
of the protocol Π for the CorruptedMail problem is either at least t ≥ m rounds,
or it satisfies the following inequality

Ω(2l(α,β)Γ) = |Υ′| ≤ ρ({r}, t) ≤ ρ(Tt, t) ≤ (2B+1 − 1)t·p·d .(3)

(The inequality ρ({r}, t) ≤ ρ(Tt, t) follows from the fact that r ∈ Tt for t ∈ {0, 1, . . . ,m}.)
Hence, Ω(l(α, β)Γ) − O(1) ≤ t · p · d · B; i.e., t = Ω(l(α, β) · Γ/(p · d · B)). In other
words, in both cases t = Ω(min{m, (l(α, β) · Γ)/(p · d · B)}). Recall that n = O(Γm)
and d = (m + 1)1/p. Hence,

t = Ω

(
min

{
m, l(α, β)

n

p ·m1+1/p ·B

})
.(4)

By Lemma 3.1, for α > 0 it holds that l(α, β) ≥ α · log(1/β). Set β to be a constant
between 0 and 1, and the lemma follows.

Finally, set m =
(
n·α
p·B

) 1
2−

1
2(2p+1) . It follows that

t = Ω

((
n · α
p ·B

) 1
2−

1
2(2p+1)

)
.(5)

It follows that any deterministic protocol Π that solves the CorruptedMail problem

on every input bit string χ requires Ω
((

n·α
p·B

) 1
2−

1
2(2p+1)

)
rounds in the worst case.

Henceforth, the term “randomized protocol” will be used as a shortcut for “ran-
domized protocol that succeeds with at least some constant probability on every
input.”

Lemma 3.6. Any randomized protocol Π for the CorruptedMail problem re-

quires Ω
((

n·α
p·B

) 1
2−

1
2(2p+1)

)
rounds.

Proof. Consider a deterministic protocol Π′ that accepts as input a string drawn
at random from the uniform distribution over the bit strings χ of Hamming weight

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 445

αΓ. For such a protocol to succeed with at least a constant probability q in t ≤ m−1
rounds, the number of configurations of the vertex r at the end of the protocol has
to be at least the size of a subset Υ′′ ⊆ Υ that dominates at least a fraction q of the
set A. However, by the same considerations as above, such a subset Υ′′ must have
cardinality at least q|A|/D. In other words, for protocol Π′, ρ(Tt, t) ≥ ρ({r}, t) ≥
q|A|/D = Ω(2l(α,β)Γ). In other words, up to lower-order terms, the same lower
bound (5) applies also to a protocol Π′ as above. By Yao’s minimax theorem [37],
any randomized protocol that succeeds with probability at least q on every input
of the CorruptedMail problem requires at least as many rounds as required by
a deterministic protocol Π′ that succeeds with the same probability on the uniform
distribution of inputs. Hence, the lower bound (5) applies to randomized protocols
as well.

3.3. Reduction to the approximate MST problem. In this section we de-
scribe the reduction from the CorruptedMail(α, β) problem on the family G of
unweighted graphs to the β

α -approximate MST problem on the family Gω of weighted
graphs (see the beginning of section 3 for the definition of this family).

The protocol ΠCorr for the CorruptedMail(α, β) problem proceeds in the fol-
lowing way. Given an instance (G,χ), G ∈ G, χ ∈ A, of the CorruptedMail

problem, the vertex s computes the weights of edges (s, v
(0)
j), j ∈ {1, 2, . . . ,Γ}, in the

following way. If χj = 0, then the weight of the edge (s, v
(0)
j) is set to zero; otherwise

it is set to infinity. All the other weights of edges are set by their endpoints to the
values that are determined by the definition of the family Gω. (Recall that there is
no freedom in setting other weights, and the only difference between two distinct n-
vertex graphs from Gω is the setting of the weights of the edges of the star S0.) This
setting of weights is performed locally by every vertex and requires no distributed
computation.

Next, the vertices invoke a β
α -approximation protocol Π for the obtained instance

G(χ) of the MST problem. Upon the termination of the protocol, each vertex v knows
which edges among the edges that are incident to v belong to the approximate MST
tree τ0 for G(χ) that was constructed by the protocol. The vertex r calculates the
output bit string χ′ ∈ {0, 1}Γ in the following way. For each index j ∈ {1, 2, . . . ,Γ},
if the edge (r, v

(m)
j) belongs to the tree τ0, the vertex r sets χ′

j = 1. Otherwise, it sets
χ′
j = 0. Finally, the vertex r returns the bit string χ′.

Observe that whenever the construction of the approximate MST tree τ0 is com-
pleted, the computation of the bit string χ′ is performed locally by the vertex r and
requires no distributed computation. It follows that the running time of the obtained
protocol ΠCorr for the CorruptedMail(α, β) problem is precisely equal to the run-
ning time of the β

α -approximation protocol Π for the MST problem.

We next argue that the reduction is correct, i.e., that the protocol ΠCorr solves
correctly the CorruptedMail(α, β) problem, assuming that the protocol Π is a
β
α -approximation protocol for the MST problem.

Lemma 3.7. For each χ ∈ A, if τ0 is a β
α -approximate MST for the graph G(χ),

then the bit string χ′ that is returned by the protocol ΠCorr has Hamming weight at
most β · Γ, and, furthermore, the bit string χ′ dominates the input bit string χ.

Proof. Consider a bit string χ ∈ {0, 1}Γ of Hamming weight ||χ|| = αΓ. By
construction, precisely αΓ edges of the star S0 have weight ∞ in G(χ). Therefore, the
exact MST contains all the edges of the paths P1, P2, . . . , PΓ and of the tree τ , as all
of them have weight zero, and it contains (1 − α)Γ edges of weight zero that belong

446 MICHAEL ELKIN

to the star S0. In addition, for each index j ∈ {1, 2, . . . ,Γ} such that ω(s, v
(0)
j) = ∞,

it contains the edge (r, v
(m)
j). Recall that the latter edge has unit weight. Also, note

that ω(s, v
(0)
j) = ∞ implies that χj = 1. As ||χ|| = αΓ, it follows that exactly αΓ

edges of the star S0 have weight ∞. Hence, exactly αΓ edges of the star Sm belong
to the MST , implying that its weight is αΓ.

Consider a β
α -approximate MST τ0. By definition of approximate MST , its weight

is at most βΓ. Hence, in particular, it contains at most βΓ edges of the star Sm,
implying that ||χ′|| ≤ βΓ. Consider an index j ∈ {1, 2, . . . ,Γ} such that χj = 1. It

follows that the weight of the edge (s, v
(0)
j) in G(χ) is ∞. As no edge with infinite

weight may belong to τ0 (as its weight is at most βΓ), it follows that neither (s, v
(0)
j)

nor (zi, v
(i)
j) for some i ∈ {1, 2, . . . ,m− 1} may belong to the tree τ0. It follows that

the edge (r, v
(m)
j) belongs to τ0, as otherwise the vertex s would not be connected in

τ0 to the vertices of the path Pj . The latter would imply that τ0 is not a spanning
tree of the graph G(χ), contradicting the assumption that it is an approximate MST

for G(χ). Hence, the edge (r, v
(m)
j) belongs to the tree τ0. Hence, the bit χ′

j is set to
1 by the reduction. It follows that the output bit string χ′ dominates the input bit
string χ and that ||χ′|| ≤ βΓ.

Therefore, if Π is a β
α -approximation protocol for MST on the family Gω of

weighted graphs, then ΠCorr is a protocol for the CorruptedMail(α, β) problem
on the family G of unweighted graphs, with the same running time. Recall that any
(deterministic or randomized) protocol for the CorruptedMail(α, β) problem on

the family G of graphs requires t = Ω
((

n·α
p·B

) 1
2−

1
2(2p+1)

)
rounds. Observe that all the

graphs in the family Gω have the same unweighted diameter 2p+2. The next theorem
follows.

Theorem 3.8. Any randomized H-approximation protocol for the MST problem

on graphs of diameter at most Λ for Λ ∈ {4, 6, 8, . . . } requires T = Ω
((

n
H·Λ·B

) 1
2−

1
2(Λ−1)

)
rounds of distributed computation; i.e., T 2+ 2

Λ−2 ·H = Ω
(

n
Λ·B

)
.

In particular, for any ε > 0, approximation of MST on graphs with constant

diameter Λ ≥ 4 within a factor of
(
n
B

)1−ε
requires at least Ω(

(
n
B

)ε(1
2−

1
2Λ−2)

) rounds
of distributed computation.

We remark that in addition to being the first result on the hardness of distributed
approximation, Theorem 3.8 also implies a lower bound of Ω((n/B)1/2−ε) on the time
complexity of the exact computation (or even approximation within any constant
factor) of the MST problem restricted to graphs with constant diameter O(1/ε).
Previously, the best-known lower bound on exact computation of MST on graphs
with constant diameter was Ω(n1/3/B) due to [28]. However, the lower bound of
[28] is stronger in the sense that it requires the protocol to work only on graphs of
diameter at most 4. Substituting Λ = 4 in our result yields an improvement, by a
factor of B2/3, in the result of [28].

By substituting Λ = log n
H·B , we get the following.

Corollary 3.9. Any randomized H-approximation protocol for the MST prob-

lem on graphs of diameter Λ = O(log n) requires T = Ω(
√

n
H·B·logn) rounds of dis-

tributed computation; i.e., T 2 ·H = Ω(n
B·logn).

A lower bound of Ω(
√
n

B logn) on the running time of a protocol that computes

the MST exactly on graphs of diameter at most O(log n) was shown in [32]. Our

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 447

lower bound (Corollary 3.9) shows, in particular, a stronger (by a factor of
√
B log n)

lower bound on the running time of a protocol that computes the MST exactly or
approximates it within any constant factor on graphs with diameters in the same
range.

4. Dependence on the diameter. In this section we show that if the diameter
is Ω(nε) for some constant ε > 0, then the lower bound of Corollary 3.9 can be
strengthened by a factor of

√
log n.

To this end, consider the following family G̃ of unweighted graphs that contains
one n-vertex graph G̃n for infinitely many positive integers n. Fix some n such that
G̃n ∈ G̃, and denote G̃ = G̃n. The vertex set Ṽ of the graph G̃ consists of Γ paths
P1, P2, . . . , PΓ, each of length m2 (as in the definition of the family G, Γ and m are
sufficiently large positive integers that will be fixed later on); i.e., for j ∈ {1, 2, . . . ,Γ},
Pj = (v

(0)
j , v

(1)
j , . . . , v

(m2)
j). In addition, the vertex set Ṽ contains a path P τ (in the

family G̃ the path P τ plays a role that is analogous to the one that the tree τ plays
in the family G) of length m; i.e., P τ = (s = z0, z1, . . . , zm = r). The edge set Ẽ of
the graph G̃ contains, in addition to the paths P1, P2, . . . , PΓ and the path P τ , the

stars S0, S1, . . . , Sm, where Si = {(zi, v(i·m)
j) | j ∈ {1, 2, . . . ,Γ}} for i ∈ {0, 1, . . . ,m}.

This completes the description of the family G̃ of unweighted graphs. This family is
a slight generalization of the family G′ of unweighted graphs that was introduced in
[32]. Specifically, in [32], Γ = m2. Observe that the the diameter of the graph G is
Ω(m).

Consider the CorruptedMail(α, β) problem on family G̃ of unweighted graphs.
We next argue that it requires Ω(min{m,Γ/B}) rounds of distributed computation.
The proof proceeds similarly to the proof of the analogous fact for the family G of
unweighted graphs (see section 3.2), but it is simpler because the graphs of the family
G̃ have a simpler structure than the graphs of family G. The tails sets are T0 = Ṽ \{s},
Ti = {v(i)

j , v
(i+1)
j , . . . , v

(m2)
j | j ∈ {1, 2, . . . ,Γ}}∪{zi′ | i′ ∈ {�i/m�, �i/m�+1, . . . ,m}},

i ∈ {1, 2, . . . ,m}. As in Lemma 3.4, T0 ⊇ T1 ⊇ · · · ⊇ Tm, and let Ẽi,i+1 be the set

of edges that connect one of the vertices of Ṽ \ Ti with one of the vertices of Ti+1. It
is easy to see that |Ei,i+1| ≤ 1 for i ∈ {0, 1, . . . ,m2 − 1}. (Recall that the proof of
an analogous upper bound, |Ei,i+1| ≤ p ·m1/p, for a graph G ∈ G is somewhat more
complicated.) Now, a lemma that is analogous to Lemma 3.4 follows.

Lemma 4.1. For t ∈ {0, 1, . . . ,m2 − 1}, ρ(Tt, t) ≤ (2B+1 − 1)t.
Exactly the same argument as the one that works for family G shows that any

deterministic protocol for the CorruptedMail(α, β) problem on family G̃ either runs
for at least t ≥ m2 − 1 rounds or has a running time t that satisfies the inequality
ρ({r}, t) ≥ |Υ′| = Ω(2l(α,β)Γ) (see inequality (3)). Hence,

(2B+1 − 1)t ≥ ρ(Tt, t) ≥ ρ({r}, t) = Ω(2l(α,β)Γ) .

It follows that t = Ω(min{m2, l(α, β)Γ/B}). An argument analogous to the one
that was presented above for the CorruptedMail(α, β) problem on the family G
shows that the same (up to a constant factor) lower bound applies to any randomized
protocol for the CorruptedMail(α, β) problem on the family G̃ as well.

Finally, for the reduction to the MST problem, one needs to introduce the family
G̃ω of weighted graphs. The choice of weights of edges is analogous to the choice of
weights for family Gω, and is different from the one suggested in [32], since it is geared
toward guaranteeing that the delivery will suffer from only a one-sided error, as was

448 MICHAEL ELKIN

discussed above. Specifically, the edges of the paths P1, P2, . . . , PΓ, as well as the
edges of the path P τ , all have weight zero. The edges of the stars S1, S2, . . . , Sm−1 all
have weight ∞. The edges of the star Sm all have unit weights, and, finally, each edge
of the star S0 may weigh either 0 or ∞, so that exactly αΓ of them have weight ∞.

The reduction from the CorruptedMail(α, β) problem on family G̃ to the β
α -

approximate MST problem on family G̃ω is identical to the reduction between these
problems on families of graphs G and Gω, respectively. The latter reduction was
described in section 3.3. The analysis of the reduction, described in section 3.3,
applies here as well. It follows that any randomized protocol for the MST problem on
the family G̃ω of weighted graphs requires t = Ω(min{m2, l(α, β)Γ/B}) rounds. By
(1), t = Ω(min{m2, α · Γ/B}). Substitute m =

√
α · Γ/B, set H = 1/α, and observe

that the number of vertices n in G̃ is O(Γ ·m2). The diameter Λ of the graphs from

the family G is m + 2 = O
((

n
HB

) 1
4
)
. It is easy to see that by replacing the path P τ

with k paths P τ
1 , P

τ
2 , . . . , P

τ
k of decreasing lengths m,m1/2,m1/4, . . . ,m1/2k

we obtain

a similar lower bound for graphs of diameter Λ = O
((

n
HB

) 1
2
k+2)

. We conclude with
the following theorem.

Theorem 4.2. For any constant δ > 0, any randomized H-approximation proto-
col for the MST problem on graphs of diameter at most O(nδ) requires T = Ω(

√
n

H·B)

rounds of distributed computation; i.e., T 2 ·H = Ω(
√

n
B). In particular, for any ε > 0,

an
(
n
B

)1−ε
-approximation requires Ω(

(
n
B

) ε
2) rounds.

In particular, this improves the result of [32] by a factor of
√
B. Specifically,

[32] has shown a lower bound of Ω(
√
n/B) on the number of rounds required for the

exact computation of the MST , while our result gives a stronger (by a factor of
√
B)

lower bound on the number of rounds required to approximate the MST within any
constant approximation factor.

Similarly, our technique enables us to get a lower bound on the time-approximation
trade-off for the MST problem on graphs of diameter 3. This is done by replacing the
tree τ in the family G of unweighted graphs with a clique of size m + 1. The clique
consists of original “leaves” s = z0, z1, . . . , zm = r. The obtained family generalizes
the family G′′ due to [28]. In [28] the family G′′ proved a lower bound of Ω(n1/4/B)
on the number of rounds required for exact computation of the MST on graphs of
diameter 3. In construction of [28], Γ = m3.

The tail sets are defined exactly as for the family G, except that τ(i) = {zi, zi+1,
. . . , zm} for i ∈ {1, 2, . . . ,m}. It is easy to see that the edge sets Ei,i+1 are of

cardinality O(m2) for each index i, implying that ρ(Tt, t) ≤ (2B+1 − 1)t·m
2

, for each
t ∈ {0, 1, . . . ,m−1}. The rest of the proof is identical to that described above, and it
yields a lower bound of Ω(min{m, Γ·α

m2·B }) on the number of rounds required for any

randomized protocol for a β
α -approximate MST on graphs of diameter 3. Substitute

m = (n · α/B)1/4, H = 1/α, and observe that the number of vertices n is O(Γ ·m).
The next theorem follows.

Theorem 4.3. Any randomized H-approximation protocol for the MST problem

on graphs of diameter at most 3 requires T = Ω(
(

n
H·B

) 1
4) rounds of distributed com-

putation; i.e., T 4 · H = Ω(n
B). In particular, for any ε > 0,

(
n
B

)1−ε
-approximation

requires Ω(
(
n
B

) ε
4) rounds.

In particular, this improves the lower bound of [28] for exact computation of the
MST on graphs of diameter 3 by a factor of B1/4.

Observe that our time-approximation trade-off cannot be generalized further to

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 449

graphs of diameter at most 2, as there is a protocol for exact computation of the MST
in O(log n) rounds on graphs of diameters 1 and 2 (due to [36, 28, 29]).

5. Dependence on ωmax: Asymmetric two-sided error. Observe that in
the lower bounds that we described in the previous sections, the ratio ωmax between
the maximum weight of an edge in a graph and the minimum weight is infinity.
Actually, the weights ∞ and 0 were introduced for clarity of presentation, and one can
carry on the proof if ωmax = O(n2). However, allowing ωmax to get even smaller than
that disables the reduction from the CorruptedMail problem to the MST problem.
Specifically, it can happen that a protocol for the MST problem will produce a β

α -
approximate MST τ0, and this tree τ0 will induce (through the reduction) an output
bit string χ′ for the CorruptedMail problem that will not dominate the input
bit string χ. This is due to the fact that now some edges of “infinite” weight can
be taken into the approximate MST τ0, while still keeping a relatively small total

weight of τ0. However, fortunately, if ωmax is at least
√
n

α3/2 , the number of errors
of the second type (i.e., indices j such that χj = 1 and χ′

j = 0) is small. This
enables us to prove a time-approximation trade-off similar to that of Theorem 3.8 for

ωmax that is much smaller than n2 (specifically, Ω(
√
n

α3/2)). As was already mentioned,
due to our upper bound on the distributed approximation of MST (section 6), such
a trade-off becomes impossible for ωmax = o(

√
n ·H/B/ log∗ n) = o(

√
n/(B · α) ·

log∗ n).
The proof utilizes the following observation that may be interesting in its own

right. Consider a bit string χ of length Γ of Hamming weight αΓ. Suppose that an
adversary is allowed to introduce into χ a huge number of corruptions of the first type
(i.e., to change from 0 to 1 at most (β−α−ε)Γ positions for some constant arbitrarily
small positive α and ε and constant β < 1 that is arbitrarily close to 1), and it is
allowed to introduce a reasonable number of corruptions of the second type (i.e., to
change from 1 to 0 at most a constant fraction of � ·αΓ of positions for some universal
constant 0 < � < 1− 2ε). Then the obtained bit string χ′ still carries on a significant
fraction of the entropy that was carried on by the original bit string χ!

To capture this intuition, we introduce the AsymMail (asymmetrically corrupted
mail) problem. This problem generalizes the CorruptedMail problem that was
discussed in the previous sections. The AsymMail(α, β) problem is defined on the
same family G of unweighted graphs as the CorruptedMail(α, β) problem. The
vertex s accepts as input a bit string χ of Hamming weight αΓ, and the vertex r
outputs a bit string χ′ of Hamming weight at most βΓ. It is required that for each
index j ∈ {1, 2, . . . ,Γ} such that χj = 1, χ′

j = 1 as well, except for α
10Γ indices j. For

a pair of bit strings χ, χ′ ∈ {0, 1}Γ that satisfy the above condition, we will say that
the bit string χ′ almost dominates the bit string χ.

Consider a bipartite graphs (A,Υ, E(A,Υ)), with E(A,Υ) = {(χ, χ′) | χ ∈
A, χ′ ∈ Υ, χ′ almost dominates χ}. Fix some bit string χ′ ∈ Υ with Hamming weight
λΓ, 9

10α ≤ λ ≤ β. The number of the bit strings χ ∈ A that are almost dominated
by χ′ is at most

D =
∑
y

(
λΓ

(α− y)Γ

)
·
(

(1 − λ)Γ

yΓ

)
,(6)

where the index y runs over y ∈ {0, 1/Γ, 2/Γ, . . . , α/10} (the last index y of this sum
is the biggest multiple of 1/Γ that is smaller than or equal to α/10).

The expression
(

λΓ
(α−y)Γ

)(
(1−λ)Γ

yΓ

)
is a monotone increasing function of y whenever

450 MICHAEL ELKIN

0 ≤ y ≤ α(1−λ). To ensure that y is in this range in (6), it is sufficient to fix β = 3/4
(or, actually, any other constant smaller than 9/10). For this choice of β,

D ≤ (α/10)Γ ·
(

λΓ

(9α/10)Γ

)(
(1 − λ)Γ

(α/10)Γ

)
.(7)

Let g(λ) denote the logarithm of base 2 of the right-hand side expression in (7).
This function has a positive derivative for λ < 9/10. Hence, setting λ = β < 9/10
maximizes this expression. It follows that

D ≤ (α/10)Γ ·
(

βΓ

(9α/10)Γ

)(
(1 − β)Γ

(α/10)Γ

)
.

A subset Υ′ ⊆ Υ is said to almost dominate the set A if for each bit string χ ∈ A
there exists a bit string χ′ ∈ Υ′ that almost dominates χ.

It follows that any subset Υ′ ⊆ Υ that almost dominates A has cardinality at
least

|Υ′| ≥ (|A|/D) ≥
(

Γ
αΓ

)
(α/10)Γ

(
βΓ

(9α/10)Γ

)(
(1−β)Γ
(α/10)Γ

) .

The factor (α/10)Γ affects only lower-order terms of the lower bound, and, there-

fore, can be ignored. Using the Stirling formula, and analyzing the logarithm l̂(α, β)

of the right-hand side expression, we get |Υ′| ≥ 2l̂(α,β)Γ, with l̂(α, β) = l̂(0, β) +
∂l̂
∂α (α, β) · α + o(α) = α(9

10 log(1
β · 9

10) + 1
10 log(1

1−β · 1
10)) + o(α).

Consider f(q) = q · log(1
β · q) + (1 − q) · log 1−q

1−β . Note that f(1) = limq→1 f(q) =

log 1
β , and that f ′(q) = c · log

(
q

1−q · 1−β
β

)
for some universal positive constant c > 0.

Hence, f ′(q) > 0 whenever q > β. As we set q = 9/10 and β = 3/4, it follows that

f(9/10) < log 1/β. Recall that l(α, β) = α · log 1/β + o(α) and that l̂(α, β) < l(α, β)
is consistent with the intuition that the entropy of the corrupted bit string when two-
sided errors are allowed is smaller than the entropy of the corrupted bit string when
only one-sided errors are allowed.

Now, exactly the same argument that counts the number of possible configurations
of the vertices of the graph G ∈ G shows the following lemma.

Lemma 5.1. Any protocol for the AsymMail(α, β) problem on a family G of

graphs requires Ω(min{m, l̂(α, β) Γ
p·m1/p·B }) rounds.

Recalling that n = O(Γ ·m) and setting m = (n·α
p·B)

1
2−

1
2(2p+1) , we see that a lower

bound of Ω(m) = Ω((n·α
p·B)

1
2−

1
2(2p+1)) follows (this lower bound is only by a constant

factor smaller than the analogous lower bound (5) for the CorruptedMail problem).
We next describe the reduction from the AsymMail problem to the approximate

MST problem with “small” ωmax. Consider the family Gωm of weighted graphs.
This family is constructed out of the family Gω of weighted graphs by the following
mapping ψ. Given a graph G = (V,E) ∈ Gω, the mapping ψ constructs a graph in
Gωm with the same vertex set and the same edge set, but with slightly different edge
weights. Let ω1, ω2 > 1 be two positive integer parameters to be fixed later. For an
edge e ∈ E, the new weight ω′(e) is determined by

ω′(e) =

⎧⎨
⎩

1, ω(e) = 0,
ω1, ω(e) = 1,
ω1 · ω2, ω(e) = ∞.

(8)

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 451

Consider the same reduction that was described in section 3.3 that, given an
instance of the CorruptedMail problem, produces an instance of the MST problem.
Consider a composition of this reduction with the mapping ψ. Let α > 0 be at most a
small positive constant, and let β′ satisfy α < β′ < 100

101 (β−α). We obtain a reduction

from the AsymMail(α, β) problem to the β′

α -approximate MST problem on graphs
with ωmax = ω1 · ω2.

Consider a weighted graph G(χ) ∈ Gωm that is formed by the reduction. Recall
that χ is the input bit string of the AsymMail problem, and its Hamming weight is
α · Γ. It follows that precisely α · Γ edges of the star S0 have weight ω1 · ω2 (this is
the analogue of ∞), and all remaining (1−α) ·Γ edges of this star have unit weights.
It is easy to see that the MST of G(χ) contains all the edges of unit weight, and, in
addition, precisely α · Γ edges of weight ω1 of the star Sm.

It follows that the weight of the MST , ω′(MST) = αΓ·ω1+(n−1−αΓ). Consider

the β′

α -approximate MST τ0 that is returned by the oracle approximation protocol for
MST (its existence is assumed by the reduction). By definition, ω′(MST) ≤ ω′(τ0) ≤
β′

α · (αΓ · ω1 + (n− 1− αΓ)). Consider some index j ∈ {1, 2, . . . ,Γ} such that χj = 1,

and suppose that χ′
j = 0. As χj = 1, the weight of the edge (s, v

(0)
j) is ω1 · ω2.

As χ′
j = 0, the edge (r, v

(m)
j) does not belong to the tree τ0. As τ0 is a spanning

tree of G(χ), it follows that at least one edge from the set HEj = {(zi, v(i)
j) | i ∈

{0, 1, . . . ,m−1}} belongs to the tree τ0 (HE stands for “heavy edges”). Observe that
for each edge e ∈ HEj , ω

′(e) = ω1 · ω2. Note also that for two distinct indices j �= j′,
j, j′ ∈ {1, 2, . . . ,Γ}, HEj ∩ HEj′ = ∅. It follows that if there are q indices j such
that χj = 1 and χ′

j = 0, then at least q edges of weight ω1 ·ω2 belong to approximate

MST τ0; i.e., q · ω1ω2 ≤ β′Γ · ω1 + β′

α (n− 1− αΓ). As we allow at most αΓ/10 errors
of the second type, we impose the following condition on ω1 and ω2:

(α

10
Γ + 1

)
ω1 · ω2 > β′ · Γ · ω1 +

β′

α
(n− 1 − αΓ) .(9)

Consider some index j ∈ {1, 2, . . . ,Γ} such that χj = 0, and suppose that χ′
j = 1.

As χj = 0, ω′(s, v
(0)
j) = 1. As χ′

j = 1, the edge (r, v
(m)
j) belongs to the tree τ0. Recall

that ω′((r, v
(m)
j)) = ω1. It follows that ω′(τ0) ≥ ω1 · (||χ′|| − ||χ||) = ω1 · (||χ′|| − αΓ);

i.e., ω1 · (||χ′|| − αΓ) ≤ ω′(τ0) ≤ β′Γ · ω1 + β′

α (n − 1 − αΓ). We next impose the
following condition on ω1:

Γ · ω1 ≥ 100
n

α
.(10)

Then β′ · (Γω1 + n−1−αΓ
α) ≤ β′ · (Γω1 + n

α) ≤ 101
100β

′Γ ·ω1. It follows that ||χ′|| −αΓ ≤
101
100β

′Γ. Recall that β′ < 100
101 (β−α). Hence, ||χ′|| ≤ (101

100β
′+α)Γ < βΓ. Hence, under

conditions (9) and (10), the output bit string χ′ almost dominates the input bit string
χ. It follows that under these conditions, the AsymMail(α, β) problem reduces to a
β′

α -approximate MST problem for any β′ < 100
101 (β − α).

Conditions (9) and (10) determine how large ω1 and ω2 should be for this reduc-
tion to work. Inequality (10) means that ω1 ≥ 100 n

Γ·α , and to satisfy (9), it is enough

to ensure that α
10Γ · ω1 · ω2 > β′ 101

100Γω1. The latter implies that ω2 > β′

α · 101
10 .

Hence, ωmax = ω1 · ω2 > 1010 · β′ · n
Γ·α2 . As β′ is a fixed constant (β′ < 1),

it follows that ωmax = Θ(n
Γ·α2) is enough. Combining this with the lower bound

on the AsymMail(α, β) problem (Lemma 5.1) implies that approximating MST

452 MICHAEL ELKIN

within a ratio of Θ(1
α) on graphs of diameter 2p + 2 with ωmax = Θ(n

Γ·α2) requires

Ω(min{m, l̂(α, β) Γ
p·m1/p·B }) rounds for some constant β < 1.

Recall that n = O(Γ · m). Set H = 1
α , and m =

(
n·α
p·B

) 1
2−

1
2(2p+1) . We conclude

with the following.
Theorem 5.2. Any randomized H-approximation protocol for the MST problem

on graphs of diameter at most Λ for Λ ∈ {4, 6, . . . } with ωmax = Θ
((

n
Λ·B

) 1
2−

1
2(Λ−1) ·

H
3
2+ 1

2(Λ−1)
)

requires at least T = Ω
((

n
Λ·H·B

) 1
2−

1
2(Λ−1)

)
rounds; i.e., T 2+ 2

Λ−2 · H =

Ω(n
Λ·B). In particular, for Λ = Θ(log n), ωmax = Θ

((
n

B·logn

) 1
2 ·H3/2

)
, and T 2 ·H =

Ω
(

n
B·logn

)
.

By setting m to be smaller than
(

n
HpB

) 1
2−

1
2(2p+1) , one can get a smaller lower

bound on T but with ωmax = Θ(mH2). Also, as for the case of unbounded ωmax,
the factor logn in the denominator can be eliminated if one allows a bigger diameter
(specifically, O(nδ) for any constant positive δ > 0). Also, this way one can get a
lower bound for approximate MST on graphs with diameter 3 (Theorem 5.2 applies
as is) by considering the AsymMail(α, β) problem on the family G′′ of graphs (see
Theorem 4.3 and the discussion that precedes it).

We remark that one cannot expect to get ωmax = o
(√

n·H
B / log∗ n

)
in Theorem

5.2. This is because by Theorem 6.4, there exists an O(ωmax

T ′)-approximation protocol
for the MST problem with running time O(Λ(G)+T ′ log∗ n). For ωmax as above, the

approximation ratio is H = O(ωmax

T ′) = o(
√

n
B

1
log∗ n ·

√
H

T ′); i.e., T ′ = o(
√

n
BH

1
log∗ n),

and the running time of the protocol is T = O(Λ(G))+o(
√

n
BH) = o(

√
n

BH) (assuming

that Λ(G) = o(
√

n
BH); indeed, the lower bounds apply for a small diameter, and the

upper bound apply for an arbitrarily large diameter). This protocol provides an H-
approximation for the MST problem. Hence, T 2 ·H = o(

√
n/B), contradicting the

stronger (by a factor of logn) version of Theorem 5.2 (that applies for Λ(G) = O(nδ)
for any constant δ > 0).

6. An upper bound. In this section we devise a distributed protocol for the
approximate MST problem. Our protocol runs in O(Λ(G)+nε·log∗ n) rounds and con-
structs an O(ωmax

nε)-approximate MST , where ωmax is the ratio between the weights
of the heaviest and the lightest edges in the graph G, and ε is any fixed number
between zero and one. Note that the approximation ratio of O(ωmax) is trivial.

Throughout this section we assume that B = log n. Hence, the protocol can be
used whenever B = Ω(log n), and its running time will be the same. Also, obviously it
can be adapted to the case B = o(log n) incurring an overhead of O(logn

B) = O(log n).
Also, we assume that the weights of edges are scaled between 1 and ωmax.

Consider an MST τ0 of the graph G. A connected subtree of τ0 is called a fragment
of τ0. When the MST τ0 can be understood from the context, such a fragment will
be called an MST fragment. A k-MST forest F of a graph G = (V,E) is a collection
of vertex-disjoint trees that satisfy the following properties:

1.
⋃

T∈F V (T) = V ,
⋃

T∈F E(T) ⊆ E.
2. |V (T)| = Ω(k), Λ(T) = O(k).
3. There exists an MST τ0 for the graph G, such that each tree T ∈ F is its

fragment.
The notion of a k-MST forest is related to the notion of the (σ, ρ) spanning forest

of [23]. Trees T ∈ F of a (σ, ρ) spanning forest F have to satisfy properties 1 and 2
with |V (T)| ≥ σ and Λ(T) ≤ ρ, but may not satisfy property 3. It was demonstrated

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 453

in [23] that a k-MST forest of an n-vertex graph G can be constructed in O(k · log∗ n)
rounds of distributed computation.

The first step of our nε-approximation protocol for the MST problem is to con-
struct an nε-MST forest F . This requires O(nε · log∗ n) rounds. The second step is to
construct a breath first search (BFS) spanning tree τ of the entire graph, rooted at
some arbitrary vertex rt = rt(τ). This requires O(Λ(G)) rounds. After the construc-
tion of the tree τ , each vertex v in the graph knows its unweighted distance to the
root rt , distτ (rt , v). At the third step of the protocol, convergecasts are conducted
in parallel over the spanning trees of the fragments T ∈ F of the nε-MST forest F .
Throughout the convergecast over a fragment T , the root of the fragment T learns
the identity of the vertex v ∈ V (T) that is closest in τ to the root rt of τ . The
draws are broken arbitrarily. The fourth step involves broadcasts over the spanning
trees of the fragments of the identities of these chosen vertices. Both convergecasts
and broadcasts are done in parallel (recall that the fragments are vertex disjoint) and
require O(max{Λ(T) | T ∈ F}) rounds. As F is an nε-MST forest, it follows that
Λ(T) = O(nε) for every tree T ∈ F . Hence, these steps require O(nε) rounds. After
the broadcasts are done, the fifth step occurs. On the fifth step in each fragment
T ∈ F , the chosen vertex v ∈ V (T) inserts the edge ev = (par (τ,rt(τ))(v), v) into the
tree τ0 that the protocol constructs. It also informs the parent of the vertex v in τ ,
par (τ,rt(τ))(v), that it was chosen, and the parent inserts the edge ev into τ0 as well.
In addition, each vertex w in the graph inserts into the tree τ0 the edges of the k-MST
forest F that are incident to w. Observe that the fifth step requires only one round
of distributed computation (for sending the messages by the chosen vertices to their
parents in τ).

This completes the description of the protocol. It follows from our discussion
that its running time is O(Λ(G) + nε · log∗ n). We next argue that it is indeed an
O(ωmax

nε)-approximation protocol for the MST problem.
Lemma 6.1. The subgraph τ0 that is constructed by the protocol is acyclic.
Proof. Suppose for contradiction that there is a cycle ((u0, w0), P0, (u1, w1), P1, . . . ,

(ut−1, wt−1), Pt−1), where Pi is a path in some fragment Ti between wi and u((i+1) mod t),
and (ui, wi) ∈ E(τ), i ∈ {0, 1, . . . , t − 1} (where τ is the BFS spanning tree of the
graph). Fragments may appear more than once. (Observe that the cycle cannot be
contained entirely in one fragment, because for each fragment T ∈ F , the edges of
τ0 with both endpoints in T all belong to the spanning tree of T .) It follows that
|distτ (rt , ui) − distτ (rt , wi)| = 1 for i ∈ {0, 1, . . . , t− 1}.

Assume, without loss of generality that distτ (rt , w0)−distτ (rt , u0) = 1; i.e., u0 =
par (τ,rt)(w0). Then u1 = par (τ,rt)(w1), because otherwise both edges (u0, w0), (u1, w1)
connect vertices of the same fragment (the vertices w0 and u1) to their parents in
the BFS tree τ . However, at most one such edge is inserted into the tree τ0 for
each fragment in the approximation protocol. It follows that ui = par (τ,rt)(wi) for
i ∈ {0, 1, . . . , t− 1}. Hence,

distτ (rt , u0) > distτ (rt , w0) ≥ distτ (rt , u1) > · · · ≥ · · · > distτ (rt , wt−1) ≥ distτ (rt , u0) .

This is a contradiction, implying that the subgraph τ0 is acyclic.
Lemma 6.2. The subgraph τ0 is connected, and it is spanning all the vertices of

the graph G.
Proof. The second assertion follows directly from the observation that the edge

set of the tree τ0 contains the edge set of the nε-MST forest F , and from the definition
of a k-MST forest.

454 MICHAEL ELKIN

For the first assertion, consider some pair of vertices u and w in V . Let Tu and
Tw be the pair of fragments of the nε-MST forest F such that u ∈ Tu, w ∈ Tw.
If Tu = Tw, then u and w are connected in τ0, because the subgraph τ0 contains
a spanning tree of each fragment T of the nε-MST forest F , and, in particular, of
Tu = Tw. Otherwise, let u0 ∈ Tu (resp., w0 ∈ Tw) be the closest vertex in Tu (resp.,
Tw) to rt = rt(τ) (in terms of the unweighted distance). To prove that there is a path
between u and w in τ0, it suffices to prove that there is a path between u0 and w0.
We prove this by induction on distτ (rt , u0) + distτ (rt , w0).

The induction base is the case when the sum is 0, i.e., u0 = w0 = rt , and then
the assertion is obvious.

For the induction step, consider the parent v = par (τ,rt)(u0) of the vertex u0 in
the BFS tree τ . Observe that distτ (rt , v) = distτ (rt , u0)− 1 < distτ (rt , u0), and that
the edge e = (u0, v) belongs to τ0. Thus, it suffices to prove that there is a path
between v and w0 in τ0. Let Tv be the fragment of F that contains the vertex v, and
let v0 be the vertex that was chosen by the convergecast on this fragment. It follows
that distτ (rt , v0) ≤ distτ (rt , v) < distτ (rt , u0), and, thus, the induction hypothesis is
applicable to the pair of vertices, v0 and w0. As the fragment Tv is connected, the
lemma follows.

It follows from Lemmas 6.1 and 6.2 that τ0 is a spanning tree of the graph G.
Lemma 6.3. The tree τ0 is a (1 + O(ωmax

nε))-approximate MST of the graph G.
Proof. Let ω : E → R+ denote the weight function that is associated with

the graph G, and let ω(MST) denote the weight of the MST . Observe that the
weight of the nε-MST forest F is at most ω(MST), and that the convergecast and
broadcast procedures insert into τ0 at most O(n1−ε) additional edges. Hence, ω(τ0) =
O(n1−ε · ωmax) + ω(MST). Thus,

ω(τ0)

ω(MST)
= 1 + O

(
n1−ε · ωmax

ω(MST)

)
.

Recall that by our assumption, all the weights are scaled between 1 and ωmax. Hence,
ω(MST) ≥ n− 1. It follows that ω(τ0)/ω(MST) = O(ωmax/n

ε).
To conclude, we have the following.
Theorem 6.4. For any 0 < ε < 1, there exists a protocol that constructs an

H-approximate MST for an n-vertex weighted graph (G,ω) in O(Λ(G) + nε · log∗ n)
rounds with H = 1 + O(ωmax

nε). Let T = nε · log∗ n. Then T ·H = O(ωmax · log∗ n).
Note that for graphs with small ωmax (e.g., constant, or polylogarithmic in n)

this protocol provides an approximation ratio that is arbitrarily close to 1, and the
running time of the protocol is arbitrarily close to O(Λ(G)).

7. Discussion. In this paper we presented a lower bound on the time-approxi-
mation trade-off of the distributed MST problem. While this is one of the most
fundamental problems in the area of distributed computing, there are many other
important distributed problems whose approximation behavior is yet to be explored.
In our opinion, it would be of particular interest to establish lower bounds on time-
approximation trade-offs of such problems as maximum dominating set and maximum
matching. Interrelating the complexities of these problems via distributed reductions
appears to be an even greater challenge.

Acknowledgments. The author is grateful to Michael Langberg, Zvika Lotker,
Alessandro Panconesi, David Peleg, Alexander Razborov, Oded Regev, Vitaly Rubi-
novich, and Avi Wigderson for helpful discussions. The author also wishes to thank

A LOWER BOUND ON THE TIME-APPROXIMATION TRADE-OFF 455

the anonymous referees for their suggestions and remarks that helped to improve the
presentation in this paper.

REFERENCES

[1] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election and related problems, in Proceedings of the 19th ACM Symposium on
Theory of Computing, ACM, New York, 1987, pp. 230–240.

[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Near-linear cost sequential and dis-
tributed constructions of sparse neighborhood covers, in Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1993, pp.
638–647.

[3] B. Awerbuch and G. Gallager, A new distributed algorithm to find breadth first search trees,
IEEE Trans. Inform. Theory, IT-33 (1987), pp. 315–322.

[4] Y. Bartal, J. W. Byers, and D. Raz, Global optimization using local information with ap-
plications to flow control, in Proceedings of the 38th IEEE Symposium on the Foundations
of Computer Science, IEEE, Los Alamitos, CA, 1997, pp. 303–312.

[5] A. Czygrinow, M. Hanckowiak, and M. Karonski, Distributed O(Delta log n)-edge-coloring
algorithm, in Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes on Comput. Sci. 2161, Springer, Berlin, 2001, pp. 345–355.

[6] D. Bertsekas and R. G. Gallager, Data Networks, 2nd ed., Prentice–Hall International,
London, 1992.

[7] A. Czygrinow, M. Hanckowiak, and E. Szymanska, Distributed algorithm for approximating
the maximum matching, Discrete Appl. Math., 143 (2004), pp. 62–71.

[8] F. Chin and H. F. Ting, An almost linear time and O(n logn + e) messages distributed
algorithm for minimum-weight spanning trees, in Proceedings of the 26th IEEE Symposium
on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1985, pp. 257–266.

[9] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan, and A. Srinivisan, Fast distributed
algorithm for (weakly) connected dominating sets and linear-size skeletons, in Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York,
SIAM, Philadelphia, 2003, pp. 717–724.

[10] M. Elkin, Computing almost shortest paths, in Proceedings of the 20th ACM Symposium on
Principles of Distributed Computing, ACM, New York, 2001, pp. 53–62.

[11] M. Elkin, A faster distributed protocol for constructing a minimum spanning tree, in Proceed-
ings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans,
LA), ACM, New York, SIAM, Philadelphia, 2004, pp. 352–361.

[12] M. Elkin, Unconditional lower bounds on the time-approximation tradeoffs for the distributed
minimum spanning tree problem, in Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (Chicago, IL), ACM, New York, 2004, pp. 331–340.

[13] M. Elkin, An overview of distributed approximation: A survey, ACM SIGACT News, 35
(2004), pp. 40–57.

[14] M. Elkin and J. Zhang, Efficient algorithms for constructing (1 + ε, β)-spanners in the dis-
tributed and streaming models, in Proceedings of the 23rd ACM Symposium on Principles
of Distributed Computing, ACM, New York, 2004, pp. 160–168.

[15] T. Fischer, A. Goldberg, D. J. Haglin, and S. Plotkin, Approximating matchings in
parallel, Inform. Process. Lett., 46 (1993), pp. 115–118.

[16] R. G. Gallager, P. A. Humblet, and P. M. Spira, A distributed algorithm for minimum-
weight spanning trees, ACM Trans. Programming Lang. Syst., 5 (1983), pp. 66–77.

[17] J. A. Garay, S. Kutten, and D. Peleg, A sublinear time distributed algorithm for minimum-
weight spanning trees, SIAM J. Comput., 27 (1998), pp. 302–316.

[18] E. Gafni, Improvements in the time complexity of two message-optimal election algorithms,
in Proceedings of the 4th Symposium on Principles of Distributed Computing, ACM, New
York, 1985, pp. 175–185.

[19] F. Grandoni, K. Konemann, A. Panconesi, and M. Sozio, Primal-dual based distributed
algorithms for vertex cover with semi-hard capacities, in Proceedings of the 24th ACM
Symposium on Principles of Distributed Computing (Las Vegas, NV), ACM, New York,
2005, pp. 118–125.

[20] D. Grable and A. Panconesi, Nearly optimal distributed edge colouring in O(log log n)
rounds, Random Structures Algorithms, 10 (1997), pp. 385–405.

[21] M. Hańćkowiak, M. Karoński, and A. Panconessi, On the distributed complexity of com-
puting maximal matchings, SIAM J. Discrete Math., 15 (2001), pp. 41–57.

456 MICHAEL ELKIN

[22] L. Jia, R. Rajaraman, and R. Suel, An efficient distributed algorithm for constructing small
dominating sets, in Proceedings of the 20th ACM Symposium on Principles of Distributed
Computing, ACM, New York, 2001, pp. 33–42.

[23] S. Kutten and D. Peleg, Fast distributed construction of k-dominating sets and applications,
J. Algorithms, 28 (1998), pp. 40–66.

[24] F. Kuhn, T. Moscibroda, and R. Wattenhofer, What cannot be computed locally!, in Pro-
ceedings of the 23rd Symposium on the Principles of Distributed Computing (St. John’s,
Newfoundland, Canada), ACM, New York, 2004, pp. 300–309.

[25] F. Kuhn and R. Wattenhofer, Constant-time distributed dominating set approximation, in
Proceedings of the 22nd ACM Symposium on Principles of Distributed Computing (Boston,
MA), ACM, New York, 2003, pp. 25–32.

[26] F. Kuhn and R. Wattenhofer, Distributed Combinatorial Optimization, Technical Re-
port 426, Department of Computer Science, ETH, Zurich, 2004. Available online at
http://www.inf.ethz.ch/research/disstechreps/techreports/techreports?range=400

[27] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193–201.
[28] Z. Lotker, B. Patt-Shamir, and D. Peleg, Distributed MST for constant diameter graphs,

in Proceedings of the 20th ACM Symposium on Principles of Distributed Computing (New-
port, RI), ACM, New York, 2001, pp. 63–72.

[29] Z. Lotker, B. Patt-Shamir, E. Pavlov, and D. Peleg, Minimum-weight spanning tree
construction in O(log logn) communication rounds, SIAM J. Comput., 35 (2005), pp. 120–
131.

[30] T. Moscibroda and R. Wattenhofer, Facility location: Distributed approximation, in Pro-
ceedings of the 24th ACM Symposium on Principles of Distributed Computing (Las Vegas,
NV), ACM, New York, 2005, pp. 108–117.

[31] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, PA,
2000.

[32] D. Peleg and V. Rubinovich, A near-tight lower bound on the time complexity of distributed
MST construction, in Proceedings of the 40th IEEE Symposium on Foundations of Com-
puter Science, IEEE, Los Alamitos, CA, 1999, pp. 253–261.

[33] A. Panconesi and A. Srinivasan, Randomized distributed edge coloring via an extension of
the Chernoff–Hoeffding bounds, SIAM J. Comput., 26 (1997), pp. 350–368.

[34] C. Papadimitriou and M. Yannakakis, Linear programming without matrix, in Proceedings of
the 25th ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 121–129.

[35] S. Rajagopalan and V. V. Vazirani, Primal-dual RNC approximation algorithms for set
cover and covering integer programs, SIAM J. Comput., 28 (1998), pp. 525–540.

[36] V. Rubinovich, Distributed Minimum Spanning Tree Construction, M.Sc. Thesis, Bar-Ilan
University, Ramat-Gan, Israel, 1999.

[37] A. Yao, Probabilistic computations: Towards a unified measure of complexity, in Proceedings
of the 17th IEEE Symposium on Foundations of Computer Science (Providence, RI), IEEE,
Los Alamitos, CA, 1977, pp. 222–227.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 457–497

TOWARD A TOPOLOGICAL CHARACTERIZATION OF
ASYNCHRONOUS COMPLEXITY∗

GUNNAR HOEST† AND NIR SHAVIT‡

Abstract. This paper introduces the use of topological models and methods, formerly used to
analyze computability, as tools for the quantification and classification of asynchronous complexity.
We present the first asynchronous complexity theorem, applied to decision tasks in the iterated
immediate snapshot (IIS) model of Borowsky and Gafni. We do so by introducing a novel form of
topological tool called the nonuniform chromatic subdivision. Building on the framework of Herlihy
and Shavit’s topological computability model, our theorem states that the time complexity of any
asynchronous algorithm is directly proportional to the level of nonuniform chromatic subdivisions
necessary to allow a simplicial map from a task’s input complex to its output complex. To show
the power of our theorem, we use it to derive a new tight bound on the time to achieve n process
approximate agreement in the IIS model:

⌈
logd

max input−min input
ε

⌉
, where d = 3 for two processes

and d = 2 for three or more. This closes an intriguing gap between the known upper and lower bounds
implied by the work of Aspnes and Herlihy. More than the new bounds themselves, the importance
of our asynchronous complexity theorem is that the algorithms and lower bounds it allows us to
derive are intuitive and simple, with topological proofs that require no mention of concurrency at
all.

Key words. shared memory, asynchronous systems, topology, immediate snapshots, approxi-
mate agreement, simplicial complexes, subdivisions

AMS subject classifications. 68Q10, 68Q17, 68Q60, 68Q85

DOI. 10.1137/S0097539701397412

1. Introduction. In the 21st century, computers are progressively being used as
coordination devices in asynchronous, distributed systems. Unfortunately, the stan-
dard, Turing notions of computability and complexity are not sufficient for evaluating
the behavior of such systems. In the last few years, techniques of modeling and anal-
ysis based on classical algebraic topology [3, 12, 14, 18, 20, 21, 22, 24, 25, 26, 32] in
conjunction with distributed simulation methods [9, 10, 11, 12] have brought about sig-
nificant progress in our understanding of computability problems in an asynchronous
distributed setting. We feel the time is ripe to extend these techniques to address
asynchronous complexity.

This paper studies asynchronous shared memory solutions to the class of prob-
lems called decision tasks, input/output problems in which N processes start with
input values and, after communicating, halt with private output values. We focus
on the iterated immediate snapshot (IIS) memory model introduced by Borowsky and
Gafni [12] as part of their new simplified proof of the asynchronous computability
theorem [26]. The model is a restriction of atomic snapshot memory that guarantees
that processes’ scan operations return views that contain nondecreasing sets of the

∗Received by the editors November 5, 2001; accepted for publication (in revised form) June 20,
2005; published electronically July 31, 2006. A preliminary version of this paper appeared in Proceed-
ings of the Sixteenth Annual ACM Symposium on the Principles of Distributed Computing, 1997,
pp. 199–208.

http://www.siam.org/journals/sicomp/36-2/39741.html
†Laboratory for Computer Science, MIT, Cambridge, MA 02139 (gwhoest@mit.edu).
‡Computer Science Department, Tel-Aviv University, Ramat Aviv, 69978, Israel (shanir@cs.tau.

ac.il). Current address: Sun Microsystems Laboratories, Burlington, MA 01803. Most of this work
was performed while this author was at MIT under Israel Science Foundation grant 03610882 and
NSF grant CCR-9520298.

457

458 GUNNAR HOEST AND NIR SHAVIT

participating processes’ inputs. Though it is not a realistic computation model (no
machine supports such operations) we believe it is a good first candidate for topo-
logical modeling since it has a particularly nice geometric representation and hence
easily lends itself to topological analysis.

1.1. Historical background and related work. Let us begin by giving a brief
account of previous work on computability problems in fault-prone, asynchronous, dis-
tributed systems, applications of algebraic topology to asynchronous computability
problems, simulation techniques, and also on characterizing the Approximate Agree-
ment task.

In 1985, a fundamental paper by Fischer, Lynch, and Paterson [17] demonstrated
that traditional Turing computability theory is not sufficient for analyzing computabil-
ity problems in asynchronous, distributed systems. In particular, it showed that the
well-known Consensus task, in which each participating process has a private input
value drawn from some set S, and every nonfaulty process must decide on the same
output value equal to the input of some process, cannot be solved in a message pass-
ing system even if only one process may fail by halting. Later, it was also shown
that the message passing and shared memory models are equivalent [4], so this result
carries over to shared memory systems as well. This fundamental discovery led to
the creation of a highly active research area, which is surveyed in a recent book by
Lynch [29].

In 1988, Biran, Moran, and Zaks [7] provided a breakthrough result by introducing
a graph-theoretic framework that allows a complete characterization of the types of
tasks that can be solved in a message passing or shared memory system in the presence
of a single failure. However, this framework proved hard to extend to more than one
failure, and even the problem of characterizing the solvability of specific tasks such as
Renaming [5] and Set Agreement [13] for any number of processes remains unsolved.

In 1993, three research teams working independently—Borowsky and Gafni [10],
Saks and Zaharoglou [32], and Herlihy and Shavit [24]—derived impossibility results
for solving the Set Agreement task in the read-write shared memory model. The
paper of Borowsky and Gafni introduced a powerful new simulation technique for
proving solvability and unsolvability results in asynchronous, distributed systems. The
technique allows N -process protocols to be executed by fewer processes in a resilient
way and has been proven correct by Borowsky, Gafni, Lynch, and Rajsbaum [9]. The
paper by Saks and Zaharoglou [32] constructed an elegant topological structure that
captures the knowledge of the processors of the state of the system, allowing them
to prove the impossibility of wait-free k-set agreement using point-set topology. The
proof exposes an interesting relation between set agreement and the Brouwer fixed
point theorem for the k-dimensional ball.

The paper of Herlihy and Shavit [24, 26] introduced a new formalism based on
tools from classical, algebraic topology for reasoning about computations in asyn-
chronous, distributed systems in which any number of processes may fail. Their
framework consisted of modeling tasks and protocols using algebraic structures called
simplicial complexes and then applying standard homology theory to reason about
them. Herlihy and Shavit extended this framework by providing the asynchronous
computability theorem, which states a condition that is necessary and sufficient for a
task to be solvable by a wait-free protocol in shared memory [26], and showed appli-
cations of this theorem to tasks such as Set Agreement and Renaming. Borowsky [8]
generalized this solvability condition to a model consisting of regular shared memory
augmented with set-consensus objects, under more general resiliency requirements.

TOPOLOGICAL CHARACTERIZATION 459

In 1993, Chaudhuri, Herlihy, Lynch, and Tuttle [14] also used topological and
geometric arguments to prove tight bounds on solving the Set Agreement problem in
the synchronous message passing model where an arbitrary number of processes may
fail.

In 1994, Herlihy and Rajsbaum derived further impossibility results for Set Agree-
ment by applying classical homology theory [20]. Moreover, in a unifying paper in
1995, Herlihy and Rajsbaum provided a common, general framework for describing a
wide collection of impossibility results by using chain maps and chain complexes [22].
At the same time, Attiya and Rajsbaum reproved several impossibility results using
purely combinatorial tools [3].

In 1995, Gafni and Koutsopias presented a reduction from the classical con-
tractibility problem of algebraic topology to show that it is undecidable whether a
certain class of 3-process tasks is wait-free solvable in the shared memory model [18].
This work was then generalized by Herlihy and Rajsbaum to arbitrary numbers of pro-
cesses and failures in a variety of computational models [21]. More recently, Havlicek
showed that, while undecidability holds in the general case, the problem of solvability
is in fact decidable for a relatively large class of tasks [19]. Another recent paper by
Herlihy, Rajsbaum, and Tuttle [23] introduces the use of pseudospheres as a means
for unifying the synchronous, semisynchronous, and asynchronous message passing
computation models.

The immediate snapshot (IS) object was introduced by Borowsky and Gafni in
1993 [11]. It is the basic building block of the iterated immediate snapshot (IIS) model,
first implicitly used by Herlihy and Shavit [24, 25] and more recently formulated as a
computation model by Borowsky and Gafni [12] as part of their new, simplified proof
of the asynchronous computability theorem of Herlihy and Shavit [26]. This work also
shows that the IIS model is computationally equivalent to standard shared memory
models by providing a wait-free implementation of IIS from shared memory, and vice
versa. It is not clear, however, whether these implementations are optimal from a
complexity-theoretic viewpoint.

The Approximate Agreement problem is a weakening of the Consensus problem
in which each process has a real valued input, and in any execution, nonfaulty pro-
cesses with inputs in a range [min input,max input] (the range changes from one
execution to the next based on the input set of participating processes) must agree on
output values within that range that are at most ε > 0 apart. The problem was first
introduced in 1986 by Dolev, Lynch, Pinter, Stark, and Weihl [15] in a paper showing
that this task can be solved in both the synchronous and asynchronous message pass-
ing models even when assuming a Byzantine failure model (in which processes may
exhibit arbitrary, even malicious, behavior). The paper also provided matching upper
and lower bounds for solving the task in these settings. These results were extended
to various failure models by Fekete [16], who also showed optimality in terms of the
number of rounds of communication used.

In 1994, Attiya, Lynch, and Shavit published a paper giving an Ω(logN) step
complexity lower bound, together with a matching O(logN) upper bound, for solving
in a wait-free manner N -process Approximate Agreement in “normal” (synchronous
and failure-free) executions using single-writer, multireader shared memory [6]. These
results were part of a proof that, in certain settings, wait-free algorithms are inherently
slower than non–wait-free algorithms.

This work was extended by Schenk [33], who showed matching upper and lower
bounds for solving the task in the asynchronous single-writer, multireader shared
memory model where the magnitudes of the inputs are bounded from above.

460 GUNNAR HOEST AND NIR SHAVIT

Finally, in 1994, Aspnes and Herlihy [2] showed a
⌈
log3

max input−min input
ε

⌉
lower

bound, together with a
⌈
log2

max input−min input
ε

⌉
upper bound on the time complex-

ity (the number of steps taken by a process) for solving Approximate Agreement
using wait-free protocols in the asynchronous single-writer, multireader shared mem-
ory model.

1.2. The asynchronous complexity theorem. This paper introduces a new
theorem that for the first time provides a topological characterization of complex-
ity for asynchronous computation. We introduce the nonuniform iterated immediate
snapshot (NIIS) model, a refinement of the IIS model that allows better modeling
of complexity. Keeping in style with Herlihy and Shavit’s topological computability
framework [26], our theorem states that the worst case time complexity for solving a
decision task in the NIIS model is equivalent to the minimal number of nonuniform
chromatic subdivisions of the task’s input complex necessary to allow a simplicial map
from the subdivided input complex to the output complex. The theorem implies an
algorithm if one is given a subdivision and a mapping.

The nonuniform chromatic subdivisions we introduce (see Figure 13) are a looser
and more general form of standard chromatic subdivisions [26]. Unlike the iterated
standard chromatic subdivisions used in the computability work of [26, 12], they
allow individual simplexes in a complex to be subdivided a different number of times,
while ensuring that the subdivision of the complex as a whole remains consistent.
Nonuniformity is a necessary property when analyzing complexity since it allows the
level of subdivision of input simplexes to differ from one simplex to the next. This
allows one to model a world in which different numbers of steps are taken on different
input sets. If one used only uniform subdivisions, one could talk only about the
complexity of the most highly subdivided simplex. This would make the complexity
theorem useless, since, for example, for the Approximate Agreement problem, Aspnes
and Herlihy [2] show that for any k one can find a set of inputs that will require time
k in the worst case.

The power of our theorem lies in its ability to allow one to reason about the com-
plexity of problems in a purely geometric setting. As we show, the subdivisions of a
complex are a clean and higher level way of thinking about the multitude of different
length executions of a concurrent protocol. We found this geometric representation
helpful and believe that it will prove to be an invaluable tool for designing and an-
alyzing concurrent algorithms. For technical reasons, in order to avoid the need to
deal with infinite size complexes, we restrict our problem space to decision tasks with
finite (yet not necessarily bounded) input and output domains.

We provide an example application of Theorem 4.2. In section 5, we use our
topological framework to show tight upper and lower bounds on the time to solve the
Approximate Agreement problem in a wait-free manner in the NIIS model. We close
the gap implied by the work of Aspnes and Herlihy [2], proving matching upper and
lower bounds of

⌈
logd

max input−min input
ε

⌉
, where d = 3 for two processes and d = 2

for three or more.
Apart from the theorem itself, its proof provides two additional contributions to

the asynchronous computability literature.
• The upper bound proof of Herlihy and Shavit’s asynchronous computability

theorem [26] and related papers by Borowsky and Gafni [11, 12] all rely on the
fact that the standard chromatic subdivision [25, 26] is indeed a subdivision
in the topological sense. We provide the first formal proof of this fact.

• In 1997, Borowsky and Gafni provided a simulation of atomic snapshot mem-

TOPOLOGICAL CHARACTERIZATION 461

ory from IIS memory [12]. They showed that based on this simulation, if one
is given a proof of an asynchronous computability theorem for the IIS model
(which they called Proposition 3.1), it will imply one for the general read-write
model. The hope was that the proof of their Proposition 3.1 would be con-
structive and therefore significantly simpler than the nonconstructive proof
in [24, 26]. The proof of our asynchronous complexity theorem in section 4
provides a constructive proof of computability for the NIIS model, and since
IIS is a subset of NIIS, it provides the first known proof of Proposition 3.1
of [12].

1.3. Organization. The paper is organized as follows. Section 2 provides a
formal definition of decision tasks. It also contains a thorough description of our
model of computation, together with the complexity measures we use for analyzing
protocols in this model. Section 3 contains a collection of necessary definitions and
results from algebraic topology, as well as a description of how we model decision
tasks and NIIS protocols topologically. It also contains definitions of the standard
chromatic subdivision and the nonuniform chromatic subdivision. Section 4 contains
a statement and proof of our main theorem. Section 5 contains an application of
our asynchronous complexity theorem to the Approximate Agreement task. Finally,
section 6 summarizes our results and also gives some directions for further research.

2. Model. In order to develop a useful and applicable complexity theory for
asynchronous, distributed computer systems, we need to define some reasonable model
of such systems. This model must be detailed enough so as to accurately and faith-
fully capture the inherent complexity of solving tasks in real distributed systems yet
be simple enough so as to easily lend itself to some practical form of complexity
analysis. The model we consider in this paper consists of a class of one-shot dis-
tributed problems, called decision tasks, together with a novel model of computation,
a type of shared memory called the nonuniform iterated immediate snapshot (NIIS)
model. This section contains a detailed description of these fundamental concepts. It
also contains the complexity measures that will be used to analyze the complexity of
solving decision tasks in the NIIS model.

2.1. Informal synopsis. We begin with an informal synopsis of our model,
which largely follows that of Herlihy and Shavit [24, 25, 26]. Some fixed number N =
n+1 of sequential threads of control, called processes, communicate by asynchronously
accessing shared memory in order to solve decision tasks. In such a task, each process
starts with a private input value and halts with a private output value. For example,
in the well-known Binary Consensus task, the processes have binary inputs and must
agree on some process’s input [17]. A protocol is a distributed program that solves
a decision task in such a system. A protocol is wait-free if it guarantees that every
nonfaulty process will halt in a finite number of steps, independent of the progress of
the other processes. The time complexity of solving a decision task in this model on
a given input set is the supremum of the number of accesses to shared memory made
by any process on that input set.

2.2. Decision tasks. In this section, we define decision tasks more precisely.
This class of tasks is intended to provide a simplified model of reactive systems, such
as databases, file systems, or automated teller machines. An input value represents
information entering the system from the surrounding environment, such as a char-
acter typed at a keyboard, a message from another computer, or a signal from a
sensor. An output value models an effect on the outside world, such as an irrevocable

462 GUNNAR HOEST AND NIR SHAVIT

decision to commit a transaction, to dispense cash, or to launch a missile. Informally
speaking, a decision task is a relation between vectors of input values and vectors of
output values. We define this more precisely below.

Let DI and DO be two finite data types, possibly identical, called the input data
type and the output data type, respectively. We first define the concept of an input
vector.

Definition 2.1. An n+1-process input vector �I is an n+1-dimensional vector,
indexed by {0, . . . , n}, each component of which is either an object of type DI or the
distinguished value ⊥, with the additional requirement that at least one component of
�I must be different from ⊥.

The definition of output vectors is similar to that of input vectors.
Definition 2.2. An n + 1-process output vector �O is an n + 1-dimensional

vector, indexed by {0, . . . , n}, each component of which is either an object of type DO

or the distinguished value ⊥.
When it is clear from the context, we omit mentioning the number of processes

in specifying input and output vectors. We denote the ith component of an input
vector �I by �I[i], and, similarly, we denote the ith component of an output vector �O

by �O[i]. In the remainder of the paper, unless stated otherwise, we will assume that
i and j are index values in the set {0, . . . , n}. These index values will be used both
for specifying vector elements and also for indexing processes. We will use the terms
“one-dimensional array” (“array” for short) and “vector” interchangeably.

We are often concerned with executions that are prefixes of a given execution.
Definition 2.3. Vector �U is a prefix of �V if, for 0 ≤ i ≤ n, either �U [i] = �V [i]

or �U [i] = ⊥.
If a prefix has an entry distinct from ⊥, then it agrees with the corresponding

entry in the original.
Definition 2.4. A set V of vectors is prefix-closed if for all �V ∈ V , every prefix

�U of �V is in V .
In this paper, we will consider only sets of input and output vectors that are finite

and prefix-closed.
Definition 2.5. An input set is a finite, prefix-closed set of input vectors. An

output set is a finite, prefix-closed set of output vectors.
Next, we define the notion of a task specification map, which maps each element

of the input set to a subset of the output set. Our definition is similar to that of
Havlicek [19].

Definition 2.6. Let I and O be input and output sets, respectively. A task
specification map relating the two sets is a relation γ ⊆ I ×O such that the following
conditions hold:

• For all �I ∈ I, there exists a vector �O ∈ O such that (�I, �O) ∈ γ.

• For all (�I, �O) ∈ γ, and for all i, �I[i] = ⊥ if and only if �O[i] = ⊥.
Note that the above definition requires that in defining the task, every partici-

pating process must have a defined output. This is the specification of the task and
does not model its solvability in any given computation model.

As a convenient notation, we denote the set of vectors �O in O such that (�I, �O) ∈ γ

by γ(�I). For a given input vector �I, the set of vectors γ(�I) simply represents the set

of legitimate output vectors for the set of inputs specified by �I. This set will generally
contain more than one allowable output vector.

Definition 2.7. A decision task D = 〈I,O, γ〉 is a tuple consisting of a set I of
input vectors, a set O of output vectors, and a task specification map γ relating these
two sets.

TOPOLOGICAL CHARACTERIZATION 463

We note that, by definition, decision tasks are inherently one-shot in the sense
that all processes have a single input and must decide on a single output exactly once.
Not all entries in a given input vector need contain an input value; some may contain
the special value ⊥, indicating that some processes do not receive an input value. We
formalize this notion of participation in the definition below.

Definition 2.8. For any input vector �I, if the ith component is not ⊥, then i
participates in �I. Otherwise, we say that i does not participate in �I. Moreover, we
define the participating set in �I to be the set of participating indexes.

As noted by Herlihy and Shavit [24, 25, 26], the reason for incorporating an
explicit notion of participating indexes in our formalism for decision tasks is that it
is convenient for capturing the intuitive notion of “order of actions in time” through
the use of participating processes. For example, it allows us to distinguish between
tasks such as Unique-Id and Fetch-And-Increment, which have the same sets of input
and output vectors, have the same γ(I) when all processes participate, but have quite
different task specification maps when subsets of participating processes are taken
into account.

�I γ(�I)

(0,⊥,⊥) (0,⊥,⊥), (1,⊥,⊥), (2,⊥,⊥)
(⊥, 0,⊥) (⊥, 0,⊥), (⊥, 1,⊥), (⊥, 2,⊥)
(⊥,⊥, 0) (⊥,⊥, 0), (⊥,⊥, 1), (⊥,⊥, 2)
(0, 0,⊥) (0, 1,⊥), (1, 0,⊥), (0, 2,⊥), (0, 2,⊥), (2, 1,⊥), (1, 2,⊥)
(0,⊥, 0) (0,⊥, 1), (1,⊥, 0), (0,⊥, 2), (0,⊥, 2), (2,⊥, 1), (1,⊥, 2)
(⊥, 0, 0) (⊥, 0, 1), (⊥, 1, 0), (⊥, 0, 2), (⊥, 0, 2), (⊥, 2, 1), (⊥, 1, 2)
(0, 0, 0) (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

Fig. 1. The Unique-Id task.

�I γ(�I)

(0,⊥,⊥) (0,⊥,⊥)
(⊥, 0,⊥) (⊥, 0,⊥)
(⊥,⊥, 0) (⊥,⊥, 0)
(0, 0,⊥) (0, 1,⊥), (1, 0,⊥)
(0,⊥, 0) (0,⊥, 1), (1,⊥, 0)
(⊥, 0, 0) (⊥, 0, 1), (⊥, 1, 0)
(0, 0, 0) (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

Fig. 2. The Fetch-And-Increment task.

Example 2.9. The n + 1-process Unique-Id task is defined as follows: each
participating process i ∈ {0, . . . , n} has an input xi = 0 and chooses an output yi ∈
{0, . . . , n} such that for any pair of processes i �= j, yi �= yj.

Example 2.10. In the Fetch-And-Increment problem, each participating process
i ∈ {0, . . . , n} has an input xi = 0 and chooses a unique output yi ∈ {0, . . . , n} such
that (1) for some participating process i, yi = 0, and (2) for 1 ≤ k ≤ n, if yi = k,
then for some j �= i, yj = k − 1.

The tables in Figures 1 and 2, taken from [26], show the task specifications for
Unique-Id and Fetch-And-Increment for three processes. Notice that Unique-Id allows
identifiers to be assigned statically, while Fetch-And-Increment effectively requires

464 GUNNAR HOEST AND NIR SHAVIT

that they be assigned dynamically in increasing order. The first task has a trivial
wait-free solution: statically preassign the values 0, 1, and 2 to the three processes.
The second has no solution in read-write memory if one or more processes can fail.

2.3. Modeling objects, processes, and protocols. We formally model ob-
jects, processes, and protocols using a simplified form of the Input/Output (I/O)
automaton formalism of Lynch and Tuttle [28]. An I/O automaton is a nondeter-
ministic automaton with a finite or infinite set of states, a set of input actions, a set
of output actions, and a transition relation given by a set of steps, each defining a
state transition following a given action. An execution of an I/O automaton is an
alternating sequence of states and enabled actions, starting from some initial state.
An execution fragment is a subsequence of consecutive states and actions occurring
in an execution. For simplicity we will use the term execution to mean either execu-
tion or execution fragment, the appropriate term being clear from the context. An
automaton history is the subsequence of actions occurring in an execution. Automata
can be composed by identifying input and output actions in the natural way (details
can be found in [28]).

An object X is an automaton with input action call(i, v,X,D) and output action
return(i, v,X,D), where i is a process id, v is a value, X an object, and D a data type.
An action on object X by process i is said to occur on X’s ith “port.” A process i is
an automaton with output actions call(i, v,X,D), and decide(i, v) and input actions
return(i, v,X,D) and start(i, v). An operation is a matching pair of call and return
actions, that is, having the same type, name, and process id. From here on we will
abuse this notation for the sake of clarity by dropping unnecessary parameters and
denoting others using subscripts.

A protocol P = {0, . . . , n;M} is the automaton composed by identifying in the
obvious way the actions for processes 0, . . . , n and the memory M . A process i is said
to participate in an execution of a protocol if the execution contains a start(v)i action.
The set of participating processes is called the execution’s participating set. Note that
this definition of the participating set matches our earlier definition of a participating
set of input vectors. To capture the notion that a process represents a single thread
of control, a protocol execution is well formed if every process history (the projection
of the history onto the actions of i) has a unique start action (generated externally
to the protocol) which precedes any call or return actions, alternates matching call
and return actions, and has at most one decide action. We restrict our attention to
well-formed executions.

2.4. Solvability. We are interested in solvability in the face of arbitrary fail-stop
failures [17] (such failures also model processes being arbitrarily delayed or halted).
To capture the notion of processes having fail-stop failures, we add to the process
automaton a unique fail(i) event. A process’s execution is thus a sequence of actions
ending in either a decide or a fail action. If the execution ended in a fail action the
process is said to be faulty. An execution is t-faulty if up to t processes become faulty.

Definition 2.11. A protocol solves a decision task in an execution if the follow-
ing condition holds. Let {i|i ∈ U} be the processes that have start actions, and let
{ui|i ∈ U} be their arguments. Let {j|j ∈ V }, V ⊆ U , be the processes that execute

decide actions, and let {vj |j ∈ V } be their output values. Let �I be the input vector

with ui in component i, and ⊥ elsewhere, and let �O be the corresponding output vector
for the vj. We require that

1. no process takes an infinite number of steps without a decide or fail action,
and

2. �O is a prefix of some vector in Δ(�I).

TOPOLOGICAL CHARACTERIZATION 465

Informally, the second condition implies that if a protocol solves a task in an
execution, the outputs of the nonfaulty processes in any prefix of the execution are
consistent with the allowable outputs of the possibly larger set of inputs to the ex-
ecution as a whole. A protocol for N processes wait-free solves a decision task if it
solves it in every t-faulty execution where 0 ≤ t < N . We will call such a protocol
wait-free and henceforth use the term solves to mean wait-free solves.1

2.5. One-shot IS. Our memory model is based on Borowsky and Gafni’s IS
object [11], a model that has proven to be a useful building block for the construction
and analysis of protocols in many asynchronous, distributed systems [11, 12, 24, 25,
26, 31].

Informally, an n+1-process IS object consists of a shared n+1-dimensional mem-
ory array and supports a single type of operation, called writeread. Each writeread
operation writes a value to a single shared memory array cell, and returns a “snap-
shot” view of the entire array in the state immediately following the write—hence the
name “immediate snapshot.” A writeread operation by process i writes its value to
the ith cell of the memory array.

Formally, we can specify IS objects as I/O automata [28]. Let D be any data
type, and define ϑ(D) to be the data type (D ∪ {⊥})n+1, the set of all n + 1-arrays
each of whose cells contains either an element of D or ⊥. We index the elements of
ϑ(D) using the numbers in {0, . . . , n} and define ϑk(D) for k ≥ 2 as ϑ(ϑk−1(D)),
that is, a recursively growing vector of vectors. An IS automaton for n + 1-processes
and data type D called ISx is defined as in Figure 3. We refer to such an object as
an ISn+1

D object. When the data type and number of processes are clear from the
context, we usually omit the subscripts and superscripts above.

In Figure 3, the operation writeread(v, S)i,x by process i on ISx writes the value
v to the ith cell of memory and subsequently returns a snapshot S. The idea of
the automaton specification is to capture the notion of an update of a memory array
location followed immediately by a snapshot view of the entire array. Using a style
similar to that of the atomic snapshot memory specification of [1], we record the
history of invocations and responses using interface variables and allow the combined
“write and snapshot” operation itself to occur via an internal automaton transition at
some point between the invocation and associated response. Figure 4 shows a stylized
diagram of the IS object ISx.

For all i, the inv writeread(v)i,x action simply writes the input value v to the ith
cell of the input value array of ISx. This array provides temporary storage for inputs
to the ISn+1

D object. At the same time, the flag “inv” is written to the ith cell of the
interface array, which indicates an input by process i. The update(U) action is the
internal transition that periodically copies a set of values corresponding to the indexes
in U from the input value array to the memory array. The set U must be a subset
of the indexes i with the property that interface[i] = inv; in other words, these are
operations that have been invoked by participating processes and have not yet been
updated in memory. Additionally, a copy of the memory array is written to the ith
cell of the return value array for each i ∈ U . This corresponds to an IS view being
collected. Finally, the flag “ret” is written to the ith cell of the interface array for
each i ∈ U , indicating that a response value to the invocation by process i is available.

1Note that we use the standard notion of wait-free protocols [27] and not the more restrictive
notion of bounded wait-free protocols [27] even though, given that we consider deterministic algo-
rithms and that in our discussion the input space is finite, one could actually place a bound on the
length of any wait-free execution.

466 GUNNAR HOEST AND NIR SHAVIT

ISn+1
D object named ISx

Signature
Inputs:

inv writeread(v)i,x, v ∈ D, i ∈ {0, . . . , n}.
Internals:

update(U), U ⊆ {0, . . . , n}.
Outputs:

ret writeread(S)i,x, S ∈ ϑ(D), i ∈ {0, . . . , n}.
State
memory ∈ ϑ(D), initially (⊥, . . . ,⊥).
input value ∈ ϑ(D), initially (⊥, . . . ,⊥).
return value ∈ ϑ2(D), initially (⊥, . . . ,⊥).
interface ∈ {inv, ret,⊥}n+1, initially (⊥, . . . ,⊥).

Transitions
input: inv writeread(v)i,x

Eff: input value[i] := v
interface[i] := inv

internal: update(U)
Pre: U ⊆ {i | interface[i] = inv}
Eff: For all i in U do

memory[i] := input value[i]
For all i in U do

return value[i] := memory
For all i in U do

interface[i] := ret

output: ret writeread(S)i,x
Pre: interface[i] = ret

return value[i] = S
Eff: interface[i] := ⊥

Fig. 3. I/O automaton for an ISn+1
D object with name ISx.

ISx

update(U)
ret_writeread(S) i,x

inv_writeread(v)
i,x

Fig. 4. Diagram of ISx.

The ret writeread(S)i,x output action provides a response to a previous invocation by
process i. Its only effect on the IS object is to reset the value interface[i] to ⊥, thereby
preventing more than one response to an invocation. The ret writeread(S)i,x action
can occur only after a return value has been written to the ith cell of the return value
array and the flag “ret” has been written to the corresponding cell in the interface
array.

In the remainder of this section, we will state and prove a few basic properties
about IS objects. These properties will be useful later, when we prove the correctness
of a topological framework for analyzing the complexity of protocols in models of
computation that include multiple IS objects.

In this paper we will consider only a restricted class of executions of ISx, called
one-shot executions, in which each object has at most one invocation and at most one
response by any process.

Lemma 2.12. For any two distinct actions update(U) and update(U ′) in a one-
shot execution α of ISx, the index sets U and U ′ are disjoint.

TOPOLOGICAL CHARACTERIZATION 467

Proof. Suppose without loss of generality that U occurs before U ′, and suppose
i ∈ U . Immediately after the action update(U), interface[i] is equal to “ret.” Since
we are considering a one-shot execution, interface[i] will not return to the value “inv”
for the remainder of the execution. Hence, the precondition of the update(U ′) action
guarantees that i /∈ U ′.

We can now define what we mean by concurrent operations of ISx.
Definition 2.13. Two operations writeread(vi, Si)i,x and writeread(vj , Sj)j,x in

a one-shot execution α of ISx are concurrent if there exists an action update(U) in
α such that i, j ∈ U .

The proof of the following lemma is immediate by construction.
Lemma 2.14. Consider any operation writeread(vi, Si)i,x in a one-shot execution

α of ISx. Then Si[i] = vi.
The value returned by a ret writeread(S)i,x action is a one-dimensional array of

type ϑ(D). In the following lemma, we prove that ISx exhibits the property that the
set of snapshots returned in a one-shot execution can be totally ordered by the prefix
relation defined in Definition 2.3.

Lemma 2.15. Consider any two writeread operations in a one-shot execution α,
writeread(vi, Si)i,x and writeread(vj , Sj)j,x. Either Si is a prefix of Sj or Sj is a prefix
of Si.

Proof. Suppose the values vi and vj are written to memory by the actions
update(Ui) and update(Uj), respectively.

If these actions are the same, that is, if Ui = Uj , the two operations writeread(vi,
Si)i,x and writeread(vj , Sj)j,x are concurrent. In this case, the value of memory that
is copied to return value[i] is identical to the value copied to return value[j], since
both are copied by the same update(Ui) action. It follows that Si = Sj . Now suppose
Ui �= Uj , and suppose update(Ui) occurs after update(Uj). Since no memory cells
are ever reset, it follows that the memory version that is written to return value[j]
during update(Uj) is a prefix of the version that is written to return value[i] during
update(Ui). Hence Sj is a prefix of Si. The case where update(Uj) occurs after
update(Ui) is similar, and in this case we have that Si is a prefix of Sj . The lemma
follows.

The next lemma concerns what is referred to in [11] as the immediacy property of
IS objects. If a value written to memory by an invocation by process j is contained
in a snapshot of an operation by process i, then the snapshot returned to process j
is a prefix of that returned to process i. This corresponds to the informal notion of a
writeread operation by j happening before a writeread operation by i.

Lemma 2.16. Consider any two writeread operations in a one-shot execution α,
writeread(vi, Si)i,x and writeread(vj , Sj)j,x. If Si[j] �= ⊥, then Sj is a prefix of Si.

Proof. Suppose the values vi and vj are written to memory by the actions
update(Ui) and update(Uj), respectively, and suppose Si[j] �= ⊥. This implies that
either vj was written to memory during update(Ui), in which case Ui = Uj , or the
action update(Uj) occurred before update(Ui). In either case, we have that Sj must
be a prefix of Si.

2.6. The NIIS model. Our nonuniform iterated immediate snapshot (NIIS)
model is a variant of the iterated immediate snapshot (IIS) model, first used implicitly
by Herlihy and Shavit [25, 26], and later formulated as a computation model by
Borowsky and Gafni [12].

The IIS model assumes a bounded sequence ISn+1
D , ISn+1

ϑ(D), IS
n+1
ϑ2(D), . . . , IS

n+1
ϑk−1(D)

of IS objects, denoted by IS1, IS2, IS3, . . . , ISk, where k > 0. On a high level, the IIS

468 GUNNAR HOEST AND NIR SHAVIT

inv_writeread(v)inv_writeread(v) i,1

ret_writeread(S) i,1

inv_writeread(v) i,x

ret_writeread(S)
i,x

1

i

n

IS

IS

1

x

Fig. 5. Diagram of the NIIS model.

model has each participating process proceed in accessing IS objects in ascending or-
der in the sequence. On each object it executes a writeread(v)i,1 action, with v equal
to its local state. The response from each object, consisting of an IS of its shared
memory vector, is provided as input to the next object accessed in the sequence, until
k objects have been accessed. Once a process has received an output from the kth IS
object, it applies a decision map δ to this value to create its returned decision value.
We note that there is no loss of generality in assuming a “full information model”
where the input to one writeread operation is the response by the previous one.

We generalize the IIS model by introducing the NIIS model. Unlike IIS, the
NIIS model assumes an unbounded sequence ISn+1

D , ISn+1
ϑ(D), IS

n+1
ϑ2(D), . . . of IS objects,

denoted IS1, IS2, IS3, A stylized interconnection diagram of the k-shot IIS model
is given in Figure 5. The number of IS objects accessed by any two distinct processes
in a given execution need not be the same, and, moreover, the number of objects
accessed by any fixed process may vary from execution to execution. The motivation
behind this is to be able to model complexity more accurately. In a given execution
it may be the case that the necessary amount of computation will vary from process
to process, from input value to input value, and indeed from execution to execution.
This cannot be captured by a uniform model such as IIS in which every execution of
a given protocol will involve the same number of steps.

The only significant difference between a protocol P(n,τ,δ) in the NIIS model and
a protocol in the IIS model is that after each complete writeread operation, each
process checks whether it has reached a final state by applying the predicate τ to the
local state variable. If τ returns true, the process executes a decide(S)i action and
halts. Otherwise, it accesses the next IS object as in the IIS model, and so on. In
fact, any protocol in the IIS model is equivalent to a protocol P(n,τ,δ) in the NIIS
model, in which the predicate τ simply checks whether the local state variable is of
type ϑk(D).

Notice that, unlike the IIS model, the NIIS model permits unbounded length
executions (assuming an unbounded number of IS objects) for some choices of the
termination predicate map τ . However, we will consider only protocols for which τ is
chosen such that the entire system does not have any infinite executions.

Each protocol in the NIIS model is fully characterized by the maximum num-
ber n + 1 of processes that can participate, a predicate function τ :

⋃∞
l=0 ϑ

l(D) →
{true, false}, which each process applies to its local state variable after each com-

TOPOLOGICAL CHARACTERIZATION 469

Process i

Signature
Inputs:

ret writeread(S)i,x, S ∈
⋃∞

l=1 ϑ
l(D).

start(v)i, v ∈ D.
faili

Internals:

Outputs:
inv writeread(v)i,x, v ∈

⋃∞
l=0 ϑ

l(D).
decide(v)i, v ∈ DO.

State
local state ∈ (

⋃∞
l=0 ϑ

l(D)) ∪ {⊥}, initially in the fresh state ⊥.
status ∈ {ready,waiting, decided, failed}, initially ready.
Transitions
input: ret writeread(S)i,x

Eff: local state := S
If status = waiting do

status := ready
output: inv writeread(v)i,x

Pre: τ(local state) = false

status = ready
local state = v �= ⊥

Eff: status := waiting
input: faili

Eff: status := failed

input: start(v)i
Eff: local state := v

output: decide(v)i
Pre: τ(local state) = true

δ(local state) = v ∈ DO

status = ready
Eff: status := decided

Fig. 6. I/O automaton for process i running NIIS protocol.

plete writeread operation to determine whether or not to decide, and a decision map
δ :

⋃∞
l=0 ϑ

l(D) → DO, where DO is an arbitrary data type, which we call the proto-
col’s output data type. We refer to the protocol obtained by fixing these parameters
as P(n,τ,δ).

We specify each IS object as in Figure 3, and each process i as in Figure 6.
The protocol can then be specified by composing the automata for the processes
and the automata for IS objects by matching up invocations and responses from
consecutive IS objects in the natural way. The resulting protocol automaton is denoted
by P(n,τ,δ) = {0, 1, . . . , n; IS1, IS2, . . . }.

For any execution α of P(n,τ,δ), the processes’ input values can conveniently be

represented using an n + 1-dimensional input vector �I, as specified in the previous
section, with input data type D. The ith entry of �I is the input of process i. Similarly,
the processes’ output values in α can be represented using an n+1-dimensional output
vector �O. The ith entry of �O is the output of process i.

It should be noted that the notions of participating processes and sets defined for
executions and input vectors are consistent; a process i participates in an execution

α if and only if the index i participates in the input vector �I corresponding to α.
Therefore, when the meaning is clear from the context, we usually omit qualifying a
participating set with an execution or input vector.

We note that we have added fail i actions to the protocol to achieve the stopping
failure property. We note that by construction if α is an execution of P(n,τ,δ) that con-
tains a fail i action, then α contains no actions locally controlled by i (inv writeread(v)i,x
or decide(S)i) after the fail i action.

470 GUNNAR HOEST AND NIR SHAVIT

2.7. Complexity measures for the IIS and NIIS models. We now define
the complexity measures to be used for analyzing the performance of protocols in the
NIIS model. Since the IIS model is equivalent to a special case of the NIIS model,
these measures also apply directly to the IIS model.

Let P(n,τ,δ) be a protocol in the NIIS model solving a given decision task D, let �I

be an input vector, and let α be any execution of P(n,τ,δ) that corresponds to �I. For
all i, let ti be the number of IS objects accessed by process i in α. We first define the
time complexity of the execution α.

Definition 2.17. The time complexity of α, denoted tα, is maxi ti, the maximum
number of IS objects accessed by any process.

We note that tα is well defined, since the number of processes n + 1 is finite.
Moreover, by definition of the max function, tα is an integer value. We use the
definition given above to define the time complexity of the protocol P on the input
vector �I.

Definition 2.18. The time complexity of P(n,τ,δ) on �I, denoted t�I , is the supre-

mum of the set {tα | tα is an execution corresponding to �I}.
Finally, we define the complexity of a protocol P(n,τ,δ) on an input set I.
Definition 2.19. The time complexity of P(n,τ,δ) on I, denoted tI , is the supre-

mum of the set {t�I | �I ∈ I}.
The reason for preferring these simple, discrete complexity measures over other,

more elaborate, measures such as real time, for instance, is the highly regular structure
of the IIS and NIIS models. We make the assumption that each access to an IS
object takes the same amount of time and do not worry about breaking up the time
required to complete each access to an IS object into subparts. Instead, we group the
time spent on invocation, response, and on local computation at the IS object. This
assumption is somewhat strong, as the presence of asynchrony in our model will tend
to introduce varying delays for each access to an object. However, we believe that, as
a first step toward a complexity theory, this assumption is justifiable, as it allows for
complexity measures that are simple and easy to apply, and that have a particularly
nice topological representation, as we will see in section 4.

3. A topological framework. In this section we first introduce some known
tools from the field of algebraic topology and show how they may be used to model
decision tasks and protocols in the NIIS model of computation. We then introduce
a new tool for analyzing complexity in this setting, called the nonuniform iterated
chromatic subdivision.

3.1. Basic topological definitions and concepts. This section introduces
the basic topological definitions and concepts that we shall need for modeling decision
tasks and wait-free protocols in the NIIS model. Some of these definitions are fairly
standard and are mainly taken from popular textbooks on algebraic topology [30, 34],
while others are due to Herlihy and Shavit [24, 25, 26]. The statements and proofs
related to subdivisions are novel to this work. Some of the figures used in this section
are also adopted from Herlihy and Shavit’s work [24, 25, 26].

A vertex �v is a point in a Euclidean space R
l. A set {�v0, . . . , �vn} of vertexes

is geometrically independent if and only if the set of vectors {�vi − �v0}ni=1 is linearly
independent. Clearly, for a set of n + 1 vertexes to be geometrically independent,
l ≥ n. We can now define the concept of a geometric simplex, or simplex for short.

Definition 3.1. Let {�v0, . . . , �vn} be a geometrically independent set of vertexes
in R

l. We define the n-simplex S spanned by �v0, . . . , �vn to be the set of all points x

TOPOLOGICAL CHARACTERIZATION 471

S

T

v
0

v1

v23v

Fig. 7. Example of a pure, two-dimensional simplicial complex.

such that x =
∑n

i=0 ti�vi, where
∑n

i=0 ti = 1 and ti ≥ 0 for all i.
For example, a 0-simplex is a vertex, a 1-simplex a line segment, a 2-simplex a

solid triangle, and a 3-simplex a solid tetrahedron. For simplicity, we often denote
the simplex spanned by a set {�v0, . . . , �vn} of geometrically independent vertexes as
(�v0, . . . , �vn). The number n is called the dimension of the simplex S and is often
denoted by dim(S). For clarity, we will sometimes include the number n as an explicit
superscript when referring to a simplex; that is, we will write Sn to refer to the simplex
spanned by the vertexes in {�v0, . . . , �vn}.

Any simplex T spanned by a subset of {�v0, . . . , �vn} is called a face of S. The faces
of S different from S itself are called the proper faces of S. The simplex spanned by
the vertexes {�v0, �v1} is a proper face of the 2-simplex S spanned by {�v0, �v1, �v2} in
Figure 7.

The union of the proper faces of S is called the boundary of S and is denoted
Bd(S). The interior of S, denoted Int(S), is defined by the set equation Int(S) =
S −Bd(S). For any set of points, the point

�b =
n∑

i=0

(�vi/(n + 1))

is their barycenter. The barycenter of a simplex S is the barycenter of its vertexes.
In particular, if S is a vertex, then �b = S.

We will use a vertex to model the state of a single process, and a simplex to model
consistent states of all the processes involved in solving a decision task or in running a
protocol in the NIIS model. To model a collection of such states we need the concept
of a geometric, simplicial complex, or complex for short, which is defined below.

Definition 3.2. A geometric simplicial complex K in the Euclidean space R
l is

a collection of geometric simplexes in R
l such that

• every face T of every simplex S in K is contained in K, and
• the intersection U of any two simplexes S, T in K is contained in K.

In this paper we will consider only finite complexes. The dimension of a complex
K, often denoted by dim(K), is the highest dimension of any of its simplexes and
is also sometimes indicated explicitly by a superscript. An n-dimensional complex
(or n-complex) is pure if every simplex is a face of some n-simplex. All complexes
considered in this paper are pure unless stated otherwise. A simplex S in K with
dimension dim(S) = dim(K) is called a maximal simplex.

Given a simplex S, let S denote the complex of all faces of S, and let Ṡ denote the
complex consisting of all proper faces of S. We note that, since Ṡ contains all faces

472 GUNNAR HOEST AND NIR SHAVIT

of S except S itself, dim(Ṡ) = dim(S) − 1. An example of a pure, two-dimensional
simplicial complex, which we call K, is shown in Figure 7. This complex equals
the union of S and T , where S is the 2-simplex spanned by {�v0, �v1, �v2}, and T is
the 2-simplex spanned by {�v0, �v1, �v3}. Both S and T are maximal simplexes in this
example.

If L is a subcollection of simplexes in K that is closed under containment and
intersection, where dim(L) ≤ dim(K), then L is a complex in its own right. It is
called a subcomplex of K. For example, the complex Ṡ of faces of S is a subcomplex
of K in Figure 7.

One subcomplex of a complex K of particular interest is the subcomplex of all
simplexes in K of dimension at most p, where p is some integer between 0 and dim(K).
We call this subcomplex the pth skeleton of a K, denoted skelp(K). The elements of
the collection skel0(K) are called the 0-simplexes of K. The 0-skeleton of the complex
K in Figure 7 is the collection of 0-simplexes {(�v0), (�v1), (�v2), (�v3)}. Similarly, the
1-skeleton of K is the union of the 0-skeleton described above and the collection
{(�v0, �v1), (�v0, �v2), (�v1, �v2), (�v1, �v3), (�v2, �v3)}.

Let |K| be the subset
⋃

S∈K S of R
l that is the union of the simplexes of K. Giving

each simplex its natural topology as a subspace of R
l, we topologize |K| by declaring

a subset A of |K| to be closed if and only if A ∩ S is closed for all S ∈ K. This space
is called the polytope of K. Conversely, K is called a triangulation of |K|.

In practice, the geometric representations we have given for simplexes and com-
plexes are not always convenient, since the analytic geometry involved can get quite
involved. Therefore, we introduce the notions of abstract simplexes and abstract com-
plexes.

Definition 3.3. An abstract simplex S is a finite, nonempty set.
The dimension of S is its cardinality. Each nonempty subset T of S is called a face

of S. Each element of S is called a vertex of S. There is a close relationship between
geometric simplexes and abstract simplexes. Any geometrically independent set of
vectors {�v0, . . . , �vn} not only spans a geometric simplex; it also forms an abstract
simplex.

Definition 3.4. An abstract complex Ka is a collection of abstract simplexes,
such that if S is in Ka, so is any face of S.

Most concepts defined for geometric complexes immediately carry over to abstract
complexes; the dimension of Ka, often denoted by dim(Ka), is the highest dimension
of any of its simplexes. An n-dimensional abstract complex (or n-complex) is pure if
every simplex is a face of some n-simplex. If La is a subcollection of Ka that is itself
an abstract complex, then La is called a subcomplex of Ka.

Definition 3.5. Let K be a geometric complex, and let V be the vertex set of K.
Let Ka be the abstract complex of all subsets S of V such that S spans a simplex in
K. Then Ka is called the vertex scheme of K.

Definition 3.6. Two abstract complexes Ka and La are isomorphic if there is
a bijective correspondence ψ between their vertex sets such that a set S of vertexes is
in Ka if and only if ψ(S) ∈ La. The bijective correspondence ψ is called an isomor-
phism.

Theorem 3.7. Every abstract complex Ka is isomorphic to the vertex scheme of
some geometric complex K in R

2 dim(Ka)+1.
We will not prove this theorem here. For a proof, see any standard textbook on

algebraic topology [30, 34]. In the rest of this paper, for convenience, we will often use
abstract and geometric representations of simplexes and complexes interchangeably.

We now define a way of “adding” simplexes, known as starring.

TOPOLOGICAL CHARACTERIZATION 473

T0

T1

T2

S1

S2

Fig. 8. The star of two complexes S and T .

Definition 3.8. Let S = (s0, . . . , sp) and T = (t0, . . . , tq) be simplexes whose
combined sets of vertexes are affinely independent. Then the star of S and T , denoted
S
 T , is the simplex (s0, . . . , sp, t0, . . . , tq).

We may extend the notion of starring to complexes as well.

Definition 3.9. Let K and L be simplicial complexes, not necessarily of the same
dimension. Then the star of K and L, denoted K
 L, is the collection of simplexes
K ∪ L ∪ {S
 T | S ∈ K, T ∈ L}.

The star of two complexes K and L is a complex in its own right [30]. Figure 8
shows a complex consisting of two 3-simplexes and all their faces resulting from star-
ring the complex S which includes the 1-simplex (s0, s1) and all its faces, and the
complex T consisting of the two 1-simplexes (t0, t1) and (t1, t2) and all their faces.

The remainder of this section, however, which introduces a number of important
topological concepts, such as simplicial maps, subdivisions, and carriers, is set in the
context of geometric complexes.

We first define the notions of simplicial vertex maps and simplicial maps from
one complex into another.

Definition 3.10. Let K and L be complexes, possibly of different dimensions,
and let μ : skel0(K) → skel0(L) be a function mapping vertexes to vertexes. Sup-
pose that whenever the vertexes �v0, . . . , �vn of K span a simplex of K, the vertexes
μ(�v0), . . . , μ(�vn) span a simplex of L. Then μ is called a simplicial vertex map from
K to L. μ can be extended to a continuous map μ∗ : |K| → |L| such that

x =

n∑
i=0

ti�vi ⇒ μ∗(x) =

n∑
i=0

tiμ∗(�vi).

This continuous extension is called a simplicial map from K to L.

For simplicity, we henceforth refer to the simplicial vertex map μ as the simplicial
map, without actual reference to the continuous extension μ∗, which is less relevant
for our purposes. As a further abuse of notation, we usually write μ : K → L when
we refer to the simplicial vertex map, glossing over the fact that this map is in fact
defined only on the vertexes of K, and that the image of the map is a subset of the
vertex set of L. Henceforth, unless stated otherwise, all maps between complexes are
assumed to be simplicial. An example of a simplicial map is given in Figure 9.

We note that a simplex and its image under a simplicial map need not have
the same dimension. A simplicial map μ : K → L is noncollapsing if it preserves
dimension; that is, for all S ∈ K: dim(μ(S)) = dim(S).

474 GUNNAR HOEST AND NIR SHAVIT

μ

Fig. 9. Example of a simplicial map between two complexes.

κ σ(κ)

Fig. 10. Example of a pure, two-dimensional simplicial complex and a subdivision of it.

Definition 3.11. A coloring of an n-dimensional complex K is a noncollapsing
simplicial map χ : K → S, where S is an n-simplex.

Intuitively, a coloring corresponds to a labeling of the vertexes of the complex such
that no two neighboring vertexes (connected by a 1-simplex) have the same label. A
chromatic complex (K, χ) is a complex K together with a coloring χ of K. When
it is clear from the context, we specify the chromatic complex (K, χ) simply as the
complex K, omitting explicit mention of the coloring χ.

Definition 3.12. Let (K, χK) and (L, χL) be chromatic complexes, and let
μ : K → L be a simplicial map. We say that μ is chromatic if, for every vertex �v ∈ K,
χK(�v) = χL(μ(�v)).

In other words, μ is chromatic if it maps each vertex in K to a vertex in L of the
same color. All the simplicial maps we consider in this paper are chromatic. We can
now define the concepts of a subdivision of a complex and the carrier of a simplex in
a subdivision.

Definition 3.13. Let K be a complex in R
l. A complex σ(K) is said to be a

subdivision of K if the following two conditions hold:

• Each simplex in σ(K) is contained in a simplex in K.
• Each simplex of K equals the union of finitely many simplexes in σ(K).

An example of a complex and its subdivision is given in Figure 10.

Definition 3.14. If S is a simplex of σ(K), the carrier of S, denoted carrier(S),
is the unique smallest T ∈ K such that S ⊂ T .

The concept of a carrier of a simplex is illustrated in Figure 11. The original

TOPOLOGICAL CHARACTERIZATION 475

Simplex S Carrier(S)

Fig. 11. The carrier of a simplex.

complex is shown on the right, and the subdivided complex is shown on the left. A
simplex S in the subdivision and the corresponding carrier carrier(S) in the original
complex are highlighted in the figure.

A chromatic subdivision of (K, χK) is a chromatic complex (σ(K), χσ(K)) such
that σ(K) is a subdivision of K, and for all S in σ(K), χσ(K)(S) ⊆ χK(carrier(S)).
A simplicial map μ : σ1(K) → σ2(K) between chromatic subdivisions of K is carrier
preserving if for all S ∈ σ1(K), carrier(S) = carrier(μ(S)). All subdivisions we
consider in this paper will be chromatic, unless explicitly stated otherwise.

3.2. Topological modeling of decision tasks. Earlier in this section, we de-
fined the notion of a decision task in terms of input and output vectors. That definition
was intended to help the reader understand what a decision task is, but it lacks the
mathematical structure necessary to prove interesting results. We now reformulate
this definition in terms of simplicial complexes. To illustrate our constructions, we
will first explain on a high level how to topologically model tasks, specifically the
well-known Unique-Id task of Example 2.9. We will then provide detailed topological
definitions of decision tasks.

We represent all possible input vectors to a task as a simplicial complex. In
the case of the Unique-Id task, there is a (unique) n + 1-dimensional input vector
�I = [0, . . . , 0] represented as a simplex S, with dimension 0 ≤ dim(S) ≤ n. The
dimension of S equals the number of non-⊥ elements in the vector.

From here on, each vertex �v in a simplex S will be labeled with a process id
and an input value. We will use ids(S) to denote a simplex S’s set of process ids
(similarly for a complex), and vals(S) to denote the multiset of values in S (similarly

for a complex). If �J is a prefix of �I, then the simplex corresponding to �J is a face
of S. The set I of input vectors is thus modeled as a complex I of input simplexes,
called the input complex. For the Unique-Id task each vertex in �I is labeled 〈i, vi〉,
where �I[i] = vi = 0.

Similarly, the set O of output vectors is modeled as a complex O of output
simplexes, called the output complex. In the Unique-Id task we represent each n+ 1-
dimensional output vector �O = [x1, . . . , xn], where for all i, j, either xi = ⊥ or 0 ≤
xi ≤ n and (xi = xj) ⇒ (xi = ⊥), as a simplex T , with dimension 0 ≤ dim(T) ≤ n.
Each vertex �v in T is labeled with a process id and an output value 〈i, vi〉, where
�O[i] = vi. As before, if �P is a prefix of �O, then the simplex corresponding to �P is a
face of T .

476 GUNNAR HOEST AND NIR SHAVIT

A topological task specification map Γ maps the input complex to the output
complex in a way that captures the input/output vector relation γ of a given task.
The Unique-Id task induces a topological task specification map Γ in the natural way,
mapping each input simplex S ∈ I to a set Γ(S) of output simplexes in O, with the
property that for all T ∈ Γ(S), the set vals(T) contains no non-⊥ duplicates.

We can now give an alternative, topological representation of the Unique-Id de-
cision task by simply specifying it as a tuple D = 〈I,O,Γ〉 consisting of an input
complex I, an output complex O, and a topological task specification map Γ.

This topological representation gives an alternative interpretation of the notion
of “similar” system states. The processes corresponding to vertexes on the common
boundary of the two simplexes cannot distinguish between the two global output sets
based on their own output values. Unlike graph-theoretic models (e.g., [7]), simplicial
complexes capture in a natural way the notion of the degree of similarity between the
two global output sets: it is the dimension of the intersection of the two 2-simplexes.

We now give a formal procedure for how to specify a given decision task D =
〈I,O, γ〉 topologically. We first construct a representation using abstract simplexes
and complexes. It then follows from Theorem 3.7 that there exists a representation
using geometric simplexes and complexes for which the vertex scheme is isomorphic to
the abstract representation. There are standard ways of constructing such geometric
complexes [30], but we choose not to get into the details of these constructions in this
paper.

Definition 3.15. Let �I ∈ I be an input vector. The input simplex corre-
sponding to �I, denoted S(�I), is the abstract simplex (〈i0, vi0〉, . . . , 〈im, vim〉), where

vij = �I[ij], and where for all ij, i0 ≤ ij ≤ im, ij ∈ {0, . . . , n} ∧ �I[ij] �= ⊥, and for all

i, (�I[i] = ⊥) ⇒ (i /∈ {i0, . . . , im}).
Definition 3.16. Let �O ∈ O be an output vector. The output simplex corre-

sponding to �O, denoted T (�O), is the abstract simplex (〈i0, vi1〉, . . . , 〈im, vim〉), where

vij = �O[ij], and where for all ij, i0 ≤ ij ≤ im, ij ∈ {0, . . . , n} ∧ �O[ij] �= ⊥, and for

all i, (�O[i] = ⊥) ⇒ (i /∈ {i0, . . . , im}).
In other words, the vertexes in an input/output simplex correspond exactly to the

non-⊥ values of the input/output vectors. Having defined input and output simplexes,
we can define input and output complexes.

Definition 3.17. The input complex corresponding to I, denoted I, is the
collection of input simplexes S(�I) corresponding to the input vectors of I.

Definition 3.18. The output complex corresponding to O, denoted O, is the
collection of output simplexes T (�O) corresponding to the output vectors of O.

Definitions 3.17 and 3.18 make sense topologically due to the following lemma
which follows from the fact that the sets of input and output vectors we consider are
prefix-closed (see Definition 2.5).

Lemma 3.19. Given a set I of input vectors (alternatively a set O of output
vectors), the corresponding input complex I (output complex O), as defined in Defi-
nition 3.17, is an abstract, chromatic complex.

Given a pair of (abstract) input and output complexes, we may apply Theorem 3.7
to construct a corresponding pair of geometric chromatic input and output complexes
by embedding the abstract complexes in R

2n+1. As discussed in section 3.1, we will

TOPOLOGICAL CHARACTERIZATION 477

thus work with both interchangeably in the remainder of this paper.
We now construct a topological equivalent of the task specification map γ ⊆ I×O.
Definition 3.20. The topological task specification map corresponding to γ,

denoted Γ ⊆ I ×O, is defined as follows:

(S(�I), T (�O)) ∈ Γ ⇐⇒ (�I, �O) ∈ γ.

As a convenient notation, for all S(�I) ∈ I, we denote the set of simplexes T (�O)

in O such that (S(�I), T (�O)) ∈ Γ by Γ(S(�I)). Usually, we simply refer to a topolog-
ical task specification map as a “task specification map.” We now prove that task
specifications are id-preserving; if a process i has an input value, it must also have an
output value, and vice versa.

Lemma 3.21. For all S(�I) ∈ I, and all T (�O) ∈ Γ(S(�I)), ids(T) = ids(S).

Proof. Let S(�I) be any simplex in I, and let T (�O) ∈ Γ(S(�I)). Then �O ∈ γ(�I) by

Definition 3.20. Suppose i /∈ ids(S(�I)). Then �I[i] = ⊥ by Definition 3.15, and hence

by Definition 2.6, �O[i] = ⊥. It follows from Definition 3.16 that i /∈ ids(T (�O)). Now

suppose i /∈ ids(T (�O)). Then �O[i] = ⊥ by Definition 3.16, and hence by Definition 2.6,
�I[i] = ⊥. It follows from Definition 3.15 that i /∈ ids(S(�I)).

A schematic illustration of a topological decision task specification is given in
Figure 12.

Input Complex Output Complex

Input
Simplex

Set of legal
output simplexes

Fig. 12. A decision task.

Definition 3.22. Given a decision task D = 〈I,O, γ〉, the corresponding topo-
logical representation of the task, denoted D = 〈I,O,Γ〉, consists of an input complex
I corresponding to I, an output complex O corresponding to O, and a task specifica-
tion map Γ corresponding to γ.

In the remainder of this paper, we will specify decision tasks using Definitions 2.7
and 3.22 interchangeably. A set of inputs or outputs may thus be specified as either
a vector or a simplex, the vertexes of which are labeled with process ids and values.

3.3. Topological modeling of NIIS protocols. We model protocols in the
NIIS model in much the same way that we model decision tasks. As discussed in
section 2, the sets of inputs and outputs for any execution α of a protocol P(n,τ,δ)

478 GUNNAR HOEST AND NIR SHAVIT

in the NIIS model can be modeled using n + 1 process input and output vectors.
We denote the sets of input vectors and output vectors of a protocol by I and O,
respectively. We are interested only in protocols that solve decision tasks, so we may
assume that the set I of possible input vectors to a protocol is prefix-closed. The
following lemma states that for any protocol in the NIIS model, the set O of possible
output vectors from all executions of the protocol must necessarily be prefix-closed.
Recall from section 2.6 that we are considering only the set of fair (and hence finite)
executions of a protocol here.

Lemma 3.23. Let O be the set of possible output vectors of a protocol P(n,τ,δ) in
the NIIS model, with a corresponding set of input vectors I. Then O is prefix-closed.

Proof. Let �O be an output vector produced by the execution αO, and let �P
be a prefix of �O. We construct an execution αP as follows: For each i such that
�O[i] = vi �= ⊥ = �P [i], replace the action decide(S)i (S is the output value returned
by that action) in αO with a fail i action, meaning that process i fail-stopped before
deciding. Clearly, the execution thus obtained is a possible execution of P(n,τ,δ), and

its output vector is �P . Hence �P is in O, and O is prefix-closed.
Given that both the set of input vectors I and the set of output vectors O as-

sociated with a protocol P(n,τ,δ) are prefix-closed sets of vectors, we can construct
corresponding input and output complexes, denoted I and P(n,τ,δ)(I), respectively.
These complexes are constructed in the same way as the complexes corresponding to
input and output sets of vectors for decision tasks, and the proofs that they are in-
deed chromatic complexes are also identical. The output complex P(n,τ,δ)(I) is called
a protocol complex.

Let J be a subcomplex of the input complex I. The set of possible outputs when
the protocol is given inputs corresponding to simplexes in J is denoted P(n,τ,δ)(J).

Lemma 3.24. Let J be a subcomplex of I. Then P(n,τ,δ)(J) is a subcomplex of
P(n,τ,δ)(I).

Proof. It suffices to show that P(n,τ,δ)(J) is a complex, since P(n,τ,δ)(J) is clearly
a subset of P(n,τ,δ)(I). Consider the set of vectors J corresponding to the subcomplex
J as the set of input vectors to the protocol P(n,τ,δ). This set is prefix-closed since
J is a complex and hence is closed under containment. Hence the set P of output
vectors given input vectors in J is prefix-closed by Lemma 3.23. It follows that the
complex corresponding to P(n,τ,δ) with input complex J , denoted P(n,τ,δ)(J), is by
construction a complex and hence a subcomplex of P(n,τ,δ)(I).

In the remainder of this paper, we will specify protocols in NIIS using both its
formal specification from section 2.6 as well as protocol complexes as described in this
section interchangeably. A set of inputs or outputs may thus be specified as either a
vector or a simplex, the vertexes of which are labeled with process ids and values.

3.4. Subdivisions. The standard chromatic subdivision was introduced by Her-
lihy and Shavit as part of their work on asynchronous computability [24, 25, 26]. It
is essentially a chromatic generalization of the standard barycentric subdivision from
classical algebraic topology [30, 34]. In this section, we will present a complete, formal
definition of the standard chromatic subdivision, together with a proof that it is, in the
topological sense, a chromatic subdivision of a given complex. As noted earlier, such
a proof also provides the necessary formal basis for the use of the standard chromatic
subdivision in [12, 26]. We note that our definition is somewhat different from that
of Herlihy and Shavit [24, 25, 26], as it is based on an explicit, inductive, geometric
construction. We also introduce the concept of a nonuniform chromatic subdivision, a
generalization of the standard chromatic subdivision, in which the different simplexes

TOPOLOGICAL CHARACTERIZATION 479

of a complex are not necessarily subdivided the same number of times. Informally,
a nonuniform chromatic subdivision of level 1 of a complex K, denoted by X̃ 1(K), is
constructed by choosing, for each n-simplex in K, a single face of the simplex (a face
can be of any dimension and can also be the whole simplex) to which we apply the
standard chromatic subdivision. We then induce the subdivision onto the rest of the
simplex. The subdivisions of any two intersecting simplexes must be such that they
agree on their shared face. Examples can be seen in Figure 13. Its right-hand side
shows a valid nonuniform chromatic subdivision of a complex where, for example,
the simplex (b, c, d)’s subdivision is the result of subdividing the 1-face (c, d) once
and then inducing this subdivision onto the rest of the simplex. The left-hand side
structure is not a legal subdivision, since the subdivision of the simplex (b, c, d) does
not agree with that of the simplex (a, b, d) on the shared face (b, d). This structure is
not even a simplicial complex, since it contains an object that is not a simplex (the
cross-hatched region in Figure 13). A kth level nonuniform chromatic subdivision of a

complex K, denoted by X̃ k(K), is generated by repeating this process k times, where
only simplexes in faces that were subdivided in round k−1 can be subdivided in phase
k. The complex on the right-hand side of Figure 13 is an example of a nonuniform
chromatic subdivision of level 2, since the face (a, d) is subdivided twice.

ab

c d e

original complex

b a

c d e

valid subdivision

c e

b a

d

invalid subdivision

Fig. 13. Valid and invalid nonuniform subdivisions.

Later in this section we will show that the nonuniform chromatic subdivisions
correspond in a natural way to the set of protocol complexes in the NIIS model of
computation. As an execution in the NIIS model unfolds, some processes continue
to step through IIS objects while others fail or decide. For a given input simplex,
each transition through an IIS object by a subset of processes will correspond to a
subdivision of the face corresponding to their respective vertexes. The other faces
of the simplex, ones corresponding to the remaining processes, are not subdivided
further, corresponding to the idea that the respective processes have either failed or
decided. In the input complex, input simplexes sharing the same face have compatible
subdivisions. As it turns out, each nonuniform standard chromatic subdivision is equal
to some NIIS protocol complex (up to isomorphism).

3.4.1. The standard chromatic subdivision. In this section we provide our
definition of the standard chromatic subdivision and prove that this definition does
indeed specify a chromatic subdivision of a given complex.

Let K be a pure, n-dimensional, chromatic geometric complex, where the colors
are the numbers in 0, . . . , n. Label each vertex �v in K with 〈i, vi〉, where i is the color

480 GUNNAR HOEST AND NIR SHAVIT

(process id) of �v denoted also as id(�v), and vi is a value (denoted also as val(�v)) in
some set DI chosen such that no two vertexes in K have the same label. Note that
two adjacent vertexes may have the same values if they have different colors. We
define the standard chromatic subdivision of K by inductively defining a sequence
of subdivisions Lp of the skeletons of K, 0 ≤ p ≤ n, as follows. We begin with the
following auxiliary definition of the containment conditions among labeled vertexes.

Definition 3.25. For any set of simplexes T = (�t0, . . . , �tr) in a complex K with
labels 〈i, Si〉, where Si is the vertex scheme of some subset of simplexes in K, define
the containment conditions on the labels of T for any 1 ≤ i, j ≤ r, i �= j, as follows:

C1. id(�ti) �= id(�tj).
C2. id(�ti) ∈ ids(val(�ti)).
C3. val(�ti) is a face of val(�tj) or vice versa.
C4. id(�tj) ∈ ids(val(�ti)) ⇒ val(�tj) is a face of val(�ti).

Condition C1 simply states that the given simplex is chromatic; that is, vertexes
are colored with different ids. The remaining three conditions, which we will elaborate
on shortly, will be used to capture the relation among the values written and read by
a collection of writeread operations. In a nutshell, if one thinks of the id(�ti) as the
value written and the ids(val(�ti)) as the IS value returned, then conditions C2, C3,
and C4 correspond to the properties in Lemmas 2.14, 2.15, and 2.16.

We inductively define Lp. Let L0 = skel0(K). Inductively assume that Lp−1 is a
chromatic subdivision of the p−1-skeleton of K where each vertex �v in Lp−1 is labeled
〈i, Si〉, and where Si is the vertex scheme of some simplex in skelp−1(K). We further
assume that the labels 〈i, Si〉 are such that any T = (�t0, . . . , �tr), where r ≤ p− 1, is a
simplex in Lp−1 if and only if ids(T) ⊆ ids(carrier(T)) and for all 1 ≤ i, j ≤ r, i �= j,
the labels of T meet the containment conditions of Definition 3.25.

Figure 14 describes a simplex (S0, S1, S2) whose L0 subdivision includes the black
vertexes. It has been subdivided by L1, causing each simplex in L0 to be split in
three by the two new vertexes in grey. Note that each of these pairs of vertexes has a
different id but the same value field which represents the vertex scheme of its carrier
L0 simplex. The reader can check that the labels of these vertexes meet the four
containment conditions of Definition 3.25. If we think of the value fields of vertexes
as representations of the return value of an IS writeread operation, then the four
conditions capture the nature of two process executions in the IIS model. For any
two processes, say, 0 and 1, there are three possible outcomes of passing through an
IIS object, represented by the three simplexes of the subdivided (〈0, 0〉, 〈1, 1〉) simplex:
0 reads only itself and 1 reads both, 1 reads only itself and 0 reads both, or they both
read each other.

Based on Lp−1 we can now complete the definition of Lp. Let S = (�s0, . . . , �sp) be
a p-simplex in K. The set Bd(S) is the polytope of a subcomplex of the p−1-skeleton

of K, and hence of a subcomplex of Lp−1, which we denote LBd(S). Let �b be the
barycenter of S, and let δ be some positive real number such that 0 < δ < 1/p. For

each 1 ≤ i ≤ p, define �mi to be the point (1 + δ)�b − δ�si. These points are called
the midpoints of S. Figure 14 shows the barycenter and midpoints of a 2-simplex.
We can now label �mi with 〈i, S〉, S here being the vertex scheme of the geometric
simplex S. Let MS be the set of midpoints of S. We define LS to be the union of
LBd(S) and all the faces of all chromatic p-simplexes T = (�t0, . . . , �tp), such that for all

1 ≤ i, j ≤ p : i �= j, �ti ∈ skel0(LBd(S)) ∪MS , and the four containment conditions of
Definition 3.25 hold. Lp is thus the complex consisting of the union of the complexes
LS , as S ranges over all the p-simplexes of K.

TOPOLOGICAL CHARACTERIZATION 481

S0 = <0,0>

S2 = <2,2>

<1,(0,1)>

<0,(0,1)>

2,(1,2)1,(1,2)

<2,(0,2)>

<0,(0,2)>

b
m0

S1 = <1,1>

Fig. 14. Example of the inductive step in the construction of the standard chromatic subdivision
(for the sake of brevity, labels of simplexes slightly abuse notation).

S0 = <0,0>

S2 = <2,2>

<1,(0,1)>

<0,(0,1)>

2,(1,2)1,(1,2)

<2,(0,2)>

<0,(0,2)>

M0=

S1 = <1,1>

<0,(0,1,2)>

M2=<2,(0,1,2)>M1=<1,(0,1,2)>

Fig. 15. Example of the standard chromatic subdivision of a 2-simplex.

Figure 15 describes a single subdivision Lp of a 2-simplex. Think of the value
fields of vertexes as representations of the return values of an IS writeread opera-
tion by any one of three processes 1, 2, or 3. The complex captures all the pos-
sible outputs of executions in the IIS model. Each 2-simplex represents one such
execution. A simplex with a face belonging to the boundary, such as the simplex
(〈1, 1〉, 〈2, (1, 2)〉, 〈0, (0, 1, 2)〉) in the lower right-hand corner of Figure 15, represents
an execution where process 1 executed a writeread reading of only itself, process 2
performed a writeread and read itself, and process 1, and finally process 0 performed
a writeread and read all three. The middle simplex (m0,m1,m2) corresponds to an
execution where all three processes were concurrent and read each other’s written
value. The three containment conditions C2, C3, and C4 on the labels of the ver-
texes guarantee the properties of the IIS model as they are captured in Lemmas 2.14,
2.15, and 2.16: writeread operations are by different processes, writeread i returns i’s
written value, the returned snapshot by one process must include the values returned
by the other, and finally, if i read j, then the value returned by j cannot contain an
input that i did not read.

We now prove that this structure makes sense mathematically, that is, that it is
in fact a subdivision of the p-skeleton of K.

482 GUNNAR HOEST AND NIR SHAVIT

Lemma 3.26. For all 0 ≤ p ≤ n, Lp is a chromatic subdivision of skelp(K).
Proof. We argue by induction. The case p = 0 is trivial. So suppose p > 0, and

suppose the claim holds for L0, . . . ,Lp−1. We will first prove that Lp is a chromatic
simplicial complex. To that end, we prove the following auxiliary lemma.

Lemma 3.27. For all p-simplexes S in K, LS is a chromatic complex.
Proof. We must show that LS is closed under containment and intersection. Let

U be a simplex in LS , and let V be a face of U , where 0 ≤ dim(V) ≤ dim(U) < p. If
U is in LBd(S), then so is V , since LBd(S) is a complex (since Lp is a subdivision and
hence a complex by assumption). Hence V is in LS . Suppose U is not contained in
LBd(S). Then U must be the face of a p-simplex T as described above. By definition
of LS , all the faces of T , and hence all faces of U , must be in LS . It follows that LS

is closed under containment.
Let U, V be simplexes in LS , and suppose their intersection, denoted by W , is

nonempty. If U, V are both in LBd(S), it follows immediately that V r is in LBd(S)

and hence in LS . Similarly, if U is in LBd(S) but V is not, then W = U ∩ V =
U ∩ (V ∩ |LBd(S)|). Note that V ∩ |LBd(S)| is a simplex in LBd(S), since all the
containment conditions of Definition 3.25 are satisfied. Hence it follows that W is in
LBd(S), and hence in LS . If neither U nor V is in LBd(S), then since all faces of U
and V are in LS , then so is W . It follows that LS is closed under intersection, and
hence is a complex. That LS is chromatic follows from the fact that we include only
chromatic simplexes in LS in our construction (note that Lp−1 and hence LBd(S) are
chromatic by assumption).

Notice that for all distinct p-simplexes S, T we have that |LS | ∩ |LT | = S ∩ T ,
which is a simplex in skelp−1(K) and hence is the polytope of a subcomplex of Lp−1

and hence of both LS and LT . It follows that Lp is a simplicial complex [30]. It
remains to show that Lp is a chromatic subdivision. To this end, we must first show
that every simplex in Lp is contained in some simplex in skelp(K) and that every
simplex in skelp(K) is the union of finitely many simplexes in Lp. Now, it is clear
from our construction that any simplex Tq in Lp is contained in some simplex S in
skelp(K). Also, since for all simplexes S in skelp(K), the set of midpoints is finite,
and Lp−1 is a subdivision of skelp−1(K) by assumption, it follows that S is the union
of finitely many simplexes in Lp. Hence Lp is a subdivision. This subdivision is
chromatic, since Lp−1 is chromatic by assumption, since the colors used to color the
midpoints of any simplex S are exactly the colors used to color S, and since any
simplex in Lp including midpoints must satisfy the requirement that no two vertexes
have the same color (id).

We are now ready to give our definition of the standard chromatic subdivision of
a complex K.

Definition 3.28. The standard chromatic subdivision of K, denoted X (K), is
the complex Ln.

An example of a complex and its standard chromatic subdivision is given in
Figure 16. As one can see, the subdivision of a simplex as seen in Figure 15 is applied
to all the simplexes in the complex K. Applying the standard chromatic subdivision
k times, where k > 1, yields a subdivision X k(K) = X k−1(X (K)), which we call
the kth iterated standard chromatic subdivision [24, 25, 26]. Since the standard
chromatic subdivision of a complex is again a complex, and a chromatic subdivision
of a chromatic subdivision of K is itself a chromatic subdivision of K, X k(K) is a
chromatic subdivision of K. The number k is called the level of the subdivision.

The following is the vertex scheme representation of the standard chromatic sub-
division. This particularly compact formulation of the standard chromatic subdivision

TOPOLOGICAL CHARACTERIZATION 483

κ σ(κ)X

Fig. 16. Example of a two-dimensional complex and its standard chromatic subdivision.

is equivalent to the definition of Herlihy and Shavit [24, 25, 26].
Lemma 3.29. Let K be a pure, chromatic complex of dimension n. The vertex

scheme of X (K) is the closure under containment of the set of all n-simplexes of the
form S = (〈0, S0〉, . . . , 〈n, Sn〉), where for all i, Si is the vertex scheme of some face
of a simplex S in K, and the following conditions hold for all i �= j:

• i ∈ ids(Si).
• Si is a face of Sj or vice versa.
• If j ∈ ids(Si), then Sj is a face of Si.

Furthermore, any abstract complex L with a vertex scheme meeting the above criteria
has a realization as a geometric standard chromatic subdivision X (K) = L of the
complex K induced by all vertexes 〈i, Si〉 where dim(Si) = 0.

As before, the above three conditions have the exact same role as containment
conditions C2, C3, and C4 of Definition 3.25.

Proof. We argue that the vertex scheme of X (K) meets the above properties by
induction on k, where 0 ≤ k ≤ n. It is immediate that the simplexes of X (K) lying
in the subdivision L0 of skel0(K) are of this form (each such simplex is a vertex of K
labeled with a process id and a value), and the three requirements of the lemma are
all satisfied trivially.

Now suppose the claim holds for 0, . . . , k − 1. Consider a simplex T lying in the
subdivision Lk of skelk(K) and not in Lk−1. Then T = U
 V , where U is a simplex
in Lk−1, and V is a simplex, each vertex of which is one of the midpoints in MS ,
where S = carrier(T). By assumption, V is nontrivial, meaning that there is at least
one vertex in V . However, U may be trivial. For each vertex �v in V , val(�v) = S,
the vertex scheme of S. Hence, for i, j in ids(V), since ids(V) ⊆ ids(S), all the
containment conditions of Definition 3.25 are met. For i, j in ids(U), the conditions
are satisfied by induction. Now suppose i is in ids(U), while j is in ids(V). Notice
that Si = carrier(U), and Sj = carrier(V) = S.

The first condition follows by induction (for i) and since ids(V) ⊆ ids(S) =
vals(V) (for j). Since carrier(U) is a face of S, it follows that Si is a proper face of
S, and hence of Sj , which equals the vertex scheme of S, and so the second condition
is satisfied. It is clear that i is in ids(Sj), since Sj equals the vertex scheme of S, and
i is in ids(carrier(U)), which is a subset of ids(S). That Si is a face of Sj has already
been established. It follows that, since X (K) is chromatic, ids(U) ∩ ids(V) = ∅,

484 GUNNAR HOEST AND NIR SHAVIT

ids(Si) ⊆ ids(carrier(U)), and j is not in ids(carrier(U)), j cannot be in ids(Si). It
follows that the third condition is satisfied.

We now show that any abstract complex L with a vertex scheme meeting the above
criteria has a realization as a geometric standard chromatic subdivision X (K) = L
of the complex K induced by all vertexes with 0-dimensional labels, that is, 〈i, Si〉
where dim(Si) = 0. We argue by induction on k, 0 ≤ k ≤ n, the size of the set Si

in the label of any vertex 〈i, Si〉 in L. It is immediate that the vertexes with zero-
dimensional labels meet the criteria since the first condition of Lemma 3.29 implies
condition C2 and all other conditions of Definition 3.28 are satisfied trivially. These
vertexes form skel0(K).

Now suppose the claim holds for 0, . . . , k − 1. Consider the set of k-simplexes
Tj , all having vertexes 〈i, Si〉 out of the same subset of k ids in L. By definition
each simplex has at least one vertex whose label 〈i, Si〉 has dim(Si) = k. By the
induction hypothesis the realization of this set includes k complexes, each with a
proper subset using k − 1 of these ids, and each a geometric complex meeting the re-
quirements of the geometric standard chromatic subdivision. These complexes which
inductively form skelk−1 meet each other at k − 2-dimensional boundaries, and their
union (topological sum [30]) is a complex that is a k−1-dimensional sphere (for exam-
ple, three one-dimensional complexes, each a subdivision using two unique ids, form
a one-dimensional sphere, i.e., a circle). Let �b be the barycenter of this sphere, and
let vi, 0 ≤ i ≤ k, be the set of vertexes in the sphere with zero-dimensional labels.
Now, in the set of simplexes Tj there are by the definition of Lemma 3.29 k vertexes
with k-dimensional labels. If we choose each of them as a midpoint �mi at some dis-
tance (1 + δ)�b− δ�vi, from the barycenter �b where 0 ≤ δ ≤ 1/k, then the simplexes Tj

defined by the conditions of Lemma 3.29 form the interior of a simplex bounded by
the k− 1-dimensional sphere and fit the conditions of Lemma 3.26, implying that the
above realization of L is a geometric standard chromatic subdivision of the complex
K induced by the vertexes with zero-dimensional labels in L.

In the remainder of this paper, we will usually work with this description of the
standard chromatic subdivision, and we refer to it as X (K). Whenever the distinction
between the geometric and abstract representations of X (K) is significant, it will be
mentioned explicitly.

3.4.2. The nonuniform chromatic subdivision. In this section, we define the
nonuniform chromatic subdivision and prove that this definition does indeed specify
a chromatic subdivision of a given complex. We will give a recursive definition of
the nonuniform chromatic subdivision which we denote as X̃ k(K), k ≥ 0. We note

that unlike X k(K), X̃ k(K) is a procedure and not a function, and so X̃ k(X̃ (K)) �=
X̃ (X̃ k(K)).

Definition 3.30. Let K be a pure n-dimensional chromatic complex, where the
colors are the numbers in 0, . . . , n. A k-level nonuniform chromatic subdivision of a
complex K by X̃ k(K) for k ≥ 0 is defined as follows.

If dim(K) = 0, then for all k ≥ 0, X̃ k(K) is K itself. Now suppose dim(K) > 0.

Then X̃ 0(K) is K itself. For k > 0, X̃ k(K) is given by the following procedure:
Partition the vertexes of K into two disjoint sets, A and B, where A is nonempty.
Let A and B be the pure subcomplexes of K induced (respectively) by the vertexes

in A and the vertexes in B. The subdivision X̃ k(K) is the complex consisting of all

simplexes in B, all simplexes in X̃ k−1(X (A)), and all simplexes of the form S
 T ,

where S is a simplex in X̃ k−1(X (A)), T is a simplex in B, and carrier(S)
 T is a
simplex in K.

TOPOLOGICAL CHARACTERIZATION 485

We note that in the above definition, when we say induced subcomplexes A and
B, we mean that a simplex S in K is in A if the vertexes spanning S are all in A, and
it is in B if its spanning vertexes are all in B. Since K is pure, so are A and B.

Informally speaking, a nonuniform chromatic subdivision of level k is one in which
there is some simplex in K which is subdivided k times but no simplex that is sub-
divided more than k times. Note that the k-level standard chromatic subdivision is
a special case of the k-level nonuniform chromatic subdivision. Hence for all k ≥ 0,
there exists some nonuniform chromatic subdivision of level k.

Our definition of nonuniform chromatic subdivisions is designed to model protocol
complexes of the NIIS model. The main difference between IIS and NIIS protocols
is that in NIIS, some processes may decide after passing through fewer IS objects
than others. This is captured by the recursive definition that splits vertexes into two
groups A and B. At any level of the recursion, the vertexes in A can be thought of
as corresponding to processes that continue computing given their current local state,
while the vertexes in B correspond to processes that decide.

To better understand our construction, let us jump slightly ahead of ourselves
and consider how the protocol complex of any NIIS protocol with input complex I
in some subset of processes accesses one IS object and is captured by a nonuniform
chromatic subdivision X̃ 1(I) up to isomorphism.

Consider any vertex �v in I. It is labeled with 〈i, vi〉, where i is a process id and vi
represents an input value to process i. According to the specification of NIIS protocols
in section 2.6, process i will (provided it does not fail), upon having received the input
vi, execute either an inv writeread(v)i,1 action or a decide(S)i action, depending on
whether τ(local state) evaluates to true or not. In this way, the predicate map τ
induces a partition of the vertexes of I into two disjoint sets A and B. We now
construct complexes A and B as in Definition 3.30; that is, a simplex T in I is in A
if and only if all its vertexes are in A, and it is in B if and only if all its vertexes are
in B.

The vertexes in A correspond to processes that, based on their input values,
execute an inv writeread(v)i,1 action with the object IS1. The protocol complex on
A equals X (A) up to isomorphism. In any execution α of the protocol, some of
the participating, nonfailing processes decide on their input values (corresponding to
vertexes in B), while some decide on the snapshots they receive from the object IS1

(corresponding to vertexes in the protocol complex of A). It follows that the protocol
complex on I contains every simplex in B, every simplex in X (A), and every simplex
of the form S
 T , where S is in X (A), T is in B, and carrier(S)
 T is in I.

Note that the structure of the recursion of X̃ k is such that X̃ k−1(X (A)) is applied

and not X (X̃ k−1(A)). This guarantees that we model a situation in which the subset
of processes with nodes A in K go through the first IS object, and only a subset of
these can then go through the next IS object, and so on. It is never the case that a
node corresponding to a process that has stopped passing through earlier IS objects
is later subdivided.

An example of a level 1 nonuniform chromatic subdivision of a 2-complex K is
given in Figure 17, and an example of a level 2 nonuniform chromatic subdivision of a
slightly bigger 2-complex L is given in Figure 18. Note that in Figure 18 the complex
A for the second level of recursion is isomorphic to the complex A for the first level
of recursion in Figure 17.

An example of a chromatic subdivision that does not satisfy Definition 3.30 is
given in Figure 19. It is not a nonuniform chromatic subdivision because the vertex

486 GUNNAR HOEST AND NIR SHAVIT

κ σ(κ)X
~1

Fig. 17. Example of level 1 nonuniform chromatic subdivision of a 2-complex.

L

X
~

(L)2

original complex

level 2 non−uniform

chromatic subdivision

Fig. 18. Example of level 2 nonuniform chromatic subdivision of a 2-complex.

b is part of the B complex at the first level of recursion (that is, it is not part of the
subcomplex that is subdivided further), while in the next level of recursion, the edge
between d (which is in the A complex at the first level of recursion, and hence is to
be subdivided further) and b is subdivided, meaning that b is in the A complex at the
second level of recursion, which is clearly impossible, since the carrier of any vertex
in the A complex at the second level must be a simplex in the A complex at the first
level of recursion. Informally, this simply means that, if a vertex is not to be part
of the complex to be further subdivided at the first level, it cannot be part of the
complex to be further subdivided at the second level.

Lemma 3.31. Any nonuniform chromatic subdivision X̃ k(K) is a chromatic sub-
division of K.

Proof. We first note that X̃ k(K) is well defined, since each recursive step lowers

the level of subdivision by 1, and X̃ 0(K) is defined for all K. We will prove that

X̃ k(K) is a chromatic subdivision by induction on k.

The case where k = 0 is trivial, since X̃ 0(K) = K. Now suppose that k > 0, and

that for 0 ≤ l ≤ k − 1, and any complex K, X̃ l(K) is a chromatic subdivision of K.

TOPOLOGICAL CHARACTERIZATION 487

ab

c d e

original complex

subdivision that is not a
non−uniform chromatic
subdivision

ab

c d e

Fig. 19. Example of a subdivision that is not a nonuniform chromatic subdivision.

If B = ∅, the result follows by induction and by Lemma 3.26. So suppose that B is
nonempty.

We first show that X̃ k(K) is closed under containment. Let U be a simplex in

X̃ k(K), and let V be a face of U . If U is in B, then so is V , since B is a complex. Hence

V is in X̃ k(K). Similarly, if U is in X̃ k−1(X (A)), then so is V , since X̃ k−1(X (A))
is a complex by our induction hypothesis. Now suppose U = S
 T for some S in
X̃ k−1(X (A)), T in B. Then S ∩ V is in X̃ k−1(X (A)), and T ∩ V is in B. It follows
that V = (S ∩ V)
 (T ∩ V), where carrier(S ∩ V)
 (T ∩ V) is a simplex in K. By

Definition 3.30, V is in X̃ k(K). It follows that X̃ k(K) is closed under containment.

Let U, V be simplexes in X̃ k(K), and let W be their intersection. If both U, V are
in B, then so is W , since B is closed under intersection. Similarly, if both U and V are
in X̃ k−1(X (A)), then so is W , since X̃ k−1(X (A)) is closed under intersection. If U is

in B and V is in X̃ k−1(X (A)), or vice versa, then U∩V = ∅, and so containment under
intersection holds vacuously. We now consider the case where either U or V is not
contained in either complex; that is, suppose U = S
T for some S in X̃ k−1(X (A)), T

in B, and V = X
Y for some X in X̃ k−1(X (A)), Y in B. Now, U∩V = (S
T)∩(X
Y),
and (S
 T)∩ (X
Y) = (S ∩X)
 (T ∩ Y) [30]. If S ∩X = ∅ or T ∩ Y = ∅, then since
the remaining nonempty intersecting pair of subsets is completely in B or completely
in X̃ k−1(X (A)), it follows that W is also. So suppose now that S, T , X, Y , and the
intersections S∩X and Y ∩T are all nonempty. Since carrier(S∩X) is a face of both
carrier(S) and carrier(X), it follows that carrier(S ∩X)
 T and carrier(S ∩X)
 Y
are simplexes in K, and so is their intersection carrier(S ∩ X)
 (T ∩ Y), since K is

a complex. It follows that W is in X̃ k(K). This concludes the proof that X̃ k(K) is a
complex. That it is a chromatic complex follows directly from Lemma 3.26.

We now prove that X̃ k(K) is a chromatic subdivision. Given is a simplex U in

X̃ k(K). If U is in B, then U is clearly contained in a simplex in K, namely, itself, and

the colors of U are contained in the set of colors of its carrier. If U is in X̃ k−1(X (A)),
it follows by induction and Lemma 3.26 that U is contained in some some simplex

488 GUNNAR HOEST AND NIR SHAVIT

carrier(U) in A, and hence in K, and that the colors of U are a subset of the colors of
its carrier. Now suppose U = S
T , where carrier(S)
T is in K. Then U is contained
in carrier(S)
T , and the colors of U are a subset of the colors of carrier(S)
T . Now
consider any simplex U in K. We can decompose it into two disjoint faces S and T ,
such that S ∈ A and T ∈ B. The simplex S is subdivided according to X̃ k−1(X (A)),
which by induction and Lemma 3.26 consists of finitely many simplexes. The simplex
T is not subdivided at all. It follows that the subdivision X̃ k(K) subdivides U into

finitely many simplexes (those in X̃ k−1(X (S))
 T). This completes the proof that

X̃ k(K) is a chromatic subdivision.

A nonuniform subdivision X̃ k(K) of a complex induces a nonuniform chromatic
subdivision of any subcomplex L of K. The level of the induced subdivision of L may
vary from subcomplex to subcomplex. We slightly abuse our notation to be able to
define the effect of X̃ k(K) on the restricted subcomplex L.

Definition 3.32. Let K be a chromatic complex, let L be a subcomplex or simplex
of K, and let X̃ k(K) be a nonuniform iterated chromatic subdivision of K. We denote

its restriction to simplexes in L by X̃ k(L/K). The level of subdivision kL is the

maximal level of subdivision of X̃ k(L/K).
It is clear that for any subcomplex or simplex L of K, kL ≤ k.

4. The asynchronous complexity theorem. The strength and usefulness of
the NIIS model of computation comes from the fact that each of its associated protocol
complexes has a nice, recursive structure. In fact, it turns out that any protocol
complex of NIIS is equal to some nonuniform iterated chromatic subdivision of the
input complex, and vice versa. This is the essence of our main theorem, which we
state and prove in this section.

The level of subdivision necessary for the existence of a simplicial map from the
input to the output complex of a decision task that agrees with the task specifica-
tion can be interpreted as a topological measure of the task’s time complexity. The
following definition introduces the concept of mappability, which is a useful construct
for reasoning about this topological measure.

Definition 4.1. Given a decision task D = 〈I,O,Γ〉 and a nonnegative integer

k, we say that X̃ k(I) is a mappable subdivision of the input complex and k is a
mappable level of subdivision if there exists some chromatic simplicial map μ from
X̃ k(I) to O such that for all T in X̃ k(I), μ(T) ∈ Γ(carrier(T)).

This definition extends naturally to individual simplexes as the map induces dif-
ferent levels of subdivision on the individual simplexes in accordance with the idea
that, in order to solve a decision task, some processes may have to do more computa-
tional work than others, and some inputs may require more computation than others.
We can now state our main theorem.

Theorem 4.2 (time complexity). A decision task D = 〈I,O,Γ〉 has a wait-free
solution protocol in the NIIS model with worst case time complexity kS on inputs
S ∈ I if and only if there is a mappable nonuniform iterated chromatic subdivision
X̃ k(I) with level kS on S.

Keeping in style with Herlihy and Shavit [24, 25, 26], the theorem simply states
that solvability of a decision task D = 〈I,O,Γ〉 in the NIIS model is equivalent
to the existence of a chromatic simplicial map μ from some nonuniform chromatic
subdivision X̃ k(I) to O that agrees with the task specification Γ; that is, for all T

in X̃ k(I), μ(Tm) ∈ Γ(carrier(T)). The minimum possible level kS is a lower bound
on the worst case time complexity of solving this task with inputs in S in the NIIS
model.

TOPOLOGICAL CHARACTERIZATION 489

As noted in the introduction, the theorem directly implies Proposition 3.1 of [12].
In [12], Borowsky and Gafni provided a simulation of atomic snapshot memory from
IIS memory and showed that, based on this simulation, if one is given a constructive
proof of an asynchronous computability theorem for the IIS model (which they called
Proposition 3.1), it will imply one for the general read-write model. The proof we are
about to present provides a constructive proof of computability for the NIIS model,
and since IIS is a subset of NIIS, it provides the first known proof of Proposition 3.1
of [12].

Our theorem immediately provides a solution algorithm for a task given the sub-
division and simplicial mapping. Simply run the protocol of Figure 6. Since each
process can locally store the subdivision and mapping, the termination predicate map
τ just needs to test if the local state variable is equal to some node v in the subdivision
and if so return μ(v).

In the remainder of this section, we will give the proof of our asynchronous time
complexity theorem. We begin by proving a lemma about the protocol complex of a
protocol in the IIS model with only one available IS object.

Lemma 4.3. Let A be an input complex in the IIS model with a single IS object.
The corresponding protocol complex is isomorphic to X (A).

Proof. We will construct an isomorphism Ψ from the abstract complex P(n,τ,δ)(A)
to the abstract complex (vertex scheme) X (A), as specified by Lemma 3.29. Let
�v = 〈i, Si〉 be any vertex in P(n,τ,δ)(A). Then Ψ(�v) = 〈i, Ti〉, where Ti is the simplex in
A such that for all j, Si[j] = vj if and only if 〈j, vj〉 ∈ Ti. Notice that this isomorphism
is chromatic; that is, the id of a vertex equals the id of its image under Ψ.

By Lemma 3.29, we must show that a set of vertexes �v0, . . . , �vm in skel0(P(n,τ,δ)(A)),
where m ≤ n, forms a simplex in P(n,τ,δ)(A) if and only if the set of vertexes Ψ(�v0),
. . . ,Ψ(�vm) in skel0(X (A)) forms a simplex in X (A). Suppose without loss of gener-
ality that for all i, where 0 ≤ i ≤ m, �vi = 〈i, Si〉, where Si ∈ ϑ(DI), and DI is the
input data type (that is, the id of the ith vertex is i).

Suppose that the vertexes �v0, . . . , �vm do form a simplex V in P(n,τ,δ)(A). This
output simplex corresponds to some execution α in the one-shot IS model, with cor-
responding input simplex U in A. Each vertex in U is labeled with a process id i and
an input value vi ∈ DI . Notice that dim(V) ≤ dim(U), since some participating pro-
cesses may not decide, that is, they may fail (execute a fail i action) before executing
a decide action.

From Lemma 2.14, we have that, for any vertex �vi = 〈i, Si〉 in V , Si[i] = vi. This
implies that 〈i, vi〉 is in Ti. From Lemma 2.15, we have that, for any two vertexes
�vi = 〈i, Si〉 and �vj = 〈j, Sj〉 in V , either Si is a prefix of Sj or vice versa. Suppose
without loss of generality that Sj is a prefix of Si. Then for all x, where 0 ≤ x ≤ n,
if Si[x] = ⊥, then Sj [x] = ⊥, and if Sj [x] �= ⊥, then Si[x] = Sj [x]. It follows that if
〈x, vx〉 is in Tj , it is also in Ti, and if x is not in ids(Ti), then it is also not in ids(Tj).
This implies that Tj is a face of Ti. From Lemma 2.16, it follows that, if Si[j] = vj ,
then Sj is a prefix of Si. This means that, if 〈j, vj〉 is in Ti, then Tj is a face of Ti.

Now suppose that the vertexes Ψ(�v0), . . . ,Ψ(�vm) in skel0(X (A)) form a simplex
V in X (A). We will construct an execution α with corresponding output simplex U
such that Ψ(U) = V . Let W = carrier(V). Partition the set ids(V) into a collection
of nonempty concurrency classes of process ids, C1, . . . , Ck for some k ≥ 0, such that
any two process indexes i, j are in the same concurrency class if and only if Ti = Tj .

We can define a total order ≺ on this collection of concurrency classes as follows.
Let Cx, Cy be distinct concurrency classes. Then Cx ∩ Cy = ∅. Since both classes are
nonempty, we can pick an element from each, say, i ∈ Cx and j ∈ Cy. By assumption,

490 GUNNAR HOEST AND NIR SHAVIT

Ti �= Tj . Then by Lemma 3.29, either Ti is a face of Tj or Tj is a face of Ti. In the
first case, let Cx ≺ Cy, and in the second case, let Cy ≺ Cx. Thus ≺ is a total order of
the concurrency classes.

Now use this ordered partition of the participating processes in α to define a
second partition C′

1, . . . , C′
k of the set ids(W) as follows. For each concurrency class

C of ids(V), define a concurrency class C′ of ids(W) as follows. C′ is the union of C
and all i ∈ ids(W)− ids(V) such that C is the least concurrency class (as determined
by ≺) such that for all j ∈ C, i ∈ Tj . Note that this is a partition of all ids(W)
since W = carrier(V). This partition gives us a new collection of concurrency classes
C′
1, . . . , C′

k.
We are now ready to construct α. First position updateC′

i
actions in increas-

ing order according to the ≺ ordering. For each concurrency class C′
x, position

the inv writeread(v)i,1 actions of all i such that i ∈ C′
x immediately before the

updateC′
x

action (their internal ordering does not matter). Similarly, position the
ret writeread(v)i,1 and decide(S)i actions of all i such that i ∈ Cx and i ∈ ids(V)
immediately after the updateC′

x
action, but before the inv writeread(v)i,1 actions as-

sociated with the next concurrency class C′
y. Processes i whose indexes are not in

ids(W) do not participate and hence take no steps in α. Processes i whose indexes
are in some concurrency class C′

x but not in ids(V) do not execute a ret writeread(v)i,1
action; instead, they execute a fail i action after the updateC′

x
action, but before the

inv writeread(v)i,1 actions associated with the next concurrency class C′
y. Recall that

earlier concurrency classes could not have included i since by construction C′
x is the

least class including i. By construction, each deciding process i decides Si in α, as
required. The lemma follows.

We now consider the protocol complex of a protocol in NIIS with time complex-
ity 1 on the input complex I; that is, some processes access a single IS object, while
some decide based only on their own inputs. We will show that, if δ is trivial, which
we denote by δ = 1, then this protocol complex is indeed a nonuniform chromatic
subdivision.

Lemma 4.4. For all k ≥ 0, the protocol complex P(n,τ,1)(I) of any protocol in
the NIIS model, with time complexity k on inputs in I, is equal to some nonuniform
chromatic subdivision X̃ k(I) up to isomorphism.

Proof. We use induction on the time complexity k. The result holds for k = 0
trivially. Now suppose k > 0 and that the result holds for 1, . . . , k − 1. Consider the
protocol complex P(n,τ,1)(I) of any protocol in the NIIS model with time complexity
k on inputs in I.

Any vertex �v in I is labeled with 〈i, vi〉, where i is a process id and vi represents an
input value to process i. According to the specification of NIIS protocols in section 2.6,
any nonfailing process i will, upon having received the input vi, execute either an
inv writeread(v)i,1 action or a decide(S)i action, depending on whether τ(local state)
evaluates to true or not. In this way, the predicate map τ induces a partition of the
vertexes of I into two disjoint sets A and B. Since the time complexity of P(n,τ,1) on
inputs in I is k, the set A must be nonempty. We now construct complexes A and B
as in Definition 3.30; that is, a simplex T in I is in A if and only if all its vertexes
are in A, and it is in B if and only if all its vertexes are in B.

The vertexes in A correspond to processes that, based on their input values, ex-
ecute an inv writeread(v)i,1 action with the object IS1. By Lemma 4.3, the output
protocol complex on inputs in A after the first IS access equals X (A) up to isomor-
phism. The final protocol complex P(n,τ,1)(A) is given by applying X (A) as an input
complex to the protocol. Since the complexity of the protocol on inputs in I, and hence

TOPOLOGICAL CHARACTERIZATION 491

on inputs in A, is k, the complexity of the protocol on inputs in X (A) must be k− 1.
It follows by induction that the protocol complex P(n,τ,1)(A) equals some nonuniform

chromatic subdivision X̃ k−1(X (A)) of X (A) up to isomorphism. A simplex U is in
P(n,τ,1)(I) if and only if it corresponds to a valid set of outputs of an execution α of
the protocol. In any execution α of the protocol, some of the participating, nonfailing
processes decide on their input values (corresponding to vertexes in B), while some
decide on the returned snapshots they receive from some IS object. It follows that
P(n,τ,1)(I) contains any simplex in B, any simplex in P(n,τ,1)(A) = X̃ k−1(X (A)), and

any simplex of the form S
T , where S is in X̃ k−1(X (A)), T is in B, and carrier(S)
T
is in I. It follows from Definition 3.30 that the protocol complex P(n,τ,1)(I) equals

some nonuniform chromatic subdivision X̃ k(I) of I up to isomorphism.
We must also prove that, for any mappable nonuniform chromatic subdivision

X̃ k(I) of an input complex I, there is a matching protocol P(n,τ,1) in the NIIS model.

Lemma 4.5. For any mappable nonuniform chromatic subdivision X̃ k(I) of an
input complex I, there is a matching protocol P(n,τ,1) in the NIIS model such that the

protocol complex P(n,τ,1)(I) = X̃ k(I) up to isomorphism.

Proof. Given is a vertex �v in I. The definition of the subdivision X̃ k(I) induces a

sequence of nonuniform chromatic subdivisions I, X̃ 1(I), . . . , X̃ k(I) and correspond-
ing sequences A0, . . . ,Ak−1 and B0, . . . ,Bk−1 of complexes, the former sequence spec-
ifying the subcomplex to be subdivided further at each level of recursion.

In order to construct a protocol for n+ 1 processes, we must specify the function
τ :

⋃k
l=0 ϑ

l(D) → {true, false} and the decision map δ :
⋃k

l=0 ϑ
l(D) → DO. We

specify τ to be true for all values v such that there is a vertex �v in one of the complexes
A0, . . . ,Ak−1 with val(�v) = v. For all other values v, τ evaluates to false. This
definition is well formed, since for all p, where 0 ≤ p ≤ k, it follows from Definitions
3.28 and 3.30 that there are no two vertexes in X̃ p(I) with the same process-value
label pair, and for all p, q, where 0 ≤ p, q ≤ k and p �= q, Bp and Bq have no vertexes
with common labels (process id and value label). This concludes the proof.

We now give the proof of Theorem 4.2.
Proof of Theorem 4.2. Let D = 〈I,O,Γ〉 be a decision task. Lemma 4.4 states

that any protocol complex P(n,τ,1)(I), with worst case complexity kS on input S, cor-

responds to a nonuniform chromatic subdivision X̃ k(In) with level kS on S. Suppose
now the decision map δ is not trivial. Then, if P(n,τ,δ) solves D = 〈I,O,Γ〉, μ = δ is

a simplicial map from X̃ k(In) to O that is in correspondence with Γ, so X̃ k(In) is
mappable.

Lemma 4.5 states that any mappable nonuniform chromatic subdivision X̃ k(In)
with level kS on S is equal to the protocol complex P(n,τ,1)(I) (where δ is trivial) of
a protocol in the NIIS model with worst case complexity kS on input S. If there is a
simplicial map μ from X̃ k(In) to O that is consistent with Γ, then by setting δ = μ,
we have a protocol P(n,τ,δ) solving D = 〈I,O,Γ〉 with complexity kS on input S. The
theorem follows.

5. Approximate Agreement. As an application of Theorem 4.2, we analyze
the well-known Approximate Agreement [15] task, defined as follows: each process
i ∈ {0, . . . , n} has an input xi taken from some finite subset of the reals and chooses a
unique output yi such that, for some predetermined ε ≥ 0, (1) maxi yi − mini yi < ε,
and (2) for all i, yi ∈ [mini xi,maxi xi].

This problem, which at first glance may seem similar to Consensus, is in fact quite
different and is solvable in the read-write memory model. (If ε were 0 this problem

492 GUNNAR HOEST AND NIR SHAVIT

would be equivalent to Consensus and hence not solvable.) Aspnes and Herlihy [2]
proved a lower bound on Approximate Agreement in the read-write memory model
that implies a worst case time complexity of

⌈
log3

maxi xi−mini xi

ε

⌉
and an upper bound

of
⌈
log2

maxi xi−mini xi

ε

⌉
in the NIIS model. We will show that this log2 versus log3

gap is not simply a technical fluke.
Definition 5.1. Let V be some finite subsequence of values from R, at most ε

apart from its successor. The finite n+1-process Approximate Agreement task is the
tuple D = 〈I,O, γ〉:

• I = {[x0, . . . , xn] | xi ∈ V ∪ {⊥}}.
• O = {[y0, . . . , yn] | yi ∈ V ∪ {⊥}, (yi, yj �= ⊥) ⇒ |yi − yj | ≤ ε}.
• γ = {(�I, �O) | �O[i] ∈ [mini

�I[i],maxi
�I[i]] ∪ {⊥}}.

Define an input vector �I to be nontrivial if the maxi xi and mini xi are at least ε
apart and each belongs to at least one other disjoint input vector. We can now state
the complexity bounds for the Approximate Agreement problem.

Theorem 5.2. Given ε > 0, there is a protocol P(n,τ,δ) solving Approximate

Agreement for any nontrivial input vector �I with complexity
⌈
logd

maxi
�I[i]−mini

�I[i]
ε

⌉
,

where d = 3 if the size of the participating set of �I is 2, and d = 2 if the size of the
participating set of �I is 3 or more. Moreover, this protocol is optimal for �I.

We note that in many cases, for trivial input vectors one can “statically” predefine
the outputs for each input value so that no access to an IS object is necessary.

Our proof structure will be as follows. The upper bound will follow by showing
a subdivision and simplicial map and then applying Theorem 4.2. The lower bound
proof will follow from a geometric observation regarding the structure of any NIIS
subdivided complex for approximate agreement.

We first restate the description of the Approximate Agreement task using our
topological framework.

• I is the closure under containment of the collection of all simplexes of the
form (〈0, x0〉, . . . , 〈n, xn〉).

• O is the closure under containment of the collection of all simplexes of the
form (〈0, y0〉, . . . , 〈n, yn〉), where for all i, j, yi ∈ V and |yi − yj | ≤ ε.

• Γ = {(S, T) | vals(T) ⊆ [min vals(S),max vals(S)]}.
Note that the size of the participating set for the input vector corresponding to

a simplex S in I equals dim(S) + 1.
To understand our proof approach, consider Figure 20, which shows the subdivi-

sions induced by a three process protocol. In [2], the lower bound for any n+1-process
algorithm is derived from a “bad” execution in which only the two processes P and
Q with inputs farthest apart participate. Cast in our model, processes P and Q have
inputs p and q (the corners of the input simplex in Figure 20). Because there are
other simplexes adjacent to the input 1-simplex (〈P, p〉, 〈Q, q〉) that share only the
input value p and, respectively, q, μ must map 〈P, p〉 to output value p and 〈Q, q〉 to
output value q. An execution in the NIIS model corresponds to a sequence of chro-
matic subdivisions of the edge (〈P, p〉, 〈Q, q〉) (a path of 1-simplexes) from which there
is a simplicial map to a path in the output complex. In the end of the execution, the
vertexes of each 1-simplex along this edge must be mapped to an output 1-simplex
with values less than ε apart. Each subdivision, corresponding to an NIIS execution
step, introduces two new vertexes and splits the edge (〈P, p〉, 〈Q, q〉) in three. This
implies that reaching a distance of ε or less along the path of simplexes in the sub-
division of (〈P, p〉, 〈Q, q〉) requires at least log3(distance(p, q)/ε). This is the bound
of [2].

TOPOLOGICAL CHARACTERIZATION 493

P Q

R

R

PQ

Q
P

Fig. 20. Simplex subdivided by an Approximate Agreement protocol.

However, if one considers executions in which three processes participate, this
proof does not work. Consider the first round of subdivision of the simplex for three
processors. There is a path (a sequence of adjoining 1-simplexes) between the two
endpoints P and Q, along which only a single vertex is introduced by the subdivision.
This is the path of length two through the central vertex marked R in Figure 20
(it is not marked since its simplexes are further subdivided in the figure). So the
maximum distance is cut by at most a half in the first subdivision. In the next
step of subdivision, even though each of the original 1-simplexes (P,R) and (R,Q) of

X̃ (S) can be subdivided into three simplexes, there is still a path (highlighted in the
figure) from P to Q along which only a single node was added connecting P and R
(and, respectively, R and Q). In general, after k subdivisions, there is always a path
that was divided only 2k times—hence the lower bound of log2(distance(p, q)/ε). Our
upper bounds follow directly from Theorem 4.2 by specifying the proper subdivision
and map. The thing to note about the proof we will present for Theorem 5.2 is that
it will not involve any mention of the actual executions; all we need to do is argue
about the topology of the inputs and outputs and then apply Theorem 4.2.

Proof. Theorem 5.2 states that, given ε > 0, there is a protocol P(n,τ,δ) solving

Approximate Agreement with complexity
⌈
logd

max vals(S)−min vals(S)
ε

⌉
on any input

simplex S, where d = 3 if dim(S) = 1 and d = 2 if dim(S) ≥ 1. Moreover, this
protocol is optimal on each input simplex S.

We first establish the lower bound. Let P(n,τ,δ) be a protocol that solves Approxi-
mate Agreement with worst case complexity kS on S, where S is any simplex of dimen-
sion n ≥ dim(S) > 0. Let D(S) = max�v,�u∈S(val(�v)− val(�u)) and let D(X̃ k(I)) equal
maxS∈X̃k(I) D(S). Then Theorem 4.2 states that there is some mappable nonuniform

chromatic subdivision X̃ k(I), with level kS on S. We will show that kS ≥
⌈
logd

D(S)
ε

⌉
.

The proof uses the following lemma.
Lemma 5.3. Let l ≤ k. Label the vertexes of X̃ l(S/I) with real numbers in a

way that agrees with the initial value labeling of S, and let lS be the level of X̃ l(S/I).
Then

D(X̃ l(S/I)) ≥ D(S)

dlS
.

Proof. Suppose without loss of generality that l = lS . We first give the proof
for the case of two participating processes and d = 3. By definition of D(S), there

494 GUNNAR HOEST AND NIR SHAVIT

is a 1-simplex U = (�u0, �u1) in S such that D(U) = D(S). The complex X̃ l(U)
contains at most 3l 1-simplexes, denoted U1, . . . , UM , where M ≤ 3l. These form a
continuous path from �u0 to �u1, the endpoints of which are labeled with val(�u0) and
val(�u1), respectively. So the best we can do is cut D(U) into 3l pieces. The trian-

gle inequality tells us that D(U) ≤
∑M

i=1 D(Ui) ≤ M maxi D(Ui) ≤ 3l maxi D(Ui).

Hence maxi D(Ui) ≥ D(U)/3l = D(S)/3l. The lemma follows, since maxi D(Ui) ≤
D(X̃ l(S/I)).

We now prove the case where the size of the participating set is greater than 2
(and hence dim(S) is greater than 1) and d = 2. We argue by induction on l. The
case l = 0 is trivial. Now suppose the claim is true for l − 1. By definition of
D(X̃ l−1(S/I)), there is a 1-simplex U = (�u0, �u1) in X̃ l−1(S/I) such that D(U) =

D(X̃ l−1(S/I)). U is a face of some 2-simplex U ′ = (�u0, �u1, �u2). Suppose first that
the next level of nonuniform chromatic subdivision does not subdivide U completely.
Then there is some 1-simplex T in the level l nonuniform subdivision of U ′ with
D(T) ≥ D(U)/2. Since D(U) = D(X̃ l−1(S/I)) and D(T) ≤ D(X̃ l(S/I)), the lemma
follows by induction. Suppose instead that the next level of subdivision does subdivide
U ′ completely. Then the level l subdivision has an internal vertex �m2, colored with
id(�u2), and two neighboring 1-simplexes T0 = (�u0, �m2) and T1 = (�m2, �u1). The
triangle inequality then tells us that D(U) ≤ D(T0) + D(T1) ≤ 2 maxi D(Ti), where

i ∈ {0, 1}. It follows that D(X̃ l(S/I)) ≥ D(X̃ l−1(S/I))/2. The lemma follows by
induction.

Suppose now that there exists a chromatic simplicial map μ : X̃ k(I) → O such

that, for all simplexes T in X̃ k(I), μ(T) ∈ Γ(carrier(T)). We can associate this map

with a labeling of the vertexes in X̃ k(I) as follows. Label each vertex �v in X̃ k(I) with
val(μ(�v)). This labeling agrees with the input value labeling of I, since for any vertex
�v, the task specification requires that for any simplex S0 that contains �v, it must
be the case that μ(�v) is in the range of S0. Based on the nontriviality assumption,
choose two neighboring simplexes S0 and S1 containing �v such that the intersection
of the ranges of S0 and S1 is val(�v). It follows that μ(�v) = val(�v). Now let T be any

simplex in X̃ k(I). By definition of μ, μ(T) is a simplex in O, and hence D(μ(T)) < ε.

It follows that D(T) = D(μ(T)) < ε and hence that D(X̃ k(I)) < ε. Clearly, for any

input simplex S, it follows that the labels on X̃ k(S/I) have range less than ε. The

previous lemma then states that ε > D(X̃ k(S/I)) ≥ D(S)

dkS
. We conclude that

kS ≥
⌈
logd

D(S)

ε

⌉
.

To prove the upper bound, we construct a mappable nonuniform chromatic subdi-

vision X̃ k(I) of the input complex with level kS =
⌈
logd

D(S)
ε

⌉
on each input simplex

S, according to Definition 3.30. As argued above, the requirement that the subdi-
vision be mappable is equivalent to saying that there is a vertex labeling of X̃ k(I)
that agrees with the initial value labeling of I with the additional property that
D(X̃ k(I)) < ε.

Apply X̃ k to I where for every input n-simplex S ∈ I, and construct X̃ k(S/I)

by repeatedly applying the procedure X̃ k (as specified by Definition 3.30) for each
level of subdivision l ≤ k. For each level, split the vertexes into two sets so that a
vertex �v is in A if there is another adjacent vertex �u such that val(�v) − val(�u) > ε;
otherwise it is in B. Before applying the next level of subdivision to X (A), we relabel
all new vertexes in X (A) (those not in skel0(A)) as follows: If the dimension of A is 1,

TOPOLOGICAL CHARACTERIZATION 495

label the new vertexes in X (A) with (2 min val(A)+max val(A))/3 and (min val(A)+
2 max val(A))/3, respectively. This cuts the distance between the vertexes with values
apart in 3. Otherwise, label the new vertexes with (min val(A)+max val(A))/2. This
cuts the distance between the values furthest apart in 2.

It is clear from this construction that, at each level of recursion, for all simplexes
S in I we have that, if D(X̃ l(S)) > ε, then either D(X̃ l+1(S)) = D(X̃ l(S))/d or

D(X̃ l+1(S)) < ε. It follows that the level kS of X̃ k(I) on S is
⌈
logd

D(S)
ε

⌉
, where

d = 3 if dim(S) = 1, and d = 2 if dim(S) > 1. We conclude from Theorem 4.2 that
there is a wait-free protocol that solves Approximate Agreement with worst case time

complexity
⌈
logd

D(S)
ε

⌉
on input S, where d = 3 for two participating processes and

d = 2 for three or more.

6. Conclusion and directions for further research. This paper extended
the topological framework of Herlihy and Shavit [24, 25, 26] to obtain a complete
characterization of the complexity of solving decision tasks in the NIIS model, a gen-
eralization of Borowsky and Gafni’s IIS model [12]. The main difference between
the proof of Theorem 4.2 and Herlihy and Shavit’s proof of their asynchronous com-
putability theorem is that our proof rests on the ability to explicitly construct a
protocol complex for the NIIS model and to show that this complex is indeed equal to
a nonuniform chromatic subdivision. Since nonuniform chromatic subdivisions have
a recursive structure, they are well suited for arguing about complexity; the level of
recursion of a mappable nonuniform chromatic subdivision of a task’s input complex
is the complexity of the corresponding wait-free NIIS solution protocol.

We have applied Theorem 4.2 to tighten the upper and lower bounds on solving
the Approximate Agreement task implied by the work of Aspnes and Herlihy [2]. The
intuition behind this result as well as its formal proof are based on simple, geometric,
and topological arguments about the level of nonuniform chromatic subdivision that
is necessary and sufficient for mappability. We believe this is an excellent example
of how Theorem 4.2 exposes subtle properties of protocols in asynchronous shared
memory systems and how it allows us to reason formally about them without having
to argue directly about concurrent executions.

We believe it is possible to extend our existing topological framework to develop a
characterization of work complexity, the total number of steps taken by all processors
in a computation. As was the case for time complexity, a mappable nonuniform
chromatic subdivision of an input complex does contain the information necessary to
describe work complexity, and the question is really how to quantify and measure it
using a simple topological invariant.

Another possible direction is to try to extend the framework to other models
of computation, such as the atomic snapshot model, the single-writer multireader
model, or even the multiwriter multireader model. Our choice of the NIIS model was
motivated by the fact that its protocol complex is highly structured and corresponds
to a nonuniform chromatic subdivision, as the proof of Theorem 4.2 shows. Other,
less restricted, models, such as atomic snapshots, do not have this property, and so in
order to prove a result similar to Theorem 4.2 in any of these models, one would need
to identify some invariant, recursive substructure that one can model topologically
with reasonable ease.

An alternative approach would be to use simulation techniques to relate the NIIS
model to other models of computation, thereby obtaining an indirect characteriza-
tion of the complexity of solving decision tasks in these models. Currently, however,
the best known wait-free simulation of a single IS object using atomic snapshots re-

496 GUNNAR HOEST AND NIR SHAVIT

quires O(N) accesses to shared memory by each process, where N is the number of
processes. There is thus an important open problem in finding an optimal, wait-free
implementation of NIIS using atomic snapshot, and vice versa.

Acknowledgments. We wish to thank Nancy Lynch for her comments on initial
drafts of this paper. We also thank the anonymous referees for their careful reading
of the manuscript and for providing an abundance of constructive comments.

REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots
of shared memory, J. ACM, 40 (1993), pp. 873–890.

[2] J. Aspnes and M. P. Herlihy, Wait-Free Data Structures in the Asynchronous Pram Model,
manuscript, Brown University, Providence, RI, 1996.

[3] H. Attiya and S. Rajsbaum, A Combinatorial Topology Framework for Wait-Free Computabil-
ity, preprint, The Technion, Haifa, Israel, 1995.

[4] H. Attiya, A. Bar-Noy, and D. Dolev, Sharing memory robustly in message-passing systems,
J. ACM, 42 (1995), pp. 124–142.

[5] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk, Renaming in an asyn-
chronous environment, J. ACM, 37 (1990), pp. 524–548.

[6] H. Attiya, N. Lynch, and N. Shavit, Are wait-free algorithms fast?, J. ACM, 41 (1994), pp.
725–763.

[7] O. Biran, S. Moran, and S. Zaks, A combinatorial characterization of the distributed 1-
solvable tasks, J. Algorithms, 11 (1990), pp. 420–440.

[8] E. Borowsky, Capturing the Power of Resiliency and Set Consensus in Distributed Systems,
Technical report, University of California Los Angeles, Los Angeles, CA, 1995.

[9] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum, The BG distributed simulation algo-
rithm, Distrib. Comput., 14 (2001), pp. 127–146.

[10] E. Borowsky and E. Gafni, Generalized FLP impossibility result for t-resilient asynchronous
computation, in Proceedings of the 25th Annual ACM Symposium on Theory of Comput-
ing, ACM, New York, 1993, pp. 91–100.

[11] E. Borowsky and E. Gafni, Immediate atomic snapshots and fast renaming, in Proceedings
of the 12th Annual ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1993, pp. 41–51.

[12] E. Borowsky and E. Gafni, A simple algorithmically reasoned characterization of wait-free
computation (extended abstract), in Proceedings of the 16th Annual ACM Symposium on
Principles of Distributed Computing, ACM, New York, 1997, pp. 189–198.

[13] S. Chaudhuri, Agreement is harder than consensus: Set consensus problems in totally asyn-
chronous systems, in Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, ACM, New York, 1990, pp. 311–234.

[14] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle, Tight bounds for k-set agree-
ment, J. ACM, 47 (2000), pp. 912–943.

[15] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, Reaching approximate
agreement in the presence of faults, J. ACM, 33 (1986), pp. 499–516.

[16] A. D. Fekete, Asymptotically optimal algorithms for approximate agreement, in Proceedings
of the 5th Annual ACM Symposium on Principles of Distributed Computing, ACM, New
York, 1986, pp. 73–87.

[17] M. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, J. ACM, 32 (1985), pp. 374–382.

[18] E. Gafni and E. Koutsoupias, Three-processor tasks are undecidable, SIAM J. Comput., 28
(1999), pp. 970–983.

[19] J. Havlicek, Computable obstructions to wait-free computability, in Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS ’97), IEEE Computer
Society, Los Alamitos, CA, 1997, pp. 80–89.

[20] M. Herlihy and S. Rajsbaum, Set consensus using arbitrary objects (preliminary version), in
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
ACM, New York, 1994, pp. 324–333.

[21] M. Herlihy and S. Rajsbaum, The decidability of distributed decision tasks (extended ab-
stract), in Proceedings of the 29th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1997, pp. 589–598.

TOPOLOGICAL CHARACTERIZATION 497

[22] M. Herlihy and S. Rajsbaum, Algebraic spans, Math. Structures Comput. Sci., 10 (2000),
pp. 549–573.

[23] M. Herlihy, S. Rajsbaum, and M. R. Tuttle, Unifying synchronous and asynchronous
message-passing models, in Proceedings of the 17th Annual ACM Symposium on Principles
of Distributed Computing, ACM, New York, 1998, pp. 133–142.

[24] M. Herlihy and N. Shavit, The asynchronous computability theorem for t-resilient tasks, in
Proceedings of the 25th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1993, pp. 111–120.

[25] M. Herlihy and N. Shavit, A simple constructive computability theorem for wait-free com-
putation, in Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1994, pp. 243–252.

[26] M. Herlihy and N. Shavit, The topological structure of asynchronous computability, J. ACM,
46 (1999), pp. 858–923.

[27] M. P. Herlihy, Wait-free synchronization, ACM Trans. Programming Languages and Systems,
13 (1991), pp. 123–149.

[28] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata, CWI Quarterly,
2 (1989), pp. 219–246.

[29] N. A. Lynch, Distributed Algorithms, Morgan–Kaufman, San Francisco, CA, 1996.
[30] J. R. Munkres, Elements of Algebraic Topology, Addison–Wesley, Reading, MA, 1984.
[31] G. Neiger, Set-linearizability, in Proceedings of the 13th Annual ACM Symposium on Princi-

ples of Distributed Computing, ACM, New York, 1994, p. 396.
[32] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public

knowledge, SIAM J. Comput., 29 (2000), pp. 1449–1483.
[33] E. Schenk, Computability and Complexity Results for Agreement Problems in Shared Memory

Distributed Systems, Technical report, University of Toronto, Toronto, Canada, 1996.
[34] E. H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 498–515

COVERING PROBLEMS WITH HARD CAPACITIES∗

JULIA CHUZHOY† AND JOSEPH (SEFFI) NAOR‡

Abstract. We consider the classical vertex cover and set cover problems with hard capacity
constraints. This means that a set (vertex) can cover only a limited number of its elements (adja-
cent edges), and the number of available copies of each set (vertex) is bounded. This is a natural
generalization of the classical problems which also captures resource limitations in practical scenarios.

We obtain the following results. For the unweighted vertex cover problem with hard capacities
we give a 3-approximation algorithm that is based on randomized rounding with alterations. We
prove that the weighted version is at least as hard as the set cover problem, yielding an interesting
separation between the approximability of weighted and unweighted versions of a “natural” graph
problem. A logarithmic approximation factor for both the set cover and the weighted vertex cover
problem with hard capacities follows from the work of Wolsey [Combinatorica, 2 (1982), pp. 385–393]
on submodular set cover. We provide here a simple and intuitive proof for this bound.

Key words. vertex cover, set cover, hard capacities, submodular set cover

AMS subject classifications. 68Q25, 68W25, 90C27, 90C59

DOI. 10.1137/S0097539703422479

1. Introduction. The set cover problem is the following. Let E = {1, . . . , n} be
a ground set of elements, and let S be a collection of sets defined over E. Each S ∈ S
has a nonnegative cost w(S) associated with it. A cover is a collection of sets such that
their union is E. The goal is to find a cover of minimum cost. The set cover problem
is a classic NP-hard problem that has been studied extensively in the literature, and
the best approximation factor achievable for it is Θ(logn) [9, 11, 20, 22].

We consider in this paper the set cover problem with capacity constraints, or the
capacitated set cover problem. We assume that each set S ∈ S has a capacity k(S)
associated with it, meaning that it can cover at most k(S) elements.

Generally, capacitated covering problems come in two flavors. In the case of soft
capacities, an unbounded number of copies of each covering object is available. In the
case of hard capacities, which is considered in this paper, each covering object (set S)
has a bound (denoted by m(S)) on the number of available copies. Thus, a cover C
is a multiset of input sets that can cover all the elements, while C contains at most
m(S) copies of each S ∈ S, and each copy covers at most k(S) elements.

The capacitated (multi-)set cover problem is a natural generalization of a basic
and well-studied problem that captures practical scenarios where resource limitations
are present.

A special case of the capacitated set cover problem that we consider is the capac-
itated vertex cover problem, defined as follows. An undirected graph G = (V,E) is

∗Received by the editors February 9, 2003; accepted for publication (in revised form) February
2, 2006; published electronically July 31, 2006. A preliminary version of this work appeared in the
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver,
2002, pp. 481–489.

http://www.siam.org/journals/sicomp/36-2/42247.html
†Laboratory for Computer Science, MIT, Cambridge, MA 02139, and Department of Computer

and Information Science, University of Pennsylvania, Philadelphia, PA 19104 (cjulia@csail.mit.edu).
This work was done while this author was a graduate student at the Computer Science Department
at the Technion.

‡Computer Science Department, Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). This
author’s research was supported in part by US-Israel BSF grant 2002276 and by EU contract IST-
1999-14084 (APPOL II).

498

COVERING PROBLEMS WITH HARD CAPACITIES 499

given, and each vertex v ∈ V is associated with a cost w(v), a capacity k(v), and a
multiplicity m(v) (we assume that no parallel edges are present). The goal is to find a
minimum cost multiset U of vertices that cover all the edges such that, for each vertex
v ∈ V , at most m(v) copies appear in U , and each copy covers at most k(v) edges ad-
jacent to v. The capacitated vertex cover problem generalizes the well-known vertex
cover problem, probably one of the most studied problems (see [19] for an overview)
in the area of approximation algorithms. The best currently known approximation

factor for vertex cover is 2 − log log |V |
2 log |V | [3, 18].

The capacitated vertex cover problem was first introduced by Guha et al. [17].
They considered the version of the problem with soft capacities, a special case where
the number of available copies of each vertex is unbounded. A straightforward round-
ing of a linear programming relaxation of the problem gives a 4-approximate solution.
Guha et al. [17] show a 2-approximation primal-dual algorithm, and they also give a
3-approximation for the case where each edge e ∈ E has an (unsplittable) demand
d(e). (Gandhi et al. [13] provide further results on the capacitated vertex cover prob-
lem with soft capacities.) Guha et al. [17] motivate the study of the vertex cover
problem with soft capacities by an application in glycobiology. The problem emerged
in the redesign of known drugs involving glycoproteins and can be represented as an
instance of the capacitated vertex cover problem.

Two other closely related capacitated covering problems are capacitated facility
location and capacitated k-median. In both problems, the input consists of a set of
facilities and a set of clients. For each facility and each client, there is a distance that
defines the cost of assigning the client to the facility. Each facility f has a capacity kf
and a number of available copies mf . Each client i has a demand di. The goal is to
open facilities and to assign all the clients to them. In the facility location problem,
each facility f has a cost wf . Any number of facilities can be opened, as long as the
number of copies of any facility f does not exceed mf . The cost of a solution is the
total cost of the open facilities plus the assignment costs of the clients. In the k-
median problem, we are given a bound k on the number of facilities. A solution must
contain at most k facilities, and the cost of the solution is the sum of the assignments
costs of the clients to the facilities. The capacitated set cover problem is a special
case of facility location with hard capacities, where all the distances are either 0 or ∞
(note that this distance function is not a metric). Bar-Ilan, Kortsarz, and Peleg [2]
gave an O(log n+logM)-approximation for the facility location with hard capacities,
where M is the value of the maximum input parameter.

Prior work. There is extensive research on the set cover problem, and the reader
is referred to the surveys in [15, 7, 1, 26, 19]. The set cover problem is known to
be Ω(log n) hard to approximate [11, 23]. A greedy heuristic gives an O(logn)-
approximation [9, 22] for the set cover problem.

Wolsey [30] considered the submodular set cover problem. Let f be an integer
valued function defined over all subsets of a finite set of elements E. Function f is
called nondecreasing if f(S) ≤ f(T) for all S ⊆ T ⊆ E, and submodular if f(S) +
f(T) ≥ f(S ∩ T) + f(S ∪ T) for all S, T ⊆ E. The input to the submodular set cover
problem is a family S of subsets of E together with a nonnegative cost function. There
is a nonnegative nondecreasing submodular function f defined over all collections of
the input sets. The goal is to find a minimum cost collection P of sets such that
f(P) = f(S). The special case where f(S) = | ∪S∈S S| for each set S ∈ S is the
classical set cover problem.

Consider the capacitated set cover problem. We can assume without loss of gen-
erality that the multiplicities of all the sets are unit, as is the case in the submodular

500 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

set cover problem, by viewing each one of the m(S) copies of each set S ∈ S as a
distinct set. For any family A of input sets, define f(A) to be the maximum number
of elements that A can cover (given the capacity constraints). It is not hard to see
that f is a nondecreasing nonnegative submodular function. Wolsey [30] showed using
dual fitting that the approximation factor of a greedy heuristic for the submodular
set cover problem is 1 + O(log fmax), where fmax = maxS∈S f({S}).

Metric facility location is a well-studied special case of the facility location prob-
lem, where the distance function defined on the clients is a metric. Many heuristics,
as well as approximation algorithms with bounded performance guarantees, were de-
veloped for this version [6, 25, 27, 29]. For the metric facility location problem with
hard capacities, Pál, Tardos, and Wexler [28] gave a (9 + ε)-approximation using
local search. This result has been improved to (8 + ε)-approximation by Mahdian
and Pál [24], and the best currently known approximation is (6 + ε), due to Zhang,
Chen, and Ye [31] and Garg, Khandekar, and Pandit [16]. Unlike the facility location
problem, it is not known whether the capacitated k-median problem has a constant
approximation, even if the capacities are soft. Bartal, Charikar, and Raz [4] show
a constant factor bicriteria approximation for the soft capacities version, where the
number of open facilities k is exceeded by at most a constant. Chuzhoy and Rabani [8]
provide a different constant factor bicriteria approximation for the same problem. In
their algorithm, the capacities are violated by at most a constant factor, while the
number of open facilities is guaranteed to be at most k.

1.1. Our contribution. Our first result is a randomized 3-approximation algo-
rithm for the unweighted capacitated vertex cover problem in simple graphs (i.e., with
no parallel edges). Our algorithm uses randomized rounding with alterations. The
first rounding step in our algorithm applies randomized rounding where the probabil-
ities are derived from a solution to a linear programming relaxation of the problem.
However, the rounding may not yield a feasible cover, and therefore we need to add
more vertices to the cover. This is done in the alteration step. Our analysis uses
a charging scheme to bound the number of vertices that are added to the cover in
this step. We also prove that the more general version where edges have unsplittable
demands is not approximable in the presence of hard capacities. Contrast this with
the 3-approximation algorithm of Guha et al. [17] for this case (with soft capacities).

We next consider the weighted capacitated vertex cover problem and prove that it
is set cover hard. This means that the best approximation factor that can be achieved
for this problem is Ω(logn). Our hardness proof holds even for the case of {0, 1}
weights and unit multiplicity. Interestingly, we are not aware of any other “natural”
graph problem where there is a logarithmic separation between the approximability of
weighted and unweighted versions. (However, there are several examples of problems
where the unweighted version is polynomially solvable, while the weighted version is
NP-hard.)

We leave open the version of the capacitated vertex cover problem where the
graph is unweighted, yet there are parallel edges. Our constant-factor approximation
algorithm is not applicable to this version of the problem. Following our work, Gandhi
et al. [12] obtained a 2-approximation for the unweighted vertex cover with hard
capacities, using a modification of our algorithm.

We proceed to consider the capacitated set cover problem. As already noted, it
follows from Wolsey’s work [30] that a natural greedy heuristic achieves an approxi-
mation factor of O(log n) for this problem. We note that the integrality gap of the
natural linear programming relaxation of the problem is unbounded, similar to the

COVERING PROBLEMS WITH HARD CAPACITIES 501

case of facility location with hard capacities [28]. Indeed, Wolsey uses a different lin-
ear programming formulation (see section 6 for a formulation of the linear program).
We consider the same greedy heuristic as Wolsey and provide a direct combinatorial
proof of the approximation factor of this heuristic. We believe that our proof is sim-
ple and intuitive. We note that the main obstacle in applying the “standard” (set
cover) charging scheme in the presence of hard capacities is that it is not clear how
to “charge” the sets in the optimal solution for the sets in the solution computed by
the greedy algorithm. Since there are hard capacities, the assignment of elements to
sets in the cover is dynamic, and, moreover, elements may be covered and uncovered
several times during the iterations of the algorithm.

The paper is organized as follows. In section 3, we show a 3-approximation al-
gorithm for unweighted capacitated vertex cover. In section 4.1 we show that the
weighted capacitated vertex cover problem is at least as hard as the set cover prob-
lem, even in the case where m(v) = 1 for all v ∈ V . In section 4.2 we consider the
version where edges have unsplittable demands, and show that this version is not
approximable in the presence of hard capacities. In section 5 we provide a descrip-
tion of the greedy algorithm for the set cover problem with hard capacities, and give
a simple proof that the algorithm achieves an O(log n)-approximation, implying an
O(log |V |)-approximation for the weighted capacitated vertex cover problem. In sec-
tion 6 we discuss extensions of the algorithm to more general covering problems, such
as submodular set cover and multiset multicover.

2. Preliminaries. A set cover instance with hard capacities contains a ground
set of elements E = {1, . . . , n} and a collection of sets S defined over E. Each set
S ∈ S is associated with a nonnegative cost w(S), a capacity k(S) that bounds the
number of elements it can cover, and a bound m(S) on the number of available copies
of S. Let P be a multiset of sets from S. Then C ⊆ P × E is called a partial cover
iff for each (S, e) ∈ C, e ∈ S. We say that element e ∈ E is covered by S in C if
(S, e) ∈ C. Without loss of generality we can assume that each element e ∈ E is
covered in C at most once. Cover C is feasible if P contains at most m(S) copies of
each S ∈ S, and each copy covers at most k(S) elements. The value of C, i.e., the
number of elements it covers, is denoted by |C|. Given a multiset P, denote by f(P)
the maximal value of a feasible (partial) cover C ⊆ P×E. The cost of C is defined to
be the sum of the costs of the sets belonging to P. We start by showing that when P is
fixed, a feasible cover C ⊆ P ×E of value f(P) can be computed in polynomial time.

Lemma 2.1. Given an instance of set cover with hard capacities and a multiset
P of sets from S, a cover C of value f(P) can be computed in polynomial time.
In particular, whether P defines a feasible solution to the set cover problem can be
established.

Proof. For each S ∈ S, let mP(S) denote the number of copies of S that appear
in P. We build the following directed network. Let G = (L,R,E′) be the directed
incidence graph of P and E; i.e., L contains a vertex for each copy of each set in P:
L = {vi(S)| S ∈ S, 1 ≤ i ≤ mP(S)}, R = E. For each vi(S) ∈ L, e ∈ R, there is
an edge (vi(S), e) ∈ E′ of capacity 1 iff e ∈ S. Add a source vertex s and an edge
(s, vi(S)) of capacity k(S) for each S ∈ S, 1 ≤ i ≤ mP(S). Add a sink vertex t and
an edge (e, t) of capacity 1 for each e ∈ E.

Consider the maximum flow in this network. The value of the flow is at least f(P),
since the optimal cover defines a feasible flow in the network. Also, the maximum
flow in the network is integral, and thus it induces a feasible partial cover of the same
value.

502 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Clearly, P is a feasible solution to the set cover problem iff f(P) = |E| and for
each S ∈ S, mP(S) ≤ m(S).

Since vertex cover with hard capacities is a special case of set cover with hard
capacities (where each vertex v ∈ V can be viewed as a set whose elements are the
edges adjacent to v), all the above definitions, as well as Lemma 2.1, can also be
applied to the vertex cover problem.

3. Vertex cover with hard capacities. In this section, we show a randomized
3-approximation algorithm for the unweighted capacitated vertex cover problem. Our
starting point is the following linear programming relaxation of the problem. For
v ∈ V , let x(v) be a variable indicating the number of copies of v that belong to the
cover. For e = (u, v) ∈ E, let y(e, v) be a variable indicating whether vertex v covers
edge e. Denote by (x, y) a solution to (UVC). For each v ∈ V , N(v) denotes the set
of edges adjacent to v.

min
∑
v∈V

x(v)(UVC)

s.t.

y(e, u) + y(e, v) = 1 for all e = (u, v) ∈ E,(1)

y(e, v) ≤ x(v) for all e ∈ E, v ∈ e,(2) ∑
e∈N(v)

y(e, v) ≤ k(v) · x(v) for all v ∈ V ,(3)

x(v), y(e, v) ≥ 0 for all v ∈ V , e ∈ E,

x(v) ≤ m(v) for all v ∈ V .

Lemma 3.1. Let (x, y) be a feasible solution to (UVC), where x is integral. Then
there exists a feasible solution (x, y′) to (UVC), where y′ is integral. Moreover, this
solution can be computed in polynomial time (given x).

Proof. Let U be the multiset of vertices defined by x; i.e., for each vertex v ∈ V ,
there are exactly x(v) copies of v in U . We use Lemma 2.1 to compute an (integral)
cover y′ of the edges by vertices in U . Note that y induces a fractional flow of value
|E| in the network constructed in the proof of Lemma 2.1. Thus, f(U) = |E|, and
therefore, in y′, all the edges are covered.

3.1. A simple 8-approximation algorithm. In this section we show a simple
8-approximation algorithm for the special case of unit multiplicities (i.e., for each
vertex exactly one copy is available). The description and the analysis of the algorithm
are presented in an informal way. The goal is to give an intuitive explanation of
the ideas behind the algorithm. The next section contains a formal description and
analysis of a modified (and more complicated) version of the algorithm, which achieves
a 3-approximation for the general version (with arbitrary multiplicities).

Let (x, y) be a fractional optimal solution to (UVC). We will find a feasible solu-
tion (x′, y′), where x′ is integral and the expected cost is at most 8 times the cost of
the original solution (x, y). By Lemma 3.1, (x′, y′) can be converted into an integral
solution of the same cost. The algorithm consists of three steps.

Step 1 (setting it up). We define U =
{
v | xv ≥ 1

2

}
. Note that each edge e ∈ E

has at least one endpoint in U . Let U = V \ U , and let E′ denote all the edges with
one endpoint in U . Thus, we have two types of edges: edges with both endpoints in

COVERING PROBLEMS WITH HARD CAPACITIES 503

... ...

� �
�

�

Fig. 3.1. The sets U and U .

U , and edges with one endpoint in U and one endpoint in U . Figure 3.1 shows the
partition of the input graph vertices into sets U, U , and the types of edges present in
the graph.

For each vertex u ∈ U , let N ′(u) denote the set of edges in E′ incident to u.
Set �(u) =

∑
e∈N ′(u) y(e, u) and r(u) =

∑
e=(u,v)∈N ′(u) y(e, v) = |N ′(u)| − �(u). Note

that the value of �(u) denotes the total contribution of u to the coverage of edges in
N ′(u) (or the “budget” of u), and r(u) denotes the total contribution of vertices in
U to the coverage of these edges (or the “deficit” of u). The idea is to choose a small
subset of vertices I ⊆ U such that each u ∈ U can receive a contribution of at least
r(u) from the vertices in I for covering the edges in N ′(u). The coverage of the edges
with both endpoints in U remains the same as in the linear programming solution.
The construction of set I is performed in two steps: randomized rounding and then
alterations.

Step 2 (randomized rounding). Each vertex v ∈ U is chosen randomly and inde-
pendently into I with probability 2xv. Consider some edge e = (u, v) with u ∈ U ,

v ∈ I. We set the contribution of v to the coverage of e to be z(e, v) = y(e,v)
x(v) .

Note that since y(e, v) ≤ x(v) is required in (UVC), z(e, v) ≤ 1, and it follows from
constraint (3) that the capacity of v is not exceeded. If vertex u ∈ U receives a
contribution of at least r(u) from the vertices in I, then the budget of u is sufficient
to complete the fractional cover of all the edges adjacent to u. However, it is still
possible that some vertices u ∈ U receive a contribution smaller than r(u). This is
corrected in the next step.

Step 3 (alterations). We denote by P the vertices in U that are in “deficit,” i.e.,

P =

{
u ∈ U |

∑
e=(v,u)∈E′,v∈I

z(e, v) < r(u)

}
.

We proceed iteratively. In each iteration, a new vertex v that fractionally covers
some edges adjacent to vertices in P is added to I. Then set P is updated. We
continue until P becomes an empty set. The cost of the newly added vertices is
charged to the vertices in P .

An iteration is performed as follows. (See Figure 3.2.) Let u be some vertex in
P . Then there is at least one edge e = (v, u) ∈ E′, where v 	∈ I. Add v to I. For
each edge e′ = (v, w), where w ∈ P, w 	= u, set the contribution of v to the coverage

of e′ to be z(e′, v) = y(e′,v)
x(v) . The contribution of v to the coverage of e is defined to

504 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

�
�

�

�

�

�

�
�

�

�

�

Fig. 3.2. A Step 3 iteration.

be the minimum between 1 and the remaining capacity of v (which must be at least
y(e, v)). The cost of v is charged to the vertices in P as follows. Each w ∈ P , w 	= u
such that e′ = (w, v) ∈ E, pays z(e′, v), which is exactly the contribution of v to the
coverage of edge e′. The remaining cost is charged to u.

Observe that at the end of this procedure, the cost charged to each vertex u ∈ P
is at most r(u)+1. Let i be the last iteration when u belongs to P . In each iteration,
u is charged with the amount which is bounded by the contribution it receives in this
iteration. Once the total contribution exceeds r(u), u is removed from P . So at the
beginning of iteration i, the total amount charged to u does not exceed r(u), and u
pays at most 1 in iteration i.

Analysis. The cost of the algorithm is divided into three parts.
1. The cost incurred in Step 1 is at most 2

∑
u∈U x(u).

2. The expected cost of randomized rounding is at most 2
∑

u∈U xu.
3. The expected cost of Step 3 is bounded as follows. Consider some u ∈ U .

• If r(u) ≤ 2, then u pays at most r(u) + 1 = 3 for Step 3.
• Assume that r(u) > 2. In this case the probability that u belongs to P

after Step 2 is at most 2
r(u) (this follows from a simple application of the

Chebyshev inequality; since the next section contains a similar proof, we
omit the proof here). Therefore, the expected cost incurred by u is at
most 2

r(u) · (r(u) + 1) ≤ 3.

In total, the expected cost of Step 3 is at most 3|U | ≤ 6
∑

u∈U x(u).
Summing up over the three steps, the expected cost of the solution is bounded by

8 ·
∑
u∈U

x(u) + 2
∑
v∈U

x(v) ≤ 8 ·
∑
v∈V

x(v).

3.2. A 3-approximation algorithm. In this section we show a randomized
3-approximation algorithm for vertex cover with hard capacities and arbitrary mul-
tiplicities. The algorithm is based on the ideas presented in the previous section.
Consider a fractional optimal solution (x, y) to (UVC). We show how to round this
solution, obtaining a feasible solution (x′, y′), where x′ is integral. By Lemma 3.1,
x′ induces an integral capacitated vertex cover. As before, the rounding algorithm
consists of three major steps.

Step 1 (setting it up). We need the following definitions.
• Define U = {u | x(u) ≥ 1

3} and U = V \U . Let U ′ be the multiset of vertices,
where for each u ∈ U there are
x(u)� copies of u in U ′.

COVERING PROBLEMS WITH HARD CAPACITIES 505

• Define E′ to be the set of edges with one endpoint in U and the other endpoint
in U .

• For each u ∈ V , N ′(u) = E′ ∩N(u).
• For each u ∈ U , define: �(u) =

∑
e∈N ′(u) y(e, u) and r(u) =

∑
e=(u,v)∈N ′(u)

y(e, v) = |N ′(u)| − �(u).
Note that the value of �(u) denotes the total contribution of u to the coverage
of edges in N ′(u), and r(u) denotes the total contribution of vertices in U to
the coverage of these edges.

• For each u ∈ U , define ε(u) = �x(u)�
x(u) − 1 and h(u) = (1 − 2ε(u))r(u). The

meaning of these variables is explained below.
The constraints of (UVC) guarantee that each edge e = (u, v) ∈ E has at least

one endpoint in U : Since y(e, u) + y(e, v) = 1, y(e, u) ≤ x(u), and y(e, v) ≤ x(v), it
follows that either x(u) ≥ 1

3 or x(v) ≥ 1
3 must hold.

Consider a vertex u ∈ U . Let (u, v) be some edge such that v ∈ U . Since
y(e, v) ≤ x(v) < 1

3 , it follows that x(u) ≥ y(e, u) > 2
3 . It also follows that for each

u ∈ U , �(u) ≥ 2r(u), since y(e, u) ≥ 2y(e, v) for each (u, v) ∈ N ′(u).
Our cover is going to contain the vertices of U ′ together with a subset I ⊆ U ,

such that U ′ ∪ I can fractionally cover all the edges. (By Lemma 3.1, U ′ ∪ I is also
an integral feasible vertex cover.)

First, we round up x(u) to be equal to
x(u)� for each vertex u ∈ U . As a result, u
can increase its contribution to the coverage of the edges belonging to N ′(u) by a factor

of
x(u)� /x(u); i.e., now it can contribute �x(u)�
x(u) l(u) to the coverage of N ′(u). By the

definition of ε(u), the new contribution of u is at least �(u)(1+ε(u)) ≥ �(u)+2r(u)ε(u).
If ε(u) ≥ 1

2 , then this is enough to complete the coverage of N ′(u). Therefore, assume
that ε(u) < 1

2 . To complete the fractional cover, we need an additional coverage of

value (1 − 2ε(u))r(u) = h(u) from vertices belonging to U , since �(u) + r(u) suffices
to cover N ′(u). Our goal in the next two steps is to find I ⊆ U such that for
each u ∈ U , the vertices from I can contribute at least h(u) to the coverage of
N ′(u).

Step 2 (randomized rounding). Each vertex v ∈ U is independently chosen to be
in I with probability equal to 3x(v). Note that for each v ∈ U , we add at most one
copy of v to I. For each vertex v ∈ I, for each e ∈ N ′(v), define a new cover of edge

e by vertex v: z(e, v) = y(e,v)
x(v) .

Step 3 (alterations). In this step we start with a feasible fractional solution (x′, y′)
and iteratively alter it until x′ becomes integral, while maintaining feasibility of
(x′, y′). We denote by P the vertices in U that are in “deficit,” i.e.,

P =

{
u ∈ U |

∑
e=(v,u)∈E′,v∈I

z(e, v) < h(u)

}
.

Our initial feasible solution (x′, y′) for (UVC) is defined as follows: If v ∈ U , then
x′(v) =
x(v)�. If v ∈ I, then x′(v) = 1. Otherwise x′(v) = x(v). For e = (u, v),
y′(e, v) and y′(e, u) are defined as follows:

• If u, v ∈ U , then y′(e, u) = y(e, u) and y′(e, v) = y(e, v).
• If u ∈ U \ P : if v ∈ I, then y′(e, v) = z(e, v); else y′(e, v) = 0. Set y′(e, u) =

1 − y′(e, v). Note that since u 	∈ P , it has enough capacity to complete the
cover of N ′(u).

• If u ∈ P : if v ∈ I, then y′(e, v) = z(e, v) and y′(e, u) = 1−z(e, v). (Note that
y′(e, u) ≤ y(e, u), since z(e, v) ≥ y(e, v).) Else (v 	∈ I); set y′(e, u) = y(e, u)

506 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

and y′(e, v) = y(e, v).
It is easy to see that (x′, y′) is a feasible solution for (UVC). We now show how to get
rid of P by adding new vertices to I. We charge the cost of the new vertices added
to I to the vertices of P .

Procedure Eliminate. While P 	= ∅:
1. Let u ∈ P , e = (u, v) ∈ E′, such that v ∈ U \ I (there must be at least one

such v). Let P ′ = {w ∈ P | w 	= u, e′ = (w, v) ∈ E′}.
2. Add v to I (set x′(v) = 1).

Update the cover: For each w ∈ P ′, where e′ = (v, w) ∈ E′, set y′(e′, v) :=

z(e′, v) = y(e′,v)
x(v) . Set y′(e′, w) := 1 − y′(e′, v). Note that the value of

y′(e′, w) can only decrease. Set y′(e, v) to be the minimum between 1
and the remaining capacity of v (which must be at least y(e, v)). Set
y′(e, u) = 1 − y′(e, v).

Update the set P: For each w ∈ P for which
∑

e=(w,a):a∈I y
′(e, a) ≥ h(w),

remove w from P . Update the cover of N ′(w) as follows. For each
e = (b, w) ∈ E′ such that b 	∈ I, set y′(e, b) = 0 and y′(e, w) = 1. Note
that w has enough capacity to cover all such edges.

It is easy to see that feasibility is maintained after each iteration. The number of
iterations of Procedure Eliminate is bounded by |U |, since |I| is increased by one in
each iteration. At the end, when P becomes empty, for each v with x′(v) < 1, we set
x′(v) = 0. In the final solution, for each v ∈ U ∪ I, x(v) = 1, and for all other vertices
v, x(v) = 0. The next theorem follows from the discussion.

Theorem 3.2. The algorithm computes a feasible solution (x′, y′) to (UVC),
where x′ is integral.

To obtain an integral capacitated vertex cover, we apply Lemma 3.1 to the solution
(x′, y′).

3.3. Analysis. The analysis of the rounding is divided into two parts.
Charging scheme for Step 3. We show that we can charge the cost of adding

vertices to I in Procedure Eliminate to the vertices in P , such that each u ∈ P pays
at most h(u)+1. Consider an iteration of Procedure Eliminate. We charge the vertices
of P ′ ∪ {u} for adding v to I. Each w ∈ P ′, where e′ = (w, v) ∈ E′, pays z(e′, v)
(which is exactly the contribution of v to the cover of e′). Vertex u pays the remaining
cost (if any remains), which is also at most the contribution of v to the cover of the
edge (u, v). We now bound the total amount charged to a ∈ P . While a is still in
P , at each iteration it pays at most the amount of coverage that edges in N ′(a) get
from the newly added vertex v. Once the coverage of N ′(a) coming from vertices in
I exceeds h(a), a is removed from P . Therefore, in total a pays at most h(a) + 1.

Bounding the cost. We now bound the total cost of the solution produced.
Claim 3.3. Let u ∈ U such that r(u) ≥ 3

4(1+ε(u))2 . Then, the probability that

u ∈ P after Step 2 is at most 3
4(1+ε(u))2r(u) .

Proof. Consider e = (u, v) ∈ N ′(u). We define the random variable

te =

{
z(e, v), v ∈ I,
0 otherwise.

Variables te are independent since there are no parallel edges in the graph. Note that
• u ∈ P iff

∑
e∈N ′(u) te < h(u);

COVERING PROBLEMS WITH HARD CAPACITIES 507

• the expectation of
∑

e∈N ′(u) t(e) is

μ = Exp

⎡
⎣ ∑
e∈N ′(u)

te

⎤
⎦

=
∑

e=(v,u)∈N ′(u)

3z(e, v) · x(v)

= 3r(u);

• the variance of
∑

e∈N ′(u) t(e) is

σ2 = Var

⎡
⎣ ∑
e∈N ′(u)

te

⎤
⎦

=
∑

e=(u,v)∈N ′(u)

z2(e, v) · 3x(v) · (1 − 3x(v))

≤ μ.

When applying Chebyshev’s inequality to the random variable
∑

e∈N ′(u) te, it follows
that

Prob

⎡
⎣ ∑
e∈N ′(u)

te < h(u)

⎤
⎦

≤ Prob

⎡
⎣

∣∣∣∣∣∣
∑

e∈N ′(u)

te − μ

∣∣∣∣∣∣ ≥ μ− r(u)(1 − 2ε(u))

⎤
⎦

= Prob

⎡
⎣

∣∣∣∣∣∣
∑

e∈N ′(u)

te − μ

∣∣∣∣∣∣ ≥ 2r(u)(1 + ε(u))

⎤
⎦

≤ σ2

4r2(u)(1 + ε(u))2

≤ 3

4r(u)(1 + ε(u))2
.

We are now ready to compute the expected cost of the solution.
• For v ∈ U , the expected cost we pay in Step 2 is 3x(v).
• For u ∈ U , where N ′(u) = ∅ or ε(u) ≥ 1

2 , we pay at most 3x(u) in Step 1,
and we do not pay in Step 3.

• For u ∈ U , where N ′(u) 	= ∅ and ε(u) < 1
2 , for the sake of convenience, denote

k =
x(u)�, ε = ε(u), x = x(u). Consider the following two cases:
– If r(u) ≥ 3

4(1+ε)2 , then in Step 1 we pay k for the copies of u we use.

In Step 3, we pay at most h(u) + 1 with probability at most 3
4r(u)(1+ε)2 .

508 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Thus, the expected cost is bounded by

k + (h(u) + 1) · 3

4r(u)(1 + ε)2
= k + ((1 − 2ε)r(u) + 1)

3

4r(u)(1 + ε)2

= k +
3(1 − 2ε)

4(1 + ε)2
+

3

4r(u)(1 + ε)2

≤ k + 1 +
3(1 − 2ε)

4(1 + ε)2
.

– If r(u) < 3
4(1+ε)2 , then in Step 1 we pay k for the copies of u, and at

most h(u) + 1 in Step 3. In total we pay

k + 1 + h(u) = k + 1 + (1 − 2ε)r(u)

≤ k + 1 +
3(1 − 2ε)

4(1 + ε)2
.

In both cases it suffices to prove that

k + 1 +
3(1 − 2ε)

4(1 + ε)2
≤ 3x.

Since x = k
1+ε , this is equivalent to showing that

k + 1 +
3(1 − 2ε)

4(1 + ε)2
≤ 3k

1 + ε
.

Claim 3.4. For any k ≥ 1, 0 ≤ ε < 1
2 , the following inequality holds:

k + 1 +
3(1 − 2ε)

4(1 + ε)2
≤ 3k

1 + ε
.

Proof. The claim is equivalent to

k

(
1 − 3

1 + ε

)
+ 1 +

3(1 − 2ε)

4(1 + ε)2
≤ 0.

Note that 1 − 3
1+ε < 0 for ε < 1

2 . Therefore, the left-hand side is maximized
when k = 1, and it is enough to prove that

2 − 3

1 + ε
+

3(1 − 2ε)

4(1 + ε)2
≤ 0.

This is equivalent to

8ε2 − 2ε− 1 ≤ 0,

which holds for all ε, 0 ≤ ε ≤ 1
2 .

4. Hardness results.

COVERING PROBLEMS WITH HARD CAPACITIES 509

4.1. Weighted vertex cover. We show that the capacitated vertex cover with
arbitrary weights is at least as hard to approximate as the set cover problem. Given an
instance of the set cover problem, let G = (L,R,E′) be its bipartite incidence graph,
where L = S, R = E, (S, e) ∈ E′ iff e ∈ S. For each vertex v in the graph, let δ(v)
denote its degree. For each v ∈ L, define w(v) to be the weight of the corresponding
set, and k(v) = δ(v). For each v ∈ R, define w(v) = 0 and k(v) = δ(v) − 1. For each
vertex v in the graph, define the multiplicity to be m(v) = 1. Given a solution to
the set cover instance, the solution to the capacitated vertex cover consists of all the
vertices of R and the vertices from L corresponding to the sets in the set cover. The
set vertices can cover all their adjacent edges. Since each element is covered in the set
cover solution, for each v ∈ R, at least one of its adjacent edges is covered by a set
vertex, and thus v has enough capacity to cover the remaining edges. The converse is
also true. Given a feasible solution to the vertex cover problem, we can find a feasible
solution to the set cover problem of the same cost. The solution to the set cover
problem consists of the sets corresponding to the vertices of L that participate in the
solution of the vertex cover instance.

4.2. Vertex cover with unsplittable demands. We assume that each edge
e has a demand d(e) that must be supplied by one of its endpoints. For each v ∈ V ,
the sum of the demands of the adjacent edges that v supplies must not exceed the
capacity k(v). It is impossible to approximate this problem, since, given a problem
instance, it is NP-hard to answer the question of whether V (the set of all the vertices
in the problem instance) is a feasible vertex cover, even if the demands are given in
unary. The reduction is from the 3-partition problem, which is defined as follows. We
are given a bound B ∈ Z+ and a collection of 3m numbers, a1, . . . , a3m, such that∑3m

i=1 ai = mB, and for each i : 1 ≤ i ≤ 3m, B/4 < ai < B/2. The question is
whether the numbers can be partitioned into m sets, such that the sum of numbers in
each set is B. Note that if such a partition exists, each set will contain exactly three
numbers. This problem is NP-hard in the strong sense (i.e., it is NP-hard even if the
numbers are given in unary) [14].

The reduction proceeds as follows. We have 3m vertices v1, . . . , v3m representing
the 3m numbers. The capacity of vertex vi, 1 ≤ i ≤ 3m, is (m− 1)ai. We also have
m vertices u1, . . . , um representing the sets, and the capacity of each such vertex is B.
Thus, the set of vertices is V = {vi | 1 ≤ i ≤ 3m}∪ {uj | 1 ≤ j ≤ m}. For each vi, uj :
1 ≤ i ≤ 3m, 1 ≤ j ≤ m, there is an edge between the two vertices with demand ai.
Suppose there is a valid partition of the 3m numbers into m sets S1, . . . , Sm. Then
for each vertex uj , 1 ≤ j ≤ m, and for each vertex vi, 1 ≤ i ≤ 3m, such that ai ∈ Sj ,
vertex uj covers the edge connecting uj and ai. As the sum of the numbers in each
Sj is exactly B, the capacity of uj is enough to cover all these edges. Now for each
vertex vi, 1 ≤ i ≤ 3m, one of the edges adjacent to this vertex is covered by one
of the vertices u1, . . . , um, and therefore the capacity of vi is sufficient to cover the
remaining (m− 1) edges.

The converse direction is also true. Suppose that the set V of vertices can cover
all the edges. We show a valid partition of the input elements into m sets S1, . . . , Sm.
Note that each vertex vi, 1 ≤ i ≤ 3m, has enough capacity to cover only (m − 1) of
its adjacent edges. Therefore, at least one edge adjacent to vi is covered by some uj ,
1 ≤ j ≤ m. Set Sj contains all such elements ai for which vertex uj covers the edge
that connects it with vi. As the capacities of the vertices uj , 1 ≤ j ≤ m, are B, the
elements in each set sum up also to at most B. Thus, a solution to the capacitated
vertex cover problem defines a solution to the 3-partition problem.

510 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

5. Set cover with hard capacities. In this section we consider the set cover
problem with hard capacities. For the sake of simplicity, we assume that for each
set S ∈ S, only one copy is available, i.e., m(S) = 1. If this is not the case, we
can view each available copy of each set as a distinct set. Note that the input size
remains polynomial, as at most n copies of each set are needed. Thus, given two
families A,B ⊂ S of sets, their union is now defined as usual: A∪B = {S | S ∈ A or
S ∈ B}.

We need the following notation. Let T ⊆ S be a collection of sets, and let
f(T) denote the maximum number of elements that the sets belonging to T can
cover without violating the capacity constraints. Note that f(T) can be computed
using Lemma 2.1. For S ∈ S, define fT (S) = f(T ∪ {S}) − f(T) (i.e., fT (S) is
the increase in the number of elements that can be covered when S is added to set
family T). Consider the following greedy algorithm for the set cover problem with
hard capacities.

Algorithm Greedy Cover.

1. Initially, P = ∅.
2. While P is not a feasible capacitated set cover:

(a) Let S = arg minS: fP(S)>0
w(S)
fP(S) .

(b) Add S to P.
Wolsey [30] showed using the dual fitting technique that Algorithm Greedy Cover

achieves an approximation factor of O(log(maxS |S|)). We show a simpler and a more
intuitive charging scheme that proves the same result.

Let T ⊆ S be a collection of sets, and let C ⊆ T × E be a feasible partial cover.
Denote by |C| the number of elements covered by C. We can assume without loss of
generality that no element is covered by more than one set in T . For each T ′ ⊆ T ,
we denote by CT ′ the projection of C on T ′, and by fC(T ′) the number of elements
covered by sets belonging to T ′ in C. We need the following lemma.

Lemma 5.1. Consider an instance of the set cover problem with hard capacities.
Let T be a feasible cover, and let T1, T2 be a partition of T into two disjoint subsets.
Then, there is a feasible cover C ⊆ T ×E such that all the elements are covered in C
and fC(T1) = f(T1).

Proof. Let C ⊆ T ×E be a feasible cover, where each element e ∈ E is covered by
some S ∈ T , and assume that fC(T1) < f(T1). Let C ′ ⊆ T1 × E be a feasible partial
cover, where fC′(T1) = f(T1). Since C ′ is a partial cover, some elements may not
be covered in C ′. We gradually change the cover C, while maintaining its feasibility,
until the lemma is satisfied. Perform the following procedure:

While fC(T1) < f(T1):
1. Let S ∈ T1 be a set such that S covers fewer elements in C than it

does in C ′. There is at least one such set, since fC(T1) < f(T1).
2. Let e ∈ E be an element covered by S in C ′ but covered by some

T 	= S in C. (Note that T can belong to either T1 or T2.)
3. Change C so that e is covered by S; i.e., remove (T, e) and add (S, e)

to C.

It is clear that we can perform the procedure and maintain a feasible cover C,
while fC(T1) < f(T1). Once a pair (S, e) ∈ C ′ is added to C, it remains there until
the end of the procedure. Thus, the number of iterations is bounded by |C ′| and is
therefore finite. Upon termination of the procedure, we have a cover C that satisfies
the conditions of the lemma.

COVERING PROBLEMS WITH HARD CAPACITIES 511

We now proceed with analyzing Algorithm Greedy Cover. Denote the solution
computed by Algorithm Greedy Cover by P = {S1, S2, . . . , Sk}, and assume that the
sets are added to the solution by the algorithm in this order. For each i, 0 ≤ i ≤ k, let
Pi = {S1, S2, . . . , Si} be the solution at the end of iteration i. Let OPT be an optimal
solution. We “replay” the algorithm, while charging the costs of the sets added to P
by Algorithm Greedy Cover to the sets in OPT .

Start with P0 = ∅. For each S ∈ OPT , let a0(S) be the number of elements
covered by S in OPT (assuming every element is covered by exactly one set in OPT).
For each iteration i of Algorithm Greedy Cover, new values ai(S) of sets in OPT \Pi

are defined. The following invariant holds throughout the analysis: we can cover all
the elements by the sets in OPT ∪Pi, even if the capacities of sets S ∈ OPT \ Pi are
restricted to be ai(S).

The invariant is clearly true for P0 and a0. Consider iteration i of Algorithm
Greedy Cover. We add set Si to the solution. Since the invariant holds for Pi−1, ai−1,
the collection of sets Pi ∪ OPT is a feasible cover, even if we restrict the capacities
of sets S ∈ OPT \ Pi to be ai−1(S). By Lemma 5.1, there is a feasible cover C ⊆
(Pi ∪ OPT) × E, where the sets in Pi cover exactly f(Pi) elements and each set
S ∈ OPT \ Pi covers at most ai−1(S) elements. For each S ∈ OPT \ Pi, define ai(S)
to be the number of elements covered by S in C. Note that ai(S) ≤ ai−1(S).

If Si ∈ OPT , we do not charge any sets for its cost, since OPT also pays for
it. Otherwise, suppose fPi−1

(Si) = ni. The number of elements covered by sets in
OPT \Pi in C is

∑
S∈OPT\Pi

ai−1(S)−ni. Therefore,
∑

S∈OPT\Pi
(ai−1(S)−ai(S)) =

ni. We charge each S ∈ OPT \ Pi with w(Si)
ni

· (ai−1(S)− ai(S)). Note that the total
cost charged to the sets in OPT in this iteration is exactly w(Si).

We now bound the cost charged to each S ∈ OPT . If S ∈ P, let j denote the last
iteration before S is added to P (i.e., S is added to P at iteration j + 1). Otherwise,
let j be the first iteration after which aj = 0 (note that the equality holds for the last
iteration). For each i < j, at the beginning of iteration i, fPi−1

(S) ≥ ai−1(S). This
follows from the way the value of ai−1(S) is determined. Since Algorithm Greedy

Cover chooses a set other than S in this iteration, w(Si)
ni

≤ w(S)
ai−1(S) . Therefore, the

total value charged to S is

j∑
i=1

(ai−1(S) − ai(S))
w(Si)

ni
≤ w(S)

j∑
i=1

(ai−1(S) − ai(S))

ai−1(S)
.

Observe that for each i : 1 ≤ i ≤ j, the term ai−1(S)−ai(S)
ai−1(S) can be written as

ai−1(S)∑
�=ai(S)+1

1

ai−1(S)
≤

ai−1(S)∑
�=ai(S)+1

1

�
.

Thus, the value charged to S is bounded by w(S)H(|S|), and the total cost of the
solution is at most OPT (1 + ln(maxS |S|)).

6. Extensions.

6.1. Submodular set cover. Recall the submodular set cover problem. Let f
be an integer valued function defined over all subsets of a finite set E of elements.

512 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Function f is called nondecreasing if f(S) ≤ f(T) for all S ⊆ T ⊆ E, and submodular
if f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T) for all S, T ⊆ E. The input to the submodular
set cover problem is a family S of subsets of E, together with a nonnegative cost
function. There is a nondecreasing nonnegative integer valued submodular function
f defined over all collections of the input sets. The goal is to find a minimum cost
collection P ⊂ S of sets such that f(P) = f(S).

It is not hard to show that the natural linear programs for the set cover problem
with hard capacities, as well as the more general submodular set cover problem,
have an unbounded integrality gap. We note that Algorithm Greedy Cover can be
applied to the general submodular set cover problem as well. Indeed, Wolsey [30]
showed using the dual fitting technique that Algorithm Greedy Cover achieves a 1 +
O(log(fmax))-approximation for this problem, where fmax = maxS∈S f({S}). For the
sake of completeness, we describe Wolsey’s linear program (SSC) below. As before,
for T ⊆ S and S ∈ S, fT (S) = f(T ∪ {S}) − f(T). For each set S ∈ S, there is an
indicator variable x(S) showing whether S is in the solution. The goal is to minimize
the solution cost, i.e.,

∑
S∈S w(S)x(S).

Consider now some collection of input sets T ⊂ S, and suppose f(S)− f(T) > 0.
Let P denote any feasible solution and P ′ = P \ T . As f(S) − f(T) > 0, some sets
in S \ T must be in the solution; i.e., P ′ is nonempty. Moreover, f(P ′ ∪ T)− f(T) ≥
f(S)−f(T). Note that, due to the submodularity of f ,

∑
S∈P′(f({S}∪T)−f(T)) ≥

f(P ′∪T)−f(T), and therefore
∑

S∈P′ fT (S) ≥ f(S)−f(T) must hold. This condition
is expressed by the set of constraints (1).

min
∑
S∈S

w(S)x(S)(SSC)

s.t.∑
S �∈T

fT (S)x(S) ≥ f(S) − f(T) for all T ⊆ S,(1)

x(S) ≥ 0 for all S ∈ S.

We show that our analysis of Algorithm Greedy Cover can be extended to prove
a similar approximation guarantee for the submodular set cover problem.

Denote by P = {S1, S2, . . . , Sk} the solution computed by Algorithm Greedy
Cover, and assume that the sets are added to the solution by the algorithm in this
order. For each i, 0 ≤ i ≤ k, let Pi = {S1, S2, . . . , Si} be the solution at the end of
iteration i. Let OPT be an optimal solution. Choose an arbitrary ordering of sets in
OPT such that the sets in P ∩ OPT appear at the beginning, in the same order in
which they are added to the solution by Algorithm Greedy Cover. For each j, let Tj
denote the first j sets in OPT .

Consider some iteration i of the algorithm. Let S ∈ OPT , and assume that S is
the jth set in OPT. Define

ai(S) = f(Tj ∪ Pi) − f(Tj−1 ∪ Pi).

If Si ∈ OPT , then we do not have to charge its cost to sets in OPT. Otherwise,

each set S ∈ OPT \ Pi is charged with w(Si)
f(Pi)−f(Pi−1)

(ai−1(S) − ai(S)).

Observe that the amount charged in iteration i to sets in OPT \ Si is at least
w(Si). This is true, since

COVERING PROBLEMS WITH HARD CAPACITIES 513

∑
S∈OPT\Pi

(ai−1(S) − ai(S)) =
∑
j

(f(Tj ∪ Pi−1) − f(Tj−1 ∪ Pi−1))

−
∑
j

(f(Tj ∪ Pi) − f(Tj−1 ∪ Pi))

= f(OPT ∪ Pi−1) − f(Pi−1) − f(OPT ∪ Pi) + f(Pi)
= f(OPT) − f(OPT) + f(Pi) − f(Pi−1)
= f(Pi) − f(Pi−1).

Observe also that at the beginning of iteration i+1, for each S ∈ OPT \Pi, f({S}) ≥
ai(S). Since f({S}) ≥ f({S} ∪ Pi) − f(Pi) (due to the submodularity of f), it is
enough to show that

f({S} ∪ Pi) − f(Pi) ≥ f(Tj ∪ Pi) − f(Tj−1 ∪ Pi).

Rearranging the sides, this is equivalent to

f({S} ∪ Pi) + f(Tj−1 ∪ Pi) ≥ f(Tj ∪ Pi) + f(Pi),

which holds by the submodularity of f .
Using the same reasoning as in the case of the proof of the set cover with hard

capacities, the total amount charged to any S ∈ OPT is at most w(S)H(|S|), and
the total cost of the solution is bounded by OPT (1 + ln(maxS f({S}))).

6.2. Multiset multicover. An interesting special case of the submodular set
cover problem is the multiset multicover problem. In this problem, the input sets
are actually multisets; i.e., an element e ∈ E can appear in Sj ∈ S more than
once, and the elements have splittable demands. An integer programming formulation
of the multiset multicover problem with unbounded set capacities is the following:
min{wTx | Ax ≥ d, 0 ≤ x ≤ b, x ∈ Z}. The constraints x ≤ b are called multiplicity
constraints, and they generally make covering problems much harder, as the natural
linear programming relaxation has an unbounded integrality gap. Dobson [10] gives
a combinatorial greedy H(max1≤j≤m

∑
1≤i≤n Aij)-approximation algorithm, where

H(t) is the tth harmonic number. This is a logarithmic approximation factor for the
case where A is a {0, 1} matrix (set multicover), but can be as bad as a polynomial
approximation bound in the general case (multiset multicover). Recently, Carr et
al. [5] gave a p-approximation algorithm, where p denotes the maximum number of
variables in any constraint. Their algorithm is based on a linear relaxation in the
spirit of (SSC). Using similar ideas for strengthening the linear program, Kolliopoulos
and Young [21] obtained an O(log n)-approximation.

We can assume again that the multiplicities of the sets are unit, by viewing each
copy of each set as a distinct set. We can then define, for each collection T of input
sets, f(T) to be the maximum number of elements that can be covered by T (with the
capacity constraints). It is not hard to see that f is a nonnegative nondecreasing sub-
modular function, and thus the algorithm of Wolsey and our analysis hold for this case.

Notice that the number of sets now is not necessarily polynomial, as the initial
set multiplicities m(S) for S ∈ S are not necessarily polynomial in the input size.
However, the function f(T) can still be computed in polynomial time. Thus, Al-
gorithm Greedy Cover can be implemented to run in polynomial time, achieving an
approximation ratio of O(log(maxS∈S |S|)).

Acknowledgments. We would like to thank the anonymous referee for pointing
out the reduction in section 4.2.

514 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

REFERENCES

[1] E. Balas and M. W. Padberg, Set partitioning: A survey, SIAM Rev., 18 (1976), pp. 710–760.
[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg, Generalized submodular cover problems and appli-

cations, in Proceedings of the 4th Israel Symposium on Theory of Computing and Systems,
Jerusalem, Israel, 1996, IEEE Computer Society Press, Piscataway, NJ, 1996, pp. 110–118.

[3] R. Bar-Yehuda and S. Even, A local-ratio theorem for approximating the weighted vertex
cover problem, Ann. Discrete Math., 25 (1985), pp. 27–45.

[4] Y. Bartal, M. Charikar, and D. Raz, Approximating min-sum k-clustering in metric spaces,
in Proceedings of 33rd ACM Symposium on Theory of Computing, Heraklion, Crete,
Greece, 2001, ACM, New York, 2001, pp. 11–20.

[5] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips, Strengthening integrality gaps
for capacitated network design and covering problems, in Proceedings of the 11th ACM-
SIAM Symposium on Discrete Algorithms, San Francisco, CA, 2000, SIAM, Philadelphia,
2000, pp. 106–115.

[6] M. Charikar, S. Guha, E. Tardos, and D. Shmoys, A constant-factor approximation algo-
rithm for the k-median problem, in Proceedings of the 31st Annual ACM Symposium on
the Theory of Computing, Atlanta, GA, 1999, ACM, New York, 1999, pp. 1–10.

[7] N. Christofides and S. Korman, A computational survey of methods for the set covering
problem, Management Sci., 21 (1975), pp. 591–599.

[8] J. Chuzhoy and Y. Rabani, Approximating k-median with non-uniform capacities, in Pro-
ceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC,
Canada, 2005, SIAM, Philadelphia, 2005, pp. 952–958.

[9] V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[10] G. Dobson, Worst-case analysis of greedy heuristics for integer programming with non-negative
data, Math. Oper. Res., 7 (1972), pp. 515–531.

[11] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[12] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan, An improved ap-

proximation algorithm for vertex cover with hard capacities, in Proceedings of the 30th In-
ternational Colloquium on Automata, Languages and Programming (ICALP), Eindhoven,
The Netherlands, 2003, Lecture Notes in Comput. Sci. 2719, Springer, New York, 2003,
pp. 164–175.

[13] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan, Dependent rounding in
bipartite graphs, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science, Vancouver, BC, Canada, 2002, IEEE Press, Piscataway, NJ, pp. 323–
332.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman, San Francisco, 1979.

[15] R. S. Garfinkel and G. L. Nemhauser, Optimal set covering: A survey, in Perspectives on
Optimization: A Collection of Expository Articles, A. M. Geofrion, ed., Addison-Wesley,
Reading, MA, 1972, pp. 164–193.

[16] N. Garg, R. Khandekar, and V. Pandit, Improved approximation for universal facility
location, in Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, Van-
couver, BC, Canada, 2005, SIAM, Philadelphia, 2005, pp. 959–960.

[17] S. Guha, R. Hassin, S. Khuller, and E. Or, Capacitated vertex covering with applications,
in Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms, San Francisco,
CA, 2002, SIAM, Philadelphia, 2002, pp. 858–865.

[18] D. S. Hochbaum, Approximation algorithms for the set covering and vertex cover problems,
SIAM J. Comput., 11 (1982), pp. 555–556.

[19] D. S. Hochbaum, ed., Approximation Algorithms for NP-Hard Problems, PWS Publishing,
Toronto, 1996.

[20] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,
9 (1974), pp. 256–278.

[21] S. G. Kolliopoulos and N. E. Young, Tight approximation results for general covering inte-
ger programs, in Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, Las Vegas, NV, 2001, IEEE Press, Piscataway, NJ, pp. 522–528.

[22] L. Lovász, On the ratio of optimal and fractional covers, Discrete Math., 13 (1975), pp. 383–
390.

[23] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
ACM, 41 (1994), pp. 960–981.

COVERING PROBLEMS WITH HARD CAPACITIES 515

[24] M. Mahdian and M. Pál, Universal facility location, in Proceedings of the 11th Annual
European Symposium on Algorithms, Budapest, Hungary, 2003, Lecture Notes in Comput.
Sci. 2832, Springer, New York, 2003, pp. 409–422.

[25] P. B. Mirchandani and R. L. Francis, eds., Discrete Location Theory, Wiley-Interscience,
New York, 1990.

[26] M. W. Padberg, Covering, packing and knapsack problems, Ann. Discrete Math., 4 (1979),
pp. 265–287.

[27] D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for the facility location
problem, in Proceedings of the 29th Annual ACM Symposium on the Theory of Computing,
El Paso, TX, 1997, ACM, New York, 1997, pp. 265–274.

[28] M. Pál, É. Tardos, and T. Wexler, Facility location with nonuniform hard capacities, in
Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, Las
Vegas, NV, 2001, IEEE Press, Piscataway, NJ, pp. 329–338.

[29] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, New York, 2001.
[30] L. A. Wolsey, An analysis of the greedy algorithm for the submodular set covering problem,

Combinatorica, 2 (1982), pp. 385–393.
[31] J. Zhang, B. Chen, and Y. Ye, A multi-exchange local search algorithm for the capacitated

facility location problem, Math. Oper. Res., 30 (2005), pp. 389–403.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 516–542

PROPERTIES OF NP-COMPLETE SETS∗

CHRISTIAN GLAßER† , A. PAVAN‡ , ALAN L. SELMAN§ , AND SAMIK SENGUPTA§

Abstract. We study several properties of sets that are complete for NP. We prove that if
L is an NP-complete set and S �⊇ L is a p-selective sparse set, then L − S is ≤p

m-hard for NP.
We demonstrate the existence of a sparse set S ∈ DTIME(22n) such that for every L ∈ NP −
P, L − S is not ≤p

m-hard for NP. Moreover, we prove for every L ∈ NP − P that there exists a
sparse S ∈ EXP such that L − S is not ≤p

m-hard for NP. Hence, removing sparse information in
P from a complete set leaves the set complete, while removing sparse information in EXP from
a complete set may destroy its completeness. Previously, these properties were known only for
exponential time complexity classes. We use hypotheses about pseudorandom generators and secure
one-way permutations to derive consequences for longstanding open questions about whether NP-
complete sets are immune. For example, assuming that pseudorandom generators and secure one-way
permutations exist, it follows easily that NP-complete sets are not p-immune. Assuming only that
secure one-way permutations exist, we prove that no NP-complete set is DTIME(2n

ε
)-immune. Also,

using these hypotheses we show that no NP-complete set is quasi-polynomial-close to P. We introduce
a strong but reasonable hypothesis and infer from it that disjoint Turing-complete sets for NP are
not closed under union. Our hypothesis asserts the existence of a UP-machine M that accepts 0∗

such that for some 0 < ε < 1, no 2n
ε

time-bounded machine can correctly compute infinitely many
accepting computations of M . We show that if UP ∩ coUP contains DTIME(2n

ε
)-bi-immune sets,

then this hypothesis is true.

Key words. NP-completeness, robustness, immunity, one-way permutations, disjoint unions

AMS subject classification. 68Q15

DOI. 10.1137/S009753970444421X

1. Introduction. This paper continues the long tradition of investigating the
structure of complete sets under various kinds of reductions. Concerning the most
interesting complexity class, NP, almost every question has remained open. While
researchers have always been interested primarily in the structure of complete sets for
NP, for the most part, success, where there has been any, has come from studying the
exponential time classes. In this paper we focus entirely on the complexity class NP.

The first topic we study concerns the question, How robust are complete sets?
Schöning [Sch86] raised the following question: If a small amount of information is
removed from a complete set, does the set remain hard? Tang, Fu, and Liu [TFL93]
proved the existence of a sparse set S such that for every ≤p

m -complete set L for EXP,
L − S is not hard. Their proof depends on the fact that for any exponential time
computable set B and any exponential time complete set A, there exists a length-
increasing, one-one reduction from B to A [Ber76]. We do not know that about NP.
Buhrman, Hoene, and Torenvliet [BHT98] proved that L − S still remains hard for
EXP if S is any p-selective sparse set.

∗Received by the editors June 1, 2004; accepted for publication (in revised form) April 11, 2006;
published electronically July 31, 2006. A preliminary version of this paper appeared in Proceedings
of the 19th IEEE Conference on Computational Complexity, 2004.

http://www.siam.org/journals/sicomp/36-2/44421.html
†Lehrstuhl für Informatik IV, Universität Würzburg, 97074 Würzburg, Germany (glasser@

informatik.uni-wuerzburg.de).
‡Department of Computer Science, Iowa State University, Ames, IA 50011 (pavan@cs.iastate.edu).

The research of this author was supported in part by NSF grants CCR-0344187 and CCF-0430807.
§Department of Computer Science and Engineering, 201 Bell Hall, University at Buffalo, Buffalo,

NY 14260 (selman@cse.buffalo.edu, samik@cse.buffalo.edu). The research of the third author was
partially supported by NSF grant CCR-0307077.

516

PROPERTIES OF NP-COMPLETE SETS 517

Here we prove these results unconditionally for sets that are NP-complete. We
prove that if L is an NP-complete set and S �⊇ L is a p-selective sparse set, then
L − S is ≤p

m -hard for NP. We use the left-set technique of Ogiwara and Watanabe
[OW91] to prove this result, and we use this technique elsewhere in the paper also. We
demonstrate the existence of a sparse set S ∈ DTIME(22n

) such that for every L ∈
NP−P, L−S is not ≤p

m -hard for NP. Moreover, we prove for every L ∈ NP−P that
there exists a sparse S ∈ EXP such that L−S is not ≤p

m -hard for NP. Hence, removing
sparse information in P from a complete set leaves the set complete, while removing
sparse information in EXP from a complete set may destroy its completeness.

In the fourth section of this paper we build on results of Agrawal [Agr02], who
demonstrated that pseudorandom generators can be used to prove structural theorems
on complete degrees. We use hypotheses about pseudorandom generators to answer
the longstanding open question of whether NP-complete sets can be immune. Assum-
ing the existence of pseudorandom generators and secure one-way permutations, we
prove easily that no NP-complete set is p-immune. (This too is a well-known property
of the EXP-complete sets.) Assuming only that secure one-way permutations exist,
we prove that no NP-complete set is DTIME(2n

ε

)-immune. Also, we use this hypoth-
esis to show that no NP-complete set is quasi-polynomial-close to P. It is already
known [Ogi91, Fu93] that no NP-complete set is p-close to a set in P unless P = NP.

The fifth section studies the question of whether the union of disjoint Turing-
complete sets for NP is Turing-complete. Here is the background. If A and B are
two disjoint computably enumerable (c.e.) sets, then A ≤T A ∪B, B ≤T A ∪B, and
it follows that if either A or B is Turing-complete for the c.e. sets, then so is A ∪ B
[Sho76]. The proofs are straightforward: To demonstrate that A ≤T A ∪B, on input
x, ask whether x ∈ A ∪B. If not, then x �∈ A. Otherwise, simultaneously enumerate
A and B until x is output. The proof suggests that these properties may not hold
for ≤p

T -complete sets for NP. In particular Selman [Sel88] raised the question of
whether the union of two disjoint ≤p

T -complete sets for NP is ≤p
T -complete. It is

unlikely that A≤p
TA ∪ B for every two disjoint sets A and B in NP; if this holds,

then NP ∩ coNP = P: Take A ∈ NP ∩ coNP; then A ∈ NP ∩ coNP as well, and
A≤p

T (A ∪A) =⇒ A ∈ P.
First, we will prove that if UEE �= EE, then there exist two disjoint languages A

and B in NP such that A �≤p
TA ∪ B. Second, we introduce the following reasonable

but strong hypothesis: There is a UP-machine M that accepts 0∗ such that for some
0 < ε < 1, no 2n

ε

time-bounded machine can correctly compute infinitely many
accepting computations of M . This hypothesis is similar to hypotheses used in several
earlier papers [FFNR96, HRW97, FPS01, PS01]. We prove, assuming this hypothesis,
that there exist disjoint Turing-complete sets for NP whose union is not Turing-
complete. Also, we show that if UP ∩ coUP contains DTIME(2n

ε

)-bi-immune sets,
then this hypothesis is true. Finally, we make several observations about the question
of whether the union of two disjoint NP-complete sets is NP-complete. It would be
difficult to obtain results about these questions without introducing hypotheses about
complexity classes, because there are oracles relative to which the answers to these
questions are both positive and negative. Proofs that would settle these questions
would not relativize to all oracles.

2. Preliminaries. We use standard notation and assume familiarity with stan-
dard resource-bounded reducibilities. Given a complexity class C and a reducibility
≤r, a set A is ≤r-hard for C if for every set L ∈ C, L ≤r A. The set A is ≤r-complete if,
in addition, A ∈ C. We use the phrase “NP-complete” to mean ≤p

m -complete for NP.

518 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

A set S is sparse if there exists a polynomial p such that for all positive integers
n, ‖S ∩ Σn‖ ≤ p(n). We use polynomial-time invertible pairing functions 〈·, ·〉 :
Σ∗ × Σ∗ → Σ∗.

A set S is p-selective [Sel79] if there is a polynomial-time-computable function
f : Σ∗ × Σ∗ → Σ∗ such that for all words x and y, (i) f(x, y) = x or f(x, y) = y and
(ii) x ∈ A or y ∈ A implies f(x, y) ∈ A.

A set L is immune to a complexity class C, or C-immune, if L is infinite and no
infinite subset of L belongs to C. A set L is bi-immune to a complexity class C, or
C-bi-immune, if both L and L are C-immune.

3. Robustness. In this section we consider the following question: If L is NP-
complete and S is a sparse set, then does L − S remain complete? This question
was studied for exponential time complexity classes by Tang, Fu, and Liu [TFL93]
and by Buhrman, Hoene, and Torenvliet [BHT98]. The basic result [TFL93] is that
there exists a subexponential-time computable sparse set S such that for every ≤p

m -
complete set L for EXP, L − S is not EXP-complete. On the other hand, for any
p-selective sparse set S, L−S still remains hard [BHT98]. The theorems of Tang, Fu,
and Liu depend on the fact that for any exponential-time computable set B and any
exponential-time complete set A, there exists a length-increasing, one-one reduction
from B to A [BH77]. We do not know that about NP. Nevertheless, here we prove
the analogues of these results for NP. Observe that our first result, Theorem 3.1,
holds unconditionally.

Theorem 3.1. Let L be an NP-complete set, and let S be a p-selective sparse set
such that L �⊆ S. Then L− S is ≤p

m -hard for NP.
Proof. Note that L − S �= ∅. If L − S is finite, then L is sparse as well. Since L

is ≤p
m -complete for NP, NP = P [Mah82]. Therefore, L− S is also NP-complete. So

we assume that L− S is infinite in the rest of the proof.
We use the left set technique of Ogiwara and Watanabe [OW91]. Assume that

M is a nondeterministic machine that accepts L. Let Tx be the computation tree of
M on any string x. Without loss of generality, assume that Tx is a complete binary
tree, and let d be the depth of Tx. Given two nodes u and v in Tx, we say that u < v
if the path from the root to u lies to the left of the path from the root to v, and u ≤ v
if either u < v or u lies on the path from the root to v. Let

Left(L) = {〈x, u〉
∣∣ ∃v, u ≤ v, u, v ∈ Tx, an accepting

computation of M on x passes through v}.
Since L is NP-complete and Left(L) is in NP, Left(L)≤p

mL via some f ∈ PF. When
it is understood that v ∈ Tx, we will write v as an abbreviation for 〈x, v〉 and f(v)
as an abbreviation for f(〈x, v〉). Given x of length n, the length of every node of Tx

is bounded by a polynomial in n. Since f is polynomial-time computable, the length
of f(v), where v ∈ Tx, is bounded by p(n) for some polynomial p(·). We call f(v)
the label of v. Since S is sparse, there is a polynomial bound q(n) on the number of
strings in S of length at most p(n). Let g(·, ·) be the selector function for S. Consider
the following total preorder [Tod91] on some Q ⊆ Σ≤p(n):

x ≤g y ⇐⇒ ∃z1, z2, . . . , zm ∈ Q,

g(x, z1) = x, g(z1, z2) = z1, . . . ,

g(zm−1, zm) = zm−1, g(zm, y) = zm.

Observe that if x ≤g y and y ∈ S, then x ∈ S also. Given the selector g, the
strings in Q can be ordered by ≤g in time polynomial in the sum of the lengths of

PROPERTIES OF NP-COMPLETE SETS 519

the strings in Q. Therefore, if ‖Q‖ is polynomial in n, then the strings in Q can be
ordered by ≤g in time polynomial in n as well.

We first make a few simple observations.
Observation 1. If u < v, and w is a descendant of u, then w < v.
Observation 2. Let v be the left most node of Tx at some level. Then

x ∈ L ⇔ v ∈ Left(L) ⇔ f(v) ∈ L.

Observation 3. Let X = {x1, x2, . . . } ⊆ Σ≤p(n) be a set of more than q(n) distinct
strings. Then there exists a procedure that runs in time polynomial in n and outputs
xi /∈ S, i ≤ q(n) + 1.

Proof. Order the first q(n) + 1 strings in X by ≤g and output a highest string
as xi. Since there can be at most q(n) strings of length ≤ p(n) in S, xi cannot be
in S.

We now define a reduction from L to L−S. Before we give the formal algorithm,
we present the idea behind the reduction. At any time during the reduction our
reduction maintains a list of nodes in Tx and a node called special. Given x, we
perform a breadth first search on Tx. If at any level of the search we find two nodes
u and v such that f(u) = f(v), then we do an Ogiwara–Watanabe pruning. If at
any stage more than q(n) nodes remain after the pruning, then we can find the left
most node special such that f(special) is not S. The list contains all the nodes
that are to the left of special. At this point, we would like stop the search and
output f(special). However, it is possible that the rightmost accepting computation
passes through a node in the list and so special is not in Left(L); thus the reduction
is wrong. Thus before we output f(special), we have to verify that the rightmost
accepting computation does not pass through a node in the list. However, it is not
clear that this can be done in polynomial time.

To get around this, we further expand the nodes in the list and do an Ogiwara–
Watanabe pruning again. This process may redefine the node special. We stop
the search when every node in the list is a leaf node. If any of the leaf nodes is an
accepting node, then we know that x is in L, and we output a fixed string not in L−S.
Otherwise, we output f(special) and argue that the rightmost accepting computation
(if it exists) must either pass through special or it lies to the right of it.

Now we give a formal description of the reduction.
On input x, |x| = n, the reduction traverses Tx in stages. During stage k, the

reduction maintains a list listk of nodes in Tx at level k. The reduction procedure
has a variable called “special” which holds some node of Tx. At stage 1, list1

contains the root of Tx, and the value of special is undefined. Now we define stage
k > 1.
Step 1 Let listk−1 = 〈v1, v2, . . . , vt〉.
Step 2 Let u′

1 < u′
2 < · · · < u′

2t be the children of nodes in listk−1. This ordering
is possible since all nodes in listk−1 are at depth k − 1 of the tree Tx, and
therefore u′

1, . . . , u
′
t are at level k. Put all these nodes in listk.

Step 3: Pruning If there exist two nodes u′
i and u′

l, i < l, in listk such that
f(u′

i) = f(u′
l), then remove u′

i, . . . , u
′
l−1 from listk. Now let u1 < · · · < um

be the nodes in listk, where every ui has distinct labels. If m ≤ q(n), go to
the next stage.

Step 4 It must be the case that m > q(n). Therefore, by Observation 3, there must
be some j ≤ q(n) + 1 such that f(uj) /∈ S. Set special = uj .

Step 5 If special is the leftmost node of Tx at level k, then output special and
halt.

520 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

Step 6 Otherwise, place u1, . . . , uj−1 in listk and go to the next stage.
The following algorithm h defines the reduction from L to L− S:

for k = 1 to d
run stage k

if any stage halts and outputs v, then
output f(v)

else /* listd contains some leaf nodes of Tx */
if any of the leaf nodes is an accepting computation

of M on x, then output a predetermined fixed
string w ∈ L− S

else
output f(special)

endif
endif
We prove that the above reduction is correct by the following series of claims.
Claim 3.2. For any k < d, if stage k outputs a string v, then

x ∈ L ⇔ f(v) ∈ L− S.

Proof. If stage k outputs v, then v is the leftmost node of Tx at level k and
f(v) /∈ S. By Observation 2, the claim follows.

From now assume that for no k, stage k halts in Step 5. First we make some
observations.

Observation 4. During stage k ≥ 1, ‖listk‖ ≤ q(n).
Proof. For any stage k, assume that listk−1 has t ≤ q(n) nodes. The number of

nodes in listk before pruning is at most 2t. After the pruning step, every v ∈ listk
has a different label. If there are ≤ q(n) nodes in listk, then the procedure goes to
the next stage. Otherwise, the node uj , where j ≤ q(n) + 1, has a label outside S.
Since we assume that stage k does not halt in Step 5, the procedure goes to stage k
with ‖listk‖ = j − 1 ≤ q(n).

Observation 5. Suppose special = v at the end of stage k. Then for l ≥ k, for
all u ∈ listl, u < v.

Proof. At the end of stage k, let v = special = uj . After Step 6, listk is a
subset of {u1, . . . , uj−1}. Thus for all u ∈ listk, u < v. Note that in any subsequent
stage l > k, the nodes that belong to listl are the descendants of nodes in listk.
By Observation 1, we obtain the proof.

Observation 6. No node that is pruned in Step 3 can be on the path containing
the rightmost accepting computation.

Proof. If x /∈ L, no node in Tx is on the path containing any accepting computa-
tion. Therefore, let us assume that x ∈ L. If two nodes u′

i and u′
l at the same depth

have the identical label w, then f(u′
i) ∈ Left(L) ⇐⇒ f(u′

l) ∈ Left(L). Therefore,
if any u′

k at the same depth is on the path of the rightmost accepting computation,
then either k < i or k ≥ l. Since only the nodes u′

i, . . . , u
′
l−1 are pruned, u′

k cannot
be pruned.

Claim 3.3. Assume that x ∈ L and stage k ≥ 1 does not halt in Step 5. If ∃v ∈
listk that is on the path containing the rightmost accepting computation, then either
∃u ∈ listk+1 that is on the path containing the rightmost accepting computation or
special ∈ Left(L).

Proof. Since there is a node v in listk that is on the path containing the rightmost
accepting computation, let u′

r be the node that is generated at Step 2 of stage k+1 that

PROPERTIES OF NP-COMPLETE SETS 521

is on the path containing the rightmost accepting computation. By Observation 6, u′
r

cannot get pruned in Step 3, and therefore it is in listk at Step 4. Let us denote this
node by ur. If a node uj is assigned special in Step 4, then either j ≤ r, in which
case special ∈ Left(L), or r < j, and therefore ur is in listk+1 after Step 6.

Claim 3.4. If, for every k, stage k does not halt in Step 5, then x ∈ L if and only
if listd contains a leaf node that is an accepting computation or special ∈ Left(L).

Proof. Note that if x is not in L, then no leaf node can be accepting, and no
node of Tx can be in Left(L). Therefore, the if direction is trivial. We show the only
if direction. We prove the following by induction on the number of stages: If x ∈ L,
then after stage k, either the rightmost accepting computation passes through a node
in listk or special ∈ Left(L).

After stage 1, list1 contains the root of the tree. Thus the claim is true after
stage 1. Assume that the claim is true after stage k − 1. Thus either the rightmost
accepting computation passes through a node in listk−1 or special ∈ Left(L). We
consider two cases.

Case 1. The rightmost accepting computation passes through a node in listk−1.
By Claim 3.3, either there is a node in listk that is on the path of the rightmost
accepting computation, or the node that is assigned special during stage k is in
Left(L).

Case 2. special ∈ Left(L). Let s be the node that is currently assigned to
special. It suffices to show that if a node u is assigned to special at stage k,
then u will also be in Left(L). By Observation 5, for every node v ∈ listk−1,
v < s. Since u is a descendant of some node v in listk−1, u < s as well. Therefore,
s ∈ Left(L) =⇒ u ∈ Left(L).

Therefore, after stage k, k ≥ 1, the rightmost accepting computation of M either
passes through a node in listk or special ∈ Left(L). When k = d, this implies that
either the rightmost accepting computation is a node in listd or special ∈ Left(L).
This completes the proof.

The correctness of the reduction now follows.
Claim 3.5. The reduction h(·) is correct, and it runs in polynomial time.
Proof. If the reduction halts at Step 5 during any stage, then by Claim 3.2

x ∈ L ⇔ h(x) ∈ L − S. Assume that no stage halts in Step 5. Assume x ∈ L.
By Claim 3.4, either listd contains an accepting leaf or special ∈ Left(L). If
listd contains an accepting computation, then h(x) = w ∈ L − S. Otherwise, if
special ∈ Left(L), then f(special) ∈ L. However, by the definition of special,
f(special) /∈ S. Therefore, f(special) ∈ L− S. On the other hand, if x /∈ L, then
no node of Tx can be in Left(L), and so, in particular, special /∈ Left(L). Therefore,
h(x) = f(special) /∈ L.

By Observation 4, the number of nodes in listk for any k ≥ 1 is bounded by
q(n). Therefore, the number of nodes visited by the reduction is at most d × 2q(n).
Since d is bounded above by the running time of M on x, the total time required by
the reduction is at most polynomial in n.

Therefore, L≤p
mL− S. So L− S is ≤p

m -hard for NP.
Corollary 3.6. Let L be a ≤p

m -complete set for NP, and let S ∈ P be sparse.
Then L− S is ≤p

m -complete for NP.
Observe that the reduction h that is constructed in the proof of Theorem 3.1

actually satisfies the following property:

x ∈ L =⇒ h(x) ∈ L− S,

x /∈ L =⇒ h(x) ∈ L.

522 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

So for any S′ ⊆ S it holds that L≤p
mL− S′ via h. This shows the following general-

ization of Theorem 3.1.
Theorem 3.7. Let L be a ≤p

m -complete set of NP, and let S be a subset of a
sparse p-selective set. Then L− S is ≤p

m -hard for NP.
In contrast to the theorem we just proved, in Theorem 3.9, we construct a sparse

set S ∈ DTIME(22n

) such that for any set L ∈ NP−P, L−S is not ≤p
m -hard for NP.

Again, as in Theorem 3.1, we cannot assert that L − S ∈ NP. In Corollary 3.10, we
obtain that for every L ∈ NP − P, there is a sparse S ∈ EXP such that L− S is not
≤p

m -hard for NP.
The following lemma shows a collapse to P for a restricted form of truth-table

reduction from SAT to a sublogarithmically dense set. In other words, we show that
if SAT disjunctively reduces to some sublogarithmically dense set where the reduction
machine makes logarithmically many nonadaptive queries, then NP = P. We exploit
this strong consequence in Theorem 3.9.

Lemma 3.8. If there exist f ∈ FP, S ⊆ Σ∗, and a real number α < 1 such that
1. for all n ≥ 0, ‖S≤n‖ ≤ O(logα n) and
2. for all x, f(x) is a set of words such that ‖f(x)‖ ≤ O(log |x|) and

x ∈ SAT ⇔ f(x) ∩ S = ∅,

then P = NP.
Proof. Assume f , S, and α exist. Let

LeftSAT
df
={〈x, z〉

∣∣ formula x has a satisfying

assignment y ≥ z}.

Note that for a formula x with n variables, 〈x, 0n〉 ∈ LeftSAT ⇐⇒ x ∈ SAT. Also,
LeftSAT is in NP. Let us assume that LeftSAT≤p

mSAT via reduction g ∈ PF. Let
h(w)

df
= f(g(w)), and let p(·) be the computation time of h. Therefore, by assumption,

for all w, h(w) is a set of words such that ‖h(w)‖ ≤ O(log |w|) and

w ∈ LeftSAT ⇔ g(w) ∈ SAT ⇔ h(w) ∩ S = ∅.

Therefore, for every S′ ⊆ S, and for all x, y,

〈x, y〉 ∈ LeftSAT =⇒ h(〈x, y〉) ∩ S′ = ∅.

Choose constants c and d such that ‖S≤n‖ ≤ c logα n and ‖h(w)‖ ≤ d log |w|. Be-
low we describe a nondeterministic polynomial-time-bounded algorithm that accepts
SAT. We will see that this algorithm can be simulated in deterministic polynomial
time. The input is a formula x.

1 S′ := ∅
2 n := number of variables in x
3 if 1n satisfies x, then accept x

/* Otherwise, 〈x, 1n〉 /∈ LeftSAT, and so h(〈x, 1n〉) ∩ S �= ∅. */
4 choose some s ∈ h(〈x, 1n〉) nondeterministically
5 S′ := S′ ∪ {s}
6 for i = 1 to c logα p(|x| + n)
7 if h(〈x, 0n〉) ∩ S′ �= ∅, then reject

/* At this point, h(〈x, 0n〉) ∩ S′ = ∅ and h(〈x, 1n〉) ∩ S′ �= ∅. */
8 Use binary search to determine a word y ∈ Σn − {1n}

such that h(〈x, y〉) ∩ S′ = ∅ and h(〈x, y + 1〉) ∩ S′ �= ∅.

PROPERTIES OF NP-COMPLETE SETS 523

9 if y satisfies x, then accept
10 choose some s ∈ h(〈x, y〉) nondeterministically
11 S′ := S′ ∪ {s}
12 increment i
13 reject
We argue that the algorithm runs in nondeterministic polynomial time.

The loop in steps 6–12 runs at most c logα p(|x| + n) times, and the binary search
takes at most O(n) steps for a formula of n variables. Therefore, the running time is
bounded by a polynomial in (n + |x|).

We argue that the algorithm accepts SAT. The algorithm accepts only
if we find a satisfying assignment (step 3 or step 9). So all unsatisfiable formulas
are rejected. We now show that all satisfiable formulas are accepted by at least one
computation path.

Let x be a satisfiable formula; we describe an accepting computation path. On
this path, S′ will always be a subset of S. If x is accepted in step 3, then we are done.
Otherwise, 〈x, 1n〉 /∈ LeftSAT, and therefore h(〈x, 1n〉) ∩ S �= ∅. So in step 4 at least
one computation path chooses some s ∈ S.

Since x ∈ SAT, 〈x, 0n〉 ∈ LeftSAT. Hence h(〈x, 0n〉) ∩ S = ∅. Since S′ ⊆ S, it
follows that h(〈x, 0n〉) ∩ S′ = ∅. Therefore, if x ∈ SAT, the nondeterministic path
that makes the correct choice for s in step 4 cannot reject x in step 7. Now we have

h(〈x, 0n〉) ∩ S′ = ∅ and h(〈x, 1n〉) ∩ S′ �= ∅.

Therefore, there must be some y as required by the algorithm, which can be obtained
by binary search as follows. Initially, the algorithm considers the interval [0n, 1n]
and chooses the middle element 10n−1. If h(〈x, 10n−1〉) ∩ S′ �= ∅, then we proceed
with the interval [0n, 10n−1]. Otherwise, we proceed with the interval [10n−1, 1n]. By
continuing this procedure, we obtain intervals [a, b] of decreasing size such that a < b
and

h(〈x, a〉) ∩ S′ = ∅ and h(〈x, b〉) ∩ S′ �= ∅.

If we accept in step 9, then we are done. Otherwise, we can argue as follows: By
step 8, we have h(〈x, y + 1〉) ∩ S′ �= ∅ and therefore h(〈x, y + 1〉) ∩ S �= ∅. Hence
〈x, y + 1〉 /∈ LeftSAT. Together with the fact that y does not satisfy x in step 9,
we obtain 〈x, y〉 /∈ LeftSAT. Therefore, h(〈x, y〉) ∩ S �= ∅. On the other hand,
h(〈x, y〉) ∩ S′ = ∅. Therefore, the correct nondeterministic path can choose an s ∈
S−S′ and continues with the next iteration of the loop. Along this path, S′ is always
a subset of S ∩ Σ≤p(|x|+n). By assumption,

‖S≤p(|x|+n)‖ ≤ c · logα p(|x| + n).

We enter the loop with ‖S′‖ = 1, and in each iteration we add a new element to
S′. Hence at the beginning of the (c · logα p(|x| + n))th iteration it holds that S′ =
S ∩ Σ≤p(|x|+n). Now consider this iteration at step 8. Elements of h(〈x, y〉) and
elements of h(〈x, y + 1〉) are of length ≤ p(|x| + n). So in this iteration we obtain a
word y such that

h(〈x, y〉) ∩ S = ∅

and

h(〈x, y + 1〉) ∩ S �= ∅.

524 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

It follows that 〈x, y〉 ∈ LeftSAT and 〈x, y+1〉 /∈ LeftSAT. So y is the lexicographically
largest satisfying assignment of x. Therefore, we accept in step 9. It follows that our
algorithm accepts SAT.

We argue that the algorithm can be simulated in deterministic polyno-
mial time. Clearly, each path of the nondeterministic computation is polynomially
bounded. We estimate the total number of paths as follows. Each path has at most

c · logα p(|x| + n) + 1

nondeterministic choices, where α < 1. Each such nondeterministic choice guesses an
s ∈ h(〈x, y〉) for some y ∈ Σn. By assumption, ‖h(〈x, y〉)‖ ≤ d · log(|x| + n). Hence
the total number of paths is

(d · log(|x| + n))c·log
α p(|x|+n)+1

≤ 2O(log log(|x|+n))·O(logα(|x|+n))

≤ 2O(log1−α(|x|+n))·O(logα(|x|+n))

≤ 2O(log(|x|+n))

≤ (|x| + n)O(1).

Hence there is only a polynomial number of nondeterministic paths. Therefore, the
algorithm can be simulated in deterministic polynomial time.

Theorem 3.9. There exists a sparse S ∈ DTIME(22n

) such that for every
L ∈ NP − P, L− S is not ≤p

m -hard for NP.
Proof. Let {Ni}i≥0 be an enumeration of all nondeterministic polynomial-time-

bounded Turing machines such that for all i, the running time of Ni is bounded
by the polynomial pi(n) = ni + i. Similarly, let {fj}j≥0 be an enumeration of all
polynomial-time computable functions such that for all j, the running time of fj is
bounded by the polynomial pj(n) = nj + j. We use a polynomial-time computable
and polynomial-time invertible pairing function 〈·, ·〉 such that r = 〈i, j〉 implies i ≤ r
and j ≤ r.

A requirement is a natural number r. If r = 〈i, j〉, then we interpret this as the
requirement that L(Ni) does not many-one reduce to L(Ni)−S via reduction function
fj .

Let t(m) = 22m

. We describe a decision algorithm for S. Let w be the input and
let n = |w|.

1 if |w| < 4, then reject
2 n := |w|, m := greatest number such that t(m) ≤ n
3 for k = 1 to m
4 Sk := ∅, Lk := ∅
5 for r = 1 to k
6 if r /∈ L1 ∪ L2 ∪ · · · ∪ Lk−1, then
7 determine i and j such that r = 〈i, j〉,
8 for all z ∈ Σ<t(k+2) in increasing lexicographic order
9 y := fj(z)
10 if t(k) ≤ |y| < t(k + 1) and Ni(z) accepts, then
11 Sk := {y}
12 Lk := {r}
13 exit the loops for z and r, and consider next k
14 endif
15 increment z

PROPERTIES OF NP-COMPLETE SETS 525

16 endif
17 increment r
18 increment k
19 accept if and only if Sm = {w}
The algorithm works in stages 1, . . . ,m, where m is the greatest natural number

such that t(m) ≤ n. In stage k, we construct a set Sk such that ‖Sk‖ ≤ 1 and

Sk = {w ∈ S
∣∣ t(k) ≤ |w| < t(k + 1)}.

Hence S can be written as S1 ∪ S2 ∪ · · · . The input w is accepted if and only if it
belongs to Sm. The aim of stage k is to satisfy a requirement r ∈ {1, . . . , k} that has
not been satisfied so far (i.e., r /∈ L1 ∪ · · · ∪ Lk−1). If more than one requirement
is satisfiable, then we choose the smallest one. Requirement r = 〈i, j〉 is satisfied by
placing a string y into Sk and therefore into S such that fj(z) = y for a suitable
z ∈ L(Ni). This makes sure that L(Ni) does not many-one reduce to L(Ni) − S via
reduction fj .

Whenever we refer to (the value of) a program variable without mentioning the
time when we consider this variable, then we mean the value of the variable when
the algorithm stops. Variables Lk represent sets of requirements. If requirement i
is satisfied in stage k, then i is added to the set Lk. The algorithm ensures that
‖Lk‖ ≤ 1 for every k.

We observe that S is sparse. For all inputs of length ≥ t(k) the algorithm
constructs the same sets S1, S2, . . . , Sm and L1, L2, . . . , Lm. Therefore, it is unam-
biguous to refer to Sk and Lk. Moreover, it is immediately clear that any Sk contains
at most one word, and this word, if it exists, has a length that belongs to the interval
[t(k), t(k + 1)). By the definition of t(k), for every n ≥ 4,

t(�log log n�) ≤ n < t(�log log n� + 1).

Hence on input of some word of length n ≥ 4, we have

m = �log log n�(1)

in step 2. So the algorithm computes singletons S1, S2, . . . , Sm such that S≤n ⊆
S1 ∪ S2 ∪ · · · ∪ Sm. It follows that

‖S≤n‖ ≤ �log log n�.(2)

In particular, S is sparse.
We observe that S ∈ DTIME(22n

). Note that in step 10, |z| < t(m + 2) =
t(m)4 ≤ n4 and i ≤ r ≤ m = �log log n�. So a single path of the nondeterministic
computation Ni(z) has length

≤ n4i + i ≤ 2O(log2 n).

Hence the simulation of the complete computation takes

22O(log2 n) · 2O(log2 n) = 22O(log2 n)

steps. Similarly, step 9 takes 2O(log2 n) steps. So the loop at steps 8–15 takes at most

2n
4 · 22O(log2 n)

= 22O(log2 n)

526 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

steps. The loops 5–17 and 3–18 multiply this number of steps at most by factor

m2 ≤ �log log n�2.

Therefore, the overall running time is 22O(log2 n)

. This shows

S ∈ DTIME(22O(log2 n)

) ⊆ DTIME(22n

).

We observe that no L − S is many-one hard. Let L ∈ NP−P and choose a
machine Ni such that L = L(Ni). Assume that L− S is ≤p

m -hard for NP. Therefore,
there exists j such that L≤p

mL− S via reduction function fj . We consider two cases
and show that both cases lead to contradiction. This will complete the proof.

Case 1. Assume there exists an e ≥ 1 such that for all x ∈ L≥e, |fj(x)| <
√

|x|.
Using Lemma 3.8, we show that this implies L ∈ P, thereby obtaining a contradiction.

Consider an arbitrary formula x. Let s0
df
=x, and let sl+1

df
= fj(sl) for l ≥ 0. By

assumption, for all y ∈ L≥e it holds that

y ∈ L ⇐⇒ fj(y) /∈ S ∧ fj(y) ∈ L.(3)

Hence

x ∈ L ⇐⇒ s1 /∈ S ∧ s1 ∈ L.(4)

If |s1| ≥ e, we use equivalence (3) for y = s1. We obtain

s1 ∈ L ⇐⇒ s2 /∈ S ∧ s2 ∈ L.(5)

By equivalences (5) and (4), we have

x ∈ L ⇐⇒ s1 /∈ S ∧ s2 /∈ S ∧ s2 ∈ L.(6)

Now we use equivalence (3) again, this time for y = s2. We proceed in this way until
we reach an sk such that either |sk| < e or |sk| ≥

√
|sk−1|. The following equivalence

holds:

x ∈ L ⇐⇒
k∧

l=1

sl /∈ S ∧ sk ∈ L.(7)

Note that if |sk| < e, then it is easy to verify whether sk belongs to L. So in polynomial
time we can determine a string s which is defined as follows. If sk ∈ L<e, then let s
be a fixed element from S. Otherwise, let s be a fixed element from S. We show

x ∈ L ⇐⇒ {s1, . . . , sk, s} ∩ S = ∅.(8)

“⇒” Assume x ∈ L. Therefore, s1, . . . , sk ∈ L. If |x| < e, then k = 0, s ∈ S,
and we are done. Otherwise, |x| ≥ e and k ≥ 1. If |sk| < e, then, by equivalence (7),
s ∈ S. So from equivalence (7) it follows that {s1, . . . , sk, s} ∩ S = ∅, and we are
done. We show that the remaining case, i.e., |sk| ≥ e, is impossible. Since the
algorithm terminated, it must be the case that |sk| ≥

√
|sk−1|. However, since x ∈ L,

sk ∈ L by equivalence (7). By our assumption, it cannot happen that sk ∈ L≥e and
|sk| ≥

√
|sk−1|. Therefore, |sk| < e.

PROPERTIES OF NP-COMPLETE SETS 527

“⇐” Assume {s1, . . . , sk, s} ∩ S = ∅. Hence s ∈ S and therefore sk ∈ L<e. From
equivalence (7) we obtain x ∈ L. This shows equivalence (8).

For 1 ≤ l ≤ k − 1 it holds that |sl| <
√
|sl−1|. Therefore, k ≤ |x|, and so the

strings s and si can be constructed in polynomial time in |x|. Let g ∈ FP be the
function that on input x computes the set {s1, . . . , sk, s}. So for all x,

x ∈ L ⇔ g(x) ∩ S = ∅.(9)

Observe that for all x,

‖g(x)‖ ≤ �log log |x|� + 1.

By assumption, L − S is many-one hard for NP. So there exists a reduction
function h ∈ FP such that SAT≤p

mL− S via h. By (9), for all x,

x ∈ SAT ⇔ h(x) ∈ L ∧ h(x) /∈ S

⇔ (g(h(x)) ∪ {h(x)}) ∩ S = ∅.

With h′(x)
df
= g(h(x)) ∪ {h(x)} it holds that for all x,

x ∈ SAT ⇔ h′(x) ∩ S = ∅.(10)

Clearly, h′ belongs to FP and for all x,

‖h′(x)‖ ≤ �log log |h(x)|� + 2 ≤ �log log |x|� + c(11)

for a suitable constant c. By (2), (10), and (11), we satisfy the assumptions of
Lemma 3.8 (take h′, S, and α = 1/2). It follows that L ∈ P. This contradicts our
assumption.

Case 2. Assume there exist infinitely many x ∈ L such that |fj(x)| ≥
√

|x|. We
show that in this case L does not many-one reduce to L− S via fj . This will give us
the necessary contradiction.

Recall that L = L(Ni). Let r̄
df
=〈i, j〉. Since every nonempty Lk contains a unique

requirement, we can choose a number m′ ≥ r̄ such that for all k ≥ m′,

Lk ∩ {0, . . . , r̄ − 1} = ∅.(12)

Note that for infinitely many strings x ∈ L, |fj(x)| ≥
√

|x|. Therefore, we can choose
some string z̄ ∈ L such that

√
|z̄| ≥ t(m′)(13)

and

|fj(z̄)| ≥
√

|z̄|.(14)

Let w
df
= fj(z̄) and n

df
= |w|. Let m̄ be such that t(m̄) ≤ n < t(m̄+ 1). By the choice of

z̄, |z̄| < t(m̄ + 2). We will show that if r̄ is not in L1 ∪ · · · ∪ Lm̄−1, then Lm̄ = {r̄}.
Consider the algorithm on input w. By the choice of m̄, t(m̄) ≤ |w| = n < t(m̄+1).

Therefore, by the choice of m in step 2 of the algorithm, m = m̄. Consider step 6
when k = m̄ and r = r̄. We note that as a consequence of (12), for any k ≥ m̄ ≥ m′,
Lk ∩{0, . . . , r̄−1} = ∅. Therefore, the loop (steps 5–17) cannot exit with some r < r̄.
On the other hand, for r̄, the condition in step 6 must be true, since we assumed that

528 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

r̄ /∈ L1 ∪ · · · ∪ Lm̄−1. Therefore, we reach step 7. By the choice of m̄, |z̄| ≤ t(m̄ + 2).
Therefore, either we reach step 9 such that z = z̄ or r̄ is put in Lm̄ with some other
z and Sm̄ = {fj(z)}. If z = z̄, then after step 9, y = fj(z̄) = w and therefore |y| = n.
Therefore, it must hold in step 10 that t(m̄) ≤ |y| < t(m̄+1). Moreover, Ni(z̄) accepts
since z̄ ∈ L. Therefore, we reach steps 11 and 12, where we obtain that Lm̄ = {r̄}.
As a consequence,

r̄ /∈ L1 ∪ · · · ∪ Lm̄−1 =⇒ r̄ ∈ Lm̄.

It follows that r̄ ∈ L1 ∪ L2 ∪ · · · ∪ Lm̄. Let k, 1 ≤ k ≤ m̄, be such that Lk = {r̄}.
Let Sk = {y}. By steps 9 and 10, there exists a z ∈ L such that y = fj(z). From
y ∈ S it follows that y /∈ L− S. Therefore, L does not many-one reduce to L− S via
reduction function fj . This contradicts our assumption.

Corollary 3.10. For every L ∈ NP − P there exists a sparse S ∈ EXP such
that L− S is not ≤p

m -hard for NP.
Proof. Choose i such that L = L(Ni). We recycle the proof of Theorem 3.9. Here

we have to do only the diagonalization against the machine Ni. So we interpret r as
the requirement that L does not many-one reduce to L − S via reduction function
fr. We modify the algorithm in the proof of Theorem 3.9 by replacing step 7 with
“j := r.”

Analogously to the proof of Theorem 3.9 we observe that S is sparse. Because
we modified the algorithm, now S belongs to EXP. This is seen as follows: Again in
step 10,

|z| < t(m + 2) = t(m)4 ≤ n4.

But now i is a constant. So a single path of the nondeterministic computation Ni(z)
now has length ≤ n4i + i. Hence the simulation of the complete computation takes
the following number of steps:

2n
4i+i · (n4i + i) ≤ 2n

O(1)

.

Note that

j = r ≤ m ≤ �log log n�.
So step 9 takes

n4j + j ≤ 2O(log2 n) ≤ 2O(n)

steps. Therefore, the loop at steps 8–15 takes at most

2n
4 · 2nO(1)

= 2n
O(1)

steps. The loops 5–17 and 3–18 multiply this number of steps at most by factor

m2 ≤ �log log n�2.

Therefore, the overall running-time remains 2n
O(1)

. This shows S ∈ EXP.
Analogously to the proof of Theorem 3.9 we argue that L−S is not ≤p

m -hard for
NP. Here we have to define r̄

df
= j in Case 2.

In view of Corollary 3.10 we would like to minimize the complexity of S. For
this it suffices to consider L = SAT: Given a sparse set S such that SAT − S is not
≤p

m -hard for NP, for every L ∈ NP it is easy to describe a sparse set S′ such that
S′≤p

mS and L− S′ is not ≤p
m -hard for NP. Let f ∈ PF be the one-one function that

reduces L to SAT. Then S′ = {x
∣∣ f(x) ∈ S} is sparse and L−S′ reduces to SAT−S

via f . So L− S′ cannot be ≤p
m -hard for NP.

PROPERTIES OF NP-COMPLETE SETS 529

4. Immunity and closeness. Agrawal [Agr02] demonstrated that pseudoran-
dom generators can be used to prove structural theorems on complete degrees of NP.
Here we build on his results and show that hypotheses about pseudorandom gen-
erators and secure one-way permutations answer the longstanding open question of
whether NP-complete sets can be immune. Also, using these hypotheses we show that
no NP-complete set is quasi-polynomial-close to P.

It is well known that no EXP-complete set is p-immune. To see this, consider
L ∈ EXP that is ≤p

m -complete. Then 0∗≤p
mL via some length-increasing reduction f .

Since f is length-increasing, {f(0n)
∣∣n ≥ 0} is an infinite subset of L. However, while

for any EXP-complete set L and any A ∈ EXP, there is a length-increasing reduction
from A to L [BH77], this is not known to hold for NP.

We begin with the following definitions. In particular it is important to distinguish
pseudorandom generators, as defined by Nisan and Wigderson [NW94], for derandom-
ization purposes, from cryptographic pseudorandom generators [Yao82, BM84].

Definition 4.1. A function G = {Gn}n, Gn : Σ=n �→ Σ=m(n), is an s(n)-secure
cryptographic pseudorandom generator (crypto-prg for short) if G is computable in
polynomial time in the input length, m(n) > n and for every δ(·) such that δ(n) < 1,
for every t(·) such that t(n) ≤ δ(n) · s(n), and for every circuit C of size t(n), for all
sufficiently large n,

| Pr
x∈Σ=m(n)

[C(x) = 1] − Pr
y∈Σ=n

[C(Gn(y)) = 1] |≤ δ(n).

Definition 4.2. A function G = {Gn}n, Gn : Σ=l �→ Σ=n, is a pseudorandom
generator (prg for short) if l = O(log n), G is computable in time polynomial in n,
and for any linear-size circuit C,

| Pr
x∈Σ=n

[C(x) = 1] − Pr
y∈Σ=l

[C(Gn(y)) = 1] |≤ 1

n
.

Definition 4.3. A function f = {fn}n, fn : Σ=n �→ Σ=m(n), is s(n)-secure if
for every δ(·) such that δ(n) < 1, for every t(·) such that t(n) ≤ δ(n) · s(n), and for
every nonuniform circuit family {Cn}n of size t(n), for all sufficiently large n,

Pr
x∈Σ=n

[Cn(x) = fn(x)] ≤ 1

2m(n)
+ δ(n).

Hypothesis A. Pseudorandom generators exist.
Hypothesis B. There is a secure one-way permutation. Technically, there is a

permutation π ∈ PF and 0 < ε < 1 such that π−1 is 2n
ε

-secure.
Hypothesis B implies the existence of cryptographic pseudorandom generators

[Yao82]. Agrawal [Agr02] showed that if Hypothesis B holds, then every ≤p
m -complete

set for NP is hard also for one-one, length-increasing, nonuniform reductions. The
following theorem is implicit in the proof of his result.

Theorem 4.4. If Hypotheses A and B hold, then every set A that is ≤p
m -hard

for NP is hard for NP under length-increasing reductions.
By Theorem 4.4, Hypotheses A and B imply that for every NP-complete set A,

there is a length-increasing reduction f from 0∗ to A. This immediately implies that
the set

{f(0n)
∣∣n ≥ 0}

is an infinite subset of A that belongs to P; i.e., A cannot be p-immune.

530 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

Theorem 4.5. If Hypotheses A and B hold, then no ≤p
m -complete set for NP

can be p-immune.
We consider immunity with respect to classes that are larger than P. Similar

questions have been studied for EXP. For example, Homer and Wang [HW94] showed
that EXP-complete sets have dense UP subsets.

Theorem 4.6. Let C ⊆ NP be a complexity class closed under ≤p
m -reductions

such that for some ε > 0, there is a tally set T ∈ C that is not in DTIME(2n
ε

). Then
no ≤p

m -complete set for NP is C-immune.
Corollary 4.7. If there is a tally set in UP that is not in DTIME(2n

ε

), then
no ≤p

m -complete set for NP is UP-immune.
Proof of Theorem 4.6. Let T be a tally set in C that does not belong to DTIME(2n

ε

).
We will show that no NP-complete set is C-immune.

Let L be an NP-complete set, and let k > 0 such that L ∈ DTIME(2n
k

). Let f
be a ≤p

m -reduction from T to L. We claim that the set

X = {f(0n)
∣∣ 0n ∈ T and |f(0n)| > nε/k}

is infinite. Assume otherwise: Then, for all but finitely many n, 0n ∈ T =⇒ |f(0n)| ≤
nε/k. Consider the following algorithm that accepts a finite variation of T : On input
0n, if |f(0n)| ≤ nε/k, then accept 0n if and only if f(0n) ∈ L. Otherwise, reject 0n.

This algorithm takes time at most 2|f(0n)|k ≤ 2(nε/k)k = 2n
ε

. This contradicts the
assumption that T /∈ DTIME(2n

ε

). Therefore, X is infinite. Also, X ⊆ f(T) ⊆ L.
Now we will show that X≤p

mT . Since T belongs to C and C is closed under ≤p
m -

reductions, that will demonstrate that L is not C-immune.
To see that X≤p

mT , we apply the following reduction: On input y, |y| = m,
determine whether f(0i) = y for some i < mk/ε. If there is such an i, then output
the first such 0i. Otherwise, y /∈ X. In this case, output some fixed string not in T .
We need to show that y ∈ X if and only if the output of this reduction belongs to T .
If y ∈ X, then there exists i such that i < mk/ε, 0i ∈ T , and f(0i) = y. Let 0i0 be
the output of the reduction. In this case, y = f(0i) = f(0i0). Now recall that f is a
reduction from T to L. For this reason, 0i ∈ T if and only if 0i0 ∈ T . The converse
case, that y /∈ X, is straightforward.

Agrawal [Agr02] defined a function g ∈ PF to be γ-sparsely many-one on S ⊆
{0, 1}n if

∀x ∈ S, ‖g−1(g(x)) ∩ {0, 1}n‖ ≤ 2n

2nγ .

Here g−1(z) = {x
∣∣ g(x) = z}. The function g is sparsely many-one on S ⊆ {0, 1}n if

it is γ-sparsely many-one on S ⊆ {0, 1}n for some γ > 0.
Given a 2n

ε

-secure one-way permutation, Goldreich and Levin [GL89] construct
a 2n

α

-secure crypto-prg, 0 < α < ε. This crypto-prg G is defined only on strings of
even length; i.e., G is a partial function. However, Agrawal [Agr02] notes that G can
be extended to be total, and the security remains the same. This crypto-prg has a
nice property; namely, it is a one-one function.

Let S be any set in NP and L be any NP-complete language. Let S′ = G(S).

Since S′ is in NP, there is a many-one reduction f from S′ to L. Let h
def
= f ◦ G.

Since G is one-one, h is a many-one reduction from S to L.

Lemma 4.8 (see [Agr02]). For every n, h
def
= f ◦ G is a α/2-sparsely many-one

on S ∩ Σ=n, where α is the security parameter of G.

PROPERTIES OF NP-COMPLETE SETS 531

Lemma 4.9. Let f be a γ-sparsely many-one function on S = 0∗ × Σ∗ ∩ {0, 1}n
for every n, and let l = n2/γ . Then, for sufficiently large n,

‖{w ∈ 0n × Σ=l
∣∣ |f(w)| > n}‖ ≥ 3

4
2l.

Proof. Let Sn = 0n × Σ=l. Every string in Sn has length m = n + l. For every
w ∈ Sn, there are at most 2m

2mγ strings of length m that can map to f(w). Therefore,

‖f(Sn)‖ ≥ 2l/(2m

2mγ). Taking l = n
2
γ , we obtain that at least 3

4 of the strings in Sn

have image of length > n.
Theorem 4.10. If Hypothesis B holds, then for every ε > 0, no ≤p

m -complete set
for NP can be DTIME(2n

ε

)-immune.
Proof. The hypothesis implies the existence of a 2n

ε

-secure one-way permutation.
Let G be the 2n

α

-secure crypto-prg, 0 < α < ε, constructed from this secure one-way
function. Let S = 0∗ ×Σ∗, and let S′ = G(S). Since L is NP-complete S′≤p

mL via f .
Thus S≤p

mL via h = f ◦G. By Lemma 4.8, h is α/2-sparsely many-one on S ∩ Σ=n

for every n. For any n, take l = n4/α. Then, by Lemma 4.9, we know that for large
enough n, at least 3

4 of the strings in 0n × Σ=l map via h to a string of length > n.
Let k = 4

εα . Assume G maps strings of length n to strings of length nr, r > 0. It
is well known that from G we can construct a crypto-prg G′ that expands n bits to nk

bits [Gol01, p. 115]. Thus for any string w of length nε, G′(w) is of length l = n4/α.
Consider the following circuit that on input (0n, y), |y| = l accepts if and only if
|h(0n, y)| > n. This circuit accepts at least 3

4 of the inputs (0n, y), |y| = l, if the input is
chosen according to uniform distribution. Therefore, there must be some w, |w| = nε,
such that this circuit accepts G′(w). Therefore, for this w, |h(0n, G′(w))| > n. Now,
the following DTIME(2n

ε

)-algorithm outputs infinitely many strings of L:
Input 0n

Let m = nε

for w ∈ Σ=m

If |h(0n, G′(w))| > n, then output h(G′(w))

4.1. Closeness. In general, Yesha [Yes83] considered two sets A and B to be
close if the census of their symmetric difference, AΔB, is a slowly increasing function.
For example, A and B are p-close if there is a polynomial p such that for every
n, ‖(AΔB)=n‖ ≤ p(n). Ogiwara [Ogi91] and Fu [Fu93] observed that if A is NP-
complete, then A is not p-close to any set B ∈ P, unless P = NP. Define A and
B to be quasi-polynomial-close if there exists a constant k such that for every n,

‖(AΔB)=n‖ ≤ 2logk n. We show that if Hypothesis B holds, then no NP-complete set
is quasi-polynomial-close to a set in P. We show unconditionally that if L is paddable
and quasi-polynomial-close to a set in P, then L belongs to BPP. As a corollary, if
Hypothesis A holds, then no paddable NP-complete set is quasi-polynomial-close to
a set in P.

We recall the following definitions and recall that all known, natural NP-complete
sets are paddable [BH77].

Definition 4.11. A set A is paddable if there exists p(·, ·), a polynomial-time
computable, polynomial-time invertible (i.e., there is a g ∈ PF such that for all x and
y, g(p(x, y)) = 〈x, y〉) function, such that for all a and x,

a ∈ A ⇐⇒ p(a, x) ∈ A.

Recall that a set A is p-isomorphic to B if there exists f , a polynomial-time
computable, polynomial-time invertible permutation on Σ∗, such that A≤p

mB via f .

532 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

Mahaney and Young [MY85] proved that two paddable sets are many-one equivalent
if and only if they are p-isomorphic.

Theorem 4.12. If L is paddable and quasi-polynomial-close to a set in P, then
L ∈ BPP.

Proof. Assume that L is a paddable set and there is a set B ∈ P such that L is
quasi-polynomial-close to B. Let p(·, ·) be a padding function for L. Given a string
x, |x| = n, consider the following set:

Px = {p(x, y)
∣∣ |x| = |y|}.

Let q be a polynomial such that all strings in Px have length ≤ q(n). Let k be a

constant such that ‖(LΔB)≤q(n)‖ ≤ 2logk n. Note that ‖Px‖ = 2n.

If x ∈ L, then Px ⊆ L. Therefore, at least 2n − 2logk n strings from Px belong to

B. On the other hand, if x /∈ L, then Px ∩ L = ∅, and so at least 2n − 2logk n strings
from Px are not in B. Therefore,

x ∈ L ⇒ Pr
y∈Σn

[p(x, y) ∈ B] ≥ 1 − 2logk n

2n
,

x /∈ L ⇒ Pr
y∈Σn

[p(x, y) ∈ B] ≤ 2logk n

2n
.

Therefore, L ∈ BPP.
Corollary 4.13. If SAT is quasi-polynomial-close to a set in P, then NP =

RP.
This follows immediately from the result of Ko [Ko82] that NP ⊆ BPP implies

NP = RP. Hypothesis A implies that BPP = P. Therefore, we have the following
corollaries.

Corollary 4.14. If Hypothesis A holds, then no paddable set L /∈ P can be
quasi-polynomial-close to any set in P.

Corollary 4.15. If Hypothesis A holds, then no set p-isomorphic to SAT can
be quasi-polynomial-close to any set in P, unless P = NP.

Next we are interested primarily in Theorems 4.16 and 4.18 and their immediate
consequence, Corollary 4.19. Theorem 4.16 follows directly from the statement of
Hypothesis B.

Theorem 4.16. Hypothesis B implies that

NP �⊆
⋃
k>0

DTIME(2logk n).

Proof. Hypothesis B asserts the existence of a 2n
ε

-secure one-way permutation π
for some 0 < ε < 1. No 2n

ε

-size circuit can compute the inverse of π. So the set

B = {〈y, i〉
∣∣ ith bit of π−1(y) = 0}

belongs to NP and cannot have a quasi-polynomial-size family of circuits. However, if

B ∈ DTIME(2logk n) for some k > 0, then B has a family of circuits of size (2logk n)2 <

2log2k n, which is a contradiction.
We require the following proposition, which follows from Homer and Longpré’s

study of Ogiwara–Watanabe pruning [HL94].
Proposition 4.17. If there exists a set S that has a quasi-polynomially bounded

census function and that is ≤p
btt-hard for NP, then NP ⊆

⋃
k>0 DTIME(2logk n).

PROPERTIES OF NP-COMPLETE SETS 533

Theorem 4.18. If NP �⊆
⋃

k>0 DTIME(2logk n), then no NP-complete set is
quasi-polynomial-close to a set in P.

Proof. Assume there exists an NP-complete A that is quasi-polynomial-close
to some B ∈ P. Let S

df
=AΔB. So S has a quasi-polynomially bounded census

function. A≤p
1−ttS, and therefore S is ≤p

1−tt -hard for NP. By Proposition 4.17,

NP ⊆
⋃

k>0 DTIME(2logk n).
As an immediate consequence, we have the following corollary, which has a

stronger consequence than Corollary 4.15.
Corollary 4.19. If Hypothesis B holds, then no NP-complete set is quasi-

polynomial-close to any set in P.
It is interesting to note that Corollary 4.19 has a short proof that does not depend

on Theorems 4.16 and 4.18. We present that proof now.
Proof. We begin as the proof of Theorem 4.16 begins: Hypothesis B asserts the

existence of a 2n
ε

-secure one-way permutation π. No 2n
ε

-size circuit can compute the
inverse of π. So the set B = {〈y, i〉

∣∣ ith bit of π−1(y) = 0} belongs to NP and cannot
have a quasi-polynomial-size family of circuits.

Let us assume that L is an NP-complete set such that there is some set S ∈ P and

some k > 0 such that for every n, ‖LΔS‖ ≤ 2logk n. This implies that L ∈ P/(2logk n),
where the advice for any length n is the set of strings in LΔS. On an input x, accept
x if and only if x ∈ S and x is not in the advice set or x /∈ S and x belong to the
advice set.

Therefore, L has a family of quasi-polynomial-size circuits. Since L is NP-
complete, it follows that every set in NP has a quasi-polynomial-size family of circuits.
By the above discussion, this contradicts Hypothesis B.

Finally, we state another consequence of Theorem 4.18, which has the same con-
clusion as Corollary 4.19. Buhrman and Homer [BH92] proved that NP-complete sets
do not have circuits of quasi-polynomial size unless the exponential hierarchy collapses
to NEXPNP, the second level.

Corollary 4.20. If the exponential hierarchy does not collapse to its second
level, then no NP-complete set is quasi-polynomial-close to any set in P.

5. Disjoint pairs. Recall that if NP ∩ coNP �= P, then there exist disjoint sets
A and B in NP such that A �≤p

TA ∪B. Our first result derives the same consequence
under the assumption that UEE �= EE.

Theorem 5.1. If UEE �= EE, then there exist two disjoint sets A and B in UP
such that A �≤p

TA ∪B.
Proof. Beigel et al. [BBFG91] showed that if NEE �= EE, then there exists a

language in NP − P for which search does not reduce to decision. Their proof also
shows that if UEE �= EE, then there exists a language S in UP − P for which search
does not reduce to decision. Let M be an unambiguous Turing machine that accepts
S, and for every word x ∈ S, let ax be the unique accepting computation of M on x.
Let p be a polynomial such that for all x ∈ S, |ax| = p(|x|). Define

A = {〈x, y〉
∣∣x ∈ S, |y| = p(|x|), and y ≤ ax}

and

B = {〈x, y〉
∣∣x ∈ S, |y| = p(|x|), and y > ax}.

Both A and B belong to UP and are disjoint. Let

A ∪B = S′ = {〈x, y〉
∣∣x ∈ S and |y| = p(|x|)}.

534 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

Note that S′ is many-one reducible to S. Now assume A≤p
TS′. Since S′ is many-one

reducible to S, it follows that A≤p
TS. However, we can compute the witness ax for

x ∈ S by using a binary search algorithm with oracle A. Therefore, replacing A with
S, we see that search reduces to decision for S, contradicting our choice of S.

Next we study the question of whether there exist two disjoint Turing complete
sets for NP whose union is not Turing complete. We consider the following hypothesis.

UP-machine hypothesis. There is a UP-machine M that accepts 0∗ such that for
some 0 < ε < 1, no 2n

ε

time-bounded machine can correctly compute infinitely many
accepting computations of M .

The UP-machine hypothesis and its variant, the NP-machine hypothesis (obtained
by replacing the UP-machine with an NP-machine), have been studied previously and
shown to have several believable consequences. For example, Pavan and Selman [PS02]
showed that the UP-machine hypothesis implies the existence of a Turing complete
language for NP that is not truth-table complete, and the NP-machine hypothesis
implies the existence of a Turing complete language for NP that is not many-one
complete. Hitchcock and Pavan [HP04] showed that the NP-machine hypothesis im-
plies AM = NP, BPPNP = PNP, and NEXP �⊆ P/poly. Hemaspaandra, Rothe, and
Wechsung [HRW97] showed several equivalent characterizations of variants of the NP-
and UP-machine hypotheses. Fenner et al. [FFNR96] studied the infinite-often version
of the NP-machine hypothesis.

Hitchcock and Pavan showed that if UE ∩ coUE is not included in DTIME(22εn

)
infinitely often, then the UP-machine hypothesis holds. They also related this hy-
pothesis to the question of UE ∩ coUE having high circuit complexity: Let K be the
standard complete set for EXP. If UE ∩ coUE does not have K-oracle circuits of size
2εn infinitely often, then the UP-machine hypothesis holds. They also showed that
these hypotheses are weaker than some hypotheses used in the context of uniform
derandomization.

We show that if UP ∩ coUP has bi-immune languages, then the UP-machine
hypothesis holds.

Theorem 5.2. If there is a DTIME(2n
ε

)-bi-immune language in UP ∩ coUP,
then the UP-machine hypothesis is true.

Proof. Let L ∈ UP ∩ coUP be the DTIME(2n
ε

)-bi-immune set, and let N and
N ′ be the UP-machines for L and L. Consider the following machine M that ac-
cepts 0∗: On input 0n, M guesses an accepting computation of N and of N ′ on
0n, and accept 0n if either guess is right. Note that for every 0n, exactly one
of the guesses will be correct, and therefore L(M) = 0∗. If there is a 2n

ε

time-
bounded machine T that can correctly compute infinitely many accepting computa-
tion of M , then either X = {0i

∣∣T (0i) outputs an accepting computation of N} or

X ′ = {0i
∣∣T (0i) outputs an accepting computation of N ′} is an infinite subset of L

or L, contradicting the bi-immunity of L.
Theorem 5.3. If the UP-machine hypothesis is true, then there exist two disjoint

Turing complete sets for NP whose union is not Turing complete.
Proof. Let an be the accepting computation of M on 0n. Let p(n) be the poly-

nomial that bounds |an|. Note that a deterministic machine can verify in polynomial
time whether a string of length p(n) is an accepting path of M . Consider the following
sets:

A = {〈x, am + 1〉
∣∣ |x| = n, x ∈ SAT,m = (2n)1/ε}

⊕{〈0n, i〉
∣∣ i ≤ p(n), bit i of an = 1}

PROPERTIES OF NP-COMPLETE SETS 535

and

B = {〈x, am − 1〉
∣∣ |x| = n, x ∈ SAT,m = (2n)1/ε}

⊕{〈0n, i〉
∣∣ i ≤ p(n), bit i of an = 0}.

It is easy to see that both A and B are Turing-complete for NP. They can be
made disjoint by choosing an appropriate pairing function. Note that

A ∪B = {〈x, a〉
∣∣ |x| = n, x ∈ SAT, a = am − 1 or

am + 1,m = (2n)1/ε} ⊕ {〈0n, i〉
∣∣ i ≤ p(n)}.

Assume that A ∪ B is Turing complete for NP. Since the set {〈0n, i〉
∣∣ i ≤ p(n)}

is in P, the following set is Turing complete:

C = {〈x, a〉
∣∣ |x| = n, x ∈ SAT, a = am − 1 or am + 1,

m = (2n)1/ε}.

Consider the set

S = {〈0n, i〉
∣∣ bit i of an = 1}.

Since S ∈ NP, S≤p
TC via some oracle Turing machine U .

We describe the following procedure A:
1. input 0n.
2. Simulate U on strings 〈0n, i〉, where 1 ≤ i ≤ p(n).
3. Let q = 〈x, y〉 be a query that is generated. If y �= at + 1 or y �= at − 1 for

some t, then continue the simulation with answer “No.”
4. Else, q = 〈x, y〉, |x| = tε/2, and y = at + 1 or y = at − 1.
5. If t ≥ nε, then output “Unsuccessful,” print at, and Halt.

6. Otherwise, check whether x ∈ SAT; this takes at most 2|x| ≤ 2n
ε2/2 time.

Answer the query appropriately and continue the simulation of U .
Now we consider two cases.
Claim 5.4. If A(0n) does not output “Unsuccessful” for infinitely many n, then

there is a 2n
ε

-time bounded machine that correctly outputs infinitely many accepting
computations of M .

Proof. Assume A(0n) does not output “Unsuccessful.” This implies that A is
able to decide membership of 〈0n, i〉, 1 ≤ i ≤ p(n), in S. Therefore, A can compute
an. The most expensive step of the above procedure is step 6, where A decides the
membership of x in SAT. However, this occurs only if |x| ≤ nε2/2 and hence takes at

most 2n
ε2/2 time. Thus the total time is bounded by O(p(n) × q(n) × 2n

ε2/2), where
q(n) is the running time of U on 〈0n, i〉. Since ε < 1, this is bounded by 2n

ε

.
Claim 5.5. If A(0n) outputs “Unsuccessful” for all but finitely many n, then there

is a 2n
ε

-time bounded machine that outputs infinitely many accepting computations of
M .

Proof. If A(0n) is unsuccessful, then it outputs a string at such that t ≥ nε.
Hence, if A(0n) is unsuccessful for all but finitely many strings, then for infinitely
many t there exists an n, where n ≤ t1/ε, and A(0n) outputs at. Thus the following
procedure computes infinitely many accepting computations of M :

536 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

input 0t

for i = 1 to t1/ε do
if A(0j) outputs at

output at and halt.
endif

end for

Note that A(0i) runs in time O(p(i) × q(i) × 2i
ε2/2). Thus the total running time of

the above procedure is O(2t
ε

).
Claims 5.4 and 5.5 show that if C is Turing complete for NP, then there is a 2n

ε

-
time bounded Turing machine that computes infinitely many accepting computations
of M . This contradicts the UP-machine hypothesis, and therefore A ∪ B cannot be
Turing complete for NP.

5.1. Many-one complete languages. Here we consider the analogous ques-
tions for many-one reductions. We first show under two different hypotheses that
there exist disjoint sets A and B in NP such that A �≤p

mA ∪ B. Also we study the
question for NP-complete sets. One of our results will show a relation between our
question and propositional proof systems. We refer the reader to Glasser et al. [GSS04]
for definitions about proof systems and reductions between disjoint NP-pairs.

Theorem 5.6. If P �= NP∩ coNP, then there exist disjoint A,B ∈ NP such that
1. A and B are many-one equivalent and
2. A �≤p

mA ∪B.
Proof. Let b ∈ {0, 1}, and let L ∈ NP ∩ coNP − P. Define

A = {bw
∣∣ b = χL(w)}

and

B = {bw
∣∣ b �= χL(w)}.

Both A and B belong to NP∩coNP−P. Note that A∪B = {0, 1}◦Σ∗. However, note
that A≤p

mB via f(bw) = b̄w, and the same reduction reduces B to A. Also note that
w → 1w reduces L to A, and hence A cannot be in P. Therefore, A �≤p

mA ∪B.
Theorem 5.7. If UE �= E, then there exist disjoint sets A and B in NP such

that A �≤p
mA ∪B.

Proof. Hemaspaandra et al. [HNOS96] showed that if NE �= E, then there exists
a language S in NP for which search does not reduce to decision nonadaptively.
Essentially the same proof shows that if UE �= E, then there exists a language S in
UP for which search does not reduce to decision nonadaptively. Since S ∈ UP, for
each x ∈ S, there is a unique witness vx, where |vx| = p(|x|), for some polynomial p.
Define

A = {〈x, i〉
∣∣x ∈ S, i ≤ p(|x|), and the ith bit of the

witness vx of x is 0}

and

B = {〈x, i〉
∣∣x ∈ S, i ≤ p(|x|), and the ith bit of the

witness vx of x is 1}.

It is clear that both A and B are in NP and are disjoint. Then

A ∪B = S′ = {〈x, i〉
∣∣x ∈ S, i ≤ p(|x|)}.

PROPERTIES OF NP-COMPLETE SETS 537

Observe that S′≤p
mS. Assume A≤p

mS′; then A≤p
mS. Therefore, we can compute

the ith bit of the witness of x by making one query to S. This implies that search
nonadaptively reduces to decision for S, which is a contradiction.

Two disjoint sets A and B are P-separable if there is a set S ∈ P such that
A ⊆ S ⊆ B. Otherwise, they are P-inseparable. Let us say that (A,B) is a disjoint
NP-pair if A and B are disjoint sets that belong to NP. If (A,B) is a disjoint NP-pair
such that A and B are P-separable, then A≤p

mA ∪ B follows easily: On input x, the
reduction outputs x if x ∈ S and outputs some fixed string w /∈ A ∪B if x /∈ S. This
observation might lead one to conjecture that A ∪B is not ≤p

m -complete if A and B
are disjoint, P-inseparable, ≤p

m -complete NP sets. The following theorem shows that
this would be false, assuming P �= UP.

Theorem 5.8. If P �= UP, then there exist disjoint NP-complete sets A and B
such that

1. (A,B) is P-inseparable and
2. A ∪B is many-one complete for NP.

Proof. Under the assumption that P �= UP, Grollmann and Selman [GS88] con-
structed a P-inseparable disjoint NP-pair (A′, B′) such that A′ and B′ are NP com-
plete. Let

A
df
= 0A′ ∪ 1SAT

and

B
df
= 0B′.

Therefore, A ∩ B = ∅. Also, SAT≤p
mA ∪ B via f(φ) = 1φ. Therefore, A ∪ B is NP

complete. If (A,B) is P-separable, then so is (A′, B′).
Similar arguments show that in Theorem 5.8, we can use hypothesis P �= NP ∩

coNP instead of P �= UP: If P �= NP ∩ coNP, then there exist sets A and B with the
same properties as in Theorem 5.8.

We learn from the next theorem that if there exist disjoint NP-complete sets whose
union is not NP-complete, then this happens already for paddable NP-complete sets.

Theorem 5.9. The following are equivalent:
1. There exist an NP-complete set A and a set B ∈ NP such that A ∩ B = ∅

and A ∪B is not NP-complete.
2. There exist disjoint, NP-complete sets A and B such that A ∪ B is not NP-

complete.
3. There exist paddable, disjoint, NP-complete sets A and B such that A∪B is

not NP-complete.
4. For every paddable NP-complete set A, there is a paddable NP-complete set

B such that A∩B = ∅ and A∪B is not NP-complete. Furthermore, there is
a polynomial-time-computable permutation π on Σ∗ such that

a. for all x, π(π(x)) = x and
b. A≤p

mB and B≤p
mA, both via π.

5. For every NP-complete set A, there is a set B ∈ NP such that A∩B = ∅ and
A ∪B is not NP-complete.

By Theorem 5.9, if there exist disjoint, NP-complete sets whose union is not
complete, then there is a set B in NP that is disjoint from SAT such that SAT ∪ B
is not NP-complete. Moreover, in that case, there exists such a set B so that B is
p-isomorphic to SAT. It is even the case that SAT and B are ≤p

m -reducible to one
another via the same polynomial-time computable permutation.

538 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

Proof. 1 ⇒ 2: Let A′ df
= 0A∪ 1B and B′ df

= 1A∪ 0B. Since A is NP-complete, both
sets A′ and B′ are NP-complete. However, A′ ∪ B′ = {0, 1} · (A ∪ B), and hence is
not NP-complete.

2 ⇒ 3: Choose A and B according to item 2. Let A′ df
=A× Σ∗ and B′ df

=B × Σ∗.
A′ and B′ are disjoint, paddable, and NP-complete. A′ ∪B′ = (A ∪B) × Σ∗. Hence
A′ ∪B′≤p

mA ∪B, and therefore A′ ∪B′ is not NP-complete.
3 ⇒ 4: Choose A and B according to item 3. We may assume that there exists a

polynomial-time computable permutation π on Σ∗ such that
• for all x, π(π(x)) = x and
• A≤p

mB and B≤p
mA, both via π.

Otherwise, we use 0A∪1B and 1A∪0B instead of A and B; and π is the permutation
on Σ∗ that flips the first bit.

Let A′ be any paddable NP-complete set. So A′ and A are paddable and many-one
equivalent. Therefore, A′ and A are p-isomorphic; i.e., there exists f , a polynomial-
time computable, polynomial-time invertible permutation on Σ∗, such that A′≤p

mA
via f .

Let B′ df
= f−1(B). B′≤p

mB via f and, therefore B′ and B are p-isomorphic. It
follows that B′ is paddable and NP-complete. A′∩B′ = ∅, since A∩B = ∅. Moreover,
A′∪B′≤p

mA∪B via f , and hence A′∪B′ is not NP-complete. Let π′(x)
df
= f−1(π(f(x))).

So π′ is a polynomial-time computable permutation on Σ∗. For all x,

π′(π′(x)) = f−1(π(f(f−1(π(f(x)))))) = x.

Moreover, for all x,

x ∈ A′ ⇐⇒ f(x) ∈ A ⇐⇒ π(f(x)) ∈ B ⇐⇒ π′(x) ∈ B′.

Therefore, A′≤p
mB′ via π′, and analogously, B′≤p

mA′ via π′.
4 ⇒ 1: The proof follows immediately, since SAT is paddable and NP-complete.
1 ⇒ 5: Choose A and B according to item 1, and let A′ be an arbitrary NP-

complete set. Let f ∈ PF such that A′≤p
mA via f . B′ df

={x
∣∣ f(x) ∈ B}. Clearly,

B′ ∈ NP and A′ ∩B′ = ∅, since A ∩B = ∅. For all x,

x ∈ A′ ∪B′ ⇔ f(x) ∈ A ∨ f(x) ∈ B ⇔ f(x) ∈ A ∪B.

So A′ ∪B′≤p
mA ∪B via f and, therefore A′ ∪B′ is not NP-complete.

5 ⇒ 1: The proof is trivial.
Next we state relations between our question and propositional proof systems

[CR79]. The recent paper of Glasser et al. [GSSZ03] contains definitions of the relevant
concepts: propositional proof systems (pps), optimal pps for a pps f , the canonical
disjoint NP-pair (SAT∗,REFf) of f , and reductions between disjoint NP-pairs. If a
propositional proof system f is optimal, then Razborov [Raz94] has shown that the
canonical disjoint NP-pair of f is ≤pp

m -complete. Therefore, it is natural to ask, for
any proof system f , whether the union SAT∗∪REFf of the canonical pair is complete
for NP. However, this always holds. It holds for trivial reasons, because SAT reduces
to SAT∗ ∪ REFf by mapping every x to (x, ε). Since x does not have a proof of size
0, we never map to REFf . However, x ∈ SAT ⇔ (x, ε) ∈ SAT∗. Nevertheless, it is
interesting to inquire, as we do in the following theorem, whether some perturbation
of the canonical proof system might yield disjoint sets in NP whose union is not
complete.

PROPERTIES OF NP-COMPLETE SETS 539

Theorem 5.10. Assume P �= NP and there exist disjoint sets A and B in NP
such that A is NP-complete but A∪B is not NP-complete. Then there exists a pps f
and a set X ∈ P such that

1. SAT∗ ∩X is NP-complete and
2. (SAT∗ ∩X) ∪ (REFf ∩X) is not NP-complete.

Proof. If NP = coNP, then SAT has a polynomially bounded pps f . Let p be the
bound, and let X

df
={(x, y)

∣∣ y = 0p(|x|)}. Clearly, SAT∗ ∩X is NP-complete. Observe
that

(SAT∗ ∩X) ∪ (REFf ∩X) = X.

Since the latter set is in P and P �= NP, it cannot be NP-complete. So in this case
we are done.

From now on, let us assume that NP �= coNP. By Theorem 5.9, there exists
B′ ∈ NP such that B′ ⊆ SAT and SAT∪B′ is not NP-complete. Let C ∈ P and p be
a polynomial such that for all x,

x ∈ B′ ⇐⇒ ∃y ∈ Σp(|x|)[(x, y) ∈ C].

Choose a polynomial-time-computable, polynomial-time-invertible pairing function
〈·, ·〉 such that for all x and y, |〈x, y〉| = 2|xy|. Define the following pps:

f(z)
df
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x if z = 〈x, y〉, |y| = p(|x|), and (x, y) ∈ C,

x if z =
〈
x, 022|x|〉

and x ∈ SAT,

false otherwise.

Observe that f is a pps. Define

X
df
={(x, 0m)

∣∣m = 2(|x| + p(|x|))}.

X ∈ P. Let SAT′ df
= SAT∗ ∩X and REF′ df

= REFf ∩X. SAT′ ∈ NP and REF′ ∈ NP.
Moreover, SAT′ is NP-complete.

It remains to show that SAT′ ∪ REF′ is not NP-complete. Let α be a fixed
element in SAT ∪B′. (Such an element exists, because otherwise NP = coNP.) We
show SAT′ ∪ REF′≤p

mSAT ∪B′ via the following reduction function:

h(x, y)
df
=

⎧⎨
⎩

x if (x, y) ∈ X,

α otherwise.

Assume (x, y) ∈ SAT′ ∪ REF′. Hence (x, y) ∈ X and therefore y = 02(|x|+p(|x|))

and h(x, y) = x. If (x, y) ∈ SAT′, then h(x, y) = x ∈ SAT. If (x, y) ∈ REF′, then
there exists z ∈ Σ≤2(|x|+p(|x|)) such that f(z) = x. By the definition of f , there
exists z ∈ Σ2(|x|+p(|x|)) such that z = 〈x, y〉, |y| = p(|x|), and (x, y) ∈ C. Hence
h(x, y) = x ∈ B′.

Now assume (x, y) /∈ SAT′∪REF′. If (x, y) /∈ X, then h(x, y) = α /∈ SAT∪B′, and
we are done. Otherwise, (x, y) ∈ X. First, h(x, y) = x /∈ SAT, since (x, y) /∈ SAT′.
Second, if x ∈ B′, then there exists y ∈ Σp(|x|) such that (x, y) ∈ C. Therefore, if
x ∈ B′, then there exists z ∈ Σ≤2(|x|+p(|x|)) such that f(z) = x. The latter is not
possible, since (x, y) /∈ REF′. It follows that h(x, y) = x /∈ B′.

540 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

This shows SAT′ ∪ REF′≤p
mSAT ∪ B′ via h. Hence, SAT′ ∪ REF′ is not NP-

complete.
In Theorem 5.11 we show that if there are sets A and B belonging to NP such

that A∩B = ∅ and A∪B is not NP-complete, then (A,B) cannot be a ≤pp
sm -complete

disjoint NP-pair.
Theorem 5.11. If (A,B) is a ≤pp

sm -complete disjoint NP-pair, then A, B, and
A ∪B are NP-complete.

Proof. Since the disjoint NP-pair (SAT, {z∧z̄}) ≤pp
sm -reduces to (A,B), SAT≤p

mA;
i.e., A is NP-complete. Similarly, B is NP-complete as well. Assume that (SAT, {z ∧
z̄}) ≤pp

sm -reduces to (A,B) via some reduction function f . Let

f ′(x)
df
=

⎧⎨
⎩

f(x) if x �= z ∧ z̄,

f(y ∧ z ∧ z̄) if x = z ∧ z̄.

We obtain f ′(SAT) ⊆ A ∪ B and f ′(SAT) ⊆ A ∪B. Hence A ∪ B is NP-
complete.

According to the comments after Theorem 5.8, the converse of Theorem 5.11
does not hold if either P �= UP or P �= NP∩ coNP. Since we know that there exists a
≤pp

sm -complete disjoint NP-pair if and only if there is a ≤pp
m -complete disjoint NP-pair

[GSS04], we obtain the following corollary.
Corollary 5.12. If ≤pp

m -complete disjoint NP-pairs exist, then there is a ≤pp
m -

complete disjoint NP-pair such that both components and their union are NP-complete.

5.2. Relativizations. We have been considering the following questions:
1. Do there exist disjoint sets A and B in NP such that both A and B are

≤p
T -complete but A ∪B is not ≤p

T -complete?
2. Do there exist disjoint sets A and B in NP such that both A and B are

NP-complete but A ∪B is not NP-complete?
We observe here that there exist oracles relative to which both of these questions

have both “yes” and “no” answers. This implies that resolving these questions would
require nonrelativizable techniques.

Proposition 5.13. If the union of every two disjoint ≤p
T -complete sets for NP

is ≤p
T -complete for NP, then P �= NP =⇒ NP �= coNP.
Proof. Let us assume that NP = coNP. Then SAT ∪ SAT = Σ∗, which is ≤p

T -
complete if and only if P = NP.

Therefore, relative to an oracle for which P �= NP = coNP holds [BGS75], the
answer to question 1 is “yes.” Also, it is obvious that relative to an oracle for which
P = NP, the answer to this question is “no” [BGS75].

Now we consider question 2.
Proposition 5.14. If the union of every two disjoint NP-complete sets is NP-

complete, then NP �= coNP.
Therefore, an oracle relative to which NP = coNP holds will answer “yes” to

question 2. We learned already that if A and B are disjoint, NP-complete, P-separable
sets, then A∪B is NP-complete. Homer and Selman [HS92] construct an oracle relative
to which all disjoint NP-pairs are P-separable, yet P �= NP. Therefore, relative to this
oracle, the answer to question 2 is “no.” Indeed, relative to this oracle, the answer to
question 1 is “no” also.

Acknowledgments. The authors are appreciative of enlightening conversation
with M. Agrawal. The authors thank H. Buhrman for informing them of his work on

PROPERTIES OF NP-COMPLETE SETS 541

quasi-polynomial density and thank M. Ogiwara for informing them of his results on
polynomial closeness. Also, we received helpful suggestions from L. Hemaspaandra.

REFERENCES

[Agr02] M. Agrawal, Pseudo-random generators and structure of complete degrees, in Proceed-
ings of the 17th IEEE Conference on Computational Complexity, IEEE Computer
Society Press, Los Alamitos, CA, 2002, pp. 139–147.

[BBFG91] R. Beigel, M. Bellare, J. Feigenbaum, and S. Goldwasser, Languages that are
easier than their proofs, in Proceedings of the 32nd Annual Symposium on Foun-
dations of Computer Science, 1991, pp. 19–28.

[Ber76] L. Berman, On the structure of complete sets: Almost everywhere complexity and in-
finitely often speedup, in Proceedings of the 17th IEEE Symposium on Foundations
of Computing, IEEE Computer Society Press, Los Alamitos, CA, 1976, pp. 76–80.

[BGS75] T. Baker, J. Gill, and R. Solovay, Relativizations of the P =?NP question, SIAM
J. Comput., 4 (1975), pp. 431–442.

[BH77] L. Berman and J. Hartmanis, On isomorphisms and density of NP and other complete
sets, SIAM J. Comput., 6 (1977), pp. 305–322.

[BH92] H. Buhrman and S. Homer, Superpolynomial circuits, almost sparse oracles, and
the exponential hierarchy, in Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Sci. 652, Springer-Verlag, Berlin,
1992, pp. 116–127.

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet, Splittings, robustness, and structure of
complete sets, SIAM J. Comput., 27 (1998), pp. 637–653.

[BM84] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[CR79] S. Cook and R. Reckhow, The relative efficiency of propositional proof systems, J.
Symbolic Logic, 44 (1979), pp. 36–50.

[FFNR96] S. Fenner, L. Fortnow, A. Naik, and J. Rogers, On inverting onto functions, in
Proceedings of the 11th Conference on Computational Complexity, IEEE Computer
Society Press, Los Alamitos, CA, 1996, pp. 213–223.

[FPS01] L. Fortnow, A. Pavan, and A. Selman, Distributionally hard languages, Theory
Comput. Syst., 34 (2001), pp. 245–261.

[Fu93] B. Fu, On lower bounds of the closeness between complexity classes, Math. Systems
Theory, 26 (1993), pp. 187–202.

[GL89] O. Goldreich and L. Levin, A hardcore predicate for all one-way functions, in Pro-
ceedings of the 21st Annual ACM Sympositum on Theory of Computing, ACM,
New York, 1989, pp. 25–32.

[Gol01] O. Goldreich, Foundations of Cryptography–Volume 1, Cambridge University Press,
New York, 2001.

[GS88] J. Grollmann and A. L. Selman, Complexity measures for public-key cryptosystems,
SIAM J. Comput., 17 (1988), pp. 309–335.

[GSS04] C. Glaßer, A. Selman, and S. Sengupta, Reductions between disjoint NP-pairs,
Inform. and Comput., 200 (2005), pp. 247–267.

[GSSZ03] C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang, Disjoint NP-pairs, SIAM J.
Comput., 33 (2004), pp. 1369–1416.

[HL94] S. Homer and L. Longpré, On reductions of np sets to sparse sets, J. Comput. System
Sci., 48 (1994), pp. 324–336.

[HNOS96] E. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman, P-selective sets and re-
ducing search to decision vs. self-reducibility, J. Comput. System Sci., 53 (1996),
pp. 194–209.

[HP04] J. Hitchcock and A. Pavan, Hardness hypotheses, derandomization, and circuit com-
plexity, in Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Comput. Sci. 3328, Springer-Verlag, Berlin, 2004, pp. 184–197.

[HRW97] L. Hemaspaandra, J. Rothe, and G. Wechsung, Easy sets and hard certificate
schemes, Acta Inform., 34 (1997), pp. 859–879.

[HS92] S. Homer and A. Selman, Oracles for structural properties: The isomorphism problem
and public-key cryptography, J. Comput. System Sci., 44 (1992), pp. 287–301.

[HW94] S. Homer and J. Wang, Immunity of complete problems, Inform. Comput., 110 (1994),
pp. 119–129.

[Ko82] K.-I. Ko, Some observations on probabilistic algorithms and NP-hard problems, Inform.
Process. Lett., 14 (1982), pp. 39–43.

542 C. GLAßER, A. PAVAN, A. L. SELMAN, AND S. SENGUPTA

[Mah82] S. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis, J. Comput. System Sci., 25 (1982), pp. 130–143.

[MY85] S. Mahaney and P. Young, Reductions among polynomial isomorphism types, Theo-
ret. Comput. Sci., 39 (1985), pp. 207–224.

[NW94] N. Nisan and A. Wigderson, Hardness vs. randomness, J. Comput. System Sci., 49
(1994), pp. 149–167.

[Ogi91] M. Ogiwara, On P-Closeness of Polynomial-Time Hard Sets, manuscript, 1991.
[OW91] M. Ogiwara and O. Watanabe, On polynomial-time bounded truth-table reducibility

of NP sets to sparse sets, SIAM J. Comput., 20 (1991), pp. 471–483.
[PS01] A. Pavan and A. Selman, Separation of NP-completeness notions, in Proceedings of

the 16th IEEE Conference on Computational Complexity, IEEE Computer Society
Press, Los Alamitos, CA, 2001.

[PS02] A. Pavan and A. L. Selman, Separation of NP-completeness notions, SIAM J. Com-
put., 31 (2002), pp. 906–918.

[Raz94] A. Razborov, On provably disjoint NP-pairs, Technical report TR94-006, Electronic
Colloquium on Computational Complexity, 1994.

[Sch86] U. Schöning, Complete sets and closeness to complexity classes, Math. Systems The-
ory, 19 (1986), pp. 24–41.

[Sel79] A. Selman, P-selective sets, tally languages, and the behavior of polynomial-time re-
ducibilities on NP, Math. Systems Theory, 13 (1979), pp. 55–65.

[Sel88] A. L. Selman, Natural self-reducible sets, SIAM J. Comput., 17 (1988), pp. 989–996.
[Sho76] J. R. Shoenfield, Degrees of classes of RE sets, J. Symbolic Logic, 41 (1976), pp. 695–

696.
[TFL93] S. Tang, B. Fu, and T. Liu, Exponential-time and subexponential-time sets, Theoret.

Comput. Sci., 115 (1993), pp. 371–381.
[Tod91] S. Toda, On polynomial-time truth-table reducibilities of intractable sets to P-selective

sets, Math. Systems Theory, 24 (1991), pp. 69–82.
[Yao82] A. C. C. Yao, Theory and applications of trapdoor functions, in Proceedings of the 23rd

Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1982, pp. 80–91.

[Yes83] Y. Yesha, On certain polynomial-time truth-table reducibilities of complete sets to
sparse sets, SIAM J. Comput., 12 (1983), pp. 411–425.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 2, pp. 543–561

THE DIRECTED STEINER NETWORK PROBLEM IS TRACTABLE
FOR A CONSTANT NUMBER OF TERMINALS∗

JON FELDMAN† AND MATTHIAS RUHL‡

Abstract. We consider the Directed Steiner Network problem, also called the Point-to-

Point Connection problem. Given a directed graph G and p pairs {(s1, t1), . . . , (sp, tp)} of nodes
in the graph, one has to find the smallest subgraph H of G that contains paths from si to ti for all
i. The problem is NP-hard for general p, since the Directed Steiner Tree problem is a special
case. Until now, the complexity was unknown for constant p ≥ 3. We prove that the problem is
polynomially solvable if p is any constant number, even if nodes and edges in G are weighted and the
goal is to minimize the total weight of the subgraph H. In addition, we give an efficient algorithm for
the Strongly Connected Steiner Subgraph problem for any constant p, where given a directed
graph and p nodes in the graph, one has to compute the smallest strongly connected subgraph
containing the p nodes.

Key words. Steiner tree, Steiner network, network design, directed graphs, polynomial-time
algorithms

AMS subject classifications. 05C20, 05C85, 68Q25, 68W05

DOI. 10.1137/S0097539704441241

1. Introduction. The Steiner problem is one of the classic problems in compu-
tational geometry and theoretical computer science and is fundamental to the study
of network design. The basic problem is the following: Given a set of points, what
is the most efficient way to connect them? The first combinatorial formulation of a
Steiner problem was the classic Steiner Tree problem, independently due to Hakimi
[Hak71] and Levin [Lev71]. This was followed by extensive research on different vari-
ants of Steiner problems in the last 30 years.

In this paper we address one of the most general Steiner problems, the Directed

Steiner Network problem, also called the Point-to-Point Connection prob-
lem.

Directed Steiner Network (p-DSN). Given a directed graph G = (V,E),
with weights on the edges and p pairs of nodes in the graph {(s1, t1), . . . , (sp, tp)}, find
the minimum weight subgraph H of G that contains paths from si to ti for 1 ≤ i ≤ p.

When p is arbitrary, this problem is NP-hard, since it generalizes Steiner Tree.
The case p = 2 was solved in 1992 by Li, McCormick, and Simchi-Levi [LMS92].
However, when p is a fixed quantity greater than two, the question of whether there
exists a polynomial-time algorithm for p-DSN was open until now.

In this paper we give the first polynomial-time algorithm for the case where p
is any fixed constant, resolving this open question. In fact, the difficulty of the p-
DSN problem is contained within a special case of p-DSN for strongly connected
components:

Strongly Connected Steiner Subgraph (p-SCSS). Given a directed graph

∗Received by the editors February 24, 2004; accepted for publication (in revised form) January 5,
2006; published electronically August 7, 2006. Preliminary versions of this paper have appeared as
[FR99, Fel00]. This work was performed while both authors were students at the Massachusetts
Institute of Technology, Cambridge, MA.

http://www.siam.org/journals/sicomp/36-2/44124.html
†Columbia University, New York, NY 10027 (jonfeld@ieor.columbia.edu).
‡Google, Mountain View, CA 94043 (ruhl@google.com).

543

544 JON FELDMAN AND MATTHIAS RUHL

G = (V,E) and p terminal vertices {s1, . . . , sp} in V , find the smallest strongly con-
nected subgraph H of G that contains s1, . . . , sp.

In this paper we also give the first polynomial-time algorithm for p-SCSS for any
constant p and use it as a subroutine in our algorithm for p-DSN.

1.1. Previous results.

Constant number of terminals. When p = 1, there is only one terminal pair
(s, t); thus the solution to p-DSN is simply the shortest path from s to t. Finding
a shortest path in a directed graph is a well-known problem solvable in polynomial
time [CLRS01].

When all si are the same node, the p-DSN problem becomes the Directed

Steiner Tree problem. This is solvable using an algorithm due to Dreyfus and
Wagner [DW71] (and discovered independently by Levin [Lev71]). This algorithm
exploits the fact that a solution to the Directed Steiner Tree problem can be
described by the topology of the solution tree, i.e., the relative order in which the paths
to the terminals diverge. Since the solution is always a tree, once two paths diverge,
they never meet again; this makes the number of different topologies independent of
the size of the graph. In contrast, topologies of solutions to the p-DSN problem can
be arbitrary dags, which makes enumerating topologies infeasible.

When p = 2, the p-DSN problem becomes more difficult but still admits a rea-
sonably simple solution. To motivate the solution for the general case, we present a
solution for p = 2 in section 2. This problem was first solved by Li, McCormick, and
Simchi-Levi [LMS92], who called the problem the Point-to-Point Connection

problem. The running time of their algorithm is O(n5). They also state the case for
all p ≥ 3 as an interesting open question.

Natu and Fang [NF95, NF97] improved the running time for the case where p = 2
first to O(n4), and then to O(mn+n2 log n). They also propose an algorithm for p = 3
and conjecture that a variant of their algorithm works for all constant p. However,
the conference version of the present paper [FR99] gives a counterexample to the
correctness of their algorithm for p = 3, and thus to their conjecture.

Arbitrary number of terminals. There has been some work on the approximability
of p-DSN for arbitrary p. The best positive result obtained so far is by Charikar
et al. [CCC+98], who achieve an approximation ratio of O(p2/3 log1/3 p) for any p. On

the negative side, Dodis and Khanna [DK99] prove that p-DSN is Ω(2log1−ε p)-hard;
that is, unless P = NP , no algorithm exists for p-DSN that has an approximation
ratio of o(2log1−ε p).

The method of Charikar et al. [CCC+98] seems to be fundamentally different from
what we use for the fixed-parameter version. Their algorithm is based on greedily
finding low-cost “bunches” of vertices that connect a certain subset of the terminal
pairs. A bunch has a simple structure; it consists of a path from a node u to a
node v, and shortest paths from each of the sources to u and from v to each of the
terminals. In this paper, we show structural properties of optimal solutions of p-DSN
that are more complex than these bunches. These properties also exist for arbitrary
p (but unfortunately cannot easily be found in polynomial time). It is our hope that
the ideas presented here can be used to obtain a better approximation ratio for an
arbitrary number of terminals.

1.2. Applications. Algorithms for Steiner problems are fundamental tools used
for designing networks [MW84]. When many points in a network need to be connected
and there is a cost associated with connecting them, the minimum Steiner tree between

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 545

the points represents the cheapest way of building the network. Examples of such
networks include transportation, communication, or shipping. Leung, Magnanti, and
Singhal [LMS90] discuss these applications in more detail.

Until recently, the directed version of the Steiner problem was of mostly theoret-
ical interest, since networks were usually symmetric. However, with the increasing
diversity of network links such as satellite and radio, link costs are becoming less sym-
metric [Ram96]. Therefore, the proper model for designing some types of networks is
one where the underlying graph is directed [SRV97].

The problem of multicast tree generation is one example of the use of directed
Steiner problems in network design that has received some attention recently [Ram96,
SRV97]. A multicast tree is used for point-to-multipoint communication in high-
bandwidth applications. For example, in video-conferencing, a single source must
be broadcast to many different destinations. The routes taken to each destination
are encoded in the multicast tree. Finding a low-cost multicast tree makes for more
efficient use of resources. Ramanathan [Ram96] uses the Directed Steiner Tree

problem to find low-cost multicast trees.

1.3. Our contributions. In this paper, we give an exact algorithm for p-DSN

for any constant p with a running time of O(mn4p−2 + n4p−1 log n), where n = |V |
and m = |E|. (Throughout this paper, we will assume that the input graphs are
connected, so that we have m ≥ n− 1.) We also give an exact algorithm for p-SCSS

for any constant p with a running time of O(mn2p−3+n2p−2 log n). If the input graphs
are unweighted, these bounds can be slightly improved. For details on running times,
see section 6.

For clarity, we present an algorithm for a version of p-DSN where there are
no weights and the goal is to minimize the number of nodes in the subgraph H.
Section 5.2 shows how to generalize our algorithm to weights and edge-minimization
through simple modifications.

Our algorithm for p-DSN can best be understood in terms of a game, where a
player moves tokens around the graph. Initially, p tokens are placed on the starting
nodes s1, . . . , sp, one token per node. The player is then allowed to make certain types
of moves with the tokens, and his goal is to perform a series of these moves to get the
tokens to their respective destinations t1, . . . , tp (the token from s1 to t1, the token
from s2 to t2, etc.).

Every possible move has a cost associated with it: the number of nodes that are
visited by the moving tokens. We define the moves carefully so that the lowest cost
move sequence to get the tokens from s1, . . . , sp to t1, . . . , tp will visit only nodes from
an optimal subgraph H and will visit each node in H exactly once. The difficulty of
the construction is to ensure that such a sequence exists for every optimal H. For
p = 2 this is easy to do, since the two involved paths can share vertices only in a very
restricted manner. However, for p ≥ 3 the relationships between the paths become
significantly more complex. Critical to our argument is a structural lemma analyzing
how these paths may overlap.

1.4. Outline of the paper. In section 2, we give a simple algorithm that solves
p-SCSS for p = 2, while also defining the token game in more detail. We generalize
this approach to any constant p and state the algorithm solving p-SCSS in section 3,
making use of a token game similar to the one described above. The correctness proof
is given in sections 3.4 and 4.

Using the algorithm for p-SCSS, in section 5 we then give the algorithm for
the p-DSN problem and prove its correctness. We analyze the running times of our

546 JON FELDMAN AND MATTHIAS RUHL

algorithms in section 6, and conclude the paper in section 7 by summarizing our
results and discussing possible future research directions.

2. A solution for 2-SCSS. We begin by solving unweighted 2-SCSS, the prob-
lem of finding a minimum (in terms of the number of nodes) strongly connected sub-
graph H of a graph G = (V,E) that includes two specified nodes s and t. This is
equivalent to finding the smallest H that contains paths from s to t and from t to s.
Considering this simple problem allows us to introduce the notation and methodology
used in the following sections. The algorithm described here is similar to the one given
by Natu and Fang [NF97].

Figure 1 illustrates some of the difficulties of this problem. Let s, t be our termi-
nals. The optimal subgraph consists of the six nodes s, x7, x8, x9, x10, t. The paths
from s to t and t to s share vertex x7 and the vertex sequence x8 → x9 → x10.
Note that the optimal subgraph includes neither the shortest path from s to t nor the
shortest path from t to s.

x3
x8

x10

s t

x2

x4 x5 x6

x7 x9

1x

Fig. 1. A sample graph for 2-SCSS, with terminals s and t. The optimal subgraph is in solid
lines.

2.1. The token game. To compute the optimal subgraph H, we will place two
tokens, called f and b, on vertex s. We then move the tokens along edges, f moving
forward along edges, and b moving backward along edges, until they both reach t.
Then the set of nodes visited during the sequence of moves will contain paths s � t
and t � s.

To find the smallest subgraph H containing those paths, we will charge for the
moves. The cost of a move will be the number of new vertices entered by the tokens
during that move. Clearly we can never find a move sequence that gets both tokens
from s to t with a total cost lower than |H| − 1, the size of the optimal solution H
minus 1 (since we never charge for s). In fact, we will show that the lowest cost
move sequence to get the tokens from s to t will have cost exactly |H| − 1, and thus
corresponds to an optimal solution.

The three kinds of moves we allow are given below. The notation 〈x, y〉 refers to
the situation where token f is on vertex x, and token b is on vertex y. The expression
“〈x1, y1〉

c→ 〈x2, y2〉” means that it is legal to move token f from x1 to x2 and token
b from y1 to y2 (at the same time), and that this move has cost c. We want to find a
move sequence from 〈s, s〉 to 〈t, t〉 with minimal cost.

(i) Token f moving forward : For every edge (u, v) ∈ E and all x ∈ V , we allow

(a) the move 〈u, x〉 1→ 〈v, x〉 and

(b) the move 〈u, v〉 0→ 〈v, v〉.

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 547

(ii) Token b moving backward : For every edge (u, v) ∈ E and all x ∈ V , we allow

(a) the move 〈x, v〉 1→ 〈x, u〉 and

(b) the move 〈u, v〉 0→ 〈u, u〉.
(iii) Tokens switching places: For every pair of vertices a, b ∈ V for which there

is a path from a to b in G, we allow the move 〈a, b〉 c→ 〈b, a〉, where c is the
length of the shortest path from a to b in G. By length we mean the number
of vertices besides a and b on that path.

Type (i) and (ii) moves allow the tokens f and b to move forward along a single
edge and backward along an edge, respectively. Usually the cost is 1, accounting for
the new vertex that the token visits. Only in the case where a token reaches a vertex
with a token already on it, the cost is 0, since no “new” vertices are visited.

Type (iii) moves allow the two tokens to switch places. We call this type of move
a “flip” and say that the vertices on the shortest path from a to b are implicitly
traversed by the tokens. The cost c of the move accounts for all of these vertices.

Let us return to the example in Figure 1 to see how these moves are used. The
lowest cost way to move both tokens from s to t is the following (we use subscripts to
denote the type of the move):

〈s, s〉 1→
(i)

〈x7, s〉
0→

(ii)
〈x7, x7〉

1→
(i)

〈x8, x7〉

1→
(ii)

〈x8, x10〉
1→

(iii)
〈x10, x8〉

1→
(ii)

〈x10, t〉
0→
(i)

〈t, t〉.

The weight of this sequence is 5, which is |H| − 1, and the nodes visited by the
tokens are exactly the nodes in the optimal solution H.

2.2. The algorithm. Let us phrase the preceding discussion in an algorithmic
form. To compute H, we first construct a “game-graph” G̃. The nodes of the graph
correspond to token positions 〈x, y〉, the edges to legal moves between positions. In
our case, the nodes are just V × V , and the edges are the ones given above as legal
moves.

The solution H is found by computing a lowest cost path from 〈s, s〉 to 〈t, t〉 in

G̃. The graph H then consists of all the vertices from V that are mentioned along
that path, including the vertices that are implied by type (iii) moves.

Running time. Clearly, this game-graph can be computed in polynomial time.
First, we perform an all-pairs-shortest-paths computation on G to obtain the informa-
tion we need to set up the type (iii) moves. This takes time O(mn) using breadth-first
search, where n and m are the number of vertices and edges in the original graph G.
Then, we add to G̃ all the edges corresponding to legal moves one at a time. The
number of vertices in G̃ is O(n2). The number of type (i) and type (ii) edges in G̃
is O(mn), since there are a type (i) and a type (ii) move for every edge and vertex
combination in G. The number of type (iii) edges is O(n2), making the total time to

compute G̃ equal to O(mn + n2).

Now we just have to perform a single-source-shortest-paths computation from
〈s, s〉 to obtain H. Since we now have weights on the type (iii) edges, we cannot use
breadth-first search. For a simple implementation, we could use Dijkstra’s algorithm
(which has a running time of O(|Ṽ |2)) and achieve a running time of O(n4). Using

Fibonacci heaps [FT87], which allow single-source shortest paths in time O(|Ẽ| +

|Ṽ | log |Ṽ |), we achieve a running time of O(mn + n2 log n).

548 JON FELDMAN AND MATTHIAS RUHL

As an aside, this algorithm can also be used to solve 2-DSN. Given a graph G
and two node-pairs (s1, t1), (s2, t2), add two nodes s, t and edges s → s1, t1 → t,
t → s2, t2 → s to the graph and solve 2-SCSS for the two terminals s, t. The solution
for this problem is also an optimal solution for the original 2-DSN problem (if we
omit s and t). This leads to a running time of O(mn + n2 log n) for 2-DSN, which is
the same as the running time obtained by Natu and Fang [NF95].

In fact, we can do a little better for unweighted graphs G by using more advanced
shortest-paths algorithms. For a more detailed analysis, see section 6.

2.3. Correctness. The proof that our algorithm actually solves 2-SCSS can be
split into two claims. We provide a proof here that motivates the techniques used in
the general case. An alternate proof can be found in [NF95, NF97].

Claim 2.1. If there is a legal move sequence from 〈s, s〉 to 〈t, t〉 with cost c, then
there is a subgraph H of G of size ≤ c + 1 that contains paths s � t and t � s.

Proof. If we follow a move sequence from 〈s, s〉 to 〈t, t〉, then f and b trace out
paths s � t and t � s, and this becomes our solution H. Moreover, the tokens
traverse at most c + 1 vertices, since each vertex (except s) that we visit adds one to
the cost of the move sequence.

Claim 2.2. Let H∗ be an optimal subgraph containing paths s � t and t � s.
Then there exists a move sequence from 〈s, s〉 to 〈t, t〉 with total cost |H∗| − 1.

Proof. We prove the claim by constructing a move sequence 〈s, s〉 � 〈t, t〉, using
H∗ to tell us how to move the tokens.

When moving the tokens from 〈s, s〉 to 〈t, t〉, we “pay” each time we reach a new
vertex in H∗. In order to achieve total cost |H∗| − 1 we must make sure that we pay
only once for each vertex in H∗. To ensure this, we enforce one rule: After a token
moves off a vertex, no other token will ever move to that vertex again. We say that
a vertex becomes “dead” once a token moves from it, so that tokens are allowed to
move only to vertices in H∗ that are “alive.” Note that the notion of dead and alive
vertices is used only for the analysis; the algorithm itself never explicitly keeps track
of them.

As we construct the move sequence, we maintain the invariant that there exist
paths of “alive” vertices in H∗ from the position of token f to t, and from t to the
position of token b. This will ensure that we do not have to violate our rule to
proceed with the sequence. When we reach 〈t, t〉, we will have constructed a legal
move sequence and paid for each vertex in |H∗| at most once. This will immediately
imply the claim.

We construct the sequence in a greedy fashion. We start at position 〈s, s〉, and
perform the following steps:

(a) Move token f with type (i) moves. Choose some path of alive vertices in H∗

from the position of token f to t. We move token f forward along edges in
that path (killing vertices along the way) using type (i) moves, until we reach
t, or we reach a node x where moving token f would leave token b stranded;
i.e., all paths of alive vertices from t to the position of token b go through
x. We cannot move token f off of x; otherwise we would kill x and lose our
invariant that there is a path of alive vertices from t to the position of token
b (see Figure 2).

(b) Move token b with type (ii) moves. Choose some path of alive vertices from t
to the position of token b and move the token b backward along edges of that
path toward t using type (ii) moves. We proceed until we reach t, x, or some
node y �= x that would leave the token f stranded if we killed it (all paths
from x to t go through y).

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 549

Ptx Pyt
t

Pxy

x y

token f token b

s

Fig. 2. Deadlock in the construction of an optimal move sequence. Token f has moved forward
onto node x, and token b has moved backward onto node y. All paths from x to t go through y, and
all paths from t to y go through x. Therefore, moving either one of the tokens individually would
leave the other token stranded. We resolve this deadlock using a flip: a type (iii) move exchanging
the positions of the tokens.

If the tokens are both on t, we are done. If the tokens are now on the same
node x, go back to step (a). Note that in both these cases the last move of
token b is free. If token b reaches some node y �= x, we have a “deadlock”
(see Figure 2).

(c) Resolve the deadlock with a flip: A type (iii) move. To resolve the deadlock,
we will use a type (iii) move. We know that all paths from x to t go through y;
thus there must be two disjoint simple paths Pxy and Pyt in H∗ (see Figure 2).
Likewise, since all paths from t to y go through x, there must be a simple
path Ptx. Path Ptx must also be disjoint from Pxy, since if it were not, token
b would be able to get from y to t without going through x.
We apply the type (iii) move 〈x, y〉 → 〈y, x〉. The cost of the move is at most
the size of Pxy (not including x and y), and we kill only nodes on Pxy. Since
Pxy is disjoint from both Ptx and Pyt, we maintain our invariant that there
are paths of “alive” vertices from the position of token f to t and from t to
the position of token b. We continue with step (a).

We never move a token onto a dead vertex, and each step maintains the invariant
that there are paths of alive vertices from the position of token f to t and from t to
the position of token b. Therefore both tokens reach t, and we pay only once for each
vertex we visit. Since we visit only vertices in H∗ and do not pay for s, it must be
the case that the cost of the move sequence is at most |H∗| − 1.

This claim immediately implies that the shortest path in G̃ will correspond to an
optimal solution, since by Claim 2.1 and the minimality of H∗ there are no paths in
G̃ of length less than |H∗| − 1.

The token movements for the p = 2 case essentially describe the way in which
paths are shared in the optimal solution. Path sharing for p ≥ 3 is more complex,
and thus we will need a richer set of token moves and a more involved proof.

3. Strongly connected Steiner subgraphs. In this section we give an algo-
rithm for p-SCSS that is a generalization of the algorithm for 2-SCSS given in the
previous section.

Again, we will use token movements to trace out the solution H. The way the
tokens move is motivated by the following observation. Consider any strongly con-
nected H containing {s1, . . . , sp}. This H will contain paths from each s1, . . . , sp−1 to

550 JON FELDMAN AND MATTHIAS RUHL

sp, and these paths can be chosen to form an in-tree rooted at sp; we will call this tree
the forward tree. The graph H will also contain paths from sp to each s1, . . . , sp−1,
forming an out-tree that we call the backward tree. Moreover, every H that is the
union of two such trees is a feasible solution to our p-SCSS instance.

For ease of notation, we set q := p − 1 for the remainder of this section and let
r := sp, as sp plays the special role of “root” in the two trees.

3.1. Token moves for p-SCSS. To trace out the two trees, we will have q “F-
tokens” moving forward along edges in the forward tree from {s1, . . . , sq} to r, and q
“B-tokens” moving backward along edges from {s1, . . . , sq} to r. Given a set of legal
moves, we will again look for the lowest cost move sequence that moves all tokens to
r. This will then correspond to the smallest subgraph containing paths si � r and
r � si for all i ≤ q, which is the graph we are looking for.

Since both sets of tokens trace out a tree, once two tokens of the same kind reach
a vertex, they will travel the same way to the root. In that case, we will simply merge
them into one token. It is therefore enough to describe the positions of the tokens by
a pair of sets 〈F,B〉, where F and B are the sets of nodes currently occupied by the
F- and B-tokens, respectively.

Again, we have three types of legal token moves. Type (i) moves correspond to
F-tokens moving forward along an edge, and type (ii) moves correspond to B-tokens
moving backward along an edge. We do not charge for entering a vertex if another
token is already on it.

Since there are at most q tokens of each type, the possible token positions for a
particular type are the subsets of V of size at most q. For the following, let Pq(V) be
the set of subsets of V of size at most q.

(i) Single moves for F-tokens: For every edge (u, v) ∈ E and all token sets
F ∈ Pq(V), B ∈ Pq(V) such that u ∈ F , the following is a legal move:

〈F,B〉 c→ 〈(F \ {u}) ∪ {v}, B〉,

where the cost c of the move is 1 if v �∈ F ∪B, and 0 otherwise.
(ii) Single moves for B-tokens: For every edge (u, v) ∈ E and all token sets

F ∈ Pq(V), B ∈ Pq(V), such that v ∈ B, the following is a legal move:

〈F,B〉 c→ 〈F, (B \ {v}) ∪ {u}〉,

where the cost c of the move is 1 if u �∈ F ∪B, and 0 otherwise.
Type (iii) moves allow tokens to pass each other, similar to the type (iii) moves in

the previous section, except that this time the “flip” is more complex (see Figure 3).
We have two “outer” tokens, f and b, trying to pass each other. Between f and b
there are other F-tokens moving forward and trying to pass b, and B-tokens moving
backward and trying to pass f . These tokens, sitting on node sets F ′ and B′, are
“picked up” during the flip.

(iii) Flipping : For every pair of vertices f, b and vertex sets F,B, F ′ ⊂ F , B′ ⊂ B,
such that

• f ∈ F , F ∈ Pq(V),
• b ∈ B, B ∈ Pq(V), and
• there is a path in G from f � b going through all vertices in F ′ ∪B′,

the following is a legal token move:

〈F,B〉 |M |→ 〈(F \ ({f} ∪ F ′)) ∪ {b}, (B \ ({b} ∪B′)) ∪ {f}〉 ,

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 551

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
�����

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

f br

F’
F’ B’ F’

B’

Fig. 3. Flipping f and b, with tokens F ′ and B′ that need to be “picked up.” The black nodes
are the set M .

where M is the set of vertices on a shortest path from f to b in G going
through all vertices in F ′ ∪B′, excluding f , b, and the vertices in F ′ ∪B′.

3.2. The algorithm for p-SCSS. We can now state the algorithm for p-SCSS:
1. Construct a game-graph G̃ = (Ṽ , Ẽ) from G = (V,E). Set Ṽ := Pq(V) ×

Pq(V), the possible positions of the token sets, and Ẽ := all legal token moves
defined above.

2. Find a shortest path P in G̃ from 〈{s1, . . . , sq}, {s1, . . . , sq}〉 to 〈{r}, {r}〉.
3. Let H be the union of {s1, . . . , sq, r} and all nodes given by P (including

those in sets M for type (iii) moves).

The difficult part of constructing the game-graph G̃ is computing the costs for
the type (iii) moves that flip f and b. We need to know the size of the shortest path
between f to b in G going through all vertices in F ′∪B′. Note that we do not require
this path to be simple. Thus, if we knew the order in which the vertices in F ′ and B′

occurred on the path, computing the shortest path becomes easy: It is just the union
of the shortest paths between consecutive nodes in that order. Since the number of
tokens in F ′ ∪ B′ is bounded by 2(q − 1), which is a constant, we can simply try all
possible permutations of the nodes in F ′ ∪B′.

The total running time of the algorithm is O(mn2p−3 + n2p−2 log n). For more
details on the running time, see section 6.

3.3. An example. As an example we look at how the token game works on
the graph in Figure 4. Our terminals are s1, s2, s3, s4, s5, and so we set s5 to be the
root vertex and put a forward and a backward token on each of the other terminals
(Figure 4(a)). In Figures 4(b)–(i) we see the following move sequence:

〈{s1, s2, s3, s4}, {s1, s2, s3, s4}〉
1→
(i)

〈{s1, s2, s3, x3}, {s1, s2, s3, s4}〉

0→
(ii)

〈{s1, s2, s3, x3}, {s1, s2, s3}〉
2→

(iii)
〈{s2}, {x3}〉

1→
(i)

〈{x5}, {x3}〉
1→

(ii)
〈{x5}, {x4}〉

0→
(iii)

〈{x4}, {x5}〉

1→
(i)

〈{s5}, {x5}〉
0→

(ii)
〈{s5}, {s5}〉.

The total cost of the moves is 6 and therefore equal to |H| − q = 10 − 4 = 6,
as expected. The solution {s1, s2, s3, s4, s5, x1, x2, x3, x4, x5} (Figure 4(j)) is made up
of the terminals {s1, s2, s3, s4, s5}, the nodes {x3, x4, x5} mentioned in the sequence
of moves, and the nodes {x1, x2} in the set M for the first type (iii) move. This is
optimal.

552 JON FELDMAN AND MATTHIAS RUHL

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

1x

5s

s4

1x

5s

s4
1x

5s

s4

1x

5s

s4

1x

5s

s4
1x

5s

s4

1x

5s

s4
1x

5s

s4

1x

5s

s4
s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s4
1x

5s

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

s3

s2

2

3 4 5

6

7

8

9

x x

x

xx x

x

x

s1

Forward Token

Backward Token

Fig. 4. An example for the p-SCSS algorithm. Bold lines indicate the path of the previous
token move.

3.4. Correctness of the p-SCSS algorithm. The correctness proof for our
p-SCSS algorithm can be split into the same two parts we used for 2-SCSS.

Lemma 3.1. Suppose there is a move sequence from 〈{s1, . . . , sq}, {s1, . . . , sq}〉 to
〈{r}, {r}〉 with total cost c. Then there exists a solution H to this p-SCSS instance of

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 553

size ≤ c + q. Moreover, given the move sequence, it is easy to construct such an H.
Proof. This follows directly from the definition of the moves. The cost of any move

sequence is an upper bound on the number of vertices traversed by that sequence.
Given the constructive nature of the moves, it is also easy to actually find H.

Together with the following, much more involved lemma, the correctness of the
algorithm is proved.

Lemma 3.2. Suppose H∗ = (V ∗, E∗) is any minimal feasible solution. Then there
is a move sequence from 〈{s1, . . . , sq}, {s1, . . . , sq}〉 to 〈{r}, {r}〉 with weight equal to
|H∗| − q.

Proof. To prove this lemma, we will effectively construct such a move sequence,
where all intermediate positions of the tokens will be in H∗.

When moving the F- and B-tokens from {s1, . . . , sq} to r, we “pay” each time we
reach a new vertex. To account for each move and achieve a total cost of |H∗| − q,
we will use the same method as for 2-SCSS. We enforce the same rule: Once a token
moves off a vertex, no other token will ever move to that vertex again. As before,
we say that a vertex becomes “dead” once a token moves from it, so that tokens are
allowed to move only to vertices in H∗ that are “alive.” This also ensures that our
move sequence will be finite, since no token can return to a vertex it has already
visited.

We say that a token t requires a vertex v ∈ V ∗ if all legal paths for t to get to
r pass through v. By “legal paths” we mean paths that are within H∗, go in the
appropriate direction for the token t, and do not include any dead vertices. We will
sometimes speak of tokens requiring tokens; in this case we mean that the first token
requires the vertex on which the second token is sitting. Note that the requirement
relation among tokens moving in the same direction is transitive; i.e., if f1 requires
f2, and f2 requires x, then f1 also requires x.

We will construct our move sequence in a greedy fashion. That is, we will move
tokens toward r using type (i) and (ii) moves, until each token sits on a vertex that
is required by some other token to get to r. In this case we cannot apply any more
type (i) or (ii) moves—doing so would leave some other token stranded as it is not
allowed to move onto the now dead vertex.

In this case we need to use a type (iii) move to resolve the deadlock. Showing that
this is always possible is the core of the correctness proof, the “flip lemma” shown in
section 4. To state this lemma and see how it implies the correctness of the algorithm,
we have to introduce some additional notation.

Let the “F0-tokens” be the F-tokens that are not required by any other F-token.
Similarly, let the “B0-tokens” be the B-tokens that are not required by any other
B-token. Note that since the requirements among the F-tokens are not cyclic, there
will be at least one F0-token and, similarly, at least one B0-token.

Lemma 3.3 (the flip lemma). Suppose every token is required by some other
token. Then there is an F0-token f and a B0-token b such that

• f requires b, and no other F0-token requires b,
• b requires f , and no other B0-token requires f .

We will prove this lemma in the next section. Let us now see how it concludes
the proof of Lemma 3.2.

Let f and b be chosen according to the flip lemma. Fix any simple path from f
to r that uses only live vertices. Call P the portion of this path between f and b, and
Q the portion between b and r (see Figure 5). By definition, P and Q are disjoint.

Claim 3.4. All tokens that require a vertex on P are on P themselves.

554 JON FELDMAN AND MATTHIAS RUHL

Px

Q

f

f br

f

=

Fig. 5. Showing Claim 3.4, that all tokens that require a vertex on P are on P themselves.

Proof. We prove the claim for F-tokens; a symmetric argument applies to B-
tokens. Suppose some F-token f ′ �= f requires a vertex x on P . Every path x �
r must include b; otherwise f could move to x and then to r, without visiting b.
Therefore, f ′ also requires b (see Figure 5). The token f ′ cannot be an F0-token,
since the flip lemma tells us that f is the only F0-token that requires b. Note that
due to transitivity, every F-token is either an F0-token or required by some F0-token,
so f ′ must be required by some F0-token f ′′. By transitivity, f ′′ requires b, and thus
f ′′ = f , by the flip lemma.

Since f = f ′′ requires f ′, the token f ′ is either on P or Q. If f ′ is on Q, then x
is also on Q, since f ′ requires x. This contradicts the fact that P and Q are disjoint,
and thus f ′ must be on P .

Let F ′ be the set of F-tokens that are on the path P , and let B′ be the set of
B-tokens on P . We can apply a type (iii) move that switches f and b and picks up
F ′ and B′ along the way. All vertices on P become dead. No token is stranded, since
by Claim 3.4, all tokens that required a vertex on P were on P and therefore were
picked up by the flip.

We have shown, pending the flip lemma, that each step of the construction of our
move sequence preserves paths of “alive” vertices from the F-tokens to r and from r
to the B-tokens, and never moves a token onto a dead vertex. This shows that we can
always continue the construction of our move sequence until all tokens reach r, and
that the cost of the move sequence will be no more than |H∗| − q.

4. The flip lemma. To complete the proof of correctness, it remains to prove
Lemma 3.3, the flip lemma. We prove the flip lemma by making a graph out of the
requirement relationships between the F0- and B0-tokens. We show that there is a
two-cycle in this graph, consisting of an F0- and a B0-token, that does not have any
other incoming requirements. This proves the lemma.

During the discussion, keep in mind that transitivity holds only among require-
ments for the same type of token; if an F-token f requires a node (or a token) x and
some F-token f ′ requires f , then f ′ requires x. However, if some B-token b requires f ,
it is not necessarily the case that b also requires x, since b is moving backward along
edges.

4.1. Proof of Lemma 3.3 (the flip lemma). Let Greq = (Vreq, Ereq) be a new
directed graph, whose nodes are the F0- and B0-tokens. The edges in Ereq correspond
to requirements: Greq has an edge x → y if and only if the token x requires the token y.

This graph has a lot of structure. First of all, Greq is bipartite, since no two
F0-tokens (and no two B0-tokens) have a requirement relationship (by the definition
of an F0- and a B0-token). For the remainder of the discussion, we will use f to
denote a node on the F0 side of the bipartition and b to denote a node on the B0 side.

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 555

By assumption (every token is required by some other token) and by definition
(an F0-token is not required by any F-token), we know that every F0-token is required
by at least one B-token. We know that either that B-token is a B0-token, or there is
another B0-token that requires that B-token. Therefore, by transitivity for B-tokens,
every F0-token is required by at least one B0-token. By symmetry, every B0-token
is required by at least one F0-token. Therefore, every node in Greq has at least one
incoming edge.

We want to find a two-cycle in Greq with no incoming edges, since the two tokens
in such a cycle would require each other but would not be required by any other token,
proving the lemma. We can view Greq as a dag (directed acyclic graph) of strongly
connected components and sort the strongly connected components topologically. Let
C be the first component in that ordering. This means that no token outside of C
requires any token in C. Furthermore, C cannot consist of only one node, since then
that token would be required by no other token, in contradiction to our assumption
that every token is required by at least one token.

We will now prove that C cannot consist of more than two nodes. This gives us
the desired two-cycle and shows the flip lemma. The proof rests on the observation
that Greq satisfies a kind of transitivity, which we call the projection property. After
showing his property, we prove the claim by contradiction by applying the projection
property across the requirement graph.

Claim 4.1 (projection). Suppose for three nodes f1, f2, b1 (f1 �= f2) in Greq we
have edges f1 → b1 and b1 → f2 in Greq. Then the following holds: All nodes b that
have an edge b → f1 also have an edge b → f2.

Proof. By definition of F0, there is a legal path in H∗ from f1 to r avoiding f2.
Since f1 requires b1, this path goes through b1. Therefore, there is a path P1 from f1

to b1 avoiding f2 (see Figure 6).

b1

f2

f1

b

1

2

P

P

r

Fig. 6. Proving the projection property in Greq. The solid lines are paths in H∗ corresponding
to edges f1 → b1 and b1 → f2 in Greq; the dashed line corresponds to the edge b → f1.

Suppose that some node b in Greq has an edge b → f1. We show that b → f2 is
also in Greq by contradiction. If b → f2 is not in the requirement graph, then there is
a legal path in H∗ from r to b avoiding f2. Since b requires f1, this path goes through
f1. Therefore, there is a path P2 in H∗ from r to f1 avoiding f2. Combining P2 and
P1, we obtain a path from r to b1 that does not visit f2, in contradiction to b1 → f2

being in Greq.
A symmetric property holds by exchanging f ’s and b’s; i.e., for any triple f1, b1, b2

(b1 �= b2), if there are edges b1 → f1 and f1 → b2 in Greq, then for every node f in
Greq, if there is an edge f → b1, then there must also be an edge f → b2.

The projection property has a profound effect on the structure of Greq. In fact, it
shows that if there is a path in Greq from a node b to a node f , then there is an edge

556 JON FELDMAN AND MATTHIAS RUHL

from b to f . To see this, consider the last four nodes on the path from b to f in Greq,
b′′ → f ′ → b′ → f . By projection, there must be an edge b′′ → f . This shortens the
length of the path by 2. This argument can be repeated along the path until it shows
that there must be an edge b → f .

A symmetric argument (using the symmetric projection property) shows that if
there is a path in Greq from a node f to a node b, then there is an edge from f to b.
We further conclude that every strongly connected component in Greq is a complete
bipartite graph (every pair of nodes on opposite sides of the bipartition is connected
in both directions). Now we are ready to finish the flip lemma.

Claim 4.2. No strongly connected component C of Greq has more than two
nodes.

Proof. We prove the claim by contradiction. Assume that a strongly connected
component C in Greq has at least three elements. Either there are two F0 nodes in C,
or two B0 nodes in C. We assume (without loss of generality) that there are two F0

nodes (a symmetric argument shows the other case). Since C is a complete bipartite
graph, there must be a complete bipartite subgraph of C consisting of nodes f1, b1, f2.

We turn back to H∗ to show that this structure cannot exist. Since b1 requires
both f1 and f2, there is a legal path in H∗ from r to b1 that visits both f1 and f2

(solid lines in Figure 7). Without loss of generality assume that f1 is the first node
on that path, so that there is a path P1 from r to f1 that avoids f2. Since f1 requires
b1, but f1 does not require f2, there must also be a path P2 from f1 to b1 that avoids
f2 (dashed lines in Figure 7). Combining P1 and P2, we obtain a legal path in H∗

from r to b1 that avoids f2, in contradiction to the fact that b1 requires f2.

f2
b1

f1
2

1
P

P

r

Fig. 7. Components with more than two elements are impossible.

This contradiction shows that C cannot have more than two nodes. This shows
the claim and thereby the flip lemma.

5. The directed Steiner network problem. In this section we show how
to apply the algorithm developed in the previous sections to solve the Directed

Steiner Network problem (p-DSN), for any constant p.

p-DSN (unweighted, node-minimizing). Given a directed graph G = (V,E) and p
pairs of nodes in the graph {(s1, t1), . . . , (sp, tp)}, find the subgraph H of G with the
smallest number of nodes that contains paths from si to ti for 1 ≤ i ≤ p.

We use the same general model of a token game, but now we have tokens moving
from each source si to its destination ti. This time, we have no backward moving
tokens, and also tokens do not merge when they reach the same node. We describe
the positions of the tokens by a p-tuple 〈f1, f2, . . . , fp〉. We have two kinds of moves
for the tokens. The first kind of move allows a single token to move one step along
an edge.

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 557

(i) For each edge (u, v) we include the moves 〈 , u, 〉 c→ 〈 , v, 〉,
meaning that one token moves from u to v, and all others remain where
they are. The cost c of the move is 0 if v already has a token on it, and
1 otherwise.

Using only type (i) token moves, it is easy to see that we can exactly trace out
any dag. But since the optimal solution to p-DSN may contain cycles (or other more
complex strongly connected components), we need to define additional token moves
so as not to overcount.

Consider the optimal solution to p-DSN and contract every strongly connected
component to a single node; the resulting graph is a dag (see Figure 8). Now imagine
a single token moving through this graph along a path to its destination; for each
strongly connected component it encounters along the way, it has an entrance point
and an exit point. A particular strongly connected component in this decomposition
has some number k ≤ p such entrance/exit point pairs.

��

��
��

����

�
�
�
�

���� ��

����

4-SCSS

4-SCSS

s1 t1

s3

s2 t2

t3

Fig. 8. A solution to p-DSN is a dag of strongly connected components.

Using this intuition, we define a special token move that allows a group of k
tokens (k ≤ p) to move from any k or fewer specific entrance points to any k or fewer
specific exit points in a strongly connected component (if such a component exists).
The cost of the move will be (roughly) the size of the smallest component containing
these special entrance/exit points. This cost can be computed using our algorithm
for SCSS from section 3.

Formally, our token moves are defined as follows.
(ii) For all k ≤ p and for every set of k node-pairs {(f1, x1), (f2, x2), . . . , (fk, xk)}

for which there is a strongly connected subgraph of G containing the fi and
xi for all 1 ≤ i ≤ k, we allow the move

(f1 f2 · · · fk)

c→ (x1 x2 · · · xk).

The cost c of this move is the size of the smallest strongly connected com-
ponent containing the vertices {f1, f2, . . . , fk, x1, x2, . . . , xk} minus the size
of the set {f1, . . . , fk}. We can use the algorithm developed in section 3 to
compute this cost.

Similar in structure to our algorithm for p-SCSS in section 3, the algorithm for
p-DSN consists of the following steps.

1. Compute the game-graph G, where the vertices in G are p-tuples of vertices
in the input graph G, and edges are included for each legal token move (type
(i) or (ii)).

2. Find the minimum-weight path P in G from 〈s1, . . . , sp〉 to 〈t1, . . . , tp〉.
3. Output the subgraph H of G induced by P , i.e., the subgraph containing

558 JON FELDMAN AND MATTHIAS RUHL

• all vertices of G explicitly “mentioned” by vertices in P , and
• for all type (ii) moves used in P , all the vertices making up the smallest

strongly connected component containing the fi’s and xi’s used to define
that move.

5.1. Correctness. As for the previous algorithms, it is easy to see that for any
move sequence from 〈s1, . . . , sp〉 to 〈t1, . . . , tp〉 of cost c, there is a feasible solution
H of size at most c + |{s1, . . . , sp}|. It is also easy to find this H, given the move
sequence. The following lemma then implies the correctness of the algorithm.

Lemma 5.1. Let H∗ be a minimum size subgraph of G that contains paths si � ti
for all i ∈ {1, . . . , p}. Then there is a legal sequence of token moves from 〈s1, . . . , sp〉
to 〈t1, . . . , tp〉 with cost |H∗| − |{s1, . . . , sp}|.

Proof. We again give a constructive proof. We start with tokens f1, . . . , fp at
s1, . . . , sp and move them to their respective destinations t1, . . . , tp.

Regard each strongly connected component in H∗ as a single node and topologi-
cally sort this dag of strongly connected components. Let C1, . . . , Cm be the resulting
order of strongly connected components. We now consider each component in order
and move each token in the component either to its destination (if its destination
is in the component) or to some later component in the ordering on a path to its
destination. After doing so, all nodes in the component are dead. This ensures that
we pay only once for every node.

For each component Ci containing some k tokens (k ≤ p), we perform the follow-
ing moves. We execute (a) and (b) if Ci consists of more than one node, and only (b)
if Ci consists of a single node.

(a) We apply a type (ii) move. For each token f� in Ci we define a node x� in
Ci to which it moves. For tokens f� whose destination t� is in Ci, we set x�

to that destination. For all other tokens f� we choose any legal path to its
destination t� and let x� be the last node of that path that is in Ci. Using a
type (ii) move we simultaneously move all the tokens f� to their respective x�.

(b) We apply a type (i) move for each token f� in Ci that is not yet at its
destination t�. We move along one edge of a path to t� into a new component
Cj (j > i).

5.2. Weights and edges. The algorithms provided for p-DSN and p-SCSS can
easily be modified to handle weighted nodes: Just make the cost of a move the total
weight of the unoccupied nodes entered during the move instead of just their number.

It is also easy to minimize the total edge weight in H by reducing it to the
weighted-node case. To do this, we give every vertex in G weight 0 and replace every
edge e by a new vertex having the weight of e. We connect this new vertex to the
two vertices incident to e. Naturally, it is also possible to combine vertex weights and
edge weights.

6. Runtime analysis. In this section we provide the running time analysis for
our algorithms solving p-SCSS (from section 3) and p-DSN (from section 5).

The aim of this section is mainly to give an idea as to how the running time is
distributed over the different parts of the algorithms (game-graph construction and
shortest-path computation).

6.1. The p-SCSS algorithm. The algorithm consists of two parts: the gen-
eration of the game-graph G̃ from the input G = (V,E) and the computation of a

shortest path from 〈{s1, . . . , sq}, {s1, . . . , sq}〉 to 〈{r}, {r}〉 in G̃.

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 559

The size of the game-graph G̃. In the following, n and m are always the number
of vertices and edges, respectively, of the input graph G. Recall that we assume that
G is connected, and thus m ≥ n− 1. The number of vertices in the game-graph G̃ is

|Pq(V) × Pq(V)| =

(
q∑

i=0

(
n

i

))2

= O(n2q).

The number of type (i) edges can be computed as follows. If we fix an edge (u, v) ∈ E,
then there are |Pq−1(V \ {u})| choices for F and |Pq(V)| choices for B, and thus the
total number of type (i) edges is

m · |Pq−1(V \ {u})| · |Pq(V)| = O(m · nq−1 · nq) = O(mn2q−1).

By symmetry, the number of type (ii) edges is the same.
For the type (iii) edges, we can also obtain an upper bound on their number by

multiplying the number of choices for f and b (O(n) each), F and B (O(nq−1) each),
and F ′ and B′ (O(2q−1) each after choosing F and B). This yields a bound of O(n2q).

Since m ≥ n− 1, the total number of edges is O(mn2q−1). The number of edges in G̃
therefore is not much larger than the number of nodes.

Constructing the edge weights of the game-graph G̃. Computing the edge weights
takes constant time for type (i) and (ii) edges but is slightly more expensive for
type (iii) edges. We need to compute, for each type (iii) edge, the length of a shortest
path from a node f to a node b going through at most 2q − 2 specific intermediate
nodes (the ones in F ′ ∪ B′). Since this path does not have to be simple, it will be
the union of the shortest paths between the consecutive intermediate vertices. Since
there are only a constant number of intermediate vertices, we can guess their order.

More formally, we run an all-pairs-shortest-paths algorithm on the input graph
G; this takes time at most O(n2 log n + mn). Now, for each type (iii) edge, we go
through all possible sequences in which the vertices in F ′ ∪ B′ could appear on the
path. For each sequence, we add together the shortest path distances for consecutive
vertices to compute the total cost of the best path for that sequence. The shortest
path length among all sequences is kept as the weight of the type (iii) edge. There
are O((2q− 2)!) possible sequences of the vertices in F ′ ∪B′, and adding together the
distances takes time O(2q). So as long as p (and therefore q) is constant, the time to
compute the weight of a type (iii) edge is also constant.

To summarize, we spend a constant amount of time to compute the weight of
each edge in the graph, which leads to a total time of O(mn2q−1) for the game-graph
construction—subsuming the time for the all-pairs-shortest-path computation. Note
that this bound also holds for the case where the original graph has arbitrary weights.

Computing the shortest path in the game-graph G̃. The second part of the al-
gorithm is to compute a single-source-shortest-path query in the game-graph G̃ =
(Ṽ , Ẽ). Since all known shortest-paths algorithms might have to look at every edge,
this step will dominate the running time of the algorithm. There exist a variety of
different shortest-paths algorithms [AMO93], and the best one to use for a given graph
depends on n, m, and C, where C is the largest weight in the graph if all weights are
positive integers. For the case where the input graph G is weighted with positive real
numbers, we want an algorithm that does not depend on C. Thus, the best choice
is to use Fibonacci heaps [FT87], which allow us to compute single-source shortest

paths in time O(|Ẽ| + |Ṽ | log |Ṽ |), and the total running time of our algorithm is

O(n2q + mn2q−1 + n2q log n) = O(mn2p−3 + n2p−2 log n).

560 JON FELDMAN AND MATTHIAS RUHL

If the input graph has no weights, as is the case for most of this paper, the
weights in the game-graph will be positive integers bounded by n. So, we can use
an algorithm of Ahuja et al. [AMOT90] that performs a shortest-path query in time

O(|Ẽ| + |Ṽ |
√

log(|Ṽ |C)), where C is the largest weight in the game-graph. Therefore
the running time for the unweighted p-SCSS algorithm is

O(mn2q−1 + n2q
√

log n) = O(mn2p−3 + n2p−2
√

log n).

6.2. The p-DSN algorithm. For this algorithm, the game-graph G consists of
O(np) nodes and can therefore have up to O(n2p) edges. This means that the final
shortest-path computation will take time at most O(n2p), using Dijkstra’s algorithm.
We are deliberately rough with this calculation since it turns out that for the p-DSN
algorithm, the time to construct the game-graph actually overshadows this shortest-
path computation.

The most time-consuming part of the game-graph construction is to determine
the weights of the type (ii) edges. Obviously, it would be very inefficient (though still
polynomial) to call our k-SCSS algorithm for every type (ii) edge in the game-graph.
Fortunately, a simple observation makes it possible to avoid that.

Solving the instances of k-SCSS efficiently. Every instance of k-SCSS that we
wish to solve constructs a game-graph from the same underlying graph G. Further-
more, this game-graph does not depend on which vertices are terminals but only on G
and the number k. This is because the game-graph describes legal token moves, which
are independent of the starting positions of the tokens and their goals. Therefore, all
instances of k-SCSS that operate on the same underlying graph G and have the same
number of terminals use the same game-graph. Let us call this game-graph G̃k.

We need to solve instances of k-SCSS for all k ≤ 2p. But, notice that G̃k is a
subgraph of G̃2p if k ≤ 2p. Moreover, there are no edges from this subgraph G̃k to any

other vertices in G̃2p, since all other vertices 〈F,B〉 in G̃2p have more than k nodes in

either F or B. Thus, we need only construct a single game-graph G̃2p to determine
all the weights of the type (ii) edges. However, we need to perform several different
shortest-path computations on this graph for the different terminal sets.

Fortunately, all these computations have something in common. Solving a k-

SCSS instance requires computing a shortest path in G̃2p, to a node of the form
〈{r}, {r}〉. This suggests the following strategy: Run n single-destination shortest-
path computations, one for each possible destination 〈{r}, {r}〉 (r ∈ V). Now the
weights of type (ii) edges can then be computed in constant time by looking up the
appropriate shortest path length.

The number of nodes in G̃2p is O(n4p−2), and the number of edges is O(mn4p−3).
Using Fibonacci heaps to perform each of the n shortest-path computations, we obtain
a running time of O(mn4p−2 + n4p−1 log n). In the unweighted case, the maximum

weight in G̃2p is again at most n. Thus, we use the algorithm of Ahuja et al. [AMOT90]
and obtain a running time of O(mn4p−2 + n4p−1

√
log n).

7. Conclusion. We have developed a polynomial time algorithm that computes
the smallest subgraph containing paths between p = O(1) pairs of nodes in a directed
graph. It is an interesting open question whether p-DSN is fixed-parameter tractable,
i.e., whether there is an algorithm whose running time is O(nk) for some k that does
not depend on the constant p. We also wonder whether the tools developed to obtain
our result can be used to construct improved approximation algorithms for arbitrary
p, or for the closely related Directed Steiner Tree and Minimum Equivalent

Digraph problems.

DIRECTED STEINER NETWORKS FOR O(1) TERMINALS 561

Acknowledgments. We would like to thank David Karger for helpful sugges-
tions and Andras Frank for asking about the 2-SCSS problem, which started our
research on this topic. We are grateful to Marshall Bern, Yevgeniy Dodis, John
Dunagan, and Matt Levine for their comments on a previous version of this paper.
We also thank the anonymous reviewers for their helpful comments.

REFERENCES

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[AMOT90] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for
the shortest path problem, J. ACM, 37 (1990), pp. 213–223.

[CCC+98] M. Charikar, C. Chekuri, T.-y. Cheung, Z. Dai, A. Goel, S. Guha, and M.

Li, Approximation algorithms for directed Steiner problems, in Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), San
Francisco, 1998, pp. 192–200.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed., MIT Press, Cambridge, MA, 2001.

[DK99] Y. Dodis and S. Khanna, Designing networks with bounded pairwise distance, in Pro-
ceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC),
1999, pp. 750–759.

[DW71] S. E. Dreyfus and R. A. Wagner, The Steiner problem in graphs, Networks, 1 (1971),
pp. 195–207.

[Fel00] J. Feldman, The Directed Steiner Network Problem Is Tractable for a Constant Num-
ber of Terminals, Master’s thesis, Massachusetts Institute of Technology, Cam-
bridge, MA, 2000.

[FR99] J. Feldman and M. Ruhl, The directed Steiner network problem is tractable for a
constant number of terminals, in Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 1999, pp. 299–308.

[FT87] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved net-
work optimization algorithms, J. ACM, 34 (1987), pp. 596–615.

[Hak71] S. L. Hakimi, Steiner’s problem in graphs and its implications, Networks, 1 (1971),
pp. 113–133.

[Lev71] A. Levin, Algorithm for the shortest connection of a group of graph vertices, Soviet
Math. Dokl., 12 (1971), pp. 1477–1481.

[LMS90] J. M. Y. Leung, T. L. Magnanti, and V. Singhal, Routing in point-to-point delivery
systems: Formulations and solution heuristics, Transportation Sci., 24 (1990),
pp. 245–260.

[LMS92] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, The point-to-point delivery and
connection problems: Complexity and algorithms, Discrete Appl. Math., 36 (1992),
pp. 267–292.

[MW84] T. L. Magnanti and R. T. Wong, Network design and transportation planning:
Models and algorithms, Transportation Sci., 18 (1984), pp. 1–55.

[NF95] M. Natu and S.-C. Fang, On the point-to-point connection problem, Inform. Process.
Lett., 53 (1995), pp. 333–336.

[NF97] M. Natu and S.-C. Fang, The point-to-point connection problem—Analysis and al-
gorithms, Discrete Appl. Math., 78 (1997), pp. 207–226.

[Ram96] S. Ramanathan, Multicast tree generation in networks with asymmetric links, IEEE/
ACM Trans. Networking, 4 (1996), pp. 558–568.

[SRV97] H. F. Salama, D. S. Reeves, and Y. Viniotis, Evaluation of multicast routing algo-
rithms for real-time communication on high-speed networks, IEEE J. Select. Areas
Commun., 15 (1997), pp. 332–345.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 563–594

TIME-SPACE LOWER BOUNDS FOR THE POLYNOMIAL-TIME
HIERARCHY ON RANDOMIZED MACHINES∗

SCOTT DIEHL† AND DIETER VAN MELKEBEEK†

Abstract. We establish the first polynomial-strength time-space lower bounds for problems in
the linear-time hierarchy on randomized machines with two-sided error. We show that for any integer
� > 1 and constant c < �, there exists a positive constant d such that QSAT� cannot be computed by
such machines in time nc and space nd, where QSAT� denotes the problem of deciding the validity of
a quantified Boolean formula with at most �− 1 quantifier alternations. Moreover, d approaches 1/2
from below as c approaches 1 from above for � = 2, and d approaches 1 from below as c approaches
1 from above for � ≥ 3. In fact, we establish the stronger result that for any constants a ≤ 1 and
c < 1 + (�− 1)a, there exists a positive constant d such that linear-time alternating machines using
space na and � − 1 alternations cannot be simulated by randomized machines with two-sided error
running in time nc and space nd, where d approaches a/2 from below as c approaches 1 from above
for � = 2, and d approaches a from below as c approaches 1 from above for � ≥ 3. Corresponding
to � = 1, we prove that there exists a positive constant d such that the set of Boolean tautologies
cannot be decided by a randomized machine with one-sided error in time n1.759 and space nd. As a
corollary, this gives the same lower bound for satisfiability on deterministic machines, improving on
the previously best known such result.

Key words. time-space lower bounds, randomized algorithms, polynomial-time hierarchy, sat-
isfiability

AMS subject classifications. 68Q17, 68Q10, 68Q15

DOI. 10.1137/050642228

1. Introduction. Satisfiability, the problem of deciding if a propositional for-
mula has at least one satisfying assignment, is among the most fundamental NP-
complete problems. Proving lower bounds for satisfiability remains an open prob-
lem of paramount importance to the field of computational complexity. Although it
is widely conjectured that any deterministic algorithm requires exponential time to
solve satisfiability, a proof of this belief seems far out of reach. The trivial linear-time
lower bound, which follows from the observation that the machine must look at its
entire input formula in the worst case, is the state-of-the-art bound for random-access
machines. Despite several decades of effort, there has been no success in proving
superlinear time lower bounds for satisfiability.

A few years ago, Fortnow [8] established nontrivial time lower bounds for sat-
isfiability on machines which are restricted to using a small amount of workspace.
Fortnow’s technique has its roots in earlier work by Kannan [14] and has been further
developed in recent years [17, 19, 24]. For example, for machines using a subpolyno-
mial amount of space, Fortnow and van Melkebeek [9] derived a time lower bound of
nφ−o(1), where φ ≈ 1.618 denotes the golden ratio. Recently, Williams [24] improved
this lower bound to n1.732, and we can further boost it to n1.759 as a corollary to one
of our results.

∗Received by the editors October 9, 2005; accepted for publication (in revised form) May 30,
2006; published electronically August 25, 2006. A preliminary version of this work appeared as an
extended abstract in [7].

http://www.siam.org/journals/sicomp/36-3/64222.html
†University of Wisconsin, Madison, WI 53706 (sfdiehl@cs.wisc.edu, dieter@cs.wisc.edu). The first

author was supported by NSF Career Award CCR-0133693. The second author was partially sup-
ported by NSF Career Award CCR-0133693.

563

564 SCOTT DIEHL AND DIETER VAN MELKEBEEK

However, the main focus of this paper is not on lower bounds for deterministic
machines, but rather on lower bounds for randomized machines with two-sided error
(bounded away from 1/2). While it is conjectured that satisfiability requires exponen-
tial time even on such machines, proving lower bounds in the presence of randomness
becomes a more difficult task than in the deterministic setting. No nontrivial lower
bounds for satisfiability have been established on randomized random-access machines
with two-sided error, even when the workspace of such machines is restricted to be
logarithmic. In fact, previous to this work, no nontrivial time-space lower bounds
have been shown for any complete problems in the polynomial-time hierarchy on
randomized random-access machines with two-sided error.

1.1. Results. In this paper, we establish such time-space lower bounds. We
consider the problem QSAT� of deciding the validity of a given quantified Boolean
formula with at most �−1 quantifier alternations (beginning with existential). For any
integer � ≥ 1, QSAT� is complete for the �th level of the polynomial-time hierarchy.
These problems are generalizations of satisfiability—for � = 1, QSAT� is precisely the
satisfiability problem. Time-space lower bounds for QSAT� have been previously con-
sidered for deterministic machines. For example, Fortnow and van Melkebeek show
an n�−o(1) time lower bound for deterministic machines solving QSAT� in subpoly-
nomial space, for � ≥ 2. We match these bounds for randomized machines running
in subpolynomial space, and a more careful analysis yields lower bounds for small
polynomial space bounds.

Theorem 1 (main theorem). For any integer � ≥ 2 and constant c < �, there
exists a positive constant d such that QSAT� cannot be solved by randomized random-
access machines with two-sided error running in time nc and space nd. Moreover, d
approaches 1/2 from below as c approaches 1 from above for � = 2, and d approaches
1 from below as c approaches 1 from above for � ≥ 3.

The randomized machines in Theorem 1 and in the rest of this paper refer to the
natural coin flip model, in which the machine has one-way read-only access to a tape
with random bits. Viola [23] recently extended Theorem 1 to the model in which
the randomized machines have two-way access to the random bit tape, although his
approach yields weaker lower bounds and works only for � ≥ 3.

We note that Theorem 1 establishes the first polynomial-strength time-space lower
bounds for problems in the polynomial-time hierarchy on two-sided error randomized
machines. By time-space lower bounds of “polynomial strength” we mean time lower
bounds of the form Ω(nc) for some constant c > 1 under nontrivial space upper
bounds. Previous works establish randomized time-space lower bounds, but either
they consider problems believed not to be in the polynomial-time hierarchy, or the
time lower bounds involved are only slightly superlinear. Allender et al.’s [1] time-
space lower bounds for problems in the counting hierarchy on probabilistic machines
with unbounded error fall within the first category. On the other hand, Beame et
al.’s [3] nonuniform time-space lower bound for a binary quadratic form problem in
P falls within the second category.

Because of the tight connection between QSAT� and the �th level of the linear-
time hierarchy, Theorem 1 can be stated equivalently as a time-space lower bound for
simulations of the �th level of the linear-time hierarchy on randomized machines with
two-sided error. In fact, we can strengthen Theorem 1 and establish time-space lower
bounds for simulations of linear-time alternating machines which use only space na

for constant a ≤ 1.
Theorem 2. For any integer � ≥ 2 and any constants a ≤ 1 and c < 1 +

(�− 1)a, there exists a positive constant d such that linear-time alternating machines

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 565

using space na and � − 1 alternations cannot be simulated by randomized random-
access machines with two-sided error running in time nc and space nd. Moreover, d
approaches a/2 from below as c approaches 1 from above for � = 2, and d approaches
a from below as c approaches 1 from above for � ≥ 3.

Note that when a = 1, the space restriction on the alternating machines disap-
pears and Theorem 2 becomes Theorem 1.

The � ≥ 2 restriction in Theorem 1 implies that it does not give any bounds for the
first level of the polynomial-time hierarchy, i.e., for satisfiability or its complement,
tautology, the problem of deciding if a propositional formula is true under all assign-
ments. However, we are able to strengthen the known lower bounds for tautology on
randomized machines with one-sided error. Previously, Fortnow and van Melkebeek

showed a lower bound of n
√

2−o(1) for the tautology problem on nondeterministic ma-
chines using subpolynomial space. Since randomized machines with one-sided error
(on the “yes” side) are special cases of nondeterministic machines, these bounds also
apply to this setting. Using ideas from the proof of our main result, we manage to take
advantage of the extra structure provided by the randomized machine and improve
the known lower bounds for tautology on randomized machines with one-sided error.

Theorem 3. There exists a positive constant d such that tautology cannot be
solved by randomized random-access machines with one-sided error running in time
n1.759 and space nd.

Notice that the lower bound of Theorem 3 applies to deterministic machines as
a special case. Therefore, by the closure of deterministic classes under complement,
Theorem 3 implies the improved lower bound for satisfiability on deterministic ma-
chines mentioned earlier.

Corollary 4. There exists a positive constant d such that satisfiability cannot be
solved by deterministic random-access machines running in time n1.759 and space nd.

1.2. Techniques. Our proofs follow the paradigm of indirect diagonalization.
This technique establishes a desired separation by contradiction—assuming the sep-
aration does not hold, we derive a sequence of progressively unlikely inclusions of
complexity classes until we reach one that contradicts a known diagonalization re-
sult. Kannan [14] used the paradigm “avant la lettre” to investigate the relationship
between deterministic linear time and nondeterministic linear time. All of the re-
cent work on time-space lower bounds for satisfiability and problems higher up in
the polynomial-time hierarchy [8, 17, 9, 19, 24] follow it as well. Allender et al. [1]
employed the technique to establish time-space lower bounds for problems in the
counting hierarchy.

At first glance, it might seem that current techniques from space-bounded deran-
domization let us derive time-space lower bounds on randomized machines as imme-
diate corollaries to time-space lower bounds on deterministic machines. In particular,
assuming that we can solve satisfiability on a randomized machine in logarithmic space
and time nc, Nisan’s deterministic simulation [21] yields a deterministic algorithm for
satisfiability that runs in polylogarithmic space and polynomial time. However, even
for c = 1, the degree of the latter polynomial is far too large for this simulation to
yield a contradiction with known time-space lower bounds for deterministic machines.
Thus, we need a more delicate approach for the randomized setting.

The critical ingredient in this approach is a time- and space-efficient simulation of
randomized computations in the second level of the polynomial-time hierarchy with
very few guess bits. The latter follows from a careful combination of Nisan’s partial
space-bounded derandomization [20], deterministic amplification by a random walk on
an expander [5, 13], and a version of Lautemann’s proof that randomized machines

566 SCOTT DIEHL AND DIETER VAN MELKEBEEK

with two-sided error can be simulated by an alternating machine at a polynomial
time-overhead [15]. It gives us (i) an unconditional way to speed up small-space
randomized computations with two-sided error in higher levels of the polynomial-time
hierarchy, and (ii) a conditional efficient complementation of computations within the
�th level of the polynomial-time hierarchy for � ≥ 2. The condition on the latter
is the hypothesis of the indirect diagonalization argument that the �th level of the
linear-time hierarchy can be simulated by randomized machines with two-sided error
that run in time nc and small space. Combining that hypothesis with (i) and (ii),
we conclude that computations in the �th level of the polynomial-time hierarchy that
run in time T (where T is some sufficiently large polynomial) can be complemented in
time g(T), where g is some function depending on c. For sufficiently small values of c,
g(T) becomes o(T), which yields a contradiction with a known diagonalization result.
For somewhat larger values of c, we do not obtain a contradiction right away but we
obtain a more efficient complementation within the �th level of the polynomial-time
hierarchy for larger polynomials T . We then run the argument again using the new
efficient complementation in step (ii), yielding an even more efficient complementation.
This allows us to rule out larger values of c and further improve the efficiency of
complementation. Bootstrapping this way leads to Theorem 1.

A careful analysis shows that we can handle space bounds of the form nd, where d
is a positive constant depending on c. For � = 2, the above argument yields a constant
d approaching 1/2 from below when c approaches 1 from above. For � ≥ 3, we achieve
a better value of d for such small values of c by deriving a more efficient simulation of
randomized computations in the third level of the polynomial-time hierarchy.1 This
follows by exploiting the structure of the second-level simulation described above and
adding an alternation to reduce the time overhead. The savings in time are more
substantial for large values of d. When c approaches 1 from above, the modified
argument can handle values of d approaching 1 from below. For larger values of c,
the cost of the additional alternation obviates the savings in running time and makes
the earlier argument the better one. By paying close attention to the space used by
the simulations involved, we obtain the strengthening given in Theorem 2.

For our tautology lower bounds, we extend Williams’ recent lower bounds for
deterministic machines [24] to nondeterministic machines with few guess bits and
add a new component to the argument. The proof in [24] contains two ingredients.
The first one is a bootstrapping argument similar to the one we just described. In-
stead of yielding more and more efficient complementations within the �th level of
the polynomial-time hierarchy for some fixed � at larger and larger polynomial time
bounds T , it gives more and more efficient complementations of linear time within
higher and higher levels of the polynomial-time hierarchy. The second ingredient
is an improved starting point for the bootstrapping argument. This involves using
the hypothesis to obtain a—conditional—better speedup of small-space deterministic
computations in the second level of the polynomial-time hierarchy. To obtain the
quantitative improvement stated in Corollary 4, we take the idea of exploiting the
hypothesis of the indirect diagonalization argument further and show how to improve
the conditional speedup of small-space deterministic computations in higher levels of
the polynomial-time hierarchy. In order to establish the lower bounds on randomized
machines with one-sided error (as in Theorem 3), we show that the above argument
extends from deterministic machines to nondeterministic machines that use few guess

1Viola [23] independently obtained the same simulation using a somewhat more complicated
argument.

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 567

bits. We exploit Nisan’s partial derandomization again, this time to transform one-
sided error randomized machines into equivalent nondeterministic machines with few
guess bits at a marginal cost in time and space.

1.3. Organization. Section 2 introduces the notation and the machine models
we use for this paper. Additionally, we state some useful complexity results which are
fundamental to our techniques.

In section 3, we describe the general framework of our proofs. This includes
a tight connection between QSAT� and linear time on an alternating machine with
� − 1 alternations, which allows us to focus on proving lower bounds for the latter
from there on. We also describe the paradigm of indirect diagonalization, which our
lower bound proofs follow, and give a concrete example.

Section 4 shows how we can leverage Nisan’s space-bounded derandomization,
deterministic amplification, and Lautemann’s proof that randomized machines with
two-sided error can be simulated by alternating machines with one alternation at
a polynomial time-overhead. Specifically, we obtain simulations of space-bounded
randomized machines by alternating machines which use few guess bits and only
marginally more time and space than the randomized machine. We exploit these
simulations in section 5 to establish the lower bounds given by Theorem 1.

Section 6 contains our other results. Specifically, we show the more general time-
space lower bounds for space-bounded linear-time alternating machines given by The-
orem 2, as well as the time-space lower bounds for tautology on randomized machines
with one-sided error given by Theorem 3.

Finally, we conclude in section 7 by discussing some open problems that remain
directions for further research. We also include an appendix in which we prove some
results regarding the running time of Nisan’s generator and of deterministic ampli-
fication based on a random walk on the Gabber–Galil expander. We could not find
these results in the literature and they may be of independent interest.

2. Preliminaries. While much of the notation we use is standard [2, 22], we
introduce some conventions and additional notation in this section. We also state a
few results which we use throughout the rest of the paper.

2.1. Machine model. Our lower bounds are robust with respect to the choice
of machine model. In particular, they hold for random-access machines. We refer to
[19] for the details of the specific model we use for our derivations.

We adopt the convention that the time and space bounds of these machines are
constructible functions from natural numbers to natural numbers which are at least
logarithmic, and refer to them as time and space functions. We often discuss “subpoly-
nomial” space functions, which refer to space functions in no(1). Our results ultimately
apply to computations with polynomial time and space bounds, which certainly meet
the required constructibility conditions. Note that machines running in sublinear time
or sublogarithmic space trivially cannot solve problems like satisfiability, where the
answer can depend on the entire input.

2.2. Notation. We introduce some additional terminology to represent random-
ized computation. In particular, we use the notation BPTISP[T, S] to refer to the class
of languages recognized by randomized machines using time T and space S with error
bounded by 1

3 on both sides. Similarly, RTISP[T, S] refers to randomized machines
with one-sided error on the membership side bounded by 1

2 .
As is standard, we assume that the random bits are presented to such machines

on a one-way read-only worktape. If the machine wishes to reread random bits, it

568 SCOTT DIEHL AND DIETER VAN MELKEBEEK

must copy them down onto a worktape at the cost of space, as opposed to the more
powerful model which has two-way access to the random tape. Except where stated
otherwise, our results about randomized machines hold only for the former machine
model.

Our arguments involve alternating computations in which the numbers of bits
guessed at each stage are bounded by explicitly given small functions. To this end,
we use the following notation to describe such computations.

Definition 5. Given a complexity class C and a function f , we define the class
∃fC to be the set of languages that can be described as

{x|∃y ∈ {0, 1}O(f(|x|))P (x, y)},

where P is a predicate accepting a language in the class C when its complexity is
measured in terms of |x| (not |x| + |y|). We analogously define ∀fC.

For example, ∃fDTIME[n] and ∀fDTIME[n] are subsets of NP and coNP for
f(n) = nO(1). The requirement that the complexity of P be measured in terms of |x|
allows us to express the running times in terms of the original input length, which is
a more natural convention for our arguments.

A subtlety arises when we consider space-bounded classes C. Computations cor-
responding to ∃fC and ∀fC explicitly write down their guess bits y and then run a
space-bounded machine on the combined input consisting of the original input x and
the guess bits y. Thus, the space-bounded machine effectively has two-way access to
the guess bits y. For example, although machines corresponding to ∃nDTISP[n, no(1)]
and to NTISP[n, no(1)] both use only a subpolynomial amount of space to verify their
guesses, they do not necessarily have the same computational power. This is because
the former machines have two-way access to the guess bits, which are written down
on a separate tape that does not count towards its space bound, whereas the latter
machines have only one-way access to these bits and do not have enough space to
write them down on their worktape.

2.3. Speedup of space-bounded computations. We also make use of the
standard divide-and-conquer approach for speeding up space-bounded computations
by introducing alternations. This technique is described in detail in [19]. By splitting
up the computation tableau of a DTISP[T, S] computation into B ≥ 1 equal-sized
blocks, we obtain

DTISP[T, S] ⊆ ∃BS∀logBDTISP[T/B, S] ⊆ Σ2TIME[BS + T/B].(1)

By the closure of DTISP under complement, this inclusion can also be stated for
the Π-side of the polynomial-time hierarchy, which will be more convenient to use in
some of our arguments. If we choose B to optimize the running time of the resulting
Π2-computation, the result is a square-root speedup for small space bounds S:

DTISP[T, S] ⊆ ∀
√
TS∃log TDTISP[

√
TS, S] ⊆ Π2TIME[

√
TS].(2)

Recursively applying (1) while exploiting DTISP’s closure under complementation to
conserve alternations yields

DTISP[T, S] ⊆ ∀BS∃BS · · ·QBS

︸ ︷︷ ︸
k−1

QlogBDTISP[T/Bk−1 + BS, S](3)

⊆ ΠkTIME[T/Bk−1 + BS]

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 569

for any integer k ≥ 2, where Q = ∃ if k is even and Q = ∀ otherwise, and Q denotes
the quantifier complementary to Q. Choosing B to optimize the resulting running
time, (3) achieves a kth-root speedup for small space bounds S:

DTISP[T, S] ⊆ ∀(TSk−1)1/k∃(TSk−1)1/k · · ·Q(TSk−1)1/k

︸ ︷︷ ︸
k−1

Qlog(T/S)DTISP[(TSk−1)1/k, S]

⊆ ΠkTIME[(TSk−1)1/k].(4)

2.4. Diagonalization results. Finally, we need a standard diagonalization re-
sult from which we can derive contradictions. The following lemma states that we
cannot speed up the computation of every language in Σ�TIME[T] by switching to
Π�.

Lemma 6 (folklore). Let � be a positive integer and T a time function. Then

Σ�TIME[T]
⊆ Π�TIME[o(T)].

Our lower bounds for space-bounded alternating linear time require a stronger
diagonalization result which is both time- and space-sensitive.

Lemma 7 (see [9]). Let T be a time function and S a space function. Then for
any integer � > 0,

Σ�TISP[T, S]
⊆ Π�TISP[o(T), o(S)].

3. Earlier techniques. We now outline some of the techniques common to
many time-space lower bound arguments. We also use them for our results.

3.1. Alternating linear time versus QSAT�. The first such result involves
a tight connection between QSAT� and linear time on an alternating Turing machine
with � alternating stages, Σ�TIME[n]. At the first level, we know that satisfiability can
be solved in nondeterministic quasilinear time, so that time-space lower bounds for
satisfiability imply the same lower bounds for NTIME[n] up to polylogarithmic factors.
Conversely, Fortnow and van Melkebeek [9] show that a sufficient strengthening of
the Cook–Levin theorem gives a reduction from NTIME[n] to satisfiability which
is efficient in both time and space, showing that if satisfiability can be solved in
time nc and space nd, then NTIME[n] can be solved in time nc polylog(n) and space
nd polylog(n). Thus, time-space lower bounds for NTIME[n] and for satisfiability are
equivalent up to polylogarithmic factors.

At higher levels of the polynomial-time hierarchy, we know that QSAT� can be
solved in quasilinear time on a machine which makes � − 1 alternations, so that
time-space lower bounds for QSAT� imply the same lower bounds for Σ�TIME[n] up
to polylogarithmic factors. Conversely, just as the Cook–Levin theorem generalizes
from NP to higher levels of the polynomial-time hierarchy and shows that QSAT� is
complete for Σp

� , the reductions given by Fortnow and van Melkebeek [9] generalize
to give time- and space-efficient reductions from Σ�TIME[n] to QSAT�.

Theorem 8. For any integer � ≥ 1 and constants c, d > 0, if

QSAT� ∈ DTISP[nc, nd],

then

Σ�TIME[n] ⊆ DTISP[nc polylog(n), nd polylog(n)].

This also holds if we replace DTISP with BPTISP or RTISP.

570 SCOTT DIEHL AND DIETER VAN MELKEBEEK

This establishes the equivalence of time-space lower bounds for Σ�TIME[n] and
QSAT� up to polylogarithmic factors. In particular, polynomial-strength time-space
lower bounds for Σ�TIME[n] on randomized machines yield essentially the same
lower bounds for QSAT�. With this in mind, we focus on proving lower bounds
for Σ�TIME[n] for the rest of the paper. We include a proof of Theorem 8 here for
completeness.

Proof. Let L be a language decided by a random-access linear-time alternating
Turing machine which makes � − 1 alternations, beginning in an existential stage.
For such an L, let P be the predicate recognized by a random-access linear-time
nondeterministic machine so that the condition x ∈ L can be written as

(∃y1 ∈ {0, 1}rn)(∀y2 ∈ {0, 1}rn) · · · (Qy�−1 ∈ {0, 1}rn)R(x, y1, y2, . . . , y�−1),

where r is some constant, and Q = ∀, R = P if � is odd, and Q = ∃, R = ¬P
otherwise. All that remains to represent the acceptance condition of L as a quantified
Boolean formula is to reduce P to satisfiability. The original Cook–Levin reduction
produces a formula of quadratic size, which is too large for our purposes. However,
Cook [6] shows how to leverage the oblivious simulations of Hennie and Stearns [12]
to obtain a formula of quasilinear size. More precisely, we can construct a formula ϕ
depending only on P and n such that ϕ

(i) has size O(n polylog(n)) where each bit can be constructed in time
O(polylog(n)) and space O(log(n)),

(ii) involves the bits of x, y1, . . . , y�−1 input to P as well as O(n log n) additional
Boolean variables z, and

(iii) is satisfiable in z on input x, y1, . . . , y�−1 if and only if P accepts
x, y1, . . . , y�−1.

Defining ϕ′ .
= ϕ if � is odd and ϕ′ .

= ¬ϕ otherwise, this shows that the Σ�-formula,

ψ
.
= ∃y1∀y2 · · ·Qy�−1Qz ϕ′,

is in QSAT� if and only if x ∈ L. The size of ψ is only O(n log n) more than ϕ—the log
factor is required to write down the bit indices of the quantified variables. The easy
nature of these extensions to ϕ endows ψ with the same constructibility properties as
ϕ.

In the case that QSAT� ∈ DTISP[nc, nd], let M be a deterministic machine
deciding QSAT� in time O(nc) and space O(nd). We simulate M on input ψ to
decide L. However, computing ψ and writing down the result on a worktape requires
too much space. Instead, when M needs a bit of ψ, the simulation computes this
bit from scratch. As ϕ is of size O(n polylog(n)), M runs for time O(nc polylog(n))
and space O(nd polylog(n)) on input ψ. Computing the bits of ψ on the fly adds
a multiplicative overhead of O(polylog(n)) to the time and an additive overhead of
O(log n) to the space. Thus, this deterministic simulation decides L in the desired
time and space bounds.

The cases for BPTISP and RTISP follow from the same argument.

3.2. Indirect diagonalization. We set out to prove Theorem 1, i.e., that
Σ�TIME[n]
⊆ BPTISP[t, s] for certain interesting values of t and s. To accomplish
this, we follow the same general technique that is used to prove all previous time-space
lower bounds for nondeterministic linear time, namely indirect diagonalization. This
paradigm follows three basic steps:

1. Assume the inclusion that we wish to show does not hold. In our case, assume
that Σ�TIME[n] ⊆ BPTISP[t, s].

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 571

2. Using the hypothesis, derive inclusions of complexity classes which are in-
creasingly unlikely.

3. Eventually, one of these inclusions contradicts a known diagonalization result,
proving the desired result.

There is a myriad of ways to derive new inclusions from the hypothesis in step 2,
with different approaches yielding different results. Often, the inclusions derived in
step 2 are obtained by a combination of two opposing processes. These can be loosely
thought of as deriving a speedup at the cost of adding alternations, and removing
alternations at the cost of a small slowdown. The main intuition that guides how we
apply these processes is that we wish the speedup gained by introducing alternations
to outweigh the cost of eliminating them, so that overall we obtain a contradiction to
Lemma 6 (or Lemma 7).

The former process, deriving a speedup, involves simulating a space-bounded
machine of the type for which we are attempting to derive a lower bound (i.e., deter-
ministic or randomized) in significantly less time. We must pay a price to achieve this
task, and we choose to pay in the currency of alternations. Specifically, we introduce
a small number of alternations to the computation and carry out a fast simulation
on an alternating machine. In the deterministic setting, such a simulation yields an
inclusion resembling

DTISP[T, S] ⊆ Π�TIME[f(T, S)],

for � ≥ 1 and f(T, S) � T when S � T . Note that the Π2-simulation of a DTISP-
computation given by (2) is an example of this process.

In the other direction, the process of removing alternations involves the task of
simulating an alternating machine by another alternating machine which makes fewer
alternations and runs for only slightly more time. In many cases, this is accomplished
by deriving a statement such as

Σ�TIME[T] ⊆ Π�TIME[g(T)],

for a small function g. When g is polynomial, such an inclusion results in a collapse
of the polynomial-time hierarchy to the �th level, and we refer to it as an efficient
complementation. Note that a complementation can be derived unconditionally by
using an exhaustive search in lieu of an alternating step, but in this case g will be
exponential in T . In our arguments, we can derive an efficient complementation which
is conditional on the hypothesis of step 1, from which more efficient complementations
are derived in an inductive fashion in step 2.

Notice that by Lemma 6, a complementation with g(T) = o(T) is not just unlikely
but impossible. Deriving such an impossibly efficient complementation provides the
desired inclusion to arrive at a contradiction in step 3. In the following section, we
give an example of how to accomplish this end via an appropriate combination of a
speedup and an efficient complementation.

3.3. A concrete example. We step through an instantiation of the indirect
diagonalization paradigm and prove the result of [17] that satisfiability cannot be
solved by deterministic random-access machines running in time nc and space no(1)

for constants c <
√

2. The first step is to assume that

NTIME[n] ⊆ DTISP[nc, no(1)].(5)

This allows a simulation of NTIME[T] by DTISP[T c, T o(1)] for some polynomial T .
The speedup given by the inclusion (2) then yields a square-root speedup at the cost

572 SCOTT DIEHL AND DIETER VAN MELKEBEEK

of two alternations. The net result is

NTIME[T] ⊆ DTISP[T c, T o(1)] ⊆ Π2TIME[T c/2+o(1)],(6)

which represents a speedup of NTIME[T] for c < 2 by using one more alternating
stage. To contradict Lemma 6, we need to arrive at such a speedup which uses just a
universal stage. Therefore, we use an efficient complementation to remove the inner
existential stage from the Π2-speedup represented by (6). Note that hypothesis (5)
gives a simulation of NTIME[n] by a deterministic machine, and since any determin-
istic machine is trivially a conondeterministic machine, we have

NTIME[n] ⊆ coNTIME[nc].(7)

In order to use this efficient complementation to remove an alternation, we write

Π2TIME[T c/2+o(1)] = ∀T c/2+o(1)

NTIME[T c/2+o(1)]︸ ︷︷ ︸
(α)

.

Note that (α) represents a nondeterministic computation which takes an input of size
n + T c/2+o(1) and runs in time T c/2+o(1). For T (n) ≥ n2/c, the running time is at
least linear in the input size, so that (7) gives a conondeterministic simulation of (α)

running in time T c2/2+o(1). By merging the resulting adjacent universal stages, we
obtain

NTIME[T] ⊆ ∀T c/2+o(1)

coNTIME[T c2/2+o(1)] = coNTIME[T c2/2+o(1)].

When c2/2 < 1, we can see this process has delivered a net speedup of nondeterministic
time T on conondeterministic machines, which is a contradiction to Lemma 6. This
proves the desired result.

4. Lautemann’s proof and derandomization. We now adopt the techniques
of the previous section to prove Theorem 1, beginning with the case � = 2. By
way of Theorem 8 and the indirect diagonalization paradigm, we seek to derive a
contradiction from the assumption

Σ2TIME[n] ⊆ BPTISP[t, s](8)

for some interesting functions t and s. The known proofs that BPP (the class of lan-
guages recognized by polynomial-time randomized machines with two-sided error) lies
in the second level of the polynomial-time hierarchy provide a simulation of random-
ized machines with two-sided error by Π2-machines with a polynomial overhead in
time. Combined with hypothesis (8), this immediately gives us one of the ingredients
we need to carry through the program from the previous section, namely the efficient
complementation of Σ2TIME[n].

Assuming the Π2-simulation is sufficiently time and space efficient, we can also use
it for the other ingredient we need, namely the speedup. This is because the divide-
and-conquer strategy for DTISP-computations from section 2.3 applies to ΣkTISP-
computations as well. However, it turns out that the known Π2-simulations of ran-
domized two-sided error machines are not time- and space-efficient enough to obtain
any lower bounds this way. Moreover, in order to achieve the quantitative strength
of our lower bounds, we need to save alternations by applying the speedup as in (1)
to the final deterministic phase of the simulation as opposed to the Π2-simulations
as a whole. For that approach to yield an overall speedup, we need the number of

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 573

guess bits in the alternating phases of the simulation to be small—otherwise, the time
needed for the guesses would obviate the speedup obtained in the final deterministic
phase. The known simulations use too many guess bits from that perspective. There-
fore, in this section, we develop a new Π2-simulation of randomized machines with
two-sided error that meets all the above efficiency requirements.

We start by analyzing Lautemann’s proof that any language L in BPP is also in
Σp

2 ∩ Πp
2. The proof assumes a randomized algorithm using R random bits to decide

L with error ε. When ε is small enough in comparison to R, there is a v ≥ 1 so
that membership of x in L can be characterized by the existence of v shifts of the
set of random strings accepting x which together cover the universe of all random
strings. If x ∈ L, the set of random strings accepting x is large enough to guarantee
that such shifts exist as long as εv < 2−R. On the other hand, if x /∈ L, the set of
accepting random strings is small enough so that v shifts cannot cover the universe of
random strings as long as ε < 1

v . For such ε and v, these complementary conditions
are expressed by a Σp

2 predicate. Since BPP is closed under complement, this shows
that BPP ⊆ Σp

2 ∩ Πp
2. Specifically, we are interested in the Πp

2-side of the inclusion.
Theorem 9 (Lautemann [15]). Let L be a language recognized by a randomized

machine M that runs in time T and space S and that uses R random bits with error
bounded on both sides by ε. Then for any v ≥ 1 such that ε < min(2−R/v, 1

v), we have
that

L ∈ ∀vR∃RDTISP[vT, S + log v].(9)

In Lautemann’s proof that BPP ⊆ Σp
2 ∩ Πp

2, one starts from an algorithm decid-
ing L ∈ BPP that has error less than the reciprocal of the number R′ of random bits
it uses. Such an error probability can be achieved from a standard BPP algorithm
deciding L that uses R random bits by taking the majority vote of O(logR) indepen-
dent trials, which results in R′ = O(R logR). For ε < 1

R′ , choosing v = R′ satisfies
the conditions of Lemma 9. This shows that if L can be decided by a BPTISP[T, S]
machine using R random bits, then

L ∈ ∀(R logR)2∃R logRDTISP[RT logR,S].(10)

We can further reduce the number of guess bits in the alternating stages of the
simulation by using more efficient methods of amplification. With such methods, the
error can be made as small as 2−R while using only O(R) random bits. Specifically,
the algorithm runs O(R) trials, which are obtained from the labels of vertices on a
random walk of length O(R) in an easily constructible expander graph, and accepts
if a majority of these trials accept. For our purposes, we choose the Gabber–Galil
family of expanders [10], a construction based on the Margulis family [18] where the
vertices are connected via simple affine transformations on the labels. The easy form
of the edge relations ensures that the walk is efficiently computable in time O(R2)
and space O(R).

Theorem 10 (see [5, 13]). Let M be a randomized machine with constant error
bounded away from 1

2 that runs in time T and space S and that uses R random bits.
Then M can be simulated by another randomized machine M ′ that runs in time O(RT)
and space O(R + S), while using only O(R) random bits to achieve error 2−R.

When an algorithm has been amplified as in Theorem 10, v = O(1) shifts suffice
for Theorem 9. This shows that if L can be decided by a BPTISP[T, S] machine using
R random bits, then

L ∈ ∀R∃RDTISP[RT,R + S].(11)

574 SCOTT DIEHL AND DIETER VAN MELKEBEEK

The efficiency of this simulation depends on the number of random bits R for
all the criteria we mentioned: the number of bits guessed in the alternating stages,
the multiplicative time overhead, and the additive space overhead for the final de-
terministic stage are all O(R). Since R can be as large as T , we need an additional
ingredient to do better. That ingredient exploits the fact that we are dealing with
space-bounded BPP-computations. In that setting, we know of techniques to reduce
the number of random bits without increasing the time or space by much, which in
turn increases the efficiency of the Π2-simulation in (11). The means by which we
achieve the needed reduction in randomness is the space-bounded derandomization
of Nisan [20]. We state a version here and leave the proof to Appendix A (where we
also present a brief overview of Theorem 10).

Theorem 11. Any randomized machine M running in time T and space S
with error ε can be simulated by another randomized machine that runs in time
O(T polylog(T)) and space O(S log T) and that uses only O(S log T) random bits.
The error of the simulation is ε + 2−S, and is one-sided if M has one-sided error.

Note that we do not apply Theorem 11 to deterministically simulate the random-
ized machine. Instead, we use it to reduce the randomness required by a BPTISP[T, S]
machine to O(S log T). If we subsequently efficiently amplify using Theorem 10, then
the overhead of the alternating simulation given by Theorem 9 becomes acceptable
for polynomial T and small S. More precisely, we have the following lemma.

Theorem 12.

BPTISP[T, S] ⊆ ∀S log T∃S log TDTISP[TS polylog(T), S log T].(12)

Proof. Let M be the randomized time T , space S machine for recognizing
L ∈ BPTISP[T, S]. By the derandomization of Theorem 11, we obtain a simula-
tion using R

.
= O(S log T) random bits, time O(T polylog(T)), and space O(S log T),

with error 1
3 + 2−S . Theorem 10 gives a machine deciding L with error 2−R while

using O(R) random bits. The time increases to O(TS polylog(T)), while the space
is still O(S log T). Applying Theorem 9 for v = O(1) yields the desired alternating
simulation of M .

We point out that using the instantiation of Theorem 9 given by (10) instead
of (11) in the proof of Theorem 12 yields a simulation similar to (12). The main
difference is that the initial universal phase takes time O((S log T)2) rather than
O(S log T). This version is still efficient enough to yield time-space lower bounds as
in Theorem 1, but the dependence of the space parameter d on c becomes worse.

4.1. Speedup. Theorem 12 has the desired nice properties that allow us to
derive a speedup for BPTISP. The simulation spends only time O(S log T) in its
alternating phases, which is small when S is small. In this case, the running time
is dominated by the final deterministic computation, so that a speedup of this final
stage results in a speedup of the computation as a whole. Since the final deterministic
computation of the simulation given by (12) is space bounded, we can achieve this by
applying the speedup of (1) or (3). For example, applying (1) adds two alternations,
and by merging adjacent existential stages we obtain a simulation given by

BPTISP[T, S] ⊆ ∀S log T∃S log T∃BS log T∀logBDTISP[TS polylog(T)/B, S log T]

= ∀S log T∃BS log T∀logBDTISP[TS polylog(T)/B, S log T].

Choosing B to optimize the running time of this simulation up to a polylog(T) factor,
we get

BPTISP[T, S] ⊆ ∀S log T∃
√
TS∀log TDTISP[

√
TS polylog(T), S log T].(13)

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 575

For small S, we obtain a speedup for space-bounded randomized machines similar
to that which (2) gives for deterministic machines. However, the simulation uses three
alternations rather than two to realize the same speedup by a square root.

4.2. Complementation. We also use Theorem 12 to derive an efficient comple-
mentation under the hypothesis of the indirect diagonalization argument. Note that
hypothesis (8) gives a simulation of Σ2 by BPTISP, which can be simulated in turn
by the Π2-machine given by Theorem 12. Thus, we derive

Σ2TIME[n] ⊆ ∀s log t∃s log tDTISP[tspolylog(t), s log t],(14)

which gives the desired complementation for small enough t and s. For example, when
t is polynomial, say t = nc and s is subpolynomial, (14) becomes

Σ2TIME[n] ⊆ ∀no(1)∃no(1)

DTISP[nc+o(1), no(1)] ⊆ Π2TIME[nc+o(1)].(15)

Thus, we can see that when s is small, this complementation allows us to eliminate
alternations at a cost little more than raising the running time to the power of c. In this
manner, (15) can be used analogously to the complementation (7) in the deterministic
case of section 3.3.

We note that the bottleneck causing our lower bounds for QSAT� to hold only for
� ≥ 2 arises right here. In the case � = 1, the hypothesis becomes
NTIME[n] ⊆ BPTISP[t, s]; combining with Theorem 12 as above, we obtain
NTIME[n] ⊆ Π2TIME[tspolylog(t)], which is trivial and does not represent an ef-
ficient complementation.

4.3. Higher levels of the hierarchy. The previous discussion in this section
developed techniques towards proving lower bounds for Σ2TIME[n]. These readily
generalize to higher levels, where hypothesis (8) becomes

Σ�TIME[n] ⊆ BPTISP[t, s](16)

for � ≥ 3. Theorem 12 then allows for an efficient simulation of Σ�TIME[n] by a
Π2-machine, which can be used to eliminate alternations. This allows us to establish
Theorem 1 for values of c < �, where d approaches some small value depending on �
from below as c approaches 1 from above.

For � ≥ 3, we can get a better dependence of d on c when c approaches 1. In this
setting, a Π3-simulation of BPTISP suffices to achieve an efficient complementation.
The ability to use an additional alternation allows us to achieve a more time-efficient
simulation than the one given by Theorem 12. Specifically, we add an alternation
to the latter Π2-simulation and eliminate the time blowup incurred by running the
O(S log T) trials required by the amplification of Theorem 10. Rather than deter-
ministically simulate all of these trials, we use the power of alternation to efficiently
verify that a majority of these trials accept.

Lemma 13. Let M be a randomized machine with constant error bounded away
from 1

2 that runs in time T and space S and that uses R random bits. Then M can be
simulated by another randomized machine M ′ that uses O(R) random bits to achieve
error 2−R. Furthermore, the acceptance of M ′ on input x and random string r can
be decided in

∃R∀logRDTISP[T + R polylog(R), R + S].

We defer the proof to Appendix B. Notice that the final deterministic stage of
the simulation represented by (12) can be replaced with the Σ2-verification given by

576 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Lemma 13. Merging the resulting adjacent existential phases results in a simulation
using one more alternation but running in less time.

Theorem 14.

BPTISP[T, S] ⊆ ∀S log T∃S log T∀log SDTISP[T polylog(T), S log T].(17)

As in sections 4.1 and 4.2, Theorem 14 admits a speedup of BPTISP to Π4 as well
as an efficient complementation of Σ3. When t = nc and s = nd in (16), the latter
eliminates alternations essentially at the cost of raising the running time to the power
of c. For values of c close to 1, this cost is small enough to alleviate the effects of
the extra alternation in (17). In this case, the better dependence of the running time
of the simulation on the space parameter allows us to derive contradictions for larger
values of d than we can by using Theorem 12. On the other hand, for larger values
of c, the extra alternation in (17) has a greater impact and eventually prevents us
from reaching a contradiction. In this case, switching to the more alternation-efficient
simulation given by Theorem 12 allows us to derive a contradiction for such larger
values of c. However, we must restrict d to smaller values in order to counteract the
worse dependence of (12) on the space bound. Therefore, to derive Theorem 1, we
focus on using Theorem 12 to obtain the bounds for large values of c first and then
show how Theorem 14 yields the larger values of d when c is small.

5. Main result. We now use the techniques discussed in the previous sections to
formulate an indirect diagonalization argument for the case � = 2 of Theorem 1. For
clarity, we present the following exposition in terms of subpolynomial space bounds
and generalize these techniques to polynomial space bounds in the subsequent formal
proof. Thus, to obtain a lower bound for Σ2TIME[n], we start with the assumption
(8) for t = nc and s = no(1), i.e.,

Σ2TIME[n] ⊆ BPTISP[nc, no(1)].

Consider a Σ2TIME[T] computation for some time function T (n) = nO(1). We adopt
the approach outlined in section 3.3, namely speeding up Σ2TIME[T] at the cost of
adding alternations and then removing these alternations via an efficient complemen-
tation to arrive at a Π2TIME[o(T)] computation. The hypothesis gives a simulation
of Σ2TIME[T] in BPTISP[T c, T o(1)]. We then apply the square-root speedup of (13)
to obtain a simulation in Π3:

Σ2TIME[T] ⊆ BPTISP[T c, T o(1)]

⊆ ∀T o(1) ∃T
c
2
+o(1)

∀log TDTISP[T c/2+o(1), T o(1)]︸ ︷︷ ︸
(α)

.

We have arrived at a simulation which makes one more alternation than we started
with. To balance the number of alternations, we eliminate one alternation. Notice
that the stages of the computation indicated by (α) can be seen as a computation
in Σ2 taking input of size n + T o(1) and running in time T

c
2+o(1). When T is large

enough, this running time is at least linear in the input size, and we can pad (15) to
allow us to switch (α) to Π2. Merging the resulting adjacent universal stages yields
the desired Π2-simulation:

Σ2TIME[T] ⊆ Π2TIME[T
c2

2 +o(1)].(18)

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 577

For c <
√

2, this results in a net speedup which is a contradiction to Lemma 6.

Thus, we have derived a lower bound of n
√

2−o(1) for QSAT2 on subpolynomial-space
randomized machines. However, we can do better by observing what (18) represents
for values of c that do not immediately contradict Lemma 6. Specifically, (18) gives
a complementation of Σ2 of the same form as (15), but has an exponent cost of c2/2
rather than c. Thus, we have derived a more efficient complementation for sufficiently
large polynomial time bounds T when c < 2.

We now reiterate the above argument, except we use (18) to eliminate alter-
nations more efficiently than we did with (15). This yields an even more efficient
complementation for sufficiently large polynomials T :

Σ2TIME[T] ⊆ Π2TIME[T
c3

4 +o(1)].

This can in turn be used to derive another more efficient complementation, and so on.
In this manner, we can derive a series of complementations, each one more efficient
than the previous one. Specifically, each iteration multiplies the exponent cost of the
complementation by c

2 , so after k iterations we obtain

Σ2TIME[T] ⊆ Π2TIME[T c·ek+o(1)],

where ek = (c
2)k. Note that for c < 2, ek → 0 as k → ∞. Thus, by choosing k large

enough so that c · ek < 1, we arrive at a contradiction to Lemma 6, which proves the
desired lower bound of n2−o(1).

The following lemma precisely derives the series of complementations of Σ2 for
larger space bounds than no(1). Specifically, we consider the hypothesis (8) for poly-
nomials t and s, namely t = nc and s = nd for some constants c ≥ 1 and d > 0,
and derive the running time of the resulting Π2-simulation in terms of c, d, and k, the
number of times the argument is recursively applied.

Lemma 15. Suppose that

Σ2TIME[n] ⊆ BPTISP[nc, nd](19)

for some constants c ≥ 1 and d > 0 where c + 2d ≤ 2. Then for any time function T
and integer k ≥ 0 such that d ≤ fk,

Σ2TIME[T] ⊆ Π2TIME
[(

(T fk + n)c+d
)
polylog(T + n)

]
,

where

fk =

(
c + 2d

2

)k

.(20)

Proof. We give a proof by induction on k. For k = 0, a padded version of the
initial complementation given by (14) offers a Π2-simulation of Σ2TIME[T] running
in the desired time.

We now show the inductive step by using the kth complementation to derive the
(k+1)st. Padding hypothesis (19) gives a simulation of Σ2TIME[T] in BPTISP[(T +
n)c, (T + n)d]. Note that the addition of the term n to T ensures the validity of this
step for arbitrary T , in particular for sublinear T . Applying (13) gives a speedup of
the BPTISP simulation at the cost of three alternations, yielding

Σ2TIME[T] ⊆ ∀(T+n)d log(T+n) Σ2TIME
[
(T + n)

c+2d
2 polylog(T + n)

]
︸ ︷︷ ︸

(α)

.(21)

578 SCOTT DIEHL AND DIETER VAN MELKEBEEK

The complementation given by the inductive hypothesis switches (α) to a Π2-computa-
tion, eliminating one alternation. Specifically, (α) represents a Σ2-machine running
in time

T̃
.
= O

(
(T + n)

c+2d
2 polylog(T + n)

)

on inputs comprised of the original n-bit input, in addition to the (T +n)d log(T +n)
bits guessed in the preceding universal stage, for a total input size of

ñ
.
= O

(
n + (T + n)d log(T + n)

)
.

The inductive hypothesis allows us to simulate (α) by a Π2-machine running in time
O
(
(T̃ fk + ñ)c+d polylog(T̃ + ñ)

)
. Using this Π2-machine for (α) and accounting for

the time spent in the initial universal stage of the simulation given by (21) results in
a Π2-simulation of Σ2TIME[T] running in time big-O of

(T + n)d log(T + n) +
(
(T̃ fk + ñ)c+d

)
polylog(T̃ + ñ).

All that remains is to show that the above running time is of the desired form under
the conditions on c and d. To simplify this expression, note that polylog(T̃ + ñ) =
polylog(T + n). Collecting all of the other polylog terms, the running time can be
written as big-O of

[
(T + n)d +

((
(T + n)

c+2d
2

)fk
+ n + (T + n)d

)c+d
]

polylog(T + n).

The terms depending on T in the big-O expression have exponents d, c+2d
2 fk(c + d),

and d(c + d) (putting aside the polylog(T + n) factor for a moment). Thus, when

d ≤ c+2d
2 fk = fk+1 and c + d ≥ 1, the dominating term is T

c+2d
2 fk(c+d) = T fk+1(c+d).

Similarly, the terms depending on n have exponents d, c+2d
2 fk(c + d), c + d, and

d(c+d). Under the same conditions on c and d, the first and last terms are subsumed
by the second, which can be rewritten as fk+1(c+ d). Additionally, when c+ 2d ≤ 2,
fk ≤ 1 for all k ≥ 0, so that the nc+d term dominates. Thus, we simplify the running
time to big-O of

(
(T fk+1 + n)c+d

)
polylog(T + n),

which is of the desired form.
The series of complementations given by Lemma 15 lead to a contradiction with

Lemma 6 for certain values of c and d, which proves the desired lower bound.
Theorem 16. For any constant c < 2, there exists a positive constant d such

that Σ2TIME[n] cannot be simulated by randomized random-access machines with two-
sided error running in time nc and space nd. Moreover, d approaches 1/2 from below
as c approaches 1 from above.

Proof. For c < 1, the theorem holds for any d by standard techniques. Namely,
take the parity function, which is surely in Σ2TIME[n], and consider any BPTIME[nc]
machine M which purportedly computes it. On input 0n, we must have that

n∑
i=1

Pr[M looks at the ith bit on input 0n] ≤ nc.

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 579

For c < 1, this implies that there is a bit position that M looks at very rarely. Namely,
there exists an i such that

Pr[M looks at the ith bit on input 0n] = o(1).

From this, we can deduce that M has approximately the same probability of accepting
0n as it does 0n with the ith bit flipped. Therefore, M cannot compute parity.

We prove the case for c ≥ 1 via indirect diagonalization. Suppose, by way of
contradiction, that

Σ2TIME[n] ⊆ BPTISP[nc, nd](22)

for some constant d > 0 to be determined later. Then for any time function τ(n),
Lemma 15 gives us the complementations

Σ2TIME[τ] ⊆ Π2TIME
[(

(τfk + n)c+d
)
polylog(τ + n)

]
,

when c+2d ≤ 2 and d ≤ fk. Choosing τ so that τ(n)fk ≥ n allows us to simplify this
to

Σ2TIME[τ] ⊆ Π2TIME[τ (c+d)fk polylog(τ)].(23)

The inclusion (23) gives a contradiction with Lemma 6 for any k with fk < 1
c+d .

Note that fk → 0 as k → ∞ if c+ 2d < 2. Therefore, all that remains is to show that
the latter condition is compatible with the others, i.e., that we can pick a constant
d > 0 and an integer k > 0 such that

c + 2d < 2,(24)

d ≤ fk,(25)

and

fk <
1

c + d
.(26)

For any c and d satisfying (24), consider choosing k ≥ 1 to be the smallest integer
such that (26) is satisfied. Observe that fk ≥ c+d

2 fk−1, and by how we chose k,
fk−1 ≥ 1

c+d . This shows that fk ≥ 1/2, so (25) is satisfied when d ≤ 1/2. From (24),

we have d < 2−c
2 , which is at most 1/2 when c ≥ 1. Therefore, choosing d such that

d < 2−c
2 and then calculating k as described above yields a d and k satisfying all of

the constraints, leading to the desired contradiction. As c approaches 1 from above,
2−c
2 approaches 1/2 from below, so the largest value of d that yields a contradiction

approaches 1/2 as well. This proves that Σ2TIME[n]
⊆ BPTISP[nc, nd] for such c
and d.

We point out that, although we can handle the same values of c as in the de-
terministic setting, the dependence of d on c in Theorem 16 is worse. In particular,
the proofs of the time-space lower bounds for deterministic machines show that d
approaches 1 from below as c approaches 1 from above [9], while in our result d
approaches 1/2 from below as c approaches 1 from above.

The proof of Theorem 16 generalizes to Σ�TIME[n] for any � ≥ 3. In this setting,
the hypothesis becomes

Σ�TIME[n] ⊆ BPTISP[nc, nd].(27)

580 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Along with the Π2-simulation of BPTISP[T, S] of Theorem 12, this yields a collapse
of the form Σ� ⊆ Π2, which allows us to eliminate more than one alternation at the
same cost of removing one alternation in the setting of Theorem 16, where � = 2.
Therefore, we can afford to use more alternations using (4) and achieve a greater
speedup. In a manner analogous to the proof of Theorem 16, we derive a series of
increasingly efficient complementations of Σ� to Π� for c < �, eventually reaching a
contradiction as long as d ≤ 1√

�
.

Alternatively, we can use extra alternations to achieve a dependence of d on c,
where d approaches 1 from below as c approaches 1 from above, as in the deterministic
case. For example, when � = 3, this follows by deriving a complementation of Σ3

following the same technique that derives the complementation of Σ2 given by (18)
when � = 2, modulo the replacement of the Π2-simulation given by Theorem 12 with
the Π3-simulation given by Theorem 14. Specifically, hypothesis (27) and Theorem
14 give a complementation of Σ3:

Σ3TIME[n] ⊆ ∀nd logn∃nd logn∀lognDTISP[nc polylog(n), nd log n].(28)

Consider a Σ3TIME[τ] computation for some time function τ to be determined. Ap-
plying the speedup of (2) to the final deterministic stage of the simulation given by
(28) yields

Σ3TIME[τ] ⊆ ∀τd log τ ∃τd log τΠ2TIME[τ
c+d
2 polylog(τ)]︸ ︷︷ ︸

(α)

.

We can now use (28) to simulate (α) by a Π3-machine, yielding a more efficient
complementation than (28) for certain values of c and d:

Σ3TIME[τ] ⊆ ∀τd log τΠ3TIME[(τ
c+d
2 + n + τd)c polylog(τ)].

When τ(n) ≥ n
2

c+d (and d ≤ c), this simplifies to

Σ3TIME[τ] ⊆ Π3TIME[τ c
c+d
2 polylog(τ)],(29)

yielding a contradiction to Lemma 6 when c <
√

2 and d < 2−c2

c . Therefore, as c
approaches 1 from above, the upper bound on d approaches 1 from below when � = 3.
Indeed, this analysis establishes the desired behavior of d as c approaches 1 for any
level � ≥ 3, since if (27) holds for � > 3, it must also hold for � = 3.

We point out that we can augment the strategy leading to (28) with a bootstrap-
ping argument similar to the one in the proof of Lemma 15 and obtain increasingly
efficient complementations of Σ3. This approach results in a contradiction for c < 2,
whereas the analogous approach using Theorem 12 leads to a contradiction for c < 3.
More generally, at level � ≥ 3, we can modify the above approach to take full ad-
vantage of the stronger hypothesis and arrive at complementations of Σ�. However,
we reach a contradiction only for c < � − 1, whereas the strategy based on Theorem
12 results in a contradiction for c < �. Therefore, we need both approaches to prove
Theorem 1—the latter achieves the lower bound for large values of c, while the former
establishes the dependence of d on c for small values of c.

Since much of the proof of Theorem 1 closely follows the outline of Theorem 16,
we give only a brief sketch of it here. In fact, Theorem 1 also follows from the more

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 581

general Theorem 2, which gives time-space lower bounds for simulations of space-
bounded linear-time alternating machines. A complete proof of Theorem 2 appears
in the next section.

Proof of Theorem 1. The case for c < 1 follows by standard techniques, as in the
proof of Theorem 16.

For the case c ≥ 1, assume that Σ�TIME[n] ⊆ BPTISP[nc, nd] for some constant
d > 0 to be determined later. Using the speedup given by (4) rather than (2), we can
step through an argument similar to that of Lemma 15 to show

Σ�TIME[T] ⊆ Π�TIME
[(

(T gk + n)c+d
)
polylog(T + n)

]
,(30)

as long as c + �d ≤ � and d ≤ gk, where

gk =

(
c + �d

�

)k

.(31)

We can now use (30) as we used Lemma 15 in the proof of Theorem 16. For a
time function τ such that τ(n)gk ≥ n, (30) gives that

Σ�TIME[τ] ⊆ Π�TIME
[
τ (c+d)gk

]
,

which is a contradiction with Lemma 6 when gk < 1
c+d . Therefore, it remains to show

that it is possible to choose a positive d and integer k satisfying the latter condition
as well as those on (30). More specifically, for c < � we can choose d < �−c

� so that

there exists a smallest positive integer k such that gk < 1
c+d . Since gk = c+�d

� ·gk−1 ≥
c+�d
� · 1

c+d , we can guarantee that the only constraint possibly left unsatisfied, namely

d ≤ gk, is met by restricting our choice of d to d ≤ c+�d
� · 1

c+d .

When � = 2, the upper bound on d approaches 1
2 as c approaches 1. For � ≥ 3,

the upper bound on d approaches 1√
�

as c approaches 1, but we can improve it using

the combination of the hypothesis and Theorem 14 that leads to the complementation
of Σ3 represented by (29). For large enough τ , this gives a contradiction for values of
d approaching 1 from below as c approaches 1 from above when � ≥ 3.

Theorem 8 transfers the lower bounds to QSAT�.

6. Other results. In this section, we strengthen Theorem 1 to establish time-
space lower bounds for problems decidable by alternating machines that run in linear
time and use only a small amount of space. We also prove Theorem 3 regarding
time-space lower bounds for tautology on randomized machines with one-sided error.

6.1. Sublinear space on linear-time alternating machines. By paying
close attention to the space used by the simulations in the proof of Theorem 1, we
actually obtain time-space lower bounds for randomized simulations of linear-time
alternating machines using space na for a < 1, given by Theorem 2. The main task is
to use the weaker assumption that Σ�TISP[n, na] ⊆ BPTISP[nc, nd] to eliminate the
alternations introduced by the speedup of (3). This requires that the Σk-simulation
after the speedup use an amount of space which is at most the ath power of its running
time. Since the simulation guesses (and stores) O(BS) bits in each alternating stage,
this restricts us to choose a small value of B, which in turn grants a smaller speedup.
Therefore, our bounds become weaker as a becomes smaller.

To prove Theorem 2, we first prove an analogue of Lemma 15 which gives a series
of complementations of Σ�TISP.

582 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Lemma 17. Suppose that

Σ�TISP[n, na] ⊆ BPTISP[nc, nd](32)

for some integer � ≥ 2 and constants 0 < a ≤ 1, c ≥ 1, and d > 0 with c + �d ≤
1 + (�− 1)a and (1− a)d ≤ ac. Then for any time function T and integer k ≥ 0 such
that d ≤ hk,

Σ�TISP[T, T a] ⊆ Π�TISP
[(

(Thk + n)c+d
)
polylog(T + n), (T + n)d polylog(T + n)

]
,

(33)

where

hk =

(
c + �d

1 + (�− 1)a

)k

.(34)

Proof. The base case k = 0 is given by combining hypothesis (32) and the efficient
Π2-simulation of BPTISP given by Theorem 12. We now prove the inductive step
k → k + 1. Consider a Σ�TISP[T, T a] computation. From hypothesis (32), Theorem
12, and the speedup of (3) (to Σ� rather than Π�), we obtain a simulation which
(neglecting the polylog(T + n) factors) is in

∀(T+n)d Σ�TISP

[
B(T + n)d +

(T + n)c+d

B�−1
, B(T + n)d

]
︸ ︷︷ ︸

(α)

.

In order to apply the inductive hypothesis to complete the complementation to
Π�TISP, the space bound of (α) must be at most the ath power of its running time.
This is the case when B satisfies

B(T + n)d =

(
(T + n)c+d

B�−1

)a

,

which offers the choice

B = (T + n)
ac+(a−1)d
1+(�−1)a

as long as ac + (a− 1)d ≥ 0. For such a choice, (α) is a computation in

Σ�TISP
[
(T + n)

c+�d
1+(�−1)a , (T + n)a

c+�d
1+(�−1)a

]
,

which takes an input of size O(n + (T + n)d), which is in O(n + T d) when d ≤ 1.
Thus, instead of achieving an �th root speedup, as we do when we are not concerned
about the space used by the simulation of (3), we instead achieve a (1 + (� − 1)a)th
root speedup.

The inductive hypothesis gives a Π�TISP-simulation of (α), and hence a Π�TISP-
simulation of Σ�TISP[T, T a] running in time big-O of (neglecting the polylog(T + n)
terms)

T ∗ .
= (T + n)d +

(
(T + n)hk

c+�d
1+(�−1)a + n + T d

)c+d

and using space big-O of

S∗ .
= (T + n)d +

(
(T + n)

c+�d
1+(�−1)a + n + T d

)d

.

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 583

When c + �d ≤ 1 + (� − 1)a and d ≤ 1, S∗ simplifies to (T + n)d. When we have
the further constraint that d ≤ hk+1, T ∗ has the appropriate leading terms and
simplifies to (Thk+1 + n)c+d. Accounting for the polylog factors, we have shown that
the simulation is of the desired form.

We note that the proof of Lemma 17 also yields a version in which the Π� on the
right-hand side of (33) is replaced with Π2. However, we do not see a way to exploit
that fact to strengthen our final result. For the sake of clarity and consistency, we
present Lemma 17 as stated.

When c + �d < 1 + (� − 1)a, hk → 0 as k → ∞. In such a case, we can use
Lemma 17 to derive a contradiction to Lemma 7 in a fashion analogous to how we
used Lemma 15 to prove Theorem 16 for values of c as large as possible. For � = 2, this
gives a value of d approaching a

2 from below as c approaches 1 from above. We can do
better when � ≥ 3 by using Theorem 14 to derive a space-bounded complementation
analogous to that given by (29) in the unrestricted case.

Lemma 18. Suppose that

Σ3TISP[n, na] ⊆ BPTISP[nc, nd](35)

for constants 0 < a ≤ 1, c ≥ 1, and 0 < d ≤ ac with c+ d ≤ 1 + a. Then for any time
function T ,

Σ3TISP[T, T a] ⊆ Π3TISP[(T
c+d
1+a + n)c polylog(T + n), (T + n)d polylog(T + n)].

Proof. Hypothesis (35) and Theorem 14 yield the complementation

Σ3TISP[n, na] ⊆ ∀nd logn∃nd log2 n∀lognDTISP[nc polylog(n), nd log n].(36)

Consider a Σ3TISP[T, T a] computation. Padding (36) and applying the speedup of (1)
(on the Π2-side) to the final deterministic stage gives a simulation of
Σ3TISP[T, T a] which (neglecting the polylog terms) is in

∀(T+n)d∃(T+n)d Π2TISP[B(T + n)d + (T + n)c/B,B(T + n)d]︸ ︷︷ ︸
(β)

.

Choosing B = (T + n)
ac−d
1+a so that the space bound of (β) is the ath power of its

running time places the simulation in

∀(T+n)d ∃(T+n)dΠ2TISP[(T + n)
c+d
1+a , (T + n)a

c+d
1+a]︸ ︷︷ ︸

(γ)

,

when d ≤ ac. Under the same condition, (γ) is a computation in Σ3TISP[(T +

n)
c+d
1+a , (T +n)a

c+d
1+a] taking an input of size n+(T +n)d, so that (36) gives a simulation

of (γ) in Π3TISP. Overall we have derived

Σ3TISP[T, T a] ⊆ Π3TISP

[(
(T + n)

c+d
1+a + n + (T + n)d

)c

,

(T + n)d +
(
(T + n)

c+d
1+a + n + (T + n)d

)d
]

⊆ Π3TISP [(T
c+d
1+a + n)c, (T + n)d],

where the last inclusion follows as long as d ≤ ac and c+d
1+a ≤ 1. Accounting for the

polylog(T + n) terms finishes the proof.
We are now ready to prove Theorem 2.

584 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Proof of Theorem 2. The proof for c < 1 follows from standard techniques, as in
the proof of Theorem 16.

For the case c ≥ 1, assume by way of contradiction that Σ�TISP[n, na] ⊆
BPTISP[nc, nd] for some constant d > 0 to be determined later. Then for a time
function τ , where τ(n)hk ≥ n, Lemma 17 gives the complementation

Σ�TISP[τ, τa] ⊆ Π�TISP
[
τ (c+d)hk polylog(τ), τd polylog(τ)

]
(37)

when c + �d ≤ 1 + (� − 1)a, (1 − a)d ≤ ac, and d ≤ hk. When hk < 1
c+d , the time

bound of the right-hand side of (37) is o(τ). Provided that c < 1 + (� − 1)a, we can
choose a positive d and an integer k such that all the above conditions are met. More

specifically, for any value of d < 1+(�−1)a−c
� , there exists a smallest positive integer k

such that hk < 1
c+d . Since hk = c+�d

1+(�−1)a · hk−1 ≥ c+�d
1+(�−1)a · 1

c+d , we can guarantee

that d ≤ hk by imposing the condition

d ≤ c + �d

1 + (�− 1)a
· 1

c + d
.(38)

It follows that we can meet all constraints mentioned so far by choosing d below some
positive threshold. All that remains to reach a contradiction with Lemma 7 is to
ensure that the space bound of the right-hand side of (37) is o(τa), which can be done
with the additional constraint on d that d < a.

For � = 2 the upper bound on d approaches a
2 from below as c approaches 1 from

above. In the case � ≥ 3 the upper bound on d imposed by the conditions other
than (38) approaches �−1

� a as c approaches 1; condition (38) implies an upper bound

of 1/
√
� for a = 1 and a somewhat weaker bound for smaller values of a. However,

we can achieve a contradiction for larger d as c approaches 1 and � ≥ 3 using the

following argument. For τ(n) ≥ n
1+a
c+d , Lemma 18 gives

Σ3TISP[τ, τa] ⊆ Π3TISP[τ c
c+d
1+a polylog(τ), τd polylog(τ)]

when c+d ≤ 1+a and d ≤ ac. When c <
√

1 + a, we can choose d < min((1+a)−c2

c , a)
and arrive at a contradiction with Lemma 7. As c approaches 1 from above, the upper
bound on d approaches a from below, which gives the desired dependence.

6.2. Tautology on randomized machines with one-sided error. In this
section, we consider problems in the first level of the polynomial-time hierarchy and
establish the time-space lower bounds of Theorem 3 for tautology on randomized
machines with one-sided error. To do so, we actually prove time-space lower bounds
for a more powerful class of machines, namely nondeterministic machines which are
restricted to guess few bits.

Theorem 19. There exists positive constants b and d such that tautology cannot
be solved by nondeterministic random-access machines which run in time
n1.759 polylog(n) and space nd and that nondeterministically guess only nb bits.

By way of the space-bounded derandomization of Theorem 11, a space-bounded
randomized machine with one-sided error can be made to use very few random bits.
Since a randomized machine with one-sided error is also a special type of nondeter-
ministic machine, we can view the one-sided error machines obtained by Theorem 11
as nondeterministic machines which guess very few random bits. Thus, the time-space
lower bounds of Theorem 3 follow as a corollary to Theorem 19.

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 585

Proof of Theorem 3. Let b∗ be the value of b given by Theorem 19, and let d∗ be
the value of d. By the derandomization of Theorem 11, if tautology can be solved in

RTISP[nc, nd], then it can also be solved in ∃nd lognDTISP[nc polylog(n), nd]. Thus
by Theorem 19, tautology is not in RTISP[n1.759, nd] for any d < min(b∗, d∗).

We now focus on proving Theorem 19 using the ideas outlined in section 1.2.
In this setting, the hypothesis of the indirect diagonalization argument becomes

NTIME[n] ⊆ ∀nb

DTISP[nc, nd]. This unlikely scenario certainly yields an efficient
complementation, and it is actually strong enough to allow for something more: Un-
der this hypothesis, we can improve the space-bounded speedups of (2) and (4) for
certain values of b, c, and d.

Lemma 20. Suppose that

NTIME[n] ⊆ ∀nb

DTISP[nc, nd](39)

for some constants b, c ≥ 1, and d such that c + d ≤ 2 and b ≤ c + d − 1. Then for
any time function T , space function S, and integers i ≥ 0 and k ≥ 2,

DTISP[T, S] ⊆ ΠkTIME[(TSk−1)
γi

(k−2)γi+1 + n + S],(40)

where γ0 = 1
2 and γi+1 = (c+d)γi

(c+d)γi+1 .

We point out some facts about the sequence (γi)i in order to clearly assess the
speedup represented by Lemma 20. From the definition, we can see that γi+1 ≤ γi
if and only if γi ≤ γi−1. It follows that the sequence (γi)i is monotonic. Since the

transformation x �→ (c+d)x
(c+d)x+1 has a unique attractive fixed point at 1 − 1

c+d , (γi)i
converges to this value. Specifically, when c + d < 2, this fixed point is less than
1
2 = γ0, so in this case (γi)i decreases monotonically to 1 − 1

c+d .

When S is small, Lemma 20 essentially offers a ((k − 2) + 1
γi

)th-root speedup

of a DTISP[T, S] machine on a Πk-machine, provided this running time remains at
least linear. From the convergence properties of (γi)i, we can see that this speedup
approaches the (k − 1 + 1

c+d−1)th-root as i increases. Recall that the unconditional
speedup offered by (4) gives a similar kth-root speedup. Thus, when hypothesis (39)
holds for c + d < 2, Lemma 20 offers a greater speedup than we had unconditionally.

To prove Lemma 20, we start with the case k = 2 by inductively deriving better
and better speedups of DTISP[T, S] into Π2. For the case k > 2, we use k − 2
alternations for a speedup as in (3) and then one more alternation to speed up the
final deterministic phase in (3) by applying (40) for k = 2. An optimal choice of the
number of blocks B yields the result.

Proof of Lemma 20. We prove the case k = 2 by induction on i. In particular,
we need to prove

DTISP[T, S] ⊆ Π2TIME[(TS)γi + n + S].(41)

For the base case, (41) holds unconditionally for i = 0 by the standard square root
speedup of (2). For the inductive step i → i+1, consider a DTISP[T, S] computation.
Using the Π2-version of the inclusion (1), we speed up this computation in Π2:

DTISP[T, S] ⊆ ∀BS ∃logBDTISP[T/B, S]︸ ︷︷ ︸
(i)

.

We can see that (i) represents a computation in nondeterministic time O(T/B)
taking an input of length O(n + BS). Thus, hypothesis (39) gives a simulation of (i)

586 SCOTT DIEHL AND DIETER VAN MELKEBEEK

which yields

DTISP[T, S] ⊆ ∀BS∀(T/B+n+BS)b︸ ︷︷ ︸
(ii)

DTISP[(T/B + n + BS)c, (T/B + n + BS)d]︸ ︷︷ ︸
(iii)

.

Notice that the final space-bounded deterministic stage (iii) takes an input of size
O(n + BS + (T/B)b) provided b ≤ 1, so that the inductive hypothesis yields a simu-
lation of this stage in

Π2TIME[((T/B + n + BS)c+d)γi + n + BS + (T/B)b + (T/B + n + BS)d].

Merging the initial universal phase of this simulation with that represented by (ii)
and noting that B ≥ 1, we see that we have arrived at a simulation of DTISP[T, S]
on a Π2-machine running in time big-O of

BS + (T/B + n + BS)max(b,d) + ((T/B + n + BS)c+d)γi + n.

To simplify this, notice that when c+d ≤ 2, we have that (c+d)γi ≤ 1 (since γi ≤ 1
2).

If c ≥ 1, we have d ≤ (c+ d)γi (since γi ≥ 1− 1
c+d). Furthermore, if b ≤ c+ d− 1, we

have b ≤ (c + d)γi (since γi ≥ 1 − 1
c+d). Under these conditions, the above running

time simplifies to big-O of

BS + (T/B)(c+d)γi + n.

To minimize this running time up to a constant factor, we choose a value for B such

that BS = (T/B)(c+d)γi , namely B∗ .
= (T

(c+d)γi

S)1/((c+d)γi+1). If B∗ ≥ 1, this choice
results in a running time in big-O of

(TS)
(c+d)γi

(c+d)γi+1 + n = (TS)γi+1 + n.

On the other hand, if B∗ < 1, then B = 1 is the best we can do. This yields a
running time of O(S + n). In either case, O((TS)γi+1 + n+ S) is an upper bound on
the running time. By induction, (41) holds for all i ≥ 0 and b, c, and d as above.

Now that we have established (41), we use it to establish (40) for k > 2. The first
step is to use (3) to speed up a DTISP[T, S]-machine on a Πk−1-machine. This yields

DTISP[T, S] ⊆ ∀BS∃BS · · ·QlogB︸ ︷︷ ︸
k−1

DTISP[T/Bk−2, S]︸ ︷︷ ︸
(α)

,(42)

where Q is ∀ if k is even, and ∃ if k is odd.
We can see that (α) represents a computation taking an input of size O(n+BS)

and running in time T/Bk−2 and space S. Provided b, c, and d satisfy the constraints
of the lemma, (41) gives simulations of (α) on Π2-machines running in time

O
(
(TS/Bk−2)γi + n + BS

)
,

for B ≥ 1. Since deterministic classes are closed under complement, we also get
simulations on Σ2-machines running in the same amount of time. Choosing the former
if Q = ∀ in (42), and the latter otherwise, the alternating stages align properly so
that replacing (α) in this manner adds only one alternation. Overall, we arrive at
a simulation of DTISP[T, S] by a Πk-machine running in the above time bound. To

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 587

minimize this running time up to a constant factor, we choose B so that the two terms
depending on B are equal. This occurs at the value

B† .
= (T γiSγi−1)

1
(k−2)γi+1 .

When B† ≥ 1, such a choice yields the running time O
(
(TSk−1)

γi
(k−2)γi+1 + n

)
. If

B† < 1, then B = 1 is the best we can do and the running time becomes O(S + n).
In both cases, we obtain an upper bound of

O
(
(TSk−1)

γi
(k−2)γi+1 + n + S

)

on the running time, which proves the claim.
We now use a bootstrapping argument to derive a series of increasingly efficient

complementations of the linear-time hierarchy at higher and higher levels. At each
level, the improved speedup granted by Lemma 20 for sufficiently small b and d allows
a more efficient complementation than the unconditional speedup of (4), which is key
to obtaining quantitatively stronger lower bounds.

Lemma 21. For any constants 1 ≤ c < 2, ε > 0, and integer � ≥ 2, there exist
positive constants b and d such that if

NTIME[n] ⊆ ∀nb

DTISP[nc, nd],(43)

then

Σ�TIME[n] ⊆ Π�TIME[nc�+ε],(44)

where

c� =

{
c(c− 1) for � = 2,
c2(c−1)

∏�−1

j=2
cj

(�−1)(c−1)+1 otherwise.
(45)

Closed forms for the exponent c� defined by (45) become rather complex. One
can show by induction that

c� =
c3·2

�−3

(c− 1)2
�−2

((�− 1)(c− 1) + 1) ·
∏�−1

k=3((k − 1)(c− 1) + 1)2�−k−1

for � > 2.
Proof of Lemma 21. Let c and ε be given. We argue by induction that we can

choose b and d appropriately so that (43) yields the desired inclusion. For � = 2, we
use the hypothesis to obtain a DTISP simulation of Σ2TIME[n] when b ≤ c:

Σ2TIME[n] = ∃n∀nDTIME[n] ⊆ ∃n∃nb

DTISP[nc, nd] ⊆ NTIME[nc]

⊆ ∀nbc

DTISP[nc2 , ncd].

The input to the final deterministic stage is of size n+ nbc, so applying Lemma 20 to
simulate this stage yields

Σ2TIME[n] ⊆ ∀nbc

DTISP[nc2 , ncd] ⊆ Π2TIME[(nc(c+d))γi + n + nbc + ncd].

588 SCOTT DIEHL AND DIETER VAN MELKEBEEK

As i → ∞, the exponent c(c + d)γi → c(c + d − 1). For d such that this limit is
at most c(c − 1) + ε

2 , we can choose i large enough so that the exponent is at most
c(c− 1) + ε. Under the additional constraints b, d ≤ c− 1, the running time becomes
O(nc(c−1)+ε + n). Therefore, when c(c− 1) + ε ≥ 1, we have the desired inclusion. In
fact, this is the only case we need to consider, for if c(c−1)+ ε < 1, we can find a > 1
such that ac(c−1)+ε = 1 and apply the above argument to Σ2TIME[na]. This yields
the inclusion Σ2TIME[na] ⊆ Π2TIME[n], which contradicts Lemma 6. Therefore, the
claim holds for � = 2.

Now suppose that for 2 ≤ k < �, ΣkTIME[n] ⊆ ΠkTIME[nck+ε′] for an ε′ to
be determined later. Let bk,ε′ and dk,ε′ denote the appropriate values of b and d
given by the inductive hypothesis for the complementation at Σk to hold. To show
that the desired complementation holds for Σ�, we first derive a simulation of such
a computation in ∀nDTISP[nO(1), nd] and then use Lemma 20 to achieve a faster
simulation in Π�.

We accomplish the former by iteratively deriving simulations one level lower in
the polynomial-time hierarchy. At step j = 0, . . . , �−3, we start with a Σ�−j-machine
and use a complementation given by the inductive hypothesis to obtain a simulation
by a Σ�−j−1-machine. This follows by complementing the computation following the
initial existential stage of the Σ�−j-machine, which is a Π�−j−1-computation. Thus,
when the hypothesis holds for b ≤ b�−j−1,ε′ and d ≤ d�−j−1,ε′ , we derive a simulation
with one less alternation while raising the running time to the power of c�−j−1 + ε′.
This lets us write

Σ�TIME[n] ⊆ Σ�−1TIME[nc�−1+ε′]

⊆ Σ�−2TIME[n(c�−1+ε′)(c�−2+ε′)]

. . .

⊆ Σ2TIME[n(c�−1+ε′)(c�−2+ε′)···(c2+ε′)].

Defining C�,ε′
.
= (c�−1 + ε′)(c�−2 + ε′) · · · (c2 + ε′) and applying hypothesis (43) twice

to the latter simulation (as in the base case), we obtain the desired simulation:

Σ�TIME[n] ⊆ ∀n
bcC

�,ε′︸ ︷︷ ︸
(α)

DTISP[nc2C�,ε′ , ncdC�,ε′]︸ ︷︷ ︸
(β)

.

The input to (β) is of size O(n + nbcC�,ε′), so applying Lemma 20 to this stage and
absorbing the universal stage (α) gives

Σ�TIME[n] ⊆ Π�TIME[(nc(c+(�−1)d)C�,ε′)
γi

(�−2)γi+1︸ ︷︷ ︸
(∗)

+n + nbcC�,ε′ + ncdC�,ε′︸ ︷︷ ︸
(∗∗)

],(46)

for small enough b and d and any integer i ≥ 0. When d is yet further restricted, the

exponent of the term (∗) approaches
c2(c−1)C�,ε′

(�−1)(c−1)+1 + ε
4 as i grows. This allows the choice

of i large enough, so this exponent is at most ε
4 away from its limit point, namely at

most
c2(c−1)C�,ε′

(�−1)(c−1)+1 + ε
2 . We next choose ε′ small enough so that all of the terms in the

exponent of (∗) involving ε′ sum to at most ε
2 . Under these circumstances, an upper

bound for the exponent of (∗) is

c2(c− 1)C�,ε′

(�− 1)(c− 1) + 1
+

ε

2
≤ c2(c− 1)

∏�−1
i=2 ci

(�− 1)(c− 1) + 1
+ ε = c� + ε.

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 589

When we also have b, d ≤ c(c−1)
(�−1)(c−1)+1 , the term (∗) dominates (∗∗), so the Π�-

simulation represented by (46) runs in time O(nc�+ε + n). When c� + ε ≥ 1, this
shows that (44) holds for b and d small enough to meet all of the above constraints.
This is the only case we need to consider, since c� + ε < 1 results in a contradiction to
Lemma 6 by applying the above argument to Σ�TIME[na] for an appropriate a > 1
(as in the step for � = 2).

Lemma 21 gives a series of complementations which are increasingly unlikely and
eventually contradict Lemma 6 for certain values of c. We obtain Theorem 19 by
analyzing the behavior of the sequence of exponents c� defined by (45).

Proof of Theorem 19. (See page 22 for the statement.) For any integer � ≥ 2,
consider c� defined by (45) as a function of c. One can show by induction on �
that c� monotonically grows from c� = 0 at c = 1 to infinity. By continuity, there
exists a unique value c∗� at which c� equals 1. For values c < c∗� , Lemma 21 gives a
contradiction to Lemma 6 for a choice of ε small enough such that c� + ε < 1. Thus,

we can rule out simulations of NTIME[n] in ∀nb

DTISP[nc, nd] for all c < c∗� and b, d
given by Lemma 21.

By (45), we have that at c = c∗� ,

c�+1 =
c�+1

c�
=

(
1 − 1

� + 1
c−1

)
· c� < 1.

The monotonicity of c�+1 then implies that c∗�+1 > c∗� ; i.e., the sequence (c∗�)� increases.
Numerical calculations show that c∗14 ≈ 1.759708 and c∗15 ≈ 1.759719, which is enough
to prove the claimed lower bound of n1.759 polylog(n).

7. Further research. The techniques discussed in this work allow us to estab-
lish time-space lower bounds for QSAT� on two-sided error randomized machines for
� ≥ 2. They do not seem to extend to the first-level problems of satisfiability or
tautology in a straightforward way. This is due only to our inability to exploit the
assumption NTIME[n] ⊆ BPTISP[t, s] to obtain an efficient complementation at some
level of the polynomial-time hierarchy. Thus, establishing time-space lower bounds
for satisfiability on randomized machines with two-sided error remains open.

We employed and further developed a technique from [24] to improve the known
lower bounds for satisfiability on deterministic machines. The original technique also
leads to improved lower bounds for QSAT� with � ≥ 2 on deterministic machines. For
example, it allows the boosting of the time lower bound for QSAT2 on deterministic
subpolynomial-space machines from n2 [9] to n2.761 [24]. Although we were able to find
purchase in adopting these techniques to establish better lower bounds for randomized
machines with one-sided error, we have been unable to adopt them to improve our
results for machines with two-sided error. As a next step, we suggest finding a way to
extend the improved lower bounds for QSAT� with � ≥ 2 on deterministic machines
to randomized machines with two-sided error.

Appendices. We now prove some results on the complexity of Nisan’s generator
(Theorem 11) and on deterministic amplification by random walks on a Gabber–Galil
expander graph (Lemma 13).

Appendix A. Nisan’s generator. Theorem 11 follows from an analysis of a
time- and space-efficient implementation of Nisan’s pseudorandom generator using
fast Fourier transform (FFT) multiplication methods to quickly evaluate and invert
linear hash functions. In fact, we prove a somewhat stronger version of Theorem 11.

590 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Theorem 22. Any randomized machine M running in time T and space S
with error ε can be simulated by another randomized machine that runs in time
O(T log2 S log logS) and space O(S log T) and that uses only O(S log T) random bits.
If two-way access to the random bits is allowed, the space requirement is reduced to
O(S). The error of the simulation is ε + 2−S and is one-sided if M has one-sided
error.

Theorem 22 gives a tighter time bound than the bound of O(T polylog(T)) stated
in Theorem 11. Our arguments in sections 5 and 6 are not noticeably improved
by using the tighter bound stated in Theorem 22, so we use the simpler bounds of
Theorem 11 there for clarity. We state the tighter bound here because it may be of
independent interest.

Before proving Theorem 22, we introduce Nisan’s pseudorandom generator [20]
and discuss some of its properties. Define

Gm,k : {0, 1}m ×Hk
m → ({0, 1}m)2

k

,

where Hm is a family of two-universal hash functions h : {0, 1}m → {0, 1}m [4]. The
evaluation of Gm,k is defined recursively as

Gm,k(y, h1, . . . , hk) =

{
y if k = 0, else,
Gm,k−1(y, h1, . . . , hk−1) ◦Gm,k−1(hk(y), h1, . . . , hk−1),

where “◦” denotes concatenation. Given a randomized machine M running in time T
and space S, we define G

.
= Gm,k for k = log T

m , where m = Θ(S) will be determined
later. The simulation of M proceeds with the output of G as the random string, one
block of length m at a time. Nisan proves that G fools M in the following sense.

Theorem 23 (Nisan [20]). There exists a constant ν such that if M is a ran-
domized machine running in time T and space S on input x, then for m ≥ ν · S and
k = log T

m ,

∣∣∣∣Pr
r

[M(x, r) accepts] − Pr
y,h1,...,hk

[M(x,Gm,k(y, h1, . . . , hk)) accepts]

∣∣∣∣ ≤ 2−S ,

where M(x, r) denotes the outcome of running M on input x and random string r.
This satisfies the error requirements of Theorem 22, so all that remains to prove

Theorem 22 is to show how to simulate M on the random string G(y, h1, . . . , hk)
within the correct bounds on the time, space, and randomness.

We start with the standard simulation that computes G in a blockwise fashion,
where each subsequent m-bit block is computed after m simulation steps of M using
the current block. One way to do this is to compute each block from scratch, namely,
apply the appropriate sequence of at most k hash functions to the m-bit seed y.
Although this technique is good enough to derive our main results, we can do slightly
better, namely by a factor of O(log S

log(T/S)). This improvement follows by computing

each block in a recursive manner, which avoids the calculations that the “from scratch”
method does over and over again. We now work out the details of our simulation to
complete the proof of Theorem 22.

Proof of Theorem 22. To accommodate the approach described above, we choose
m = Θ(S) such that m ≥ ν · S and is of the form 2 · 3q for some integer q ≥ 0. The
latter guarantees a simple explicit formula for an irreducible polynomial of degree m
over GF(2), namely z2·3q

+ z3q

+ 1 [16, Thm. 1.1.28, p. 13]. We choose Hm to be the
set of all invertible linear mappings from GF(2m) to GF(2m), i.e., all functions of the

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 591

form x �→ ax+b where a, b ∈ GF(2m) and a
= 0 [4].2 Such functions can be described
by 2m bits, so that the input to G can be described by (2k + 1)m = O(S log T) bits.
This meets the requirements on the randomness.

To reach the desired time and space bounds, we must be able to evaluate the
functions in Hm much faster than the naive bound of O(m2). Using FFT multi-
plication techniques based on those of Schönhage and Strassen and exploiting the
sparseness of the above irreducible polynomial, we can evaluate h ∈ Hm in time
O(m logm log logm) and space O(m). These fast multiplication techniques can be
combined with the extended Euclidean algorithm to invert h ∈ Hm in time
O(m log2 m log logm) and space O(m). See [11, Cor. 11.8, p. 319] for more details.
We use these algorithms to output the blocks of Gm,k(y, h1, . . . , hk) recursively with
small space overhead. Specifically, we define the procedure Pm which uses global reg-
isters containing k ≥ 0, y ∈ {0, 1}m, and h1, h2, . . . , hk ∈ Hm to perform the following
steps:

1. If k > 0:
2. k ← k − 1;
3. Recursively call Pm;
4. y ← hk+1(y);
5. Recursively call Pm;
6. y ← h−1

k+1(y); k ← k + 1 and return.
7. Else output y and return.

The output of Pm(k, y, h1, . . . , hk) is exactly Gm,k(y, h1, . . . , hk). Evaluating Pm takes
2k recursive calls, each accompanied by an evaluation of hi or h−1

i . Thus, the overall
time complexity to output Gm,k is O(2k · m log2 m log logm). By replacing y with
hk(y) instead of writing down hk(y) separately on the worktape, only a constant
amount of space overhead is required for each level. Thus, the space requirement
is O(m + k). For the settings of G, m = O(S), and k = log T

S + O(1), the time

becomes O(T log2 S log logS), while the space is O(S + log T
S), which is O(S) since

T ≤ 2S without loss of generality. This assumes that the hash functions can be
accessed repeatedly, so there is an additional space cost of O(S log T) to copy the
hash functions from the random tape to the worktape, bringing the space bound to
O(S log T + S) = O(S log T). However, if the simulation has two-way access to the
random tape, this cost is avoided.

Our simulation runs M for O(S) steps every time Pm outputs a block of G, for
a total of T steps while using space S. Thus, the above time and space bounds for
computing G hold for the simulation as a whole.

Appendix B. Deterministic amplification. We now prove Lemma 13, begin-
ning with a brief discussion of some properties of the amplification given by Theorem
10. Let M be a randomized machine that runs in time T and space S and that uses R
random bits. We may assume that M has an error of at most some small constant δ
to be determined later, since this can be achieved with only a constant overhead from
a machine with any error bounded away from 1/2. The amplified machine M ′ given
by Theorem 10 interprets its random string r′ of length O(R) as an initial vertex in
a Gabber–Galil graph followed by O(R) edge labels (of constant size) specifying the
edges on a walk in the graph. Formally, this graph is described as follows.

Definition 24 (Gabber–Galil graph [10]). The Gabber–Galil graph GG(m) is
a graph with vertices Zm × Zm of degree 5 where the vertices adjacent to (x, y) ∈

2Excluding the noninvertible functions (a = 0) introduces a small bias. Although our family Hm

is not perfectly two universal, it is close enough for our purposes.

592 SCOTT DIEHL AND DIETER VAN MELKEBEEK

Zm×Zm are the five pairs (x′, y′) obtained from the matrix multiplication [x′, y′, 1]T =
Ai[x, y, 1]T (over Zm) for 1 ≤ i ≤ 5, where

A1 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , A2 =

⎡
⎣ 1 0 0

1 1 0
0 0 1

⎤
⎦ , A3 =

⎡
⎣ 1 0 0

1 1 1
0 0 1

⎤
⎦ ,

A4 =

⎡
⎣ 1 1 0

0 1 0
0 0 1

⎤
⎦ , A5 =

⎡
⎣ 1 1 1

0 1 0
0 0 1

⎤
⎦ .

We now state a useful lemma which says that the vertex at the end of a path of
length p in GG(2k) can be found in time quasilinear in p and k, an improvement on
the naive bound of O(pk). We leave the proof for later.

Lemma 25. Given a vertex (x, y) of the graph GG(2k) and a path π of length p
indicated by edge labels (e1, e2, . . . , ep), where 1 ≤ ei ≤ 5 for 1 ≤ i ≤ p, the vertex
connected to (x, y) by π can be determined in time O(mpolylog(m)) and space O(m)
where m = k + p.

For the purposes of Theorem 10, the vertices of the Gabber–Galil graph must
be described by R bits corresponding to the possible random strings for M . To this
end, we choose GG(2R/2). Given input x and random string r′, M ′ proceeds by
deterministically carrying out the walk of length p = O(R) on GG(2R/2) indicated by
r′. Every β steps, where β is some constant, M ′ simulates M on input x and a random
string corresponding to the label of the current vertex on the walk. M ′ accepts if a
majority of these trials accept. As each edge relation can be computed by simple
arithmetic in time O(R) and space O(R), and running M requires time T and space
S, M ′ runs in time O(R2 +RT) = O(RT) and space O(R+S). Cohen and Wigderson
[5] and Impagliazzo and Zuckerman [13] show that when β is large enough and M has
error smaller than some constant δ, the trials specified by a randomly chosen r′ are
close enough to uniform so that M ′ errs only with probability 2−R. This establishes
Theorem 10.

We now prove Lemma 13, giving a more time-efficient manner to determine if M ′

accepts on x and r′ at the cost of using alternations.
Proof of Lemma 13. To arrive at Lemma 13, we show how to use alternations to

verify if there is a majority of trials on the walk given by the random string r′ where
M accepts, in such a way that the final deterministic phase need only to simulate M
once. Specifically, given input x and random string r′, we can express the acceptance
condition of M ′ as

(∃Z ⊆ {1, 2, . . . , R′}, |Z| = �R′/2�)(∀i ∈ Z)M(x, ri) accepts,(47)

where R′ is the number of trials of M specified by r′, and ri is the random string
produced for the ith trial. Observe that this describes a Σ2-computation which accepts
if and only if M ′ accepts. The initial existential phase guesses the characteristic string
of the set Z consisting of �R′/2� indices of the R′ trials, for a total of R′ = O(R)
bits. The universal phase guesses logR′ = O(logR) bits to determine the index
of a trial to verify. The final deterministic stage must first determine ri and then
run M on input x and random string ri. Once the former has been computed, the
latter task takes time T and space S. Since ri corresponds to the label of the (βi)th
vertex on the walk in GG(2R/2) specified by r′, Lemma 25 shows that ri can be
computed in time O(R polylog(R)). Therefore, the final deterministic stage takes

LOWER BOUNDS FOR PH ON RANDOMIZED MACHINES 593

time O(T + R polylog(R)) and space O(R + S). All told, we have shown that (47) is
a computation in

∃R∀logRDTISP[T + R polylog(R), R + S],

which accepts if and only if M ′ accepts. This completes the proof.
All that remains is to establish Lemma 25, which follows from a divide-and-

conquer strategy to efficiently evaluate a product of p matrices Ai.
Proof of Lemma 25. Throughout this proof, we use the fact that multiplication of

b-bit integers can be done in time O(bpolylog(b)) and space O(b). This follows from
the FFT techniques of Schönhage and Strassen [11, Thm. 8.24, p. 240]. Let

A
.
= AepAep−1 · · ·Ae1 .

Then the vertex (x′, y′) connected to (x, y) by π satisfies [x′, y′, 1]T = A[x, y, 1]T mod
2k. Therefore, computing (x′, y′) reduces to computing A and multiplying by the
vector [x, y, 1]T modulo 2k.

We accomplish the latter with a divide-and-conquer strategy. Namely, we
split the product approximately in half and recursively compute the subproducts
AepAep−1 · · ·Ae�p/2�+1

.
= B and Ae�p/2�Ae�p/2�−1

· · ·Ae1
.
= C. It can be shown by in-

duction that any product of p matrices Ai has entries bounded by 2p−1, since each
column of any matrix Ai has at most two nonzero entries, which are ones. This shows
that once B and C are computed, A can be computed as A = BC by O(1) multipli-
cations and additions of integers of bit length p/2, so we require time O(p polylog(p))
in addition to the recursive calls. Thus, by following this strategy, we can see that at
each recursive call to compute the product of q matrices, we solve two subproblems
of size q/2 and do an additional amount of work which is quasilinear in q and uses
space O(q). Thus, A can be computed in total time O(ppolylog(p)) and space O(p).

By our observation on the size of the product matrix entries, we also know that
the entries of the matrix A are at most 2p−1. Therefore, computing the product
A[x, y, 1]T and reducing modulo 2k can be done in time O(mpolylog(m)) and space
O(m) as desired.

We point out that another natural way to arrive at Theorem 14 is to use expander
walks to generate the shift vectors for Lautemann’s simulation in lieu of amplifying
the confidence of the simulated algorithm as above. While the effect of the latter
is to reduce the number of shift vectors needed, the former allows a large number
of “good” shifts to be described by very few bits. Briefly, the hitting property of
expanders guarantees that the shifts satisfy the needed property (i.e., the shifts of
the accepting set cover the entire set of random strings) with approximately the same
probability when they are chosen by a random walk on a Gabber–Galil graph as when
they are chosen independently. Thus, we can generate a set of O(R) good shifts in
the initial stage of the simulation with only O(R) bits. Furthermore, each shift can be
computed efficiently by Lemma 25, so we can avoid the O(R) blowup in the running
time of the final deterministic stage by using an additional alternation to verify that
M accepts on some shift. This approach leads to a simulation that matches the
parameters of Theorem 14.

Acknowledgments. We would like to thank Bess Berg as well as the anonymous
referees of ICALP 2005 and SIAM for their helpful comments. We are grateful to
Emanuele Viola for pushing us to optimize the space parameter in Theorems 1 and 2.

594 SCOTT DIEHL AND DIETER VAN MELKEBEEK

REFERENCES

[1] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay, Time-space tradeoffs
in the counting hierarchy, in Proceedings of the 16th IEEE Conference on Computational
Complexity, IEEE, Los Alamitos, CA, 2001, pp. 295–302.

[2] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, EATCS Monogr. Theoret.
Comput. Sci. II, Springer-Verlag, Berlin, 1988.

[3] P. Beame, M. Saks, X. Sun, and E. Vee, Time-space trade-off lower bounds for randomized
computation of decision problems, J. ACM, 50 (2003), pp. 154–195.

[4] L. Carter and M. Wegman, Universal hash functions, J. Comput. System Sci., 18 (1979),
pp. 143–154.

[5] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proceedings of the 30th IEEE Symposium on Foundations of Computer Science,
IEEE, Los Alamitos, CA, 1989, pp. 14–19.

[6] S. Cook, Short propositional formulas represent nondeterministic computations, Inform. Pro-
cess. Lett., 26 (1988), pp. 269–270.

[7] S. Diehl and D. van Melkebeek, Time-space lower bounds for the polynomial-time hierar-
chy on randomized machines, in Proceedings of the 32nd International Colloquium On
Automata, Languages and Programming, Springer-Verlag, Berlin, 2005, pp. 982–993.

[8] L. Fortnow, Time-space tradeoffs for satisfiability, J. Comput. System Sci., 60 (2000), pp. 337–
353.

[9] L. Fortnow and D. van Melkebeek, Time-space tradeoffs for nondeterministic computation,
in Proceedings of the 15th IEEE Conference on Computational Complexity, IEEE, Los
Alamitos, CA, 2000, pp. 2–13.

[10] O. Gabber and Z. Galil, Explicit constructions of linear-sized superconcentrators, J. Comput.
System Sci., 22 (1981), pp. 407–420.

[11] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press,
Cambridge, UK, 2003.

[12] F. Hennie and R. Stearns, Two-tape simulation of multitape Turing machines, J. Assoc.
Comput. Mach., 13 (1966), pp. 533–546.

[13] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1989,
pp. 248–253.

[14] R. Kannan, Towards separating nondeterminism from determinism, Math. Systems Theory,
17 (1984), pp. 29–45.

[15] C. Lautemann, BPP and the polynomial hierarchy, Inform. Process. Lett., 17 (1983), pp. 215–
217.

[16] J. H. van Lint, Introduction to Coding Theory, 3rd ed., Springer-Verlag, Berlin, 1999.
[17] R. Lipton and A. Viglas, On the complexity of SAT, in Proceedings of the 40th IEEE Sym-

posium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1999, pp. 459–464.
[18] G. A. Margulis, Explicit construction of concentrators, Problems Inform. Transmission, 9

(1973), pp. 325–332.
[19] D. van Melkebeek, Time-space lower bounds for NP-complete problems, in Current Trends

in Theoretical Computer Science, G. Paun, G. Rozenberg, and A. Salomaa, eds., World
Scientific, River Edge, NJ, 2004, pp. 265–291.

[20] N. Nisan, On read-once vs. multiple access to randomness in logspace, Theoret. Comput. Sci.,
107 (1993), pp. 135–144.

[21] N. Nisan, RL ⊆ SC, Comput. Complex., 4 (1994), pp. 1–11.
[22] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[23] E. Viola, On Probabilistic Time Versus Alternating Time, Tech. Report TR-05-137, Elec-

tronic Colloquium on Computational Complexity, 2005. Available online at http://eccc.hpi-
web.de/eccc-reports/2005/TROS-137/index.html.

[24] R. Williams, Better time-space lower bounds for SAT and related problems, in Proceedings of
the 20th IEEE Conference on Computational Complexity, IEEE, Los Alamitos, CA, 2005,
pp. 40–49.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 595–608

INFINITELY-OFTEN AUTOREDUCIBLE SETS∗

RICHARD BEIGEL† , LANCE FORTNOW‡ , AND FRANK STEPHAN§

Abstract. A set A is autoreducible if one can compute, for all x, the value A(x) by querying
A only at places y �= x. Furthermore, A is infinitely-often autoreducible if, for infinitely many
x, the value A(x) can be computed by querying A only at places y �= x. For all other x, the
computation outputs a special symbol to signal that the reduction is undefined. It is shown that
for polynomial time Turing and truth-table autoreducibility there are A, B, C in the class EXP
of all exponential-time computable sets such that A is not infinitely-often Turing autoreducible,
B is Turing autoreducible but not infinitely-often truth-table autoreducible and C is truth-table
autoreducible with g(n) + 1 queries but not infinitely-often Turing autoreducible with g(n) queries.
Here n is the length of the input, g is nondecreasing, and there exists a polynomial p such that p(n)
bounds both the computation time and the value of g at input of length n. Furthermore, connections
between notions of infinitely-often autoreducibility and notions of approximability are investigated.
The Hausdorff-dimension of the class of sets which are not infinitely-often autoreducible is shown to
be 1.

Key words. algorithmic randomness, autoreducible sets, infinitely-often autoreducible sets,
computational complexity, exponential-time computable sets, Hausdorff-dimension

AMS subject classifications. 03D15, 03D30, 68Q15, 68Q30

DOI. 10.1137/S0097539704441630

1. Introduction. Consider a set where every element is chosen independently
at random. Intuitively the membership of x should not depend on the membership of
the other elements. Indeed, random sets are not autoreducible; that is, it is impossible
to compute for every x the membership of x from the membership of the y �= x. Ebert
[12, 13] gives the surprising result that one can nevertheless compute correctly the
membership of an infinite number of elements of a random set from the membership
of the other ones. The present work extends the study of this notion, called infinitely-
often autoreducible.

Trakhtenbrot [24] introduced in the recursion theoretic context the notion of au-
toreducibility. There are many natural examples of autoreducible sets; for example,
any index set B of partial recursive functions is autoreducible: By the Padding Lemma
there is a recursive strictly increasing function p such that, for all x, ϕx = ϕp(x). It
follows that one can for given x compute the value p(x) which is different from x
and query whether p(x) ∈ B. As ϕx = ϕp(x), one has that x, p(x) are either both

∗Received by the editors March 3, 2004; accepted for publication (in revised form) January 18,
2006; published electronically August 29, 2006.

http://www.siam.org/journals/sicomp/36-3/44163.html
†Department of Computer and Information Sciences, Temple University, Wachman Hall (038-24),

1805 North Broad St., Philadelphia, PA 19122-6094 (beigel@cis.temple.edu).
‡Department of Computer Science, University of Chicago, 1100 E. 58th St., Chicago, IL 60637

(fortnow@cs.uchicago.edu). This research was done while the second author was at the NEC Research
Institute.

§Department of Mathematics and School of Computing, National University of Singapore, 2
Science Drive 2, Singapore 117543, Republic of Singapore (fstephan@comp.nus.edu.sg). This au-
thor’s research was supported by the Deutsche Forschungsgemeinschaft (DFG), Heisenberg grant
Ste 967/1-1, while he worked at the Universität Heidelberg until August 2003. From August 2003
until June 2004, he worked at the National ICT Australia LTD, which is funded by the Australian
Government’s Department of Communications, Information Technology and the Arts and by the
Australian Research Council through Backing Australia’s Ability and the ICT Centre of Excellence
Program. Since July 2004, he has worked at the National University of Singapore and has been
partially supported by NUS grant R252–000–212–112.

595

596 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

in B or both outside B and thus one knows whether x ∈ B. Other natural exam-
ples of autoreducible sets are retraceable sets, cylinders, creative sets like the halting
problem, semirecursive sets, and recursive sets; see Odifreddi [20] for the definitions
of these types of sets. On one hand, autoreducible sets are quite common and there
are even nonrecursive Turing degrees containing only autoreducible sets [15]. On the
other hand, Trakhtenbrot [24] constructed recursively enumerable sets which are not
autoreducible.

The notion of autoreducibility can easily be carried over to resource-bounded
reducibilities r such as polynomial time Turing reducibility.

Definition 1.1. A set is r-autoreducible iff there is an r-reduction that computes
for every x the value A(x) from the oracle A without querying A at x.

For example, a many-one EXP-complete set A satisfies that A is many-one re-
ducible to A via some function f ; that is, A(x) = A(f(x)) = 1 − A(f(x)). This
guarantees that f(x) �= x for all x. So one has that A is autoreducible by a poly-
nomial time Turing reduction which asks exactly one query: What is A at f(x)?
Knowing this, the Turing reduction defines A(x) = 1 −A(f(x)).

In the present work, polynomial time truth-table and Turing reducibility are
considered where the number of questions might also be bounded. Truth-table re-
ducibility is different from Turing reducibility in the sense that the place of the nth
query does not depend on the oracle’s answers to previous queries and one can com-
pute an explicit polynomially sized list of places queried. So the oracle is queried at
many places in parallel, and afterwards its answers are used by the program of the
truth-table reduction without any further interaction with the oracle.

Also in complexity theory there are many natural examples of autoreducible sets.
The set SAT is truth-table autoreducible with two queries: If φ is any formula with
the variable u built in, then the derived formulas φ[u → 0] and φ[u → 1], where u
has been replaced by the logical constants 0 and 1, respectively, are different from φ,
and one can compute with two queries to SAT whether these formulas are satisfiable.
Then φ is satisfiable iff at least one of the formulas φ[u → 0] and φ[u → 1] is.
By the way, Schnorr [23] studied this special case where the autoreduction goes to
instances shorter than the original input and called a set self-reducible if it has such
an autoreduction. Buhrman et al. [11] showed that the Turing complete sets for
EXP are Turing autoreducible, while some of the Turing complete sets for the class

EEXPSPACE of all sets which are, for some polynomial p, computable in space 22p(n)

,
fail to have this property. It is unknown whether all sets that are Turing complete for
EEXP are autoreducible; settling this open question would separate some complexity
classes which are not yet known to be different.

Random sets are not autoreducible, but Ebert [12, 13] showed that they satisfy
the following surprising variant, called infinitely-often autoreducible.

Definition 1.2. A set A is infinitely-often r-autoreducible iff there is an r-
reduction M which at input x queries A only at places y �= x. For infinitely many
x, M computes A(x) correctly; for all other x, M is undefined and signals this by
outputting a special symbol.

The result that random sets are infinitely-often autoreducible has received a lot
of attention. Not only because one would not expect that it is possible to make
predictions about the membership of x in a random set by looking at which other
y are in, but also because Ebert [12] introduced for his proof a mathematical puzzle
which was easy to understand, became famous, and had some interest in its own right:
the hat problem. It was the topic of several newspaper articles, for example, in the

INFINITELY-OFTEN AUTOREDUCIBLE SETS 597

German weekly newspaper Die Zeit [10] and in the New York Times [22].
It is already well known that there are sets which are not infinitely-often auto-

reducible [7], but these examples are outside EXP, the class of all exponential time
computable sets. EXP is the first deterministic time class known to contain nondeter-
ministic polynomial time NP and polynomial space PSPACE. Therefore, it is natural
to study the structure of the sets inside EXP and the main result of the present work,
given in section 2, says that there is a set A in EXP which is not infinitely-often Tur-
ing autoreducible. In section 3, the major autoreducibility notions are separated by
showing that there are sets in EXP which are autoreducible for the first reduction but
not infinitely-often autoreducible by the second reduction; this is done in particular
for Turing versus truth-table and for truth-table with g(n) + 1 queries versus Turing
with g(n) queries. This second result implies the separation of truth-table versus
bounded truth-table. In section 4, the relations between notions of approximability
and infinitely-often autoreducibility are investigated. Finally, in section 5, it is shown
that there are a lot of sets in EXP which are not autoreducible: The class of these
sets has Hausdorff-dimension 1 in exponential time.

Notation 1.3. The notation follows standard textbooks in recursion theory such
as that of Odifreddi [20] with some exceptions: The function x �→ log(x) denotes the
logarithm of basis 2 with the exception that log(q) = 0 for q < 1 in order to avoid to
deal with too many exceptions in logarithmic expressions. The term log∗(x) denotes
the number of iterations of log necessary to reach a number strictly below 1. So,
log∗(0) = 0, log∗(1) = 1 and log∗(2x) = log∗(x)+1. A set D is called supersparse iff,
for all x, D ∩ {x, x+ 1, . . . , 2x} contains at most log∗(x) elements. AΔD denotes the
symmetric difference of A and D; the set AΔD is called a supersparse variant of A if D
is a supersparse set. Furthermore, the notation O(f) is generalized to Poly(f) which
is the set of all g such that there is a polynomial p with (for all n) [g(n) ≤ p(f(n))].

2. Some set in EXP is not infinitely-often autoreducible. Note that a
computation is exponential in the length (= logarithm) of x iff it is quasi-polynomial
in x itself. Therefore one considers in the case of functionals quasi-polynomial time
bounds. More precisely, a partial functional f which assigns to inputs of the form
A(0)A(1) . . . A(x) values ax+1ax+2 . . . ay is called a quasi-polynomial time extension
functional iff there is a constant c permitting one to compute the extensions in time
xlogc(x). Following Lutz [17], one can introduce the following notion of resource-
bounded genericity; see [1, 3, 5, 6, 7, 18, 19] for further background on notions of
resource-bounded genericity, measure and dimension.

Definition 2.1. A set A is general generic iff, for every quasi-polynomial time
computable functional f ,

• either f(A(0)A(1) . . . A(x)) is undefined for almost all x
• or there are x, y such that x < y, f(A(0)A(1) . . . A(x)) = ax+1ax+2 . . . ay and

A(z) = az for z = x + 1, x + 2, . . . , y.
So, either “A almost always avoids f” or “A meets f .”

General generic sets have to be distinguished from the weaker variant of generic
sets as introduced by Ambos-Spies, Fleischhack and Huwig [2], which either meet
or avoid every quasi-polynomial time extension functional which predicts only one
bit whenever defined. Balcázar and Mayordomo [7] observed that these sets are not
infinitely-often autoreducible.

Fact 2.2 (see [7]). There are sets which are not infinitely-often autoreducible.
In particular, general generic sets have this property.

On the other hand, Ambos-Spies, Neis and Terwijn [5] showed that the notions

598 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

of generic sets and resource-bounded randomness are compatible. As random sets are
infinitely-often autoreducible (even infinitely-often truth-table autoreducible) [12, 13],
there are some generic sets which are infinitely-often autoreducible, and Fact 2.2 really
needs the stronger version of general generic sets.

General generic sets cannot be in EXP due to the quasi-polynomial time bound.
The following result shows that sets which are not infinitely-often autoreducible can be
found in EXP. Note that many-one EXP-complete sets are (everywhere) autoreducible
since they are many-one equivalent to their complement. Buhrman et al. [11] showed
that every Turing EXP-complete set is autoreducible.

Theorem 2.3. There is a set in EXP which is not infinitely-often autoreducible
with respect to Turing reducibility.

Proof. Let M0,M1, . . . be an enumeration of all polynomial time autoreductions
such that each Me needs at most time x+ e at input x and queries the set A only at
places y ≤ 2x with y �= x. Note that x is superpolynomial in log(x) and therefore, all
polynomial time autoreductions are covered. The set A is constructed by a priority
construction and satisfies at the end for every e one of the following two possibilities:

• There is a number x such that MA
e (x) outputs b ∈ {0, 1} with b �= A(x).

• For almost every x, MA
e (x) is undefined.

The eth requirement is then the first of these two conditions. The construction will
be such that it either satisfies the eth requirement explicitly or enforces the second
condition implicitly.

The construction uses approximations Ax of A where Ax(y) = A(y) for all x, y
with y < x. So one has to simulate the construction only x + 1 stages to know the
value of A at x. Together with a proof that every stage needs time exponential in the
length of x, it follows that A ∈ EXP.

Construction of A. Let Ax and re,x be the values of A and re before stage x, in
particular, A0 = ∅ and re,0 = 0 for all x.

In stage x one searches the least e such that there is a finite set D satisfying the
following requirements, where D is the set of the positions for which it is intended
that Ax+1 and Ax will differ:

Bound on e: e ≤ log∗(x).
Respecting restraints: re′,x < x for all e′ ≤ e.
Requirement e not yet done: There is no number x′ < x such that MAx

e (x′)
queries Ax only at places below x and computes a wrong prediction for A(x′).

Requirement e needs attention: MAxΔD
e (x) computes a prediction different from

(AxΔD)(x), where AxΔD denotes the symmetric difference of Ax and D.
Size-constraint on D met: D ⊆ {x, x + 1, x + 2, . . . , 2x} and D has at most

2−e−2 · log∗(x) − 2e elements.
If the above procedure finds an e (which is the minimal one possible) and D is

the corresponding set mentioned above, then

Ax+1 = AxΔD;

re,x+1 = 2x + 2;

re′,x+1 = re′,x for all e′ �= e;

else nothing changes; that is, Ax+1 = Ax and re′,x+1 = re′,x for all e′.
Verification. One first notes that in stage x the search considers only log∗(x)

values of e and for each of these, the search runs over computations which make at
most x + e queries where at most 2−e−2 · log∗(x) − 2e of the answers can differ from
the current values of Ax as these queries hit elements in D. Thus, for each e, there

INFINITELY-OFTEN AUTOREDUCIBLE SETS 599

are O(xlog∗(x)) possible computation paths. As log∗(x) ≤ log(x+2), the running time
of step x of the algorithm is quasi-polynomial in x, that is, exponential in log(x). As
A(x) = Ax+1(x), it follows that one can compute A(x) by running the algorithm for
the stages 0, 1, . . . , x and thus the overall running time is quasi-polynomial in x; that
is, A ∈ EXP.

Note that for sufficiently large x the bound 2−e−2 · log∗(x)− 2e becomes positive
as e is a constant and log∗(x) is unbounded. Therefore, cardinality requirements do
not hinder Requirement e from being satisfied for sufficiently large x.

By usual priority arguments, one can show that every e is found only finitely often
by the search algorithm and that re,x converges from below to a final value re,∞. More
precisely, every re,x changes only if the parameter e is selected in the search at stage
x. One can show by induction that this happens only finitely often for all e. Assume
that all re′,∞ with e′ < e exist and have maximum r̃e. If e is not selected in the search
at any x > r̃e, then re,x changes only finitely often and converges to some value re,∞.
If e is selected at some x > r̃e, then the following happens. Ax+1 is updated such that

the autoreduction M
Ax+1
e (x) returns a wrong value and queries Ax+1 only at places

smaller than 2x+1. Furthermore, as at no x′ > x does the search select an e′ < e, the

restraint re,x+1 will be respected and the diagonalization of the autoreduction M
Ax+1
e

will not be undone by changing A at queried places; that is, Ax(y) = A(y) for all

values y queried by M
Ax+1
e (x). Thus Requirement e will be counted as “done” at all

stages x′ > x and therefore e will not be selected again by the search condition at
those stages. Thus re,∞ = 2x + 2.

Now it is shown that A is not infinitely-often autoreducible. Consider any autore-
duction Me which does not make any false prediction for A but might be undefined
for some inputs. Let x be so large that 2−e−2 · log∗(x) − 2e > 2 and x > re′,∞ for
all e′ ≤ e. So the search does not return any e′ ≤ e as otherwise the corresponding
restraint would be increased again. It follows that MB

e (x) does not predict any value
for input x on any set B of the form AxΔD with |D| ≤ 2−e−2 · log∗(x) − 2e− 1 and
D ⊆ {x, x + 1, . . . , 2x} (note that the search in the algorithm actually covers sets D
with up to 2−e−2 · log∗(x) − 2e elements, but this one additional element might be
needed to make the prediction be different from (AxΔD)(x)). On the other hand, it
might happen that up to log∗(x) requirements e′ > e act between stages x and 2x. Due
to the update rule of the restraints, each of them acts only once between these stages.
Furthermore, each e′ changes A at up to 2−e′−2 ·log∗(2x)−2e′ ≤ 2−e′−2 ·log∗(x)−2e−1
positions between x and 2x. The symmetric difference of A and Ax contains below x
no element and between x and 2x at most 2−e−2 · log∗(x) − 2e − 1 elements. Thus,
MA

e (x) also does not predict any value for A(x) and MA
e is undefined for almost

all inputs.

3. On truth-table autoreducibility. The topic of this section is the inter-
relation of autoreducibility notions with respect to truth-table reducibility, Turing
reducibility and the variants of these reducibilities where the number of queries is
bounded. It is shown that only the trivial implications hold and that all differences
between the notions can be witnessed by sets in EXP. Theorem 3.2 in particular shows
that there is a set in EXP which is tt(n + 1)-autoreducible but not infinitely-often
Turing(n)-autoreducible, where n is the logarithm (= length) of the input, tt(n + 1)
means that the truth-table reduction is permitted to make up to n + 1 queries and
Turing(n) means that the Turing reduction is permitted to make up to n queries.
This implies that this set is tt-autoreducible but not btt-autoreducible.

The proof of the following theorem uses Kolmogorov complexity arguments to

600 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

construct a starting set A0 which is Turing but not tt-complete for EXP. Watanabe
[25] first constructed such a set; his ideas are also based on Kolmogorov complexity
arguments.

Theorem 3.1. There is a set A in EXP which is Turing autoreducible but not
infinitely-often tt-autoreducible.

Proof. The construction is a modification of the one from Theorem 2.3 with the
following two differences:

• The set A0 is not empty but a set which is Turing complete (but not tt-
complete) for EXP.

• Furthermore, M0,M1, . . . is a list of all polynomial time truth-table autore-
ductions which satisfy the same side conditions as in Theorem 2.3; that is,
for any oracle X, MX

e (x) is computed in time e+ x and X is queried only at
places y ≤ 2x which are different from x.

The choice of A0 is sensitive to the success of the construction because it must be
guaranteed that one can compute all elements queried by Me. This is done by placing
the more difficult elements at positions which can be accessed by an adapted search
but not by a nonadaptive truth-table reduction.

First take a sequence b0b1 . . . of bits which is random for computations using
computation time 2n

3

but can be computed in time 2n
6

and then let B be the set of
all numbers of the form 2n +

∑
m<n 2m · bm. B is in EXP. Furthermore, let C be a

set which is many-one EXP-complete and contains 0. The set A0 is then given by

A0 = {〈b, c, d〉 : b ∈ B, c ∈ C, c ≤ b, d ∈ N}.
Now one uses that the eth truth-table autoreduction Me queries at most x places and
thus any query of it has at most Kolmogorov complexity log(e) + log(x) + k for a
constant k where the Kolmogorov complexity is measured with respect to time bound
x3. It follows that every 〈b, c, d〉 queried satisfies that b also has this bound (plus
perhaps a constant) and that, whenever 〈b, c, d〉 is in A0, then b = 2n +

∑
m<n 2m · bm

for some n ≤ 3(log(x) + log(e) + k′), and c ≤ b where k′ is a suitable constant
independent of e, x. Thus the algorithm to compute all the values of A0 at places
queried by Me at x with e ≤ log∗(x) is exponential in x, and this gives that the set
A is also in EXP.

The construction gives that A is not infinitely-often tt-autoreducible in the same
way as the construction in Theorem 2.3 gives that the set constructed there is not
infinitely-often Turing autoreducible. It remains to show that in this theorem the set
A is Turing autoreducible.

Note that for fixed b, c and the two-thirds majority of the numbers y = 〈b, c, d〉
with 0 ≤ d ≤ 3 log∗(b+ c) + 6 satisfies that A(y) = A0(y). Thus one can reduce every
query whether 〈b, c, 0〉 ∈ A0 to polynomially many queries to A (omitting the query
to x if it is among these queries) and thus it is sufficient to give in the construction
below the queries to A0.

• For input x, compute the c such that A(x) = C(c). This can be done without
querying an oracle as C is many-one EXP-complete.

• For every b ∈ B, there is an n such that b = 2n +
∑

m<n 2m · bm. Then one
of the following numbers is the next element of B: b+ 2n, b+ 2n+1—the first
one in case bn = 0, the second one in case bn = 1. Thus one can find for each
member of B the next member of B by two queries to B and starting with
1, which is the minimum of B, one can find a b ≥ c such that b ∈ B with
2 log(c) + 2 queries to B. Since b ∈ B iff 〈b, 0, 0〉 ∈ A0, this computation can
also be done with the same number of queries to A0.

INFINITELY-OFTEN AUTOREDUCIBLE SETS 601

• Having this b ≥ c such that b ∈ B, one can determine A(x) with one query
to A0 as x ∈ A iff 〈b, c, 0〉 ∈ A0.

The so constructed algorithm is a Turing autoreduction as the size log(c) of c is
polynomially bounded in the size log(x) of x. Furthermore, as 3 log∗(b + c) + 6 ≤
3 log(b + c) + 12, the number of queries to A is only by a factor polynomial in x
greater than the number of queries to A0 and thus the whole algorithm queries A
only polynomially often. One can easily verify that the running time of the algorithm
is also polynomial.

Theorem 3.2. For every polynomial time computable and nondecreasing function
g ∈ Poly(n), there is a set A in EXP such that A is tt(g(n)+1)-autoreducible but not
infinitely-often Turing(g(n))-autoreducible.

Proof. Let M0,M1, . . . be a list of all polynomial time Turing(g(n))-autoreductions
such that every value Me(x) can be computed in time e+x and Me queries only places
below 2x which are different from x. Furthermore, one can produce a polynomial time
computable partition Π of almost all natural numbers with the following properties:

• There is an integer m such that x ∈ I for some I ∈ Π iff x ≥ 2m; that is,
∪I∈ΠI = {2m, 2m + 1, . . . }.

• For every I ∈ Π there is an integer n(I) such that all numbers x ∈ I satisfy
n(I) ≤ log(x) < n(I) + 1.

• The cardinality of every I ∈ Π is either g(n(I)) + 2 or 2g(n(I)) + 3.

As g ∈ Poly(n), one can find an m such that 2(g(n) + 2)2 < 2n holds for all n ≥ m.
For each n ≥ m, one can find a, b such that 2n = a(g(n)+2)− b and 0 ≤ b ≤ g(n)+1.
Note that a > 2b and thus one can partition the set {2n, 2n + 1, . . . , 2n+1 − 1} into
b intervals of length 2g(n) + 3 followed by a − 2b intervals of length g(n) + 2 and
put these intervals into Π. The number n(I) is for these intervals exactly the n with
I ⊆ {2n, 2n + 1, . . . , 2n+1 − 1} and the numbers 0, 1, . . . , 2m − 1 do not belong to any
interval.

Now given I ∈ Π, let L(I) denote the g(n(I))+2 smallest and H(I) the g(n(I))+2
largest elements in I. The overall construction of the set A will be such that for every
interval I ∈ Π the cardinalities of L(I) ∩ A and H(I) ∩ A are both even. Therefore
one has the following tt(g(n) + 1)-autoreduction for A.

• If x < 2m, then output “x /∈ A” and halt.
• Otherwise find the I ∈ Π with x ∈ I.
• If x ∈ L(I), then query the g(n) + 1 elements in L(I) − {x} and let a be the

cardinality of A∩(L(I)−{x}); else query the g(n)+1 elements in H(I)−{x}
and let a be the cardinality of A ∩ (H(I) − {x}).

• If a is odd, then output “x ∈ A”; else output “x /∈ A.”

This reducibility is definitely a tt(g(n) + 1)-autoreduction, can be done in time poly-
nomial in log(x) and is correct since the cardinalities of L(I) ∩ A and H(I) ∩ A are
even.

It remains to show that one can choose in exponential time the set A such that
the resulting set is not infinitely-often Turing(g(n))-autoreducible. The construction
is done in stages.

Construction. If x < 2m, then let Ax+1 = ∅ and re,x = 0 for all e. If x ≥ 2m,
then determine the interval I with x ∈ I. Search for the least e such that there is a
set D satisfying the following conditions:

Bound on e: e ≤ log(x + 1).

Respecting restraints: re′,x < min(I) for all e′ ≤ e.

Requirement e not yet done: There is no x′ < x such that MAx
e (x′) is defined,

602 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

queries only places below min(I) and outputs something different from Ax(x′).
Requirement e needs attention: MAxΔD

e (x) is defined and differs from (AxΔD)(x).
D not too large: D intersects only intervals J which contain either x or a y > x

queried by the MAxΔD
e (x). Furthermore, min(I) ≤ min(D∪{x}), max(D∪{x}) ≤ 2x

and the sets L(J) ∩ D and H(J) ∩ D have an even number of elements for every
interval J ∈ Π.

If the above procedure finds an e (which is the minimal one possible) and D is
the corresponding set mentioned above, then

Ax+1 = AxΔD;

re,x+1 = 2x + 2;

re′,x+1 = re′,x for all e′ �= e;

else nothing changes; that is, Ax+1 = Ax and re′,x+1 = re′,x for all e′.
Verification. The set A is in EXP as the search in every stage goes through only

exponentially many possibilities (e ≤ log(x+ 1) and at most g(log(x)) + 2 queries by
Me where g is polynomially bounded). Furthermore, every set D has on every interval
of the form L(I) and H(I) an even number of elements so that the resulting set A
has the same property: A ∩ L(I) and A ∩H(I) have an even number of elements.

It follows from standard priority arguments that every e is found only finitely
often by the above search conditions and that the restraints re,x eventually all take a
final value re,∞.

Now assume that MA
e never outputs an incorrect value. Consider any x in an

interval I ∈ Π such that min(I) > max({r0,∞, r1,∞, . . . , re,∞}). Assume by way of
contradiction that MA

e (x) is defined. Let E be the union of all intersections J ∩
(AxΔA) where J contains either x or a y > x which is queried by MA

e (x). Note
that for all intervals J , L(J) ∩ E and H(J) ∩ E have an even number of elements.
Furthermore, AxΔE and A coincide on all relevant elements; thus MAxΔE

e (x) = A(x).
Let l and h be elements of I different from x and not queried by MAxΔE

e (x)
such that l ∈ L(I), h ∈ H(I), and both sets {l, h, x} ∩ L(I) and {l, h, x} ∩ H(I)
have even cardinality; note that L(I) = H(I) = I and l = h in the case that I has
g(n) + 2 elements. It follows from easy cardinality arguments that l, h exist. Now let
D = EΔ{l, h, x}. The autoreduction Me behaves at x for the sets AxΔE and AxΔD
exactly in the same way, but the output is wrong in the case that one considers AxΔD.
So, this e witnessed by this D or some e′ < e would qualify for the search in stage x,
which contradicts the restraints r0,∞, r1,∞, . . . , re,∞ being below x in the limit. From
this contradiction it follows that MA

e (x) is undefined for almost all x.
So, A is in EXP and A is tt(g(n) + 1)-autoreducible but not infinitely-often

Turing(g(n))-autoreducible.
An autoreduction is a bounded truth-table reduction iff there is a constant k such

that the reduction makes for every input at most k queries. If a set A is tt(n + 1)-
autoreducible but not infinitely-often Turing(n)-autoreducible, then A is clearly tt-
autoreducible but not infinitely-often btt-autoreducible. This gives the following corol-
lary.

Corollary 3.3. There is a set in EXP that is truth-table autoreducible but not
infinitely-often bounded truth-table autoreducible.

4. Notions of approximability. A set is called (a, b)-recursive iff there is a
function f such that for all distinct x1, x2, . . . , xb the function f computes a tuple
(y1, y2, . . . , yb) of bits such that at least a of the equations A(xk) = yk are true. If

INFINITELY-OFTEN AUTOREDUCIBLE SETS 603

there are a, b such that 1 ≤ a ≤ b and if there is a polynomial time computable
function f such that A is (a, b)-recursive via f , then A is called approximable [9] and
if, in addition, 2a > b, then A is called easily approximable.

In the recursion theoretic setting, every set which is (1, b)-recursive for some b
is also autoreducible [16]. This does not carry over to complexity theory: Returning
to the world of polynomial time computations, supersparse sets are (1, 2)-recursive
but not Turing autoreducible. Supersparse sets are related to k-cheatable sets [8].
Nevertheless, approximable sets are still infinitely-often autoreducible.

Proposition 4.1. Every approximable set is infinitely-often btt-autoreducible.
Proof. Assume that A is approximable via f and let l be the largest constant

such that for infinitely many inputs of the form x + 1, x + 2, . . . , x + k at least l of
the bits y1, y2, . . . , yk are wrong. Let u be so large that it never happens for an x > u
that more than l of these bits are wrong. Now A is btt-autoreducible as follows.

Algorithm. Ignore inputs x < u + k. For x ≥ u + k query A at all numbers x′

with x− k < x′ < x + k and x′ �= x. If there is an x′ with x− k ≤ x′ < x such that
the answers y1, y2, . . . , yk computed by f from input x′ + 1, x′ + 2, . . . , x′ + k satisfy
that yk′ �= A(x′ + k′) for l numbers k′ ∈ {1, 2, . . . , k} − {x − x′}, then predict yx−x′

for A(x); else do not make any prediction.
Verification. The correctness follows from the fact that there are at most l differ-

ences between A(x′ + k′) and yk′ and that these errors have been localized at places
different from x. That this reduction works for infinitely many x is a consequence of
the choice of l.

Ogihara [21] also considered sets which are (1, b(n))-recursive, where b is a function
in Poly(n) and the parameter n is log(max{1, x1, x2, . . . , xb}), where x1, x2, . . . , xb is
the input to the function to compute the approximation. This generalized notion no
longer enforces that A is infinitely-often autoreducible.

Example 4.2. The set from Theorem 2.3 satisfies Ogihara’s generalized approx-
imability condition but is not infinitely-often Turing autoreducible.

Proof. It is sufficient to show that the set A constructed in Theorem 2.3 is
(1, b(n))-recursive with b(n) = 6 log∗(n) + 3: On input x1, x2, . . . , xb(n), let

yk =

{
0 if xk > log log(n),

A(xk) if xk ≤ log log(n),

and predict (y1, y2, . . . , yb(n)). If xk ≤ log log(n), then A(xk) = yk and this prediction
is correct. Otherwise one knows that between log log(n) and n the set A has at most
6 log∗(n) + 2 elements. It follows that at least one of the predicted 0’s is correct.
Furthermore, the computations involved can all be done in polynomial time since
A(xk) can be computed in time 2Poly(log log(n)) whenever xk ≤ log log(n).

An easily approximable set A has the property that every set B Turing reducible
to A is also tt-reducible to A. This property is called T-easy. The next theorem shows
that every T-easy set is either infinitely-often autoreducible or satisfies Ogihara’s
generalized approximability notion with a = 1 and b = log2(n).

Theorem 4.3. Every set A satisfies at least one of the following properties.
(a) Not T-easy: There is a set B which is polynomial time Turing reducible but

not polynomial time truth-table reducible to A.
(b) Infinitely-often truth-table autoreducible: For infinitely many z, A(z) can be

computed by queries to places different from z.
(c) Generalized approximable: A is (1, 1 + log2(n))-recursive via some function

computable in polynomial time.

604 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

Proof. Let A be any set. Furthermore, define a tuple-function which at input
x1, x2, . . . , xm computes the binary representations u0, u1, . . . , um of these numbers
and outputs a number, denoted as 〈x1, x2, . . . , xm〉, which has the ternary repre-
sentation u12u22 . . . 2um2. Note that 〈x1, x2, . . . , xm〉 > xk for k = 1, 2, . . . ,m.
Furthermore, n = log(max{1, x1, x2, . . . , xm}) satisfies 〈x1, x2, . . . , xm〉 < 3(n+3)m.
Let y(x1, x2, . . . , xm : A) be the number which is represented by the binary string
A(x1)A(x2) . . . A(xn). Depending on what type of reducibilities exists from

B = {〈x1, x2, . . . , xm〉 : 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : A)〉 ∈ A}

to A, one of three properties holds:
(a) B is not truth-table reducible to A. Then A is not T-easy. This is verified

by showing that B is Turing reducible to A as follows: One first queries whether
x1, x2, . . . , xm ∈ A, then computes y(x1, x2, . . . , xm : A) and at last queries whether
〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : A)〉 is in A.

(b) B is truth-table reducible to A by a reduction which for infinitely many
tuples 〈x1, x2, . . . , xm〉 computes B(〈x1, x2, . . . , xm〉) without querying A whether
〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : A)〉 is in A. Then A is infinitely-often truth-table
autoreducible by f defined as follows: Let F (x) denote the set of queries which the
truth-table reduction from B to A makes at input x. On input z, f checks whether
there are a set E and numbers m,x1, x2, . . . , xm such that

• z = 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : E)〉 and
• z /∈ F (E(x1)E(x2) . . . E(xm)) ∪ {x1, x2, . . . , xm}.

If so, then f queries A at the members of the set F (〈x1, x2, . . . , xm〉)∪{x1, x2, . . . , xm}
and outputs the result of the truth-table reduction from B to A computed for the
value B(〈x1, x2, . . . , xm〉) in the case that A(x1) = E(x1), . . . , A(xm) = E(xm). If z
is not of the above form or if the supposed values of E do not coincide with A or
z ∈ F (〈x1, x2, . . . , xm〉), then f(z) is undefined. Note that whenever f(z) is defined,
the value computed coincides with A(z) and f does not query A(z) as x1, x2, . . . , xm <
〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : E)〉 = z and z /∈ F (E(x1)E(x2) . . . E(xm)).

(c) The two previous cases do not hold. Then A is (1, b(n))-recursive with
b(n) = 1 + �log2(n)�. As (a) does not hold, there is a tt-reduction from B to
A. Let F (x) be the set of queries made at input x. There is a constant c such
that the cardinality of F (x) is at most logc(x) for almost all x. If n is sufficiently
large and x = 〈x1, x2, . . . , xm〉 with x1 < x2 < . . . < xm and n = �log(xm)� and
m = b(n), then the following facts hold: y(x1, x2, . . . , xm : A) ∈ F (〈x1, x2, . . . , xm〉)
as (b) does not hold, n > m, and (log(3) · m · (n + 3))c < n4c < nlog(n). As
2m > nlog(n), it follows that there is a number y with binary representation d1d2 . . . dm
such that 〈x1, x2, . . . , xm, y〉 /∈ F (〈x1, x2, . . . , xm〉). Thus at least one of the condi-
tions A(x1) �= d1, A(x2) �= d2, . . . , A(xm) �= dm holds and A is (1, b(n))-recursive
by outputting the vector (1 − d(x1), 1 − d(x2), . . . , 1 − d(xm)). The remaining case
is where n is too small. But there are only finitely many x1, x2, . . . , xm where this
can happen and one can output the characteristic vector (A(x1), A(x2), . . . , A(xm))
in these finitely many cases. One can easily verify that the proposed algorithm runs
in polynomial time and thus A is (1, b(n))-recursive.

5. Hausdorff-dimension. Hausdorff [14] introduced a generalized notion of di-
mension for metric spaces; it also enables one to measure the size of fractal objects.
Lutz [19] adapted the notion for complexity theory in order to measure the size of
subclasses of the natural numbers. The following definition—one among several equiv-
alent ones—defines the Hausdorff-dimension in terms of the growth rate of the capital

INFINITELY-OFTEN AUTOREDUCIBLE SETS 605

accumulated by a gambler who bets inductively on the bits of the characteristic func-
tions of any set in the given class. Such growth rate functionals are called martingales.

Definition 5.1. A quasi-polynomial time computable functional f is called a
martingale, iff it maps binary strings to positive numbers and the empty string to 1
and satisfies

2f(a0a1 . . . ax) = f(a0a1 . . . ax0) + f(a0a1 . . . ax1)

for all binary strings a0a1 . . . ax. The Hausdorff-dimension (with respect to EXP) of a
class S is the infimum of all s such that there is a quasi-polynomial time computable
martingale f succeeding on every set in A ∈ S with growth rate 21−s; that is, f
satisfies

(for all A ∈ S) (∃∞x) [f(A(0)A(1) . . . A(x)) ≥ 2(1−s)x].

Remark 5.2. The class of all sets as well as the class EXP has Hausdorff-
dimension 1. The upper bound is witnessed by the martingale mapping all strings
to 1, and the lower bound is obtained by constructing for any given quasi-polynomial
martingale f the set A in EXP which satisfies for x = 0, 1, . . . that

f(A(0)A(1) . . . A(x)A(x + 1)) ≤ f(A(0)A(1) . . . A(x));

that is, A(x+1) takes just the value adversary to A(x). Note that in EXP one cannot
have one set doing this for all martingales due to the fact that every single set in EXP
is predictable by a suitable quasi-polynomial time computable martingale. There are
also sets A that are random for all quasi-polynomial time computable martingales and
thus satisfy that the Hausdorff-dimension of {A} is 1, but no such A is in EXP.

Ambos-Spies et al. [4, Corollary 16] considered the Hausdorff-dimension adapted
to the class E = {A : (∃c) (∃M) (for all x) [M computes A(x) in time c + xc]}. They
showed that the class of many-one autoreducible sets in E has Hausdorff-dimension
1. This fact directly carries over to EXP.

Fact 5.3. The class {A in EXP: (for all x) [A(x) = A(x2)]} consists only of
many-one autoreducible sets and has Hausdorff-dimension 1. In particular, the classes
of the many-one autoreducible, truth-table autoreducible and Turing autoreducible sets
in EXP have Hausdorff-dimension 1.

An interesting obvious question is to determine the Hausdorff-dimension of the
class S of those sets in EXP which are not infinitely-often r-autoreducible. The
next theorem shows that the Hausdorff-dimension is already 1 for the case of the
polynomial time Turing reducibility; it then also follows for the other polynomial
time reducibilities r. As every set which is x3-random is already infinitely-often
autoreducible [12, 13], the class S is a natural example of a class which has Hausdorff-
dimension 1 and measure 0 with respect to quasi-polynomial time martingales.

Theorem 5.4. The class of all sets in EXP that are not infinitely-often autore-
ducible has Hausdorff-dimension 1.

Proof. The basic idea of the proof is to use the same construction as in Theo-
rem 2.3. But one has to make the following changes. One has to construct for every
quasi-polynomial time martingale f such a set A. Furthermore, for given f , A0 has
to be chosen such that f does not have a fast growth rate either on A0 or on any
supersparse variant of A0. In particular the supersparse variant A of A0 will satisfy
that there is no s < 1 with (∃∞x) [f(A(0)A(1) . . . A(x)) ≥ 2(1−s)·x]. Furthermore, A0

606 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

has to be chosen such that not only A0 itself but also the A constructed from A0 is
in EXP.

To meet these constraints, one chooses the polynomial time Turing reductions
M0,M1, . . . in a bit more restrictive way than in Theorem 2.3; namely the Me have
to satisfy the following properties:

• MX
e (x) queries any given oracle X at up to (log(x))log log(x) places; these

places are below 2x and different from x.
• MX

e (x) needs at most running time e + (log(x))log log(x).

Note that the bound (log(x))log log(x) is superpolynomial and thus one has, starting
with a given reduction, only to modify it on finitely many inputs, where one can put
the correct result into a table so that no query is necessary at all. Thus whenever A
is infinitely-often autoreducible, then A is infinitely-often autoreducible by some Me.

As f might behave very differently on A compared to on A0, one has to define
A0 such that the growth rate of f does not only on A0 but also on all supersparse
variants of A0 fail to reach 21−s for any s < 1.

So one considers the following functional f ′: Let rD be the product of all 1 +
1/(1 + d · d), where d ∈ D, r∅ = 1. Now f ′(B(0)B(1) . . . B(x)) is the sum over all
terms rD · f(C(0)C(1) . . . C(x)), where C ⊆ {0, 1, . . . , x}, D = {y ≤ x : B(y) �= C(y)}
and D is a supersparse set. The functional f ′ is no longer a martingale, but it satisfies
the following condition:

f ′(a0a1 . . . ax0) + f ′(a0a1 . . . ax1) ≤ 2 · 2+(x+1)·(x+1)
1+(x+1)·(x+1) · f

′(a0a1 . . . ax).

Now one defines the set A0 inductively as follows. A0(0) = 0. A0(x + 1) = 0 iff one
of the following two conditions holds and A0(x + 1) = 1 otherwise:

(a) there are a y < x1/5, an e ≤ log∗(x) and a supersparse set D ⊆ {0, 1, . . . , 2x}
such that M

(A0∩{0,1,...,x})ΔD
e (y) queries x.

(b) f ′(a0a1 . . . ax0) ≤ 2+(x+1)·(x+1)
1+(x+1)·(x+1) · f ′(a0a1 . . . ax).

Note that the search over the queried elements can be done in exponential time: Every
Me queries at most (log(x))log log(x) elements, and at most (log∗(x) + 1)2 of them can
differ from the corresponding value of A0 ∩ {0, 1, . . . , x} as one searches over answers

given by A0ΔD and not just A0. Thus one has to consider ((log(x))log log(x))(log
∗(x)+2)2

computation paths for every y ≤ x1/5 and e ≤ log∗(x); each path might need up to
log∗(x) ·(log(x))log log(x) steps. As except x1/5 all these factors grow slower than every
function xq, q > 0, there is a constant for c such that, for every x, the number of
steps to be simulated is at most x1/4 + c. As every 0 caused by condition (a) in the
construction of A0 is due to a query of one of these simulated paths, there are at most
x1/4 + c places y ≤ x where A0(y + 1) = 0 due to condition (a).

If A0(x + 1) = 0 is caused by condition (a), then the value of f ′ can go up by

the factor 2 · 2+(x+1)·(x+1)
1+(x+1)·(x+1) ; else A(x + 1) is chosen such that the value of f ′ goes up

by only half of that, that is, by the factor 2+(x+1)·(x+1)
1+(x+1)·(x+1) . The product over f ′(A(0))

and all numbers 2+(x+1)·(x+1)
1+(x+1)·(x+1) is bounded by a constant d. So it follows that, for

every x, f ′(A0(x)A1(x) . . . Ax(x)) ≤ 2x
1/4+c · d. The construction of Theorem 2.3

gives that A is a supersparse variant of A0. Let B = AΔA0. For almost all x,

D = B ∩ {0, 1, . . . , x} has at most (log∗(x))2 elements, 1/rD ≤ x|D| ≤ 2x
1/4

, and

f(A(0)A(1) . . . A(x)) ≤ f ′(A(0)A(1) . . . A(x))/rD ≤ 2x
1/4+c+1 · d. It follows that

there is no s < 1 such that f(A(0)A(1) . . . A(x)) ≥ 2(1−s)x for infinitely many x.

INFINITELY-OFTEN AUTOREDUCIBLE SETS 607

It remains to show that A is in EXP. Note that it follows from the construction
of Theorem 2.3 that at every stage x and every D considered in the search condition,
the set AxΔD is a supersparse variant of A0. It follows from the definition of A0

that whenever MAxΔD
e (x) queries an element y > x5, then A0(y) = 0. As A0 is in

EXP, there is a polynomial p such that one can compute in time 2p(log(x)) the value
of A0(y) for any given y ≤ x5. It follows that one can compute A0(y) in all queried
places in time exponential in log(x). Every stage in the construction changes the
approximation of A at fewer than x places, so one can bookkeep these changes and
compute A in exponential time. This completes the proof.

Acknowledgments. The authors would like to thank Klaus Ambos-Spies, Jack H.
Lutz and Wolfgang Merkle for helpful discussions; furthermore, Jack H. Lutz proposed
that we investigate the Hausdorff-dimension of the class of sets in EXP that are not
infinitely-often autoreducible.

REFERENCES

[1] K. Ambos-Spies, Resource-bounded genericity, in Computability, Enumerability, Unsolvability,
London Math. Soc. Lecture Note Ser. 224, S. B. Cooper et al., eds., Cambridge University
Press, Cambridge, UK, 1996, pp. 1–59.

[2] K. Ambos-Spies, H. Fleischhack, and H. Huwig, Diagonalizations over polynomial time
computable sets, Theoret. Comput. Sci., 51 (1997), pp. 177–204.

[3] K. Ambos-Spies and E. Mayordomo, Resource-bounded measure and randomness, in Com-
plexity, Logic, and Recursion Theory, Lecture Notes in Pure and Appl. Math. 187, A. Sorbi,
ed., Dekker, NY, 1997, pp. 1–47.

[4] K. Ambos-Spies, W. Merkle, J. Reimann, and F. Stephan, Hausdorff dimension in expo-
nential time, in Proceedings of the Sixteenth Annual IEEE Conference on Computational
Complexity, IEEE Computer Society, Los Alamitos, CA, 2001, pp. 210–217.

[5] K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn, Genericity and measure for exponential
time, Theoret. Comput. Sci., 168 (1996), pp. 3–19.

[6] K. Ambos-Spies, S. A. Terwijn, and X. Zheng, Resource bounded randomness and weakly
complete problems, Theoret. Comput. Sci., 172 (1997), pp. 195–207.

[7] J. L. Balcázar and E. Mayordomo, A note on genericity and bi-immunity, in Proceedings
of the Tenth Annual Structure in Complexity Theory Conference, IEEE Computer Society
Press, Los Alamitos, CA, 1995, pp. 193–196.

[8] R. Beigel, Bi-immunity results for cheatable sets, Theoret. Comput. Sci., 73 (1990), pp. 249–
263.

[9] R. Beigel, M. Kummer, and F. Stephan, Approximable sets, Inform. and Comput., 120
(1995), pp. 304–314.

[10] W. Blum, Denksport für Hutträger, Die Zeit, Hamburg, Germany, 3 May 2001.
[11] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet, Separating complexity

classes using autoreducibility, SIAM J. Comput., 29 (2000), pp. 1497–1520.
[12] T. Ebert, Applications of Recursive Operators to Randomness and Complexity, Ph.D. thesis,

University of California at Santa Barbara, Santa Barbara, CA, 1998.
[13] T. Ebert, W. Merkle, and H. Vollmer, On the autoreducibility of random sequences, SIAM

J. Comput., 32 (2003), pp. 1542–1569.
[14] F. Hausdorff, Dimension und äusseres Maß, Math. Ann., 79 (1919), pp. 157–189.
[15] C. G. Jockusch and M. S. Paterson, Completely autoreducible degrees, Z. Math. Logik

Grundlagen Math., 22 (1976), pp. 571–575.
[16] M. Kummer and F. Stephan, Recursion theoretic properties of frequency computation and

bounded queries, Inform. and Comput., 120 (1995), pp. 59–77.
[17] J. H. Lutz, Category and measure in complexity classes, SIAM J. Comput., 19 (1990), pp.

1100–1131.
[18] J. H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44 (1992),

pp. 220–258.
[19] J. H. Lutz, Dimension in complexity classes, SIAM J. Comput., 32 (2003), pp. 1236–1259.
[20] P. Odifreddi, Classical Recursion Theory, North-Holland, Amsterdam, 1989.
[21] M. Ogihara, Polynomial-time membership comparable sets, SIAM J. Comput., 24 (1995),

pp. 1068–1081.

608 RICHARD BEIGEL, LANCE FORTNOW, AND FRANK STEPHAN

[22] S. Robinson, Why mathematicians now care about their hat color, The New York Times, New
York, 10 April 2001.

[23] C.-P. Schnorr, Optimal algorithms for self-reducible problems, in Proceedings of the Third
International Colloquium on Automata, Languages, and Programming (ICALP 1976), Uni-
versity of Edinburgh Press, Edinburgh, UK, 1976, pp. 322–337.

[24] B. A. Trakhtenbrot, On autoreducibility, Soviet Math. Dokl., 11 (1970), pp. 814–817.
[25] O. Watanabe, A comparison of polynomial time completeness notions, Theoret. Comput. Sci.,

54 (1987), pp. 249–265.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 609–634

AN EXTENSION OF THE LOVÁSZ LOCAL LEMMA, AND ITS
APPLICATIONS TO INTEGER PROGRAMMING∗

ARAVIND SRINIVASAN†

Abstract. The Lovász local lemma due to Erdős and Lovász (Infinite and Finite Sets, Colloq.
Math. Soc. J. Bolyai 11, 1975, pp. 609–627) is a powerful tool in proving the existence of rare
events. We present an extension of this lemma, which works well when the event to be shown to
exist is a conjunction of individual events, each of which asserts that a random variable does not
deviate much from its mean. As applications, we consider two classes of NP-hard integer programs:
minimax and covering integer programs. A key technique, randomized rounding of linear relaxations,
was developed by Raghavan and Thompson (Combinatorica, 7 (1987), pp. 365–374) to derive good
approximation algorithms for such problems. We use our extension of the local lemma to prove that
randomized rounding produces, with nonzero probability, much better feasible solutions than known
before, if the constraint matrices of these integer programs are column-sparse (e.g., routing using
short paths, problems on hypergraphs with small dimension/degree). This complements certain well-
known results from discrepancy theory. We also generalize the method of pessimistic estimators due
to Raghavan (J. Comput. System Sci., 37 (1988), pp. 130–143), to obtain constructive (algorithmic)
versions of our results for covering integer programs.

Key words. Lovász local lemma, column-sparse integer programs, approximation algorithms,
randomized rounding, discrepancy

AMS subject classifications. 60C05, 90C05, 90C10

DOI. 10.1137/S0097539703434620

1. Introduction. The powerful Lovász local lemma (LLL) is often used to show
the existence of rare combinatorial structures by showing that a random sample from
a suitable sample space produces them with positive probability [14]; see Alon and
Spencer [4] and Motwani and Raghavan [27] for several such applications. We present
an extension of this lemma, and demonstrate applications to rounding fractional so-
lutions for certain families of integer programs. A preliminary version of this work
appeared in [35], with a sketch of the proof for minimax integer programs, and proofs
omitted for our constructive results for covering integer programs. In this version, we
provide all proofs, further generalize the main covering result of [35] to Theorem 5.9,
and present applications thereof; in particular, the constructive approach to covering
integer programs detailed in section 5.3, requires a fair amount of work.

Let e denote the base of natural logarithms. The symmetric case of the LLL
shows that all of a set of “bad” events Ei can be avoided under some conditions.

Lemma 1.1. (see [14]) Let E1, E2, . . . , Em be any events with Pr(Ei) ≤ p ∀i. If
each Ei is mutually independent of all but at most d of the other events Ej and if
ep(d + 1) ≤ 1, then Pr(

∧m
i=1 Ei) > 0.

∗Received by the editors September 18, 2003; accepted for publication (in revised form) September
20, 2005; published electronically September 21, 2006. A preliminary version of this work appeared
as a paper of the same title in the Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 6–15,
1996. Work done in parts at: (i) the University of Maryland (supported in part by NSF Award
CCR-0208005 and NSF ITR Award CNS-0426683), (ii) the National University of Singapore, (iii)
DIMACS (supported in part by NSF-STC91-19999 and by support from the N. J. Commission on
Science and Technology), (iv) the Institute for Advanced Study, Princeton, NJ (supported in part
by grant 93-6-6 of the Alfred P. Sloan Foundation), and (v) while visiting the Max-Planck-Institut
für Informatik, 66123 Saarbrücken, Germany.

http://www.siam.org/journals/sicomp/36-3/43462.html
†Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (srin@cs.umd.edu).

609

610 ARAVIND SRINIVASAN

Though the LLL is powerful, one problem is that the “dependency” d is high
in some cases, precluding the use of the LLL if p is not small enough. We present a
partial solution to this via an extension of the LLL (Theorem 3.1), which shows how to
essentially reduce d for a class of events Ei; this works well when each Ei denotes some
random variable deviating “much” from its mean. In a nutshell, we show that such
events Ei can often be decomposed suitably into subevents; although the subevents
may have a large dependency among themselves, we show that it suffices to have a
small “bipartite dependency” between the set of events Ei and the set of subevents.
This, in combination with some other ideas, leads to the following applications in
integer programming.

It is well known that a large number of NP-hard combinatorial optimization
problems can be cast as integer linear programming problems (ILPs). Due to their
NP-hardness, good approximation algorithms are of much interest for such problems.
Recall that a ρ-approximation algorithm for a minimization problem is a polynomial-
time algorithm that delivers a solution whose objective function value is at most ρ
times optimal; ρ is usually called the approximation guarantee, approximation ratio,
or performance guarantee of the algorithm. Algorithmic work in this area typically fo-
cuses on achieving the smallest possible ρ in polynomial time. One powerful paradigm
here is to start with the linear programming (LP) relaxation of the given ILP wherein
the variables are allowed to be reals within their integer ranges; once an optimal solu-
tion is found for the LP, the main issue is how to round it to a good feasible solution
for the ILP. Rounding results in this context often have the following strong property:
they present an integral solution of value at most y∗ · ρ, where y∗ will throughout de-
note the optimal solution value of the LP relaxation. Since the optimal solution value
OPT of the ILP is easily seen to be lower-bounded by y∗, such rounding algorithms
are also ρ-approximation algorithms. Furthermore, they provide an upper bound of
ρ on the ratio OPT/y∗, which is usually called the integrality gap or integrality ratio
of the relaxation; the smaller this value, the better the relaxation.

This work presents improved upper bounds on the integrality gap of the natural
LP relaxation for two families of ILPs: minimax integer programs (MIPs) and cov-
ering integer programs (CIPs). (The precise definitions and results are presented in
section 2.) For the latter, we also provide the corresponding polynomial-time round-
ing algorithms. Our main improvements are in the case where the coefficient matrix
of the given ILP is column-sparse: i.e., the number of nonzero entries in every column
is bounded by a given parameter a. There are classical rounding theorems for such
column-sparse problems (e.g., Beck and Fiala [6], Karp, Leighton, Rivest, Thompson,
Vazirani, and Vazirani [18]). Our results complement, and are incomparable with,
these results. Furthermore, the notion of column-sparsity, which denotes no variable
occurring in “too many” constraints, occurs naturally in combinatorial optimization:
e.g., routing using “short” paths, and problems on hypergraphs with “small” degree.
These issues are discussed further in section 2.

A key technique, randomized rounding of linear relaxations, was developed by
Raghavan and Thompson [32] to get approximation algorithms for such ILPs. We use
Theorem 3.1 to prove that this technique produces, with nonzero probability, much
better feasible solutions than known before, if the constraint matrix of the given
MIP/CIP is column-sparse. (In the case of MIPs, our algorithm iterates randomized
rounding several times with different choices of parameters, in order to achieve our
result.) Such results cannot be got via Lemma 1.1, as the dependency d, in the
sense of Lemma 1.1, can be as high as Θ(m) for these problems. Roughly speaking,
Theorem 3.1 helps show that if no column in our given ILP has more than a nonzero

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 611

entries, then the dependency can essentially be brought down to a polynomial in a;
this is the key driver behind our improvements.

Theorem 3.1 works well in combination with an idea that has blossomed in the
areas of derandomization and pseudorandomness in the last two decades: (approxi-
mately) decomposing a function of several variables into a sum of terms, each of which
depends on only a few of these variables. Concretely, suppose Z is a sum of random
variables Zi. Many tools have been developed to upper-bound Pr(Z −E[Z] ≥ z) and
Pr(|Z − E[Z]| ≥ z) even if the Zis are only (almost) k-wise independent for some
“small” k, rather than completely independent. The idea is to bound the probabili-
ties by considering E[(Z −E[Z])k] or similar expectations, which look at the Zi, k or
fewer at a time (via linearity of expectation). The main application of this has been
that the Zi can then be sampled using “few” random bits, yielding a derandomiza-
tion/pseudorandomness result (e.g., [3, 23, 8, 26, 28, 33]). Our results show that such
ideas can in fact be used to show that some structures exist! This is one of our main
contributions.

What about polynomial-time algorithms for our existential results? Typical appli-
cations of Lemma 1.1 are “nonconstructive” (i.e., do not directly imply (randomized)
polynomial-time algorithmic versions), since the positive probability guaranteed by
Lemma 1.1 can be exponentially small in the size of the input. However, certain
algorithmic versions of the LLL have been developed starting with the seminal work
of Beck [5]. These ideas do not seem to apply to our extension of the LLL, and hence
our MIP result is nonconstructive. Following the preliminary version of this work
[35], two main algorithmic versions related to our work have been obtained: (i) for a
subclass of the MIPs [20], and (ii) for a somewhat different notion of approximation
than the one we study, for certain families of MIPs [11].

Our main algorithmic contribution is for CIPs and multicriteria versions thereof:
we show, by a generalization of the method of pessimistic estimators [31], that we can
efficiently construct the same structure as is guaranteed by our nonconstructive argu-
ment. We view this as interesting for two reasons. First, the generalized pessimistic
estimator argument requires a quite delicate analysis, which we expect to be useful in
other applications of developing constructive versions of existential arguments. Sec-
ond, except for some of the algorithmic versions of the LLL developed in [24, 25],
most current algorithmic versions minimally require something like “pd3 = O(1)”
(see, e.g., [5, 1]); all the LLL needs is that pd = O(1). While this issue does not
matter much in many applications, it crucially does, in some others. A good example
of this is the existentially-optimal integrality gap for the edge-disjoint paths problem
with “short” paths, shown using the LLL in [21]. The above-seen “pd3 = O(1)” re-
quirement of currently-known algorithmic approaches to the LLL leads to algorithms
that will violate the edge-disjointness condition when applied in this context: specif-
ically, they may route up to three paths on some edges of the graph; see [9] for a
different—random-walk based—approach to low-congestion routing. An algorithmic
version of this edge-disjoint paths result of [21] is still lacking. It is a very interesting
open question whether there is an algorithmic version of the LLL that can construct
the same structures as guaranteed to exist by the LLL. In particular, can one of the
most successful derandomization tools, the method of conditional probabilities or its
generalization, the pessimistic estimators method, be applied, fixing the underlying
random choices of the probabilistic argument one-by-one? This intriguing question is
open (and seems difficult) for now; it is elaborated upon further in section 6. As a step
in this direction, we are able to show how such approaches can indeed be developed,
in the context of CIPs.

612 ARAVIND SRINIVASAN

Thus, our main contributions are as follows. (a) The LLL extension is of indepen-
dent interest: it helps in certain settings where the “dependency” among the “bad”
events is too high for the LLL to be directly applicable. We expect to see further
applications/extensions of such ideas. (b) This work shows that certain classes of
column-sparse ILPs have much better solutions than known before; such problems
abound in practice (e.g., short paths are often desired/required in routing). (c) Our
generalized method of pessimistic estimators should prove fruitful in other contexts
also; it is a step toward complete algorithmic versions of the LLL.

A note on reading this paper. In order to get the main ideas of this work
across, we summarize the main ideas of each section and some of the subsections, at
their beginning. We also have paragraphs marked “Intuition” in some of the sections,
in order to spell out the main ideas informally. Furthermore, we have moved simple-
but-tedious calculations to the appendix; it may help the reader to read the body
of the paper first, and to then read the material in the appendix if necessary. The
rest of this paper is organized as follows. Our results are first presented in section 2,
along with a discussion of related work. The extended LLL, and some large-deviation
methods that will be seen to work well with it, are shown in section 3. Sections 4
and 5 are devoted to our rounding applications. Section 6 concludes, and some of the
routine calculations are presented in the appendix.

2. Our results and related work. Let Z+ denote the set of nonnegative in-
tegers; for any k ∈ Z+, [k]

.
= {1, . . . , k}. “Random variable” is abbreviated as “r.v.,”

and logarithms are to the base 2 unless specified otherwise.
Definition 2.1 (minimax integer programs). An MIP has the following vari-

ables: {xi,j : i ∈ [n], j ∈ [�i]}, for some integers {�i}, and an extra variable W . Let
N =

∑
i∈[n] �i and let x denote the N -dimensional vector of the variables xi,j (ar-

ranged in any fixed order). An MIP seeks to minimize W , an unconstrained real,
subject to

(i) equality constraints: ∀i ∈ [n]
∑

j∈[�i]
xi,j = 1,

(ii) a system of linear inequalities Ax ≤ �W , where A ∈ [0, 1]m×N and �W is the
m-dimensional vector with the variable W in each component, and

(iii) integrality constraints: xi,j ∈ {0, 1} ∀i, j.
We let g denote the maximum column sum in any column of A, and a be the maximum
number of nonzero entries in any column of A.

To see what problems MIPs model, note from constraints (i) and (iii) of MIPs
that for all i, any feasible solution will make the set {xi,j : j ∈ [�i]} have precisely
one 1, with all other elements being 0; MIPs thus model many “choice” scenarios.
Consider, e.g., global routing in VLSI gate arrays [32]. Given are an undirected graph
G = (V,E), a function ρ : V → V , and ∀i ∈ V , a set Pi of paths in G, each connecting
i to ρ(i); we must connect each i with ρ(i) using exactly one path from Pi, so that
the maximum number of times that any edge in G is used for, is minimized–an MIP
formulation is obvious, with xi,j being the indicator variable for picking the jth path
in Pi. This problem, the vector-selection problem of [32], and the discrepancy-type
problems of section 4, are all modeled by MIPs; many MIP instances, e.g., global
routing, are NP-hard.

We now introduce the next family of integer programs that we will work with.
Definition 2.2 (covering integer programs). Given A ∈ [0, 1]m×n, b ∈ [1,∞)m

and c ∈ [0, 1]n with maxj cj = 1, CIP seeks to minimize cT · x subject to x ∈ Zn
+

and Ax ≥ b. If A ∈ {0, 1}m×n, each entry of b is assumed integral. We define
B = mini bi, and let a be the maximum number of nonzero entries in any column of

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 613

A. A CIP is called unweighted if cj = 1 ∀j, and weighted otherwise.
Note the parameters g, a, and B of Definitions 2.1 and 2.2. Though there are

usually no restrictions on the entries of A, b, and c in CIPs aside of nonnegativity,
it is well known and easy to check that the above restrictions are without loss of
generality. CIPs again model many NP-hard problems in combinatorial optimization.
Recall that a hypergraph H = (V,E) is a family of subsets E (edges) of a set V
(vertices). The classical set cover problem—covering V using the smallest number of
edges in E (and its natural weighted version)—is a standard example of a CIP. The
parameter a here is the maximum number of vertices in any edge.

Next, there is growing interest in multicriteria optimization, since different par-
ticipating individuals and/or organizations may have different objective functions in
a given problem instance; see, e.g., [29]. Motivated by this, we study multicriteria
optimization in the setting of covering problems.

Definition 2.3 (multicriteria CIPs; informal). A multicriteria CIP has a sys-
tem of constraints “Ax ≥ b” as in CIPs, and has several given nonnegative vectors
c1, c2, . . . , c�; the aim is to keep all the values cTi · x “low.” (For instance, we may
aim to minimize maxi c

T
i · x subject to Ax ≥ b.) As in Definition 2.2, we assume that

A ∈ [0, 1]m×n, b ∈ [1,∞)m and ∀ i, ci ∈ [0, 1]n with maxj ci,j = 1.
We now present a lemma to quantify our approximation results; its proof is given

in section 3.
Lemma 2.4. Given independent r.v.s X1, . . . , Xn ∈ [0, 1], let X =

∑n
i=1 Xi and

μ = E[X].
a. For any δ > 0, Pr(X ≥ μ(1+δ)) ≤ G(μ, δ), where G(μ, δ) =

(
eδ/(1 + δ)1+δ

)μ
.

b. ∀μ > 0 ∀p ∈ (0, 1),∃δ = H(μ, p) > 0 such that 	μδ
 · G(μ, δ) ≤ p and such
that

H(μ, p) = Θ

(
log(p−1)

μ log(log(p−1)/μ)

)
if μ ≤ log(p−1)/2;

H(μ, p) = Θ

(√
log(μ + p−1)

μ

)
otherwise.

Given an ILP, we can find an optimal solution x∗ to its LP relaxation efficiently,
but need to round fractional entries in x∗ to integers. The idea of randomized rounding
is: given a real v > 0, round v to �v�+ 1 with probability v−�v�, and round v to �v�
with probability 1 − v + �v�. This has the nice property that the mean outcome is
v. Starting with this idea, the analysis of [32] produces an integral solution of value
at most y∗ + O(min{y∗,m} · H(min{y∗,m}, 1/m)) for MIPs (though phrased a bit
differently); this is derandomized in [31]. But this does not exploit the sparsity of A;
the previously-mentioned result of [18] produces an integral solution of value at most
y∗ + g + 1.

For CIPs, the idea is to solve the LP relaxation, scale up the components of x∗

suitably, and then perform randomized rounding; see section 5 for the details. Starting
with this idea, the work of [32] leads to certain approximation bounds; similar bounds
are achieved through different means by Plotkin, Shmoys, and Tardos [30]. Work of
this author [36] improved upon these results by observing a “correlation” property of
CIPs, getting an approximation ratio of 1+O(max{ln(mB/y∗)/B,

√
ln(mB/y∗)/B}).

Thus, while the work of [32] gives a general approximation bound for MIPs, the result
of [18] gives good results for sparse MIPs. For CIPs, the current-best results are those
of [36]; however, no better results were known for sparse CIPs.

614 ARAVIND SRINIVASAN

2.1. Improvements achieved. For MIPs, we use the extended LLL and an
idea of Éva Tardos that leads to a bootstrapping of the LLL extension.

Theorem 2.5. For any given MIP, there exists an integral solution of value at
most y∗ + O(1) + O(min{y∗,m} ·H(min{y∗,m}, 1/a)). Since a ≤ m, this is always
as good as the y∗ +O(min{y∗,m} ·H(min{y∗,m}, 1/m)) bound of [32] and is a good
improvement, if a m. It also is an improvement over the additive g factor of [18]
in cases where g is not small compared to y∗.

Consider, e.g., the global routing problem and its MIP formulation, sketched
above; m here is the number of edges in G, and g = a is the maximum length of
any path in

⋃
i Pi. To focus on a specific interesting case, suppose y∗, the fractional

congestion, is at most one. Then while the previous results ([32] and [18], resp.) give
bounds of O(logm/ log logm) and O(a) on an integral solution, we get the improved
bound of O(log a/ log log a). Similar improvements are easily seen for other ranges of
y∗ also; e.g., if y∗ = O(log a), an integral solution of value O(log a) exists, improving on
the previously known bounds of O(logm/ log(2 logm/ log a)) and O(a). Thus, routing
along short paths (this is the notion of sparsity for the global routing problem) is very
beneficial in keeping the congestion low. Section 4 presents a scenario where we get
such improvements, for discrepancy-type problems [34, 4]. In particular, we generalize
a hypergraph-partitioning result of Füredi and Kahn [16].

Recall the bounds of [36] for CIPs mentioned in the paragraph preceding this
subsection; our bounds for CIPs depend only on the set of constraints Ax ≥ b, i.e.,
they hold for any nonnegative objective-function vector c. Our improvements over
[36] get better as y∗ decreases.

Theorem 2.6. For any given CIP, there exists a feasible solution of value at
most y∗ · (1 + O(max{ln(a + 1)/B,

√
ln(a + B)/B})).

This CIP bound is better than that of [36] if y∗ is small enough. In particular,
we generalize the result of Chvátal [10] on weighted set cover. Consider, e.g., a
facility location problem on a directed graph G = (V,A): given a cost ci ∈ [0, 1]
for each i ∈ V , we want a min-cost assignment of facilities to the nodes such that
each node sees at least B facilities in its out-neighborhood; multiple facilities at a
node are allowed. If Δin is the maximum in-degree of G, Theorem 2.6 guarantees an
integrality gap of 1 + O(max{ln(Δin + 1)/B,

√
ln(B(Δin + 1))/B}). This improves

on [36] if y∗ ≤ |V |B/max{Δin, B}; it shows an O(1) (resp., 1 + o(1)) integrality gap
if B grows as fast as (resp., strictly faster than) log Δin.

A key corollary of Theorem 2.6 is that for families of instances of CIPs, we get a
good (O(1) or 1 + o(1)) integrality gap if B grows at least as fast as log a; bounds on
the result of a greedy algorithm for CIPs relative to the optimal integral solution are
known [12, 13]. Our bound of Theorem 2.6 improves that of [12] and is incomparable
with [13]; for any given A, c, and the unit vector b/||b||2, our bound improves on [13] if
B is more than a certain threshold. As it stands, randomized rounding produces such
improved solutions for several CIPs only with a very low, sometimes exponentially
small, probability. Thus, it does not imply a randomized algorithm, often. To this end,
we generalize Raghavan’s method of pessimistic estimators to derive an algorithmic
(polynomial-time) version of Theorem 2.6, in section 5.3.

We also show via Theorem 5.9 and Corollary 5.10 that multicriteria CIPs can be
approximated well. In particular, Corollary 5.10 shows some interesting cases where
the approximation guarantee for multicriteria CIPs grows in a very much sublinear
fashion with the number � of given vectors ci: the approximation ratio is at most
O(log log �) times what we show for CIPs (which correspond to the case where � = 1).

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 615

We are not aware of any such earlier work on multicriteria CIPs. The constructive
version of Corollary 5.10 that we present in section 5.3 requires poly(nlog �,m) time,
though. It would be interesting to be able to improve this to a polynomial-time
algorithm.

2.2. Preliminary version of this work, and followup. A preliminary version
of this work appeared in [35], with a sketch of the proof for minimax integer programs,
and proofs omitted for our constructive results on covering integer programs. In this
version, we provide all proofs, further generalize the main covering result of [35] to
Theorem 5.9, and present a sample application of Theorem 5.9 in Corollary 5.10. As
mentioned in section 1, two main algorithmic versions related to our work have been
obtained following [35]. First, for a subclass of the MIPs where the nonzero entries
of the matrix A are “reasonably large,” constructive versions of our results have been
obtained in [20]. Second, for a notion of approximation that is different from the
one we study, algorithmic results have been developed for certain families of MIPs
in [11]. Furthermore, our Theorem 2.6 for CIPs has been used in [19] to develop
approximation algorithms for CIPs that have given upper bounds on the variables xj .

3. The extended LLL and an approach to large deviations. We now
present our LLL extension, Theorem 3.1. For any event E, define χ(E) to be its in-
dicator r.v.: 1 if E holds and 0 otherwise. Suppose we have “bad” events E1, . . . , Em

with a “dependency” d′ (in the sense of Lemma 1.1) that is “large.” Theorem 3.1
shows how to essentially replace d′ by a possibly much-smaller d, if we are able to
define appropriate nonnegative valued random variables {Ci,j} for each Ei. It gen-
eralizes Lemma 1.1 (define one r.v., Ci,1 = χ(Ei), for each i, to get Lemma 1.1),
and its proof is very similar to the classical proof of Lemma 1.1. The motivation for
Theorem 3.1 will be clarified by the applications; in particular, given some additional
preparations, Theorems 4.2 and 2.6 follow, respectively, and with relatively less work,
from Theorem 3.1 and its proof approach.

Theorem 3.1. Given events E1, . . . , Em and any I ⊆ [m], let Z(I)
.
=
∧

i∈I Ei.
Suppose that for some positive integer d, we can define, for each i ∈ [m], a finite
number of r.v.s Ci,1, Ci,2, . . . each taking on only nonnegative values such that

(i) any Ci,j is mutually independent of all, but at most d of the events Ek, k �= i,
and

(ii) ∀I ⊆ ([m] − {i}), Pr(Ei

∣∣ Z(I)) ≤
∑

j E[Ci,j

∣∣ Z(I)].

Let pi denote
∑

j E[Ci,j]. Suppose that ∀i ∈ [m] we have epi(d + 1) ≤ 1. Then

Pr(
∧

i Ei) ≥ (d/(d + 1))m > 0.

Remark 3.2. Note, by setting I = φ in (ii), that Pr(Ei) ≤ pi ∀ i. Also, Ci,j and
Ci,j′ can “depend” on different subsets of {Ek|k �= i}; the only restriction is that these
subsets be of size at most d. Note that we have essentially reduced the dependency
among the Eis to just d: epi(d+ 1) ≤ 1 suffices. Another important point is that the
dependency among the r.v.s Ci,j could be much higher than d: all we count is the
number of Ek that any Ci,j depends on.

Proof of Theorem 3.1. We prove by induction on |I| that if i �∈ I, then Pr(Ei

∣∣
Z(I)) ≤ epi, which suffices to prove the theorem since Pr(

∧
i Ei) =

∏
i∈[m](1−Pr(Ei

∣∣
Z([i − 1]))). For the base case where I = ∅, Pr(Ei

∣∣ Z(I)) = Pr(Ei) ≤ pi. For the

inductive step, let Si,j,I
.
= {k ∈ I

∣∣ Ci,j depends on Ek}, and S′
i,j,I = I − Si,j,I ; note

that |Si,j,I | ≤ d. If Si,j,I = ∅, then E[Ci,j

∣∣ Z(I)] = E[Ci,j]. Otherwise, letting

616 ARAVIND SRINIVASAN

Si,j,I = {�1, . . . , �r}, we have

E[Ci,j

∣∣ Z(I)] =
E[Ci,j · χ(Z(Si,j,I))

∣∣ Z(S′
i,j,I)]

Pr(Z(Si,j,I)
∣∣ Z(S′

i,j,I))
≤

E[Ci,j

∣∣ Z(S′
i,j,I)]

Pr(Z(Si,j,I)
∣∣ Z(S′

i,j,I))
,

since Ci,j is nonnegative. The numerator of the last term is E[Ci,j], by assumption.
The denominator can be lower-bounded as follows:∏

s∈[r]

(1 − Pr(E�s

∣∣ Z({�1, �2, . . . , �s−1} ∪ S′
i,j,I))) ≥

∏
s∈[r]

(1 − ep�s)

≥ (1 − 1/(d + 1))r ≥ (d/(d + 1))d > 1/e;

the first inequality follows from the induction hypothesis. Hence, E[Ci,j

∣∣ Z(I)] ≤
eE[Ci,j] and thus, Pr(Ei

∣∣ Z(I)) ≤
∑

j E[Ci,j

∣∣ Z(I)] ≤ epi ≤ 1/(d + 1).
The crucial point is that the events Ei could have a large dependency d′, in the

sense of the classical Lemma 1.1. The main utility of Theorem 3.1 is that if we can
“decompose” each Ei into the r.v.s Ci,j that satisfy the conditions of the theorem,
then there is the possibility of effectively reducing the dependency noticeably (d′ can
be replaced by the value d). Concrete instances of this will be studied in later sections.

The tools behind our MIP application are our new LLL, and a result of [33].
Define, for z = (z1, . . . , zn) ∈ �n, a family of polynomials Sj(z), j = 0, 1, . . . , n, where
S0(z) ≡ 1, and for j ∈ [n],

Sj(z)
.
=

∑
1≤i1<i2···<ij≤n

zi1zi2 · · · zij .(3.1)

Remark 3.3. For real x and nonnegative integral r, we define
(
x
r

) .
= x(x −

1) · · · (x− r + 1)/r! as usual; this is the sense meant in Theorem 3.4 below.
We define a nonempty event to be any event with a nonzero probability of occur-

rence. The relevant theorem of [33] is the following.
Theorem 3.4 (see [33]). Given r.v.s X1, . . . , Xn ∈ [0, 1], let X =

∑n
i=1 Xi and

μ = E[X]. Then,
(a) For any q > 0, any nonempty event Z, and any nonnegative integer k ≤ q,

Pr(X ≥ q
∣∣ Z) ≤ E[Yk,q

∣∣ Z],

where Yk,q = Sk(X1, . . . , Xn)/
(
q
k

)
.

(b) If the Xis are independent, δ > 0, and k = 	μδ
, then Pr(X ≥ μ(1 + δ)) ≤
E[Yk,μ(1+δ)] ≤ G(μ, δ), where G(·, ·) is as in Lemma 2.4.

(c) If the Xis are independent, then E[Sk(X1, . . . , Xn)] ≤
(
n
k

)
· (μ/n)k ≤ μk/k!.

Proof. Suppose r1, r2, . . . rn ∈ [0, 1] satisfy
∑n

i=1 ri ≥ q. Then, a simple proof is
given in [33], for the fact that for any nonnegative integer k ≤ q, Sk(r1, r2, . . . , rn) ≥(
q
k

)
. This clearly holds even given the occurrence of any nonempty event Z. Thus we

get Pr(X ≥ q
∣∣ Z) ≤ Pr(Yk,q ≥ 1

∣∣ Z) ≤ E[Yk,q

∣∣ Z], where the second inequality
follows from Markov’s inequality. The proofs of (b) and (c) are given in [33].

We next present the proof of Lemma 2.4.
Proof of Lemma 2.4. Part (a) is the Chernoff–Hoeffding bound (see, e.g., Ap-

pendix A of [4], or [27]). For (b), we proceed as follows. For any μ > 0, it is easy to
check that

G(μ, δ) = e−Θ(μδ2) if δ ∈ (0, 1),(3.2)

G(μ, δ) = e−Θ(μ(1+δ) ln(1+δ)) if δ ≥ 1.(3.3)

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 617

Now if μ ≤ log(p−1)/2, choose

δ = C · log(p−1)

μ log(log(p−1)/μ)

for a suitably large constant C. Since μ ≤ log(p−1)/2, we can make δ ≥ 1 and have
(3.3) hold, by choosing, e.g., C ≥ 1. Simple algebraic manipulation now shows that
if C is large enough, then 	μδ
 · G(μ, δ) ≤ p holds. Similarly, if μ > log(p−1)/2, we

set δ = C ·
√

log(μ+p−1)
μ for a large enough constant C, and use (3.2).

4. Approximating minimax integer programs. We now employ Theorem 3.1
to develop improved results on integral solutions for MIPs. We broadly proceed in
two steps. First, we define a useful parameter t; a relatively direct application of
Theorem 3.1 leads to Theorem 4.2. Second, we “bootstrap” Theorem 4.2 to develop
the stronger Theorem 2.5. We present the intuitions behind these two theorems in
the paragraph preceding Theorem 4.2 and in the paragraph preceding the proof of
Theorem 2.5.

Let us first define a parameter t. This is useful as a first step in developing
Theorem 4.2, but we will dispense with it when we work up to the proof of Theo-
rem 2.5. Suppose we are given an MIP conforming to Definition 2.1. Define t to be
maxi∈[m]NZi, where NZi is the number of rows of A which have a nonzero coefficient
corresponding to at least one variable among {xi,j : j ∈ [�i]}. Note that

g ≤ a ≤ t ≤ min{m, a · maxi∈[n]�i}.(4.1)

Theorem 4.2 now shows how Theorem 3.1 can help for sparse MIPs, those where
t m. We will then bootstrap Theorem 4.2 to get the further-improved Theorem 2.5.
We start with a proposition, whose proof is shown in the appendix.

Proposition 4.1. If 0 < μ1 ≤ μ2, then for any δ > 0, G(μ1, μ2δ/μ1) ≤
G(μ2, δ).

Intuition for Theorem 4.2. Given an MIP, let us conduct randomized rounding in
a natural way: independently for each i, randomly round exactly one xi,j to 1, with
xi,j getting rounded to 1 with probability x∗

i,j . Now, we have one bad event Ei for
each row i of A, corresponding to its row-sum going noticeably above its expectation.
We would like to define random variables Ci,j corresponding to each Ei, in order to
employ Theorem 3.1. If we can choose a suitable integer k, then Theorem 3.4(a)
suggests a natural choice for the Ci,j . Since Ei is an upper-tail event of the type
captured by Theorem 3.4(a), we can try and bijectively map the Ci,j to the

(
n
k

)
r.v.s

“Xi1Xi2 · · ·Xik/
(
q
k

)
” that constitute the r.v. “Yk,q” of Theorem 3.4(a). Condition

(ii) of Theorem 3.1 is satisfied by Theorem 3.4(a); we will bound the parameter d in
condition (i) of Theorem 3.1 by using the definition of t. These, in conjunction with
some simple observations, lead to Theorem 4.2.

Theorem 4.2. Given an MIP conforming to Definition 2.1, randomized rounding
produces a feasible solution of value at most y∗+	min{y∗,m}·H(min{y∗,m}, 1/(et))
,
with nonzero probability.

Proof. Conduct randomized rounding: independently for each i, randomly round
exactly one xi,j to 1, guided by the “probabilities” {x∗

i,j}. Recall again that x∗ =
{x∗

i,j} is the vector obtained by solving the LP relaxation. We may assume that {x∗
i,j}

is a basic feasible solution to this relaxation. Hence, at most m of the {x∗
i,j} will be

neither zero nor one, and only these variables will participate in the rounding. Since

618 ARAVIND SRINIVASAN

all the entries of A are in [0, 1], we can assume without loss of generality from now on
that y∗ ≤ m (and that maxi∈[n]�i ≤ m); this explains the “min{y∗,m}” term in our
stated bounds. Let bi = (Ax∗)i denote the r.h.s. value that we get for the ith row in
the optimal solution for the LP relaxation; so we have bi ≤ y∗. If z ∈ {0, 1}N denotes
the randomly rounded vector, then E[(Az)i] = bi ≤ y∗ by the linearity of expectation.
Defining

k = 	y∗H(y∗, 1/(et))
(4.2)

and events E1, E2, . . . , Em by Ei ≡ “(Az)i ≥ bi+k,” we now show that Pr(
∧

i∈[m] Ei) >
0 using Theorem 3.1. Rewrite the ith constraint of the MIP as

∑
r∈[n]

Xi,r ≤ W, where Xi,r =
∑
s∈[�r]

Ai,(r,s)xr,s;

the notation Ai,(r,s) assumes that the pairs {(r, s) : r ∈ [n], s ∈ [�r]} have been mapped
bijectively to [N], in some fixed way. Defining the r.v.

Zi,r =
∑
s∈[�r]

Ai,(r,s)zr,s,

we note that for each i, the r.v.s {Zi,r : r ∈ [n]} lie in [0, 1] and are independent. Also,
Ei ≡ “

∑
r∈[n] Zi,r ≥ bi + k.”

Theorem 3.4 suggests a suitable choice for the crucial r.v.s Ci,j (to apply Theo-
rem 3.1). Let u =

(
n
k

)
; we now define the r.v.s {Ci,j : i ∈ [m], j ∈ [u]} as follows. Fix

any i ∈ [m]. Identify each j ∈ [u] with some distinct k-element subset S(j) of [n], and
let

Ci,j
.
=

∏
v∈S(j) Zi,v(

bi+k
k

) .(4.3)

We now need to show that the r.v.s Ci,j satisfy the conditions of Theorem 3.1. For
any i ∈ [m], let δi = k/bi. Since bi ≤ y∗, we have, for each i ∈ [m],

G(bi, δi) ≤ G(y∗, k/y∗) (by Proposition 4.1)

≤ G(y∗, H(y∗, 1/(et))) (by (4.2))

≤ 1/(ekt) (by the definition of H).

Now by Theorem 3.4, we get the following fact.
Fact 4.3. For all i ∈ [m] and for all nonempty events Z, Pr(Ei

∣∣ Z) ≤∑
j∈[u] E[Ci,j

∣∣ Z]. Also, pi
.
=
∑

j∈[u] E[Ci,j] < G(bi, δi) ≤ 1/(ekt).

Next since any Ci,j involves (a product of) k terms, each of which “depends” on
at most (t − 1) of the events {Ev : v ∈ ([m] − {i})} by definition of t, we see the
important

Fact 4.4. ∀i ∈ [m] ∀j ∈ [u], Ci,j ∈ [0, 1] and Ci,j “depends” on at most
d = k(t− 1) of the set of events {Ev : v ∈ ([m] − {i})}.

From Facts 4.3 and 4.4 and by noting that epi(d + 1) ≤ e(kt − k + 1)/(ekt) ≤
1, we invoke Theorem 3.1, to see that Pr(

∧
i∈[m] Ei) > 0, concluding the proof of

Theorem 4.2.
We are now ready to improve Theorem 4.2, to obtain Theorem 2.5.

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 619

Intuition for Theorem 2.5. Theorem 4.2 gives good results if t m, but can we
improve it further, say by replacing t by a (≤ t) in it? As seen from (4.1), the key
reason for t � aΘ(1) is that maxi∈[n] �i � aΘ(1). If we can essentially “bring down”
maxi∈[n] �i by forcing many x∗

i,j to be zero for each i, then we effectively reduce t
(t ≤ a · maxi �i, see (4.1)); this is so since only those x∗

i,j that are neither zero nor
one take part in the rounding. A way of bootstrapping Theorem 4.2 to achieve this
using a “slow rounding” technique that proceeds in O(log log t) iterations, is shown
by Theorem 2.5.

Proof of Theorem 2.5. Let K0 > 0 be a sufficiently large absolute constant. Now
if

(y∗ ≥ t1/7) or (t ≤ max{K0, 2}) or (t ≤ a4)(4.4)

holds, then we will be done by Theorem 4.2. So we may assume that (4.4) is false.
Also, if y∗ ≤ t−1/7, Theorem 4.2 guarantees an integral solution of value O(1); thus,
we also suppose that y∗ > t−1/7. The basic idea now is, as sketched above, to set
many x∗

i,j to zero for each i (without losing too much on y∗), so that maxi �i and
hence, t, will essentially get reduced. Such an approach, whose performance will be
validated by arguments similar to those of Theorem 4.2, is repeatedly applied until
(4.4) holds, owing to the (continually reduced) t becoming small enough to satisfy
(4.4). There are two cases.

Case I. y∗ ≥ 1. Solve the LP relaxation, and set x′
i,j := (y∗)2(log5 t)x∗

i,j . Conduct
randomized rounding on the x′

i,j now, rounding each x′
i,j independently to zi,j ∈

{�x′
i,j�, 	x′

i,j
}. (Note the key difference from Theorem 4.2, where for each i, we
round exactly one x∗

i,j to 1.)
Let K1 > 0 be a sufficiently large absolute constant. We now use ideas similar

to those used in our proof of Theorem 4.2 to show that with nonzero probability, we
have both of the following:

∀i ∈ [m],(Az)i ≤ (y∗)3 log5 t · (1 + K1/((y
∗)1.5 log2 t)), and(4.5)

∀i ∈ [n],

∣∣∣∣∣
∑
j

zi,j − (y∗)2 log5 t

∣∣∣∣∣ ≤ K1y
∗ log3 t.(4.6)

To show this, we proceed as follows. Let E1, E2, . . . , Em be the “bad” events, one for
each event in (4.5) not holding; similarly, let Em+1, Em+2, . . . , Em+n be the “bad”
events, one for each event in (4.6) not holding. We want to use our extended LLL to
show that with positive probability, all these bad events can be avoided; specifically,
we need a way of associating each Ei with some finite number of nonnegative r.v.s
Ci,j . (Loosely speaking, we will “decompose” each Ei into a finite number of such
Ci,j .) We do this as follows. For each event Em+� where � ≥ 1, we define just one r.v.
Cm+�,1: this is the indicator variable for the occurrence of Em+�. For the events Ei

where i ≤ m, we decompose Ei into r.v.s Ci,j just as in (4.3): each such Ci,j is now
a scalar multiple of at most

O((y∗)3 log5 t/((y∗)1.5 log2 t)) = O((y∗)1.5 log3 t) = O(t3/14 log3 t)

independent binary r.v.s that underlie our randomized rounding; the second equality
(big-Oh bound) here follows since (4.4) has been assumed to not hold. Thus, it is
easy to see that ∀ i, 1 ≤ i ≤ m + n, and for any j, the r.v. Ci,j depends on at most

O(t · t3/14 log3 t)(4.7)

620 ARAVIND SRINIVASAN

events Ek, where k �= i. Also, as in our proof of Theorem 4.2, Theorem 3.4 gives
a direct proof of requirement (ii) of Theorem 3.1; part (b) of Theorem 3.4 shows
that for any desired constant K, we can choose the constant K1 large enough so
that ∀ i,

∑
j E[Ci,j] ≤ t−K . Thus, in view of (4.7), we see by Theorem 3.1 that

Pr(
∧m+n

i=1 Ei) > 0.
Fix a rounding z satisfying (4.5) and (4.6). For each i ∈ [n] and j ∈ [�i], we

renormalize as follows: x′′
i,j := zi,j/

∑
u zi,u. Thus we have

∑
u x

′′
i,u = 1 for all i; we

now see that we have two very useful properties. First, since
∑

j zi,j ≥ (y∗)2 log5 t ·(
1 −O(1

y∗ log2 t
)
)

for all i from (4.6), we have, ∀i ∈ [m],

(Ax′′)i ≤
y∗(1 + O(1/((y∗)1.5 log2 t)))

1 −O(1/(y∗ log2 t))
≤ y∗(1 + O(1/(y∗ log2 t))).(4.8)

Second, since the zi,j are nonnegative integers summing to at most (y∗)2 log5 t(1 +
O(1/(y∗ log2 t))), at most O((y∗)2 log5 t) values x′′

i,j are nonzero, for each i ∈ [n].
Thus, by losing a little in y∗ (see (4.8)), our “scaling up-rounding-scaling down”
method has given a fractional solution x′′ with a much-reduced �i for each i; �i is now
O((y∗)2 log5 t), essentially. Thus, t has been reduced to O(a(y∗)2 log5 t); i.e., t has
been reduced to at most

K2t
1/4+2/7 log5 t(4.9)

for some constant K2 > 0 that is independent of K0, since (4.4) was assumed false.
Repeating this scheme O(log log t) times makes t small enough to satisfy (4.4). More

formally, define t0 = t and ti+1 = K2t
1/4+2/7
i log5 ti for i ≥ 0. Stop this sequence at

the first point where either t = ti satisfies (4.4) or ti+1 ≥ ti holds. Thus, we finally
have t small enough to satisfy (4.4) or to be bounded by some absolute constant. How
much has maxi∈[m](Ax)i increased in the process? By (4.8), we see that at the end,

max
i∈[m]

(Ax)i ≤ y∗ ·
∏
j≥0

(1 + O(1/(y∗ log2 tj))) ≤ y∗ · eO(
∑

j≥0 1/(y∗ log2 tj)) ≤ y∗ + O(1),

(4.10)

since the values log tj decrease geometrically and are lower-bounded by some absolute
positive constant. We may now apply Theorem 4.2.

Case II. t−1/7 < y∗ < 1. The idea is the same here, with the scaling up of x∗
i,j

being by (log5 t)/y∗; the same “scaling up-rounding-scaling down” method works out.
Since the ideas are very similar to Case I, we only give a proof sketch here. We now
scale up all the x∗

i,j first by (log5 t)/y∗ and do a randomized rounding. The analogs
of (4.5) and (4.6) that we now want are

∀i ∈ [m],(Az)i ≤ log5 t · (1 + K ′
1/ log2 t), and(4.11)

∀i ∈ [n],

∣∣∣∣∣
∑
j

zi,j − log5 t/y∗

∣∣∣∣∣ ≤ K ′
1 log3 t/

√
y∗.(4.12)

Proceeding identically as in Case I, we can show that with positive probability, (4.11)
and (4.12) hold simultaneously. Fix a rounding where these two properties hold and
renormalize as before: x′′

i,j := zi,j/
∑

u zi,u. Since (4.11) and (4.12) hold, we get that

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 621

the following analogs of (4.8) and (4.9) hold:

(Ax′′)i ≤
y∗(1 + O(1/ log2 t))

1 −O(
√
y∗/ log2 t)

≤ y∗(1 + O(1/ log2 t)); and

t has been reduced to O(a log5 t/y∗), i.e., to O(t1/4+1/7 log5 t).

We thus only need O(log log t) iterations, again. Also, the analog of (4.10) now is that

max
i∈[m]

(Ax)i ≤ y∗ ·
∏
j≥0

(1 + O(1/ log2 tj)) ≤ y∗ · eO(
∑

j≥0 1/ log2 tj) ≤ y∗ + O(1).

This completes the proof of Theorem 2.5.
We now study our improvements for discrepancy-type problems, which are an

important class of MIPs that, among other things, are useful in devising divide-
and-conquer algorithms. Given is a set-system (X,F), where X = [n] and F =
{D1, D2, . . . , DM} ⊆ 2X . Given a positive integer �, the problem is to partition X
into � parts, so that each Dj is “split well”; we want a function f : X → [�] which
minimizes maxj∈[M],k∈[�] |{i ∈ Dj : f(i) = k}|. (The case � = 2 is the standard set-
discrepancy problem.) To motivate this problem, suppose we have a (di)graph (V,A);
we want a partition of V into V1, . . . , V� such that ∀v ∈ V , {|{j ∈ N(v)∩Vk}| : k ∈ [�]}
are “roughly the same,” where N(v) is the (out-)neighborhood of v; see, e.g., [2, 17] for
how this helps construct divide-and-conquer approaches. This problem is naturally
modeled by the above set-system problem.

Let Δ be the degree of (X,F), i.e., maxi∈[n]|{j : i ∈ Dj}|, and let Δ′ .
=

maxDj∈F |Dj |. Our problem is naturally written as an MIP with m = M�, �i = � for
each i, and g = a = Δ, in the notation of Definition 2.1; y∗ = Δ′/� here. The analysis
of [32] gives an integral solution of value at most y∗(1+O(H(y∗, 1/(M�)))), while [18]
presents a solution of value at most y∗ +Δ. Also, since any Dj ∈ F intersects at most
(Δ−1)Δ′ other elements of F , Lemma 1.1 shows that randomized rounding produces,
with positive probability, a solution of value at most y∗(1 + O(H(y∗, 1/(eΔ′Δ�)))).
This is the approach taken by [16] for their case of interest: Δ = Δ′, � = Δ/ log Δ.

Theorem 2.5 shows the existence of an integral solution of value a constant plus
y∗(1 + O(H(y∗, 1/δ))); i.e., removes the dependence of the approximation factor on
Δ′. This is an improvement on all three results above. As a specific interesting
case, suppose � grows at most as fast as Δ′/ log Δ. Then we see that good integral
solutions—those that grow at the rate of O(y∗) or better—exist, which was not known
before. (The approach of [16] shows such a result for � = O(Δ′/ log(max{Δ,Δ′})).
Our bound of O(Δ′/ log Δ) is always better than this, and especially so if Δ′ � Δ.)

5. Approximating covering integer programs. One of the main ideas be-
hind Theorem 3.1 was to extend the basic inductive proof behind the LLL by decom-
posing the “bad” events Ei appropriately into the r.v.s Ci,j . We now use this general
idea in a different context, that of (multicriteria) covering integer programs, with an
additional crucial ingredient being a useful correlation inequality, the FKG inequality
[15]. The reader is asked to recall the discussion of (multicriteria) CIPs from section 2.
We start with a discussion of randomized rounding for CIPs, the Chernoff lower-tail
bound, and the FKG inequality in section 5.1. These lead to our improved, but non-
constructive, approximation bound for column-sparse (multicriteria) CIPs, in section
5.2. This is then made constructive in section 5.3; we also discuss there what we view

622 ARAVIND SRINIVASAN

as novel about this constructive approach. The two paragraphs marked “Intuition”
in section 5.2, as well as the first two paragraphs in section 5.3, describe some of our
main ideas here at an intuitive level.

5.1. Preliminaries. Let us start with a simple and well-known approach to tail
bounds. Suppose Y is a random variable and y is some value. Then, for any 0 ≤ δ < 1,
we have

Pr(Y ≤ y) ≤ Pr((1 − δ)Y ≥ (1 − δ)y) ≤ E[(1 − δ)Y]

(1 − δ)y
,(5.1)

where the inequality is a consequence of Markov’s inequality.
We next setup some basic notions related to approximation algorithms for (mul-

ticriteria) CIPs. Recall that in such problems, we have � given nonnegative vectors
c1, c2, . . . , c� such that ∀ i, ci ∈ [0, 1]n with maxj ci,j = 1; � = 1 in the case of CIPs.
Let x = (x∗

1, x
∗
2, . . . , x

∗
n) denote a given fractional solution that satisfies the system of

constraints Ax ≥ b. We are not concerned here with how x∗ was found: typically, x∗

would be an optimal solution to the LP relaxation of the problem. (The LP relaxation
is obvious if, e.g., � = 1, or, say, if the given multicriteria aims to minimize maxi c

T
i ·x∗,

or to keep each cTi · x∗ bounded by some target value vi.) We now consider how to
round x∗ to some integral z so that
(P1) the constraints Az ≥ b hold, and
(P2) for all i, cTi · z is “not much bigger” than cTi · x∗: our approximation bound will

be a measure of how small a “not much bigger value” we can achieve in this
sense.

Let us now discuss the “standard” randomized rounding scheme for (multicriteria)
CIPs. We assume a fixed instance as well as x∗, from now on. For an α > 1 to be
chosen suitably, set x′

j = αx∗
j , for each j ∈ [n]. We then construct a random integral

solution z by setting, independently for each j ∈ [n], zj = �x′
j� + 1 with probability

x′
j − �x′

j�, and zj = �x′
j� with probability 1 − (x′

j − �x′
j�). The aim then is to show

that with positive (hopefully high) probability, (P1) and (P2) happen simultaneously.
We now introduce some useful notation. For every j ∈ [n], let sj = �x′

j�. Let Ai

denote the ith row of A, and let X1, X2, . . . , Xn ∈ {0, 1} be independent r.v.s with
Pr(Xj = 1) = x′

j − sj ∀j. The bad event Ei that the ith constraint is violated by our
randomized rounding is given by Ei ≡ “Ai ·X < μi(1− δi),” where μi = E[Ai ·X], s
is the vector with entries sj , and δi = 1 − (bi − Ai · s)/μi. We aim to bound Pr(Ei)
for all i, when the standard randomized rounding is used. We assume without loss of
generality that Ai · s < bi for each i; otherwise, the bad event Ei cannot happen. So,
we have δi ∈ (0, 1) ∀i.

We now bound Pr(Ei); the proof involves routine Chernoff bounds and calcula-
tions, and is shown in the appendix.

Lemma 5.1. Define g(B,α)
.
= (α · e−(α−1))B. Then ∀i,

Pr(Ei) ≤
E[(1 − δi)

Ai·X]

(1 − δi)(1−δi)μi
≤ g(B,α) ≤ e−B(α−1)2/(2α)

under standard randomized rounding.
Next, we state a special case of the FKG inequality [15]. Given binary vec-

tors �a = (a1, a2, . . . , a�) ∈ {0, 1}� and �b = (b1, b2, . . . , b�) ∈ {0, 1}�, let us partially

order them by coordinate-wise domination: �a � �b iff ai ≤ bi ∀ i. Now suppose
Y1, Y2, . . . , Y� are independent r.v.s, each taking values in {0, 1}. Let �Y denote the

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 623

vector (Y1, Y2, . . . , Y�). Suppose an event A is completely defined by the value of �Y .

Define A to be increasing iff: ∀ �a ∈ {0, 1}� such that A holds when �Y = �a, A also

holds when �Y = �b, for any �b such that �a � �b. Analogously, event A is decreasing iff:
for all �a ∈ {0, 1}� such that A holds when �Y = �a, A also holds when �Y = �b, for any
�b � �a, the FKG inequality proves certain intuitively appealing bounds.

Lemma 5.2 (FKG inequality). Let I1, I2, . . . , It be any sequence of increasing
events and D1, D2, . . . , Dt be any sequence of decreasing events (each Ii and Di com-

pletely determined by �Y). Then for any i ∈ [t] and any S ⊆ [t],

(i) Pr(Ii|
∧

j∈S Ij) ≥ Pr(Ii) and Pr(Di|
∧

j∈S Dj) ≥ Pr(Di);

(ii) Pr(Ii|
∧

j∈S Dj) ≤ Pr(Ii) and Pr(Di|
∧

j∈S Ij) ≤ Pr(Di).

Returning to our random variables Xj and events Ei, we get the following lemma
as an easy consequence of the FKG inequality, since each event of the form “Ei” or
“Xj = 1” is an increasing event as a function of the vector (X1, X2, . . . , Xn).

Lemma 5.3. For all B1, B2 ⊆ [m] such that B1 ∩ B2 = ∅ and for any B3 ⊆ [n],
Pr(

∧
i∈B1

Ei

∣∣ ((
∧

j∈B2
Ej) ∧ (

∧
k∈B3

(Xk = 1))) ≥
∏

i∈B1
Pr(Ei).

5.2. Nonconstructive approximation bounds for (multicriteria) CIPs.
We now work up to our main approximation bound for multicriteria CIPs in Theo-
rem 5.9; this theorem is presented in an abstract manner, and one concrete corollary
is shown by Corollary 5.10. We develop Theorem 5.9 by starting with the special
case of CIPs (which have just one objective function) and proving Theorem 2.6; the
basic ideas are then generalized to obtain Theorem 5.9. The randomized rounding
approach underlying Theorem 5.9, as it stands, may only construct the solution guar-
anteed with very low (much less than inverse-polynomial) probability; algorithmic
versions of Theorem 5.9, which in some cases involve superpolynomial time, are then
developed in section 5.3.

Definition 5.4 (the function R). For any s and any j1 < j2 < · · · < js, let
R(j1, j2, . . . , js) be the set of indices i such that row i of the constraint system “Ax ≥
b” has at least one of the variables jk, 1 ≤ k ≤ s, appearing with a nonzero coefficient.
(Note from the definition of a in Definition 2.2 that |R(j1, j2, . . . , js)| ≤ a · s.)

Let the vector x∗ = (x∗
1, x

∗
2, . . . , x

∗
n), the parameter α > 1, and the “standard”

randomized rounding scheme, be as defined in section 5.1. The standard rounding
scheme is sufficient for our (nonconstructive) purposes now; we generalize this scheme
as follows for later use in section 5.3.

Definition 5.5 (general randomized rounding). Given a vector p =
(p1, p2, . . . , pn) ∈ [0, 1]n, the general randomized rounding with parameter p gener-
ates independent random variables X1, X2, . . . , Xn ∈ {0, 1} with Pr(Xj = 1) = pj; the
rounded vector z is defined by zj = �αx∗

j�+Xj ∀ j. (As in the standard rounding, we
set each zj to be either �αx∗

j� or 	αx∗
j
; the standard rounding is the special case in

which E[zj] = αx∗
j ∀ j.)

We now present an important lemma, Lemma 5.6, to get correlation inequalities
which “point” in the “direction” opposite to FKG. Some ideas from the proof of
Lemma 1.1 will play a crucial role in our proof this lemma.

Lemma 5.6. Suppose we employ general randomized rounding with some param-
eter p, and that Pr(

∧m
i=1 Ei) is nonzero under this rounding. The following hold for

624 ARAVIND SRINIVASAN

any q and any 1 ≤ j1 < j2 < · · · < jq ≤ n:
(i)

Pr

(
Xj1 = Xj2 = · · · = Xjq = 1

∣∣ m∧
i=1

Ei

)
≤

∏q
t=1 pjt∏

i∈R(j1,j2,...,jq)
(1 − Pr(Ei))

;(5.2)

the events Ei ≡ ((Az)i < bi) are defined here w.r.t. the general randomized rounding.
(ii) In the special case of standard randomized rounding,

∏
i∈R(j1,j2,...,jq)

(1 − Pr(Ei)) ≥ (1 − g(B,α))aq;(5.3)

the function g is as defined in Lemma 5.1.
Proof. (i) Note first that if we wanted a lower bound on the l.h.s., the FKG

inequality would immediately imply that the l.h.s. is at least pj1pj2 · · · pjq . We get
around this “correlation problem” as follows. Let Q = R(j1, j2, . . . , jq); let Q′ =
[m] −Q. Let

Z1 ≡

⎛
⎝∧

i∈Q

Ei

⎞
⎠ , and Z2 ≡

⎛
⎝ ∧

i∈Q′

Ei

⎞
⎠ .

Letting Y =
∏q

t=1 Xjt , note that

|Q| ≤ aq and(5.4)

Y is independent of Z2.(5.5)

Now,

Pr(Y = 1
∣∣ (Z1 ∧ Z2)) =

Pr(((Y = 1) ∧ Z1)
∣∣ Z2)

Pr(Z1

∣∣ Z2)

≤
Pr((Y = 1)

∣∣ Z2)

Pr(Z1

∣∣ Z2)

=
Pr(Y = 1)

Pr(Z1

∣∣ Z2)
(by (5.5))

=

∏q
t=1 Pr(Xjt = 1)

Pr(Z1

∣∣ Z2)
(5.6)

≤
∏q

t=1 Pr(Xjt = 1)∏
i∈R(j1,j2,...,jq)

(1 − Pr(Ei))
(by Lemma 5.3).

(ii) We get (5.3) from Lemma 5.1 and (5.4).
Intuition. Note that in the proof of part (i) of Lemma 5.6, we broadly proceed

as in the proofs of Lemma 1.1 and Theorem 3.1 up to (5.6). The key difference in
the next (and final) step is that instead of applying induction to lower-bound the
denominator as in the proofs of Lemma 1.1 and Theorem 3.1, we are directly able to
obtain a lower bound via Lemma 5.3. In addition to giving a better lower bound, this
type of explicitly-available denominator will be of considerable value in section 5.3.

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 625

We will use Lemmas 5.3 and 5.6 to prove Theorem 5.9. As a warmup, we start
with Theorem 2.6, which deals with the special case of CIPs; recall that y∗ denotes
cT · x∗. We present a simple proposition, whose proof is in the appendix:

Proposition 5.7. Suppose α and β are chosen as follows, for some sufficiently
large absolute constant K > 0:

α = K · ln(a + 1)/B and β = 2, if ln(a + 1) ≥ B, and(5.7)

α = β = 1 + K ·
√

ln(a + B)/B, if ln(a + 1) < B.(5.8)

Then we have β(1 − g(B,α))a > 1.
We now prove Theorem 2.6, our result for CIPs.
Proof of Theorem 2.6. Let α and β be as in (5.7) and (5.8). Conduct standard

randomized rounding, and let E be the event that cT ·z > y∗αβ. Setting Z ≡
∧

i∈[m] Ei

and μ
.
= E[cT · z] = y∗α, we see by Markov’s inequality that Pr(E

∣∣ Z) is at most

R = (
∑n

j=1 cj Pr(Xj = 1
∣∣ Z))/(μβ). Note that Pr(Z) > 0 since α > 1; so, we need

only prove that R < 1. Lemma 5.6 shows that

R ≤
∑

j cjpj

μβ · (1 − g(B,α))a
=

1

β(1 − g(B,α))a
;

thus, the condition β(1 − g(B,α))a > 1 suffices. Proposition 5.7 completes the
proof.

Intuition. The basic approach of our proof of Theorem 2.6 is to follow the main
idea of Theorem 3.1, and to decompose the event “E

∣∣ Z” into a nonnegative linear

combination of events of the form “Xj = 1
∣∣ Z”; we then exploited the fact that each

Xj depends on at most a of the events comprising Z. We now extend Theorem 2.6
and also generalize to multicriteria CIPs. Instead of employing just a “first moment
method” (Markov’s inequality) as in the proof of Theorem 2.6, we will work with
higher moments: the functions Sk defined in (3.1) and used in Theorem 3.4.

Suppose some parameters λi > 0 are given, and that our goal is to round x∗ to z
so that the event

A ≡
[
(Az ≥ b) ∧ (∀i, cTi · z ≤ λi)

]
(5.9)

holds. We first give a sufficient condition for this to hold, in Theorem 5.9; we then
derive some concrete consequences in Corollary 5.10. We need one further definition
before presenting Theorem 5.9. Recall that Ai and bi, respectively, denote the ith
row of A and the ith component of b. Also, the vector s and values δi will throughout
be as in the definition of standard randomized rounding.

Definition 5.8 (the functions ch and ch′
). Suppose we conduct general random-

ized rounding with some parameter p; i.e., let X1, X2, . . . , Xn be independent binary
random variables such that Pr(Xj = 1) = pj. For each i ∈ [m], define

chi(p)
.
=

E[(1 − δi)
Ai·X]

(1 − δi)bi−Ai·s =

∏
j∈[n] E[(1 − δi)

Ai,jXj]

(1 − δi)bi−Ai·s and ch′
i(p)

.
= min{chi(p), 1}.

(Note from (5.1) that if we conduct general randomized rounding with parameter p,
then Pr((Az)i < bi) ≤ ch′

i(p); also, “ch” stands for “Chernoff–Hoeffding.”)
Theorem 5.9. Suppose we are given a multicriteria CIP, as well as some pa-

rameters λ1, λ2, . . . , λ� > 0. Let A be as in (5.9). Then, for any sequence of positive

626 ARAVIND SRINIVASAN

integers (k1, k2, . . . , k�) such that ki ≤ λi, the following hold:
(i) Suppose we employ general randomized rounding with parameter p =

(p1, p2, . . . , pn). Then, Pr(A) is at least

Φ(p)
.
=

⎛
⎝ ∏

r∈[m]

(1 − ch′
r(p))

⎞
⎠−

�∑
i=1

1(
λi

ki

) ·
∑

j1<···<jki

(
ki∏
t=1

ci,jt · pjt

)
(5.10)

·
∏

r �∈R(j1,...,jki
)

(1 − ch′
r(p));

as in Definition 2.3, ci,j ∈ [0, 1] is the jth coordinate of the vector ci.
(ii) Suppose we employ the standard randomized rounding to get a rounded vector

z. Let λi = νi(1 + γi) for each i ∈ [�], where νi = E[cTi · z] = α · (cTi · x∗) and γi > 0
is some parameter. Then,

Φ(p) ≥ (1 − g(B,α))m ·
(

1 −
�∑

i=1

(
n
ki

)
· (νi/n)ki(

νi(1+γi)
ki

) · (1 − g(B,α))−a·ki

)
.(5.11)

In particular, if the r.h.s. of (5.11) is positive, then Pr(A) > 0 for standard randomized
rounding.

The proof of Theorem 5.9 is a simple generalization of that of Theorem 2.6—
basically, we use higher moments (the moment Ski for objective function ci) and
employ Theorem 3.4, instead of using the first moment and Markov’s inequality. This
proof is deferred to the appendix. Theorem 2.6 is the special case of Theorem 5.9
corresponding to � = k1 = 1. To make the general result of Theorem 5.9 more
concrete, we now present an additional special case, Corollary 5.10. We provide this
as one possible “proof of concept,” rather than as an optimized one; e.g., the constant
“3” in the bound “cTi · z ≤ 3νi” of Corollary 5.10 can be improved. The proof of
Corollary 5.10 requires routine calculations after setting ki = 	ln(2�)
 and γi = 2 for
all i in part (ii) of Theorem 5.9; its proof is given in the appendix.

Corollary 5.10. There is an absolute constant K ′ > 0 such that the following
holds. Suppose we are given a multicriteria CIP with notation as in part (ii) of

Theorem 5.9. Define α = K ′ · max{ ln(a)+ln ln(2�)
B , 1}. Now if νi ≥ log2(2�) ∀ i ∈ [�],

then standard randomized rounding produces a feasible solution z such that cTi · z ≤
3νi ∀ i, with positive probability.

In particular, this can be shown by setting ki = 	ln(2�)
 and γi = 2 ∀ i, in part
(ii) of Theorem 5.9.

5.3. Constructive version. It can be shown that for many problems,randomized
rounding produces the solutions shown to exist by Theorems 2.6 and 5.9, with very
low probability: e.g., probability almost exponentially small in the input size. Thus
we need to obtain constructive versions of these theorems. Our method will be a
deterministic procedure that makes O(n) calls to the function Φ(·), in addition to
poly(n,m) work. Now, if k′ denotes the maximum of all the ki, we see that Φ can be
evaluated in poly(nk′

,m) time. Thus, our overall procedure runs in time poly(nk′
,m).

In particular, we get constructive versions of Theorem 2.6 and Corollary 5.10 that run
in time poly(n,m) and poly(nlog �,m), respectively.

Our approach is as follows. We start with a vector p that corresponds to standard
randomized rounding, for which we know (say, as argued in Corollary 5.10) that
Φ(p) > 0. In general, we have a vector of probabilities p = (p1, p2, . . . , pn) such that

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 627

Φ(p) > 0. If p ∈ {0, 1}n, we are done. Otherwise suppose some pj lies in (0, 1); by
renaming the variables, we will assume without loss of generality that j = n. Define
p′ = (p1, p2, . . . , pn−1, 0) and p′′ = (p1, p2, . . . , pn−1, 1). The main fact we wish to show
is that Φ(p′) > 0 or Φ(p′′) > 0: we can then set pn to 0 or 1 appropriately and continue.
(As mentioned in the previous paragraph, we thus have O(n) calls to the function Φ(·)
in total.) Note that although some of the pj will lie in {0, 1}, we can crucially continue
to view the Xj as independent random variables with Pr(Xj = 1) = pj .

So, our main goal is: assuming that pn ∈ (0, 1) and that

Φ(p) > 0,(5.12)

to show that Φ(p′) > 0 or Φ(p′′) > 0. In order to do so, we make some observations
and introduce some simplifying notation. Define, for each i ∈ [m]: qi = ch′

i(p),
q′i = ch′

i(p
′), and q′′i = ch′

i(p
′′). Also define the vectors q

.
= (q1, q2, . . . , qm), q′

.
=

(q′1, q
′
2, . . . , q

′
m), and q′′

.
= (q′′1 , q

′′
2 , . . . , q

′′
m). We now present a useful lemma about

these vectors.

Lemma 5.11. For all i ∈ [m], we have

0 ≤ q′′i ≤ q′i ≤ 1;(5.13)

qi ≥ pnq
′′
i + (1 − pn)q′i; and(5.14)

q′i = q′′i = qi if i �∈ R(n).(5.15)

Proof. It is directly seen from the definition of “chi” that chi(p
′′) ≤ chi(p

′).
Since q′′i = min{chi(p

′′), 1} and q′i = min{chi(p
′), 1}, we get q′′i ≤ q′i. The remaining

inequalities of (5.13), as well as the equalities in (5.15), are straightforward. As for
(5.14), we proceed as in [36]. First of all, if qi = 1, then we are done, since q′′i , q

′
i ≤ 1.

So suppose qi < 1; in this case, qi = chi(p). Now, Definition 5.8 shows that

chi(p) = pnchi(p
′′) + (1 − pn)chi(p

′).

Therefore, qi = chi(p) = pnchi(p
′′)+(1−pn)chi(p

′) ≥ pnch′
i(p

′′)+(1−pn)ch′
i(p

′).

Since we are mainly concerned with the vectors p, p′, and p′′ now, we will view
the values p1, p2, . . . , pn−1 as arbitrary but fixed, subject to (5.12). The function Φ(·)
now has a simple form; to see this, we first define, for a vector r = (r1, r2, . . . , rm)
and a set U ⊆ [m],

f(U, r) =
∏
i∈U

(1 − ri).

Recall that p1, p2, . . . , pn−1 are considered as constants now. Then, it is evident from
(5.10) that there exist constants u1, u2, . . . , ut and v1, v2, . . . , vt′ , as well as subsets

628 ARAVIND SRINIVASAN

U1, U2, . . . , Ut and V1, V2, . . . , Vt′ of [m], such that

Φ(p) = f([m], q) −
(∑

i

ui · f(Ui, q)

)
−

⎛
⎝pn ·

∑
j

vj · f(Vj , q)

⎞
⎠ ;(5.16)

Φ(p′) = f([m], q′) −
(∑

i

ui · f(Ui, q
′)

)
−

⎛
⎝0 ·

∑
j

vj · f(Vj , q
′)

⎞
⎠

= f([m], q′) −
∑
i

ui · f(Ui, q
′);(5.17)

Φ(p′′) = f([m], q′′) −
(∑

i

ui · f(Ui, q
′′)

)
−

⎛
⎝1 ·

∑
j

vj · f(Vj , q
′′)

⎞
⎠

= f([m], q′′) −
(∑

i

ui · f(Ui, q
′′)

)
−

⎛
⎝∑

j

vj · f(Vj , q
′′)

⎞
⎠ .(5.18)

Importantly, we also have the following:

the constants ui, vj are nonnegative; ∀j, Vj ∩R(n) = ∅.(5.19)

Recall that our goal is to show that Φ(p′) > 0 or Φ(p′′) > 0. We will do so by
proving that

Φ(p) ≤ pnΦ(p′′) + (1 − pn)Φ(p′).(5.20)

Let us use the equalities (5.16), (5.17), and (5.18). In view of (5.15) and (5.19), the
term “−pn ·

∑
j vj · f(Vj , q)” on both sides of the inequality (5.20) cancels; defining

Δ(U)
.
= (1 − pn) · f(U, q′) + pn · f(U, q′′) − f(U, q), inequality (5.20) reduces to

Δ([m]) −
∑
i

ui · Δ(Ui) ≥ 0.(5.21)

Before proving this, we pause to note a challenge we face. Suppose we only had
to show that, say, Δ([m]) is nonnegative; this is exactly the issue faced in [36]. Then,
we will immediately be done by part (i) of Lemma 5.12, which states that Δ(U) ≥ 0
for any set U . However, (5.21) also has terms such as “ui · Δ(Ui)” with a negative
sign in front. To deal with this, we need something more than just that Δ(U) ≥ 0 for
all U ; we handle this by part (ii) of Lemma 5.12. We view this as the main novelty
in our constructive version here.

Lemma 5.12. Suppose U ⊆ V ⊆ [m]. Then, (i) Δ(U) ≥ 0, and (ii) Δ(U)/f(U, q) ≤
Δ(V)/f(V, q). (Since Φ(p) > 0 by (5.12), we have that qi < 1 for each i. So, 1/f(U, q)
and 1/f(V, q) are well defined.)

Assuming that Lemma 5.12 is true, we will now show (5.21); the proof of Lemma

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 629

5.12 is given below. We have

Δ([m]) −
∑
i

ui · Δ(Ui) = (Δ([m])/f([m], q)) · f([m], q)

−
∑
i

(Δ(Ui)/f(Ui, q)) · ui · f(Ui, q)

≥ (Δ([m])/f([m], q)) ·
[
f([m], q) −

∑
i

ui · f(Ui, q)

]

(by Lemma 5.12)

≥ 0 (by (5.12) and (5.16)).

Thus we have (5.21).
Proof of Lemma 5.12. It suffices to show the following. Assume U �= [m]; suppose

u ∈ ([m]−U) and that U ′ = U ∪ {u}. Assuming by induction on |U | that Δ(U) ≥ 0,
we show that Δ(U ′) ≥ 0 and that Δ(U)/f(U, q) ≤ Δ(U ′)/f(U ′, q). It is easy to check
that this way we will prove both claims of the lemma.

The base case of the induction is that |U | ∈ {0, 1}, where Δ(U) ≥ 0 is directly
seen by using (5.14). Suppose inductively that Δ(U) ≥ 0. Using the definition of
Δ(U) and the fact that f(U ′, q) = (1 − qu)f(U, q), we have

f(U ′, q) = (1 − qu) · [(1 − pn)f(U, q′) + pnf(U, q′′) − Δ(U)]

≤ (1 − (1 − pn)q′u − pnq
′′
u) · [(1 − pn)f(U, q′) + pnf(U, q′′)] − (1 − qu) · Δ(U),

where this last inequality is a consequence of (5.14). Therefore, using the definition
of Δ(U ′) and the facts f(U ′, q′) = (1 − q′u)f(U, q′) and f(U ′, q′′) = (1 − q′′u)f(U, q′′),

Δ(U ′) = (1 − pn)(1 − q′u)f(U, q′) + pn(1 − q′′u)f(U, q′′) − f(U ′, q)

≥ (1 − pn)(1 − q′u)f(U, q′) + pn(1 − q′′u)f(U, q′′)

+ (1 − qu) · Δ(U) − (1 − (1 − pn)q′u − pnq
′′
u) · [(1 − pn)f(U, q′) + pnf(U, q′′)]

= (1 − qu) · Δ(U) + pn(1 − pn) · (f(U, q′′) − f(U, q′)) · (q′u − q′′u)

≥ (1 − qu) · Δ(U) (by (5.13)).

So, since we assumed that Δ(U) ≥ 0, we get Δ(U ′) ≥ 0; furthermore, we get that
Δ(U ′) ≥ (1 − qu) · Δ(U), which implies that Δ(U ′)/f(U ′, q) ≥ Δ(U)/f(U, q).

6. Conclusion. We have presented an extension of the LLL that basically helps
reduce the “dependency” much in some settings; we have seen applications to two
families of integer programming problems. It would be interesting to see how far
these ideas can be pushed further. Two other open problems suggested by this work
are: (i) developing a constructive version of our result for MIPs, and (ii) developing a
poly(n,m)-time constructive version of Theorem 5.9, as opposed to the poly(nk′

,m)-
time constructive version that we presented in section 5.3.

Finally, a very interesting question is to develop a theory of applications of the
LLL (Lemma 1.1) that can be made constructive with (essentially) no loss. Suppose
we have bad events E1, E2, . . . , Em in the setting of the LLL, which are functions of
n independent binary random variables X1, X2, . . . , Xn, where Pr(Xi = 1) = pi. In
an attempt to mimic the approach described in the second paragraph of section 5.3,
suppose we proceed as follows. The standard proof of the LLL [14] presents a function
Φ such that: (i) Pr(

∧m
i=1 Ei) > 0 if Φ(p) > 0, and (ii) if the conditions of the LLL

630 ARAVIND SRINIVASAN

hold, then Φ(p) > 0. Can we now try to set values for the Xi one-by-one, as in
section 5.3? Unfortunately, there are two problems we face in this regard. First,
the function Φ given by the proof of the LLL does not appear to be polynomial-
time computable, basically due to the type of induction it uses; indeed, as briefly
mentioned in the paragraph following the proof of Lemma 5.6, the type of “explicitly-
available denominator” that we obtain in the proof of Lemma 5.6 is one crucial driver
in obtaining an efficiently-computable Φ in section 5.3. Second, again appealing to
the notation of the second paragraph of section 5.3, it is unclear if we can prove here
that “Φ(p′) > 0 or Φ(p′′) > 0.” (In fact, Joel Spencer has suggested to the author the
possibility that such a disjunction may not hold for all applications of the LLL.) It
would be of much interest to guarantee these for some interesting class of applications
of the LLL, or to develop fresh approaches to obtain constructive versions of the LLL
with (essentially) no loss.

Appendix. Proofs and calculation-details.

Proof of Proposition 4.1. Taking logarithms on both sides, we aim to show that

μ1 · [μ2δ/μ1 − (1 + μ2δ/μ1) ln(1 + μ2δ/μ1)] ≤ μ2 · [δ − (1 + δ) ln(1 + δ)] .

This simplifies to showing

(1 + ψδ) ln(1 + ψδ) ≥ ψ · (1 + δ) ln(1 + δ),

where ψ = μ2/μ1 ≥ 1. This inequality, in turn, follows from the fact that the function
t �→ (1+t) ln(1+t) is convex for t ≥ 0 (since its second derivative, 1/(1+t), is positive),
and since this function equals 0 when t = 0.

Proof of Lemma 5.1. The first inequality follows from (5.1). Next, the Chernoff–
Hoeffding lower-tail approach [4, 27] shows that

E[(1 − δi)
Ai·X]

(1 − δi)(1−δi)μi
≤
(

e−δi

(1 − δi)1−δi

)μi

=
μi

bi−Ai·s · ebi−μi−Ai·s

(bi −Ai · s)bi−Ai·s .(A.1)

Recall that

Ai · s < bi; Ai · s + μi ≥ αbi; α > 1.(A.2)

Let us now bound the last (third) term in (A.1), denoted ψ, say.

Fix all parameters other than μi; subject to (A.2), let us first observe that ψ is
maximized when the second inequality in (A.2) is an equality. This is easily seen by
recalling the definition of ψ (from (A.1)) and noting by differentiation that ψ is a
decreasing function of μi when μi > bi −Ai · s. Next, since μi = αbi −Ai · s,

ψ =

(
αbi −Ai · s
bi −Ai · s

)bi−Ai·s
· e(1−α)bi =

(
1 +

(α− 1)bi
bi −Ai · s

)bi−Ai·s
· e(1−α)bi .

Let x = (α− 1)bi/(bi −Ai · s), and note that x ≥ α− 1. We have

lnψ = (1 − α)bi + (α− 1)bi ln(1 + x)/x.(A.3)

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 631

Keeping bi fixed,

d(lnψ)

dx
= (α− 1)bi ·

x/(1 + x) − ln(1 + x)

x2

= (α− 1)bi ·
x/(1 + x) + ln(1 − x/(1 + x))

x2

≤ (α− 1)bi ·
x/(1 + x) − x/(1 + x)

x2

= 0.

So, ψ is maximized when x = α − 1 (i.e., when Ai · s = 0). From (A.3), lnψ =
bi ·(1−α+lnα); the term multiplying bi here is nonpositive, since lnα = ln(1+α−1) ≤
α − 1. Therefore, ψ is maximized when bi equals its minimum value of B, and so,
ψ ≤ g(B,α).

Finally, let us check that g(B,α) ≤ e−B(α−1)2/(2α). Taking logarithms on both
sides, we want

1 − α + lnα ≤ −(α− 1)2/(2α)(A.4)

for α ≥ 1. The l.h.s. and r.h.s. of (A.4) are equal when α = 1; their respective
derivatives are −1+1/α and −1/2+1/(2α2), and so it suffices to prove that 1−1/α ≥
1/2− 1/(2α2) for α ≥ 1. That is, we need 2α(α− 1) ≥ (α− 1) · (α+ 1), which is true
since α ≥ 1.

Proof of Proposition 5.7. Suppose first that ln(a + 1) ≥ B. Then, α = K · ln(a +
1)/B and so if K is large enough, then α/eα−1 ≤ e−α/2. Therefore,

g(B,α) = (α · e−(α−1))B ≤ e−αB/2 = (a + 1)−K/2.

So, since β = 2, our goal of proving that β(1− g(B,α))a > 1 reduces to proving that
2 · (1− (a+1)−K/2)a > 1, which is true since a ≥ 1 and K is chosen sufficiently large.

We next consider the case where ln(a + 1) < B. Recall from the statement of

Lemma 5.1 that g(B,α) ≤ e−B(α−1)2/(2α). Since α < K + 1 in our case, we now have

g(B,α) < e−B(α−1)2/(2(K+1)) = e−K2 ln(a+B)/(2(K+1)) = (a + B)−K2/(2(K+1)).

So, our goal of showing that β(1 − g(B,α))a > 1 reduces to proving that

(1 + K ·
√

ln(a + B)/B) · (1 − (a + B)−K2/(2(K+1)))a ≥ 1,

which in turn holds if (1 + K ·
√

ln(a + B)/B) · (1 − a · (a + B)−K2/(2(K+1))) ≥ 1;
this final inequality is true if we choose K to be a sufficiently large constant, since

a · (a + B)−K2/(2(K+1)) K ·
√

ln(a + B)/B) under such a choice.
Proof of Theorem 5.9. (i) Let Er ≡ ((Az)r < br) be defined w.r.t. general ran-

domized rounding with parameter p; as observed in Definition 5.8, Pr(Er) ≤ ch′
r(p).

Now if ch′
r(p) = 1 for some r, then part (i) is trivially true; so we assume that

Pr(Er) ≤ ch′
r(p) < 1 ∀ r ∈ [m]. Defining Z ≡ (Az ≥ b) ≡

∧
r∈[m] Er, we get by the

FKG inequality that

Pr(Z) ≥
∏

r∈[m]

(1 − Pr(Er)).

632 ARAVIND SRINIVASAN

Define, for i = 1, 2, . . . , �, the “bad” event Ei ≡ (cTi · z > λi). Fix any i. Our plan is
to show that

Pr(Ei
∣∣ Z) ≤ 1(

λi

ki

) ·
∑

j1<j2<···<jki

(
ki∏
t=1

ci,jt · pjt

)
·

⎛
⎝ ∏

r∈R(j1,j2,...,jki
)

(1 − Pr(Er))
−1

⎞
⎠ .

(A.5)

If we prove (A.5), then we will be done as follows. We have

Pr(A) ≥ Pr(Z) ·
(

1 −
∑
i

Pr(Ei
∣∣ Z)

)
≥

⎛
⎝ ∏

r∈[m]

(1 − Pr(Er))

⎞
⎠ ·

(
1 −

∑
i

Pr(Ei
∣∣ Z)

)
.

(A.6)

Now, the term “(
∏

r∈[m](1 − Pr(Er)))” is a decreasing function of each of the values

Pr(Er); so is the lower bound on “−Pr(Ei
∣∣ Z)” obtained from (A.5). Hence, bounds

(A.5) and (A.6), along with the bound Pr(Er) ≤ ch′
r(p), will complete the proof of

part (i).
We now prove (A.5) using Theorem 3.4(a) and Lemma 5.6. Recall the symmetric

polynomials Sk from (3.1). Define Y = Ski
(ci,1X1, ci,2X2, . . . , ci,nXn)/

(
λi

ki

)
. By The-

orem 3.4(a), Pr(Ei
∣∣ Z) ≤ E[Y

∣∣ Z]. Next, the typical term in E[Y
∣∣ Z] can be upper

bounded using Lemma 5.6

E

[(
ki∏
t=1

ci,jt ·Xjt

) ∣∣ m∧
i=1

Ei

]
≤

∏ki

t=1 ci,jt · pjt∏
r∈R(j1,j2,...,jki

)(1 − Pr(Er))
.

Thus we have (A.5), and the proof of part (i) is complete.
(ii) We have

Φ(p) =

⎡
⎣ ∏
r∈[m]

(1 − ch′
r(p))

⎤
⎦ ·

(
1 −

�∑
i=1

1(
λi

ki

) ·
∑

j1<···<jki

[
ki∏
t=1

ci,jt · pjt

]
(A.7)

·
(∏

r∈R(j1,...,jki
)

1

1 − ch′
r(p)

))
.

Lemma 5.1 shows that under standard randomized rounding, ch′
r(p) ≤ g(B,α) <

1 ∀ r. So, the r.h.s. κ of (A.7) gets lower-bounded as follows:

κ ≥ (1 − g(B,α))m ·
(

1 −
�∑

i=1

1(
νi(1+γi)

ki

) ·
∑

j1<···<jki

(
ki∏
t=1

ci,jt · pjt

)

·
[∏

r∈R(j1,...,jki
)

(1 − g(B,α))

]−1)

≥ (1 − g(B,α))
m ·

⎛
⎝1 −

�∑
i=1

1(
νi(1+γi)

ki

) ·
∑

j1<···<jki

(
ki∏
t=1

ci,jt · pjt

)
· (1 − g(B,α))

−aki

⎞
⎠

≥ (1 − g(B,α))
m ·

(
1 −

�∑
i=1

(
n
ki

)
· (νi/n)ki(

νi(1+γi)
ki

) · (1 − g(B,α))
−aki

)
,

EXTENSION OF THE LOVÁSZ LOCAL LEMMA 633

where the last line follows from Theorem 3.4(c).
Proof of Corollary 5.10. Let us employ Theorem 5.9(ii) with ki = 	ln(2�)
 and

γi = 2 ∀ i. We just need to establish that the r.h.s. of (5.11) is positive. We need to
show that

�∑
i=1

(
n
ki

)
· (νi/n)ki(
3νi

ki

) · (1 − g(B,α))−a·ki < 1;

it is sufficient to prove that for all i,

νki
i /ki!(
3νi

ki

) · (1 − g(B,α))−a·ki < 1/�.(A.8)

We make two observations now.
• Since ki ∼ ln � and νi ≥ log2(2�),

(
3νi
ki

)
= (1/ki!) ·

ki−1∏
j=0

(3νi − j) = (1/ki!) · (3νi)ki

·e−Θ(
∑ki−1

j=0 j/νi) = Θ((1/ki!) · (3νi)ki).

• (1−g(B,α))−a·ki can be made arbitrarily close to 1 by choosing the constant
K ′ large enough.

These two observations establish (A.8).

Acknowledgments. This work started while visiting the Sandia National Lab-
oratories in the summer of 1994; I thank Leslie Goldberg and Z. Sweedyk who were
involved in the early stages of this work. I would like to thank Éva Tardos for sug-
gesting the key idea that helped bootstrap Theorem 4.2 to get Theorem 2.5. I also
thank Noga Alon, Alan Frieze, Tom Leighton, Chi-Jen Lu, Alessandro Panconesi,
Prabhakar Raghavan, Satish Rao, Joel Spencer, the SODA 1996 referees, and journal
referees for their very helpful comments and suggestions.

REFERENCES

[1] N. Alon, A parallel algorithmic version of the local lemma, Random Structures Algorithms, 2
(1991), pp. 367–378.

[2] N. Alon, The strong chromatic number of a graph, Random Structures Algorithms, 3 (1992),
pp. 1–7.

[3] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

[4] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., John Wiley and Sons, New
York, 2000.

[5] J. Beck, An algorithmic approach to the Lovász Local Lemma, Random Structures Algorithms,
2 (1991), pp. 343–365.

[6] J. Beck and T. Fiala, “Integer-making” theorems, Discrete Appl. Math., 3 (1981), pp. 1–8.
[7] J. Beck and J. H. Spencer, Integral approximation sequences, Math. Program., 30 (1984),

pp. 88–98.
[8] B. Berger and J. Rompel, Simulating (logc n)-wise independence in NC, J. Assoc. Comput.

Math., 38 (1991), pp. 1026–1046.
[9] A. Z. Broder, A. M. Frieze, and E. Upfal, Static and dynamic path selection on expander

graphs: A random walk approach, Random Structures Algorithms, 14 (1999), pp. 87–109.
[10] V. Chvátal, A greedy heuristic for the set covering problem, Math. Oper. Res., 4 (1979), pp.

233–235.

634 ARAVIND SRINIVASAN

[11] A. Czumaj and C. Scheideler, An algorithmic approach to the general Lovász Local Lemma
with applications to scheduling and satisfiability problems, in Proceedings of the ACM
Symposium on Theory of Computing, Portland, OR, 2000, pp. 38–47.

[12] G. Dobson, Worst-case analysis of greedy heuristics for integer programming with nonnegative
data, Math. Oper. Res., 7 (1982), pp. 515–531.

[13] M. L. Fisher and L. A. Wolsey, On the greedy heuristic for continuous covering and packing
problems, SIAM J. Algebraic Discrete Methods, 3 (1982), pp. 584–591.

[14] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, Infinite and Finite Sets, A. Hajnal et al., eds., Colloq. Math. Soc. J. Bolyai 11,
North-Holland, Amsterdam, 1975, pp. 609–627.

[15] C. M. Fortuin, J. Ginibre, and P. W. Kasteleyn, Correlational inequalities for partially
ordered sets, Comm. of Math. Phys., 22 (1971), pp. 89–103.

[16] Z. Füredi and J. Kahn, On the dimensions of ordered sets of bounded degree, Order, 3 (1986),
pp. 15–20.

[17] H. J. Karloff and D. B. Shmoys, Efficient parallel algorithms for edge coloring problems, J.
Algorithms, 8 (1987), pp. 39–52.

[18] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vazirani, and V. V.

Vazirani, Global wire routing in two-dimensional arrays, Algorithmica, 2 (1987), pp. 113–
129.

[19] S. G. Kolliopoulos and N. E. Young, Tight approximation results for general covering
integer programs, in Proceedings of the IEEE Symposium on Foundations of Computer
Science, Las Vegas, 2001, pp. 522–528.

[20] F. T. Leighton, C. J. Lu, S. B. Rao, and A. Srinivasan, New algorithmic aspects of the
local lemma with applications to routing and partitioning, SIAM J. Comput., 31 (2001),
pp. 626–641.

[21] F. T. Leighton, S. B. Rao, and A. Srinivasan, Multicommodity flow and circuit switching,
in Proceedings of the Hawaii International Conference on System Sciences, Kohala Coast,
HI, 1998, pp. 459–465.

[22] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[23] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.
Comput., 15 (1986), pp. 1036–1053.

[24] M. Molloy and B. Reed, Further algorithmic aspects of the local lemma, in Proceedings of
the ACM Symposium on Theory of Computing, Dallas, 1998, pp. 524–529.

[25] M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method, Springer-Verlag,
Berlin, 2002.

[26] R. Motwani, J. Naor, and M. Naor, The probabilistic method yields deterministic parallel
algorithms, J. Comput. System Sci., 49 (1994), pp. 478–516.

[27] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[28] N. Nisan, Pseudorandom generators for space–bounded computation, Combinatorica, 12
(1992), pp. 449–461.

[29] C. H. Papadimitriou and M. Yannakakis, On the approximability of trade-offs and optimal
access of web sources, in Proceedings of the 41st Annual IEEE Symposium on Foundations
of Computer Science, Redondo Beach, 2000, pp. 86–92.

[30] S. A. Plotkin, D. B. Shmoys, and É. Tardos, Fast approximation algorithms for fractional
packing and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.

[31] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

[32] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[33] J. P. Schmidt, A. Siegel, and A. Srinivasan, Chernoff–Hoeffding bounds for applications
with limited independence, SIAM J. Discrete Math., 8 (1995), pp. 223–250.

[34] J. H. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1987.
[35] A. Srinivasan, An extension of the Lovász Local Lemma, and its applications to integer pro-

gramming, in Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, Atlanta, 1996, pp. 6–15.

[36] A. Srinivasan, Improved approximation guarantees for packing and covering integer programs,
SIAM J. Comput., 29 (1999), pp. 648–670.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 635–656

APPROXIMATING LONGEST CYCLES IN
GRAPHS WITH BOUNDED DEGREES∗

GUANTAO CHEN† , ZHICHENG GAO‡ , XINGXING YU§ , AND WENAN ZANG¶

Abstract. Jackson and Wormald conjecture that if G is a 3-connected n-vertex graph with
maximum degree d ≥ 4, then G has a cycle of length Ω(nlogd−1 2). We show that this conjecture
holds when d − 1 is replaced by max{64, 4d + 1}. Our proof implies a cubic algorithm for finding
such a cycle.

Key words. bounded degree, 3-connected components, long cycles, algorithm

AMS subject classifications. 05C38, 35C45, 05C85

DOI. 10.1137/050633263

1. Introduction. From the point of view of approximation algorithms, finding
a longest cycle in a graph is one of the “harder” NP-hard problems. There is no
known polynomial time algorithm which guarantees an approximation ratio better
than n/polylog(n). For graphs with a cycle of length k, it is shown in [1] that one can
find in polynomial time a cycle of length Ω((log k)2/ log log k). Gabow [6] showed how
to find in polynomial time a cycle of length exp(Ω(

√
log k/ log log k)) through a given

vertex v in a graph that contains a cycle of length k through v. Recently, Feder and
Motwani [5] obtained a cubic algorithm which, given a graph with maximum degree d
and containing a k-vertex 3-cyclable minor, finds a cycle of length k1/(2c log d) for some
c ≥ 2. A consequence of their result improves Gabow’s result in certain situations.

Karger, Motwani, and Ramkumar [10] showed that unless P = NP it is impossible
to find, in polynomial time, a path of length n−nε in an n-vertex Hamiltonian graph
for any ε < 1. They conjecture that it is as hard even for graphs with bounded degrees.
On the other hand, Feder, Motwani, and Subi [4] showed that there is a polynomial
time algorithm for finding a cycle of length at least n(log3 2)/2 in any 3-connected
cubic n-vertex graph. They also proposed the problem for 3-connected graphs with
bounded degrees. For a graph G, let Δ(G) denote its maximum degree. Jackson and
Wormald [9] proved that every 3-connected n-vertex graph G with Δ(G) ≤ d has a
cycle of length at least 1

2n
logb 2 + 1, where b = 6d2. Recently, Chen, Xu, and Yu [3]

gave a cubic algorithm that, given a 3-connected n-vertex graph G with Δ(G) ≤ d,
finds a cycle of length at least nlogb 2, where b = 2(d− 1)2 + 1. It was conjectured in
1993 by Jackson and Wormald [9] that for d ≥ 4 the right value for b should be d− 1.

∗Received by the editors June 8, 2005; accepted for publication (in revised form) April 17, 2006;
published electronically October 3, 2006.

http://www.siam.org/journals/sicomp/36-3/63326.html
†Department of Math and Statistics, Georgia State University, Atlanta, GA 30303 and Faculty

of Math and Statistics, Huazhong Normal University, Wuhan, China (gchen@gsu.edu). The work of
this author was partially supported by NSA grant H98230-04-1-0300 and NSF grant DMS-0500951.

‡School of Math and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, and Center for
Combinatorics, LPMC, Nankai University, Tianjin, 300071, China (zgao@math.carleton.ca). The
work of this author was partially supported by NSERC and RGC grant HKU7056/04P.

§School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 and Center for
Combinatorics, LPMC, Nankai University, Tianjin, 300071, China (yu@math.gatech.edu). The work
of this author was partially supported by NSF grant DMS-0245530, NSA grant MDA904-03-1-0052,
and RGC grant HKU7056/04P.

¶Department of Mathematics, University of Hong Kong, Hong Kong, China (wzang@maths.
hku.hk). The work of this author was partially supported by RGC grant HKU7056/04P.

635

636 G. CHEN, Z. GAO, X. YU, AND W. ZANG

The main result of this paper shows that this conjecture holds for a linear function b
of d. (This result appears in the extended abstract [2].)

Theorem 1.1. Let n ≥ 4 and d ≥ 4 be integers. Let G be a 3-connected graph
with n vertices and Δ(G) ≤ d. Then G contains a cycle of length at least 1

2n
logb 2 +3,

where b = max{64, 4d + 1}.
For 3-connected graphs, this improves the above-mentioned result of Feder and

Motwani [5]. Our proof of Theorem 1.1 implies a cubic algorithm for finding a cycle
of length at least 1

2n
logb 2 + 3. The multiplicative constant 1/2 and the additive

constant 3 are for induction purpose. As in [3], we prove the following three statements
simultaneously.

Theorem 1.2. Let n ≥ 5 and d ≥ 4 be integers, let b = max{64, 4d + 1} and
r = logb 2, and let G be a 3-connected graph with n vertices. Then the following
statements hold.

(a) Let xy ∈ E(G) and z ∈ V (G)−{x, y}, and let t denote the number of neighbors
of z distinct from x and y. Assume Δ(G) ≤ d + 1, and that every vertex of
degree d + 1 (if any) is incident with edge zx or zy. Then there is a cycle C

through xy in G− z such that |C| ≥ 1
2 ((d−1)n

dt)r + 2.
(b) Suppose Δ(G) ≤ d. Then for any distinct e, f ∈ E(G), there is a cycle C

through e and f in G such that |C| ≥ 1
2 (nd)r + 3.

(c) Suppose Δ(G) ≤ d. Then for any e ∈ E(G), there is a cycle C through e in
G such that |C| ≥ 1

2n
r + 3.

Note the degree condition in (a): zx and zy need not be edges of G, but if x
(respectively, y) has degree d + 1, then zx (respectively, zy) must be an edge of G,
and if z has degree d + 1, then zx or zy must be an edge of G. This condition is due
to the addition of edges in order to maintain 3-connectivity.

When n ≥ 5, Theorem 1.2(c) clearly implies Theorem 1.1. When n = 4, The-
orem 1.1 is obvious. The next result says that Theorem 1.2 holds for graphs with
bounded size, which will enable us to avoid dealing with small graphs in inductive
proofs. We omit its proof, since it is rather straightforward.

Lemma 1.3. Let G,n, d, b, r be the same as in Theorem 1.2. If n ≤ 4d + 1, then
Theorem 1.2(a) and (b) hold, and if n ≤ (4d + 1)2, then Theorem 1.2(c) holds.

To prove Theorem 1.2, we need to deal with graphs obtained from 3-connected
graphs by deleting a vertex (such as G−z in (a)); such graphs need not be 3-connected.
By using a result of Tutte [11] and an algorithm of Hopcroft and Tarjan [7], we can
decompose such graphs into “3-connected components.” We then find long paths
through certain 3-connected components and use properties of the function xlogb 2 to
account for the unused 3-connected components. (For a brief outline of our approach,
the reader is referred to the algorithm in section 6.) Our approach is similar to that
in [3], but here we prove stronger properties of the function xlogb 2 and analyze the
3-connected components in a more sophisticated way.

We organize this paper as follows. In section 2, we recall notation of Hopcroft and
Tarjan [7] concerning the decomposition result of Tutte [11] of 2-connected graphs into
3-connected components. We then define cycle chains of 3-connected components, and
prove several results on paths in cycle chains. We prove in section 3 several useful
properties of the function f(x) = xlogb 2. We also define block chains of 3-connected
components, and prove lemmas concerning paths in block chains. Theorem 1.2 will
be shown inductively. So in sections 4 and 5, we show how to reduce Theorem 1.2 to
smaller graphs. In section 6, we complete the proof of our main result, and outline a
cubic algorithm for finding a long cycle in a 3-connected graph with bounded degree.

APPROXIMATING LONGEST CYCLES 637

For graphs G and H, we use G ∼= H (respectively, G �∼= H) to mean that G is
isomorphic to (respectively, not isomorphic to) H. Let G be a graph, H a subgraph
of G, and S := {v1, . . . , vk, x1y1, . . . , xpyp}, where vi, xj , yj are vertices of G and
{x1, y1, . . . , xp, yp} ⊆ {v1, . . . , vk}∪V (H). Then H+S denotes the simple graph with
V (H + S) := V (H) ∪ {v1, . . . , vk} and E(H + S) = E(H) ∪ {x1y1, . . . , xpyp}.

2. Paths in cycle chains. For convenience, we recall the decomposition of a
2-connected graph into 3-connected components. A detailed description can be found
in [3] and [7].

Let G be a 2-connected graph. We allow multiple edges for the description of
this decomposition. Then, E(G) in this section is treated as a multi-set. We say that
{a, b} ⊆ V (G) is a separation pair in G if there are subgraphs G1, G2 of G such that
G1 ∪ G2 = G, V (G1 ∩ G2) = {a, b}, E(G1 ∩ G2) = ∅, and |E(Gi)| ≥ 2 for i = 1, 2.
Let G′

i := (V (Gi), E(Gi) ∪ {ab}) for i = 1, 2. Then G′
1 and G′

2 are called split graphs
of G with respect to the separation pair {a, b}, and the new edge ab added to Gi is
called a virtual edge. It is easy to see that, since G is 2-connected, G′

i is 2-connected
or G′

i consists of two vertices and at least three multiple edges between them.
Suppose a multigraph is split, and the split graphs are split, and so on, until no

more splits are possible. Then each remaining graph is called a split component. No
split component contains a separation pair and, therefore, each split component must
be one of the following: a triangle, a triple bond (two vertices and three multiple edges
between them), or a 3-connected graph.

It is not hard to see that if a split component of a 2-connected graph is 3-
connected, then it is uniquely determined. It is also easy to see that, for any two
split components G1, G2 of a 2-connected graph, we have |V (G1 ∩ G2)| ≤ 2, and if
|V (G1 ∩G2)| = 2, then either G1 and G2 share a virtual edge between the vertices in
V (G1 ∩G2) or there is a sequence of triple bonds such that the first shares a virtual
edge with G1, any two consecutive triple bonds in the sequence share a virtual edge,
and the last triple bond shares a virtual edge with G2.

In order to make such decomposition unique, some triple bonds and triangles need
to be merged. Let G′

i = (V ′
i , E

′
i), i = 1, 2, be two split components, both containing

a virtual edge ab. Let G′ = (V ′
1 ∪ V ′

2 , (E
′
1 − {ab}) ∪ (E′

2 − {ab})). The graph G′ is
called the merge graph of G′

1 and G′
2. Clearly, a merge of triple bonds gives a graph

consisting of two vertices and multiple edges, which is called a bond. Also a merge of
triangles gives a cycle, and a merge of cycles gives a cycle as well.

Let D denote the set of those 3-connected split components of a 2-connected
graph G. We merge the split components of G not in D as follows: the bonds are
merged as much as possible to give a set of bonds B, and the cycles are merged as
much as possible to give a set of cycles C. Then B∪C ∪D is the set of the 3-connected
components of G. Note that any two 3-connected components either are edge disjoint
or share exactly one virtual edge. The following theorem is a combination of a result
of Tutte [11] and an algorithm of Hopcroft and Tarjan [7].

Theorem 2.1. The 3-connected components of any 2-connected graph are unique
and can be found in O(E) time.

If we define a graph whose vertices are the 3-connected components of G and,
where two vertices are adjacent whenever the corresponding 3-connected components
share a virtual edge, then this graph is a tree, which we call the block-bond tree of G.
For convenience, 3-connected components that are not bonds are called 3-blocks. An
extreme 3-block is a 3-block that contains at most one virtual edge. That is, either it
is the only 3-connected component (in which case G is 3-connected), or it corresponds

638 G. CHEN, Z. GAO, X. YU, AND W. ZANG

to a degree one vertex in the block-bond tree.

A cycle chain in a 2-connected graph G is a sequence C1C2 . . . Ck of 3-blocks of G
such that each Ci is a cycle and there exist bonds (possibly empty) B1, B2, . . . , Bk−1

in G such that C1B1C2B2 . . . Bk−1Ck is a path in the block-bond tree of G. For
convenience, we sometimes write H := C1 . . . Ck for a cycle chain, and view H as
the simple graph obtained from the union of Ci (1 ≤ i ≤ k) by identifying virtual
edges between the vertices of Ci ∩ Ci+1 (1 ≤ i ≤ k − 1). The following is a direct
consequence of the definition of a cycle chain.

Proposition 2.2. Let G be a 2-connected graph and H := C1 . . . Ck be a cycle
chain in G. Then deleting all edges of H with both ends in V (Ci∩Ci+1), 1 ≤ i ≤ k−1,
results in a cycle.

The next result finds a path linking two edges in a cycle chain.

Proposition 2.3. Let G be a 2-connected graph, let H := C1 . . . Ck be a cycle
chain in G, let uv ∈ E(C1) with {u, v} �= V (C1 ∩C2) when k �= 1, and let ab ∈ E(Ck)
with {a, b} �= V (Ck−1 ∩ Ck) when k �= 1. Then there is a path in H − {v, ab} from u

to {a, b} and containing V (
⋃k−1

i=1 (Ci ∩ Ci+1)) − ({a, b} ∪ {u, v}).
Proof. We apply induction on k. The result holds trivially for k = 1. So assume

k ≥ 2. Let H ′ := C2 . . . Ck and V (C1 ∩ C2) = {u1, v1}. Without loss of generality,
we may assume that C1 − {v, v1} contains a path P from u to u1. Suppose v1 = v.
By induction, we find a path Q in H ′ − {v1, ab} from u1 to {a, b} and containing

V (
⋃k−1

i=2 (Ci ∩ Ci+1)) − ({a, b} ∪ {u1, v1}). Then P ∪ Q gives the desired path. Now
assume v1 �= v. By induction, we find a path Q′ in H ′ − {u1, ab} from v1 to {a, b}
and containing V (

⋃k−1
i=2 (Ci ∩ Ci+1)) − ({a, b} ∪ {u1, v1}). Now (P ∪Q′) + u1v1 gives

the desired path.

Remark. The path, say R, found in Proposition 2.3 may use edges between the
vertices of Ci ∩ Ci+1 (1 ≤ i ≤ k − 1). However, either G has an edge between the
vertices of Ci ∩ Ci+1, or Ci ∩ Ci+1 is contained in a 3-block of G not in H. Hence,
from R we can produce a path in G by replacing virtual edges in R with appropriate
paths in G, and this new path is at least as long as R. This observation applies to
the next three results as well, and will be frequently used.

A similar argument establishes the following result, which finds a path in a cycle
chain between two vertices and avoiding a specific vertex.

Proposition 2.4. Let G be a 2-connected graph, let H := C1 . . . Ck be a cycle
chain in G, let uv ∈ E(C1) with {u, v} �= V (C1 ∩C2) when k �= 1, and let x ∈ V (Ck)
with x �= v when k = 1 and x /∈ V (Ck−1 ∩ Ck) when k �= 1. Then there is a path in

H − v from u to x and containing V (
⋃k−1

i=1 (Ci ∩ Ci+1)) − {v}.
It is clear that the paths and cycle in the above three propositions can be found

in O(V) time. The following two results are Propositions 2.7 and 2.8 in [3], which
find in O(V) time paths through a given edge in a cycle chain.

Proposition 2.5. Let G be a 2-connected graph, let H := C1 . . . Ck be a cycle
chain in G, let uv ∈ E(C1) with {u, v} �= V (C1 ∩ C2) when k �= 1, ab ∈ E(Ck)

with {a, b} �= V (Ck−1 ∩ Ck) when k �= 1, and cd ∈ E(
⋃k

i=1 Ci) − {ab}. Suppose
ab �= uv when k = 1. Then there is a path P in H − ab from {a, b} to {c, d} such that

uv ∈ E(P), cd /∈ E(P) unless cd = uv, and V (
⋃k−1

i=1 (Ci ∩ Ci+1)) ⊆ V (P).

Proposition 2.6. Let G be a 2-connected graph, let H := C1 . . . Ck be a cycle
chain in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, x ∈ V (Ck)

with x /∈ V (Ck−1 ∩ Ck) when k �= 1, and cd ∈ E(
⋃k

i=1 Ci). Then there is a path
P in H from x to {c, d} such that uv ∈ E(P), cd /∈ E(P) unless cd = uv, and

APPROXIMATING LONGEST CYCLES 639

V (
⋃k−1

i=1 (Ci ∩ Ci+1)) ⊆ V (P).

We conclude this section by recalling from [3] two graph operations and three
lemmas. Let G be a graph and let e, f be distinct edges of G. An H-transform of G
at {e, f} is an operation that subdivides e and f by vertices x and y, respectively,
and then adds the edge xy. Let x ∈ V (G) such that x is not incident with e. A
T-transform of G at {x, e} is an operation that subdivides e with a vertex y and
then adds the edge xy. If there is no need to specify e, f, x, we simply speak of an
H-transform or a T-transform. The following result is Lemma 3.3 in [3].

Lemma 2.7. Let d ≥ 3 be an integer and let G be a 3-connected graph with
Δ(G) ≤ d. Let G′ be a graph obtained from G by an H-transform or a T-transform.
Then G′ is a 3-connected graph, the vertex of G involved in the T-transform has degree
at most d + 1, and all other vertices of G′ have degree at most d.

The next two results are Lemmas 3.6 and 3.7 in [3], where it is shown that the
path P can be found in O(V) time.

Lemma 2.8. Let G be a 3-connected graph, let f ∈ E(G), let ab, cd, vw ∈ E(G)−
{f}, and assume that {c, d} �= {v, w}. Then there exists a path P in G from {a, b} to
some z ∈ {c, d}∪ {v, w} such that (i) f ∈ E(P), (ii) cd ∈ E(P) or vw ∈ E(P), (iii) if
cd ∈ E(P), then z ∈ {v, w} and vw /∈ E(P), and (iv) if vw ∈ E(P), then z ∈ {c, d}
and cd /∈ E(P).

Lemma 2.9. Let G be a 3-connected graph, let f ∈ E(G), let x ∈ V (G) such that
x is not incident with f , let cd, vw ∈ E(G) − {f}, and assume that {c, d} �= {v, w}.
Then there exists a path P in G from x to some z ∈ {c, d} ∪ {v, w} such that (i)
f ∈ E(P), (ii) cd ∈ E(P) or vw ∈ E(P), (iii) if cd ∈ E(P), then z ∈ {v, w} and
vw /∈ E(P), and (iv) if vw ∈ E(P), then z ∈ {c, d} and cd /∈ E(P).

3. Paths in block chains. We first prove four lemmas concerning the function
xlogb 2. These lemmas will then be used to find long paths in block chains. First, we
recall Lemma 3.1 in [3].

Lemma 3.1. Let b ≥ 4 be an integer, and let m ≥ n be positive integers. Then
mlogb 2 + nlogb 2 ≥ (m + (b− 1)n)logb 2.

When m is sufficiently larger than n, we have the following result.

Lemma 3.2. Let b ≥ 9 be an integer, let m and n be positive integers, and assume

m ≥ b(b−1)
4 n. Then mlogb 2 + nlogb 2 ≥ (m + b(b−1)

4 n)logb 2.

Proof. By dividing mlogb 2 to the above inequality, we see what we need to prove

is equivalent to the statement: for any 0 ≤ s ≤ 4
b(b−1) , 1 + slogb 2 ≥ (1 + b(b−1)

4 s)logb 2.

Let f(s) = 1 + slogb 2 − (1 + b(b−1)
4 s)logb 2. Clearly, f(0) = 0. Note that b(b− 1) >

4(b − 1) when b ≥ 5. Hence f(1) = 2 − (1 + b(b−1)
4)logb 2 < 2 − blogb 2 = 0. Taking

derivative about s, we have f ′(s) = (logb 2)(s(logb 2)−1 − b(b−1)
4 (1 + b(b−1)

4 s)(logb 2)−1).
A simple calculation shows that f ′(s) = 0 has a unique solution. Therefore, if f(c) > 0
for some 0 < c < 1, then f(s) ≥ 0 for all 0 ≤ s ≤ c.

Note that 0 < 4
b(b−1) < 1 and f(4

b(b−1)) > 1 + (1
b2)logb 2 − 2logb 2 ≥ 1.25− 2log9 2 =

0.005587 . . . > 0. Therefore, we have f(s) ≥ 0 for all s ∈ [0, 4
b(b−1)].

When m is not sufficiently larger than n, we have the following complementary
result.

Lemma 3.3. Let b ≥ 64 be an integer, let m ≥ n be positive integers, and assume

m ≤ b(b−1)
4 n. Then mlogb 2 + nlogb 2 ≥ (4m)logb 2.

Proof. The statement of Lemma 3.3 is equivalent to 1 + slogb 2 ≥ 4logb 2 for all
4

b(b−1) ≤ s ≤ 1. Therefore, it suffices to show 1 + (4
b(b−1))

logb 2 ≥ 4logb 2. This is true

640 G. CHEN, Z. GAO, X. YU, AND W. ZANG

because 1 + (4
b(b−1))

logb 2 ≥ 1 + (4
b2)logb 2 = 1 + 4logb 2

4 > 4logb 2 (since b ≥ 64).

We shall also use the following observations in the proof of Theorem 1.2.

Lemma 3.4. Let m be an integer, d ≥ 3, and b ≥ d + 1. If m ≥ 4, then m ≥
1
2m

logb 2 + 3. If m ≥ 3, then m > 1
2 (md)logb 2 + 2. If m ≥ 2, then m > 1

2 (md)logb 2 + 1.

Proof. Let f(x) = x − 1
2x

logb 2. We can show that f ′(x) > 0 for x ≥ 1. Hence
f(x) is an increasing function when x ≥ 1. Thus, when x ≥ 4, we have f(x) ≥ f(4) =
4 − 1

24logb 2 ≥ 3 (since b ≥ 4). The first inequality holds.

Let f(x) = x − 1
2 (xd)logb 2; then f(x) is increasing when x ≥ 1. The second

inequality follows from f(3) > 2, and the third inequality follows from f(2) > 1.

We now turn to paths in block chains. Let G be a 2-connected graph. A block
chain in G is a sequence H1 . . . Hh for which (1) each Hi is either a cycle chain in G or a
3-connected 3-block of G, (2) for any 1 ≤ s ≤ h−1, Hs or Hs+1 is 3-connected, and (3)
there exist bonds (possibly empty) B1, . . . , Bh−1 such that H1B1H2B2 . . . Bh−1Hh

form a path in the block-bond tree of G (by also including the tree paths corresponding
to Hi when Hi is a cycle chain). A detailed description with examples can be found
in [3]. For convenience, we sometimes write H := H1 . . . Hh for a block chain and
view H as the simple graph obtained from

⋃n
i=1 Hi by identifying edges between the

vertices in Hi∩Hi+1 (1 ≤ i ≤ n−1). The edges of H between the vertices of Hi∩Hi+1

are called separating edges of H. Such edges are to be avoided when we find paths in
block chains.

Let H1 . . . Hh be a block chain and let V (Hs ∩Hs+1) = {xs, ys}, 1 ≤ s ≤ h − 1.
For each 1 ≤ s ≤ h, we define A(Hs) as follows. If Hs is 3-connected, then A(Hs) :=
V (Hs). If Hs = C1 . . . Ck is a cycle chain, then let

• A(Hs) := V (
⋃k−1

i=1 (Ci ∩ Ci+1)) − ({xs−1, ys−1} ∪ {xs, ys}) when 1 < s < h,

• A(Hs) := V (
⋃k−1

i=1 Ci ∩ Ci+1) when s = 1 = h, A(Hs) := V (
⋃k−1

i=1 (Ci ∩
Ci+1)) − {xs, ys} when s = 1 < h, and

• A(Hs) := V (
⋃k−1

i=1 (Ci ∩ Ci+1)) − {xs−1, ys−1} when 1 < s = h.

We write σ(H) :=
∑h

s=1 |A(Hs)| and |H| := |V (
⋃h

i=1 Hi)|. For convenience, we define
B1(H) = {Hi : Hi is 3-connected or |A(Hi)| ≤ 1} and B2(H) = {Hi : Hi is a cycle
chain and |A(Hi)| ≥ 2}.

In the remainder of this section, we show how to find long paths in block chains
(in terms of σ(H)). All proofs imply O(V) algorithms that reduce the problem of
finding a path to Theorem 1.2 for smaller graphs.

Lemma 3.5. Let n ≥ 6 be an integer and assume Theorem 1.2 holds for graphs
with at most n− 1 vertices. Let H := H1H2 . . . Hh be a block chain in a 2-connected
graph such that |H| < n and Δ(Hi) ≤ d for 1 ≤ i ≤ h. Let uv ∈ E(H1) such that
{u, v} is not a cut of H1, and if h ≥ 2, then {u, v} �= V (H1 ∩H2). Then there is a

path P in H from u to v such that |E(P)| ≥ 1
2 ((d−1)σ(H)

d)r + 2 and P contains no
separating edge of H.

Proof. When h ≥ 2, we use a, b to denote the vertices in V (H1 ∩H2). Suppose

|A(H1)| ≥ (d−1)σ(H)
d . First assume H1 is a cycle chain or H1

∼= K4. Then there is a
Hamilton path P1 in H1 from u to v (by Proposition 2.2 when H1 is a cycle chain).
If |H1| = 3, then |A(H1)| = 0, and hence, |E(P1)| ≥ 1

2 |A(H1)|r + 2. If |H1| ≥ 4,
then |E(P1)| ≥ 3, and by Lemma 3.4, |E(P1)| ≥ 1

2 |H1|r + 2 ≥ 1
2 |A(H1)|r + 2. Now

assume H1 is 3-connected and H1 �∼= K4. Then by Theorem 1.2(c), H1 has a cycle C1

through uv such that |E(C1)| ≥ 1
2 |H1|r + 3 = 1

2 |A(H1)|r + 3. Let P1 := C1 − uv. If
h = 1 or ab /∈ E(P1), then P := P1 gives the desired path. If h ≥ 2 and ab ∈ E(P1),
then by replacing ab with a path in H2 . . . Hh between a and b and not containing

APPROXIMATING LONGEST CYCLES 641

any separating edge of H, we obtain the desired path P .

So we may assume |A(H1)| < (d−1)σ(H)
d . In particular, h ≥ 2. If H1 is a cycle

chain or H1
∼= K4, then, as in the above paragraph, we find a Hamilton path P1

from u to v in H1 through ab such that |E(P1)| ≥ 1
2 |A(H1)|r + 2. Now assume H1 is

3-connected and H1 �∼= K4. Then by Theorem 1.2(b), H1 has a cycle C1 through uv

and ab such that |E(C1)| ≥ 1
2 (|A(H1)|

d)r + 3; let P1 := C1 − uv.
By induction, we find a path P ′ in H′ := H2 . . . Hh from a to b and containing no

separating edges of H′ such that |E(P ′)| ≥ 1
2 ((d−1)σ(H′)

d)r+2. Let P := (P1−ab)∪P ′.

Since σ(H) ≤ A(H1) + σ(H′) and |A(H1)| < (d−1)σ(H)
d , |A(H1)|

d < (d−1)σ(H′)
d . Hence

by Lemma 3.2,

|E(P)| > 1

2

(
|A(H1)|

d

)r

+
1

2

(
(d− 1)σ(H′)

d

)r

+ 2

≥ 1

2

(
(b− 1)

|A(H1)|
d

+
(d− 1)σ(H′)

d

)r

+ 2

>
1

2

(
(d− 1)σ(H)

d

)r

+ 2.

So P gives the desired path.
For the next two lemmas, we define uv and x in a block chain H := H0H1 . . . Hh

(in a 2-connected graph). Suppose h = 0. If H0 is 3-connected or H0 is a cycle, then
let uv ∈ E(H0) and x ∈ V (H0) − {u, v}, and if H0 = C1 . . . Ck is a cycle chain with
k ≥ 2, then let uv ∈ E(C1) with {u, v} �= V (C1 ∩ C2) and let x ∈ V (Ck) − V (Ck−1).
Now assume h ≥ 1. If H0 is 3-connected or H0 is a cycle, then let uv ∈ E(H0) with
{u, v} �= V (H0 ∩H1); if H0 = C1 . . . Ck is a cycle chain with k ≥ 2 and V (H0 ∩H1) =
V (Ck ∩H1), then let uv ∈ E(C1) with {u, v} �= V (C1 ∩C2); if Hh is a cycle or Hh is
3-connected, then let x ∈ V (Hh) − V (Hh−1); and if Hh = C1 . . . Ck is a cycle chain
with k ≥ 2 and V (Hh−1 ∩Hh) = V (Hh−1 ∩ C1), then let x ∈ V (Ck) − V (Ck−1).

Lemma 3.6. Let n ≥ 6 be an integer and assume Theorem 1.2 holds for graphs
with at most n − 1 vertices. Let H := H0H1 . . . Hh, uv, x be defined as above, and
assume |H| < n, Δ(Hi) ≤ d for 0 ≤ i ≤ h, and the degree of x in Hh is at most d−1.
Then there exists a path P in H − v from u to x and containing no separating edge
of H such that

(i) |E(P)| ≥ 1
2 (
∑h

i=0(
|A(Hi)|

d)r) + 1 ≥ 1
2 (σ(H)

d)r + 1, and

(ii) |E(P)| ≥ 1
2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H)}) + (

∑
{max{1, |A(Hi)| − 2} : Hi ∈

B2(H)}) + 1.
Proof. We apply induction on h. Suppose h = 0. If H0 is 3-connected and

H0 �∼= K4, then by assumption and because x has degree at most d−1, Theorem 1.2(a)
holds for H0 + {vx, ux}. Hence, H0 − v contains a path P from u to x such that

|E(P)| ≥ 1
2 (|A(H0)|

d)r + 1. If H0
∼= K4, then we can find a path P from u to x in

H0 − v such that |E(P)| = 2 ≥ 1
2 (|A(H0)|

d)r + 1. If H0 is a cycle chain, then by
Proposition 2.4, there is a path P from u to x in H0−v containing A(H0)−{v}. Note
that x /∈ A(H0) and if v ∈ A(H0), then u /∈ A(H0). Thus, |E(P)| ≥ |A(H0)|. Because

|E(P)| ≥ 1 and since |A(H0)| = 0 or |A(H0)| ≥ 2, we have |E(P)| ≥ 1
2 (|A(H0)|

d)r + 1
(by Lemma 3.4). Clearly, |E(P)| ≥ max{1, |A(H0)| − 2} + 1 when H0 ∈ B2(H).

Now assume h ≥ 1. Let V (H0 ∩ H1) = {u0, v0}, and assume the notation is
chosen so that u0 /∈ {u, v}. By the above argument for h = 0, if H0 is a cycle chain or

H0
∼= K4, then H0−v has a path P0 from u to u0 such that |E(P0)| ≥ 1

2 (|A(H0)|
d)r +1,

642 G. CHEN, Z. GAO, X. YU, AND W. ZANG

and |E(P0)| ≥ max{1, |A(H0)| − 2} + 1 when H0 ∈ B2(H). (Note in the case H0

is a cycle chain, u0 /∈ A(H0) because h ≥ 1.) Now assume H0 is 3-connected and
|H0| ≥ 5. If v = v0, then we apply Theorem 1.2(a) to find a path P0 from u to u0

in (H0 + uu0) − v such that |E(P0)| ≥ 1
2 (|A(H0)|

d)r + 1. If v �= v0, then let H ′
0 be

obtained from H0 by a T-transform at {v, u0v0} and let u′ denote the new vertex.
By Theorem 1.2(a), we find a path P ∗

0 in (H ′
0 + uu′) − v from u to u′ such that

|E(P ∗
0)| ≥ 1

2 (|A(H0)|
d)r + 1; and let P0 := P ∗

0 − u′ (in this case u0v0 /∈ E(P0)).

Let P ′
0 := P0 if u0v0 /∈ E(P0); otherwise, let P ′

0 := P0 − u0. Then P ′
0 is a path

in H0 − {v, u0v0} from u to {u0, v0} such that |E(P ′
0)| ≥ 1

2 (|A(H0)|
d)r, and |E(P ′

0)| ≥
max{1, |A(H0)| − 2} when H0 ∈ B2(H). Without loss of generality, we may assume
that P ′

0 is from u0 to u.

By applying induction to H′ := H1 . . . Hh, there is a path P1 from u0 to x in

H′− v0 containing no separating edge of H′ such that |E(P1)| ≥ 1
2 (
∑h

i=1(
|A(Hi)|

d)r)+

1 ≥ 1
2 (σ(H′)

d)r + 1 and |E(P1)| ≥ 1
2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H) and i �= 0}) +

(
∑

{max{1, |A(Hi)| − 2} : Hi ∈ B2(H) and i �= 0}) + 1.

Let P := P ′
0 ∪ P1. Because h ≥ 1, H0 or H1 is not a cycle chain, and hence,

σ(H) ≤ |A(H0)| + σ(H′). It is easy to see that P satisfies (i) and (ii). Note that the
second inequality in (i) follows from the first in (i) by applying Lemma 3.1.

Lemma 3.7. Assume the same hypothesis of Lemma 3.6. Then for any 0 ≤ t ≤ h
and for any pq ∈ E(Ht) such that |Ht| ≤ n− 3 when h ≥ 1, there exists a path P in
H from x to {p, q} and containing no separating edge of H such that

(i) pq /∈ E(P), and |E(P)| ≥ 1
2 |A(H0)|r + 1

2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H) and

i �= 0}) + (
∑

{max{1, |A(Hi)| − 2} : Hi ∈ B2(H) and i �= 0}) + 1, and
(ii) if we require uv ∈ E(P), then pq /∈ E(P) unless pq = uv, and |E(P)| ≥

1
2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H)}) + (

∑
{max{1, |A(Hi)| − 2} : Hi ∈ B2(H)}) +

1 ≥ 1
2 (σ(H)

d)r + 1.

Proof. We apply induction on h. Note that the second inequality in (ii) follows
from the first in (ii) by applying Lemma 3.1.

Case 1. h = 0.

First, assume H0 is a cycle chain. Then by Proposition 2.6, there is a path P from
x to {p, q} in H0 such that uv ∈ E(P), pq /∈ E(P) unless pq = uv, and A(H0) ⊆ V (P).
Because x /∈ A(H0), |E(P)| ≥ |A(H0)|. Because x /∈ {u, v}, |E(P)| ≥ 2. So |E(P)| ≥
max{1, |A(H0)| − 2} + 1. Moreover, if |A(H0)| ≤ 3, then |E(P)| ≥ 2 > 1

2 |A(H0)|r+
1, and if |A(H0)| ≥ 4, then by Lemma 3.4 we have |E(P)| ≥ |A(H0)| ≥ 1

2 |A(H0)|r +3.
Clearly (i) and (ii) hold.

Now assume H0
∼= K4. Let P denote a Hamilton path in H0 from x to {p, q} such

that uv ∈ E(P), and pq /∈ E(P) unless pq = uv. Then |E(P)| = 3 > 1
2 |A(H0)|r + 1

and (i) and (ii) hold.

Finally, assume H0 is 3-connected and H0 �∼= K4. Then 5 ≤ |H0| < n. If
x ∈ {p, q}, then we apply Theorem 1.2(c) (respectively, Theorem 1.2(b)) to find a cycle
C through pq (respectively, pq and uv) such that |C| ≥ 1

2 |A(H0)|r + 3 (respectively,

|C| ≥ 1
2 (|A(H0)|

d)r + 3). Now it is easy to see that (i) and (ii) hold with P := C − pq.
So assume x /∈ {p, q}. Then let H ′

0 be obtained from H0 by a T-transform at {x, pq}
and let x′ denote the new vertex. By Theorem 1.2(c) (respectively, Theorem 1.2(b)),
we find a cycle C through xx′ (respectively, xx′ and uv) such that |C| ≥ 1

2 |H0|r + 3

(respectively, |C| ≥ 1
2 (|H0|

d)r + 3). Now it is easy to see that (i) and (ii) hold with
P := C − x′.

APPROXIMATING LONGEST CYCLES 643

Case 2. h ≥ 1.

Let {a, b} = V (H0 ∩H1).

Suppose pq ∈ H′ := H1 . . . Hh. By applying induction to H′ (with ab playing
the role of uv), we find a path P ′ in H′ from x to {p, q} and containing no sepa-
rating edge of H′ such that ab ∈ E(P ′), pq /∈ E(P ′) unless pq = ab, and |E(P ′)| ≥
1
2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H) and i �= 0}) + (

∑
{max{1, |A(Hi)| − 2} : Hi ∈ B2(H)

and i �= 0}) + 1. If H0 is a cycle chain or H0
∼= K4, then H0 has a Hamilton cycle C

through ab and uv. If H0 is 3-connected and |H0| ≥ 5, we apply Theorem 1.2(c) (re-
spectively, Theorem 1.2(b)) to find a cycle C through ab (respectively, ab and uv) such

that |C| ≥ 1
2 |H0|r+3 (respectively, |C| ≥ 1

2 (|H0|
d)r+3). Then P := (C−ab)∪(P ′−ab)

gives the desired path for (i) and (ii).

Therefore, we may assume pq ∈ H0 and pq �= ab. Let H ′
0 be obtained from H0 by

an H-transform at {pq, ab}, and let a′, p′ denote the new vertices. By Theorem 1.2(c)
(respectively, Theorem 1.2(b)) we find a cycle C in H ′

0 through a′p′ (respectively,

a′p′ and uv) such that |C| ≥ 1
2 |H0|r + 3 (respectively, |C| ≥ 1

2 (|H0|
d)r + 3). Let

P0 := C−{a′, p′} and, without loss of generality, let a be the end of P0. By Lemma 3.6,
we can find a path P ′ in H′−b from x to a and containing no separating edge of H′ such

that |E(P ′)| ≥ 1
2 (
∑

{(|A(Hi)|
d)r : Hi ∈ B1(H) and i �= 0}) + (

∑
{max{1, |A(Hi)| − 2} :

Hi ∈ B2(H) and i �= 0}) + 1. Now P := P0 ∪P ′ gives the desired path, except for (ii)
when pq = uv. In the exceptional case, we may assume v /∈ {a, b}. Let H ′′

0 be obtained
from H0 by a T-transform at {v, ab}, with new vertex a′′. We apply Theorem 1.2(a)

to find a cycle C in (H ′′
0 +ua′′)−v through ua′′ such that |C| ≥ 1

2 (|H0|
d)r+2. Without

loss of generality, we may assume a is the end of C − a′′. Let P ′ be found as above.
Then P := ((C − a′′) ∪ P ′) + {v, uv} gives the desired path for (ii).

4. Cycles through two edges. We reduce Theorem 1.2(a) and (b) to Theo-
rem 1.2 for smaller graphs. Note that finding a long cycle in Theorem 1.2(a) through
xy avoiding z is equivalent to finding a long cycle through edges xz and yz. First, we
reduce Theorem 1.2(a); our proof implies an O(E) time reduction.

Lemma 4.1. Let n ≥ 6 be an integer, and assume that Theorem 1.2 holds for
graphs with at most n− 1 vertices. Let G be a 3-connected graph with n vertices, let
xy ∈ E(G) and z ∈ V (G) − {x, y}, and let t denote the number of neighbors of z
distinct from x and y. Assume Δ(G) ≤ d + 1, and every vertex of degree d + 1 in G
(if any) is incident with the edge zx or zy. Then there is a cycle C through xy in

G− z such that |C| ≥ 1
2 ((d−1)n

dt)r + 2.

Proof. By Lemma 1.3, we may assume n ≥ 4d+ 2. Since G is 3-connected, t ≥ 1.

Assume that G − z is 3-connected. By assumption, Δ(G − z) ≤ d. Since n ≥ 6,
|G − z| ≥ 5. So by Theorem 1.2(c), G − z contains a cycle C through xy such that

|C| ≥ 1
2 (n− 1)r + 3. By Lemma 3.1, |C| ≥ 1

2n
r + 2 > 1

2 ((d−1)n
dt)r + 2.

Therefore, we may assume that G − z is not 3-connected. By Theorem 2.1, we
decompose G− z into 3-connected components. Let H := H1 . . . Hh be a block chain
in G − z such that (i) Hh contains an extreme 3-block of G − z, (ii) xy ∈ E(H1)
and {x, y} �= V (H1) ∩ V (H2) when h �= 1, and if H1 = C1 . . . Ck is a cycle chain
with k ≥ 2 and V (H1 ∩ H2) = V (Ck ∩ H2) (when h �= 1), then xy ∈ E(C1) and
{x, y} �= V (C1 ∩ C2), and (iii) subject to (i) and (ii), σ(H) is maximum.

We claim that σ(H) ≥ n−1−2t
t . Since G is 3-connected, each extreme 3-block of

G − z distinct from H1 contains a neighbor of z. Therefore, there are at most 2t
degree 2 vertices in G− z and at most t extreme 3-blocks of G− z different from H1.
Note that the vertices of G − z with degree at least 3 are counted in σ(K) for some

644 G. CHEN, Z. GAO, X. YU, AND W. ZANG

block chain K (defined as H above except condition (iii)). It then follows from (iii)
that σ(H) ≥ n−1−2t

t .
Since n > 4d + 1 and t ≤ d, σ(H) ≥ 2. By Lemma 3.5, there is a path P from x

to y in H such that |E(P)| ≥ 1
2 ((d−1)σ(H)

d)r + 2. Let C∗ := P + xy. Then

|C∗| = |E(P)| + 1

≥ 1

2

(
(d− 1)σ(H)

d
+ (b− 1)

)r

+ 2 (by Lemma 3.1)

≥ 1

2

(
(d− 1)(n− 1 − 2t) + dt(b− 1)

dt

)r

+ 2

>
1

2

(
(d− 1)n

dt

)r

+ 2 (since b ≥ 4d + 1).

The desired cycle C can now be obtained from C∗ by replacing virtual edges in C∗

with appropriate paths in G.
We now reduce Theorem 1.2(b); our proof implies an O(E) time reduction.
Lemma 4.2. Let n ≥ 6 be an integer, and assume that Theorem 1.2 holds for

graphs with at most n − 1 vertices. Suppose G is a 3-connected graph on n vertices
and Δ(G) ≤ d. Then for any {e, f} ⊆ E(G), there is a cycle C through e, f in G
such that |C| ≥ 1

2 (nd)r + 3.
Proof. By Lemma 1.3, we may assume n ≥ 4d + 2. First, assume that e is

incident with f . Let e = xz and f = yz, and let G′ := G + xy. Then G′ is 3-
connected, Δ(G′) ≤ d + 1, and the possible vertices of degree d + 1 in G′ are x and
y. By applying Lemma 4.1 to G′, xy, z, there is a cycle C ′ through xy in G′ − z such

that |C ′| ≥ 1
2 ((d−1)n

dt)r + 2, where t is the number of neighbors of z in G′ distinct
from x and y. Since zx, zy ∈ E(G), t ≤ d − 1. Let C := (C ′ − xy) + {e, f}; then

|C| ≥ 1
2 ((d−1)n

dt)r + 3 ≥ 1
2 (nd)r + 3. So C gives the desired cycle in G.

Therefore, we may assume that e and f are not incident. Let e = xy; then
f ∈ E(G− y). Since G is 3-connected, G− y is 2-connected.

Suppose G − y is 3-connected. Let y′ �= x be a neighbor of y. Then G′ :=
(G−y)+xy′ is a 3-connected graph, Δ(G′) ≤ d, and 5 ≤ |G′| < n. By Theorem 1.2(b),
there is a cycle C ′ through xy′ and f in G′ such that |C ′| ≥ 1

2 (n−1
d)r + 3. Let

C := (C ′ − xy′) + {y, xy, yy′}. Then |C| = |C ′| + 1 ≥ 1
2 (n−1

d)r + 4. By Lemma 3.1,
|C| ≥ 1

2 (nd)r + 3. So C gives the desired cycle in G.
Hence, we may assume that G − y is not 3-connected. By Theorem 2.1, we

decompose G− y into 3-connected components. Let H := H1 . . . Hh be a block chain
in G−y such that (a) f ∈ E(H1) and x ∈ V (Hh), (b) if h = 1 and H1 = C1 . . . Ck is a
cycle chain with k ≥ 2, then x ∈ V (Ck)− V (Ck−1), f ∈ E(C1), and f is not incident
with both vertices in V (C1 ∩ C2), and (c) if h ≥ 2, then x ∈ V (Hh) − V (Hh−1), if
Hh = C1 . . . Ck is a cycle chain with k ≥ 2 and V (Hh−1 ∩Hh) = V (C1 ∩Hh−1), then
x ∈ V (Ck)−V (Ck−1), f ∈ E(H1), f is not incident with both vertices in V (H1∩H2),
and if H1 = C1 . . . Ck is a cycle chain with k ≥ 2 and V (H1 ∩ H2) = V (Ck ∩ H2),
then f ∈ E(C1) and f is not incident with both vertices in V (C1 ∩ C2). Define
V (Hs ∩Hs+1) = {as, bs} for 1 ≤ s ≤ h− 1.

Suppose V (H) = V (G− y). If h = 1, then G− y is a cycle chain, and it is easy to
see that G has a Hamilton cycle through e and f , and hence, Theorem 1.2(b) holds. So
assume h ≥ 2. Let x′ ∈ V (H1)− V (H2) so that yx′ ∈ E(G), and in addition, if f has
an end with degree 2 in H, then choose x′ to be that end (in this case, yx′ ∈ E(G)).

APPROXIMATING LONGEST CYCLES 645

Let G′ be obtained from G−y by adding xx′ and then suppressing all degree 2 vertices
and deleting separating edges of H. Now G′ is 3-connected, |G′| ≥ n − 1 − (d − 2)
(because degree of y in G is at most d), and Δ(G′) ≤ d. Therefore, by Theorem 1.2(b),

G′ has a cycle C ′ through f and xx′ such that |C ′| ≥ 1
2 (|G

′|
d)r +3. By replacing edges

in (C ′ − xx′) + {y, yx, yx′} but not in G with appropriate paths in G, we obtain a
cycle C in G through e and f such that |C| ≥ |C ′|+ 1 ≥ 1

2 (n−d+1
d)r + 4 ≥ 1

2 (nd)r + 3,
where the final inequality follows from Lemma 3.1. So C is the desired cycle.

We thus may assume that H �= G− y. Then there is a 2-cut {p, q} of G− y such
that pq is a virtual edge in Ht for some 1 ≤ t ≤ h. Define G1 as the graph obtained
from G by deleting those components of (G − y) − {p, q} containing a vertex of H.
Note that G1 − {p, q, y} contains a neighbor of y. We choose {p, q} so that |G1| is
maximum. Because y has degree at most d in G and yx ∈ E(G), and since all degree
2 vertices of G− y are neighbors of y, we have (from the choice of G1) the following
observation.

Observation 1. |G1| ≥ n−σ(H)
d−1 .

If there is a 2-cut {v, w} of G−y such that {v, w} ⊆ V (H∪G1) and (G−y)−{v, w}
has a component not containing any vertex of H ∪G1, then let G2 denote the graph
obtained from G by deleting those components of (G−y)−{v, w} containing a vertex
of H∪G1. If such a 2-cut does not exist, then let G2 = ∅. From the definition of G1,
we see that {v, w} ⊆ V (H), {v, w} �= {p, q}, and V (G1 ∩ G2) ⊆ {p, q, y} ∩ {v, w, y}.
Choose {v, w} so that |G2| is maximum. By the same reason for Observation 1, we
have the following two observations.

Observation 2. If σ(H) ≥ |G2|, then σ(H) ≥ n−|G1|
d−1 .

Observation 3. If |G2| ≥ σ(H), then |G2| ≥ n−|G1|
d−1 .

We consider three cases.

Case 1. σ(H) ≥ |G2|.
We use H and G1 to find the desired cycle. Choose t so that {p, q} �= {at, bt}.

(Note that at, bt are not defined when t = h.) Clearly, |Ht| ≤ n− 3 when h ≥ 2. By
Lemma 3.7(ii), there is a path P from x to {p, q} in H such that f ∈ E(P), pq /∈ E(P)

unless pq = f , and |E(P)| ≥ 1
2 (σ(H)

d)r + 1. Assume the notation of {p, q} is chosen
so that P is from x to p.

Since G is 3-connected, G′
1 := G1 + {yp, yq, pq} is 3-connected. If G′

1
∼= K4, then

we can find a path Q in G′
1 − q from p to y such that |E(Q)| = 2 ≥ 1

2 (|G1|
d)r +1. Now

assume that G′
1 �∼= K4. Note that Δ(G′

1) ≤ d + 1, and y, p, q are the only possible
vertices with degree d+1. By Theorem 1.2(a), there is a cycle C1 through py in G′

1−q

such that |C1| ≥ 1
2 ((d−1)|G1|

dt1
)r + 2, where t1 ≤ d− 1 is the number of neighbors of q

in G′
1 distinct from p and y. Hence, |C1| ≥ 1

2 (|G1|
d)r + 2.

Let C∗ := (P ∪ (C1 − py)) + xy. Then C∗ is a cycle through e and f and

|C∗| ≥ 1
2 [(σ(H)

d)r + (|G1|
d)r] + 3. If σ(H) ≤ |G1|, then

|C∗| ≥ 1

2

(
(b− 1)σ(H)

d
+

|G1|
d

)r

+ 3 (by Lemma 3.1)

>
1

2

(
n− |G1|

d
+

|G1|
d

)r

+ 3 (by Observation 2)

=
1

2

(n
d

)r

+ 3.

646 G. CHEN, Z. GAO, X. YU, AND W. ZANG

So we may assume σ(H) ≥ |G1|. Then

|C∗| ≥ 1

2

(
σ(H)

d
+

(b− 1)|G1|
d

)r

+ 3 (by Lemma 3.1)

>
1

2

(
σ(H)

d
+

n− σ(H)

d

)r

+ 3 (by Observation 1)

=
1

2

(n
d

)r

+ 3.

The desired cycle C can be obtained from C∗ by replacing virtual edges in C∗ with
appropriate paths in G.

Case 2. σ(H) < |G2|.
Then G2 is nonempty. We use G1 and G2 to find the desired cycle. There

exists some 1 ≤ u ≤ h such that {v, w} ⊆ V (Hu), and we may choose u so that
{v, w} �= {au−1, bu−1}. (Note that au−1, bu−1 are not defined when u = 1.) We may
choose t so that {p, q} �= {at−1, bt−1}. Again, at−1, bt−1 are not defined when t = 1.

(1) We claim that there is a path P in H from x to some z ∈ {p, q} ∪ {v, w}
and containing no separating edge of H such that (i) f ∈ E(P), (ii) pq ∈ E(P) or
vw ∈ E(P), (iii) if pq ∈ E(P), then z ∈ {v, w}, and vw /∈ E(P) unless vw = f , and
(iv) if vw ∈ E(P), then z ∈ {p, q}, and pq /∈ E(P) unless pq = f .

We prove (1) for t ≤ u; the case t ≥ u can be treated in the same way.

First, we define Q. When t �= 1, we find a cycle Q′ in
⋃t−1

s=1 Hs through at−1bt−1

and f and containing no separating edge of H (except at−1bt−1). Let Q := Q′ −
at−1bt−1, which is a path from at−1 to bt−1 through f . Let Q = ∅ when t = 1.

Suppose t < u. Since removing separating edges of Ht+1 . . . Hh that are different
from vw results in a 2-connected graph, we may choose the notation of {at, bt} so

that (
⋃h

s=t+1 Hs)− bt contains a path X from at to x through vw and containing no
separating edge of H (except possibly vw).

We claim that there is a path Ct in Ht − atbt from at to {p, q} through at−1bt−1

(or f when t = 1), or a path C ′
t in Ht from at to bt through at−1bt−1 (or f when

t = 1) and pq. If {p, q} = {at, bt}, then the existence of Ct follows from 2-connectivity
of Ht. So we may assume that {p, q} �= {at, bt}. Again by 2-connectivity of Ht there
is a cycle D in Ht through pq and at−1bt−1 (or f when t = 1). If atbt ∈ E(D), then
C ′

t := D − atbt is as desired. So we may assume atbt /∈ E(D). By 2-connectivity of
Ht, there is a path A in Ht from at to D and internally disjoint from D. One can
easily check that Ct exists in A ∪D.

If we find Ct, then let Pt := Ct − at−1bt−1 when t �= 1 and Pt := Ct when t = 1.
In this case, P := Q∪Pt∪X gives the desired path for (1). So assume that we find C ′

t.
Let Pt := C ′

t if t = 1, and otherwise let Pt := C ′
t − at−1bt−1. Let H := Ht+1 . . . Hh.

If x ∈ {v, w}, then we find a cycle C ′ in H through atbt and vw and containing no
separating edge of H (except atbt and vw), and P := Q∪Pt ∪ (C ′ −{atbt, vw}) gives
the desired path for (1). Therefore, we may assume x /∈ {v, w}. Let H ′ be obtained
from H by a T-transform at {x, vw}, let x′ denote the new vertex, and let H ′′ be
obtained from H ′ by deleting all separating edges of H different from atbt. Then H ′′

is a 2-connected graph. So there is a cycle C ′′ in H ′′ through atbt and xx′. Now
P := Q ∪ Pt ∪ (C ′′ − {x′, atbt}) gives the desired path for (1).

Therefore, we may assume t = u. We claim that there is a path Qt in Ht from
{at, bt} when t �= h, or from x when t = h, to some z ∈ {p, q} ∪ {v, w} such that (i)
at−1bt−1 ∈ E(Qt) (or f ∈ E(Qt) when t = 1), (ii) pq ∈ E(Qt) or vw ∈ E(Qt), (iii) if
pq ∈ E(Qt), then z ∈ {v, w}, and vw /∈ E(Qt) unless vw = f , and (iv) if vw ∈ E(Qt),

APPROXIMATING LONGEST CYCLES 647

then z ∈ {p, q}, and pq /∈ E(Qt) unless pq = f . This is easy to see if Ht is a cycle
chain (because pq �= vw). Otherwise, it follows from Lemma 2.8 or Lemma 2.9 when
f /∈ {pq, vw}, and follows from 3-connectivity of Ht when f ∈ {pq, vw}.

Assume without loss of generality that at is an end of Qt. When t �= h, we find a
path R from at to x in (Ht+1 . . . Hh) − bt containing no separating edge of H. When
t = h, let R = ∅. Let Pt := Qt when t = 1, and otherwise let Pt := Qt − at−1bt−1.
Then P := Q ∪ Pt ∪R gives the desired path for (1).

We may assume that vw ∈ E(P) and p is an end of P , since the case pq ∈ E(P)
is similar.

(2) Note that G′
1 := G1 + {yp, yq, pq} is 3-connected, Δ(G′

1) ≤ d + 1, and y, p, q
are the possible vertices of degree d + 1 in G′

1. If G′
1
∼= K4, then we can find a

path P1 from p to y in G′
1 − q such that |E(P1)| = 2 ≥ 1

2 (|G1|
d)r + 1. If G′

1 �∼= K4,
then by Theorem 1.2(a), there is a cycle C1 through py in G′

1 − q such that |C1| ≥
1
2 ((d−1)|G1|

dt1
)r +2, where t1 ≤ d−1 is the number of neighbors of q in G′

1 distinct from

p and y. Let P1 := C1 − py; then |E(P1)| ≥ 1
2 (|G1|

d)r + 1.
(3) Note that G′

2 := G2 + {yv, yw, vw} is 3-connected, Δ(G′
2) ≤ d + 1, and

y, v, w are the possible vertices of degree d + 1 in G′
2. If G′

2
∼= K4, then we can

find a path P2 from v to w in G′
2 − y such that |E(P2)| = 2 ≥ 1

2 (|G2|
d)r + 1. If

G′
2 �∼= K4, then by Theorem 1.2(a), there is a cycle C2 through vw in G′

2 − y such

that |C2| ≥ 1
2 (

(d−1)|G′
2|

dt2
)r + 2, where t2 ≤ d− 1 is the number of neighbors of y in G′

2

distinct from v and w. Let P2 := C2 − vw; then |E(P2)| ≥ 1
2 (|G2|

d)r + 1.
Let C∗ := ((P − vw) ∪ P1 ∪ P2) + e. Then C∗ is a cycle through e and f and

|C∗| ≥ |E(P1)| + |E(P2)| + 1

≥ 1

2

(
|G1|
d

)r

+
1

2

(
|G2|
d

)r

+ 3 (by (2) and (3))

≥ 1

2

(
|G1|
d

+
(b− 1)|G2|

d

)r

+ 3 (by Lemma 3.1 and since |G1| ≥ |G2|)

>
1

2

(
|G1|
d

+
n− |G1|

d

)r

+ 3 (by Observation 3 and since |G2| ≥ σ(H))

=
1

2

(n
d

)r

+ 3.

As before, the desired cycle C can be obtained by modifying C∗.

5. Cycles through one edge. We now reduce Theorem 1.2(c); our proof
implies an O(E) time reduction. Here we use Lemmas 3.2 and 3.3, and need
b = max{64, 4d + 1}.

Lemma 5.1. Let n ≥ 6 be an integer, and assume that Theorem 1.2 holds for
graphs with at most n− 1 vertices. Let G be a 3-connected graph with n vertices and
Δ(G) ≤ d. Then for any e ∈ E(G), there is a cycle C through e in G such that
|C| ≥ 1

2n
r + 3.

Proof. By Lemma 1.3, we may assume n > (4d+1)2. Let e = xy ∈ E(G). If G−y
is 3-connected, then let y′ be a neighbor of y other than x. Clearly, G′ := (G−y)+xy′

is 3-connected, Δ(G′) ≤ d, and 5 ≤ |G′| < n. By Theorem 1.2(c), there is a cycle C ′

through xy′ in G′ such that |C ′| ≥ 1
2 (n−1)r+3. Now let C := (C ′−xy′)+{y, xy, yy′}.

Then C is a cycle through xy in G and, by Lemma 3.1,

|C| = |C ′| + 1 ≥ 1

2
(n− 1)r + 1 + 3 ≥ 1

2
nr + 3.

648 G. CHEN, Z. GAO, X. YU, AND W. ZANG

Therefore, we may assume that G − y is not 3-connected. Since G − y is 2-
connected, we use Theorem 2.1 to decompose G− y into 3-connected components.

Suppose all 3-blocks of G − y are cycles. Let L = L1 . . . L� be a cycle chain in
G− y such that (i) x ∈ V (L1), (ii) L� is an extreme 3-block of G− y, and (iii) subject
to (i) and (ii), |L| is maximum. Because G is 3-connected, each degree 2 vertex in
L is a neighbor of y or is contained in a 3-block of G − y not in L. Hence, it is
easy to see that there is some y′ ∈ V (L) − {x} such that L contains a Hamilton
path P from x to y′ and G has a path Q from y′ to y disjoint from V (L) − {y′}.
Let C := (P ∪ Q) + {y, xy, yy′}, which is a cycle in G. Then |C| ≥ |L| + 1. If
V (G − y) = V (L), then |C| = n ≥ 1

2n
r + 3 (since n ≥ 5 and by Lemma 3.4).

So we may assume V (G − y) �= V (L). Write B := L1. Because x ∈ V (L1) and

xy ∈ E(G), it follows from (iii) that |L| ≥ (n−1)−|B|
t + |B| = n+(t−1)|B|−1

t , where
t is the number of extreme 3-blocks of G − y distinct from L1. So 2 ≤ t ≤ d − 1

(because V (G − y) �= V (L)). Then |C| ≥ |L| + 1 ≥ n+(t−1)|B|−1
t + 1. Note that

|C| − 3 ≥ n+(t−1)|B|−1
t − 2 ≥ n+t−4

t (since |B| ≥ 3). Using elementary calculus, we
can show that the function x+t−4

t − 1
2x

r is increasing when x ≥ (4d + 1)2. Hence
n+t−4

t ≥ 1
2n

r (because t ≤ d− 1 and n ≥ (4d+ 1)2). Therefore, |C| ≥ 1
2n

r + 3 and C
gives the desired cycle in G.

Hence, we may assume that not all 3-blocks of G − y are cycles. We choose
a 3-connected 3-block H0 of G − y with |H0| maximum. Let H = H0H1H2 . . . Hh

be a block chain in G − y such that either h = 0 and x ∈ V (H0), or h ≥ 1 and
x ∈ V (Hh) − V (Hh−1), and if Hh = C1 . . . Ck is a cycle chain with k ≥ 2 and
V (Hh−1 ∩ Hh) = V (C1 ∩ C2), then x ∈ V (Ck) − V (Ck−1). For 0 ≤ i ≤ h − 1, let
V (Hi ∩Hi+1) = {ai, bi}.

If V (G − y) �= V (H), there is a block chain L := L1L2 . . . L� in G − y such that
V (H ∩ L) = V (H ∩ L1) consists of two vertices c0 and d0, L� is (or contains) an
extreme 3-block of G − y, and if L1 = C1 . . . Ck is a cycle chain with k ≥ 2 and
V (L1 ∩L2) = V (Ck ∩H2) when � ≥ 2, then c0d0 ∈ E(C1) and {c0, d0} �= V (C1 ∩C2).
For 1 ≤ i ≤ � − 1, let V (Li ∩ Li+1) = {ci, di}. If L exists, we choose L so that σ(L)
is maximum.

(1) We may assume V (G− y) �= V (H), and σ(L) + 2 ≥ n−σ(H)−1
d−1 .

Suppose V (G − y) = V (H). When h = 0, let x′ be a neighbor of y in H0 − x,
otherwise, let x′ be a neighbor of y in H0 − V (H1). Let G′ be obtained from H + xx′

by suppressing all degree 2 vertices and deleting separating edges of H. Then G′ is
3-connected. By Theorem 1.2(c), there is a cycle C ′ in G′ through xx′ such that
|C ′| ≥ 1

2 |G′|r + 3. Let C∗ := (C ′ − xx′) + {y, yx, yx′}. Since Δ(G) ≤ d, |G′| ≥
(n − 1) − (d − 2). Hence, |C∗| = |C ′| + 1 ≥ 1

2 (n − d + 1)r + 1 + 3 > 1
2n

r + 3 (by
Lemma 3.1). Clearly, the desired cycle C can be obtained by modifying C∗.

So we may assume V (G − y) �= V (H). Note that any vertex of G not contained
in any A(Hi), 1 ≤ i ≤ h, either is counted in σ(L′) + 2 for some block chain L′

defined as L except the maximum requirement (the constant 2 counts the vertices in
V (H ∩ L′)), or is a degree 2 vertex in G− y (and hence a neighbor of y). Therefore,

since xy ∈ E(G) and Δ(G) ≤ d, σ(L) + 2 ≥ n−σ(H)−1
d−1 .

(2) There exists a path P in H from x to {c0, d0} such that c0d0 /∈ E(P) and

|E(P)| ≥ 1
2 |H0|r + 1

2 (
∑

{(|Hi|
d)r : i �= 0 and Hi ∈ B1(H)})+(

∑
{max{1, |A(Hi)|−2} :

i �= 0 and Hi ∈ B1(H)}) + 1. In particular, |E(P)| ≥ 1
2 (σ(H))r + 1.

The first part of (2) follows from Lemma 3.7(i). The second part of (2) follows
from Lemma 3.1. When applying Lemma 3.1, we express max{1, |A(Hi)| − 2} as the
sum of 1, and we use b ≥ 4d + 1, (b − 1)(|A(Hi)| − 2) ≥ |A(Hi)| when |A(Hi)| ≥ 3,

APPROXIMATING LONGEST CYCLES 649

and the fact that |H0| ≥ |Hi| for all 3-connected Hi.
(3) We may assume σ(H) < n−1

4 .
Suppose σ(H) ≥ n−1

4 . Without loss of generality, assume c0 is an end of the
path P in (2). By Lemma 3.6(i), there is a path Q in L − d0 from c0 to some

y′ ∈ N(y)∩V (L�) such that |E(Q)| ≥ 1
2 (σ(L)

d)r +1. Let C∗ := (P ∪Q)+ {y, yy′, yx}.
Then

|C∗| = |E(P)| + |E(Q)| + 2 ≥ 1

2
(σ(H))r + 1 +

1

2

(
σ(L)

d

)r

+ 3.

If σ(H) ≤ b(b−1)
4

σ(L)
d , then by Lemmas 3.3 and 3.1,

|C∗| ≥ 1

2
(4σ(H) + 1)r + 3 ≥ 1

2
nr + 3.

If σ(H) ≥ b(b−1)
4

σ(L)
d , then by Lemma 3.2 and since b ≥ 4d + 1,

|C∗| > 1

2

(
σ(H) +

b(b− 1)

4

σ(L)

d
+ 2(b− 1)

)r

+ 3

≥ 1

2
(σ(H) + (4d + 1)σ(L) + 8d)r + 3

>
1

2
nr + 3.

The final inequality holds by (1) and σ(H) < n− 1. Now the desired cycle C can be
obtained from C∗ by replacing virtual edges in C∗ with appropriate paths in G.

(4) We may assume |H0| + 4(σ(H) − |H0| + σ(L)) < n. In particular, σ(L) ≤
n−1−|H0|

4 .
Suppose |H0| + 4(σ(H) − |H0| + σ(L)) ≥ n. Without loss of generality, assume

that the path P in (2) is from x to c0. By Lemma 3.6(ii), there is a path Q in

L − d0 from c0 to some y′ ∈ N(y) ∩ V (L�) such that |E(Q)| ≥ 1
2 (
∑

{(|A(Li)|
d)r : Li ∈

B1(L)}) + (
∑

{max{1, |A(Li)| − 2} : Li ∈ B2(L)}) + 1.
Let C∗ = (P ∪Q)+{y, yy′, yx}. Then by (2) and above, |C∗| = |E(P)|+ |E(Q)|+

2 ≥ 1
2 |H0|r + 1

2 (
∑

{(|A(Hi)|
d)r : i �= 0 and Hi ∈ B1(H)}) + (

∑
{max{1, |A(Hi)| − 2} :

i �= 0 and Hi ∈ B2(H)}) + 1
2 (
∑

{(|A(Li)|
d)r : Li ∈ B1(L)}) + (

∑
{max{1, |A(Li)| − 2} :

Li ∈ B2(L)})+4. Because |H0| is maximum among all 3-connected 3-blocks of G−y,
it follows from Lemma 3.1 and the fact that b ≥ 4d + 1 that

|C∗| ≥ 1

2

⎡
⎣|H0| + 4

⎛
⎝ h∑

i=1

|A(Hi)| +
�∑

j=1

|A(Lj)|

⎞
⎠
⎤
⎦
r

+ 4

=
1

2
[|H0| + 4(σ(H) − |H0| + σ(L))]r + 4

>
1

2
nr + 3.

As before, the desired cycle C can be obtained by modifying C∗. This proves (4).
We need to consider block chains other than H and L. A block chain M :=

M1M2 . . .Mm is called an HL-leg if Mm contains an extreme 3-block of G − y and
V (M∩ (H ∪ L)) consists of two vertices x0 and y0 such that {x0, y0} ⊆ V (M1) and
{x0, y0} �= V (M1 ∩ M2) when m ≥ 2, and if M1 = C1 . . . Ck is a cycle chain with

650 G. CHEN, Z. GAO, X. YU, AND W. ZANG

k ≥ 2 and V (Ck ∩ M2) = V (M1 ∩ M2) when m ≥ 2, then {x0, y0} ⊆ V (C1) and
{x0, y0} �= V (C1 ∩C2). We view degree 2 vertices of G− y (which are neighbors of y)
as trivial HL-legs.

(5) We may assume that there is an HL-leg M such that σ(M) > n
4(d−2) > 4d+2.

Note that each extreme 3-block of G−y contains a neighbor of y. Since Δ(G) ≤ d,
there are at most d − 2 HL-legs in G − y (including those trivial ones). Choose an
HL-leg M such that σ(M) is maximum. Note that every vertex of G − y is either
a degree 2 vertex (hence covered in a trivial HL-leg), or is counted in σ(H), or in
σ(L) + 2, or in σ(M) + 2 for some HL-leg M. Hence, because σ(H) < n−1

4 (by (3))

and σ(L) ≤ n−1−|H0|
4 ≤ n−5

4 (by (4) and |H0| ≥ 4), σ(M) + 2 ≥ n−1−σ(H)−σ(L)−2
d−2 >

n−3
2(d−2) . Since we assume n > (4d + 1)2, σ(M) > n

4(d−2) > 4d + 2.

Let M be an HL-leg in G− y with σ(M) ≥ n
4(d−2) . By (5), M is nontrivial. Let

x0 and y0 be the vertices in V (M∩ (H ∪ L)). We consider three cases.

Case 1. M may be chosen so that x /∈ {x0, y0} ∩ {c0, d0} and {x0, y0} �⊆ V (H).

Then we may assume {x0, y0} ⊆ V (Lt) with {x0, y0} �= {ct−1, dt−1}.
We claim that there is a path P ′ in H from x to z ∈ {c0, d0} such that (i)

|E(P ′)| ≥ 1
2 (|H0|

d)r + 1, (ii) c0d0 /∈ E(P ′), and (iii) if z /∈ {c0, d0} ∩ {x0, y0}, then
{c0, d0} ∩ {x0, y0} = ∅ or {c0, d0} ∩ {x0, y0} �⊆ V (P ′). Choose z′ ∈ {c0, d0} such
that, if possible, z′ ∈ {c0, d0} ∩ {x0, y0}. Suppose c0d0 ∈ E(H1 . . . Hh). Deleting
separating edges of H1 . . . Hh results in a 2-connected graph, which contains disjoint
paths Q1, Q2 from x, z′ to a0, b0, respectively. In H0 we use Theorem 1.2(c) to find
a cycle C0 through a0b0 such that |C0| ≥ 1

2 |H0|r + 3. If c0d0 ∈ E(Q2), then P ′ :=
(C0−a0b0)∪Q1∪(Q2−z′) gives the desired path; otherwise, P ′ := (C0−a0b0)∪Q1∪Q2

gives the desired path. So we may assume c0d0 /∈ E(H1 . . . Hh). Suppose h = 0. We
apply Theorem 1.2(a) to find a cycle C0 in (H0+{xc0, xd0})−({c0, d0}−{z′}) through

xz′ such that |C0| ≥ 1
2 (|H0|

d)r + 2; then P ′ := C0 − xz′ gives the desired path. So let
h ≥ 1. Then c0d0 ∈ E(H0) and {c0, d0} �= {a0, b0}. Without loss of generality, we
may assume a0 /∈ {c0, d0}. Let Q′ be a path in (H1 . . . Hh)− b0 from x to a0 and not
containing any separating edge of H. If z′ = b0 we use Theorem 1.2(c) to find a cycle
C0 through a0b0 in H0 such that |C0| ≥ 1

2 |H0|r +3, and P ′ := (C0 −a0b0)∪Q′ (when
c0d0 /∈ E(C0)) or P ′ := (C0−b0)∪Q′ (when c0d0 ∈ E(C0)) gives the desired path. So
assume z′ �= b0. If z′ ∈ {c0, d0} ∩ {x0, y0}, then z′ has at most d− 1 neighbors in H0

(since {x0, y0} �= {c0, d0}), and in (H0 +{a0z
′, z′b0})− b0 we apply Theorem 1.2(a) to

find a cycle C0 through a0z
′ such that |C0| ≥ 1

2 (|H0|
d)r +2; then P ′ := (C0−a0z

′)∪Q′

gives the desired path. So we may assume z′ /∈ {c0, d0} ∩ {x0, y0}. By the choice of
z′, {c0, d0} ∩ {x0, y0} = ∅ (so (iii) is automatic). Let H ′

0 be obtained from H0 by
an H-transform at {a0b0, c0d0}, and let a′, x′ denote the new vertices. By applying
Theorem 1.2(c) we find a cycle C0 through a′x′ in H ′

0 such that |C0| ≥ 1
2 |H0|r + 3.

Now C0 − {a′, x′} is a path from some z ∈ {c0, d0} to some b′ ∈ {a0, b0}. Then
C0 −{a′, x′} and a path in (H1 . . . Hh)− ({a0, b0}−{b′}) from x to b′ (not containing
any separating edge of H) gives the desired path P ′.

Without loss of generality, we may assume that P ′ is from x to c0. Then d0 /∈
V (P ′) or d0 /∈ {x0, y0}. Therefore, since each Li is 3-connected or is a cycle chain,
there exists a path Q in

⋃t
i=0 Li from c0 to some z ∈ {ct, dt} ∪ {x0, y0} such that (i)

c0d0 ∈ E(Q) Q contains no separating edge of L except possibly ctdt and x0y0, (ii) Q
avoids d0 if d0 ∈ V (P ′) (since in that case {x0, y0} ∩ {c0, d0} = ∅), (iii) if z ∈ {ct, dt},
then x0y0 ∈ E(Q), and ctdt �∈ E(Q) unless x0y0 = ctdt, and (iv) if z ∈ {x0, y0}, then
ctdt ∈ E(Q), and x0y0 �∈ E(Q) unless x0y0 = ctdt.

APPROXIMATING LONGEST CYCLES 651

Suppose z ∈ {ct, dt}, and assume the notation is chosen so that z = ct. By
Lemma 3.6(ii) there is a path P1 in (Lt+1 . . . L�) − dt from z to some y′ ∈ N(y) ∩
V (L�) and containing no separating edge of L such that |E(P1)| ≥ 1

2 (
∑

{(|A(Li)|
d)r :

t + 1 ≤ i ≤ � and Li ∈ B1(L)}) + (
∑

{max{1, |A(Li)| − 2} : t + 1 ≤ i ≤ � and
Li ∈ B2(L)}) + 1. By Lemma 3.5, let P2 be a path from x0 to y0 in M such that

|E(P2)| ≥ 1
2 ((d−1)σ(M)

d)r + 1. Let n∗ :=
∑�

i=t+1 |A(Li)|; then by the choice of L,
n∗ ≥ σ(M)− 2. Let C∗ := (P ′ ∪ (Q− x0y0)∪P1 ∪P2) + {y, yy′, yx}. As in the proof
of (4),

|C∗| ≥ |E(P ′)| + |E(P1)| + |E(P2)| + 2

≥ 1

2

[(
|H0|
d

)r

+ 2 +
∑(

|A(Li)|
d

)r

+
∑

max{1, |A(Li)| − 2}

+

(
(d− 1)σ(M)

d

)r]
+ 4

>
1

2
[(2 + (b− 1)n∗/d)r + ((d− 1)σ(M)/d)r] + 4 (by Lemma 3.1)

>
1

2
[2 + n∗ + (b− 1)(d− 1)σ(M)/d]r + 4 (by Lemma 3.1)

>
1

2
(4(d− 1)σ(M))r + 3 (since b ≥ 4d + 1)

>
1

2
nr + 3 (by (5)).

As before, the desired cycle C may be obtained by modifying C∗.
Now assume z ∈ {x0, y0}, and that the notation is chosen so that z = x0. By

Lemma 3.6(ii), there is a path P2 in M − y0 from x0 to some y′′ ∈ N(y) ∩ V (Mm)

and containing no separating edge of M such that |E(P2)| ≥ 1
2 (
∑

{(|A(Mi)|
d)r : Mi ∈

B1(M)}) + (
∑

{max{1, |A(Mi)| − 2} : Mi ∈ B2(M)}) + 1. By Lemma 3.5 there
is a path P1 in Lt+1 . . . L� from ct to dt such that |E(P1)| ≥ 1

2 ((d − 1)n∗/d)r. Let
C∗ := (P ′ ∪ (Q− ctdt) ∪ P1 ∪ P2) + {y, yx, yy′′}. Then by applying Lemma 3.1 as in
the above paragraph (by swapping the roles of Li and Mi), we have

|C∗| ≥ 1

2
[(2 + σ(M))r + ((d− 1)n∗/d)r] + 4.

If (d− 1)n∗/d ≤ 2 + σ(M), then by Lemma 3.1 and because n∗ ≥ σ(M) − 2,

|C∗| ≥ 1

2
(2 + σ(M) + (b− 1)(d− 1)n∗/d + 2(b− 1))r + 3

>
1

2
(4(d− 1)σ(M))r + 3 (since b ≥ 4d + 1)

>
1

2
nr + 3 (by (5)).

So assume (d− 1)n∗/d ≥ 2 + σ(M). Applying Lemma 3.1 and (5) again, we have

|C∗| ≥ 1

2
((d− 1)n∗/d + (b− 1)(2 + σ(M)))r + 4 >

1

2
(4dσ(M))r + 3 >

1

2
nr + 3.

As before, the desired cycle C can be obtained by modifying C∗.
Case 2. M may be chosen so that x /∈ {x0, y0}∩{c0, d0}, {c0, d0} �= {x0, y0}, and

{x0, y0} ⊆ V (H).

652 G. CHEN, Z. GAO, X. YU, AND W. ZANG

We may assume that {c0, d0} ⊆ V (Hs) and {c0, d0} �= {as−1, bs−1}, and
{x0, y0} ⊆ V (Ht) and {x0, y0} �= {at−1, bt−1}. Note that a−1 and b−1 are not de-
fined. We consider only the case s ≤ t, since the case s ≥ t is similar. By the choice
of L and by (5), σ(L) ≥ σ(M) ≥ n

4(d−2) .

We claim that there is a path P0 in H from x to some z ∈ {c0, d0} ∪ {x0, y0}
and containing no separating edge of H (except possibly c0d0 or x0y0) such that (a)
|E(P0)| ≥ 1

2 (|H0|/d)r + 1, (b) c0d0 ∈ E(P0) or x0y0 ∈ E(P0), (c) if c0d0 ∈ E(P0),
then z ∈ {x0, y0} and x0y0 /∈ E(P0), and (d) if x0y0 ∈ E(P0), then z ∈ {c0, d0} and
c0d0 /∈ E(P0).

Suppose h = 0. We may assume x /∈ {x0, y0} (the case x /∈ {c0, d0} is symmetric).
Let H ′

0 be obtained from H0 by a T-transform at {x, x0y0}, and let x′ denote the new
vertex. By Theorem 1.2(b) we find a cycle C0 in H ′

0 through c0d0 and xx′ such that
|C0| ≥ 1

2 (|H0|/d)r + 3. Now P0 := C0 − x′ gives the desired path.

So we may assume h ≥ 1. Let H ′ be obtained from H1 . . . Hh by deleting all
separating edges of H different from a0b0, c0d0, and x0y0. Note that H ′ is 2-connected.

Assume s = t = 0. Since c0d0 �= x0y0, we may assume x0y0 �= a0b0 (the case
c0d0 �= a0b0 is the same). Suppose c0d0 = a0b0. By Theorem 1.2(b) we find a cycle
C0 in H0 through a0b0 and x0y0 such that |C0| ≥ 1

2 (|H0|/d)r +3. In H ′− b0 we find a
path P ′ from x to a0. Then P0 := (C0 − a0b0)∪P ′ gives the desired path. So assume
c0d0 �= a0b0. Let H ′

0 be obtained from H0 by an H-transform at {x0y0, a0b0}, and
let x′, a′ denote the new vertices with a′ subdividing a0b0. By Theorem 1.2(b), there
is a cycle C0 in H ′

0 through c0d0 and a′x′ such that |C0| ≥ 1
2 (|H0|/d)r + 3. Let P ′

be a path in H ′ − a0b0 from x to the end, say v, of C0 − {a′, x′} adjacent to a′ and
avoiding {a0, b0} − {v}. Then P0 := (C0 − {a′, x′}) ∪ P ′ gives the desired path.

Now assume s = 0 < t. Then x0y0 �= a0b0. By 2-connectivity of H ′, let P ′ be
a path in H ′ − a0b0 from x to z ∈ {a0, b0} through x0y0. By choosing appropriate
notation, we may let z = a0. Suppose a0b0 = c0d0. By Theorem 1.2(c), we find a
cycle C0 in H0 through a0b0 such that |C0| ≥ 1

2 |H0|r +3. Now P0 := (C0 −a0b0)∪P ′

gives the desired path. So we may assume a0b0 �= c0d0, and let c0 /∈ {a0, b0} (by
choosing appropriate notation). If d0 ∈ {a0, b0}, then let z′ ∈ {a0, b0} − {d0}, and
apply Theorem 1.2(a) to find cycle C0 in (H0 + z′c0) − b0 through a0c0 such that
|C0| ≥ 1

2 (|H0|/d)r+2; then P0 := (C0−a0c0)∪P ′ gives the desired path. Now assume
d0 /∈ {a0, b0}. Let H ′

0 be obtained from H0 by a T-transform at {a0, c0d0}, and let c′

denote the new vertex. We apply Theorem 1.2(a) to find a cycle C0 in (H ′
0 +b0c

′)−b0
through a0c

′ such that |C0| ≥ 1
2 (|H0|/d)r + 2. Now P0 := (C0 − c′) ∪ P ′ gives the

desired path.

Finally, we may assume s ≥ 1. By exactly the same argument as for (1) of
Case 2 in the proof of Lemma 4.2, with a0b0, c0d0, x0y0 playing the roles of f, pq, vw,
respectively, we find a path P ′ through a0b0 in H ′ from x to z ∈ {c0, d0} ∪ {x0, y0}
such that P ′ satisfies (b), (c), and (d). By Theorem 1.2(c), we find a cycle C0 in H0

through a0b0 such that |C0| ≥ 1
2 |H0|r + 3. Now P0 := (C0 − a0b0) ∪ (P ′ − a0b0) gives

the desired path.

Suppose x0y0 ∈ E(P0). Without loss of generality, assume z = c0. By
Lemma 3.6(ii) there is a path P1 in L − d0 from c0 to some y′ ∈ N(y) ∩ V (L�)
and containing no separating edge of L such that |E(P1)| ≥ 1

2 (
∑

{(|A(Li)|/d)r : Li ∈
B1(L)})+(

∑
{max{1, |A(Li)|−2} : Li ∈ B2(L)})+1. By Lemma 3.5, there is a path

P2 from x0 to y0 in M such that |E(P2)| ≥ 1
2 ((d − 1)σ(M)/d)r + 2. Let C∗ be the

cycle obtained from (P0 ∪ P1) + {y, yy′, yx} by replacing x0y0 with P2. Then, as in
Case 1 (with σ(L) playing the role of n∗), by Lemma 3.1, and since σ(L) ≥ σ(M),

APPROXIMATING LONGEST CYCLES 653

we have

|C∗| ≥ |E(P0)| + |E(P1)| + |E(P2)| + 1

>
1

2
[(2 + σ(L))r + ((d− 1)σ(M)/d)r] + 4

>
1

2
[(b− 1)(d− 1)σ(M)/d]r + 3

>
1

2
nr + 3 (by (5)).

Now assume c0d0 ∈ E(P0). Without loss of generality, assume z = x0. By
Lemma 3.6(ii), there is a path P1 from x0 to some y′ ∈ N(y) ∩ V (Mm) in M − y0

such that |E(P1)| ≥ 1
2 (
∑

{(|A(Mi)|/d)r : Mi ∈ B1(M)}) + (
∑

{max{1, |A(Mi)| − 2} :
Mi ∈ B2(M)}) + 1. By Lemma 3.5, there is a path P2 from c0 to d0 in L such that

|E(P2)| ≥ 1
2 ((d−1)σ(L)

d)r+2. Let C∗ be the cycle obtained from (P0∪P1)+{y, yy′, yx}
by replacing c0d0 with P2. Then as in Case 1 and by Lemma 3.1,

|C∗| ≥ |E(P0)| + |E(P1)| + |E(P2)| + 1

≥ 1

2
[(2 + σ(M))r + ((d− 1)σ(L)/d)r] + 4.

If (d− 1)σ(L)/d ≥ 2 + σ(M), then by Lemma 3.1 and by (5),

|C∗| > 1

2
((b− 1)σ(M))r + 4 >

1

2
(4dσ(M))r + 3 >

1

2
nr + 3.

Now assume (d − 1)σ(L)/d ≤ 2 + σ(M). Then by Lemma 3.1 and (5) and because
σ(L) ≥ σ(M),

|C∗| > 1

2
((b− 1)(d− 1)σ(L)/d)r + 4 >

1

2
(4(d− 1)σ(M))r + 3 >

1

2
nr + 3.

As before, the desired cycle C can be obtained by modifying C∗.
Case 3. For every choice of M with σ(M) ≥ n

4(d−2) , we have x ∈ {c0, d0}∩{x0, y0}
or {c0, d0} = {x0, y0}.

Let Mi, 1 ≤ i ≤ k, denote the HL-legs with σ(Mi) ≥ n
4(d−2) . Since

∑
{σ(M) :

M is an HL-leg as in Case 1 or Case 2} ≤ (d−2−k)n
4(d−2) and because n > (4d + 1)2, it

follows from (3) and (4) that

k∑
i=1

σ(Mi) ≥ (n− 1) − n− 1

4
− n− 1

4
− (d− 2 − k)n

4(d− 2)
− 2d >

n

4
.

Let Gi denote the graph obtained from G by deleting all components of (G−y)−
V (Mi∩ (H∪L)) not containing any vertex of Mi. Let z ∈ {c0, d0} such that z = x if
x ∈ {c0, d0}. Since we are in Case 3, z ∈ V (Mi) for 1 ≤ i ≤ k. Let ti be the number
of neighbors of z in Gi different from y and not in V (Mi ∩ (H ∪ L)). Then ti ≥ 1.
We claim that

∑
i=1 ti ≤ d− 1. This is clear when z = x because yx is an edge of G.

Now suppose z �= x. Then {c0, d0} ⊆ V (Mi) for all 1 ≤ i ≤ k. Since z is incident

with edges in both H− c0d0 and L − c0d0, we have
∑k

i=1 ti ≤ d− 1.

Let 1 ≤ s ≤ k such that |Gs|
ts

is maximum. Then |Gs|
ts

≥ n
4(d−1) . This follows from

the following result (which can be proved by induction on k): If α1 + · · · + αk ≥ α
and t1 + · · · + tk = m, then max{αi

ti
: 1 ≤ i ≤ k} ≥ α

m .

654 G. CHEN, Z. GAO, X. YU, AND W. ZANG

For convenience, let {xs, ys} = V (Ms ∩ (H ∪ L)), and assume, without loss of
generality, z = xs = c0. Note that G∗

s := Gs + {yxs, yys, xsys} is 3-connected,
Δ(G∗

s) ≤ d+ 1, and any vertex of degree d+ 1 must be incident with xsy or xsys. By
Theorem 1.2(a), there is a path Q2 from ys to y in G∗

s − xs such that

|E(Q2)| ≥
1

2

(
(d− 1)|Gs|

dts

)r

+ 1 ≥ 1

2

(n

4d

)r

+ 1.

Suppose ys ∈ V (H). By 2-connectivity of H, there is a path Q0 from x to ys
in H through c0d0. By Lemma 3.5, there is a path Q1 from c0 to d0 in L such that

|E(Q1)| ≥ 1
2 ((d−1)σ(L)

d)r + 2. Let C∗ := ((Q0 − c0d0) ∪Q1 ∪Q2) + yx. Then

|C∗| ≥ |E(Q1)| + |E(Q2)| ≥
1

2

[(
(d− 1)σ(L)

d

)r

+
(n

4d

)r
]

+ 3.

If (d−1)σ(L)
d ≥ n

4d , then by Lemma 3.1 and since b ≥ 4d + 1,

|C∗| ≥ 1

2

(
(b− 1)n

4d

)r

+ 3 ≥ 1

2
nr + 3.

Now assume (d−1)σ(L)
d ≤ n

4d . By Lemma 3.1 and since σ(L) ≥ σ(M) > n
4(d−2) (by

(5)),

|C∗| ≥ 1

2

[
(b− 1)(d− 1)σ(L)

d

]r
+ 3 >

1

2
nr + 3.

As before, the desired cycle C can be obtained by modifying C∗.
Thus, we may assume ys /∈ V (H). Then z = x and ys ∈ V (Lt) for some 1 ≤ t < �

(t �= � by the choice of L). Let n∗ :=
∑�

i=t+1 |A(Li)|. Note that n∗ ≤ σ(Lt+1 . . . L�).
By our choice of L, n∗ ≥ σ(M) − 2. By 2-connectivity, let Q0 be a path from x
to ys through ctdt in L1 . . . Lt. Note that |E(Q0)| ≥ 2. By Lemma 3.5 there is

a path Q1 from ct to dt in Lt+1 . . . L� such that |E(Q1)| ≥ 1
2 ((d−1)n∗

d)r + 1. Let
C∗ := ((Q0 − ctdt) ∪Q1 ∪Q2) + yx. Then

|C∗| ≥ |E(Q1)| + |E(Q2)| + 2 ≥ 1

2

[(
(d− 1)n∗

d

)r

+ 2 +
(n

4d

)r
]

+ 3.

If (d−1)n∗

d ≥ n
4d , then by Lemma 3.1 and since b ≥ 4d + 1,

|C∗| ≥ 1

2

(
(b− 1)n

4d

)r

+ 3 ≥ 1

2
nr + 3.

Now assume (d−1)n∗

d ≤ n
4d . Then by Lemma 3.1 and since n∗ ≥ σ(M)−2 > n

4(d−1) −2

(by (5)),

|C∗| > 1

2

(
(b− 1)(d− 1)n∗

d
+ 2(b− 1)

)r

+3 >
1

2
[4(d−1)n∗+2(b−1)]r+3 >

1

2
nr+3.

Again, the desired cycle C can be obtained by modifying C∗.

APPROXIMATING LONGEST CYCLES 655

6. Conclusions. We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let n, d, r,G be given as in Theorem 1.2. We apply
induction on n. When n = 5, G is isomorphic to one of the following three graphs:
K5, K5 minus an edge, or the wheel on five vertices. In each case, we can verify that
Theorem 1.2 holds. So assume that n ≥ 6 and Theorem 1.2 holds for all 3-connected
graphs with at most n − 1 vertices. Then Theorem 1.2(a) holds by Lemma 4.1,
Theorem 1.2(b) holds by Lemma 4.2, and Theorem 1.2(c) holds by Lemma 5.1. This
completes the proof of Theorem 1.2.

Our proof of Theorem 1.2 implies a polynomial time algorithm which, given a
3-connected n-vertex graph, finds a cycle of length 1

2n
r +3. When combined with the

next two results [8], our proof implies a cubic algorithm.

Lemma 6.1. Let G be a k-connected graph where k is a positive integer. Then
G contains a k-connected spanning subgraph with O(V) edges; such a subgraph can be
found in O(E) time.

Lemma 6.2. Let G be a 2-connected graph and let e, f ∈ E(G). Then there is a
cycle through e and f in G, and such a cycle can be found in O(V) time.

Lemma 6.2 is actually an easy consequence of a result in [8] which states that,
in a 2-connected graph G, one can find, in O(V) time, two disjoint paths linking two
given vertices. Our algorithm is similar to that in [3]. Therefore, we give only an
outline and omit complexity analysis.

Algorithm. Let G be a 3-connected graph with Δ(G) ≤ d, and assume |G| ≥ 5.
The following procedure finds a cycle C in G with |C| ≥ 1

2 |G|r + 3.

1. Preprocessing. Replace G with a 3-connected spanning subgraph of G with
O(|G|) edges.

2. We either find the desired cycle C, or we reduce the problem to Theorem 1.2
for some 3-connected graphs Gi, for which |Gi| < |G| and each Gi contains a
vertex which does not belong to any other Gi.

3. Replace each Gi with a 3-connected spanning subgraph of Gi with O(|Gi|)
edges.

4. Apply Lemma 4.1 to those Gi for which Theorem 1.2(a) needs to be applied.
Apply Lemma 4.2 to those Gi for which Theorem 1.2(b) needs to be applied.
Apply Lemma 5.1 to those Gi for which Theorem 1.2(c) needs to be applied.

5. Repeat steps 3 and 4 for new 3-connected graphs.
6. In the final output, replace all virtual edges by appropriate paths in G to

complete the desired cycle C.

Acknowledgment. We thank the referees for their suggestions that helped im-
prove the presentation of this paper.

REFERENCES

[1] A. Björklund and T. Husfeldt, Finding a path of superlogarithmic length, SIAM J. Comput.,
32 (2003), pp. 1395–1402.

[2] G. Chen, Z. Gao, X. Yu, and W. Zang, Approximating the longest cycle problem on graphs
with bounded degree, Lecture Notes in Comput. Sci. 3595, 2005, pp. 870–884.

[3] G. Chen, J. Xu, and X. Yu, Circumference of graphs with bounded degree, SIAM J. Comput.,
33 (2004), pp. 1136–1170.

[4] T. Feder, R. Motwani, and C. Subi, Approximating the longest cycle problem in sparse
graphs, SIAM J. Comput., 31 (2002), pp. 1596–1607.

[5] T. Feder and R. Motwani, Finding a long cycle in a graph with a degree bound and a 3-
cyclable minor, manuscript, 2004.

656 G. CHEN, Z. GAO, X. YU, AND W. ZANG

[6] H. N. Gabow, Finding paths and cycles of superpolylogarithmic length, in Proceedings of the
36th Annual ACM Symposium on Theory of Computing (STOC), 2004, pp. 407–416.

[7] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135–158.

[8] T. Ibaraki and H. Nagamochi, A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.

[9] B. Jackson and N. C. Wormald, Longest cycles in 3-connected graphs of bounded maximum
degree, in Graphs, Matrices, and Designs, R. S. Rees, ed., Dekker, New York, 1993, pp. 237–
254.

[10] D. Karger, R. Motwani, and G. D. S. Ramkumar, On approximating the longest path in a
graph, Algorithmica, 18 (1997), pp. 82–98.

[11] W. T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 657–680

FAIRNESS MEASURES FOR RESOURCE ALLOCATION∗

AMIT KUMAR† AND JON KLEINBERG‡

Abstract. In many optimization problems, one seeks to allocate a limited set of resources to
a set of individuals with demands. Thus, such allocations can naturally be viewed as vectors, with
one coordinate representing each individual. Motivated by work in network routing and bandwidth
assignment, we consider the problem of producing solutions that simultaneously approximate all
feasible allocations in a coordinate-wise sense. This is a very strong type of “global” approximation
guarantee, and we explore its consequences in a wide range of discrete optimization problems, includ-
ing facility location, scheduling, and bandwidth assignment in networks. A fundamental issue—one
not encountered in the traditional design of approximation algorithms—is that good approximations
in this global sense need not exist for every problem instance; there is no a priori reason why there
should be an allocation that simultaneously approximates all others. As a result, the existential
questions concerning such good allocations lead to a new perspective on a number of fundamental
problems in resource allocation, and on the structure of their feasible solutions.

Key words. fairness, approximation algorithms, scheduling, facility location, bandwidth allo-
cation

AMS subject classification. 68W25

DOI. 10.1137/S0097539703434966

1. Introduction.

Fair allocations. In many optimization problems, one seeks to allocate a limited
set of resources to a set of individuals with demands. For example, given n users
of a network, each seeking to transmit data between some pair of nodes, we must
decide how to route these connection requests and allocate a portion of the available
bandwidth to each. Much work on exact and approximate algorithms for such resource
allocation problems has sought allocations that optimize a particular aggregate figure
of merit. In the case of routing connections, for example, we could seek a solution
that maximizes the minimum amount of bandwidth allocated to any request, or the
total bandwidth allocated to all requests.

But these types of problems genuinely involve n distinct objectives—the demands
of each individual—and a rich set of issues emerges when we adopt this perspective,
treating the feasible solutions as vectors with a separate coordinate to represent the
allocation to each individual. In the networking literature, this approach underlies
the notion of max-min fairness [1, 15, 16], a widely used mechanism which produces
an allocation for a fixed set of routes that is lexicographically maximum: the minimum
bandwidth assigned to any connection is maximized; subject to this, the minimum
bandwidth assigned to any of the remaining connections is maximized; and so forth.

∗Received by the editors September 19, 2003; accepted for publication (in revised form) February
7, 2006; published electronically October 10, 2006. A preliminary abstract of this work appeared in
the Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science [19].

http://www.siam.org/journals/sicomp/36-3/43496.html
†Department of Computer Science and Engineering, Indian Institute of Technology, Delhi 110016,

India (amitk@cse.iitd.ernet.in). This work was done while the first author was at Cornell University,
and was supported in part by the second author’s ONR Young Investigator Award.

‡Department of Computer Science, Cornell University, Ithaca, NY 14853 (kleinber@cs.cornell.
edu). This author’s work was supported in part by a David and Lucile Packard Foundation Fel-
lowship, an ONR Young Investigator Award, and NSF Faculty Early Career Development Award
CCR-9701399.

657

658 AMIT KUMAR AND JON KLEINBERG

Such a vector is often called the max-min fair vector. The same notion was formulated
in the context of network flow problems by Megiddo [21].

There are cases in which it is computationally intractable to determine the max-
min fair vector of allocations. In such settings, Kleinberg, Rabani, and Tardos [17]
proposed the notion of a coordinate-wise approximation: We say that a vector X is a
coordinate-wise c-approximation to a vector X ′ if for each j, the jth largest coordinate
of X is at least 1/c times the values of the jth largest coordinate of X ′. One can
then look for efficiently computable vectors X that form good approximations in this
sense to the max-min fair vector.

Recently, Goel, Meyerson, and Plotkin [9] developed algorithms for on-line path
selection and bandwidth allocation satisfying a stronger notion of fairness. They were
motivated by the following problem: Given a set of requests in a network, we would
like to allocate bandwidth to them so that the allocation vector is max-min fair and
the total throughput (i.e., the sum of the values in the vector) is maximized. But it is
easy to construct examples showing that a max-min fair solution can have low total
throughput and, conversely, that a solution maximizing the total throughput can be
quite far from any max-min fair solution.

One way to get around this problem is to take the average of the max-min fair
allocation and the maximum total throughput allocation. But examples in [9] show
that even such an allocation vector may not be good in terms of fairness. This led
them to define a stronger notion of fairness: Compute an allocation vector X that is
a coordinate-wise c-approximation to every allocation vector. Such a vector satisfies
the following natural and strong type of guarantee: For any value of m, if there is any
allocation in which m users each get bandwidth at least b, then at least m users get
bandwidth at least b/c under allocation X. We will therefore refer to X as a global
c-approximation for this instance.

A simple example from [9] shows that the max-min fair vector does not perform
well under this measure of quality. Suppose our network is a single path P ; for an
arbitrary number k, we have k “long” requests that need to use all the links of P , and
we have k2 “short” requests, each of which needs to use only a distinct edge of P . We
wish to assign a bandwidth value to each connection in such a way that the sum of the
values assigned to any set of connections passing through a common edge is at most
1. Then the max-min fair vector X∗ assigns bandwidth 1/(k + 1) to each request,
while the vector X0 that maximizes the sum of all values assigns 1 unit to each short
connection and 0 units to each long connection. Note that X∗ is only a coordinate-
wise (k+1)-approximation to X0, while there is no c for which X0 is a coordinate-wise
c-approximation to X∗. However, as we will see later, there is a vector X for this
instance which is a coordinate-wise O(log k)-approximation to every feasible vector
of bandwidths; in other words, it exhibits the following natural and strong type of
guarantee: For any value of m, if there is any allocation in which m users each get
bandwidth at least b, then at least m users get bandwidth at least b/O(log k) under
allocation X. We will therefore refer to X as a global O(log k)-approximation for this
instance.

The present work. In this work, we develop algorithms that produce allocations
with this stronger type of guarantee: global approximation to all possible allocations.
We consider a wide range of problems that can be cast in the framework of resource
allocation, with an emphasis on three particular domains.

(i) Bandwidth allocation. We consider a version of the setting discussed above,
in which there are n given paths in a network, and we must assign bandwidth
to each one in a way that respects capacity constraints. Such an assignment

FAIRNESS IN RESOURCE ALLOCATION 659

induces an allocation vector of length n, whose ith coordinate is the amount
of bandwidth assigned to path i.

(ii) Scheduling. Given a set of n jobs that need to be processed, a schedule
for these jobs induces a completion time vector, whose ith coordinate is the
completion time of job i. Using the above notions, we can compare different
completion time vectors in a coordinate-wise sense.

(iii) Facility location. Given a set of n demand points in a metric space, opening
k facilities to serve these points induces a distance vector of length n: The ith
coordinate is the distance from the ith demand point to its nearest facility.
Again, we can compare the distance vectors induced by different sets of k
facilities, so as to find the “fairest” solution.

What we find particularly interesting is that the notion of approximation actually
plays a fundamentally different role in this type of allocation problem than it does
in standard approximation algorithms for NP-complete problems. In the traditional
design of approximation algorithms, the existence of an optimum (or of optima) is
not in question; rather, we lack the computational power to find these optima. The
definition of global approximation, on the other hand, comes with the following crucial
point: There is no a priori guarantee that a good global approximation exists for a
particular instance of a problem. Indeed, global 1-approximations—allocations that
are as good as every allocation in every coordinate of a sorted order—turn out to be
quite rare and often indicate something striking in the structure of the instance.

Thus, our study of this notion has two related components: an existential as-
pect, in which we try to determine whether good global approximations exist for all
instances of a particular problem, and an algorithmic aspect, in which we look for
efficient ways to compute global approximations. Each is important for our under-
standing of this issue, existential results illustrating the kinds of fair allocations that
are achievable, even when we do not yet know of corresponding efficient algorithms
that produce them.

Formulating the problem. We now introduce some precise notation for expressing
the basic questions and results. All three types of problems above have the property
that a solution to the problem induces a vector of length n; thus, for each instance
I of such a problem, we have a set V (I) consisting of all vectors that are induced

by some feasible solution to the instance. Now, for a vector X ∈ V (I), we define
−→
X

to be the vector in which the coordinates of X have been reordered so that they are
in nondecreasing order, and we define

←−
X to be the vector in which the coordinates

of X have been reordered so that they are in nonincreasing order. For example, if
X = {4, 1, 5, 10, 3}, then

−→
X = {1, 3, 4, 5, 10},←−X = {10, 5, 4, 3, 1}. For two vectors

X,Y ∈ V (I), we write X ≺c Y if Xi ≤ Yi for all i. Note that for purposes of

coordinate-wise comparison, we have
−→
X ≺c

−→
Y if and only if

←−
X ≺c

←−
Y —it clearly

does not matter for the comparison whether we write the small values at the left or
the right. Note an important fact: Often the coordinates of vectors in V (I) correspond
to individual users in the problem instance (e.g., in the bandwidth allocation problem,

each coordinate may correspond to a request); when we compare vectors
−→
X and

−→
Y

(or
←−
X and

←−
Y), we are not comparing the allocations in the two solutions to the same

user. But such a comparison makes sense because according to our notion of fairness
we would like to compare, for example, the allocation to the kth least favored users
in the two solutions, respectively.

As is common in discussing approximation, our terminology will be slightly differ-
ent depending on whether we are discussing a minimization problem or a maximization
problem (note that both arise in our list of problems above). For an allocation vec-

660 AMIT KUMAR AND JON KLEINBERG

tor X in a minimization problem, we define c(X) to be the infimum of α such that
−→
X ≺c α

−→
Y for all Y ∈ V (I). For an allocation vector X in a maximization problem,

we define c(X) to be the infimum of α such that
−→
Y ≺c α

−→
X for all Y ∈ V (I). In

both cases, this can be informally viewed as the global approximation ratio of X: It
is the smallest α for which

−→
X is an α-approximation, in the natural coordinate-wise

sense, to every vector Y ∈ V (I). The best global approximation ratio achievable on
the instance I is then defined as

c∗(I) = inf
X∈V (I)

c(X).

For several types of problems, we will find that good global approximations do
not necessarily exist, but in many of these cases there will always exist solutions
satisfying a weaker global guarantee, in which we compare the prefix sums of one
allocation to the prefix sums of other allocations [17]. Thus, for a vector X ∈ V (I),
we define σ(X) to be the vector whose ith coordinate is

∑
j≤i Xj . We say that

X ≺s Y if σ(X) ≺c σ(Y). Now for a minimization (resp., maximization) problem,

we define s(X) to be the infimum of α such that
←−
X ≺s α

←−
Y (resp.,

−→
Y ≺s α

−→
X) for

all Y ∈ V (I). In this case, we say that X is a global α-approximation under prefix
sums. In a bandwidth allocation problem, for example, we can view such a vector X
as conveying the following guarantee: For any m, if at least m users receive an average
bandwidth of b in X, then at least m users receive an average allocation of at most αb in
any allocation. Note, crucially, that in a minimization (resp., maximization) problem,
we begin computing prefix sums with the largest (resp., smallest) coordinates. Finally,
for an instance I, we define the best possible global approximation ratio under prefix
sums as

s∗(I) = inf
X∈V (I)

s(X).

Note that since s(X) ≤ c(X) for any vector X, we have s∗(I) ≤ c∗(I) for any instance
I. The notion of s∗ as an approximation ratio has also been used by Bhargava, Goel,
and Meyerson [2] and Goel, Meyerson, and Plotkin [10], where they denote this by
approximate majorization.

Sometimes we will have an instance I and want to evaluate the quality of an
allocation X �∈ V (I). Thus, we allow the definitions of c(X) and s(X), exactly as
written above, to apply to vectors X �∈ V (I); there is no difficulty in doing this, and
the meaning will be clear from the context.

An illustrative example. Before discussing our results, we consider a very simple
example to illustrate how the optimal allocations can differ qualitatively under the c∗

and s∗ measures. Suppose we have n users of a network, each trying to transmit data
across a single shared link of unit capacity. (Thus the underlying network consists of
two nodes joined by a single edge.)

First, we claim that the bandwidth allocation vector X in which each coordinate
is equal to 1/n satisfies s(X) = 1. Indeed, in any other vector Y , and for any j ≤ n,
the j smallest coordinates of Y must add up to at most j/n, while in X they add up
to exactly j/n.

However, the uniform allocation vector X has a very large global approximation
ratio under coordinate-wise comparison; specifically, c(X) = n. To see this, consider
the vector Y1 in which the first coordinate is 1 and all others are 0. A much better
global approximation ratio is achieved by the vector X ′, whose jth coordinate is equal

FAIRNESS IN RESOURCE ALLOCATION 661

to 1/jHn, where Hn =
∑n

i=1 1/i. We claim that c(X ′) = Hn; for in any other vector
Y , the jth largest coordinate is at most 1/j. In fact, c∗(I) = Hn for this simple
instance I: Any vector Y must have some coordinate, say the jth largest, that is at
most the value of corresponding coordinate in X ′, and hence this coordinate is Hn

times smaller than the jth largest coordinate of the vector assigning 1/j to j of the
coordinates, and 0 to all others.

In some sense, of course, the optimal allocation X under the s∗ measure has
a more intuitive meaning—equal division of resources among all individuals—than
the optimal allocation X ′ under the c∗ measure. However, it is interesting that the
allocation X ′ also corresponds to a well-studied distribution of wealth: It is an instance
of the Pareto distribution [22], one of the simplest types of allocations to follow an
inverse power law. This connection can also be justified at an intuitive level. Pareto
distribution basically states that a larger portion of the wealth in a society is owned
by a smaller percentage of people in the same society. The allocation X ′ must also
follow a similar principle—there are allocations which allocate all the resources to a
few coordinates, but X ′ has to be close to such solutions under the c∗ measure.

2. Overview of results.
Bandwidth allocation. We consider the problem that underlies the Hayden–Jaffe

model of max-min fairness [1, 15, 16]. We are given a graph G = (V,E) and paths
P1, . . . , Pn in this graph, representing users transmitting data. We must assign a rate
xi to each path Pi so that the following capacity condition is satisfied: If Pi1 , . . . , Pit

all pass through a common edge, then
∑t

j=1 xit ≤ 1. Thus, a solution to an instance
of this problem is a vector X of rates. We will refer to this problem as the bandwidth
allocation problem. Note that our capacity condition implies that all links have the
same capacity (set to 1); we can obtain bounds for the more general case where edges
have different capacities but do not go into the details here.

For an instance I, let U denote the congestion of the set of paths: the maximum
number of paths that pass through any single edge. Note that U ≤ n. Although
Goel, Meyerson, and Plotkin [9] considered a problem in which both the paths and
the rates had to be chosen, their on-line algorithm can be applied to this setting with
fixed paths as well; it shows that c∗(I) = (log2 |V | logU) for every instance I.

Here, we are not restricted to using on-line algorithms. Nevertheless, there are
instances where a constant-factor global approximation does not exist, even in the
sense of prefix sums. We can show the following (we omit the details in this version):

• For arbitrarily large U , there exist instances I of the bandwidth allocation
problem with congestion U for which s∗(I) = Ω(logU

log logU).

Since c∗(I) ≥ s∗(I) for every instance, this is a lower bound for c∗ as well.
However, we can produce upper bounds that nearly match this lower bound.

Specifically,
• s∗(I) ≤ 2	logU
+2 for every instance I of the bandwidth allocation problem.

We can produce a vector of rates X achieving this bound via a polynomial-time
algorithm. More strongly, we can show that the same bound holds for the c∗ measure:

• c∗(I) ≤ 2	logU
+2 for every instance I of the bandwidth allocation problem.
Here, however, we do not have an accompanying polynomial-time algorithm.

One can obtain strong bounds on s∗ for certain related problems. For the problem
of single-source fractional flow to each of n sinks—where we consider the vector of flow
values to each sink—Megiddo showed that there is a maximum flow that induces the
max-min fair vector of flows to the sinks [21]. By adapting some of the analysis from
his proof of this, one can in fact show that s∗(I) = 1 for all instances of this problem.

662 AMIT KUMAR AND JON KLEINBERG

For the uniform load balancing problem considered by Kleinberg, Rabani, and Tardos,
one can extend the analysis of [17] to show that s∗(I) = 1 for all instances I.

Scheduling problems. There are a large number of possible scheduling problems,
but we can begin with some general ideas. First, in all the scheduling problems we
will consider, a solution S induces a vector XS of completion times. Two traditional
objective functions are the makespan—the first coordinate in

←−
XS—and the sum of

all completion times. A sequence of papers beginning with Stein and Wein [25] have
shown that there always exist solutions to many types of scheduling problems that are
good approximations to both objectives simultaneously. The algorithm of [25] does

not provide a simultaneous approximation to all prefix sums of
←−
XS , however.

We follow the standard notation for scheduling problems proposed by Graham
et al. [13]. Under this notation, a scheduling problem is usually denoted by three
parameters α|β|γ, where α designates the number of machines (and whether they are
identical or different); β generally designates special conditions such as precedence
constraints, release dates, or fixed processing times; and γ denotes an objective func-
tion such as the makespan or the sum of completion times. In our formulations, γ
will be set equal to the symbol all, to denote the fact that we are considering the full
vector of completion times, rather than an aggregate objective function.

There are approximation algorithms for scheduling that perform coordinate-by-
coordinate comparison with respect to the completion time vector of the optimal
schedule. If this analysis implicitly holds with respect to any schedule, rather than
just the optimal one, then one is, in fact, giving a bound for c∗. The most basic
example of this is Smith’s rule for 1-processor scheduling, in which jobs are scheduled
in nondecreasing order of processing time [24] (1||all). The optimality proof for this
schedule in fact shows that c(XS) = 1. Also, for 1-processor scheduling with release
dates (1|rj |all), the analysis of Phillips, Stein, and Wein [23] shows that their schedule
S achieves c(XS) ≤ 2; for the case of m > 1 identical parallel machines with release
dates (P |rj |all), their schedule achieves c(XS) ≤ 3.

Here we focus on problems with precedence constraints: We have a set J of n
jobs, with a partial order <J representing dependencies, and must produce a schedule
in which each job must end before the jobs that depend on it can begin. For
many types of precedence-constrained scheduling problems, Hall et al. [14] produced
a coordinate-wise O(1)-approximation to an optimal vector of fractional completion
times, corresponding to a linear programming relaxation. However, their analysis
does not, in fact, yield a global O(1)-approximation, for we show the following:

• For every number α, there exists an instance I of precedence-constrained
1-processor scheduling (1|prec|all) in which the optimal vector of fractional
completion times X in the linear programming formulation of Hall et al. does
not satisfy c(X) ≤ α.

Thus, it is natural to ask whether there is a constant upper bound on c∗(I) for all
instances of this problem or its more general variants.

We show the following general result:

• c∗(I) ≤ 4 for all instances I of precedence-constrained scheduling with release
dates on m identical parallel machines (P |prec, rj |all) for any m ≥ 1.

Interestingly, our construction of the schedule S that achieves c(XS) ≤ 4 does not
yield a polynomial-time algorithm even in the 1-processor case; in fact we show that
it may be a difficult problem to obtain such a polynomial-time algorithm. Specif-
ically, we show that any polynomial-time algorithm producing a schedule S that
satisfies c(XS) = O(1) for instances of precedence-constrained 1-processor scheduling

FAIRNESS IN RESOURCE ALLOCATION 663

(1|prec|all) implies a polynomial-time constant-factor approximation algorithm for
the densest subgraph problem: Given a graph G and a number k, find an induced
k-node subgraph with the maximum possible number of edges. For this problem, the
current best approximation ratios have the form O(kc) for a constant 0 < c < 1 [18].

Interestingly enough, we show that there is a polynomial-time algorithm which
produces a schedule S such that s(XS) = O(1) for any instance of P |prec, rj |all.

We consider the special case of precedence-constrained scheduling in which there
are no release dates and all jobs have unit processing times (P |pj = 1, prec|all). We
show that

• c∗(I) = 1 for every instance I of precedence-constrained 2-processor schedul-
ing with unit-size jobs.

It is not difficult to show that there are instances with m ≥ 3 machines for which
c∗(I) > 1, and a simple greedy algorithm can be used to establish the following:

• c∗(I) ≤ 2 for every instance I of precedence-constrained m-processor schedul-
ing with unit jobs, for every m.

This dichotomy between m = 2 and m ≥ 3 forms an interesting parallel to the
fact that the 2-processor case is known to be polynomially solvable [5, 7], while the
complexity of the m-processor case for fixed m ≥ 3 is an open question.

As a final note, one can view traveling salesman problems within this perspective
on scheduling, since tours yield vectors of arrival times at each city. In this context,
the approximation of the minimum latency problem by k-trees [3, 11] shows that there
is a constant upper bound on c∗(I) for all instances of the traveling salesman problem.

Facility location problems. Finally, we consider facility location problems. Sup-
pose we have a metric space M , a set P = {p1, . . . , pn} of demand points in M , and a
set F of n′ candidate facility points. The k-center problem and the k-median problem
are two classical facility location problems. The first asks, Choose k facilities so that
the maximum distance from any point to its nearest facility is minimized; the second
asks, Choose k facilities so that the total distance from all points to their nearest
facility is minimized.

Guided by the present framework, we say that opening facilities at locations
F ′ ⊆ F induces a distance vector XF ′ whose ith coordinate is d(pi, F

′), the distance
from pi to its nearest facility in F ′. Thus, when we speak of a k-facility instance I,
we mean a metric space M , with sets P and F , and we will compare solutions to the
set V (I) of all vectors XF ′ such that |F ′| = k. Now, the k-center problem seeks to

minimize the first coordinate of
←−−
XF ′ , while the k-median problem seeks to minimize

the sum of all coordinates in XF ′ . What can be said about global approximations for
arbitrary k-facility instances?

First we consider the case k = 1. We show that

• s∗(I) ≤ 4 for every instance I of the 1-facility location problem.

The c∗ measure is trickier. Consider an instance with a set P of five points in the
plane—two at the ends of a very short line segment, and three at the corners of a
moderately sized equilateral triangle, arbitrarily far away. If F = P , it is easy to see
that such an instance can be constructed in which c∗ is arbitrarily large. By extending
this idea, we can show the following:

• For any number α, there are 1-facility instances I for which no set F ′ of fewer
than logn facilities achieves c(XF ′) ≤ α.

At the same time, this lower bound is essentially tight:

• For every 1-facility instance I, there is a set F ′ of at most 1 + log n facilities
for which c(XF ′) ≤ 3.

664 AMIT KUMAR AND JON KLEINBERG

Note that here we are comparing the distance vector XF ′ , for a set F ′ of ≤ 1 + log n
facilities, to all possible distance vectors obtained by opening a single facility. Also,
we note that our two upper bounds here are achieved by polynomial-time algorithms.

Now consider a larger value of k. If there were a constant bound on s∗(I) for
every k-facility instance I, it would imply that in every instance there is a set of k
facilities that provides a simultaneous constant-factor approximation for the k-center
and k-median objective functions. But this is not true. Consider an instance with a
set P of 2m + 1 points in the plane: m are clustered in a small circle, m more are
clustered in a nearby small circle, and one is very far away from all others. If F = P
and k = 2, then we see that any good solution for the k-median problem must put
one facility in each circle, while any good solution for the k-center problem must put
one facility near the far-away point.

However, we can prove the following upper bound:

• For every k-facility instance I, there is a set F ′ of O(k log n + ε−1) facilities
for which s(XF ′) ≤ 3 + ε. Moreover, we can compute an F ′′ of this size in
polynomial time for which s(XF ′′)) ≤ 9 + ε.

We have a lower bound showing this is almost tight:

• For every α, there are k-facility instances where no set F ′ of fewer than

Ω(k log(n/k)
logα) facilities can achieve s(F ′) ≤ α.

For the c∗ measure, we can show that there are essentially no nontrivial upper bounds
when k > 1:

• For every α, there are 2-facility instances for which no proper subset F ′ ⊆ F
can achieve c(F ′) ≤ α.

There has been work in discrete location theory on defining notions of “fairness”
in facility location problems [6, 20]. Most of the measures to arise from this previous
work are concerned with making the distance vector approximately uniform in some
cases relative to a priori weights on the points, rather than optimizing the types of
approximation measures we are considering here.

3. Bandwidth allocation. Recall that in our bandwidth allocation problem
from section 1, we have a graph G = (V,E) and a set P of paths P1, . . . , Pn in this
graph. We wish to assign a vector X of rates to these paths, respecting the (unit)
capacities in the graph. For a set of paths P ′ ⊆ P, we use ν(P ′) to denote their
congestion; we write U = ν(P).

We first show the following theorem.

Theorem 3.1. s∗(I) ≤ 2	logU
 + 2 for every instance I of the bandwidth
allocation problem. Further, given an instance I, a solution X satisfying s(X) ≤
2	logU
 + 2 can be found in polynomial time.

Proof. We describe an algorithm that constructs a vector X of rates so that
s(X) ≤ 2	logU
 + 2.

We call a set of paths P ′ a block if they all contain a common edge e; we call
e a blocking edge of P ′. We divide our algorithm into 1 + 	logU
 phases. We say
that two blocks are disjoint if they do not contain a common path. In phase i =
0, 1, . . . , 	logU
, we find a maximal collection of disjoint blocks, each of which has
size greater than U

2i+1 . This can be easily done in a greedy manner—first find a block

of size greater than U
2i+1 , delete all the paths in this block, and iterate this procedure

as long as possible. For every path P in one of these blocks P ′ we allocate it a rate
of 1

|P′| . We then delete all these paths but—at this point in the construction—do not

reduce the capacity of any edges.

FAIRNESS IN RESOURCE ALLOCATION 665

We observe that the following invariant is maintained by this algorithm: At the
end of phase i ≤ 	logU
, the overall congestion of the remaining paths is at most
U

2i+1 . Thus after phase 1 + 	logU
, all paths have been assigned a rate.
Let X0 denote the resulting vector of rates. Although X0 does not respect the

capacities, it is useful to compare it to feasible rate vectors. Let P1, . . . ,Pr be the
set of blocks found by the above algorithm in descending order of size. Consider any
feasible rate vector Y . For any i, let X0|Pi and Y |Pi denote the vectors X0 and Y

restricted to coordinates corresponding to paths in Pi. We claim that
−−→
Y |Pi ≺s

−−−→
X0|Pi.

Indeed, the rates assigned by Y to paths in Pi must sum to at most one—since they

all pass through the blocking edge e—and so the j smallest coordinates in
−−→
Y |Pi must

sum to at most j/|Pi|. X0 assigns rates to the paths in Pi so that the sum of the j
smallest coordinates is exactly j/|Pi|.

Now,
−→
X0 consists of vectors

−−−→
X0|P1,

−−−→
X0|P2, . . . ,

−−−→
X0|Pr concatenated in this order.

Consider the vector Y with its coordinates arranged in this same order. Each prefix
sum of

−→
X0 is at least as large as the corresponding prefix sum of Y in this order, and if

we now rearrange the coordinates of Y so that they are in ascending order, the prefix
sums of Y cannot increase. Thus

−→
Y ≺s

−→
X0.

Now we claim that the rate vector X obtained by dividing each coordinate of
X0 by 2	logU
 + 2 respects all the capacity conditions; this will complete the proof.
Indeed, to prove this, we need only show that the total of all rates assigned to paths
using edge e in a given phase i is at most 2. At the start of phase i, the congestion
is at most U

2i . Each set of paths P ′ which is selected in this phase has congestion

at least U
2i+1 ; thus, all paths that get assigned a rate in this phase get rate at most

2i+1

U . Hence at most 2 extra units of rate are assigned in this phase to all paths using
e.

Note that the procedure in the theorem above does not give an allocation X for
which c(X) is logarithmic. Indeed consider an instance consisting of a single edge and
n paths using it. The procedure in Theorem 3.1 will allocate 1/n units of rate to each
of the n paths—call this allocation X. Clearly, c(X) = n.

We now prove the following stronger statement. It, too, is based on a construction
in which we allocate bandwidth according to an exponentially decaying sequence;
however, for this construction, we do not know how to run each iteration efficiently,
since it involves the solution of an independent set problem.

Theorem 3.2. c∗(I) ≤ 2	logU
 + 2 for every instance I of the bandwidth
allocation problem.

Proof. We give a procedure for assigning rates to paths. Initially, let P0 = P.
Let Q0 ⊆ P0 be a maximum cardinality subset of paths of congestion 1. Each path
in Q0 is assigned a rate of 1, and we define P1 = P0 \Q0. Now suppose we have a set
of paths Pi, i ≥ 1. Define Qi ⊆ Pi to be a maximum cardinality subset of congestion
at most 2i. Each path in Qi is assigned a rate of 1

2i , and we define Pi+1 = Pi \ Qi.
We define these sets of paths for all i, 0 ≤ i ≤ 	logU
; it is clear that after the
end of this process, every path gets assigned a rate. Let X∗ denote the rate vector
produced (note that it does not necessarily satisfy the capacity constraints) and let
ni denote |Qi|.

Let Y be any vector of rates that satisfies the capacity constraints. We claim that
(1)

←−
Y ≺c 2

←−
X∗.

To prove this, we fix an i, 0 ≤ i ≤ logU . Let Q′ denote the set of paths which
get rate at least 1

2i in Y . Define n′ = |Q′|. Clearly, the congestion of Q′ is at most 2i.
We claim that n0 + · · ·+ni ≥ n′. Indeed, while selecting Qi, we must have considered
the paths in Q′ − (Q1 ∪ · · · ∪ Qi−1).

666 AMIT KUMAR AND JON KLEINBERG

�
�

���

b2 Level 0

b Level 1
Level 2

Fig. 1. The instance when k = 2.

Since the (n0 + · · · + ni)th coordinate of
←−
X∗ is 2−i, it is at least as large as the

(n0 + · · · + ni + 1)st coordinate of
←−
Y . Now consider a coordinate j. If j ≤ n0,

then
←−
X∗

j ≥ ←−
Y j . Otherwise, there is some i so that n0 + n1 + · · · + ni + 1 ≤ j ≤

n0 + n1 + · · · + ni+1, and
←−
X∗

j = 1
2i+1 . But

←−
Y j ≤ ←−

Y n0+···+ni+1 ≤ ←−
X∗

n0+···+ni
= 1

2i .

Thus,
←−
Y j ≤ 2

←−
X∗

j ; since this applies to an arbitrary coordinate j, we have
←−
Y ≺c 2

←−
X∗.

We also claim the following:

(2) Given an edge e, the total rate assigned in X0 to paths containing e is at most
1 + 	logU
.

To see this, note that in each phase at most one additional unit of rate can be
assigned to paths passing through a single edge e, and thus (2) follows.

Thus, if we define the rate vector X by dividing each coordinate of X0 by 1 +
	logU
, we obtain the theorem.

We now show that the above result is almost optimal.

Theorem 3.3. For arbitrarily large U , there exist instances I of the bandwidth
allocation problem with congestion U for which s∗(I) = Ω(logU

log logU).

Proof. The construction involves a number of parameters defined in terms of U ;
the relationships among these parameters will be specified as needed. We define an
instance I as follows. Let k be a constant to be specified later in terms of U . We define
constants b = k + 1, d = (k + 1)2, and ai = d2i for i = 0, 1, . . . , k. The underlying
graph G is a simple path on n = ak vertices. The set of paths P is partitioned into
k+1 sets of paths, which we refer to as level 0 through level k. For each r, the paths in
level r are grouped into ar edge-disjoint bundles of bk−r identical paths, each having
length n/ar; the union of these bundles covers the entire graph G. Each path in level
r + 1 is entirely contained in some path in level r. Note that

U = bk + bk−1 + · · · + b + 1 =
(k + 1)k+1 − 1

k
,

and hence k = Θ(logU
log logU). For a schematic example of the construction (with smaller

constants), see Figure 1.

Let X be an assignment of rates to paths. We define X̃ to be the vector obtained
from X by arranging the coordinates as follows. The coordinates for paths in the
same bundle occur contiguously in X̃, beginning with level 0, then all the bundles in
level 1, then all the bundles in level 2, and so on. Moreover, the bundles in a fixed
level r are arranged so that if bundle β occurs before bundle β′, then the sum of the
rates of paths in β is at most the sum of the rates of paths in β′.

We set c = k/3 and suppose that s(X) ≤ c. First observe that σ(
−→
X) ≺c σ(

−→̃
X).

Indeed, the ith coordinate in
−→
X is the sum of the i lowest values in X, and so it must

be smaller than the corresponding coordinate in
−→̃
X . It follows that for any assignment

Y of rates to paths in P, σ(
−→
Y) ≺c cσ(X̃). Now consider k + 1 different assignments

of rates to the paths. Y0 assigns (bk + bk−1 + · · · + 1)−1 to all paths. Similarly, Yr,

FAIRNESS IN RESOURCE ALLOCATION 667

for 0 < r ≤ k, assigns rate (bk−r + · · · + 1)−1 to all paths in levels r, r + 1, . . . , k and
0 to paths in levels 0, . . . , r − 1.

The fact that σ(
−→
Y) ≺c cσ(X̃) for all vectors Y implies that the vector X̃ assigns

each path in level 0 a rate of at least c−1(bk−r + · · · + 1)−1. Now consider the vector
Yr; let pr denote the total number of paths in levels 0 through r − 1, and define a
constant �r = d2r−1. The coordinates of Yr for the bundles in levels 0 to r − 1 are 0.
The sum of the next �rb

k−r coordinates in
−→
Yr is equal to �rb

k−r(bk−r + · · · + 1)−1.

Thus the sum of the first pr + �rb
k−r coordinates in

−→
Yr is �rb

k−r(bk−r + · · ·+1)−1. In
X̃, the sum of the coordinates for paths at level j can be at most aj , because the sum
of the rates in any one bundle can be at most 1. So the sum of the first pr coordinates
in X̃ is at most a0 + a1 + · · ·+ ar−1. Therefore, the sum of the next �r bundles—each
of which is from level r—must be at least

�rb
k−r

c(bk−r + · · · + 1)
− (a0 + · · · + ar−1).

Hence one of these �r bundles must have the property that the sum of the rates
assigned to paths in it in X̃ is at least

bk−r

c(bk−r + · · · + 1)
− a0 + · · · + ar−1

�r
.

Now, the bundles in X̃ are arranged in ascending order of their total sums, and so we
have the following fact: For at least ar − �r bundles β in level r, the sum of the rates
assigned to β in X̃ is at least

bk−r

c(bk−r + · · · + 1)
− a0 + · · · + ar−1

�r
.(1)

Call a bundle in level r > 0 bad if it does not satisfy the bound in (1); hence there are
at most �r bad bundles in level r. The total number of edges covered by bad bundles
of all levels is at most

k∑
r=1

�rak
ar

=

k∑
r=1

d2k−1 < d2k = n,

and so there is at least one edge e of G that is not contained in any bad bundle.
Applying the capacity constraint to this edge e, we have

1 ≥
k∑

r=0

(
bk−r

c(bk−r + · · · + 1)
− a0 + · · · + ar−1

�r

)

≥
k∑

r=0

(
b− 1

cb
− rar−1

�r

)
=

k∑
r=0

(
b− 1

cb
− r

d

)

≥ (k + 1)(b− 1)

cb
− (k + 1)2

d

≥ (k + 1)k
k
3 (k + 1)

− (k + 1)2

(k + 1)2
= 3 − 1 = 2.

This contradiction completes the proof.

668 AMIT KUMAR AND JON KLEINBERG

We also consider global approximations for the problem of single-source fractional
flow to n sinks, for which Megiddo showed that there is a maximum flow that is also
lexicographically optimal. In fact, by adapting some of the analysis from his proof of
this fact, one can show that s∗(I) = 1 for all instances I of this problem. (We can
also show that c∗(I) = O(log n) for all instances of this problem, using an adaptation
of the proof of Theorem 3.2.)

4. Scheduling. We first consider the problem of precedence-constrained schedul-
ing, with release dates, on m identical parallel machines (P |prec, rj |all). Thus, we
are given a set of jobs J = {j1, . . . , jn} and a partial order <J on the jobs indicating
precedence constraints. Job ji has processing time pi and release date ri. We say
that ji “precedes” j� if ji <J j�, and we say ji is minimal if no job precedes it. For
any subset J ′ ⊆ J , we can restrict the partial order to just the jobs in J ′; we denote
this by <J′ . We say that a set of jobs K ⊆ J ′ is independent under <J′ if there is no
element in J ′ \K that precedes an element in K in the ordering <J′ .

As mentioned in the introduction, Hall et al. [14] considered many types of
precedence-constrained scheduling problems. They produced a coordinate-wise O(1)-
approximation to an optimal vector of fractional completion times, corresponding to
a linear programming relaxation for these problems. However, we show that the
linear programming formulation of Hall et al. [14] does not yield a global O(1)-
approximation.

Theorem 4.1. For every number α, there exists an instance I of precedence-
constrained 1-processor scheduling in which the optimal vector of fractional completion
times X in the linear programming formulation of Hall et al. does not satisfy c(X) ≤
α.

Proof. We choose a number β so that β > α2. We define an instance I with a set
of n = β+2 jobs {j1, j2, . . . , jn}. Job j1 has processing requirement p1 = 1, job j2 has
processing requirement p2 = α, and jobs j3, . . . jn each have processing requirement
0. The precedence constraints are simply the following: j2 precedes ji for every i ≥ 3.

For any schedule S, let X(S) denote its vector of completion times. Consider
the schedule S that chooses the jobs in the order of their indices. We have X(S) =
(1, α + 1, α + 1, . . . , α + 1).

Now consider the linear programming formulation given by [14] for I. It seeks a
vector of completion times (C1, . . . , Cn) so that Ck ≥ Ci + pi when pi precedes pk,
and

∑
j∈S

pjCj ≥
1

2

(
p2(S) + p(S)2

)
(2)

for every subset S of jobs. The objective is to minimize
∑

i Ci.

In our instance I, the integer optimum for the objective value is (β+1)α+(α+1);
this is obtained by scheduling in the order j2, j3, . . . , jn, j1. Thus, the optimum value
of the linear program is at most this quantity.

Let C̃ denote an optimal solution to the linear program, represented as a vector
of completion times. Note that the inequalities concerned with precedence constraints
enforce C̃1 ≥ 1 and C̃i ≥ α for i > 1.

First we claim that C̃2 ≤ α + α
β . To see why this is so, suppose C̃2 > α + α

β . We

would then have C̃i > α+ α
β for all i > 2, so the optimum value of the linear program

would be greater than (β+1)α+α+ α
β +1, which is larger than the integer optimum.

FAIRNESS IN RESOURCE ALLOCATION 669

(1) Initialize J0 ← J (J0 denotes the jobs that haven’t been processed

yet and t denotes the current time).

(2) For T = 1, 2, 4, . . . do

(i) Find a subset J ′ ⊆ J0 such that all jobs in J ′ can

be completely processed in the interval [T, 2T), and |J ′| is

maximum.

(ii) Starting from time T schedule the jobs in J ′ such that they

finish by time 2T.
(iii) J0 ← J0 − J ′.

Fig. 2. Algorithm that shows c∗ ≤ 4 for P |prec, rj .

Next we claim that C̃1 ≥ α. We prove this by considering inequality (2) applied
to the set S = {j1, j2}. We have p(S) = 1 + α and p2(S) = 1 + α2. By our claim in
the previous paragraph, we know that C̃2 ≤ α + α

β . Now suppose C̃1 < α. Then the

left-hand side of (2) is at most α + α2 + α2

β , but we have

α + α2 +
α2

β
< α + α2 + 1

=
1

2
(1 + α)2 +

1

2
(1 + α2),

which is a contradiction.

So in the solution C̃, the fractional completion time of each job is at least α.
In the schedule S, on the other hand, there is a job with completion time 1. Thus
c(C̃) ≥ α.

Theorem 4.2. c∗(I) ≤ 4 for all instances I of precedence-constrained scheduling
with release dates on m identical parallel machines for any m ≥ 1.

Proof. The scheduling algorithm is given in Figure 2. The For loop runs till J0

becomes empty. The algorithm divides the time into exponentially growing intervals
and tries to finish as many jobs as possible in each such interval. Let S denote the
schedule it produces, and let X denote the vector of completion times of jobs under
S. We write

−→
X = (C1, C2, . . . , Cn). Let AT denote the set J ′ chosen in iteration T

of step (2)(ii). Let DT denote the set J0 at the beginning of this iteration.

Now consider some other schedule S′ for this instance, let X ′ denote the vector

of completion times of jobs under S′, and write
−→
X ′ = (C ′

1, C
′
2, . . . , C

′
n). We focus on a

particular coordinate k and let B′ denote the first k jobs to finish under the schedule
S′.

We wish to show that Ck ≤ 4C ′
k. Suppose 2i ≤ C ′

k < 2i+1. Consider the iteration
T = 2i+1 of the For loop in Figure 2. At time T , all jobs in B′ have been released.
Further, all jobs in B′ −DT can be completely processed in [T, 2T) (because B′ can
be processed completely in [0, T) in S′). So at least |B′| jobs must finish by time 2T
in S. But then Ck ≤ 2T ≤ 4C ′

k, which is what we wanted to prove.

We note that there exist instances I for which c∗(I) ≥ 2; finding the tightest
upper bound is an open question. The construction in the proof of Theorem 4.2 does
not yield a polynomial-time algorithm, since computing the set J ′ in step (2)(i) is
an NP-hard problem. In fact, we can show that efficiently producing a schedule S
satisfying c(XS) = O(1) for this problem would yield a greatly improved approxima-
tion algorithm for the densest subgraph problem described in the introduction: Given

670 AMIT KUMAR AND JON KLEINBERG

a graph G and a number k, find an induced k-node subgraph with the maximum
possible number of edges.

Theorem 4.3. Suppose there exists a polynomial-time algorithm A that, for
any instance of precedence-constrained 1-processor scheduling (1|prec|all), produces a
schedule S satisfying c(XS) ≤ α. Then there exists a randomized polynomial-time
8α2-approximation algorithm for the densest subgraph problem.

Proof. Suppose we are given an instance of the densest subgraph problem, spec-
ified by a graph G = (V,E), with |V | = n, and a number k ≤ n. We assume that
k ≥ 2 and that G contains at least k/2 edges; otherwise the instance is simple. We
also assume for simplicity that α is an integer.

We construct the following instance I of 1|prec|all. The set of jobs J will be
partitioned into sets JV = {jv : v ∈ V } and JE = {je : e ∈ E}. Each job jv ∈ JV
has processing time 1, and each job je ∈ JE has processing time 0. The precedence
constraints are as follows: If e = (u, v), then ju and jv must precede je.

Using the algorithm A, we construct a schedule S for the instance I. Let X
denote the set of jobs that finish by time αk. Let V ′ and E′ denote the vertices and
edges corresponding to jobs in X; note that since the endpoints of any edge in E′

must belong to V ′, (V ′, E′) is a subgraph of G. If |V ′| > k, then, using a simple
randomized algorithm, we can produce a set of vertices V ′′ ⊆ V ′ so that |V ′′| = k
and the number of edges in the subgraph induced by V ′′ is at least

|E′| · k(k − 1)

αk(αk − 1)
≥ |E′|

4α2
.

Indeed, V ′′ is formed by picking k random vertices independently (and without re-
placement) from V . The probability that an edge e ∈ E′ has both endpoints in V ′′

is k(k−1)
|V ′|(|V ′|−1) . Using the fact |V ′| ≤ αk and linearity of expaction implies the bound

mentioned above.
If the number of edges induced by V ′′ is less than k/2, then we replace V ′′ by a

set of vertices inducing at least k/2 edges. We return V ′′ as the approximate solution
to the instance of densest subgraph.

Now, consider an optimal solution to the densest subgraph instance; it consists
of an induced subgraph (V ∗, E∗) where |V ∗| = k. We write q = |E∗|. Now, consider
a schedule S′ which first orders the jobs corresponding to V ∗ arbitrarily, followed by
the jobs corresponding to E∗. In S′, all k + q of these jobs finish by time k; hence in
our schedule S, at least k + q jobs must finish by time αk. Since |V ′| ≤ αk, it follows
that |E′| ≥ q + k − αk.

If q ≤ 2αk, then our solution is a 4α-approximation, since it induces at least k/2
edges. Otherwise, |E′| ≥ q/2; since our solution induces at least |E′|/(4α2), it is an
8α2-approximation.

Surprisingly enough, we show that it is indeed possible to produce a schedule S in
polynomial time such that s(XS) = O(1) for any instance of P |prec, rj |all. We begin
with an observation of Goel and Meyerson [8], which we prove for sake of completeness.

Lemma 4.4. Let Y be the set of feasible solutions to a linear program P =
{A · Y ≤ b}, where Y ∈ Rn. We can find a vector Y ∗ ∈ Y in polynomial time such
that s(Y ∗) = s∗(Y).

Proof. We use the definition of s∗ for minimization problems. We construct a
vector Z = (Z1, . . . , Zn) such that Zi will be the smallest value of σ(

←−
Y)i for any i.

Let us now show how to find Zi. We add a variable zi to the linear program P.
Further, for every subset S ⊆ {1, . . . , n}, |S| = i, we add a constraint zi ≥

∑
j∈S Yj .

FAIRNESS IN RESOURCE ALLOCATION 671

It is easy to see that minimizing zi subject to these constraints gives us Zi.
Now, suppose α = s∗(Y). Then, the vector Y ∗ can be found by adding the

following constraints to P: for every i, 1 ≤ i ≤ n, and S ⊆ {1, . . . , n}, where |S| = i,∑
j Yj ≤ αZi. Now, treating α as a variable and minimizing its value gives us the

vector Y ∗.
Hall et al. [14] gave a linear programming relaxation for P |prec, rj |

∑
j Cj for

minimizing the sum of completion times. This linear program P had the completion
time Cj of the jobs as variables. Note that here Cj denotes the completion time of
job j. They showed the following nice fact about this linear program.

Theorem 4.5 (see [14]). Let (C1, . . . , Cn) be a fractional solution to P. Then,
there exists a schedule S such that the completion time C ′

j of job j in S is at most
2Cj.

We are now ready to prove the following theorem.
Theorem 4.6. Given any instance I of precedence-constrained scheduling with

release dates on m identical parallel machines (P |prec, rj |all), we can find in polyno-
mial time a schedule S such that s(XS) ≤ 16.

Proof. Consider the set of all solutions C = (C1, . . . , Cn) to the linear program P
given by Hall et al. [14]. We claim that there exists a solution C ′ such that s(C ′) ≤ 8.

Indeed, consider a schedule S′ such that c(XS′) ≤ 4. Now, given any solution C

to P, Theorem 4.5 states that there is a schedule S such that XS ≺c 2
←−
C . But then,

XS′ ≺c 4XS ≺c 8
←−
C . Thus, C ′ is a sequence of completion times in the schedule S′.

It follows from Lemma 4.4 that we can find such a solution C ′ in polynomial
time. Now, one more application of Theorem 4.5 gives a schedule S with the desired
properties.

We now consider the special case in which there are two identical machines and
all jobs have unit size (2|pj = 1, prec|all).

Theorem 4.7. c∗(I) = 1 for every instance I of precedence-constrained two-
processor scheduling with unit jobs.

Proof. For a schedule S, define X(S) to be its vector of completion times. We will
consider only schedules that place at least one job in each time slot until all jobs are
completed. Define Z(S) to be the vector whose ith coordinate is the time at which
the ith gap occurs. In other words, Z(S) is the sorted (in increasing order) sequence
of time slots in which only one job is scheduled.

Here is a basic property of the vectors of gaps.

Lemma 4.8. Let S and S′ be two schedules.
−−−→
X(S) �≺c

−−−→
X(S′) if and only if at

least one of the following two conditions holds: (i) Z(S′) has fewer coordinates than
Z(S); or (ii) there is an index i so that Z(S′)i > Z(S)i.

We define the following two orderings on vectors.
Definition 4.9. Suppose A = (a1, . . . , an) and B = (b1, . . . , bm) are two vectors.

We say that A is lexicographically greater than B if either of the following holds:
• n < m and a1 = b1, . . . , an = bn.
• There is an index i such that a1 = b1, . . . , ai−1 = bi−1 and ai > bi.

Definition 4.10. Let A and B be vectors defined as above. We say that A is
greater than B in the colex ordering if either of the following holds:

• n < m.
• n = m and there is an index i such that am = bm, . . . , ai+1 = bi+1, ai > bi.

Let S be a solution to I with lexicographically maximum vector Z(S) (i.e., the
first gap occurs as late as possible as possible; subject to this, the second gap occurs

as late as possible; and so on). We show that
−−−→
X(S) ≺c

−−−→
X(S′) for every schedule S′.

672 AMIT KUMAR AND JON KLEINBERG

Suppose this is not true, and let Ω denote the set of S′ for which
−−−→
X(S) �≺c

−−−→
X(S′).

Thus, every schedule S′ ∈ Ω satisfies one of conditions (i) or (ii) in Lemma 4.8.

Let S′ be the schedule in Ω whose vector Z(S′) is maximum in the colex ordering.
Note that S′ schedules at least one job in each time slot before its completion. We
write Z(S) = (g1, . . . , gm) and Z(S′) = (g′1, . . . , gm′). We know that Z(S) is greater
than Z(S′) in lexicographic order, but if the first condition in Definition 4.9 were
to hold, this would contradict Lemma 4.8. Thus there is an index i so that g1 =
g′1, . . . , gi−1 = g′i−1 and gi > g′i.

From our precedence relation, we define the following undirected graph Gf on the
set of jobs: (j, j′) is an edge if and only if neither j nor j′ precedes the other. The
following result is due to Fujii, Kasami, and Ninomiya [7].

Lemma 4.11 (see [7]). Suppose Gf has a perfect matching. Then all jobs can be
scheduled with no gaps.

For our analysis, we create i − 1 fictitious jobs k1, . . . , ki−1, which are involved
in no precedence relations. We consider the schedules that result from augmenting
S and S′ with the jobs k1, . . . , ki−1 placed in gap positions g1 = g′1, . . . , gi−1 = g′i−1,
respectively.

Define A to be the set of jobs which start before time gi in S. Define B to be the
set of jobs which start at time g′i or before in S′. Let x denote the job in B which is
run at time g′i. In both cases, we include the fictitious jobs; thus A and B \ {x} are
each scheduled with no gaps. Note that |A| > |B|.

Now, there exists a matching M in Gf covering the set A, and there exists a
matching M ′ in Gf covering the set B \ {x}. Let G′

f denote the subgraph of Gf on

nodes A ∪ B and edges M ∪ M ′. All vertices of G′
f have degree at most 2, and x

has degree 0 or 1 depending on whether it belongs to A. Thus, the component of G′
f

containing x is a path P ; note that P may be a single-node path if x �∈ A. Let P
consist of nodes x = v0, . . . , vr in order, with ei = (vi, vi+1).

We now consider two possible cases.

(1) Suppose that P has an even number of nodes so that vr is not matched in M .
Hence vr ∈ B \A. Consider the set of jobs in A \B, and let y be a minimal element
of this set. We claim that (vr, y) is an edge of Gf . Indeed, y occurs before vr in the
schedule S, and vr occurs before y in the schedule S′. We define the matching M ′′ to
consist of M ′ \ E(P), together with the edges (v0, v1), (v2, v3), . . . , (vr, y). Note that
M ′′ covers B ∪ {y}. Also, there cannot be a pair of jobs j, j′ so that j �∈ B ∪ {y},
j′ ∈ B ∪{y}, and j precedes j′. For if there were, then j′ = y—since B was an initial
set of jobs in S′—and this contradicts the minimality of y among the set of jobs in
A \B.

(2) Suppose that P has an odd number of nodes, so that vr is matched in M but
not in M ′; thus, vr ∈ A \ B. Among all jobs in A \ B that precede vr, including vr,
choose a minimal job y. (Thus we may have y = vr.) We claim that (vr−1, y) is an edge
of Gf . For if vr−1 preceded y, then it would precede vr, which is not the case, and we
know that y cannot precede vr−1 since vr−1 precedes y in S′. We define the matching
M ′′ to consist of M ′ \ E(P), together with the edges (v0, v1), (v2, v3), . . . , (vr−1, y).
M ′′ covers B∪{y}, and as in (a) there cannot be a pair of jobs j, j′ so that j �∈ B∪{y},
j′ ∈ B ∪ {y}, and j precedes j′.

Thus in both cases, we have a job y ∈ A \ B so that no job outside B ∪ {y}
precedes any job in B ∪ {y}, and there is a matching in Gf that covers B ∪ {y}. We
construct a new schedule S′′ as follows: Using Lemma 4.11, we schedule all the jobs
in B ∪ {y} initially with no gaps. We then schedule the rest of the jobs as in S′,

FAIRNESS IN RESOURCE ALLOCATION 673

replacing fictitious jobs by gaps and introducing a gap where y was in S′. (If this
results in a time slot having two gaps, we slide all later jobs forward.)

We write Z(S′′) = (g′′1 , . . . , g
′′
m′′). We can view S′′ as having been constructed

from S′ as follows: We first rearrange the order of jobs in B, within the first g′i time
slots; we then move y forward; we then eliminate any resulting time slots with two
gaps. The first of these steps affects only the first i gaps, the second step pushes the
ith gap later, and the third step does not push any gap earlier (and may lead to fewer
gaps). Thus we have the following lemma.

Lemma 4.12. m′′ ≤ m′, g′′i > g′i, g
′′
j ≥ g′j for i + 1 ≤ j ≤ m′′, and hence Z(S′′)

is greater than Z(S′) in the colex ordering.
Now, since S′ ∈ Ω, we know that Z(S′) is shorter than Z(S), or there is a j so

that g′j > gj . In the former case, we see that Z(S′′) is also shorter than Z(S). In
the latter case, we know that j > i, since g1 = g′1, . . . , gi−1 = g′i−1 and gi > g′i. Now,
either j > m′′, in which case Z(S′′) is again shorter than Z(S), or else by Lemma 4.12
it follows that g′′j ≥ g′j > gj . Thus Z(S′′) satisfies condition (i) or (ii) in Lemma 4.8,
and thus we have the following lemma.

Lemma 4.13. S′′ ∈ Ω.
But Lemmas 4.12 and 4.13 contradict our choice of S′, which establishes that Ω

must be empty. We have therefore proved the theorem.
The situation changes for precedence-constrained scheduling with unit jobs (P |pj =

1, prec|all) when we have m ≥ 3 machines. First, let m = 3 and consider an instance
I with eight jobs and the following precedence relations: j1 < j2 < j3 and ja < jb
for a ∈ {4, 5, 6} and b ∈ {7, 8}. Then the only schedule with makespan 3 leaves a
machine idle in the second time slot, while there is a schedule with makespan 4 that
completes six jobs in the first two time slots. Thus c∗(I) = 4/3 for this instance.
Similar examples can be constructed for larger numbers of machines.

However, it is easy to show that the greedy algorithm presented in the follow-
ing theorem and its proof, based on the ideas of Graham [12], provides a global
2-approximation for every instance.

Theorem 4.14. c∗(I) ≤ 2 for every instance I of precedence-constrained m-
processor scheduling with unit jobs.

Proof. We produce a greedy schedule. Define the depth of a job j as the length
of a longest chain in <J which ends at j (this can be easily computed in linear time).
Order the jobs in a list L such that if job j comes before j′, then the depth of j is at
most that of j′. List schedule the jobs in L in a greedy manner while respecting the
precedence constraints. Assume without loss of generality that the jobs are scheduled
in the order j1, . . . , jn. The completion time of job jr in this schedule is at most
depth(jr) + r

m . It is not difficult to show that in any other schedule, the rth smallest
completion time is at least depth(jr) and r

m . This proves the theorem.
Finally, recall Smith’s algorithm for 1-processor scheduling, which simply se-

quences jobs in nondecreasing order of processing time [24]. The standard proof
of optimality in fact shows that c∗(I) = 1 for all instances of this problem. To better
understand where this strong global approximation result comes from, we can con-
sider the following problem. We say that a precedence relation P (represented as a
partially ordered set) is universally fair if, for any choice of processing times for the
underlying jobs, we obtain an instance for which c∗(I) = 1. Thus, Smith’s algorithm
shows that empty precedence relations are universally fair. For trivial reasons, prece-
dence relations that are equal to chains are universally fair, since there is only one
feasible schedule. We now state a result that completely characterizes all universally
fair precedence relations.

674 AMIT KUMAR AND JON KLEINBERG

Theorem 4.15. P is universally fair if and only if it can be partitioned into
antichains A1, A2, . . . , Ak so that for every i from 1 to k− 1, every x ∈ Ai, and every
y ∈ Ai+1, we have x ≤ y.

Proof. To see the “if” direction, note that every valid schedule must do all of A1,
then all of A2, and so forth up through Ak. Applying Smith’s algorithm to each Ai

separately, we see that c∗ = 1.
Conversely, suppose that P does not have this “layered antichain” property, and

assume by way of contradiction that c∗ = 1 for every set of lengths assigned to the
jobs of P . Let n = |P |. We first decompose P into a sequence of antichains by
defining B1 to be all minimal elements, B2 to be all minimal elements of P −B1, and
so forth up to an antichain Bk. Since P does not have the layered property above,
we can find the smallest index i for which there is an x ∈ Bi and a y ∈ Bi+1 for
which x �≤ y. Note that there is some x′ ∈ Bi for which x′ ≤ y; otherwise, our
decomposition procedure would have placed y ∈ Bi. Also, y �≤ x, since x was minimal
in P − (B1 ∪ · · · ∪Bi−1), and y ∈ P − (B1 ∪ · · · ∪Bi−1). Now consider assigning the
following lengths to the jobs in P : We give each job other than {x, x′, y} a weight
of 6n and we give x a length of 2, x′ a length of 3, and y a length of 1. Note that
because i was the minimum index for which {x, x′, y} could be found, any schedule
must complete the jobs in B1 ∪ · · · ∪ Bi−1 before choosing any job in Bi ∪ · · · ∪ Bk.
Let m = |B1 ∪ · · · ∪Bi−1|. Then there is a schedule which chooses x as job m + 1 in
sequence, and it has an (m + 1)st coordinate of 6nm + 2. There is another schedule
which chooses x′ as job m + 1 and y as job m + 2; this schedule has an (m + 2)nd
coordinate equal to 6nm + 4. But there is no schedule whose (m + 1)st coordinate
is at most 6nm + 2 and whose (m + 2)nd coordinate is at most 6nm + 4, and this
contradicts our assumption that c∗ = 1 for this set of weights.

5. Facility location.
One facility. Recall that in the facility location problems we consider, we have

a metric space M , a set P = {p1, . . . , pn} of demand points in M , and a set F of n′

candidate facility points. First, we consider the case of 1-facility instances. For each
point f ∈ F , let Xf denote the distance vector that arises when the facility is placed
at f .

Theorem 5.1. For every 1-facility instance, there is a point f∗ ∈ F such that
s(Xf∗) ≤ 4.

Proof. For simplicity, we assume n is even. We define the radius of P ′ ⊆ P to be
rad(P ′) = minf∈F maxp′∈P d(f, p′). We choose a set P ′ ⊆ P of n/2 points of minimum
radius r, and define f∗ ∈ F to be a point for which maxp′∈P d(f∗, p′) = rad(P ′).

Let
←−−
Xf∗ = (d1, d2, . . . , dn). Now, consider any facility f ′ ∈ F ; let

←−
Xf ′ =

(d′1, d
′
2, . . . , d

′
n). We must show that for each i, we have d1 + · · ·+di ≤ 4(d′1 + · · ·+d′i).

We observe that d′n/2 ≥ r since P ′ has the minimum radius r of any set of n/2 points,

and f∗ achieves this radius. Also, consider the set Q′ consisting of the i − 1 points
at maximum distance from f ′ and the set Q∗ consisting of the i points at maximum
distance from f∗. There is at least one point q ∈ Q∗ \Q′, and we have

di ≤ d(f∗, q) ≤ d(f∗, f ′) + d(f ′, q) ≤ d(f∗, f ′) + d′i,

where the first inequality follows from the fact that q ∈ Q∗, and the third inequality
follows since q �∈ Q′.

If p′ ∈ P ′, then

r + d(p′, f ′) ≥ d(f∗, p′) + d(p′, f ′) ≥ d(f∗, f ′),

FAIRNESS IN RESOURCE ALLOCATION 675

and so d(p, f ′) ≥ d(f∗, f ′)− r. Since there are at least n/2 such points, it follows that
for any index i ≤ n/2, we have d′i ≥ d(f∗, f ′)− r. Hence d(f∗, f ′) ≤ d′i + r ≤ 2d′i, and
so di ≤ d′i + d(f ′, f∗) ≤ 3d′i. For an index i > n/2, we have

d1 + · · · + di ≤ d1 + · · · + dn/2 + (i− n/2)r

≤ 3(d′1 + · · · + d′n/2) + (d′1 + · · · + d′n/2)

≤ 4(d′1 + · · · + d′i).

For the measure c∗, we have the following complementary pair of results for 1-
facility instances. For the first, we construct a set of at most 1 + logn facilities by
iteratively identifying sets of size 1, 2, 4, 8, . . . of minimum radius and including one
facility for each of these sets that achieves this radius.

Theorem 5.2. Let I be an arbitrary 1-facility instance. There exists a set
F ∗ ⊆ F of size at most 1 + log n so that c(XF∗) ≤ 3.

Proof. We construct the set F ∗ as follows. Initialize the set S0 to the set of
all demand points P . We inductively define sets Si, i > 0, and sets Ai, i ≥ 0, as
follows: Ai is a set of 2i points from Si of minimum radius. Let fi be the facility
which achieves the radius of Ai. Define Si as Si−1 \Ai−1.

We stop this process when some set Si = φ. This defines m = O(log n) sets Ai

total. Define F ∗ = {f0, f1, . . . , fm}. Note that the last set Am may have fewer than
2m points. Also, note that in the distance vector XF∗ , points in Ai are not necessarily
assigned to fi but to the closest facility in F ∗; this observation is important in the
proof.

Now, consider any facility point f ∈ F , and let us label the points in P so that
d(f, p1) ≤ d(f, p2) ≤ · · · ≤ d(f, pn). We fix an index t and consider the distance
d = d(f, pt); we must show that at least t coordinates of XF∗ are each at most 3d.

Let P ′ = {p1, . . . , pt}; note that since d(f, pi) ≤ d for all pi ∈ P ′, the radius of P ′

is at most d. We define s so that 2s ≤ t < 2s+1 and consider the following two cases.
First, suppose P ′ ∩ Ai = φ for each i, 0 ≤ i ≤ s. Now, Ai has minimum radius

of all subsets of size 2i in Si; since we have P ′ ⊆ Si and 2i ≤ t, it follows that Ai

has radius at most d. Thus, all the coordinates in XF∗ corresponding to points in Ai

have value at most d. Hence at least |A0| + · · · + |As| = 2s+1 − 1 ≥ t coordinates of
XF∗ have value at most d.

Now, suppose instead that there is an index i ≤ s for which P ′ ∩ Ai �= φ; in this
case, choose the smallest such i. Let p′ be a point in P ′ ∩ Ai. Since P ′ does not
intersect A0 ∪ · · · ∪ Ai−1, it is a subset of Si; thus the radius of Ai is at most the
radius of P ′ and hence at most d. Now, consider the vector Xfi ; since fi ∈ F ∗, we
have XF∗ ≺c Xfi , and so it is enough to show that Xfi contains t coordinates of value
at most 3d. But for any p′′ ∈ P ′, we have

d(p′′, fi) ≤ d(p′′, f) + d(f, p′) + d(p′, fi) ≤ 3d.

We have an essentially matching lower bound, which has a structure paralleling
the construction that proves the previous theorem; essentially we build an instance
consisting of widely separated clusters of size 1, 2, 4, 8, . . . ; by defining distances ap-
propriately in each, we can argue that each cluster must contain a facility.

Theorem 5.3. For any number α, there are 1-facility instances I for which no
set F ′ of fewer than log n facilities achieves c(XF ′) ≤ α.

Proof. The point set is divided into m “clusters.” Cluster Ci (for 0 ≤ i ≤ m) has
2i demand points and one facility point. The distance between any two points in Ci

676 AMIT KUMAR AND JON KLEINBERG

(including the facility point) is a number di, and we choose these distances so that
di < αdi+1. The distance between any two points in different clusters is defined to
be a number d > αd1. It is not difficult to show that this defines a metric. Note that
there are n = 2m+1 − 1 demand points.

Suppose F ′ is a set of facility points such that |F ′| < m+1. Then there is a cluster
Ci such that F ′ ∩Ci = φ. Let f be the facility point in Ci, and define j = n− 2i + 1.
The jth coordinate of

←−
Xf is di. On the other hand, all the points in Ci ∪ · · · ∪ Cm

have coordinates in XF ′ that are at least di+1 > αdi. As the number of such points
is n− 2i + 1 = j, the result follows.

Multiple facilities. Now we consider a k-facility instance I, where k > 1 is arbi-
trary.

Theorem 5.4. Fix numbers k and ε such that ε ≤ 1. There exists a set F ∗ ⊆ F
of size O(k log n + ε−1) so that

←−−
XF∗ ≺c (3 + ε)

←−−
XF ′ for every set F ′ of at most k

facilities.
Proof. We first describe the construction of the set F ∗ that achieves this bound.

For a point p and a set of points Q, we define d(p,Q) = minq∈Q d(p, q). We define the
k-radius of a set of demand points P ′ as follows:

radk(P
′) = min

|F ′|=k
max
p∈P ′

d(p, F ′).

We choose a sufficiently large constant α = Θ(ε−1), and perform the following
construction. Define x0 = n. Let P1 = P be the initial set of demand points, let
n1 = |P1|, let x1 = 	n1/2
, and let C1 be a subset of x1 points of P1 of minimum
k-radius. In general, having defined Pi, ni, xi, Ci, we set Pi+1 = Pi\Ci, ni+1 = |Pi+1|,
and xi+1 = 	ni+1/2
, and let Ci+1 be a subset of xi+1 points of Pi+1 of minimum
k-radius. Let ri+1 denote the k-radius of Ci+1.

We stop this process at the first s for which xs ≤ α. Let R ⊆ P denote the set of
demand points not contained in C1 ∪ · · · ∪ Cs; note that |R| ≤ α. We define our set
F ∗ of facilities as follows. For each set Ci, we include a set of k facilities that achieves
the k-radius of Ci. For each point p ∈ R, we include a facility that is closest to p.

Note that s = O(log n), and hence |F ∗| = O(k log n + α). Now, consider any set

F ′ of k facilities. We write
←−−
XF∗ = (d1, d2, . . . , dn) and

←−−
XF ′ = (d′1, d

′
2, . . . , d

′
n).

The following lemma now directly implies Theorem 5.4.
Lemma 5.5. For each j, we have d1 + · · · + dj ≤ (3 + ε)(d′1 + · · · + d′j).
Proof. We claim first that
(1) for each i, 1 ≤ i ≤ s, we have d′xi

≥ ri.
Now suppose this is not true for some i. Then there exists a set Q of at least

n− xi + 1 demand points of k-radius less than ri. Since

|Q \ (C1 ∪ · · · ∪ Ci−1)| ≥ (n− xi + 1) − (x1 + · · · + xi−1) = ni − xi + 1 ≥ xi,

Pi contains a set Q′ of at least xi points from Q. But the k-radius of Q′ is less than
ri, which contradicts our choice of Ci. This proves (1).

Now, consider an index i. For any j < i, we have xj ≥ xi, and thus d′xi
≥ d′xj

≥ rj .
Thus we have

(2) d′xi
≥ max(r1, . . . , ri).

Using this, we show that
(3) for each j ≤ xs, we have dj ≤ d′j .
We consider two cases in proving (3). First, if dj ≤ max(r1, . . . , rs), then

dj ≤ d′j , since (2) implies that d′j ≥ d′xs
≥ max(r1, . . . , rs). On the other hand,

FAIRNESS IN RESOURCE ALLOCATION 677

if dj > max(r1, . . . , rs), then each of d1, . . . , dj > max(r1, . . . , rs), and hence the
points achieving these distances must belong to R. For each of these points, its coor-
dinate in XF ′ is at least as large as its coordinate in XF∗ . It follows that the vector←−−
XF ′ contains at least j coordinates of value at least dj , and hence dj ≤ d′j .

To handle boundary cases, we define x0 = n, xs+1 = 0, Cs+1 = φ, and ns+1 =
ns − xs. We now claim the following:

(4) Suppose j is an integer satisfying xi < j ≤ xi−1, where 1 ≤ i ≤ s. Then
dj ≤ d′xi

.
To prove this, we observe that

|Ci+1| + |Ci+2| + · · · + |Cs| + |R| = xi+1 + · · · + xs + α = ni+1 = ni − xi ≤ xi.

Now, j > xi, so among the points with the j largest coordinates in XF∗ , there is at
least one point that does not belong to Ci+1∪· · ·∪Cs∪R. Thus, dj ≤ max(r1, . . . , ri).
But by (2), d′xi

≥ max(r1, . . . , ri), and so dj ≤ d′xi
, as desired.

We now complete the proof of the lemma. First, if α is a sufficiently large multiple
of ε−1, then

xi−1 − xi ≤ (2 + ε)(xi − xi+1)

for each i, 1 ≤ i ≤ s. Now, for each such i, we have
∑

xi<�≤xi−1

d� ≤ (xi−1 − xi)d
′
xi

≤ (2 + ε)(xi − xi+1)d
′
xi

≤ (2 + ε)
∑

xi+1<�≤xi

d′�.

Now, let j be any index between 1 and n. For j ≤ xs, we have d1 + · · · + dj ≤
d′1 + · · · + d′j by (3). Otherwise, there is an i so that xi < j ≤ xi−1.

d1 + · · · + dj =
∑

1≤�≤xs

d� +
∑

xs<�≤xs−1

d� + · · · +
∑

xi+1<�≤xi

d� +
∑

xi<�≤j

d�

≤
∑

1≤�≤xs

d′� + (2 + ε)

⎛
⎝ ∑

1≤�≤xs

d′� + · · · +
∑

xi+1<�≤xi

d′�

⎞
⎠

≤ (3 + ε)(d′1 + · · · + d′xi
)

≤ (3 + ε)(d′1 + · · · + d′j).

This proves the theorem.
Note that the construction described in the proof does not yield a polynomial-

time algorithm since it involves computing the k-radius of subsets of points. However,
a recent result of Charikar et al. [4] provides a polynomial-time 3-approximation
algorithm for the following problem: Given a set P and a parameter x, find a subset
C of size x of minimum k-radius. We can use this algorithm to construct the sets Ci

in the proof; as a result we lose a factor of 3 in each of the claims (1)–(4) above, and
hence obtain a set F ∗ of size O(k log n + ε−1) for which s(F ∗) ≤ 9 + ε.

As mentioned in section 1, we have a lower bound that nearly matches the result
of Theorem 5.4.

Theorem 5.6. For any number α, there are k-facility instances I for which no

set F ′ of fewer than Ω(k log(n/k)
logα) facilities achieves s(XF ′) ≤ α.

Proof. For simplicity we will consider values of k that are even, and write k =
2k′. We choose a constant a > 12α. For a number m, we define n1, n2, . . . , nm via
ni = a4(m−i) and n0 = n1.

678 AMIT KUMAR AND JON KLEINBERG

Our instance I consists of a set of n = n0 + n1 + · · · + nm points P , partitioned
into clusters C0, . . . , Cm, where Ci has ni points. We call a cluster large if it has at
least k points; we divide each large cluster Ci into k′ subclusters Ci,1, . . . , Ci,k′ such
that the difference in the size of any two subclusters of Ci is at most one. Note that
each such subcluster has size at least ni

k′ − 1. For the clusters that are not large, we
will say that they consist of a single subcluster. We define F = P , so that the set of
candidate facility points is the same as the set of demand points.

We define the interpoint distances as follows. The distance between any two
points in the same subcluster is 0 (or a very small number). The distance from a
point in Ci,s to a point in Ci,s′ , with s �= s′, is yi = a2(i−1) for i > 0 and y0 = 1 for
i = 0. The distance from a point in Ci to a point in any cluster Cj for j < i is equal
to a number xi = a2i−1. For simplicity of notation, we will define x0 = 0.

Note that n ≤ 3a4(m−1) ≤ a4m, and hence m ≥ logn
4 log a . Since Cj is large whenever

a4(m−j) ≥ k, and hence whenever m− j ≥ log k
4 log a , there are at least

m′ = m− log k

4 log a
≥ log n

4 log a
− log k

4 log a
=

log(n/k)

logα

large sets.

Let F ′ be a set of facility points such that |F ′| ≤ m′�k′

2 �. Then there is some

large Ci such that |F ′ ∩ Ci| ≤ �k′

2 �. Since there are k′ subclusters in Ci and at most

�k′

2 � contain a facility, the distance of at least

k′

2

(ni

k′
− 1

)
=

ni

2
− k′

2

points in Ci from the nearest facility in F ′ is at least yi. So, if � denotes ni

2 − k′

2 , then

the �th coordinate of σ(
←−−
XF ′) is at least

σ(
←−−
XF ′)� = yi

(
ni

2
− k′

2

)
.

Consider the following set F ′′ of k facility points: If i > 0, we place k facilities in
clusters Ci and Ci−1, one in each subcluster. If i = 0, we place k facilities in C0 and
C1, again one in each subcluster. Since the cases i = 0 and i = 1 are similar, we will
assume in what follows that i > 0.

Now, observe that if Cj is large, then

nj+1 + · · · + nm ≤ 2nj+1 ≤ nj

4
≤ nj − k′

2
= �,

and thus the �th coordinate of σ(
←−−
XF ′′) is equal to

σ(
←−−
XF ′′)� =

∑
j>i

njxj +

⎛
⎝ni

2
− k′

2
−
∑
j>i

nj

⎞
⎠xi−1.

FAIRNESS IN RESOURCE ALLOCATION 679

Now we can compare these two quantities as follows:

σ(
←−−
XF ′′)� =

∑
j>i

njxj +

⎛
⎝ni

2
− k′

2
−
∑
j>i

nj

⎞
⎠xi−1

≤
∑
j>i

a4m−2j−1 +
nixi−1

2

≤ 3a4m−2i−3

<
1

12α
· 3a4m−2i−2

=
1

α
· a

4m−2i−2

4

=
1

α
· yini

4

≤ 1

α
· yi

(
ni

2
− k′

2

)

≤ 1

α
· σ(

←−−
XF ′)�.

For the c∗ measure, we show that in general the lower bound is essentially as bad
as possible when k > 1.

Theorem 5.7. For any number α, there are 2-facility instances I for which no
proper subset F ′ ⊆ F achieves c(XF ′) ≤ α.

Proof. Consider the following instance I. The n demand points P = {p1, . . . , pn}
and n′ = n candidate facilities F = {f1, . . . , fn} are partitioned into n clusters
C1, . . . , Cn so that Ci = {pi, fi}. The distance between pi and fi is equal to a number
yi, and the distance from a point in Ci to a point in any cluster Cj for j < i is equal
to a number xi. We choose these distances so that αxi < yi+1 and αyi < xi for each i.

Now consider any set F ′ ⊆ F of fewer than n facilities, and suppose it does not
contain the facility in Ci. Define F ′′ = {fi−1, fi}. Then the ith coordinate of the

distance vector
−−→
XF ′′ is equal to d(pi, fi) = yi. On the other hand, among the first

i coordinates of the distance vector
−−→
XF ′ , there is at least one corresponding to the

distance to some point in Ci ∪ · · · ∪ Cn. But all these distance are at least xi > αyi,
and thus the theorem follows.

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[2] R. Bhargava, A. Goel, and A. Meyerson, Using approximate majorization to characterize

protocol fairness, in ACM SIGMETRICS/Performance, 2001, pp. 330–331.
[3] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P. Raghavan, and M. Sudan,

The minimum latency problem, in Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, 1994, pp. 163–171.

[4] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, Algorithms for facility loca-
tion problems with outliers, in Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, Washington, DC, 2001, pp. 642–651.

[5] E. G. Coffman and R. L. Graham, Optimal scheduling for two-processor systems, Acta
Inform., 1 (1972), pp. 200–213.

[6] H. Eiselt and G. Laporte, Objectives in location problems, in Facility Location: A Survey of
Applications and Methods, Z. Drezner, ed., Springer, New York, 1995, pp. 151–180.

[7] M. Fujii, T. Kasami, and K. Ninomiya, Optimal sequencing of two equivalent processors,
SIAM J. Appl. Math., 17 (1969), pp. 784–789.

680 AMIT KUMAR AND JON KLEINBERG

[8] A. Goel and A. Meyerson, private communication.
[9] A. Goel, A. Meyerson, and S. Plotkin, Combining fairness with throughput: Online routing

with multiple objectives, in Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing, 2000, pp. 670–679.

[10] A. Goel, A. Meyerson, and S. Plotkin, Approximate majorization and fair online load
balancing, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, Washington, DC, 2001, pp. 384–390.

[11] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum latency
problem, in Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Atlanta, 1996, pp. 152–158.

[12] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J., 45 (1966),
pp. 1563–1581.

[13] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinooy Kan, Optimization
and approximation in determinsitic sequencing and scheduling: A survey, Ann. Discrete
Math., 5 (1979), pp. 287–326.

[14] L. A. Hall, A. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize average com-
pletion time: Off-line and on-line algorithms, Math. Oper. Res., 22 (1997), pp. 513–544.

[15] H. Hayden, Voice Flow Control in Integrated Packet Networks, Technical report LIDS-TH-
1152, Laboratory for Information and Decision Systems, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1981.

[16] J. Jaffe, Bottleneck flow control, IEEE Trans. Comm., 29 (1981), pp. 954–962.
[17] J. Kleinberg, Y. Rabani, and E. Tardos, Fairness in routing and load balancing, in Pro-

ceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science, 1999,
pp. 568–578.

[18] G. Kortsarz and D. Peleg, On choosing a dense subgraph, in Proceedings of the 34th Annual
IEEE Symposium on Foundations of Computer Science, 1993, pp. 692–701.

[19] A. Kumar and J. Kleinberg, Fairness measures for resource allocation, in Proceedings of the
41st Annual IEEE Symposium on Foundations of Computer Science, 2000, pp. 75–85.

[20] M. Marsh and D. Schilling, Equity measurement in facility location analysis: A framework
and analysis, European J. Oper. Res., 74 (1994), pp. 1–17.

[21] N. Megiddo, Optimal flows in networks with multiple sources and sinks, Math Programming,
7 (1974), pp. 97–107.

[22] V. Pareto, Cours d’Economie Politique, Vol. 1, F. Rouge & Cie, Lausanne, Switzerland, 1896.
[23] C. Phillips, C. Stein, and J. Wein, Scheduling jobs that arrive over time, in Proceedings

of the Fourth Workshop on Algorithms and Data Structures, Lecture Notes in Comput.
Sci. 955, Springer, Berlin, 1995, pp. 86–97.

[24] W. Smith, Various optimizers for single-stage production, Naval Res. Logist. Quart., 3 (1956),
pp. 59–66.

[25] C. Stein and J. Wein, On the existence of schedules that are near-optimal for both makespan
and total weighted completion time, Oper. Res. Lett., 21 (1997), pp. 115–122.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 681–694

DYNAMIC SUBGRAPH CONNECTIVITY WITH
GEOMETRIC APPLICATIONS∗

TIMOTHY M. CHAN†

Abstract. Inspired by dynamic connectivity applications in computational geometry, we con-
sider a problem we call dynamic subgraph connectivity: design a data structure for an undirected
graph G = (V,E) and a subset of vertices S ⊆ V to support insertions/deletions in S and connec-
tivity queries (are two vertices connected?) in the subgraph induced by S. We develop the first
sublinear, fully dynamic method for this problem for general sparse graphs, using a combination of

several simple ideas. Our method requires Õ(|E|4ω/(3ω+3)) = O(|E|0.94) amortized update time,

and Õ(|E|1/3) query time, after Õ(|E|(5ω+1)/(3ω+3)) preprocessing time, where ω is the matrix

multiplication exponent and Õ hides polylogarithmic factors.

Key words. data structures, dynamic graph algorithms, connectivity, computational geometry

AMS subject classifications. 68Q25, 68P05, 68U05

DOI. 10.1137/S009753970343912X

1. Introduction.

1.1. Geometric motivation. Dynamic graph connectivity—maintaining an
undirected graph under edge insertions and deletions to answer queries of the form,
“Are two vertices connected?”—is a basic problem in the area of graph data struc-
tures. In the same way, connectivity problems concerning a dynamic collection of
geometric objects are fundamental in computational geometry. However, unlike dy-
namic graph connectivity, which has been extensively studied and has enjoyed much
recent success with the discovery of near-logarithmic algorithms [17, 21, 32], progress
in dynamic geometric connectivity has been scarce. For this reason, we decide to start
our investigation with a simple version of the problem:

Maintain a set of n axis-parallel rectangles in the plane, under inser-
tions and deletions, to answer queries of the form, “Given two points
a and b, is there a path from a to b that lies inside the union of these
rectangles?”

Rectangular connectivity queries have numerous applications, for example, in VLSI
design, communication networks, and geographic information systems. (See Fig-
ure 1.1.) Solving this problem might pave the way for the study of dynamic con-
nectivity of other objects and, perhaps, tougher questions such as dynamic shortest
paths and motion planning.

No fully dynamic solution for rectangular connectivity has been reported even for
the special case of orthogonal line segments. Existing geometric data structuring tech-
niques (notably, range searching) [2, 29] seem insufficient, because connectivity queries
are more global in nature. On the other hand, although our problem is equivalent
to dynamic connectivity in the intersection graph (where we place an edge between

∗Received by the editors December 29, 2003; accepted for publication (in revised form) April 17,
2006; published electronically October 10, 2006. A preliminary version of this paper appeared in
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, Montreal, QC,
Canada, pp. 7–13. This work was supported in part by an NSERC research grant.

http://www.siam.org/journals/sicomp/36-3/43912.html
†School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(tmchan@uwaterloo.ca).

681

682 TIMOTHY M. CHAN

Fig. 1.1. A collection of “roads.” Is b reachable from a?

every pair of intersecting rectangles), a straightforward application of dynamic graph
connectivity results would not lead to an efficient solution either, because the inter-
section graph can have quadratic size, and an insertion/deletion of a rectangle can
cause a linear number of edge updates in the worst case. (Imagine deleting and
reinserting a segment such as s into Figure 1.1.) Thus, work on dynamic graph con-
nectivity [13, 15, 18, 17, 21, 31, 32] is only the beginning if we want to tackle the more
challenging dynamic connectivity problems from geometry.

In this paper, we show that a sublinear time bound is indeed theoretically possible
for dynamic connectivity of rectangles and, in fact, axis-parallel boxes in any fixed
dimension d. Specifically, we achieve Õ(n4ω/(3ω+3)) amortized time for insertions and

deletions, and Õ(n1/3) time for queries, using Õ(n) space. Here and throughout the

paper, the Õ notation hides polylogarithmic factors in n, and ω denotes the matrix
multiplication exponent. The current best matrix multiplication result with ω < 2.376
by Coppersmith and Winograd [7] implies an O(n0.94) upper bound for updates, but
any subcubic method with ω < 3 (such as Strassen’s) would already imply a sublinear
upper bound.

This result is striking in two respects: (i) the independence of the exponent of our
time bounds on the dimension d and (ii) the usage of fast matrix multiplication, which
is rare among algorithms in computational geometry. (Applications of fast matrix
multiplication are more common in dynamic graph algorithms (see, e.g., [9, 24]), but
the sublinearity of our update bound is still unusual.) In section 7, we partially
explain why a polylogarithmic solution is unlikely given the current state of the art
and why points (i) and (ii) might be inherent to the problem itself, at least for d ≥ 3.

1.2. Previous geometric work. Statically, connectivity for n rectangles in
the plane can be decided in O(n log n) time [23]. Agarwal and van Kreveld [3] gave
an approach for the incremental (insertion-only) case that, in particular, yielded an
O(log2 n) amortized time bound for orthogonal segments.

For unit squares and unit hypercubes (and thus for near-equal-size boxes of
bounded aspect ratios), a fully dynamic, polylogarithmic method can be obtained by
an easy reduction to the maintenance of the L∞-minimum spanning tree of a point
set, which was solved by Eppstein [12] in any fixed dimension (using known dynamic
minimum spanning tree results for graphs [21]). For arbitrary rectangles and arbitrary
hypercubes, Hershberger and Suri [19, 20] considered the kinetic problem of maintain-
ing connectivity as objects move continuously according to given flight plans: allowing
a quadratic number of events, we can easily reduce the kinetic problem to dynamic
graph connectivity using the intersection graph; Hershberger and Suri showed that

DYNAMIC SUBGRAPH CONNECTIVITY 683

the space complexity can be decreased from quadratic to linear while still supporting
efficient updating.

1.3. The dynamic subgraph connectivity problem. As we have pointed
out, the intersection graph cannot directly be used for dynamic rectangular connec-
tivity. However, existing geometric range searching results allow us to compress the
intersection graph, using so-called biclique covers [1, 14]. Although this technique is
familiar, it has not been used in connectivity applications and, in our opinion, leads
to a conceptually cleaner description of geometric connectivity algorithms because of
the separation of geometric and nongeometric elements.

As it turns out (see section 2), the problem on the compressed intersection graph
leads to an interesting generalization of dynamic graph connectivity, which is not as
well studied but that we believe is equally fundamental:

Maintain an undirected graph G = (V,E) with n vertices and m
edges, and a subset S ⊆ V of vertices, under the following operations:
insert an edge into E, delete an edge from E, insert a vertex into S,
and delete a vertex from S. Queries to be answered are of the form,
“Given two vertices u, v ∈ S, is there a path from u to v that uses
only vertices from S?”

We call this problem dynamic subgraph connectivity. The difficulty lies not in edge
updates to E but in vertex updates to the subset S. If each vertex is inserted and
deleted only once, then we can directly apply data structures for dynamic graph
connectivity to maintain the subgraph induced by S; the amortized cost would be
near-logarithmic per edge, since each edge is inserted and deleted O(1) times. In
particular, we can therefore handle the incremental (insertion-only) or decremental
(deletion-only) case. However, in general, vertices may be deleted and reinserted into
S as often as we like; this naive approach would have cost proportional to the degree
of the vertex, which can be linear in n for every update in the worst case. We give a
nontrivial sublinear solution for arbitrary update sequences in general sparse graphs
with Õ(m4ω/(3ω+3)) amortized update time, Õ(m1/3) query time, Õ(m(5ω+1)/(3ω+3))

preprocessing time, and Õ(m) space.
To appreciate the result, note that existing polylogarithmic dynamic graph tech-

niques [17, 21, 32] do not work, because the usual “certificate” [13, 24], a spanning
forest, can change drastically in a single vertex update. Alternatively, it is possible
to reduce the problem to reachability in a dynamic directed graph, so that a vertex
update can be simulated by a single edge change (by creating two copies of each vertex
joined by a directed edge). However, dynamic directed graph reachability [16, 30] is
computationally more demanding (a main goal there was to obtain an o(n2) update
bound).

1.4. Previous graph work. The dynamic subgraph connectivity problem has
indeed been proposed before, in a paper by Frigioni and Italiano [16]. The motivation
there was on the connectivity of communication networks, where processors can be-
come faulty and can later go back up; viewed alternatively, vertices can be “switched”
on and off. Frigioni and Italiano used the term complete dynamic graph model to de-
scribe the setting where both edge and vertex updates are supported. They described
polylogarithmic connectivity results for the special case of planar graphs (relying on
separators) but left the general case (which is necessary in our geometric application)
open.

684 TIMOTHY M. CHAN

1.5. How to solve it. Our solution to dynamic subgraph connectivity involves
several techniques. Each in itself is not difficult, and when put together in the right
way, they yield the winning combination. Our recipe includes the following:

• Processing the update sequence in blocks. Khanna, Motwani, and Wilson
[24] have used this trick to design various dynamic graph algorithms for off-
line updates (when the update sequence is given in advance), while the au-
thor [5, 6] has applied essentially the same idea to several dynamic geometric
problems under semi-online updates (when only the deletion times are given
in advance) as well as general updates.

• The “high-low” trick of Alon, Yuster, and Zwick [4]. This was originally
developed for the problem of finding triangles in sparse graphs. We observe
how the idea can yield faster multiplication algorithms for sparse rectangular
matrices (see section 3).

• Precomputing information for high-degree vertices, so that their repeated
deletions and reinsertions would not be as costly.

• Finally, amortizing deletion cost via a standard “weighted split” idea, which
is analogous to the standard “weighted union” heuristic (e.g., see [8, Chap-
ter 21]).

To illustrate the effects of these ideas progressively, we present the algorithm in stages
(in the actual order of discovery), starting with an O(m0.82) offline update method
(section 4), extending it to an O(m0.91) semi-online update method (section 5), and
ending with the O(m0.94) fully dynamic update method (section 6).

2. From geometry to graphs. We first describe how to reduce dynamic geo-
metric connectivity problems to dynamic subgraph connectivity. This section is the
only place where computational geometry techniques are used; afterwards, we can
devote all our attention to the graph problem.

The reduction is a simple consequence of known compact representations of geo-
metric intersection graphs. Specifically, any intersection graph of boxes can be repre-
sented as a union of bicliques (complete bipartite subgraphs Ai×Bi over some vertex
subsets Ai and Bi) so that the size of the representation (the total number of vertices
in the bicliques) is near-linear.

Lemma 2.1. Fix any constant d. Given a set of n (axis-parallel) boxes in R
d, we

can form subsets Ai and Bi of total size Õ(n) in Õ(n) time, such that two boxes a
and b intersect iff (a, b) or (b, a) is in Ai ×Bi for some index i. This property can be

maintained dynamically: each insertion/deletion of a box causes an amortized Õ(1)
number of insertions/deletions in the Ai’s and Bi’s.

Proof. We first consider the static case. The following orthogonal range (or
intersection) searching problem [2, 11, 26, 27, 28, 29] is well studied in computational
geometry: preprocess a given set of n boxes in a data structure so that given a
query box b, we can quickly report all boxes intersecting b. A standard solution to
this problem is the range tree (or a multilevel segment tree). The precise details
behind the data structure are not important here (see the above references for more
information). The main properties to note are that the data structure consists of
O(n logd−1 n) “nodes,” each of which stores a subset of boxes which we refer to as
a canonical subset , and that given a query box b, the set of boxes intersecting b can
be returned as the union of the canonical subsets at O(logd n) nodes of the data
structure. The total size of the canonical subsets is O(n logd n); the preprocessing
time is O(n logd n) and the query time is O(logd n).

DYNAMIC SUBGRAPH CONNECTIVITY 685

To form the subsets Ai and Bi, we build the data structure for the given input
boxes and perform queries for all the boxes. For each node i, we let Ai be the canonical
subset at i and Bi be all boxes whose query returns the canonical subset at i. The
total size of the Ai’s and Bi’s is O(n logd n), and correctness is obvious.

For the dynamic case, we need a version of the orthogonal range searching problem
that supports insertion. A weight-balanced range tree, for instance, can be used
[26, 28]. Again the precise details behind the data structure are not important. The
main additional properties are that although each canonical subset does not change,
new nodes and canonical subsets may be created, and the total size of all canonical
subsets created by a sequence of n insertions is bounded by O(n logd+1 n). (With
more care, a log factor can probably be saved.)

To update the subsets Ai and Bi under the insertion of a new box b, we perform
a query for b and insert b into every set Bi such that the query returns the canonical
subset at node i. We then insert b into the data structure itself, and for every new
node i created, we insert all elements of the new canonical subset into Ai and initialize
Bi = ∅. (We do not delete canonical subsets of old nodes destroyed.) The amortized
number of insertions into the Ai’s and Bi’s is O(logd+1 n).

To update the subsets Ai and Bi under the deletion of a box b, we simply remove
b from each subset that contains b. The cost of deletion can be “charged” to the
insertion cost by amortization. (If n is to denote the number of current boxes instead
of the number of insertions, we need another standard amortization trick: rebuilding
the whole data structure whenever the value of n is halved [26, 28].)

Theorem 2.2. Fix any constant d. The dynamic connectivity problem for boxes
in R

d can be reduced to the dynamic subgraph connectivity problem on a graph with
m = Õ(n) edges. Each box update causes an amortized Õ(1) number of graph updates.

Proof. Given a set of boxes, we apply Lemma 2.1 and define the following graph G:
for each box, we create a vertex; in addition, for each subset pair (Ai, Bi), we create
a new vertex vi and place edges from vi to all members of Ai ∪ Bi. (See Figure 2.1
for an idealized example.) Initially, all vertices are put in the subset S. Whenever
Ai or Bi becomes empty, we delete the vertex vi from S. When both Ai and Bi are
nonempty, we reinsert vi into S.

Each insertion/deletion of a box causes the subsets Ai and Bi to undergo Õ(1)
amortized number of insertions/deletions, which in turn causes the above graph G

and subset S to undergo Õ(1) amortized number of edge and vertex insertions/
deletions.

To test whether two query boxes are connected in the intersection graph, we
just test whether the two boxes are connected in the subgraph of G induced by S.

Fig. 2.1. From dynamic box connectivity to dynamic subgraph connectivity.

686 TIMOTHY M. CHAN

Correctness is evident (if Ai and Bi are nonempty, the members of Ai∪Bi are indeed
all connected to each other in the intersection graph). To test whether two query
points are connected, we first find a box containing each point (which takes polyloga-
rithmic time by known data structures for orthogonal range searching) and then test
whether these two boxes are connected.

Remarks. The above reduction also works in the static, incremental (insertion-
only), decremental (deletion-only), offline, and semi-online settings.

In the static case, graph and subgraph connectivity can be solved in linear time
by depth-first search, so we automatically get an O(n polylogn) algorithm for the box
connectivity problem. This result was known before, as noted in section 1.

In the incremental/decremental case, subgraph connectivity reduces to graph con-
nectivity, as we have observed in section 1 (by explicitly maintaining the induced sub-
graph). Incremental graph connectivity is equivalent to the union-find problem [8],
and decremental graph connectivity can be solved in near-logarithmic time [31, 32],
so we automatically get O(polylogn) incremental/decremental box connectivity al-
gorithms. (We do not state the precise polylogarithmic bounds, because slight im-
provements are likely possible by a more direct approach.) The incremental box
connectivity result was already known [3], but the decremental box connectivity has
not been addressed before.

In the offline, semi-online, and fully dynamic cases, the subgraph connectivity
results in sections 4–6 will imply corresponding box connectivity results, up to poly-
logarithmic factors.

Other classes of objects can be considered. For example, we can obtain the same
results for line segments that have a fixed number of slopes, by using variants of
orthogonal range searching in the proof of Lemma 2.1.

For arbitrary line segments in the plane, we need to use known nonorthogonal
range searching data structures [2] in the proof of Lemma 2.1, but these data structures

require canonical subsets of total size Õ(n4/3) instead of O(n polylogn); as a result,

the graph in Theorem 2.2 now has m = Õ(n4/3) edges, and each segment update

causes an amortized Õ(n1/3) number of graph updates. Unfortunately, our dynamic
subgraph connectivity results are too weak to yield meaningful bounds in this case.
Still, we can obtain an Õ(n4/3) result for static connectivity and an Õ(n1/3) result
for incremental and decremental connectivity for arbitrary line segments. This static
result was known [25], so was the incremental result [3], but the decremental result
appears new.

3. Fast sparse matrix multiplication. Our sublinear results for dynamic
subgraph connectivity will require a time bound for matrix multiplication that is
sensitive to the sparseness of the given matrices. Although obtaining such an input-
sensitive bound is in general an outstanding problem for the standard square-matrix
case (see [34] for an independent, recent development), in this section we note a
simple input-sensitive bound for a rectangular-matrix case that is sufficient for our
application.

Specifically, we consider the complexity M(n, q |m) of multiplying a q × n 0-1
matrix A with an n× q 0-1 matrix B, where m is the number of nonzero entries per
matrix, with m = Ω(n). This is asymptotically equivalent to the complexity of the
following graph problem: given an m-edge bipartite graph with a set P of n vertices
on one side and a set Q of q vertices on the other, count the number C[u, v] of vertices
adjacent to both u and v for every vertex pair u, v ∈ Q. (To reduce the graph problem
to matrix multiplication, let avw = 1 iff bwv = 1 iff w ∈ P and v ∈ Q are adjacent;

DYNAMIC SUBGRAPH CONNECTIVITY 687

then C[u, v] =
∑

w∈P auwbwv. Conversely, to reduce matrix multiplication to the
graph problem, let P = {1, . . . , n} and Q = {1, . . . , q} × {1, 2} (of size 2q), and place
an edge between k and (j, 1) if ajk = 1 and an edge between k and (j, 2) if bjk = 1;
then C[(i, 1), (j, 2)] =

∑n
k=1 aikbkj .)

We are primarily interested in the case when q is small. For dense matrices, we
have the upper bound M(n, q |m) = O(nqω−1 + qω), since we can solve the problem
by multiplying �n/q� pairs of q×q square submatrices. To take the sparseness m into
account, we adapt a simple trick by Alon, Yuster, and Zwick [4].

Lemma 3.1. M(n, q |m) = O(mq(ω−1)/2 + qω).
Proof. Consider the graph formulation. Divide P into two groups: PH , vertices

of degree > r, and PL, vertices of degree ≤ r. Then |PH | = O(m/r). We first set
C[u, v] to be the number of vertices in PH adjacent to both u and v for every pair
u, v ∈ Q; this takes time O(M(m/r, q |m)) = O(mqω−1/r + qω) by the dense-matrix
bound. To complete the overall count, we can examine each edge uw incident to a
vertex w ∈ PL, go through all adjacent edges wv, and increment C[u, v]; this takes
O(mr) time. Setting r = q(ω−1)/2 yields the desired bound.

Remark. There are improved rectangular matrix multiplication methods [22] for
dense matrices, which may lead to slight improvements to Lemma 3.1 for certain
ranges of parameters. However, these improvements do not seem to matter here,
since we will eventually select parameters to equalize the contribution of the terms
mq(ω−1)/2 and qω, and the critical case will occur when the dense submatrices are
essentially square matrices.

4. An offline solution. In the next three sections, we present our algorithms
for dynamic subgraph connectivity. We begin by considering the offline case, where
we are given the update sequence in advance (or the ability to look sufficiently far
ahead in the update sequence). The approach is simple: we divide a dynamic set
into two subsets, P and Q, where P is static and Q is dynamic but small; to keep Q
small, we rebuild the data structure from scratch periodically, after a certain number
of updates. Khanna, Motwani, and Wilson [24] have adopted this very approach
for strongly connected components and reachability in directed graphs. We obtain a
sublinear result in m by, in addition, employing Lemma 3.1.

In what follows, let G = (V,E) be the input graph with n vertices and m edges.
Without loss of generality, assume that m = Ω(n). For clarity’s sake, we focus only
on the more difficult update operations, i.e., vertex insertions/deletions in S; edge
insertions/deletions in G will be treated later in the remarks after Theorem 6.2.

Lemma 4.1. Given a static subset P ⊆ V and a static subset Q0 ⊆ V of size q0,
we can design a data structure to maintain a subset Q ⊆ Q0, where preprocessing takes

Õ(mq
(ω−1)/2
0 + qω0) time, updates to Q take Õ(q0) amortized time, and connectivity

queries on the subgraph induced by P ∪Q take Õ(q0) time.
Proof. We first compute the connected components of the subgraph induced by

P in linear time by depth-first search [8]. Our data structure consists of three parts:
• We form a bipartite multigraph Γ with the connected components as vertices

on one side and V as vertices on the other side: for each edge uv ∈ E
with u ∈ P , we place a corresponding edge γv in Γ for the component γ
containing u. The O(m) edges of Γ are stored in a dictionary [8]. (For
example, a balanced search tree can support updates and lookups in O(log n)
time; alternatively, hashing can support these operations in O(1) randomized
time.)

688 TIMOTHY M. CHAN

Fig. 4.1. Overview of the data structure.

• We precompute and store the following values:

C[u, v] = number of components adjacent to both u and v in Γ(4.1)

over all u, v ∈ Q0. This preprocessing step takes O(mq
(ω−1)/2
0 + qω0) time by

applying Lemma 3.1 to a bipartite subgraph of Γ (with Q0 on one side and
edge multiplicities ignored).

• Finally, we maintain a small dynamic graph G∗ over the vertex set Q, where
for every u, v ∈ Q,

uv is in G∗ iff C[u, v] > 0 or uv ∈ E.(4.2)

(See Figure 4.1.) This graph is stored in a polylogarithmic data structure
for dynamic graph connectivity. (For example, the method of Holm, de
Lichtenberg, and Thorup [21] can support updates in O(log2 n) amortized
time and queries in O(log n/ log log n) time; alternatively, Thorup’s improved
method [32] can support updates in O(log n log3 log n) randomized amortized
time and queries in O(log n/ log log log n) time.)

Insertions/deletions in Q: To insert a vertex u to Q, we simply insert edges
uv to G∗ for all v ∈ Q with C[u, v] > 0 or uv ∈ E. To delete u from Q, we delete all
edges incident to u from G∗. For |Q| = q, this requires at most q edge updates to the

dynamic graph connectivity structure for G∗ and costs Õ(q) amortized time.
Queries on P ∪Q: Given vertices u, v ∈ P ∪Q, we want to test whether u and

v are connected in the subgraph induced by P ∪Q.
• Easiest Case: u, v ∈ Q. We can simply test whether u and v are connected

in G∗ in Õ(1) time by the dynamic graph connectivity structure for G∗.
Correctness is evident (if there is a path connecting u and v in the subgraph
induced by P ∪Q, then the path must alternate between some vertices of Q
and some component of P , so there must be a corresponding path in G∗).

• Hardest Case: u, v ∈ P . Here we first find the components γu and γv
containing u and v. We then find any u′ ∈ Q with γuu

′ ∈ Γ and any v′ ∈ Q
with γvv

′ ∈ Γ by performing O(q) dictionary lookups in Õ(q) time. If u′ or
v′ does not exist, the answer is no, unless γu = γv. Otherwise, we can just
test whether u′ and v′ are connected by the previous case.

The remaining cases are similar.

Theorem 4.2. We can design a data structure to maintain a subset S ⊆ V under
any offline update sequence, where preprocessing takes Õ(m2ω/(ω+1)) = O(m1.41) time,

updates to S take Õ(m2(ω−1)/(ω+1)) = O(m0.82) amortized time, and connectivity

queries on the subgraph induced by S take Õ(m2/(ω+1)) = O(m0.60) time.

DYNAMIC SUBGRAPH CONNECTIVITY 689

Proof. At the beginning of each block of q0 updates, we set Q0 to be the vertices
involved in the coming q0 updates, set P = S \Q0, set Q = S ∩Q0, and rebuild the
data structure from Lemma 4.1. Updates to S are applied to Q, with amortized cost

Õ

(
mq

(ω−1)/2
0 + qω0

q0
+ q0

)
,

which is asymptotically minimized by setting q0 = m2/(ω+1). Queries can be answered
in Õ(q0) time, since S = P ∪Q at all times.

5. A semi-online solution. It is perhaps not surprising that an offline problem
can be solved more quickly by batching and performing fast matrix multiplication.
It is interesting, however, that with more effort a similar strategy can lead to a fully
dynamic solution to our problem. Although we cannot predict which vertices are
about to be inserted in advance, we can concentrate preprocessing on vertices of high
degrees, since these vertices are the costly ones. To obtain a sublinear bound, we
now have to rebuild the data structure more frequently, as the setting of parameters
becomes more delicate.

Before describing the fully dynamic algorithm, we consider the semi-online
case [10], where we are told when a vertex will next be deleted at the time it is
inserted. Because of the extra information, we can force all deletions to occur in the
small subset Q, thereby ensuring that P is static (see [6] for more examples of this
kind of dynamization).

Lemma 5.1. Given a subset P ⊆ V and a parameter q0 ≤ m, we can design a
data structure to maintain a subset Q ⊆ V of size q ≤ q0, where preprocessing takes

Õ(mq
(ω−1)/2
0 +qω0) time, updates to Q take Õ(mq/q0) amortized time, and connectivity

queries on the subgraph induced by P ∪Q take Õ(q) time.
Proof. Set Q0 to contain all vertices in V of degree > m/q0 in Γ. Then |Q0| =

O(q0). As in the proof of Lemma 4.1, we form the same bipartite multigraph Γ
and precompute the same values C[u, v] (as defined by (4.1)) for all u, v ∈ Q0. In
addition, we now maintain C[u, v] for all u, v ∈ Q as well, in order to keep track of
the graph G∗ over the vertex set Q (as defined by (4.2)). Preprocessing time is still

O(mq
(ω−1)/2
0 + qω0), and queries can be answered in the same way in Õ(q) time.

Insertions/deletions in Q: Deletions are as before. Insertions are more in-
volved, because Q is not necessarily a subset of Q0, so new entries of C[·, ·] need to
be computed. To insert a vertex u into Q, consider two cases.

• Case 1: u �∈ Q0; i.e., u has degree ≤ m/q0 in Γ. For each v ∈ Q, we can
compute C[u, v] by going through each of the O(m/q0) different components

γ adjacent to u in Γ and testing whether γv ∈ Γ in Õ(1) time via a dictionary

lookup. The total time of this step is Õ(qm/q0).
• Case 2: u ∈ Q0. For each v ∈ Q0, C[u, v] has already been precomputed.

For each v ∈ Q \Q0, since v has degree ≤ m/q0 in Γ, we can compute C[u, v]
by going through each of the O(m/q0) different components γ adjacent to v

in Γ and testing whether γu ∈ Γ in Õ(1) time via a dictionary lookup. The

total time in this case is also Õ(qm/q0).
We can now maintain the graph G∗, as in the proof of Lemma 4.1, by at most q edge

updates to the dynamic graph connectivity structure, in additional Õ(q) time.

690 TIMOTHY M. CHAN

Theorem 5.2. We can design a data structure to maintain a subset S ⊆ V
under any semi-online update sequence, where preprocessing takes Õ(m2ω/(ω+1)) =

O(m1.41) time, updates to S take Õ(m(3ω−1)/(2ω+2)) = O(m0.91) amortized time, and

connectivity queries on the subgraph induced by S take Õ(m1/2) time.
Proof. At the beginning of each block of q updates, we set Q to contain the

vertices in S with the q smallest deletion times, set P = S \Q, and rebuild the data
structure from Lemma 5.1. Each insertion in S is applied to Q with |Q| ≤ 2q at all
times, and deletions in S can occur to Q only. The amortized update cost is

Õ

(
mq

(ω−1)/2
0 + qω0

q
+

mq

q0

)
,

which is asymptotically minimized by setting q0 = m2/(ω+1) and q = m1/2.

6. A fully dynamic solution. In the fully dynamic problem, we have no control
on future deletions, so the subset P can no longer remain static. However, since P
undergoes deletions only, we can bring in amortization techniques (see [5] for a similar,
geometric example). Deletions cause splitting of components, and a standard idea is to
always split the smaller set from the larger set. Remarkably, the matrix-multiplication
output can be updated efficiently during this process, due to the linear dependence
on m in Lemma 3.1.

Lemma 6.1. We can make the data structure in Lemma 5.1 support an addi-
tional operation: deletion in P . The total cost of � such deletions is bounded by

Õ(mq
(ω−1)/2
0 + �qω0).

Proof. The data structure is the same as in the proof of Lemma 5.1 but with
one additional ingredient: To maintain the connected components of P , we store the
subgraph induced by P in a decremental graph connectivity data structure [17, 31, 32];

the total maintenance cost over a sequence of deletions is Õ(m). Note that such a
structure can handle auxiliary operations, such as reporting the size of a component
or enumerating the vertices of a component. Insertions and deletions in Q are done
exactly as in the proof of Lemma 5.1; it remains to describe how to perform deletions
in P .

Deletions in P : To delete a vertex w from P , we find the component γ con-
taining w and observe how γ is split into several components γ1, . . . , γk from the
decremental graph connectivity structure. Without loss of generality, suppose that
γ1 has the largest size. Note that each γi (i = 2, . . . , k) has at most half the size of γ.
Let m′ be the sum of the degrees over all vertices of {w} ∪ γ2 ∪ · · · ∪ γk in G. (See
Figure 6.1.)

Both Γ and C[·, ·] change as a result of the split.

Fig. 6.1. Making the data structure fully dynamic.

DYNAMIC SUBGRAPH CONNECTIVITY 691

• To update the multigraph Γ, we perform the following steps: For each edge
uv ∈ E with u ∈ γi (i = 2, . . . , k), we insert a copy of γiv and remove a
copy of γv. For each wv ∈ E, we remove a copy of γv. Finally, we remove
{w} ∪ γ2 ∪ · · · ∪ γk from γ so that γ becomes γ1. These steps require O(m′)

dictionary updates and take Õ(m′) time.
• To update the C[·, ·] values, we perform the following steps: For each (u, v) ∈

(Q0 × Q0) ∪ (Q × Q), if γu, γv ∈ Γ before, we decrement C[u, v]. For each
(u, v) ∈ (Q0 × Q0) ∪ (Q × Q), if γ1u, γ1v ∈ Γ, we increment C[u, v]. These

steps require O(q2) dictionary lookups and take Õ(q2
0) time. Finally, for each

(u, v) ∈ (Q0 × Q0) ∪ (Q × Q), we add to C[u, v] the number of components
from {γ2, . . . , γk} adjacent to both u and v in Γ. These numbers can be

computed in O(m′q
(ω−1)/2
0 + qω0) total time by applying Lemma 3.1 to a

bipartite subgraph of Γ with O(m′) edges (with γ2, . . . , γk on one side and
Q0 or Q on the other).

We can now rebuild the graph G∗ from scratch (according to the definition (4.2)) in
time O(q2), which is absorbed by the other cost.

We can account for the O(m′q
(ω−1)/2
0 + qω0) cost by charging O(deg(v)q

(ω−1)/2
0)

units to each vertex v ∈ {w} ∪ γ2 ∪ · · · ∪ γk and charging O(qω0) units to the deletion
operation itself. Here deg(v) denotes the degree of v in G. Each vertex v is charged at
most O(log n) times overall, since each time v is charged, the component containing
v shrinks at least by a factor of two in size (and components never expand, as P
undergoes only deletions). Therefore, the total cost charged to vertices is bounded by

O(
∑

v∈V deg(v)q
(ω−1)/2
0 log n) = Õ(mq

(ω−1)/2
0). The total cost charged to the deletion

operations is O(�qω0).

Theorem 6.2. We can design a data structure to maintain a subset S ⊆ V under
any online update sequence, where preprocessing takes Õ(m(5ω+1)/(3ω+3)) = O(m1.28)

amortized time, updates to S take Õ(m4ω/(3ω+3)) = O(m0.94) amortized time, and

connectivity queries on the subgraph induced by S take Õ(m1/3) time.
Proof. At the beginning of each block of q updates, we set P = S, set Q = ∅, and

rebuild the data structure from Lemma 6.1. Insertions into S are applied to Q, with
|Q| ≤ q at all times, but deletions can occur to both P and Q. The amortized update
cost is

Õ

(
mq

(ω−1)/2
0 + qqω0

q
+

mq

q0

)
,

which is asymptotically minimized by setting q0 = q4/(ω+1) and q = m1/3.
Remarks. The space requirement of the data structure is indeed Õ(m): The dy-

namic graph connectivity structures take Õ(m) space, the dictionary for Γ takes O(m)
space, and the C[·, ·] entries take O(q2

0) space, which is sublinear for the parameters
chosen in the proof of Theorem 6.2.

We can obtain a query-update trade-off version of Theorem 6.2: With Õ(q)
query time for any given parameter q ≤ m1/3, the amortized update time is

Õ(m/q(3−ω)/(ω+1)) = Õ(m/q0.18).
Edge updates are indeed less difficult than vertex updates: For example, to insert

a new edge vw into E, we can create a new dummy vertex u joined to v and w and
then insert u into S (i.e., Q). In the proof of Lemma 5.1, since u has degree 2 only, we

can update Γ in Õ(1) time and follow Case 1 to update C[·, ·] in less than Õ(q0m/q)
time (note that Q0 does not change). Later, to delete the edge vw, we can simply

692 TIMOTHY M. CHAN

delete the dummy vertex u from S. Therefore, the cost of an edge insertion/deletion
is at most the cost of a vertex insertion/deletion.

7. Discussions.

7.1. Is fast matrix multiplication necessary? Our algorithms have limited
practical appeal because of the use of fast matrix multiplication (FMM). One may
wonder whether FMM is essential to solve our problem. We suspect that the answer
might be yes, in view of the following observations.

Observation 7.1.

1. The problem of multiplying a
√
n×n Boolean matrix with an n×

√
n Boolean

matrix with m nonzero entries can be reduced to offline dynamic subgraph connectivity
on a graph with n vertices and m edges using O(n) updates and queries.

2. The problem of detecting a triangle (a 3-cycle) in a directed graph with m
edges can be reduced to offline dynamic subgraph connectivity using O(m) updates and
queries.

3. The problem of detecting a quadrilateral (a 4-cycle) in a directed graph with
m edges can be reduced to offline dynamic subgraph connectivity using O(m) updates
and queries.

Proof.
1. As noted essentially in section 3, an equivalent problem is the following:

given a bipartite graph G with a set P of n vertices on one side and a set Q of O(
√
n)

vertices on the other side, decide whether u and v are adjacent to a common vertex
for every pair u, v ∈ Q. To solve this problem, we first put all vertices of P in the
subset S. For each pair u, v ∈ Q, we insert u and v into S, test whether u and v
are connected in the subgraph induced by S, and then delete u and v from S. The
number of queries and vertex updates to S is O(|Q|2) = O(n).

2. Let H = (V,E) be the given graph. Define an undirected graph G with
vertex set V × {(1, 2, 3)}, where we create edges (u, 1)(v, 2) and (u, 2)(v, 3) whenever
uv ∈ E. Initially, we put all vertices of the form (w, 2) in S. To detect a triangle
in H, we go through each edge (v, u) ∈ E, insert (u, 1) and (v, 3) into S, test whether
(u, 1) and (v, 3) are connected, and then delete (u, 1) and (v, 3) from S. The answer
is yes iff one of the tests returns true.

3. Define G as before, but with the addition of a vertex s adjacent to all vertices
of the form (u, 1), and another vertex t adjacent to all vertices of the form (v, 3).
Initially, we put s and t in S, along with all vertices of the form (w, 2). To detect
a quadrilateral in H, we go through each vertex z ∈ V , insert all vertices into the
subsets A = {(u, 1) | (z, u) ∈ E} and B = {(v, 3) | (v, z) ∈ E} to S, test whether s
and t are connected, and then delete all vertices in A and B from S. The answer is
yes iff one of the tests returns true (if s and t are connected, there is a length-2 path
from A to B, yielding a quadrilateral through z). The number of vertex updates to
S is O(

∑
z∈V deg(z)) = O(m).

For the first problem, the best bound we know that does not use FMM is O(m
√
n)

(by Lemma 3.1 with ω = 3). So, it is unlikely that offline dynamic subgraph con-
nectivity can be solved in o(n1/2) time without some kind of FMM (though this
does not rule out the possibility of a sublinear bound without FMM). For the sec-
ond and third problem, the best algorithms known for sparse graphs, due to Alon,
Yuster, and Zwick [4] and Yuster and Zwick [33], both require FMM and run in time
O(m2ω/(ω+1)) = O(m1.41) and (a little less than) O(m(4ω−1)/(2ω+1)) = O(m1.48),
respectively.

DYNAMIC SUBGRAPH CONNECTIVITY 693

7.2. Is the graph problem necessary? The problem we start with is geomet-
ric, but the solution we give is mostly graph-theoretic. One may wonder whether this
is the right approach. For d = 3, the answer is yes, as shown below.

Observation 7.2. The dynamic subgraph connectivity problem can be reduced to
the dynamic box connectivity problem in R

3.
Proof. We use only orthogonal segments (degenerate boxes) in R

3: For
each vertex i of the given graph, construct a line �i from (i,−∞, 0) to (i,∞, 0).
For the kth edge ij, create a path πk of three segments through the points
(i, k, 0), (i, k, 1), (j, k, 1), (j, k, 0). Then i and j are connected iff �i and �j are con-
nected. Inserting/deleting a vertex i in S corresponds to inserting/deleting �i. In-
serting/deleting an edge in E corresponds to inserting/deleting a πk.

Thus, by Theorem 2.2, subgraph connectivity is equivalent to box connectivity
in three dimensions, up to polylogarithmic factors. In particular, box connectivity
in any fixed dimension ≥ 3 is equally difficult, up to polylogarithmic factors. It is
intriguing to contemplate whether one can exploit the geometry of the rectangular
connectivity problem to get a faster algorithm for d = 2 (perhaps without FMM).

7.3. Global connectivity? On a final note, we have purposely defined connec-
tivity queries as just deciding whether two points, or two vertices, are connected. One
may wonder about other kinds of connectivity queries; for example, “Is the union of
the boxes connected?”, or “Is the subgraph induced by S connected?”

Obtaining nontrivial results for such queries appears difficult, even in the offline
setting. A major obstacle appears to be the following dynamic set union problem:
Given a collection C of n subsets of U , of total size m, maintain a subcollection S ⊆ C
under insertions and deletions of subsets to answer the following query: “Is the union
of S equal to U?”

REFERENCES

[1] P. K. Agarwal, N. Alon, B. Aronov, and S. Suri, Can visibility graphs be represented
compactly?, Discrete Comput. Geom., 12 (1994), pp.347–365.

[2] P. K. Agarwal and J. Erickson, Geometric range searching and its relatives, in Advances in
Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack, eds.,
AMS, Providence, RI, 1999, pp. 1–56.

[3] P. K. Agarwal and M. van Kreveld, Polygon and connected component intersection search-
ing, Algorithmica, 15 (1996), pp. 626–660.

[4] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica,
17 (1997), pp. 209–223.

[5] T. M. Chan, A fully dynamic algorithm for planar width, Discrete Comput. Geom., 30 (2003),
pp. 17–24.

[6] T. M. Chan, Semi-online maintenance of geometric optima and measures, SIAM J. Comput.,
32 (2003), pp. 700–716.

[7] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput., 9 (1990), pp. 251–280.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., MIT Press, Cambridge, MA, 2001.

[9] C. Demetrescu and G. F. Italiano, Trade-offs for fully dynamic transitive closure on DAGs:
Breaking through the O(n2) barrier, J. ACM, 52 (2005), pp. 147–156.

[10] D. Dobkin and S. Suri, Maintenance of geometric extrema, J. Assoc. Comput. Mach., 38
(1991), pp. 275–298.

[11] H. Edelsbrunner and H. A. Maurer, On the intersection of orthogonal objects, Inform.
Process. Lett., 13 (1981), pp. 177–181.

[12] D. Eppstein, Dynamic Euclidean minimum spanning trees and extrema of binary functions,
Discrete Comput. Geom., 13 (1995), pp. 111–122.

[13] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification: A technique for
speeding up dynamic graph algorithms, J. ACM, 44 (1997), pp. 669–696.

694 TIMOTHY M. CHAN

[14] T. Feder and R. Motwani, Clique partitions, graph compression and speeding up algorithms,
J. Comput. System Sci., 51 (1995), pp. 261–272.

[15] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with
applications, SIAM J. Comput., 14 (1985), pp. 781–798.

[16] D. Frigioni and G. F. Italiano, Dynamically switching vertices in planar graphs, Algorith-
mica, 28 (2000), pp. 76–103.

[17] M. R. Henzinger and V. King, Randomized dynamic graph algorithms with polylogarithmic
time per operation, J. ACM, 46 (1999), pp. 502–516.

[18] M. R. Henzinger and V. King, Maintaining minimum spanning forests in dynamic graphs,
SIAM J. Comput., 31 (2001), pp. 364–374.

[19] J. Hershberger and S. Suri, Kinetic connectivity of rectangles, in Proceedings of the Fifteenth
Annual Symposium on Computational Geometry, Miami, FL, 1999, pp. 237–246.

[20] J. Hershberger and S. Suri, Simplified kinetic connectivity for rectangles and hypercubes, in
Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, Washington, D.C.,
2001, pp. 158–167.

[21] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM,
48 (2001), pp. 723–760.

[22] X. Huang and V. Y. Pan, Fast rectangular matrix multiplication and applications, J. Com-
plexity, 14 (1998), pp. 257–299.

[23] H. Imai and T. Asano, Finding the connected components and a maximum clique of an in-
tersection graph of rectangles in the plane, J. Algorithms, 4 (1983), pp. 310–323.

[24] S. Khanna, R. Motwani, and R. H. Wilson, On certificates and lookahead on dynamic graph
problems, Algorithmica, 21 (1998), pp. 377–394.

[25] M. A. Lopez and R. Thurimella, On computing connected components of line segments,
IEEE Trans. Comput., 44 (1995), pp. 597–601.

[26] K. Mehlhorn, Data Structures and Algorithms 3: Multi-Dimensional Searching and Compu-
tational Geometry, Springer-Verlag, Heidelberg, 1984.

[27] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice–Hall, Englewood Cliffs, NJ, 1994.

[28] M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Comput. Sci. 156,
Springer-Verlag, Berlin, 1983.

[29] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

[30] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs, in
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
Vancouver, BC, Canada, 2002, pp. 679–689.

[31] M. Thorup, Decremental dynamic connectivity, J. Algorithms, 33 (1999), pp. 229–243.
[32] M. Thorup, Near-optimal fully-dynamic graph connectivity, in Proceedings of the 32nd Annual

ACM Symposium on Theory of Computing, Portland, OR, 2000, pp. 343–350.
[33] R. Yuster and U. Zwick, Detecting short directed cycles using rectangular matrix multipli-

cation and dynamic programming, in Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, New Orleans, LA, 2004, pp. 247–253.

[34] R. Yuster and U. Zwick, Fast sparse matrix multiplication, ACM Trans. Algorithms, 1 (2005),
pp. 2–13.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 695–720

ON THE NUMBER OF CROSSING-FREE MATCHINGS,
CYCLES, AND PARTITIONS∗

MICHA SHARIR† AND EMO WELZL‡

Abstract. We show that a set of n points in the plane has at most O(10.05n) perfect matchings
with crossing-free straight-line embedding. The expected number of perfect crossing-free matchings
of a set of n points drawn independently and identically distributed from an arbitrary distribution
in the plane is at most O(9.24n). Several related bounds are derived: (a) The number of all (not
necessarily perfect) crossing-free matchings is at most O(10.43n). (b) The number of red-blue perfect
crossing-free matchings (where the points are colored red or blue and each edge of the matching
must connect a red point with a blue point) is at most O(7.61n). (c) The number of left-right perfect
crossing-free matchings (where the points are designated as left or right endpoints of the matching
edges) is at most O(5.38n). (d) The number of perfect crossing-free matchings across a line (where
all the matching edges must cross a fixed halving line of the set) is at most 4n. These bounds are
employed to infer that a set of n points in the plane has at most O(86.81n) crossing-free spanning
cycles (simple polygonizations) and at most O(12.24n) crossing-free partitions (these are partitions
of the point set so that the convex hulls of the individual parts are pairwise disjoint). We also derive
lower bounds for some of these quantities.

Key words. crossing-free geometric graphs, counting, simple polygonizations, crossing-free
matchings, crossing-free partitions

AMS subject classifications. 52C10, 52C45, 52A40, 68R05

DOI. 10.1137/050636036

1. Introduction. Let P be a set of n points in the plane. A geometric graph
on P is a graph that has P as its vertex set and whose edges are drawn as straight
segments connecting the corresponding pairs of points. The graph is crossing-free
if no pair of its edges cross each other; i.e., any two edges are not allowed to share
any points other than common endpoints. Therefore, these are planar graphs with
a plane embedding given by this specific drawing. We are interested in the number
of crossing-free geometric graphs on P of several special types; see, e.g., Figure 1.
Specifically, we consider the numbers tr(P) of triangulations (i.e., maximal crossing-
free graphs), pm(P) of crossing-free perfect matchings, sc(P) of crossing-free spanning
cycles, and cfp(P) of crossing-free partitions1 (these are partitions of P so that the
convex hulls of the individual parts are pairwise disjoint). We are primarily concerned
with upper bounds for the numbers listed above in terms of n.

∗Received by the editors July 14, 2005; accepted for publication (in revised form) April 14, 2006;
published electronically October 12, 2006. An extended abstract of this work appeared in [36].

http://www.siam.org/journals/sicomp/36-3/63603.html
†School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute

of Mathematical Sciences, New York University, New York, NY 10012 (michas@tau.ac.il). This
author’s work was supported by a grant from the U.S.–Israel Binational Science Foundation, by NSF
grant CCR-00-98246, by a grant from the Israeli Academy of Sciences for a Center of Excellence in
Geometric Computing at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University.

‡Institute of Theoretical Computer Science, ETH Zurich, 8092 Zurich, Switzerland (emo@inf.
ethz.ch).

1Our research was triggered by Marc van Kreveld asking about the number of crossing-free
partitions (see [10] for a motivation from geographic information systems) and, in the same week, by
Michael Hoffmann and Yoshio Okamoto asking about the number of crossing-free spanning paths of
a point set (motivated by their quest for good fixed parameter algorithms for the planar Euclidean
traveling salesman problem in the presence of a fixed number of inner points [14]); see also [23].

695

696 MICHA SHARIR AND EMO WELZL

Fig. 1. 6 points with 12 crossing-free perfect matchings, the maximum possible number. See [3]
for the maximum numbers for up to 10 points: 3 for 4 points, 12 for 6, 56 for 8, and 311 for 10.

History. This problem goes back to Newborn and Moser [32] in 1980 who asked
for the maximal possible number of crossing-free spanning cycles in a set of n points2—
they provide an upper bound of 2 · 6n−2

⌊
n
2

⌋
! but conjectured that the right bound

should be of the form cn for some constant c. This fact was established in 1982 by
Ajtai et al. [4], who showed3 that there are at most 1013n crossing-free graphs on n
points. For motivation they mentioned—besides [32]—a question of Avis about the
maximum number of triangulations a set of n points can have.

Further developments were mainly concerned with deriving progressively better
upper bounds for the number of triangulations4 [38, 17, 35], thus far culminating in
a 59n upper bound by Santos and Seidel [34] in 2003.5 This compares to Ω(8.48n),
the largest known number of triangulations for a set of n points, recently derived
by Aichholzer et al. [1]; this improves an earlier lower bound of 8n/poly(n) given by
Garćıa, Noy, and Tejel [21]. (We let “poly(n)” denote a polynomial factor in n.)

Since every crossing-free graph is contained in some triangulation, and a triangu-
lation has at most 3n−6 edges, an upper bound of cn for the number of triangulations
immediately yields an upper bound of 23n−6cn < (8c)n for the number of all crossing-
free graphs on a set of n points. Thus, with c ≤ 59, this number is at most 472n. To
the best of our knowledge, all upper bounds derived so far on the number of crossing-
free graphs of various types are derived via a bound on the number of triangulations,
albeit in more refined ways.

One such approach is to exploit the fact that graphs of certain specific types have
a fixed number of edges. For example, since a perfect matching has n

2 edges, we

readily obtain pm(P) ≤
(
3n−6
n/2

)
tr(P) < 227.98n [18]. A short historical account of

bounds on sc(P), with references including [6, 16, 21, 22, 24, 32, 33], can be found at
the web site [15] (see also [12, section 8.4, Problem 8]). The best bound published so
far is 3.37n ·tr(P) ≤ 198.83n, which relies on a bound of 3.37n on the number of cycles
in a planar graph [7]. (In the course of our investigations, we showed that a graph
with m edges and n vertices can have at most

(
m
n

)n
cycles; hence, a planar graph can

have at most 3n cycles. Then Seidel provided us with an argument, based on linear
algebra, that a planar graph can have at most

√
6
n
< 2.45n spanning cycles.)

Crossing-free partitions fit into the picture, since every such partition can be
uniquely identified with the graph of edges of the convex hulls of the individual parts—
these edges form a crossing-free geometric graph of at most n edges; see Figure 2.

2In fact, Akl’s work [6] appeared earlier, but it already referred to the manuscript by Newborn
and Moser, and improved a lower bound (on the maximal number of crossing-free spanning cycles)
of theirs.

3This paper is famous for its crossing lemma, proved in preparation of the singly exponential
bound. The lemma gives an upper bound on the number of edges a geometric graph with a given
number of crossings can have.

4Interest was also motivated by the obviously related question (from geometric modeling [38]) of
how many bits it takes to encode a triangulation of a point set.

5Recently, this bound was improved to 43n in [37]. However, the bounds on spanning cycles and
crossing-free partitions we derive here via matchings are still better than the bounds obtained via
this new triangulation bound.

NUMBER OF CROSSING-FREE MATCHINGS 697

Fig. 2. A crossing-free partition and its graph.

The situation is better understood for special configurations, for example, for P a
set of n points in convex position6 (namely, the vertex set of a convex n-gon), where
the Catalan numbers Cm := 1

m+1

(
2m
m

)
= Θ(m−3/24m), m ∈ N0, play a prominent

role. In convex position tr(P) = Cn−2 (the Euler–Segner problem; cf. [39, p. 212] for

a discussion of its history), pm(P) = Cn/2 for n even (due to [20]; cf. [39]; e.g., see
Figure 3), sc(P) = 1, and cfp(P) = Cn (see [9]).

Crossing-free partitions for points in convex position constitute a well-established
notion because of many connections to other problems, probably starting with “planar
rhyme schemes” in Becker’s note [9]; cf. [39, Solution to 6.19pp]. The general case
was considered by [13] (under the name of pairwise linearly separable partitions)
for clustering algorithms. They show that the number of partitions into k parts is
O(n6k−12) for k constant.

Fig. 3. 6 points in convex position with C3 = 5 crossing-free perfect matchings.

Under the assumption of general position (no three points on a common line) it is
known [21] that the number of crossing-free perfect matchings on a set of fixed size is
minimized when the set is in convex position.7 With little surprise, the same holds for
spanning cycles, but it does not hold for triangulations [2, 25, 30]. For crossing-free
partitions, this is an open question.

New results. The main results of this paper are the following upper bounds for
a set P of n points in the plane: pm(P) = O(10.05n), sc(P) = O(86.81n), and
cfp(P) = O(12.24n). Also, the expected number of perfect crossing-free matchings of
a set of n points drawn independently and identically distributed (i.i.d.) from any
distribution in the plane (as long as two random points coincide with probability 0)
is at most O(9.24n).

The new bound on the number of crossing-free perfect matchings is derived by
an inductive technique that we have adapted from the method that Santos and Seidel
[34] used for triangulations (the adaption is, however, far from obvious). We then

6For another example, it can be shown that the number of triangulations is at most 23mn−m−n

for an m× n grid (with (m + 1)(n + 1) points) [5] (cf. also [26]).
7Recently, Aichholzer et al. [1] showed that any family of acyclic graphs has the minimal number

of crossing-free embeddings on a fixed point set when the set is in convex position.

698 MICHA SHARIR AND EMO WELZL

go on to derive several improved bounds on the number of crossing-free matchings of
various special types. Specifically, we show the following:

(a) The number of all (not necessarily perfect) crossing-free matchings is at most
O(10.43n).

(b) The number of red-blue perfect crossing-free matchings (where half of the
points are colored red and half blue, and each edge of the matching must connect a
red point with a blue point) is at most O(7.61n).

(c) The number of left-right perfect crossing-free matchings (where the points
are designated as left or right endpoints of the matching edges) is at most O(5.38n).

(d) The number of perfect crossing-free matchings across a line (where all the
matching edges must cross a fixed halving line of the set) is at most 4n.

Finally, we derive upper bounds for the numbers of crossing-free spanning cycles
and crossing-free partitions of P in terms of the number of certain types of matchings
of certain point sets P ′ that are constructed from P . This yields the bounds O(86.81n)
for the number of crossing-free cycles and O(12.24n) for the number of crossing-free
partitions.

We summarize the state of affairs in Table 1, including lower bounds which we
will derive in section 6, many of which use the double-chain configuration from [21].

Table 1

Entries c in the upper bound row should be read as O(cn), and entries c in the lower bound
row should be read as Ω(cn/poly(n)), where n := |P |. “ma” stands for all (not necessarily perfect)
crossing-free matchings, “rbpm” for perfect red-blue crossing-free matchings, “lrpm” for perfect left-
right crossing-free matchings, “alpm” for perfect crossing-free matchings across a line, and “rdpm”
for the expected number of perfect crossing-free matchings of a set of i.i.d. points.

tr pm sc cfp ma rbpm lrpm alpm rdpm

∀P :≤ 59 [34] 10.05 86.81 12.24 10.43 7.61 5.38 4 9.24
∃P :≥ 8.48 [1] 3 [21] 4.64 [21] 5.23 4 2.23 2 2 3

This paper shows that significantly better bounds can be derived for matchings
than those known earlier for other types of graphs and, moreover, that matchings are
a good basis for deriving bounds for crossing-free partitions and spanning cycles—as
opposed to the situation before, where such bounds have always relied on triangula-
tions.

2. Matchings: The setup and a recurrence. Let P be a set of n points
in the plane in general position, no three on a line, no two on a vertical line. It is
easy to see that this is no constraint when it comes to upper bounds on pm(P). A
crossing-free matching is a collection of pairwise disjoint segments whose endpoints
belong to P . Given such a matching M , each point of P is either matched if it is an
endpoint of a segment of M , or isolated otherwise. The number of matched points is
clearly always even. If 2m points are matched and s points are isolated, we call M a
crossing-free m-matching or (m, s)-matching. We have n = 2m + s.

We denote by mam(P) the number of crossing-free matchings of P with m seg-
ments (for m ∈ R—this number is clearly 0 unless m ∈ {0, 1, . . . , �n

2 �}), and by ma(P)
the number of all crossing-free matchings of P (i.e., ma(P) =

∑
m mam(P)). Recall

that pm(P) = man/2(P).
Let M be a crossing-free (m, s)-matching on a set P of n = 2m + s points, as

above. The degree d(p) of a point p ∈ P in M is defined as follows. It is 0 if p is
isolated in M . Otherwise, if p is a left (resp., right) endpoint of a segment of M , d(p)
is equal to the number of visible left (resp., right) endpoints of other segments of M ,

NUMBER OF CROSSING-FREE MATCHINGS 699

plus the number of visible isolated points; “visible” means vertically visible from the
relative interior of the segment of M that has p as an endpoint. Thus p and the other
endpoint of the segment are not counted in d(p). See Figure 4 for an illustration.

u

v

w
z

Fig. 4. Degrees in a matching: d(u) = 2, d(v) = 5, d(w) = 1, d(z) = 2.

Each left (resp., right) endpoint u in M can contribute at most 2 to the degrees
of other points: 1 to each of the left (resp., right) endpoints of the segments lying
vertically above and below u if there exist such segments. Similarly, each isolated
point u can contribute at most 4 to the degrees of other points: 1 to each of the
endpoints of the segments lying vertically above and below u. It follows that∑

p∈P

d(p) ≤ 4m + 4s.

There are many segments ready for removal. The idea is to remove segments
incident to points of low degree in an (m, s)-matching (points of degree at most 3
or at most 4, to be specific). We will show that there are many such points at our
disposal. Then, in the next step, we will show that segments with an endpoint of low
degree can be reinserted in not very many ways. These two facts will be combined to
derive a recurrence for the matching count.

For each integer i ∈ N0, let vi = vi(M) denote the number of matched points of
P with degree i in M . Hence,

∑
i≥0 vi = 2m.

Lemma 2.1. Let n,m, s ∈ N0, with n = 2m+ s. In every (m, s)-matching of any
set of n points, we have

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 6s,(1)

3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 7s.(2)

Proof. Let P be the underlying point set. We have∑
i≥0

i vi =
∑
p∈P

d(p) ≤ 4s + 4m = 4s +
∑
i≥0

2vi.

Therefore, 0 ≤ 4s +
∑

i≥0(2 − i)vi. For κ ∈ R
+

, we add κ times n = s +
∑

i≥0 vi to
both sides to get

κn ≤ (4 + κ)s +
∑
i≥0

(2 + κ− i)vi ≤ (4 + κ)s +
∑

0≤i<2+κ

(2 + κ− i)vi.(3)

We specialize8 to κ = 2 for assertion (1) and κ = 3 for (2).

8We list here explicitly the two values that lead to the best results in the further derivations,
although at this point it clearly looks rather arbitrary.

700 MICHA SHARIR AND EMO WELZL

p v

τ

Fig. 5. Inserting a segment at p; d(p) = 1 after insertion.

There are not very many ways of inserting a segment. Fix some p ∈ P and let
M be a crossing-free matching which leaves p isolated. Now we match p with some
other isolated point such that the overall matching continues to be crossing-free. For
i ∈ N0, let hi = hi(p, P,M) be the number of ways this can be done so that p has
degree i after its insertion.

Lemma 2.2.

4h0 + 3h1 + 2h2 + h3 ≤ 24,(4)

5h0 + 4h1 + 3h2 + 2h3 + h4 ≤ 48.(5)

Proof. Let �i = �i(p, P,M) be the number of ways we can match the point p as a
left endpoint of degree i. First, we claim that �0 ∈ {0, 1}.

To show this, form the vertical decomposition of M by drawing a vertical segment
up and down from each (matched or isolated) point of P \ {p} and extend these
segments until they meet an edge of M or else, all the way to infinity; see Figure 5
for an illustration of such a decomposition. We call these vertical segments walls in
order to distinguish them from the segments in the matching.

We obtain a decomposition of the plane into vertical trapezoids. Let τ be the
trapezoid containing p (assuming general position, p lies in the interior of τ). See
Figure 5.

We move from τ to the right through vertical walls to adjacent trapezoids until
we reach a vertical wall that is determined by a point v that is either a left endpoint
or an isolated point (if at all—we may make our way to infinity when p cannot be
matched as a left endpoint to any point, in which case �i = 0 for all i).

Note that up to that point there was always a unique choice for the next trapezoid
to enter. Every crossing-free segment with p as its left endpoint will have to go through
all of these trapezoids. It connects either to v (which can happen only if v is isolated)
or crosses the vertical wall up or down from v. The former case yields a segment that
gives p degree 0. In the latter case, v will contribute 1 to the degree of p. So pv, if an
option, is the only possible segment that lets p have degree 0 as a left endpoint. (pv
will not be an option when it crosses some segment or when v is a left endpoint.)

We will return to this setup when we consider degrees ≥ 1, in which case v acts
as a bifurcation point. Before doing so, we first introduce a function f . It maps every
nonnegative real vector (λ0, λ1, . . . , λk) of arbitrary length k+1 ∈ N to the maximum
possible value9 the expression

λ0�0 + λ1�1 + · · · + λk�k(6)

9A priori, this value could be infinite.

NUMBER OF CROSSING-FREE MATCHINGS 701

can attain (for any isolated point in any matching of any finite point set of any

size). We have already shown that f(λ) ≤ λ for λ ∈ R
+

0 . We claim that for all

(λ0, λ1, . . . , λk) ∈ (R
+

0)k+1, with k ≥ 1, we have

f(λ0, λ1, . . . , λk) ≤ max{λ0 + f(λ1, . . . , λk), 2f(λ1, . . . , λk)}.(7)

Assuming (7) has been established, we can conclude that f(1) ≤ 1, f(2, 1) ≤ 3,
f(3, 2, 1) ≤ 6, and f(4, 3, 2, 1) ≤ 12; that is,10 4�0 + 3�1 + 2�2 + �3 ≤ 12 and the first
inequality of the lemma follows, since the same bound clearly holds for the case when
p is a right endpoint. The second inequality follows similarly from f(5, 4, 3, 2, 1) ≤ 24.

So it remains to prove (7). Consider a constellation with a point p that realizes
the value of f(λ0, λ1, . . . , λk). We return to the setup considered above, where we
have traced a unique sequence of trapezoids from p to the right, till we encountered
the first bifurcation point v (if v does not exist, then all �i vanish).

Case 1. v is isolated. We know that λ0�0 ≤ λ0. If we remove v from the point set,
then every possible crossing-free segment emanating from p to its right has its degree
decreased by 1. Therefore, λ1�1 + · · · + λk�k ≤ f(λ1, . . . , λk), so the expression (6)
cannot exceed λ0 + f(λ1, . . . , λk) in this case.

Case 2. v is a matched left endpoint. Then λ0�0 = 0 (that is, we cannot connect
p to v). Possible crossing-free segments with p as a left endpoint are discriminated
according to whether they pass above or below v. We first concentrate on the segments
that pass above v; we call them relevant segments (emanating from p). Let �′i be the
number of relevant segments that give p degree i. We carefully remove isolated points
from P \{p} and segments with their endpoints from the matching M (eventually also
the segment of which v is a left endpoint), so that in the end all relevant segments are
still available and each one, if inserted, makes the degree of p exactly 1 unit smaller
than its original value (this deletion process may create new possibilities for segments
from p). That will show λ1�

′
1 + · · · + λk�

′
k ≤ f(λ1, . . . , λk). The same will apply to

segments that pass below v, using a symmetric argument, which gives the bound of
2f(λ1, . . . , λk) for (6) in this second case.

The removal process is performed as follows. We define a relation ≺ on the set
whose elements are the edges of M and the singleton sets formed by the isolated
points of P \ {p}: a ≺ b if a point a′ ∈ a is vertically visible from a point b′ ∈ b, with
a′ below b′. As is well known (cf. [19, Lemma 11.4]), ≺ is acyclic. Let ≺+ denote the
transitive closure of ≺, and let ≺∗ denote the transitive reflexive closure of ≺.

Let e be the segment with v as its left endpoint, and consider a minimal element a
with a ≺+ e. Such an element exists, unless e itself is a minimal element with respect
to ≺.

a is a singleton: Thus it consists of an isolated point; with abuse of notation we
also denote by a the isolated point itself. a cannot be a point to which p can connect
with a relevant edge. Indeed, if this were the case, we add that edge e′ = pa and
modify ≺ to include e′ too; more precisely, any pair in ≺ that involves a is replaced
by a corresponding pair involving e′, and new pairs involving e′ are added (clearly,
the relation remains acyclic and all pairs related under ≺+ continue to be so related
after e′ is included and replaces a). See Figure 6(a). We have e ≺ e′ (since, by
assumption, the left endpoint v of e is vertically visible below e′) and e′ ≺+ e (since

10Note that �i ≤ 2i for each i ≥ 0 (which can be shown to be tight); this only yields a bound of

26 for the linear combination in question. Moreover,
∑k

i=0 �i ≤ 2k (which again is tight), but this
only improves the bound to 15, still short of what we need.

702 MICHA SHARIR AND EMO WELZL

(a)

ap

v

e

e′ p

v

e

(b)

q

a

e′′

p

q
a

v
e

e′′

(c)

Fig. 6. (a) The point a cannot be connected to p via a relevant edge. (b), (c) a cannot contribute
from below (in (b)) or from above (in (c)) to the degree of p when a relevant edge pq is inserted.

the right endpoint a of e′ satisfies a ≺+ e)—a contradiction. With a similar reasoning
we can rule out the possibility that a contributes to the degree of p when matched
via a relevant edge pq. Indeed, if this is the case, let e′′ be the segment directly above
a, which is the first link in the chain that gives a ≺+ e; i.e., a ≺ e′′ ≺∗ e (e′′ must
exist since a ≺+ e). After adding pq with a contributing to its degree, we have either
a ≺ pq and pq ≺ e′′ (see Figure 6(b)) or we have pq ≺ a (see Figure 6(c)). In the
former case, we have a ≺ pq ≺ e′′ ≺∗ e ≺ pq, contradicting the acyclicity of ≺. In the
latter case, we have pq ≺ a ≺+ e ≺ pq, again a contradiction. So if we remove a, then
all relevant edges from p remain in the game and the degree of each of them (i.e., the
degree of p that the edge induces when inserted) does not change.

a

q

p
v

e

Fig. 7. Edge a cannot obstruct a point from contributing from above to the degree of p when a
relevant edge pq is inserted.

a is an edge: It cannot obstruct any isolated point or left endpoint below it from
contributing to the degree of a relevant edge pq above v (because a is minimal with
respect to ≺). If a obstructs a contribution to a relevant edge pq from above, then
we add pq; thus pq ≺ a, which, together with a ≺+ e and e ≺ pq, contradicts the
acyclicity of ≺. See Figure 7. Again, we can remove a without any changes to relevant
possible edges from p.

We keep successively removing elements until e is minimal with respect to ≺.
Note that so far all the relevant edges from p are still possible, and the degree of p
that any of them induces when inserted has not changed.

Now we remove e with its endpoints. This cannot clear the way for any new
contribution to the degree of a relevant edge. In fact, any such degree decreases by
exactly 1 because v disappears. The claim is shown, and the proof of the lemma is
completed.

Deriving a recurrence.
Lemma 2.3. Let n,m ∈ N0, such that m ≤ n

2 and s := n− 2m. For every set P
of n points, we have

mam(P) ≤

⎧⎨
⎩

12(s+2)
n−3s mam−1(P) if s < n

3 ,

16(s+2)
n−7s/3 mam−1(P) if s < 3n

7 .

NUMBER OF CROSSING-FREE MATCHINGS 703

Let us note right away that the first inequality supersedes the second for s < n
5 (i.e.,

m > 2n
5), while the second one is superior for s > n

5 .

Proof. Fix the set P , and let X and Y be the sets of all crossing-free m-matchings
and (m− 1)-matchings, respectively, in P .

Let us concentrate on the first inequality. We define an edge-labeled bipartite
graph G on X

.
∪ Y as follows: Given an m-matching M , if p is an endpoint of a

segment e ∈ M and d(p) ≤ 3, then we connect M ∈ X to the (m − 1)-matching
M \ {e} ∈ Y with an edge labeled (p, d(p)); d(p) is the degree label of the edge.
Note that M and M \ {e} can be connected by two (differently labeled) edges if both
endpoints of e have degree at most 3.

For 0 ≤ i ≤ 3, let xi denote the number of edges in G with degree label i. We
have

(2n− 6s) |X |︸︷︷︸
mam(P)

≤ 4x0 + 3x1 + 2x2 + x3 ≤ 24(s + 2) |Y|︸︷︷︸
mam−1(P)

.

The first inequality is a consequence of inequality (1) of Lemma 2.1. The second
inequality is implied by inequality (4) in Lemma 2.2, as follows. For a fixed (m− 1)-
matching M ′ in P , consider an edge of G that is incident to M ′ and is labeled by (p, i)
(if there is such an edge). Then p must be one of the s+ 2 isolated points of P (with
respect to M ′), and there is a way to connect p to another isolated point in a crossing-
free manner so that p has degree i in the new matching. Hence, the contribution by p
and M ′ to the sum 4x0 +3x1 +2x2 +x3 is at most 24 by inequality (4) in Lemma 2.2,
and the right inequality follows. The combination of both inequalities yields the
second inequality in (8).

By considering endpoints up to degree 4 (instead of 3), we get the second in-
equality in an analogous fashion (with the help of inequality (2) in Lemma 2.1 and
inequality (5) in Lemma 2.2).

For m,n ∈ N0, let mam(n) denote the maximum number of crossing-free m-
matchings a set of n points can have.

Lemma 2.4. Let s,m, n ∈ N0, with n = 2m + s. We have

ma0(0) = 1,

mam(n) ≤

⎧⎪⎪⎨
⎪⎪⎩

n
s mam(n− 1) for s ≥ 1,
12(s+2)
n−3s mam−1(n) for s < n

3 ,
16(s+2)
n−7s/3 mam−1(n) for s < 3n

7 .

(8)

Proof. ma0(0) = 1 is trivial.

The first of the three inequalities in (8) is implied by

s · mam(P) =
∑
p∈P

mam(P \ {p}) ≤ n · mam(n− 1)

for any set P of n points. The second and third inequalities follow from Lemma 2.3.

3. Solving a recurrence. We derive an upper bound for a function

G ≡ Gλ,μ : N
2
0 → R

+

704 MICHA SHARIR AND EMO WELZL

for a pair of parameters λ, μ ∈ R
+

, μ ≥ 1, which satisfies

G(0, 0) = 1,

G(m,n) ≤
{ n

s G(m,n− 1) for s ≥ 1,

λ(s+2)
n−μs G(m− 1, n) for s < n

μ ,
(9)

with the convention s := n− 2m.

The recurrence in (8) implies that an upper bound on G12,3(m,n) also serves as
an upper bound for mam(n), and the same holds for G16,7/3(m,n). We will see how
to best combine the two parameter pairs to obtain even better bounds for mam(n).
Later, we will encounter other instances of this recurrence, with other values of λ and
μ.

We normalize by dividing by λmμn−m. Then (9) becomes

G(m,n)

λmμn−m
≤

⎧⎨
⎩

n
μs ,

G(m,n−1)
λmμn−1−m for s ≥ 1,

μ(s+2)
n−μs

G(m−1,n)
λm−1μn−m+1 for s < n

μ .

We set H(m,n) = Hμ(m,n) := G(m,n)
λmμn−m . Therefore, still with the convention s :=

n− 2m and the assumption μ ≥ 1, we have

H(0, 0) = 1,

H(m,n) ≤
{ n

μs H(m,n− 1) for s ≥ 1,

μ(s+2)
n−μs H(m− 1, n) for s < n

μ .
(10)

We note that this recurrence depends only on μ.

Lemma 3.1. Let m,n ∈ N0, with m ≤ n
2 . Then H(m,n) ≤

(
n
m

)
.

Proof. H(0, 0) = 1 ≤
(
0
0

)
forms the basis of a proof by induction on n and m. For

all n ∈ N0, H(0, n) ≤ μ−n ≤ 1 =
(
n
0

)
follows, since μ ≥ 1.

Let 1 ≤ m ≤ n
2 . If m ≤ n− μs, then s ≤ n−m

μ < n
μ . Hence, the second inequality

in (10) can be applied, after which the first inequality can be applied. Hence,

H(m,n) ≤ μ(s + 2)

n− μs
H(m− 1, n)

≤ μ(s + 2)

n− μs

n

μ(s + 2)
H(m− 1, n− 1)

≤ n

m

(
n− 1

m− 1

)
=

(
n

m

)
.

Otherwise, m > n−μs holds, which ensures that μs > n−m ≥ 0, i.e., s ≥ 1. We
can therefore employ the first inequality of (10) and obtain

H(m,n) ≤ n

μs
H(m,n− 1) <

n

n−m

(
n− 1

m

)
=

(
n

m

)
.

By expanding along the first inequality for a while before employing Lemma 3.1,

NUMBER OF CROSSING-FREE MATCHINGS 705

we get

H(m,n) ≤ n

μs
· · · n− k + 1

μ(s− k + 1)
H(m,n− k)

≤ 1

μk

(
k−1∏
i=0

n− i

s− i

)(
n− k

m

)

=
1

μk

(
n
k

)
(
s
k

)
(
n− k

m

)
(11)

=
1

μk

(
2m
m

)
(
n−m−k

m

)
(

n

2m

)
for N0 � k ≤ s.(12)

When we stop this unwinding of the recurrence, we could have alternatively proceeded
one more step, and upper bound H(m,n−k) by n−k

μ(s−k)

(
n−k−1

m

)
, provided that k < s.

As long as this expression is smaller than
(
n−k
m

)
, we should indeed have expanded

further. That is, we expand as long as

n− k

μ(s− k)

(
n− k − 1

m

)
<

(
n− k

m

)

⇔ n− k

μ(s− k)
(n− k −m) < n− k

⇔ k <
μs + m− n

μ− 1
= n−m

(
2μ− 1

μ− 1

)
= n− m

ρ

for ρ := μ−1
2μ−1 . In other words, the best choice of k in (11) is

k =

⌈
n− m

ρ

⌉
= n−

⌊
m

ρ

⌋
.(13)

In fact, if this suggested value of k is negative (or if ρ = 0), we should not expand at
all. Instead, we can try to expand along the second inequality of (10), to get (note
that here reducing m by 1 increases s by 2)

H(m,n) ≤ μ(s + 2)

n− μs
· · · μ(s + 2 + 2(k − 1))

n− μ(s + 2(k − 1))
H(m− k, n)

≤
(

k−1∏
i=0

s
2 + 1 + i
n
2μ − s

2 − i

)(
n

m− k

)

=

(s
2+k
k

)
(n

2μ− s
2

k

)
(

n

m− k

)
(14)

for N0 � k < n
2μ − s

2 + 1 = m− μ−1
2μ n+ 1; here we employ the usual generalization of

binomial coefficients
(
a
k

)
to a ∈ R, namely,

(
a
k

)
:= a(a−1)···(a−k+1)

k! .
Rather than optimizing the value of k at which we stop the unwinding of the

second recurrence inequality of (10), we approximate it by

k =

⌈
m− μ− 1

2μ− 1
n

⌉
= m− �ρn�(15)

706 MICHA SHARIR AND EMO WELZL

and note that it lies in the allowed range, provided that it is positive. (With some
tedious calculations, one can show that the optimal stopping value is k = m−�ρ(n+
1)�, which is either equal to the k in (15) or is smaller than it by 1.)

When m
n = ρ, both values suggested for k in (13) and (15) are 0, which indicates

that we have to content ourselves with the bound
(
n
m

)
from Lemma 3.1. Otherwise,

it is clear which way to expand, since

m

n
< ρ ⇒ n−

⌊
m
ρ

⌋
≥ 0,

m

n
> ρ ⇒ m− �ρn� ≥ 0.

We are now ready for an improved bound. For that we substitute k in (11) according
to (13), and in (14) according to (15).

Lemma 3.2. Let m,n ∈ N0, where 2m ≤ n, and set ρ := μ−1
2μ−1 . If m

n ≤ ρ, then

Hμ(m,n) ≤ 1

μn−�m/ρ	

(
n

n−�m/ρ	
)

(
n−2m

n−�m/ρ	
)
(
�m/ρ�
m

)
,

and for m
n > ρ, we have

Hμ(m,n) ≤
(n

2 −�ρn	
m−�ρn	

)
(m−n

2 (1− 1
μ)

m−�ρn	
)
(

n

�ρn�

)
.

Thus, Gλ,μ(m,n) ≤ Gλ,μ(m,n) with

Gλ,μ(m,n) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λmμ�m/ρ	−m

(
n

n−�m/ρ	
)

(
n−2m

n−�m/ρ	
)
(
�m/ρ�
m

)
for m

n ≤ ρ,

λmμn−m

(n
2 −�ρn	
m−�ρn	

)
(m−n

2 (1− 1
μ)

m−�ρn	
)
(

n

�ρn�

)
for m

n > ρ.

Next we work out a number of properties of the upper bound Gλ,μ.
Estimates up to a polynomial factor. In the following derivations, we sometimes

use “≈n” to denote equality up to a polynomial factor in n.
We will frequently use the following estimate (implied by Stirling’s formula; cf.

[29, Chapter 10, Corollary 9]):(
αn

�βn�

)
≈n

(
αn

�βn�

)
≈n

(
αα

ββ(α− β)α−β

)n

for α, β ∈ R, α ≥ β ≥ 0.

Big m. We note that for m−1
n ≥ ρ

Gλ,μ(m,n) =
λ(s + 2)

n− μs
Gλ,μ(m− 1, n) with s := n− 2m.

Since λ(s+2)
n−μs < 1 ⇔ s < n−2λ

λ+μ ⇔ m > (λ+μ−1)n+2λ
2(λ+μ) , the function Gλ,μ(m,n) maxi-

mizes for integers m in the range ρn ≤ m ≤ n
2 at

m∗ :=

⌊
(λ + μ− 1)n + 2λ

2(λ + μ)

⌋
=

⌊
n

2
− n− 2λ

2(λ + μ)

⌋
(16)

unless this value is not in the provided range. However, m∗ ≤ n
2 unless n is very small

(n < 2λ). And m∗ ≥ ρn unless λ < μ− 1.

NUMBER OF CROSSING-FREE MATCHINGS 707

Small m. With the identity indicated in (12) we have, for m
n ≤ ρ, that G can also

be written as

Gλ,μ(m,n) = λmμ�m/ρ	−m

(
2m
m

)
(�m/ρ	−m

m

)
(

n

2m

)
≈m (4λ(μ− 1))m

(
n

2m

)
.(17)

This bound peaks (up to an additive constant) at

m∗∗ :=

⌊ √
λ(μ− 1)

1 + 2
√

λ(μ− 1)
n

⌋
.

We observe that m∗∗ ≤ ρn for λ ≤ μ− 1.

We can summarize that the function Gλ,μ(m,n) attains its maximum—up to a
poly(n)-factor—over m at

m =

{
m∗∗ if λ ≤ μ− 1,
m∗ otherwise.

(18)

In all applications in this paper we have λ > μ− 1; thus the peak occurs at m∗.

4. Bounds for matchings.

4.1. Perfect matchings. For perfect matchings we consider the case where n is
even, m = n

2 , and s = 0. We note that in this case m/n = 1/2 > ρ for any value of μ.
Hence, the second bound of Lemma 3.2 applies. We first calculate n

2 −
n
2 (1− 1

μ) = 1
2μ n

and n
2 − �ρn� = �n

2 − μ−1
2μ−1 n� = � 1

2(2μ−1) n�. Hence,

Gλ,μ

(n
2
, n
)

= (λμ)n/2

⎛
⎝ 1

2μ n⌈
1

2(2μ−1) n
⌉
⎞
⎠

−1 (
n⌊

μ−1
2μ−1 n

⌋
)

≈n (λμ)n/2

⎛
⎜⎜⎝
(

1
2(2μ−1)

) 1
2(2μ−1)

(
μ−1

2μ(2μ−1)

) μ−1
2μ(2μ−1)

(
1
2μ

) 1
2μ
(

μ−1
2μ−1

) μ−1
2μ−1

(
μ

2μ−1

) μ
2μ−1

⎞
⎟⎟⎠

n

= (λμ)n/2
(
μ

1
2(2μ−1)−

μ
2μ−1 (μ− 1)

μ−1
2μ(2μ−1)−

μ−1
2μ−1 (2μ− 1)−

1
2μ+1

)n

= (λμ)n/2
(
(μ− 1)−

μ−1
2μ μ− 1

2 (2μ− 1)
2μ−1
2μ

)n

=
(
λ

1
2 (μ− 1)−

μ−1
2μ (2μ− 1)

2μ−1
2μ

)n

.

Substituting (λ, μ) = (12, 3) and (16, 7
3), as suggested by Lemma 2.4, we obtain the

following upper bounds for the number of crossing-free perfect matchings:

G12,3

(n
2
, n
)
≈n

(
2

2
3 · 3 1

2 · 5 5
6

)n

= O(10.5129n) and

G16, 73

(n
2
, n
)
≈n

(
2

10
7 · 3− 1

2 · 11
11
14

)n

= O(10.2264n).

While the second bound is obviously superior, we remember that the recurrence with
(λ, μ) = (12, 3) is better for m > 2n

5 (or s < n
5). This observation leads to the

708 MICHA SHARIR AND EMO WELZL

following better bound for P a set of n points and for k = �n
2 − 2n

5 � = � n
10�, where

we expand as in the first inequality of Lemma 2.3:

pm(P) ≤
(

k−1∏
i=0

12(2i + 2)

n− 6i

)
man/2−k(P) ≤ 4k

(n
6

k

)−1

G16,7/3(n/2 − k, n)

≈n

(
220/21 3−2/7 51/21 1111/14

)n

= O(10.0438n).

Perfect versus all matchings. Recall from Lemma 2.3 that

mam(P) ≤ 12(s + 2)

n− 3s
mam−1(P).

Note that 12(s+2)
n−3s < 1 for m > 7n

15 + 4
5 (and in this range the factor 12(s+2)

n−3s is smaller
than the alternative offered in Lemma 2.3). That is, there are always fewer perfect
matchings than there are

⌊
7n
15 + 4

5

⌋
-matchings. More specifically, for sets P with

n := |P | even and for k = n
2 −

⌊
7n
15 + 4

5

⌋
=
⌈

n
30 − 4

5

⌉
, we have

pm(P) = man/2(P) ≤
k−1∏
i=0

12(2i + 2)

n− 6i
man/2−k(P)

=

(
12 · 2

6

)k (n
6

k

)−1

man/2−k(P)

≈n 4n/30

((
1

5

)1/5 (
4

5

)4/5
)n/6

ma�7n/15+4/5	(P)

=
(
21/3 5−1/6

)n

ma�7n/15+4/5	(P) .

This implies that pm(P) ≤
(
21/3 5−1/6

)n
ma(P) poly(n) = O(0.9635n) ma(P). In

every point set there are exponentially (in the size of the set) more crossing-free
matchings than there are crossing-free perfect matchings.

4.2. All matchings. Our considerations in the derivation of the bound for per-
fect matchings imply the following upper bound for matchings with m segments:

mam(P) ≤

⎧⎨
⎩

G16,7/3(m,n), m ≤ 2n
5 ,

G12,3(m,n)
G16,7/3(

2n
5 ,n)

G12,3(
2n
5 ,n)

, otherwise.
(19)

To determine where the expression (19) maximizes, we note that G16,7/3 does

not peak in its “small m”-range (m ≤ 4
11) since 16 > 7

3 − 1 (recall (18)). In the
“big m”-range, it peaks at roughly 26n

55 (see (16)), which exceeds 2
5 . Therefore, the

maximum occurs when G12,3 comes into play, which peaks at roughly 7n
15 . For that

value the upper bound evaluates to ≈n (213/21 3−2/7 53/14 1111/14)n = O(10.4244n).
We summarize in the following main theorem.
Theorem 4.1. Let P be a set of n points in the plane. Then the following hold:
(1) pm(P) ≤

(
220/21 3−2/7 51/21 1111/14

)n
poly(n) = O(10.0438n).

(2) pm(P) ≤
(
21/3 5−1/6

)n
ma(P) poly(n) = O(0.9635n) ma(P).

(3) ma(P) ≤
(
213/21 3−2/7 53/14 1111/14

)n
poly(n) = O(10.4244n).

We note, by the way, that the first inequality in the theorem is a direct conse-
quence of the other two inequalities.

NUMBER OF CROSSING-FREE MATCHINGS 709

4.3. Random point sets. Let P be any set of N ∈ N points in the plane, no
three on a line, and let r ∈ N with r ≤ N . If R is a subset of P chosen uniformly at
random from

(
P
r

)
, then for λ = 16, μ = 7

3 , and provided that m ≤ μ−1
2μ−1N = 4

11N ,

and that r ≥ 2m, we have, using (17),11

E[mam(R)] =

⎛
⎜⎝ ∑

R∈(Pr)

mam(R)

⎞
⎟⎠ /

(
N

r

)
= mam(P)

(
N − 2m

r − 2m

)
/

(
N

r

)

≤ (4λ(μ− 1))m
(
N

2m

)((
N − 2m

r − 2m

)
/

(
N

r

))
poly(m)

≈m (4λ(μ− 1))m
(

r

2m

)
=
(
28 3−1

)m(
r

2m

)
.

We see that if we sample r points from a large enough set, then the expected number
of crossing-free matchings observes for all m the upper bound derived for the range
of small m.

Suppose now that, for n even, we sample n i.i.d. points from an arbitrary distri-
bution, for which we require only that two sampled points coincide with probability
0. Then we can first sample a set P of N > 11

8 n points and then choose a subset
of size n uniformly at random from the family of all subsets of this size. We obtain
a set R of n i.i.d. points from the given distribution. If P is in general position,
by the argument above the expected number of perfect crossing-free matchings is at
most ≈n (28 3−1)n/2. If P exhibits collinearities, we perform a small perturbation
yielding a set P̃ and the subset R̃. Now the bound applies to R̃ and also to R since
a sufficiently small perturbation cannot decrease the number of crossing-free perfect
matchings.

Theorem 4.2. For any distribution in the plane for which two sampled points
coincide with probability 0, the expected number of crossing-free perfect matchings of
n i.i.d. points is at most

(
24 3−1/2

)n

poly(n) = O(9.2377n).

We next consider several variants of crossing-free bipartite matchings for which
better upper bounds can be derived.

4.4. Red-blue perfect matchings. We assume that the given set P of n points
is the disjoint union R

.
∪ B of two subsets, and that each edge in the matching has

to connect a point of R with a point of B. We refer to the points of R as red points
and to those of B as blue.

We repeat the preceding analysis but modify the definition of the degree d(p)
of a point: If p is a matched point in R, say the left endpoint of its edge e, then
d(p) is equal to the number of left endpoints plus the number of blue isolated points
that are vertically visible from (the relative interior of) e. A symmetric definition
holds for right endpoints and for points p ∈ B. (Intuitively, a blue isolated point q
has to contribute only to the degrees of red points because, when we insert an edge
emanating from a blue point p, it cannot connect to q, and it does not matter whether

11There is a small subtlety in that the second identity in the derivation relies on the fact that P
is in general position. For that consider 3 points on a line.

710 MICHA SHARIR AND EMO WELZL

it passes above or below q; that is, q does not cause any bifurcation in the ways in
which p can be connected.)

In this case we have ∑
p∈P

d(p) ≤ 4m + 2s

because each isolated point contributes to the degree of only 2 matched points. This
changes the bounds in Lemma 2.1 to

2n ≤ 4v0 + 3v1 + 2v2 + v3 + 4s, and

3n ≤ 5v0 + 4v1 + 3v2 + 2v3 + v4 + 5s.

The rest of the analysis continues verbatim, except that now the recurrence (8) in-

volves the factors 12(s+2)
n−2s and 16(s+2)

n−5s/3 or, in other words, (λ, μ) = (12, 2) (with ρ = 1/3)

and (16, 5
3) (with ρ = 2/7), respectively. The first factor is superior for s < n

3 , i.e.,
m > n

3 .
We thus obtain, with k = �n

6 �, a bound of(
k−1∏
i=0

12(2i + 2)

n− 4i

)
G16,5/3(n/2 − k, n)

for the number of perfect red-blue matchings. Manipulating it, as above, yields the
following theorem.

Theorem 4.3. Let P be a set of n points in the plane with each one colored red
or blue. Then the number of red-blue perfect crossing-free matchings in P is at most(

26/5 3−3/20 77/10
)n

poly(n) = O(7.6075n) .

4.5. Left-right perfect matchings. Here we assume that P is partitioned into
two disjoint subsets L,R and consider bipartite matchings in L × R such that, for
each edge of the matching, its left endpoint belongs to L and its right endpoint to R.

We modify the definition of the degrees of the points, as in the red-blue case, and
have, as above, ∑

p∈P

d(p) ≤ 4m + 2s.

The analysis further improves because when we insert an edge emanating from a point
p ∈ L, say, the corresponding numbers hi must be equal to �i, since p can only be the
left endpoint of the edge. A similar improvement holds for points q ∈ R. Hence, we
can bound the sum 4h0 + 3h1 + 2h2 + h3 by 12, rather than 24; similarly, we have
5h0 + 4h1 + 3h2 + 2h3 +h4 ≤ 24. That is, we have the two options (λ, μ) = (6, 2) and
(8, 5

3). We thus obtain the bound(
k−1∏
i=0

6(2i + 2)

n− 4i

)
G8,5/3(n/2 − k, n) for k = �n

6 �,

which leads to the following result.
Theorem 4.4. Let P be a set of n points in the plane and assume that the points

are classified as left endpoints or right endpoints. Then the number of left-right perfect
crossing-free matchings in P that obey this classification is at most(

27/10 3−3/20 77/10
)n

poly(n) = O(5.3793n).

NUMBER OF CROSSING-FREE MATCHINGS 711

L R

λ

p1

p2

p3

p4

p5

p6

p7

Fig. 8. Recursively counting permutations induced on λ by left half-edges.

4.6. Matchings across a line. Consider next the special case of crossing-free
bipartite perfect matchings between two sets of n

2 points each that are separated by a
line. Here we can obtain an upper bound that is smaller than the one in Theorem 4.4.

Theorem 4.5. Let n be an even integer. The number of crossing-free perfect
bipartite matchings between two separated sets of n

2 points each in the plane is at

most Cn/2
2 < 4n (recall that Cm is the mth Catalan number).

Proof. Let L and R be the given separated sets. Without loss of generality, take
the separating line λ to be the y-axis and assume that the points of L lie to the left
of λ and the points of R lie to its right. Let M be a crossing-free perfect bipartite
matching in L×R. For each edge e of M , let eL (resp., eR) denote the portion of e to
the left (resp., right) of λ, and refer to them as the left half-edge and the right half-edge
of e, respectively. We will obtain an upper bound for the number of combinatorially
different ways to draw the left half-edges of a crossing-free perfect matching in L×R.
The same bound will apply symmetrically to the right half-edges, and the final bound
will be the square of this bound.

In more detail, we ignore R and consider collections S of n
2 pairwise disjoint

segments, each connecting a point of L to some point on λ, so that each point of L
is incident to exactly one segment. For each segment in S, we label its λ-endpoint by
the point of L to which it is connected. The increasing y-order of the λ-endpoints of
the segments thus defines a permutation of L, and our goal is to bound the number of
different permutations that can be generated in this way. (In general, this is a strict
upper bound on the quantity we seek; see below.)

We obtain this bound in the following recursive manner. Write m := |L| = n
2 .

Sort the points of L from left to right (we may assume that there are no ties—they
can be eliminated by a slight rotation of λ), and let p1, p2, . . . , pm denote the points
in this order. Consider the half-edge e1 emanating from the leftmost point p1. Any
other point pj lies either above or below e1. By rotating e1 about p1, we see that there
are at most m (exactly m, if we assume general position) ways to split {p2, . . . , pm}
into a subset L+

1 of points that lie above e1 and a complementary subset L−
1 of points

that lie below e1, where in the ith split, |L+
1 | = i− 1 and |L−

1 | = m− i. Note that, in
any crossing-free perfect bipartite matching that has e1 as a left half-edge incident to
p1, all the points of L+

1 (resp., of L−
1) must be incident to half-edges that terminate

on λ above (resp., below) the λ-endpoint of e1; see Figure 8.

Hence, after having fixed i, we can proceed to bound recursively and separately

712 MICHA SHARIR AND EMO WELZL

L
R

λ

Fig. 9. A left and a right permutation which are not compatible.

the number of permutations induced by L+
1 and the number of those induced by

L−
1 . In other words, denoting by Π(m) the maximum possible number of different

permutations induced in this way by a set L of m points (in general position), we get
the following recurrence:

Π(m) ≤
m∑
i=1

Π(i− 1)Π(m− i)

for m ≥ 1, where Π(0) = 1. However, this is the recurrence that (with equality)
defines the Catalan numbers, so we conclude that Π(m) ≤ Cm.

A (probably weak) upper bound for the number of crossing-free perfect bipartite
matchings in L × R is thus Cm

2. Indeed, for any permutation πL of L and any
permutation πR of R, there is at most one crossing-free perfect bipartite matching
in L × R that induces both permutations. Namely, it is the matching that connects
the jth point in πL to the jth point in πR for each j = 1, . . . ,m. See Figure 9 for
an example of two such permutations that do not yield a (straight-edge) crossing-free
matching.

We thus obtain the asserted upper bound Cm
2 = Cn/2

2 < 4n.

5. Two implications. We show how bounds for matchings can be used to infer
bounds for other problems, in particular spanning cycles and crossing-free partitions.

5.1. Spanning cycles. Apart from triangulations, crossing-free spanning cycles
(simple polygonizations) have received the most attention in this context (see the
original question in [32], the web site [15], or the book [12, section 8.4, Problem 8]).
It is easy to see the relation sc(P) ≤ pm(P)2 for sets P with an even number of points.
A better bound on sc(P) can be obtained via left-right matchings as follows.

Theorem 5.1. Let P be a set of n points in the plane. Then the number of
crossing-free spanning cycles satisfies

sc(P) ≤ (27/5 37/10 77/5)npoly(n) = O(86.8089n).

Proof. Let P be a given set of n points. We construct a new set P ′ of 2n points by
creating two copies p+, p− of each point p ∈ P , and by placing these copies covertically
very close to the original location of p, with p+ lying above p−.

Let π be a cycle in P . We map π to a perfect matching in P ′ as follows. For each
p ∈ P , let q, r be its neighbors in π. (i) If both q, r lie to the left of p, with the edge
qp lying above rp, we connect p+ to either q+ or q−, and connect p− to either r+ or
r− (the actual choices will be determined at q and r by similar rules). (ii) The same
rule applies in the case where both q, r lies to the right of p. (iii) If q lies to the left
of p and r lies to the right of p, then we connect p+ to either q+ or q−, and connect
p− to either r+ or r−. It is clear that the resulting graph π∗ is a crossing-free perfect

NUMBER OF CROSSING-FREE MATCHINGS 713

Fig. 10. A cycle in P induces a left-right perfect matching in P ′.

matching in P ′, assuming general position of the points of P , if we draw each pair of
points p+, p− sufficiently close to each other. See Figure 10 for an illustration.

We assign to each point p ∈ P a label that depends on π. A point whose two
neighbors in π lie to its left is labeled as a right point, a point whose two neighbors
in π lie to its right is labeled as a left point, and a point having one neighbor in π to
its right and one to its left is labeled as a middle point.

We assign the cycle π to the pair (π∗, λ), where π∗ is the resulting perfect matching
on P ′ and λ is the labeling of P , as just defined.

Each pair (π∗, λ) can be realized by at most one cycle π in P , by simply merging
each pair p+, p− back into the original point p. (The resulting graph need not be a
cycle; in general it is a collection of pairwise disjoint cycles.) It therefore suffices to
bound the number of such pairs (π∗, λ).

A given labeling λ of P uniquely classifies each point of P ′ as being either a
left point of an edge of the matching or a right endpoint of such an edge. Hence,
the number of crossing-free perfect matchings π′ on P ′ that respect this left-right
assignment is at most (27/10 3−3/20 77/10)2npoly(n). The number of labelings of P is
3n. Hence, the number of crossing-free cycles in P is at most (27/5 37/10 77/5)npoly(n),
as asserted.

Clearly, it follows from the proof that the bound holds for the number of crossing-
free spanning paths as well, and also for the number of cycle covers (or path covers)
of P .12

5.2. Crossing-free partitions. We now relate crossing-free partitions of a point
set P to matchings, thereby establishing an upper bound on cfp(P).

To this end, every crossing-free partition of P is mapped to a tuple (M,S, I+, I−)
where (see Figure 11)

(i) M is the matching in P , whose edges connect the leftmost point to the
rightmost point of each set in the partition with at least two elements (we refer to
each such segment as the spine of its set);

(ii) S is the set of all points that form singleton sets in the partition; and
(iii) I+ (resp., I−) is the set of points in P \ S that are neither the leftmost nor

the rightmost in their set, and which lie above (resp., below) the spine of their set.
We observe that M is crossing-free and that the partition is uniquely determined
by (M,S, I+, I−). Therefore, any upper bound on the number of such tuples will
establish an upper bound on the number of crossing-free partitions. For every crossing-
free matching M on P there are 3n−2|M | triples (S, I+, I−) which form a 4-tuple
with M (clearly, not all of them have to come from a crossing-free partition, so
we overcount). Therefore

∑
m 3n−2mmam(P) is an upper bound on the number of

crossing-free partitions.

12A slight improvement can be obtained by noting that when a cycle has j middle points, we can
derive from it 2j distinct matchings in P ′, by flipping the connections to some of the pairs of P ′ that
represent middle points.

714 MICHA SHARIR AND EMO WELZL

Fig. 11. Encoding a crossing-free partition: Spines, isolated (©), top (⊕), and bottom (�)
points.

Ignoring the 3n-factor for the time being, we have to determine an upper bound
on 3−2mmam(P), for which we employ the bound from inequality (19). We observe
that 3−2mGλ,μ(m,n) = Gλ/9,μ(m,n), and therefore

3−2mmam(P) ≤

⎧⎨
⎩

G16/9,7/3(m,n), m ≤ 2n
5 ,

G4/3,3(m,n)
G16,7/3(

2n
5 ,n)

G12,3(
2n
5 ,n)

, otherwise.
(20)

Since 16
9 ≥ 7

3−1 (see (18)), the peak will not occur in the “small m”-range of G16/9,7/3.

In its “big m”-range, the maximum occurs at m roughly 14n
37 (see (16)) which lies in

the interval [4
11 ,

2
5]. Also, G4/3,3 peaks for m ≤ 2n

5 since 4
3 ≤ 3 − 1 (consult (18)).

Therefore, the bound peaks at m roughly 14n
37 with the value

3n G16/9,7/3(� 14n
37 �, n) ≈n (24/7 3−1/2 1111/14 373/14)n .

Note that we could have estimated the number of 4-tuples by first choosing a
subset Q, which is the union of S and the endpoints of M , then choosing a match-
ing in Q, and then partitioning P \ Q into I+ ∪ I−. This leads to a bound of
≈n

∑
k

(
n
k

)
ck2n−k = (c + 2)n, where c is the constant in the bound for all match-

ings. This yields a bound of O(12.43n), which falls short of our bound obtained
above.

Theorem 5.2. Let P be a set of n points in the plane. Then the number of
crossing-free partitions satisfies

cfp(P) ≤
(
24/7 3−1/2 1111/14 373/14

)n

poly(n) = O(12.2388n).

6. Lower bounds. In this section we briefly derive the lower bounds mentioned
in Table 1. Most of them rely on an analysis of the so-called double chain, as it was
first considered by Garćıa, Noy, and Tejel [21] in the context of crossing-free graphs.
For matchings across a line (and left-right matchings) we use a different configuration.

NUMBER OF CROSSING-FREE MATCHINGS 715

U9

L9

Fig. 12. The double chain D18.

6.1. The double chain. Given m ∈ N, the double chain D2m consists of n :=
2m points; see Figure 12. There is an upper half Um of m points on the parabola

y = x2+1
2 with their x-coordinates in [−1,+1], and there is a lower half Lm of m points

on the parabola y = −x2+1
2 in the same x-range. The important property is that Um

and Lm are in convex position, and the relative interior of each segment connecting
a point from Um with a point from Lm is disjoint from the convex hulls of Um and of
Lm and thus cannot cross any segment connecting points within these sets.

Garćıa, Noy, and Tejel [21] show, among other things, that sc(D2m) = Ω(4.64n)
and that

pm(D2m) =

�m/2	∑
k=0

(
m

2k

)2

Ck
2 ≈n 3n.(21)

We wish to recapitulate the argument for the latter bound. A crossing-free perfect
matching with k inner edges within Um leaves m − 2k points in Um to be matched
to the same number of points in Lm. So within Lm, we also have k inner edges. If
we choose the 2k endpoints in Um for the inner edges (

(
m
2k

)
choices), then we have

Ck possibilities to connect them in a perfect crossing-free matching; the same bound
applies to Lm. The remaining points from Um and Lm allow exactly one crossing-free
perfect matching from the upper set to the lower set. This gives the bound in (21).

(The estimate for the sum builds on the observation that
∑N

i=0 ai
2 ≈N

(∑N
i=0 ai

)2
for nonnegative real numbers ai.)

In a similar fashion we can argue now for

ma(D2m) =

m∑
k=0

(
m

k

)2

Mk
2 ≈n 4n,

where Mk =
∑

i

(
k
2i

)
Ci = Θ(k−3/23k) is the kth Motzkin number that counts the

number of all matchings of k points in convex position [31].
Crossing-free partitions. Along similar lines we easily get a lower bound of

cfp(D2m) ≥
m∑

k=0

(
m

k

)2

Ck
2 ≈n 5n.

This bound for crossing-free partitions counts only a restricted class of such partitions,
namely, those composed of a matching between m− k points in Um and m− k points

716 MICHA SHARIR AND EMO WELZL

in Lm, together with crossing-free partitions among the remaining k points in Um and
among the remaining k points in Lm.

Let us perform an exhaustive counting of crossing-free partitions of the double
chain. Here are the ingredients.

Recall first that for N ∈ N0, i ∈ N, the number N can be written as an ordered
sum of i nonnegative integers in

(
N+i−1
i−1

)
ways, and as an ordered sum of i positive

integers in
(
N−1
i−1

)
ways.

Now we “prepare” the upper half Um for a crossing-free partition as follows. We
specify the number k of parts that extend to the lower half, and we also specify which
k contiguous nonempty subsequences of points of Um form the upper portions of these
extended parts; we refer to these sequences as docking places. If the overall size of
these docking places is k+�, we have to specify numbers ai ∈ N0, 0 ≤ i ≤ k, which are
the sizes of intermediate nondocking parts, and numbers bi ∈ N, 1 ≤ i ≤ k, which are
the sizes of docking parts, so that m = a0 +b1 +a1 + · · · bk +ak, with

∑
ai = m−k−�

(and so
∑

bi = k + �).

There are
(
m−k−�+(k+1)−1

(k+1)−1

)
=
(
m−�
k

)
ways to choose the ai’s, and

(
k+�−1
k−1

)
ways

to choose the bi’s. That is, the number of configurations with k docking places (with
the nondocking points already forming a crossing-free partition within Um) is exactly

m−k∑
�=0

(
m− �

k

)(
k + �− 1

k − 1

)
Cm−k−�.

Hence, repeating the same analysis for the lower half Lm and observing that, as in
the case of matchings, there is a unique way to connect the upper and lower docking
places in a noncrossing manner, we obtain

cfp(D2m) = Cm
2 +

m∑
k=1

(
m−k∑
�=0

(
m− �

k

)(
k + �− 1

k − 1

)
Cm−k−�

)2

.

So for an estimate up to a polynomial factor in m, it remains to find k and � so that
f(m, �, k) :=

(
m−�
k

)(
k+�−1
k−1

)
Cm−k−� is large. We have

f(m, �0.05m�, �0.22m�) > 5.23mpoly(m),

which gives cfp(D2m) > (5.23mpoly(m))2 = 5.23npoly(n). (The coefficients 0.05 and
0.22 were chosen via a numerical experimentation.)

Red-blue matchings. It is worthwhile to notice that if we color n points in convex
position, with n even, alternately red and blue along the boundary of their convex
hull, then all perfect matchings on this set are compatible with this coloring. That
is, we have a colored set of n points with Cn/2 ≈n 2n crossing-free perfect red-blue
matchings. Again, we will employ the double chain for a better lower bound.

Assume m to be even, consider D2m, and color the points in Um alternately red
and blue, starting with red at the leftmost point. Then color Lm alternately blue and
red, starting with blue at the leftmost point. Given that coloring, we generate perfect
red-blue matchings as follows:

(i) Choose some k, 0 ≤ k ≤ m
2 .

(ii) Select k red points in Um (
(
m/2
k

)
possibilities).

(iii) Select k blue points in Lm (
(
m/2
k

)
possibilities).

NUMBER OF CROSSING-FREE MATCHINGS 717

(iv) Match the selected red points and their next (to the right) blue neighbors
in Um with the selected blue points and their next (to the right) red neighbors in Lm.
This can be done in a unique crossing-free manner, which is also red-blue compatible.

(v) Match the remaining m−2k points in Um. By the way points were selected,
the remaining points are still alternately red and blue and thus allow Cm/2−k red-blue
matchings, and the same holds for the lower chain Lm.
This gives

m/2∑
k=0

(
m/2

k

)2

Cm/2−k
2 ≈m

m/2∑
k=0

(
m/2

k

)2

(4m/2−k)
2 ≈m 5m =

√
5
n

= Ω(2.23n)

perfect crossing-free red-blue matchings as claimed in Table 1. The above procedure
does not catch all possible perfect crossing-free red-blue matchings—a more accurate
analysis might lead to a better bound.

Perfect matchings in random sets. Finally, let us describe a distribution in the
plane such that the expected number of crossing-free perfect matchings of n i.i.d.
points, for n even, is at least 3n/poly(n). We draw a random point p by first choosing

an x uniformly at random in [−1,+1] and then letting p = (x, x2+1
2) or p = (x,−x2+1

2),
each of the two possibilities with probability 1

2 . A set P of n i.i.d. points from this
distribution is of the form Uk ∪ Ln−k with probability 1

2n

(
n
k

)
. Therefore,

E[pm(P)] =
1

2n

n∑
k=0

(
n

k

)
pm(Uk ∪ Ln−k) ≥

1

2n

(
n

n/2

)
pm(Un/2 ∪ Ln/2︸ ︷︷ ︸

Dn

) ≈n 3n.

6.2. Matchings across a line. We present a simple construction with about
2n different crossing-free perfect bipartite matchings across a line.

2k

2k 2k

2k

A B

C

D

Fig. 13. The lower bound construction for crossing-free perfect matchings across a line.

Assume that n = 8k, and refer to Figure 13. Take two disjoint horizontal segments
that lie on the x-axis to the left of the y-axis, and place on each of them 2k points.
Denote by A (resp., B) the set of points on the left (resp., right) segment. The set L
is A ∪ B. To form R, draw two lines that separate A and B, one with positive slope
and one with negative slope. Place 2k points on each of these lines to the right of
the y-axis, and denote the set on the line with positive (resp., negative) slope by C
(resp., D). The set R is C ∪D.

In order to specify a crossing-free perfect bipartite matching, we proceed as fol-
lows: Split A into two sets AC and AD of size k each, split B into two sets BC and
BD of size k each, split C into two sets CA and CB of size k each, and split D into

two sets DA and DB of size k each. The total number of choices is
(
2k
k

)4 ≈k 28k = 2n.

718 MICHA SHARIR AND EMO WELZL

Now we match AC with CA, AD with DA, BC with CB , and BD with DB , which can
always be done in a unique way that is noncrossing; see Figure 13.

We have thus shown that the following theorem holds.
Theorem 6.1. The maximum number of crossing-free perfect bipartite matchings

between two separated sets, each of n
2 points, is at least

(
2�n/8	
�n/8	

)4
≈n 2n.

Clearly, this also serves as a lower bound for the more general case of perfect
left-right matchings, for which we were not able to improve over the 2n bound.

7. Discussion, open problems.

Relating the basis-constants. For n ∈ N, let pm(n) := max|P |=n pm(P) and cpm :=

lim supn→∞
n
√

pm(n). (In fact, there is a unique limit for n over the even integers.) In
an analogous fashion, define the constants cma, csc, ccfp, and clrpm for the corresponding
matching bounds. Also, define

rdpm(n) := sup
μ

Eμ,n [pm(P)] and crdpm := lim sup
n→∞

n
√

rdpm(n),

where μ ranges over all distributions of the plane which let two points coincide with
probability 0, and Eμ,n denotes the expectation for P a set of n i.i.d. points from
distribution μ.

Apart from the absolute bounds that we derived for these constants, we have
shown a number of relations among them, e.g.,

cpm ≤ 21/3 5−1/6 cma (note also that cma ≤ cpm + 1),

csc ≤ 3 clrpm
2 (also csc ≤ cpm

2), and

ccfp ≤ cma + 2 (see remark preceding Theorem 5.2; note cma ≤ ccfp).

We also derived a better upper bound on crdpm than on cpm (while these constants still
share the same lower bound of 3). It would be interesting to know whether that is an
artifact of our proof. We believe not, supported by the following observation: If we
consider four points, then in nonconvex position they have three crossing-free perfect
matchings. If, however, we choose four i.i.d. points from any distribution, then they
are in nonconvex position with probability less than 5

8 [28], and therefore the expected
number of crossing-free perfect matchings has to be less than 5

8 · 3 + 3
8 · 2 = 2.625.

Conjecture 1. crdpm < cpm.
Also, can the bound for i.i.d. points be improved for specific distributions, uniform

distribution in a disk, say?

Counting and enumeration. As far as we know, the algorithmic complexity of
computing the number pm(P) of crossing-free perfect matchings for a set P of points is
open—neither a polynomial algorithm is known, nor any lower bounds, #P-complete,
say. The same is true for the numbers tr(P), sc(P), or cfp(P).

The situation looks somewhat more promising for enumeration. For triangulations
and crossing-free spanning trees of a point set, Avis and Fukuda [8] show how to
enumerate these objects in time poly(n) times the size of the output (see [27] for an
application for enumeration of crossing-free graphs on a point set).

Nothing of the kind is known for perfect crossing-free matchings and spanning
cycles. We mention on the side that maximal crossing-free matchings can be enumer-
ated efficiently, due to a general result of that kind for maximal cliques in graphs [11].
To see this, define a graph for an n point set as follows. Let the vertices be the

(
n
2

)
segments connecting pairs of points. Two such segments are connected by an edge if

NUMBER OF CROSSING-FREE MATCHINGS 719

they are disjoint, i.e., they neither cross nor share an endpoint. Now cliques in this
graphs correspond to crossing-free matchings of the point set.

For perfect crossing-free matchings, we would need maximum cliques in the con-
structed graph. For these, no efficient enumeration algorithms exist (and are unlikely
to exist at all), but it is still feasible that the special geometric structure allows such
an algorithm for our problem.

Acknowledgment. We thank Andreas Razen for reading a draft of the paper
and for several helpful comments.

REFERENCES

[1] O. Aichholzer, T. Hackl, B. Vogtenhuber, C. Huemer, F. Hurtado, and H. Krasser,
On the number of plane graphs, in Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Miami, FL, 2006, pp. 504–513.

[2] O. Aichholzer, F. Hurtado, and M. Noy, A lower bound on the number of triangulations
of planar point sets, Comput. Geom., 29 (2004), pp. 135–145.

[3] O. Aichholzer and H. Krasser, The point-set order-type database: A collection of applica-
tions and results, in Proceedings of the 13th Canadian Conference on Computer Geometry,
2001, pp. 17–20.

[4] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Ann.
Discrete Math., 12 (1982), pp. 9–12.

[5] E.E. Anclin, An upper bound for the number of planar lattice triangulations, J. Combin.
Theory Ser. A, 103 (2003), pp. 383–386.

[6] S.G. Akl, A lower bound on the maximum number of crossing-free Hamiltonian cycles in a
rectilinear drawing of Kn, Ars Combin., 7 (1979), pp. 7–18.

[7] H. Alt, U. Fuchs, and K. Kriegel, On the number of simple cycles in planar graphs, Combin.
Probab. Comput., 8 (1999), pp. 397–405.

[8] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 65 (1996),
pp. 21–46.

[9] H.W. Becker, Planar rhyme schemes, Math. Mag., 22 (1948-49), pp. 23–26.
[10] M. Benkert, I. Reinbacher, M. van Kreveld, J. S. B. Mitchell, J. Snoeyink, and A.

Wolff, Delineating boundaries for imprecise regions, Algorithmica, to appear.
[11] I.M. Bomze, M. Budinich, P.M. Pradalos, and M. Pelillo, The maximum clique problem,

in Handbook of Combinatorial Optimization, Vol. 4, D.-Z. Du and P. M. Pardalos, eds.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999, pp. 1–74.

[12] P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer-Verlag,
New York, 2005.

[13] V. Capoyleas, G. Rote, and G. J. Woeginger, Geometric clustering, J. Algorithms, 12
(1991), pp. 341–356.

[14] V.G. Deineko, M. Hoffmann, Y. Okamoto, and G. J. Woeginger, The traveling salesman
problem with few inner points, Oper. Res. Lett., 34 (2006), pp. 106–110.

[15] E. Demaine, Simple Polygonizations, http://theory.lcs.mit.edu/∼edemaine/polygonization/
(version January 9, 2005).

[16] L. Deneen and G. Shute, Polygonizations of point sets in the plane, Discrete Comput. Geom.,
3 (1988), pp. 77–87.

[17] M.O. Denny and C.A. Sohler, Encoding a triangulation as a permutation of its point set,
in Proceedings of the 9th Canadian Conference on Computer Geometry, 1997, pp. 39–43.

[18] A. Dumitrescu, On two lower bound constructions, in Proceedings of the 11th Canadian
Conference on Computer Geometry, 1999.

[19] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Monogr. Theoret. Comput. Sci.
EATCS Ser. 10, Springer-Verlag, Berlin, 1987.

[20] A. Errera, Mém. Acad. Roy. Belgique Coll. 8o, 11 (1931), p. 26.
[21] A. Garćıa, M. Noy, and J. Tejel, Lower bounds on the number of crossing-free subgraphs of

KN , Comput. Geom., 16 (2000), pp. 211–221.
[22] A. Garćıa and J. Tejel, A lower bound for the number of polygonizations of N points in the

plane, Ars Combin., 49 (1998), pp. 3–19.
[23] M. Grantson, C. Borgelt, and C. Levcopoulos, Minimum weight triangulation by cutting

out triangles, in Proceedings of the 16th Annual International Symposium on Algorithms
and Computation, Lecture Notes in Comput. Sci. 3827, Springer-Verlag, Berlin, 2006,
pp. 984–994.

720 MICHA SHARIR AND EMO WELZL

[24] R.B. Hayward, A lower bound for the optimal crossing-free Hamiltonian cycle problem, Dis-
crete Comput. Geom., 2 (1987), pp. 327–343.

[25] F. Hurtado and M. Noy, Counting triangulations of almost-convex polygons, Ars Combin.,
45 (1997), pp. 169–179.

[26] V. Kaibel and G. Ziegler, Counting lattice triangulations, in British Combinatorial Surveys,
C. D. Wensley, ed., Cambridge University Press, Cambridge, UK, 2003, pp. 277–307.

[27] A. Kawamoto, M.P. Bendsøe, and O. Sigmund, Planar articulated mechanism design by
graph theoretical enumeration, Struct. Multidiscip. Optim., 27 (2004), pp. 295–299.

[28] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl, Convex quadrilaterals and k-
sets, in Towards a Theory of Geometric Graphs, Contemp. Math. 342, J. Pach, ed., AMS,
Providence, RI, 2004, pp. 139–148.

[29] F. J. MacWilliams and N. J.A. Sloane, The Theory of Error-Correcting Codes, North–
Holland Math. Library 16, North–Holland, Amsterdam, 1977.

[30] P. McCabe and R. Seidel, New lower bounds for the number of straight-edge triangulations of
a planar point set, in Proceedings of the 20th European Workshop on Computer Geometry,
2004.

[31] T. S. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for
partitions of a polygon, for permanent preponderance, and for non-associative products,
Bull. Amer. Math. Soc., 54 (1948), pp. 352–360.

[32] M. Newborn and W.O. J. Moser, Optimal crossing-free Hamiltonian circuit drawings of the
Kn, J. Combin. Theory Ser. B, 29 (1980), pp. 13–26.

[33] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica, 17 (1997),
pp. 427–439.

[34] F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar
point set, J. Combin. Theory Ser. A, 102 (2003), pp. 186–193.

[35] R. Seidel, On the number of triangulations of planar point sets, Combinatorica, 18 (1998),
pp. 297–299.

[36] M. Sharir and E. Welzl, On the number of crossing-free matchings, (cycles and partitions),
in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
Miami, FL, 2006, pp. 860–869.

[37] M. Sharir and E. Welzl, Random triangulations of planar point sets, in Proceedings of the
22nd Annual ACM Symposium on Computer Geometry, Sedona, AZ, 2006, pp. 273–281.

[38] W.S. Smith, Studies in Computational Geometry Motivated by Mesh Generation, Ph. D. thesis,
Princeton University, Princeton, NJ, 1989.

[39] R.P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge,
UK, 1999.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 721–739

COUNTING AND ENUMERATING POINTED
PSEUDOTRIANGULATIONS WITH THE GREEDY FLIP

ALGORITHM∗

HERVÉ BRÖNNIMANN† , LUTZ KETTNER‡ , MICHEL POCCHIOLA§ , AND

JACK SNOEYINK¶

Abstract. We present an algorithm to enumerate the pointed pseudotriangulations of a given
point set, based on the greedy flip algorithm of Pocchiola and Vegter [Discrete Comput. Geom. 16
(1996), pp. 419–453]. Our two independent implementations agree and allow us to experimentally
verify or disprove conjectures on the numbers of pointed pseudotriangulations and triangulations of
a given point set. (For example, we establish that the number of triangulations is bounded by the
number of pointed pseudotriangulations for all sets of up to 10 points.)

Key words. algorithm, pseudotriangulation, triangulation, combinatorics, enumeration

AMS subject classifications. 52C25, 52C45, 65D18, 68U05, 68W05

DOI. 10.1137/050631008

1. Introduction. Algorithms that perform computations on sets of points in the
plane frequently benefit from using the points to decompose the plane into simpler
regions: triangulations, Voronoi diagrams, visibility maps, and Delaunay tessellations
are good examples [18]. Decompositions called pseudotriangulations or geodesic tri-
angulations have been studied for convex sets and for simple polygons in the plane
because of their applications to visibility [39, 40], ray shooting [17, 22], covering and
separation [42], and stretchability of pseudolines arrangements [44]. They have been
used in a number of kinetic data structures (KDSs) for collision detection among
moving objects in the plane [1, 30, 31] because they can be maintained by edge flips
and can form a partition of the free space, whose size is related to minimum link
separators of the objects. Streinu used them in an elegant proof, where it is possible
to unfold any chain in the plane without self-intersection [50].

Pseudotriangulations possess versatility and uniformity properties that make them
worthy of study. For instance, there is an edge-flip operation that applies to any
internal edge in a pointed pseudotriangulation, unlike the edge-flip operation in tri-
angulations. In section 2 we recall the definition of the edge-flip operation on pointed
pseudotriangulations and some results on the graph of pointed pseudotriangulations,
in which two pseudotriangulations are adjacent if they differ by a single edge flip.

The main result of this paper is an algorithm that uses edge flips to enumerate all
pointed pseudotriangulations of a given point set. There have been many interesting
results on counting and enumerating triangulations for a given set of points in the

∗Received by the editors April 24, 2005; accepted for publication (in revised form) April 14, 2006;
published electronically October 16, 2006. A preliminary version of this paper appeared in Proc.
ALENEX, 2005.

http://www.siam.org/journals/sicomp/36-3/63100.html
†CIS, Polytechnic University, Six Metrotech, Brooklyn NY 11201 (hbr@poly.edu). This author’s

research was partially supported by NSF Career grant 0133599.
‡Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

(kettner@mpi-sb.mpg.de).
§Ecole Normale Supérieure Paris, 45 Rue d’Ulm, 75230 Paris Cedex 05, France (pocchiola@

di.ens.fr).
¶Department of Computer Science, Sitterson Hall, University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599-3175 (snoeyink@cs.unc.edu).

721

722 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

plane. In a series of upper bounds on the number of triangulations of a given n-point
set, a bound of 59n+o(n) by Santos and Seidel [48] recently replaced the previous best
result of 28.12n+O(log n) by Denny and Sohler [20]. There are examples of point sets
with as many as 720.5n−Θ(log n) = Ω(8.48n) triangulations [8], and it is even known
that for any n-point set in general position in the plane, its number of triangulations
is Ω(2.33n) [9]. Aichholzer [3] has a counting algorithm (that can be executed from
his Web page for small point sets [2]) and Bespamyatnikh [14] and Ray and Seidel [46]
present enumeration algorithms. There remain elementary open questions, such as
what point sets have the most and the fewest triangulations. (Aichholzer [2] maintains
a list of the leading examples for up to 20 points.)

Less is known about the number of pointed pseudotriangulations of a given point
set. Even the following conjecture is open.

Conjecture 1 (see [19]). For any finite set of points in general position in the
plane, its number of triangulations is bounded by its number of pointed pseudotrian-
gulations with equality iff the points are in convex position.

Randall et al. [45] have established that the number of pointed pseudotriangula-
tions of any point set with i points inside the convex hull is upper bounded by 3i times
its number of triangulations. When combined with the best known upper bound on
the number of triangulations, this gives that the number of pointed pseudotriangula-
tions of an n-point set is bounded by 177.3n+o(n). Bespamyatnikh has extended his
enumeration algorithm [14] to pointed pseudotriangulations, but has yet to implement
it. Also, his algorithm cannot efficiently enumerate only the pointed pseudotriangula-
tions containing a given set of edges, which our algorithm can do. This in turn implies
a strong connectivity property that is useful when studying the graph of pointed pseu-
dotriangulations (see section 2.2, see also [47]).

Our algorithm, presented in section 3, is based on the greedy flip algorithm of Poc-
chiola and Vegter for computing the visibility complex of a scene of n convex objects
in the plane [40], and on its extension developed in [11]. In section 4, we provide some
implementation details; we have produced two independent implementations, which
may be obtained from http://geometry.poly.edu/pstoolkit/ and www.cs.unc.edu/
Research/compgeom/pseudoT/. In section 5, we present the results of experiments
that explore basic conjectures on the number of pointed pseudotriangulations and
triangulations. Both implementations agree in these experiments.

Note that Tutte [51] and others have studied the number of topological embed-
dings of triangulations and rooted triangulations when the locations of vertices are
not specified. Li and Nakano [35] enumerate topologically distinct triangulations with
a prescribed number of points on their boundaries. We focus strictly on the geometric
question of when the vertex set must be a given set of points in the plane.

2. Minimum, or pointed, pseudotriangulations. In this section, we recall
the definition and basic properties of pointed pseudotriangulations. These are also
called minimum by Streinu [50] because pointed pseudotriangulations are precisely
the pseudotriangulations with the minimum number of edges. Since these are the only
kind of pseudotriangulations we will consider in this paper, we will omit the words
“pointed” and “minimum” and simply refer to pseudotriangulations.

2.1. Definitions. Pseudotriangulations were defined by Pocchiola and Vegter
[41] for the case of two-dimensional convex sets. In this paper, we are solely concerned
with pseudotriangulations of point sets. One could replace each point p by a disk with
center p and radius ε, for some small ε > 0, and work within this framework. There
are many subtleties involved, however, which warrant a study of pseudotriangulations

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 723

Fig. 1. (a) A pseudotriangle and its horizontal and vertical tangents. (b) An acyclic planar set
of edges. (c) A maximal acyclic planar set of edges or, put differently, a pseudotriangulation. (d)
The canonical sorted pseudotriangulation.

of point sets in their own right. For instance, two disks have four bitangents, only
three of which can be nonintersecting; if we collapse the disks to points, all bitangents
collapse to a single edge. To ease the reader’s task and prevent circular dependencies,
we do not make reference to the case of convex sets except in the proof of the flip
property (Theorem 3).

Pseudotriangles. A pseudotriangle is a simple polygon in the plane that has ex-
actly three vertices, called corners, with internal angle less than π. The three corners
of a pseudotriangle decompose its boundary into three concave chains. The notions of
pseudoquadrangle and pseudo-n-gon are defined similarly by allowing four or n corners.

Let T be a pseudotriangle. A tangent to T is a line l in the plane that goes either
through a corner p of T and separates the two edges of T incident upon p, or through
a noncorner p of T and does not separate the two edges of T incident upon p. A pseu-
dotriangle has exactly one tangent line parallel to any given line. (See Figure 1(a).)

Pseudotriangulations. Let P be a set of n points in general position (i.e., no
three collinear points) and let E be the set of n(n − 1)/2 undirected line segments
with endpoints in P (edges for short). For the purpose of this paper, we assume that
there are no two parallel edges and no edge parallel to the x-axis.1

A subset H of E is called planar if its edges are pairwise interior disjoint, and it
is called acyclic if for any endpoint p of an edge of H there is a line through p that
leaves the edges of H incident upon p all on the same side. (See Figure 1(b).)

Following Streinu [50] we define a pseudotriangulation of P to be a maximal (for
the inclusion relation), acyclic, and planar subset of E; note that the set of edges
of the convex hull of P is included in every pseudotriangulation. (See Figures 1(c)
and (d) for an illustration.) The following lemma recalls the connection between the
acyclicity and the number of edges. It is stated and proved in [50, Theorem 3.1], and
an easy proof can be adapted from [41, Lemma 2].

Lemma 2. The bounded faces of the subdivision of the plane induced by a pseu-
dotriangulation of P are pseudotriangles. Furthermore the number of pseudotriangles
of the subdivision is n− 2 and its number of edges is 2n− 3.

For points in convex position, the set of pseudotriangulations is exactly the set of
triangulations; the external angle of each vertex on the convex hull is greater than π,
so triangulations are acyclic. We define a canonical sorted pseudotriangulation, as in
Figure 1(d), for any set of n points in general position by the following construction:
Sort the points lexicographically by (x, y) coordinates and form a triangle with the
first three points; then for each subsequent point in order, add one pseudotriangle by

1These two restrictions can be lifted, and indeed should be, in a good implementation. In
section 5, we apply the algorithm to the point sets from the database of Aichholzer, Aurenhammer,
and Krasser [5] which obey these restrictions.

724 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

Fig. 2. Four pseudoquadrangles. The last one, (d), uses both sides of one segment. Each
pseudoquadrangle has two diagonals (dashed segments), one on each shortest path that joins opposite
corners. Each diagonal forms a pair of pseudotriangles, and an edge flip replaces one diagonal with
the other.

creating two tangents to the convex hull. This pseudotriangulation, called incremental
in [1], has links to rigidity (where it is called a Henneberg construction) and has been
used in collision detection.

Edge flips in pseudotriangulations. In a triangulation, an edge flip replaces any
edge whose adjacent triangles form a convex quadrilateral by the opposite diagonal
of that quadrilateral. Edge flips, sometimes known as Lawson flips, are useful tools
for studying the properties of triangulations and for generating triangulations algo-
rithmically [25, 33, 37].

The situation is even nicer in pseudotriangulations of point sets, since any edge
that is inside the convex hull can be flipped, as described below. An almost identical
flip operation is defined for pseudotriangulations of disks by Pocchiola and Vegter [40].
For completeness, we give the definition below. In section 3.2, we consider algorithms
for computing flips.

Consider an edge e that is adjacent to two neighboring pseudotriangles. Each
endpoint of e is a corner in at least one of the neighboring pseudotriangles, since
each vertex has at most one angle that is greater than π; see Figure 2 for examples.
Removing edge e merges the two neighboring pseudotriangles into a pseudoquadran-
gle. Indeed, at each endpoint of e either two corners merge into one corner or one
corner merges with an angle greater than π. Thus, the six corners of the original two
pseudotriangles become the four corners of a pseudoquadrangle.

A diagonal for a pseudoquadrangle is defined by connecting opposite corners with
a shortest path through the interior. Such a shortest path cannot go through one of the
other two corners, so it must separate the pseudoquadrangle into exactly two regions,
each of which contains one of the other two corners. Hence, both regions must be
pseudotriangles sharing exactly one edge e, which is the sought-after diagonal. Since
there are two pairs of opposite corners, a pseudoquadrangle has two diagonals.

Now, any nonhull edge e is one diagonal of the pseudoquadrangle formed by
removing e. We define the edge flip for e as the operation that removes e and replaces
it with the other diagonal e′. Figure 2 shows four examples. It should be clear that
flipping the new edge e′ restores the original pseudotriangulation.

2.2. Graph and polytopes of pseudotriangulations. Formally, the graph
of pseudotriangulations for a given set of points contains a node for each possible
pseudotriangulation. An arc connects two nodes if the two corresponding pseudo-
triangulations differ by a single edge flip. The graph is undirected since flips are
reversible.

In a previous version, we had shown, using the canonical sorted pseudotriangu-
lation, that the graph of pseudotriangulations is connected and given a bound of
O(n2) on its diameter. In 2003, Aichholzer et al. [7] improved the diameter bound to

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 725

Fig. 3. (a) An acyclic and planar subset K of E. (b) The set EK = {e | K ∪ {e} is acyclic
and planar}.

O(n log2 n), Bereg [13] to O(n log n), and more recently, Aichholzer et al. [4] improved
it to O(n log k), where k is the number of convex layers of the point set.

The graph of pseudotriangulations has an even stronger connectivity property. If
we consider only the pseudotriangulations that contain a chosen (acyclic and planar)
set of edges, then we get a subgraph induced by the nodes corresponding to those
pseudotriangulations, whose arcs join nodes that correspond to flips of the edges not
in the chosen set of edges. This subgraph is connected. As we will see, this is a simple
consequence of our enumeration algorithm. To put it in a different terminology [36],
one can say that the poset, ordered by reverse inclusion, of planar acyclic sets of edges
that contain the edges of the convex hull is an abstract polytope whose 1-skeleton is
the graph of pseudotriangulations. Rote, Streinu, and Santos have shown that this
abstract polytope is actually geometrically realizable, using a beautiful relation to
minimally rigid graphs [47].

3. Enumerating pseudotriangulations. Our goal is to enumerate the set of
pseudotriangulations over a given set of points. To this end we are going to define
a total order ≺ on the set of edges and a binary tree of pseudotriangulations whose
leaves considered as increasing sequences of edges are the pseudotriangulations ordered
lexicographically; furthermore two adjacent pseudotriangulations in the tree are either
identical or related by a flip operation. Our enumeration algorithm is a traversal of
this tree guided by the aforementioned total order ≺. Our technique can also be
applied to enumerate the pseudotriangulations that contain a given set of edges.

3.1. The flip property. We introduce some definitions and prove a flip property
that is essential to proving the correctness of the enumeration algorithm. For each
edge e ∈ E, define Θ(e) as the angle in [0, π) that the edge e directed upward makes
with the positive horizontal direction Ox.

Given an acyclic planar subset of edges K ⊆ E, we denote by EK the set of edges
e ∈ E that can be used to complete K to a pseudotriangulation, i.e., such that K∪{e}
is acyclic and planar. See Figure 3 for an illustration.

We define a partial order ≺K on EK as follows: e ≺K e′ if there exists a sequence
of edges e1 = e, e2, . . . , ek = e′ such that ei and ei+1 share a common endpoint and
angles Θ(ei) < Θ(ei+1). According to the general position assumption, two edges
sharing an endpoint have different angles and therefore are comparable. It follows
that the edges of a pseudotriangle are pairwise comparable and are encountered in
increasing order when traversing the boundary of the pseudotriangle counterclockwise,
starting from its point of horizontal tangency. Following [40, Lemma 7] we observe
that two crossing edges in EK are the diagonals of some pseudoquadrangle (with edges
in EK) and consequently are comparable with respect to ≺K .

A filter for a poset (X,≺) is a subset I of elements such that for any x ≺ y, if
x ∈ I then y ∈ I. In particular, to each angle θ corresponds a filter IK,θ of the poset

726 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

Fig. 4. The set G(Iπ/2) is constructed by adding edges from the filter Iπ/2, i.e., edges with
increasing angles greater than π/2, until a pseudotriangulation is formed. (a) illustrates that it
is not sufficient to consider angles in [π/2, π) only, but by “wrapping around” (b) we complete a
pseudotriangulation.

Fig. 5. Illustration of the flip property for points.

(EK ,≺K) whose elements are the edges e′ of EK whose angle Θ(e′) is greater than θ.
Note that IK,0 = EK , and I∅,0 = E.

For any filter I of the poset (EK ,≺K), we define a maximal planar acyclic set of
edges G(I) = {e1, e2, . . . , ek} recursively: edge e1 is minimal in I, and, for i ≥ 1, edge
ei+1 is minimal in the set of edges e ∈ I \ {e1, . . . , ei} such that K ∪ {e1, . . . , ei, e}
is acyclic and planar. Since two edges that cross or that share an endpoint are
comparable, e1, e2, . . . , ek is independent on the choice of the minimal element at
each step, or in other words, the set G(I) is well defined.

We would like for G(I) to be a pseudotriangulation, and for this it suffices to make
sure that G(I) has 2n − 3 edges. This is not always possible, however, due to the
fact that we chose the principal determination of Θ in [0, π), therefore introducing a
discontinuity in the comparisons, and forcing the algorithm to stop perhaps too early.
(See Figure 4.) To circumvent this, we replace, in the previous definitions, the set of
edges EK with its infinite cover EK = EK × Z: elements of EK are still called edges,
and the angle Θ(v) of an edge v = (e, k) of EK is defined to be the real Θ(e) + kπ.
The operator on EK that increases the angle of an edge by π is denoted ι. It is not
hard to see that if I is a filter of (EK ,≺K), then its projection on the first factor EK

is onto, from which we deduce that G(I) is a pseudotriangulation. In this context
we redefine the flip operation as follows: To flip e in G(I) means to replace e with
ι(e) if e ∈ K := K × Z or if e is a hull-edge, otherwise to perform an edge flip on e
and assign the angle of the diagonal by adding a multiple of π to fall into the range
(Θ(e),Θ(e) + π).

The pseudotriangulation G(I∅,0) is called the horizontal greedy pseudotriangula-
tion and plays a particular role in our enumeration algorithm. Below we explain how
to efficiently compute this pseudotriangulation.

We are now in a position to state the flip property. This property states that
flipping a minimal edge in a pseudotriangulation of the form G(I) results in a pseudo-
triangulation of the form G(J), and this will be crucial in our enumeration algorithm.
See Figure 5 for an illustration.

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 727

Theorem 3 (flip property for points). Let I be a filter of the poset (EK ,≺K)
and let e be minimal in I. Then G(I \ e) is obtained from G(I) by flipping e.

The proof relies on the theory of pseudotriangulations developed for bounded two-
dimensional convex sets in [11, 40]. The heart of the proof is to replace each point
p ∈ P by the disk with center p and radius ε, for some small ε > 0, and to derive
the flip property for points from the “flip property for disks” (cf. [40, Theorem 12]
and [11, Theorem 5]). There are many subtleties involved, however. For one thing,
disks have four bitangents, only three of which can be nonintersecting, and they all
map to a single edge of the point set. Nevertheless, with a bit of care, it is possible
to carry the flip property from the case of disks to the case of points.

We briefly recall the terminology and the results of [11, 40] needed for our purpose.
Let O1, O2, . . . , On be a collection of n pairwise disjoint bounded closed convex subsets
of the plane with nonempty interiors and regular boundaries (obstacles or disks for
short). We assume that there is no line tangent to three disks. A bitangent is a
closed undirected line segment whose supporting line is tangent to two disks at its
endpoints. A free bitangent is a bitangent whose interior lies in free space, defined
as the complement of the disks. In the following considerations all bitangents are
free. A set of (free) bitangents is called planar if its elements are pairwise disjoint. A
pseudotriangulation (of the Oi’s) is a planar set of bitangents that is maximal for the
inclusion relation. It is known that a pseudotriangulation contains 3n− 3 bitangents
that decompose the convex hull of the disks into 2n−2 pseudotriangles where, in this
context, a pseudotriangle is a simply connected region of the plane whose boundary
consists of three convex curves that share a tangent at their common endpoint and
which is included in the triangle formed by the three endpoints of these convex curves.

We denote by B the set of (free) bitangents and we introduce its infinite cover
B = B × Z: elements of B are still called bitangents; the angle Θ(v) of the bitangent
v = (b, k) ∈ B is defined to be the real Θ(b)+kπ, where Θ(b) is the angle in [0, π) that
b, oriented upward, makes with the horizontal positive direction Ox, and the direction
of v ∈ B is the unit vector (cos Θ(v), sin Θ(v)) ∈ S

1; the operator that increases the
angle of a bitangent by π is denoted ι.

Given a planar subset H of B, we introduce the set BH of bitangents of B that
cross no bitangent of H properly (thus H ⊆ BH). The set BH is endowed with a
partial order ≺H defined as follows: b ≺H b′ if there exists a sequence of bitangents
b1 = b, b2, . . . , bk = b′ in BH such that bi and bi+1 touch the same oriented disk2 and
such that Θ(bi) < Θ(bi+1). Each (proper) filter I of (BH ,≺H) is associated with its
so-called greedy pseudotriangulation

G(I) = {b1, b2, . . . , b3n−3} ⊂ I

defined as follows: (1) b1 is minimal in I, and (2) bi+1 is minimal in the subset of
bitangents of I crossing none of the bitangents b1, b2, . . . , bi. Since crossing bitangents
are comparable (cf. Lemma [40, Lemma 7]), G(I) is well defined and is a superset of
the set of minimal elements of I. To flip b in G(I) means to replace b with ι(b) if
b ∈ H := H × Z or if b is a hull bitangent, otherwise to replace b with the second
diagonal (with the appropriated angle) of the pseudoquadrangle obtained by merging
the two pseudotriangles incident upon b in G(I).

2An oriented disk is a disk with a “direction,” “sense,” or “orientation” assigned to its boundary.
An oriented disk and a bitangent touch each other, or are tangent to each other, if their directions
at the point of touching are the same.

728 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

Theorem 4 (flip property for disks [11, 40]). Let b be minimal in the filter I of
the poset (BH ,≺H). Then G(I \ b) is obtained from G(I) by flipping b.

According to the flip property, the mapping that associates with the bitangent
b ∈ BH the bitangent b′ ∈ BH defined by {b′} = G(I \ b) \G(I), where b is minimal in
I, is well defined (because it is independent of I), one-to-one, and onto; the bitangent
b′ is denoted φ(b;H).

We turn now to the proof of the flip property for points. We split the proof into
several lemmas. The key idea of the proof is to define an epimorphism of posets to
carry the flip property from the case of disks to the case of points. Before defining
this epimorphism, we reformulate the greedy procedure in terms more suitable for our
subsequent analysis.

Lemma 5. Let I be a filter of BH and let F be initial in I; i.e., I \ F is a
filter. Then G(I) = G(I(F)), where I(F) is the filter of the poset BH∪G(F) defined by
I(F) = I ∩ BH∪G(F). A similar result holds when taking K and EK for H and BH ,
respectively.

Proof. Since F is initial, G(F) is a subset of G(I). The lemma follows
easily.

Now we turn to the construction of the epimorphism. For ε > 0 let Oi(ε) be the
disk with center pi and radius ε. Since the points are in general position, there exists
a real ε0 > 0 such that for all ε < ε0 no line pierces three of the disks Oi(ε) and no
horizontal line pierces two disks. (Remember that we assumed that no two points
have the same ordinate.) We choose such an ε, introduce the set B of 2n(n−1) (free)
bitangents of the Oi(ε)s, and denote by η the four-to-one mapping that associates with
a bitangent b in B tangent to the disks Oi and Oj the edge η(b) of E with endpoints
pi and pj . Our first lemma provides a characterization of acyclicity in terms of the
crossing predicate.

Lemma 6. Let K be a planar subset of E. Then K is acyclic iff for all maximal
(for the inclusion relation) planar subsets H of η−1(K) one has η(H) = K.

Proof. The “if part” is easy. To prove the “only if part” we show that if there
exists an edge e ∈ K and a maximal planar subset H of η−1(K) such that e /∈ η(H),
then K is not acyclic. Let p and q be the endpoints of e and let p+ (resp., p−) be the
set of edges e′ ∈ K such that (i) p is the endpoint of e′, i.e., e′ = [p, r] for some point
r, and (ii) the triplet of points (p, r, q) is oriented counterclockwise (resp., clockwise).

The assumption that e /∈ η(H) is equivalent to saying that for all b ∈ η−1(e) there
exists a bitangent b′ of H such that b and b′ are crossing. A simple case analysis shows
that this is equivalent to saying that the sets p+ ∪ q+, p+ ∪ q−, p− ∪ q+, and p− ∪ q−

are nonempty; from this, we deduce that p+ and p− (or q+ and q−) are nonempty
and consequently that K is not acyclic.

Our next lemma is the key to the construction of an epimorphism from some
BH ⊆ η−1(EK) onto EK .

Lemma 7. Let K be an acyclic and planar subset of E and let H be a maximal
(for the inclusion relation) planar subset of η−1(K). Then

1. η(BH) = EK , and
2. if b ≺H b′, then η(b) 	K η(b′).
Proof. Claim (1) is a consequence of Lemma 6. Indeed, let K ′ = K ∪ {e} be

planar and acyclic and let H ′ ⊇ H be a maximal planar subset of η−1(K ′) that
contains H. According to Lemma 6 applied to the pair K ′, H ′, one has η(H ′) = K ′

and consequently some bitangent of η−1(e) ∈ BH . Claim (2) is a simple consequence
of Claim (1) and the observation that if b and b′ touch the same oriented disk with

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 729

Θ(b) < Θ(b′), then η(b) and η(b′) share a common endpoint and Θ(η(b)) ≤ Θ(η(b′))
with equality iff η(b) = η(b′).

In other words, the restriction ηH of η to BH is a mapping onto EK that preserves
the orderings. We show that ηH preserves also the greedy pseudotriangulations.

Lemma 8. Let K be an acyclic and planar subset of E, let H be a maximal planar
subset of η−1(K), and let I be a filter of (EK ,≺K). Then

1. η−1
H (I) is a filter of (BH ,≺H), and

2. η(G(η−1
H (I))) = G(I).

Proof. Claim (1) is a simple consequence of Lemma 7. Claim (2) is proved by
induction on the set of planar acyclic subsets K of E ordered by reverse inclusion.
Let J = η−1

H (I). This is clearly valid if K is maximal since in that case EK = K,
BH = H, and consequently G(I) = I \ ι(I) and G(J) = J \ ι(J) from which we deduce
that η(G(J)) = G(I). Assume now that K is not maximal and let e be minimal in I.
If e /∈ K, we set K ′ = K ∪ {e} and H ′ = H ∪ G(η−1

H ({e}). According to Lemma 5,
G(I) = G(I ′) and G(J) = G(J ′), where I ′ = I(η−1

H {e}) and J ′ = J({e}). One can
check that I ′ = η−1

H′ (J ′), from which the result follows by induction since K ⊂ K ′. If
e ∈ K, we replace e with an initial segment of J that contains exactly one element
not in K and proceed similarly.

We are now ready to carry the flip property from the case of disks to the case of
points.

Proof of Theorem 3. Let J = η−1
H (I) and let F = η−1

H (e). Note that F is initial
in J since J \ F = η−1

H (I \ e) (cf. Lemma 8, claim 1). Thanks to the flip property for
disks, the set G(J \ F) is obtained from G(I) by successively flipping the bitangents
of F . Therefore one has

G(J \ F) = (G(J) \G(F)) ∪ φ(F ;H) \ F

and consequently, according to Lemma 8,

G(I \ e) = (G(I) \ e) ∪ η(φ(F,H) \ F).

Since G(I \ e) and G(I) have the same cardinality, namely 2n− 3, it follows that
G(I \ e) \ G(I) is reduced to a single edge, which is one of the edges of
η(φ(F ;H) \ F).

3.2. Algorithms for edge flip. In this section we sketch two implementations
of the edge-flip operation, assuming that the pseudotriangulation is stored in a data
structure that allows us to access its edges in order around a given face. Standard
structures for planar subdivisions, such as doubly connected edge lists or quadedge
[18, 23], provide this.

Rotational sweep for edge flip. We can determine the new diagonal obtained by
flipping edge e using a rotational sweep somewhat similar to the rotating caliper
[18]. The algorithm proceeds by rotating parallel tangents simultaneously along the
interiors of the two pseudotriangles adjacent to e. Starting from the edge e that we
want to flip, the two tangents initially coincide but have opposite orientations. If we
sweep through the angles, the two tangents immediately separate and meet again only
when they reach the new diagonal. We can discretize this sweep because the tangents
rotate around vertices until they are collinear with the next edge of a pseudotriangle.
Then they advance to the next vertex. At corners, the tangent changes its orientation
with respect to the edge orientation. The sweep terminates when the tangents again
coincide. See Figure 8 for an implementation.

730 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

A matroidal flip algorithm. The predicate in the rotational sweep is a test ordering
two vectors. One can also give an implementation that only uses the orientation
predicate left turn(p, q, r), which returns true iff the point sequence p, q, r forms a
left turn. We can call such an algorithm “matroidal,” in that it uses only information
about the order type of the points [15, 32]. Such algorithms are usually better in that
they have fewer degenerate configurations, lower arithmetic complexity, and generalize
to other matroids.

The idea behind the algorithm is to identify the flip as the only diagonal edge on
the shortest path connecting the opposite corners. The funnel algorithm of Lee and
Preparata [34] can be modified [24] to compute shortest paths in linear time and to
return the unique edge not on the boundary of the pseudoquadrangle. Alternatively,
one can compute common tangents for the pairs of chains in a pseudoquadrangle to
identify the diagonals. Tangents for two separated chains can be found in O(log n)
time [29, 38]. When computing the visibility graph of a set of convex obstacles,
Angelier and Pocchiola [11] use a clever amortization scheme to compute tangents in
O(1) time apiece.

3.3. The enumeration algorithm. In this section, we consider the total order
< on E and E induced by Θ. This order is compatible with, and linearly extends,
(E,≺). Although we assume general position, the case of parallel edges could be
handled by considering a linear extension of (E,≺).

In the algorithm, we speak of edges in E as colored red or blue. The red edges
are fixed and will not be flipped; the blue edges can be flipped. We now describe
the following binary tree T = T (P) of {red,blue}-colored pseudotriangulations of P .
Each node of the tree corresponds to a colored pseudotriangulation G, and we identify
the node of the tree with its pseudotriangulation G. The tree is defined as follows:

1. The root of T is the horizontal greedy pseudotriangulation G(I∅,0); all its
edges are blue.

2. Let G be a node of T : If either (i) a blue edge of G has an angle ≥ π, or (ii)
all the edges of G are red, then G is a leaf of the tree. Otherwise, let e be a
minimal blue edge, e.g., the blue edge with minimum angle Θ(e). The right
child of G is obtained from G by flipping e, and its left child is obtained by
changing the color of e to red.

A leaf G satisfying 2(i) is called a blue leaf, and a leaf satisfying 2(ii) is called a
red leaf. Blue leaves stop the algorithm from enumerating a pseudotriangulation G
several times; without stopping for blue leaves, the tree would be infinite, and each
pseudotriangulation would be reported for every value of Θ with the same remainder
modulo π.

The algorithm simply explores the tree T by a depth-first traversal, visiting the
left child before the right child, and reporting the red leaves in the order in which
they are discovered.

The algorithm is fully described once we explain how to find the minimal blue
edge e. In the most direct implementation, the blue edges are stored in a priority
queue, ordered by Θ. The edge e at the top of the queue is removed upon descending
to either child, and edge e′ is enqueued when descending to a right child iff its angle
Θ(e′) < π (otherwise the right child is a blue leaf and the recursion stops).

It is not necessary to store the priority queue in the recursion stack if we simply
add edge e back to the queue when returning to the parent after visiting the right
subtree. Thus, the stack grows by O(1) at each recursive call.

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 731

Theorem 9. The set of red leaves of T (P) ordered from left to right (in the order
they are reported by the algorithm) is the set of pseudotriangulations of P ordered
lexicographically by Θ.

Proof. Let G be a pseudotriangulation with edges in E and let G0, G1, . . . Gi, . . . Gk

be the path in the tree defined inductively: G0 is the root of the tree and Gi+1 is the
left child of Gi if the minimal blue edge of Gi belongs to G; otherwise Gi+1 is its right
child. Let Ki be the set of red edges of Gi, edge ei be the minimal blue edge of Gi,
and filter Ii = IKi,Θ(ei) of EKi

. We claim that
1. Ki ⊆ G,
2. G \Ki ⊂ Ii,
3. G(Ii) = (Gi \Ki) ∪ ι(Ki),

from which we deduce that Gk is a red leaf and G = Gk.
Claims (1), (2) and (3) are easily proven by induction on i using the flip property

of the previous section. The proof is finished by noting that the red leaves of the tree
are pseudotriangulations with edges in E.

Note that the theorem is also valid for any total order < that is a linear extension
of ≺, yielding a well-defined tree T<(P). Since Θ induces such a total order and is
easy to compute, thanks to the geometry, it is convenient to use it. See remark 1
below.

Theorem 10. The height of the tree T (P) is at most n(n− 1)/2.
Remarks. 1. In this formulation, the algorithm depends on the order Θ of the

edges, which is not implied by the orientation of all triplets of points. For this reason,
the algorithm as described here is not matroidal. It is, however, possible to give a
matroidal algorithm, by selecting for e any blue edge that is minimal for the partial
order ≺. In this case the tree T (P) isn’t uniquely defined, and finding such an edge
is more difficult, necessitating the maintenance of the antichain (Î in the notation of
[11]) associated with the current filter I while traversing the tree.

2. Maintaining the dual pseudotriangulation of G (in the terminology of [11])
while traversing the tree, where an edge and its dual have the same color, allows us
to retrieve e when coming back from the right subtree. Hence instead of storing a
recursive stack to remember e on the way up the tree, the algorithm can maintain only
G and its dual. This changes the space complexity of the algorithm from quadratic
to linear.

3. If K is an acyclic and planar set of edges, then by coloring the edges of K
red, and replacing the root of the tree with the horizontal greedy pseudotriangulation
G(IK,0) ⊆ EK , the algorithm enumerates the set of pseudotriangulations that contain
K. Observe that this proves that the subgraph of pseudotriangulations that contain
K is connected.

3.4. The horizontal greedy triangulation. We now explain how to compute
G(I∅,0). In fact, the algorithm can be adapted by a simple rotation to compute G(Iθ)
for any θ ∈ [0, π). It is convenient for the exposition (and for the algorithm) to order
the points of P by lexicographical order, i.e., p1 <yx p2 <yx · · · pn.

The construction uses lower and upper horizon trees, defined here as follows. For
all point pi with 1 ≤ i < n, denote by �(p) the point pj , for j > i, which minimizes
the angle Θ(ppj) ∈ [0, π). Define �(pn) = pn. Since �n(p) = pn, the set of edges of the
form p�(p) is a tree whose root is pn (it is connected because every pi has a path to
pn, and it has n vertices and n − 1 edges). We call that tree the lower horizon tree
and denote it by T�(P).

732 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

Fig. 6. (a) shows point set, (b) its lower horizon tree and (c) its upper horizon tree; (d)
shows that the superimposition of the horizon trees yields pseudoquadrangles (shaded areas) and
pseudotriangles.

ComputeLowerHorizonTree(P)
Effects: computes �(pi) for every pi ∈ P

1: �(pn) ← pn
2: for i ← n− 1 downto 1 do
3: j ← i + 1
4: while right turn(pi, pj , �(pj)) do
5: j ← j + 1
6: �(pi) ← pj

ComputeUpperHorizonTree(P)
Effects: computes u(pi) for every pi ∈ P

1: u(p1) ← p1

2: for i ← 2 to n do
3: j ← i− 1
4: while right turn(pi, pj , u(pj)) do
5: j ← j − 1
6: u(pi) ← pj

Fig. 7. Computing the lower and upper horizon trees.

Likewise, for point pi with 1 < i ≤ n, denote by u(p) the point pj , j < i, which
minimizes the angle Θ(ppj) ∈ [π, 2π) (define u(p1) = p1). The set of edges of the form
pu(p) is also a tree, of root p1, which we call the upper horizon tree and denote by
Tu(P).

The following lemma, first observed in [43], forms the basis of the algorithm. See
Figure 6 for an illustration.

Lemma 11. Let K = T�(P) ∪ Tu(P) be the set of edges belonging to the horizon
trees.

1. K contains all the edges of the convex hull of P .
2. K decomposes the convex hull of P into regions, each of which is either a

pseudotriangle or a pseudoquadrangle.
3. K ⊆ G(I∅,0).
With this lemma, the algorithm is straightforward. The pseudocode is given in

Figure 7. It computes �(p) for each p ∈ P by Andrew’s variant of Graham’s convex
hull algorithm [10]. We need the predicate right turn(p, q, r) which returns true if
the point sequence p, q, r forms a right turn. (In particular, the inner while loop will
stop at j = n since right turn(pi, pn, pn) is always false.)

Note that the algorithm still produces the correct tree if two edges are parallel,
or even if two points have the same ordinate (thanks to the lexicographical order).

Computing u(p) is performed by a similar algorithm. The initial sorting takes
O(n log n) time. Once the horizon trees have been computed in O(n) time, the sub-
division they induce can be constructed in linear time, and each region can be visited
to determine if it is a pseudotriangle or pseudoquadrangle. A pseudoquadrangle can
be split in time linearly proportional to its number of edges by computing its two
diagonals and inserting the one with smaller Θ. Thus, once the points are sorted
lexicographically, the algorithm computes G(I∅,0) in linear time.

3.5. Complexity analysis. The algorithm spends O(n) time for a flip or a
priority queue operation in the worst case, and hence time O(n) per edge of the tree.

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 733

Since the number of edges is the same as the number of internal nodes, which is
also the number of leaves minus one, the algorithm spends amortized time O(n) per
pseudotriangulation.

Using a heap for the priority queue reduces the cost of the priority queue opera-
tions to O(log n). Moreover, using binary search can reduce the complexity of the flip
algorithm to O(log n) as well, at the cost of maintaining the corners of pseudotriangles
(which can be done in O(1) time after a flip) and maintaining the boundary of the
pseudotriangles as splittable queues as in [40].

Unfortunately, this is the time spent per leaf, counting both the nr red and the nb

blue leaves. The following ratio is therefore important for analyzing the complexity of
the algorithm: ρ = (nb + nr)/nr. We initially conjectured a bound of 2 on this ratio,
which was disproved by experiments (see next section). Currently, the best upper
bound we have is the number of edges of a pseudotriangulation not on the convex
hull, i.e., 2n− 3 − h.

To conclude, the algorithm is set up in time O(n log n) to compute the horizontal
greedy triangulation G(I∅,0) and insert its edges into the priority queue. The running
time of the algorithm per red leaf of the tree (i.e., pseudotriangulation of P) is upper
bounded by O(ρn) = O(n2) and can be lowered with more complicated algorithmic
machinery to O(ρ log n) = O(n log n). All of this is in the worst case.

Note that the average complexity of a pseudotriangle is O(1); thus on the average
the flip will be performed in constant time. We expect that ρ is much smaller than n,
although not constant (ρ = O(log n) seems a tempting conjecture, but we do not have
a shred of evidence to support it). Thus, in practice we expect that the amortized
cost per pseudotriangulation is much lower than O(n log n), perhaps O(ρ). In order
to state such a result, however, we lack what is needed, namely, an amortized bound
for the flip (in the spirit of the analysis developed in [11]) and an upper bound for ρ.

Note finally that the number of pseudotriangulations grows exponentially fast (it
is at least the Catalan number Cn−2 for convex configurations [6]), thus limiting the
domain of practicality of our algorithm in the low tens (resp., twenties). Thus, all the
asymptotic complexities should be taken with a grain of salt. A good implementation
will settle for low-complexity algorithms as well as simplicity of the code.

4. Implementation issues. Two independent implementations based on the
above algorithm have been developed in order to ensure the correctness of the exper-
imental validation of the conjecture.

4.1. Half-edge data structure. In both implementations, we chose to repre-
sent pseudotriangulation by a half-edge data structure (HDS), a.k.a. a doubly con-
nected edge list (DCEL). One implementation is based on Cgal and described in
[26, 21], and the other is based on an independent half-edge data structure described
in [16].

An HDS is an edge-based data structure capable of storing a pseudotriangulation,
or more generally, any connected planar set of edges. Each edge is split into two half-
edges with opposite orientations. By convention, the half-edges incident to a face are
oriented counterclockwise around the face. An opposite pointer links a half-edge
to its opposite half-edge, and next and prev pointers links it to the next half-edge
in counterclockwise orientation along the incident face. The incident vertices of a
half-edge are named the source and target, as in [16].

4.2. Flip algorithm. Since the algorithm needs to examine the flip edge and
decide whether to actually perform the flip or not, it is advantageous to implement

734 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

FindPseudoFlip(h)
Returns: a pair (h′, g′) such that the edge joining source(h′) and source(g′)
is
the flip of the edge supporting h.

1: g ← opposite(h)
2: reverse h←is corner(h), reverse g←is corner(g)
3: while true do
4: {decide which of g or h is the next tangent to jump to the next vertex}
5: if rotate ccw less(source(h), target(h), source(g), target(g))

is the same as (reverse h=reverse g) then
6: {test if advancing g crosses over h and thus is the solution}
7: if left turn(source(h), source(g), target(g))=reverse g then
8: return (h, g)
9: {not a solution yet, advance g}

10: g ← next(g)
11: if is corner(g) then
12: reverse g←negate(reverse g)
13: else
14: {test if advancing h crosses over g and thus is the solution}
15: if left turn(source(h), source(g), target(g))=reverse h then
16: return (h, g)
17: {not a solution yet, advance h}
18: g ← next(h)
19: if is corner(h) then
20: reverse h←negate(reverse h)

Fig. 8. An implementation of the rotational flip method.

the rotational sweep method. Moreover, in this case, neither the flip algorithm nor
the enumeration algorithm needs the reverse prev pointers, thus saving space and
execution time. For simplicity, we present below an implementation that uses prev

pointers, namely, in the is corner function. Eliminating prev pointers is possible
(see the implementation in http://geometry.poly.edu/pstoolkit/) but complicates the
pseudocode.

The function FindPseudoFlip returns two half-edge handles whose source ver-
tices form the endpoints of the flipped diagonal rotated counterclockwise from the old
diagonal. The function does not actually flip the diagonal. Note that the result could
include the old diagonal, which needs to be considered before removing the old diag-
onal. In the function, h and g are the half-edges whose source vertices are in contact
with the two rotating tangents. The two flags reverse h and reverse g indicate the
relative orientation of the tangents to the half-edge h and g, respectively.

The pseudocode is presented in Figure 8. This function needs two geometric pred-
icates: left turn(p, q, r) returns true if the point sequence p, q, r forms a left turn,
while rotate ccw less(p, q, r, s) returns true if the angle from the oriented segment
pq to the oriented segment rs is less than π, which is equivalent to left turn(p, q, p+
(s − r)). As a convenience, is corner(h) returns left turn(source(prev(h)),
source(h), target(h)).

We note that it is possible for two pseudotriangles to share more than the original
edge h (but then it is easy to see that they cannot share more than two). In this

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 735

case, the reader can check that the algorithm does not miss the flip due to such
(unavoidable) singularities.

An optimization we could have tried for the flip is to see if the two adjacent
regions are triangles, which gives the diagonal without any geometric tests. (Note that
because of the minimality of pseudotriangulations, the union of these two triangles
must be a convex quadrilateral.) There is no guarantee, however, that even a single
edge is adjacent to two triangles (consider, for instance, p1 = (0,−1), p2 = (0, 1),
pk = (k, 0) for k = 3, . . . , n). Nevertheless, if the point set has h edges on the boundary
of its convex hull, there are at least h − 2 triangles in the pseudotriangulation (with
equality iff all the pseudotriangles are at most quadrangular).

4.3. Enumeration algorithm. Using the FindPseudoFlip function, it is easy
to implement the recursive variant of the enumeration algorithm. As noted, the only
variable that we need to store in the recursion stack is the minimal edge e at the
current node.

Since the number of pseudotriangulations of n points grows exponentially with n,
we will not be able to run the algorithm for values of n larger than, say, 20. In fact,
n = 10, with up to 234,160 pseudotriangulations, is already a challenge and takes on
the order of a second. This dictates a few implementation choices.

First, the priority queue can be a simple vector of edges, sorted by Θ values,
although using a binary heap is not a penalty and improves the performance slightly.
Second, finding the flip without performing it saves a constant time. Third, a non-
recursive version of the algorithm eliminates the function call overhead, which con-
tributes a (small) constant factor overall. Fourth, storing the old diagonal e on the
stack when a diagonal is flipped avoids searching for this edge by reverse flipping the
edge e′ in order to restore the original pseudotriangulation. The second and fourth
optimizations combined save 36% in runtime.

5. Experimental results. We started this investigation to support or find a
counterexample to Conjecture 1 in section 1. The conjecture is not known to be
true even for small values of n. We ran our enumeration algorithm on Aichholzer,
Aurenhammer, and Krasser’s comprehensive database of point sets with cardinality
n ≤ 10 [5] to obtain the number of pointed pseudotriangulations for every point
set. The corresponding numbers triangulations are available on Aichholzer’s Web
page [2]. Our result is that for the over 14 million point sets S in the database up
to n ≤ 10, the number of triangulations of S is bounded by its number of pointed
pseudotriangulations. Moreover, we also have computed the maximum number of
pseudotriangulations (Table 5.1), which enriches Aichholzer’s compendium. Finally,
we have packaged our software into a pseudotriangulation workbench with which
we can interactively examine pseudotriangulations, flip edges, and perform various
algorithms (Figure 9). This was extremely useful in exploring other conjectures,
including those concerning bounded-degree pseudotriangulations.

In order to elicit confidence in our implementations, we have independently de-
vised two implementations of the enumeration algorithm and have checked that they
agree on every point set in the database. The case n = 10 took about a month to
compute on a cluster of 26 Sun workstations, and on another eight Pentium proces-
sors at 1 Ghz, and the independent computation by a coauthor took about 200 days.
Luckily, both results agreed!

Interestingly, it was observed by Aichholzer that, for n = 8, the maximum number
of pointed pseudotriangulations was achieved for the same two point sets as for the
maximum number of triangulations, and he conjectured that the same would be true

736 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

Fig. 9. Screen shot of using the pseudotriangulation workbench to test a conjecture.

Table 5.1

Number of pointed pseudotriangulations found among all the order types. In parentheses is the
number of triangulations for the order type S maximizing its number of pointed pseudotriangulations,
followed by the index of S in the database.

points # order types Lower
bound

Upper bound Runtime

3 1 1 1 (1, #1) < 1 sec
4 2 2 3 (1, #2) < 1 sec
5 3 5 13 (2, #3) < 1 sec
6 16 14 76 (8, #15) < 1 sec
7 135 42 485 (30, #125) 1 sec
8 3 315 132 3 555 (150, #2991, and #3199) 3 min = 0.054 sec/order type
9 158 817 429 27 874 (774, #151 721) 990 min = 0.374 sec/order type

10 14 309 547 1430 234 160 (4550, #13 413 894 About 200 days
and #13 812 360)

for n = 10. Indeed, this is now verified. But this is not true for n < 8 or for n = 9.
At this time, it seems far-fetched to conjecture that, for all even n ≥ 8, the number
of pointed pseudotriangulations attains its maximum exactly for the point sets which
also maximize the number of triangulations. Nevertheless, we can state the following.

Experimentally proven fact 12. For any n-point set with n ≤ 10, its num-
ber of triangulations is less than its number of pointed pseudotriangulations, with
equality iff the point set is in convex position. In that case, the number of pointed
pseudotriangulations is minimal.

Table 5.1 shows the minimum and maximum values of the number of pointed
pseudotriangulations for every value of n and indicates the running time of our al-
gorithms (both implementations were comparable). The point set with minimum
number of pseudotriangulations is the point set in convex position for n ≤ 10. This
contrasts sharply with the situation on triangulations [2]. In a previous version of this
paper, we conjectured that the number of pseudotriangulations is minimized for point
sets in convex position for any value of n. In fact, this has been proven recently [6].

For n = 11, the point set database has recently been assembled by Aichholzer,
Aurenhammer, and Krasser [5] and consists of 2,334,512,907 point sets. It is thus

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 737

Table 5.2

Maximum ratio ρ of (blue and red) leaves to red leaves during the enumeration. The second
column is (a 5-digit approximation of) the exact number when available. The third column is a lower
bound, obtained by trying random point sets with various distributions, while the fourth column is
the best known upper bound.

points Exact Lower bound Upper bound
3 1
4 2
5 2.76923 4
6 3.49254 6
7 4.26786 8
8 4.89121 10
9 5.74258 12

10 6.28663 14
11 N/A ≥ 6.11959 16
12 N/A ≥ 5.709 18

infeasible to compute the exact lower and upper bounds using this algorithm. Nev-
ertheless, we can still compute the number of pseudotriangulations for particular
configurations (this is a further test of correctness of our algorithm when the result is
know mathematically) and on random point sets.

We conjectured that the ratio ρ of (blue and red) leaves to red leaves was bounded
by 2. Experiments showed that this is simply not true. In Table 5.2, we display some
lower bounds on ρ, as well as the best known upper bound.

6. Conclusion. We have presented and implemented a new algorithm to enu-
merate all the pseudotriangulations of a point set. This algorithm uses the theory of
pseudotriangulations that was developed for convex obstacles; in particular, it makes
use of the greedy flip algorithm.

Using the polytopal construction of [47], one could obtain another algorithm
via the reverse-search paradigm [12]. Our algorithm is more general, however, since
with the proper flip algorithm it also applies to matroids (in the dual, it applies to
arrangements of pseudolines).

The running time per pseudotriangulation is O(n2), although it should be possible
not only to lower that upper bound by using amortization of the flip algorithm but
also to obtain better upper bounds on the ratio of leaves over red leaves. Also,
the algorithm can be improved in theory using fancier data structures, but since it
is unlikely to be applied to point sets larger than 20, this is more of a theoretical
exercise.

We independently developed two implementations of the algorithm, which agree
on all point sets for n ≤ 10. Using these implementations, we verified that Conjec-
ture 1 is true for n ≤ 10. The mathematical proof (even for such small values of n) is
still waiting to be discovered.

Acknowledgments. This work was begun at a Bellairs workshop on pseudo-
triangulations organized by Ileana Streinu and partially supported by the NSF. The
published results by the participants include the numbers of pseudotriangulations of
special point configurations [45], the existence of pseudotriangulations with bounded
degree [28, 27], and an analysis of the graph of pointed pseudotriangulations [47].
This latter work, especially quotes some of the results on flipping contained in this
paper. We thank Ileana Streinu and the other participants of the NSF-supported
Bellairs workshop on pseudotriangulations for many enjoyable discussions.

738 BRÖNNIMANN, KETTNER, POCCHIOLA, AND SNOEYINK

REFERENCES

[1] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang, Deformable free
space tiling for kinetic collision detection, in New Directions in Algorithmic and Compu-
tational Robotics, B. Donald, K. Lynch, and D. Rus, eds., A. K. Peters, Wellesley, MA,
2001, pp. 83–96.

[2] O. Aichholzer, Counting Triangulations—Olympics, available online at http://www.cis.
tugraz.at/igi/oaich/triangulations/counting/counting.html (2003).

[3] O. Aichholzer, The path of a triangulation, in Proc. 13th European Workshop on Computa-
tional Geometry, University of Würzburg, Germany, 1997, pp. 1–3.

[4] O. Aichholzer, F. Aurenhammer, C. Huemer, and H. Krasser, Transforming spanning
trees and pseudo-triangulations, Inform. Process. Lett., 97 (2006), pp. 19–22.

[5] O. Aichholzer, F. Aurenhammer, and H. Krasser, Enumerating order types for small point
sets with applications, Order, 19 (2002), pp. 265–281.

[6] O. Aichholzer, F. Aurenhammer, H. Krasser, and B. Speckmann, Convexity minimizes
pseudo-triangulations, Comput. Geom. Theory Appl., 28 (2004), pp. 3–10.

[7] O. Aichholzer, F. Aurenhammer, H. Krasser, and P. Brass, Pseudotriangulations from
surfaces and a novel type of edge flip, SIAM J. Comput., 32 (2003), pp. 1621–1653.

[8] O. Aichholzer, Th. Hackl, C. Huemer, F. Hurtado, H. Krasser, and B. Vogtenhuber,
On the number of plane graphs, in Proc. 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), SIAM, Philadelphia, 2006, pp. 504–513.

[9] O. Aichholzer, F. Hurtado, and M. Noy, A lower bound on the number of triangulations
of planar point sets, Comput. Geom. Theory Appl., 29 (2004), pp. 135–145.

[10] A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Inform.
Process. Lett., 9 (1979), pp. 216–219.

[11] P. Angelier and M. Pocchiola, A sum of squares theorem for visibility complexes and ap-
plications, in Discrete and Computational Geometry—The Goodman–Pollack Festschrift,
Algorithms Combin. 25, B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., Springer-Verlag,
Berlin, 2003, pp. 79–139.

[12] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math., 65 (1996),
pp. 21–46.

[13] S. Bereg, Transforming pseudo-triangulation, Inform. Process. Lett., 90 (2004), pp. 141–145.
[14] S. Bespamyatnikh, An efficient algorithm for enumeration of triangulations, Comput. Geom.

Theory Appl., 23 (2002), pp. 271–279.
[15] A. Björner, M. Las Vergnas, N. White, B. Sturmfels, and G. M. Ziegler, Oriented

Matroids, Cambridge University Press, Cambridge, UK, 1993.
[16] H. Brönnimann, Designing and implementing a general purpose halfedge data structure, in

Proc. 5th International Workshop on Algorithm Engineering (WAE), Lecture Notes Com-
put. Sci. 2141, Springer, Berlin, 2001, pp. 51–66.

[17] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir,

and J. Snoeyink, Ray shooting in polygons using geodesic triangulations, Algorithmica,
12 (1994), pp. 54–68.

[18] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geom-
etry: Algorithms and Applications, 2nd ed., Springer, Berlin, 2000.

[19] E. D. Demaine, J. S. B. Mitchell, and J. O’Rourke, eds, Problem 40: The
Number of Pointed Pseudotriangulations, available online at http://maven.smith.
edu/˜orourke/TOPP/P40.html.

[20] M. Denny and C. Sohler, Encoding a triangulation as a permutation of its point set, in
Proc. 9th Canadian Conference on Computataional Geometry, Kingston, Ontario, Canada,
1997, pp. 39–43.

[21] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr, On the design
of CGAL, a computational geometry algorithms library, Softw.–Pract. Exp., 30 (2000),
pp. 1167–1202.

[22] M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths in planar
subdivisions via balanced geodesic triangulations, J. Algorithms, 23 (1997), pp. 51–73.

[23] L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graph., 4 (1985), pp. 74–123.

[24] J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy
class, Comput. Geom. Theory Appl., 4 (1994), pp. 63–98.

[25] F. Hurtado, M. Noy, and J. Urrutia, Flipping edges in triangulations, Discrete Comput.
Geom., 22 (1999), pp. 333–346.

[26] L. Kettner, Using generic programming for designing a data structure for polyhedral surfaces,
Comput. Geom. Theory Appl., 13 (1999), pp. 65–90.

COUNTING AND ENUMERATING PSEUDOTRIANGULATIONS 739

[27] L. Kettner, D. Kirkpatrick, A. Mantler, J. Snoeyink, B. Speckmann, and F. Takeuchi,
Tight degree bounds for pseudotriangulations of points, Comput. Geom. Theory Appl., 25
(2003), pp. 1–12.

[28] L. Kettner, D. Kirkpatrick, and B. Speckmann, Tight degree bounds for pseudo-
triangulations of points, in Proc. 13th Canadian Conference on Computational Geometry,
Waterloo, Ontario, Canada, 2001, pp. 117–120.

[29] D. Kirkpatrick and J. Snoeyink, Computing common tangents without a separating line, in
Proc. 4th Workshop on Algorithms and Data Structures (WADS), Lecture Notes Comput.
Sci. 955, Springer, New York, 1995, pp. 183–193.

[30] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, Kinetic collision detection for simple
polygons, in Proc. 16th Annual ACM Symposium on Computing Geometry, ACM, New
York, 2000, pp. 322–330.

[31] D. Kirkpatrick and B. Speckmann, Separation sensitive kinetic separation for convex poly-
gons, in Proc. Japan Conference on Discrete and Computational Geometry (JCDCG 2000),
Lecture Notes Comput. Sci. 2098, Springer, Berlin, 2001, pp. 244–251.

[32] D. E. Knuth, Axioms and Hulls, Lecture Notes Comput. Sci. 606, Springer, New York, 1992.
[33] C. L. Lawson, Transforming triangulations, Discrete Math., 3 (1972), pp. 365–372.
[34] D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear

barriers, Networks, 14 (1984), pp. 393–410.
[35] Z. Li and S. Nakano, Efficient generation of plane triangulations without repetition, in

Proc. 28th International Colloquium on Automata, Languages and Programming (ICALP),
Lecture Notes Comput. Sci. 2076, Springer, Berlin, 2001, pp. 433–443.

[36] P. McMullen, Modern developments in regular polytopes, in Polytopes: Abstract, Convex
and Computational, T. Bisztriczky, P. McMullen, R. Schneider, and A. Ivić Weiss, eds.,
NATO ASI Ser. 440, Kluwer Academic Publishers, Dordrecht, 1994, pp. 97–124.

[37] S. Negami, Diagonal flips of triangulations on surfaces, Yokohama Math. J., 47 (1999), pp. 1–
44.

[38] M. H. Overmars and J. van Leeuwen, Dynamically maintaining configurations in the plane,
in Proc. 12th Annual ACM Symposium on Theory of Computing, ACM, New York, 1980,
pp. 135–145.

[39] M. Pocchiola and G. Vegter, Minimal tangent visibility graphs, Comput. Geom. Theory
Appl., 6 (1996), pp. 303–314.

[40] M. Pocchiola and G. Vegter, Topologically sweeping visibility complexes via pseudo-
triangulations, Discrete Comput. Geom., 16 (1996), pp. 419–453.

[41] M. Pocchiola and G. Vegter, The visibility complex, Internat. J. Comput. Geom. Appl., 6
(1996), pp. 279–308.

[42] M. Pocchiola and G. Vegter, On polygonal covers, in Advances in Discrete and Compu-
tational Geometry, B. Chazelle, J. Goodman, and R. Pollack, eds., Contemp. Math. 223,
AMS, Providence, RI, 1999, pp. 257–268.

[43] M. Pocchiola, Horizon trees versus pseudo-triangulations, in Proc. 13th European Workshop
on Computational Geometry, University of Würzburg, Germany, 1997, p. 12.

[44] M. Pocchiola and G. Vegter, Pseudo-triangulations: Theory and applications, in Proc. 12th
Annual ACM Symposium on Computational Geometry, ACM, New York, 1996, pp. 291–
300.

[45] D. Randall, G. Rote, F. Santos, and J. Snoeyink, Counting triangulations and pseudo-
triangulations of wheels, in Proc. 13th Canadian Conference on Computational Geometry,
Waterloo, Ontario, Canada, 2001, pp. 149–152.

[46] S. Ray and R. Seidel, A Simple and Less Slow Method for Counting Triangulations and
for Related Problems, in Proc. European Workshop on Computational Geometry, Seville
University, Spain, 2004, pp. 177–180.

[47] G. Rote, I. Streinu, and F. Santos, Expansive motions and the polytope of pointed
pseudo-triangulations, in Discrete and Computational Geometry—The Goodman–Pollack
Festschrift, Algorithms Combin. 25, B. Aronov, S. Basu, J. Pach, and M. Sharir, eds.,
Springer, Berlin, 2003, pp. 699–736.

[48] F. Santos and R. Seidel, A better upper bound on the number of triangulations of a planar
point set, J. Combin. Theory Ser. A, 102 (2003), pp. 186–193.

[49] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation distance, triangulations, and
hyperbolic geometry, J. Amer. Math. Soc., 1 (1988), pp. 647–682.

[50] I. Streinu, A combinatorial approach to planar non-colliding robot arm motion planning,
in Proc. 41st Annual IEEE Symposium on Foundations of Computer Science, IEEE, Los
Alamitos, CA, 2000, pp. 443–453.

[51] W. T. Tutte, A census of planar triangulation, Canad. J. Math., 14 (1962), pp. 21–38.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 740–762

RANDOM k-SAT: TWO MOMENTS SUFFICE TO CROSS A SHARP
THRESHOLD∗

DIMITRIS ACHLIOPTAS† AND CRISTOPHER MOORE‡

Abstract. Many NP-complete constraint satisfaction problems appear to undergo a “phase tran-
sition” from solubility to insolubility when the constraint density passes through a critical threshold.
In all such cases it is easy to derive upper bounds on the location of the threshold by showing that
above a certain density the first moment (expectation) of the number of solutions tends to zero. We
show that in the case of certain symmetric constraints, considering the second moment of the num-
ber of solutions yields nearly matching lower bounds for the location of the threshold. Specifically,
we prove that the threshold for both random hypergraph 2-colorability (Property B) and random
Not-All-Equal k-SAT is 2k−1 ln 2−O(1). As a corollary, we establish that the threshold for random
k-SAT is of order Θ(2k), resolving a long-standing open problem.

Key words. satisfiability, random formulas, phase transitions

AMS subject classifications. Primary, 68R99, 82B26; Secondary, 05C80

DOI. 10.1137/S0097539703434231

1. Introduction. In the early 1900s, Bernstein [15] asked the following ques-
tion: Given a collection of subsets of a set V , is there a partition of V into V1, V2 such
that no subset is contained in either V1 or V2? If we think of the elements of V as
vertices and of each subset as a hyperedge, the question can be rephrased as whether
a given hypergraph can be 2-colored so that no hyperedge is monochromatic. Of par-
ticular interest is the setting where all hyperedges contain k vertices, i.e., k-uniform
hypergraphs. This question was popularized by Erdős—who dubbed it “Property B”
in honor of Bernstein—and has motivated some of the deepest advances in proba-
bilistic combinatorics. Indeed, determining the smallest number of hyperedges in a
non–2-colorable k-uniform hypergraph remains one of the most important problems
in extremal graph theory, perhaps second only to the Ramsey problem [13].

A more modern problem, with a somewhat similar flavor, is Boolean Satisfiability:
Given a Conjunctive Normal Form (CNF) formula F , is it possible to assign truth
values to the variables of F so that it evaluates to true? Satisfiability has been the
central problem of computational complexity since Cook [22] proved that it is complete
for the class NP. The case where all clauses have the same size k is known as k-SAT
and is NP-complete for all k ≥ 3.

Random formulas and random hypergraphs have been studied extensively in prob-
abilistic combinatorics in the last three decades. While there are a number of slightly
different models for generating such structures “uniformly at random,” we will see that
results transfer readily between them. For the sake of concreteness, let Fk(n,m) de-

note a formula chosen uniformly from among all
(
2k(nk)
m

)
k-CNF formulas on n variables

∗Received by the editors September 11, 2003; accepted for publication (in revised form) November
15, 2005; published electronically October 24, 2006.

http://www.siam.org/journals/sicomp/36-3/43423.html
†Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064

(optas@cs.ucsc.edu). This author’s work was supported in part by the National Science Foundation
CAREER award CCF-0546900. Part of this work was done while the author was with Microsoft
Research.

‡Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, and the
Santa Fe Institute, Santa Fe, NM 87501 (moore@cs.unm.edu). This author’s work was supported by
the National Science Foundation under grants PHY-0200909, EIA-0218563, and CCR-0220070.

740

RANDOM k-SAT: TWO MOMENTS SUFFICE 741

with m clauses. Similarly, let Hk(n,m) denote a hypergraph chosen uniformly from

among all
((nk)

m

)
k-uniform hypergraphs with n vertices and m hyperedges. We will say

that a sequence of events En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1
and with uniformly positive probability (w.u.p.p.) if lim infn→∞ Pr[En] > 0. Through-
out the paper, k will be arbitrarily large but fixed.

In recent years, random instances of both problems have been understood to un-
dergo a “phase transition” as the ratio of constraints to variables passes through a
critical threshold. That is, for a given number of vertices (variables), the probability
that a random instance has a solution drops rapidly from 1 to 0 around a critical
number of hyperedges (clauses). This sharp threshold phenomenon was discovered
in the early 1990s, when several researchers [19, 49] performed computational exper-
iments on F3(n,m = rn) and found that while for r < 4.1 almost all formulas are
satisfiable, for r > 4.3 almost all are unsatisfiable. Moreover, as n increases, this
transition narrows around r ≈ 4.2. Along with similar results for other fixed k ≥ 3
this has led to the following popular conjecture.

Satisfiability threshold conjecture. For each k ≥ 3, there exists a constant rk such
that

lim
n→∞

Pr[Fk(n, rn) is satisfiable] =

{
1 if r < rk,

0 if r > rk.

In the last ten years, this conjecture has become an active area of interdisciplinary
research, receiving attention in theoretical computer science, artificial intelligence,
combinatorics, and, more recently, statistical physics. Much of the work on random
k-SAT has focused on proving upper and lower bounds for rk, both for the smallest
computationally hard case k = 3 and for general k. At this point the existence of rk
has not been established for any k ≥ 3. Nevertheless, we will take the liberty of writing
rk ≥ r∗ to denote that for all r < r∗, Fk(n, rn) is w.h.p. satisfiable; analogously, we
will write rk ≤ r∗ to denote that for all r > r∗, Fk(n, rn) is w.h.p. unsatisfiable.

As we will see, an elementary counting argument yields rk ≤ 2k ln 2 for all k.
Lower bounds, on the other hand, have been exclusively algorithmic: To establish
rk ≥ r∗ one shows that for r < r∗ some specific algorithm finds a satisfying assignment
with probability that tends to 1. We will see that an extremely simple algorithm [20]
already yields rk = Ω(2k/k). We will also see that while more sophisticated algorithms
improve this bound slightly, to date no algorithm is known to find a satisfying truth
assignment (even w.u.p.p.) when r = ω(k) × 2k/k for any ω(k) → ∞.

The threshold picture for hypergraph 2-colorability is completely analogous: For
each k ≥ 3, it is conjectured that there exists a constant ck such that

lim
n→∞

Pr[Hk(n, cn) is 2-colorable] =

{
1 if c < ck,

0 if c > ck.

The same counting argument here implies ck < 2k−1 ln 2, while another simple al-
gorithm yields ck = Ω(2k/k). Again, no algorithm is known to improve this bound
asymptotically, leaving a multiplicative gap of order Θ(k) between the upper and
lower bounds for this problem as well.

In this paper, we use the second moment method to show that random k-CNF
formulas are satisfiable and random k-uniform hypergraphs are 2-colorable for density
up to 2k−1 ln 2−O(1). Thus, we determine the threshold for random k-SAT within a
factor of two and the threshold for Property B within a small additive constant.

742 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Recall that Fk(n, rn) is w.h.p. unsatisfiable if r > 2k ln 2. Our first main result is
the following theorem.

Theorem 1. For all k ≥ 3, Fk(n,m = rn) is w.h.p. satisfiable if

r ≤ 2k−1 ln 2 − 2.

Our second main result determines the Property B threshold within an additive
1/2 + o(1).

Theorem 2. For all k ≥ 3, Hk(n,m = cn) is w.h.p. non–2-colorable if

c > 2k−1 ln 2 − ln 2

2
.(1)

There exists a sequence tk → 0 such that for all k ≥ 3, Hk(n,m = cn) is w.h.p.
2-colorable if

c < 2k−1 ln 2 − ln 2

2
− 1 + tk

2
.(2)

The bound in (1) corresponds to the density for which the expected number of 2-
colorings of Hk(n, cn) is o(1). Our main contribution is inequality (2), which we prove
using the second moment method. In fact, our approach yields explicit lower bounds
for the hypergraph 2-colorability threshold for each value of k (although these bounds
lack an attractive closed form). We give the first few of these bounds in Table 1. We
see that the gap between our upper and lower bounds converges to its limiting value
of 1/2 rather rapidly.

Table 1

Bounds for the 2-colorability threshold of random k-uniform hypergraphs.

k 3 4 5 6 7 8 9 10
Upper bound 2.410 5.191 10.741 21.833 44.014 88.376 177.099 354.545
Lower bound 1.5 4.083 9.973 21.190 43.432 87.827 176.570 354.027

Unlike the bounds for random k-SAT and hypergraph 2-colorability provided by
analyzing algorithms, our arguments are nonconstructive: We establish that w.h.p.
solutions exist for certain densities but do not offer any hint on how to find them. We
believe that abandoning the algorithmic approach for proving such lower bounds is
natural and, perhaps, necessary. At a minimum, the algorithmic approach is limited
to the small set of rather naive algorithms whose analysis is tractable using current
techniques. Perhaps more gravely, it could be that no polynomial-time algorithm
can overcome the Θ(2k/k) barrier. Determining whether this is true even for certain
limited classes of algorithms, e.g., random walk algorithms, is a very interesting open
problem.

In addition, by not seeking out some specific truth assignment, as algorithms
do, the second moment method gives some first glimpses of the “geometry” of the
set of solutions. Deciphering these first glimpses, getting clearer ones, and exploring
potential interactions between the geometry of the set of solutions and computational
hardness are great challenges that lie ahead.

We note that recently, and independently, Frieze and Wormald [34] applied the
second moment method to random k-SAT in the case where k is a moderately growing

RANDOM k-SAT: TWO MOMENTS SUFFICE 743

function of n. Specifically, they proved that when k− log2 n → ∞, Fk(n,m) is w.h.p.
satisfiable if m < (1 − ε)m∗ but is w.h.p. unsatisfiable if m > (1 + ε)m∗, where
m∗ = (2k ln 2 − O(1))n and ε = ε(n) > 0 is such that εn → ∞. Their result follows
by a direct application of the second moment method to the number of satisfying
assignments of Fk(n,m). As we will see shortly, while this approach gives a very sharp
bound when k − log2 n → ∞, it fails for any fixed k and indeed for any k = o(log n).

We also note that since this work first appeared [4, 5], the line of attack we put
forward has had several other successful applications. Specifically, in [7], the lower
bound for the random k-SAT threshold was improved to 2k ln 2−O(k) by building on
the insights presented here. In [8], the method was successfully extended to random
Max k-SAT, while in [9, 10] it was applied to random graph coloring. We discuss
these subsequent developments in the conclusions.

1.1. The second moment method and the role of symmetry. The version
of the second moment method we will use is given by Lemma 1 and follows from a
direct application of the Cauchy–Schwarz inequality (see Remark 3.1 in [38]).

Lemma 1. For any nonnegative random variable X,

Pr[X > 0] ≥ E[X]2

E[X2]
.(3)

It is natural to try to apply Lemma 1 to random k-SAT by letting X be the
number of satisfying truth assignments of Fk(n,m). Unfortunately, as we will see,
this “naive” application of the second moment method fails rather dramatically: For
all k ≥ 1 and every r > 0, E[X2] > (1 + β)n E[X]2 for some β = β(k, r) > 0. As a
result, the second moment method gives only an exponentially small lower bound on
the probability of satisfiability.

The key step in overcoming this failure lies in realizing that we are free to apply
the second moment method to any random variable X such that X > 0 implies that
the formula is satisfiable. In particular, we can let X be the size of any subset of the
set of satisfying assignments. By choosing this subset carefully, we can hope to signif-
icantly reduce the variance of X relative to its expectation and use Lemma 1 to prove
that the subset is frequently nonempty. Indeed, we will establish the satisfiability of
random k-CNF by focusing on those satisfying truth assignments whose complement
is also satisfying. In section 3 we will give some intuition for why the number of such
assignments has much smaller variance than the number of all satisfying assignments.
For now, we observe that considering only such satisfying assignments is equivalent
to interpreting the random k-CNF formula Fk(n,m) as an instance of Not-All-Equal
(NAE) k-SAT, where a truth assignment σ is a solution if and only if under σ every
clause contains at least one satisfied literal and at least one unsatisfied literal. In
other words, our lower bound for the k-SAT threshold in Theorem 1 is, in fact, a
lower bound for the NAE k-SAT threshold.

Indeed, for both random NAE k-SAT and random hypergraph 2-colorability we
will apply Lemma 1 naively, i.e., by letting X be the number of solutions. This will
give Theorem 2 and the values in Table 1 for hypergraph 2-colorability and, as we
will see, exactly the same bounds for random NAE k-SAT. (The proof of Theorem 2
is a slight generalization of the proof for random NAE k-SAT.) We will see that
this success of the naive second moment is due to the symmetry inherent in both
problems, i.e., to the fact that the complement of a solution is also a solution. We feel
that highlighting this role of symmetry—and showing how it can be exploited even
in asymmetric problems like k-SAT—is our main conceptual contribution. Exploiting

744 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

these ideas in other constraint satisfaction problems that have a permutation group
acting on the variables’ domain is an interesting area for further research.

1.2. Organization of the paper. In section 2 we give some background on
random k-SAT and random hypergraph 2-colorability. In section 3 we explain why the
second moment method fails when applied to k-SAT directly, and give some intuition
for why counting only the NAE-satisfying assignments rectifies the problem. We also
point out some connections to methods of statistical physics. In section 4 we lay the
groundwork for bounding the second moment for both NAE k-SAT and hypergraph
2-colorability by dealing with some probabilistic preliminaries, introducing a “Laplace
method” lemma for bounding certain sums, and outlining our strategy. The actual
bounding occurs in sections 5 to 7. Specifically, in sections 5 and 6 we use the Laplace
lemma to reduce the second moment calculations for both random NAE k-SAT and
random hypergraph 2-colorability to the maximization of a certain function g on the
unit interval, where g is independent of n. We maximize g in section 7 and prove
the Laplace lemma in section 8. We conclude in section 9 by discussing some recent
extensions of this work and proposing several open questions.

2. Related work.

2.1. Random k-SAT. The mathematical investigation of random k-SAT began
with the work of Franco and Paull [31], who, among other results, observed that
Fk(n,m = rn) is w.h.p. unsatisfiable if r ≥ 2k ln 2. To see this, let Ck = 2k

(
n
k

)
be

the number of all possible k-clauses and let Sk = (2k − 1)
(
n
k

)
be the number of k-

clauses consistent with a given truth assignment. Since any fixed truth assignment is
satisfying with probability

(
Sk

m

)
/
(
Ck

m

)
< (1−2−k)m, the expected number of satisfying

truth assignments of Fk(n,m = rn) is at most [2(1 − 2−k)r]n = o(1) for r ≥ 2k ln 2.
Shortly afterwards, Chao and Franco [18] complemented this result by proving

that for all k ≥ 3, if r < 2k/k, then the following linear-time algorithm, called Unit

Clause (uc), finds a satisfying truth assignment w.u.p.p.: If there exist unit clauses,
pick one randomly and satisfy it; else pick a random unset variable and give it a
random value. Note that since uc succeeds only w.u.p.p. (rather than w.h.p.) this
does not imply a lower bound for rk.

The satisfiability threshold conjecture gained a great deal of popularity in the
early 1990s and has received an increasing amount of attention since then. The
polynomial-time solvable case k = 2 was settled early on: Independently, Chvátal and
Reed [20], Fernandez de la Vega [29], and Goerdt [35] proved that r2 = 1. Chvátal
and Reed [20], in addition to proving r2 = 1, gave the first lower bound for rk,
strengthening the positive probability result of Chao and Franco [18] by analyzing the
following refinement of uc, called Short Clause (sc): If there exist unit clauses,
pick one randomly and satisfy it; else if there exist binary clauses, pick one randomly
and satisfy a random literal in it; else pick a random unset variable and give it a
random value. In [20], the authors showed that for all k ≥ 3, sc finds a satisfying
truth assignment w.h.p. for r < (3/8) 2k/k and raised the question of whether this
lower bound for rk can be improved asymptotically.

A large portion of the work on the satisfiability threshold conjecture since then
has been devoted to the first computationally hard case, k = 3, and a long series of
results [16, 17, 33, 1, 11, 36, 41, 25, 42, 39, 24, 44, 40, 26, 31] has narrowed the potential
range of r3. Currently this is pinned between 3.52 by Kaporis, Kirousis, and Lalas [41]
and Hajiaghayi and Sorkin [36] and 4.506 by Dubois, Boufkhad, and Mandler [25].
Upper bounds for r3 come from probabilistic counting arguments, refining the above

RANDOM k-SAT: TWO MOMENTS SUFFICE 745

calculation of the expected number of satisfying assignments. Lower bounds, on the
other hand, have come from analyzing progressively more sophisticated algorithms.
Unfortunately, neither of these approaches helps narrow the asymptotic gap between
the upper and lower bounds for rk. The upper bounds improve rk ≤ 2k ln 2 by only a
small additive constant; the best algorithmic lower bound, due to Frieze and Suen [33],
is rk ≥ ak2

k/k, where limk→∞ ak = 1.817
Two more results stand out in the study of random k-CNF formulas. In a break-

through paper, Friedgut [32] proved the existence of a nonuniform satisfiability thresh-
old, i.e., of a sequence rk(n) around which the probability of satisfiability goes from
1 to 0.

Theorem 3 ([32]). For each k ≥ 2, there exists a sequence rk(n) such that for
every ε > 0,

lim
n→∞

Pr[Fk(n, rn) is satisfiable] =

{
1 if r = (1 − ε) rk(n),

0 if r = (1 + ε) rk(n).

In [21], Chvátal and Szemerédi established a seminal result in proof complexity, by
extending the work of Haken [37] and Urquhart [53] to random formulas. Specifically,
they proved that for all k ≥ 3, if r ≥ 2k ln 2, then w.h.p. fkrn is unsatisfiable, but
every resolution proof of its unsatisfiability contains at least (1 + ε)n clauses for some
ε = ε(k, r) > 0. In [2], Achlioptas, Beame, and Molloy extended the main result
of [21] to random CNF formulas that also contain 2-clauses, as this is relevant for
the behavior of Davis–Putnam–Logemann–Loveland (DPLL) algorithms on random
k-CNF. (DPLL algorithms proceed by setting variables sequentially, according to
some heuristic, and backtracking whenever a contradiction is reached.) By combining
the results in the present paper with the results in [2], it was recently shown [3]
that a number of DPLL algorithms require exponential time significantly below the
satisfiability threshold, i.e., for provably satisfiable random k-CNF formulas.

Finally, we note that if one chooses to live unencumbered by the burden of
mathematical proof, powerful nonrigorous techniques of statistical physics, such as
the “replica method,” become available. Indeed, several claims based on the replica
method have been subsequently established rigorously; thus it is frequently (but defi-
nitely not always) correct. Using this technique, Monasson and Zecchina [50] predicted
rk � 2k ln 2. Like most arguments based on the replica method, their argument is
mathematically sophisticated but far from rigorous. In particular, they argue that
as k grows large, the so-called annealed approximation should apply. This creates an
analogy with the second moment method which we discuss in section 3.4.

2.2. Random hypergraph 2-colorability. While Bernstein originally raised
the 2-colorability question for certain classes of infinite set families [15], Erdős popu-
larized the finite version of the problem [14, 27, 28, 43, 45, 51, 52] and the hypergraph
representation. Recall that a 2-uniform hypergraph, i.e., a graph, is 2-colorable if
and only if it has no odd cycle. In a random graph with cn edges this occurs with
constant probability if and only if c < 1/2 (see [30] for more on the evolution of cycles
in random graphs).

For all k ≥ 3, on the other hand, hypergraph 2-colorability is NP-complete [46],
and determining the 2-colorability threshold ck for k-uniform hypergraphs Hk(n, cn)
remains open. Analogously to random k-SAT, we will take the liberty of writing
ck ≥ c∗ if Hk(n, cn) is w.h.p. 2-colorable for all c < c∗, and ck ≤ c∗ if Hk(n, cn) is
w.h.p. non–2-colorable for all c > c∗.

746 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Alon and Spencer [12] were the first to give bounds on the potential value of ck.
Specifically, they observed that, analogously to random k-SAT, the expected number
of 2-colorings of Hk(n, cn) is at most [2(1− 21−k)c]n and concluded that Hk(n, cn) is
w.h.p. non–k-colorable if c ≥ 2k−1 ln 2. More importantly, by employing the Lovász
local lemma, they proved that Hk(n, cn) is w.h.p. 2-colorable if c = O(2k/k2). Regard-
ing the upper bound, it is easy to see that, in fact, 2(1− 21−k)c < 1 if c = 2k−1 ln 2−
(ln 2)/2, and this yields the upper bound of Theorem 2. Moreover, the techniques
of [44, 24] can be used to improve this bound further to 2k−1 ln 2− (ln 2)/2−1/4+ tk,
where tk → 0.

The lower bound of [12] was improved by Achlioptas et al. [6] motivated by the
analogies drawn in [12] between hypergraph 2-colorability and earlier work [18, 20] for
random k-SAT. Specifically, it was shown in [6] that a simple, linear-time algorithm
w.h.p. finds a 2-coloring of Hk(n, cn) for c = O(2k/k), implying ck = Ω(2k/k). These
were the best bounds for ck prior to Theorem 2 of the present paper.

Finally, we note that Friedgut’s result [32] applies to hypergraph 2-colorability as
well, as presented in the following theorem.

Theorem 4 ([32]). For each k ≥ 3, there exists a sequence ck(n) such that for
every ε > 0,

lim
n→∞

Pr[Hk(n, cn) is 2-colorable] =

{
1 if c = (1 − ε) ck(n),

0 if c = (1 + ε) ck(n).

3. The second moment method: First look. In the rest of the paper it will
be convenient to work with a model of random formulas that differs slightly from
Fk(n,m). Specifically, to generate a random k-CNF formula on n variables with m
clauses we simply generate a string of km independent random literals, each such
literal being drawn uniformly from among all 2n possible ones. Note that this is
equivalent to selecting, with replacement, m clauses from among all possible 2knk

ordered k-clauses. This choice of distribution for k-CNF formulas will simplify our
calculations significantly. As we will see in section 4.1, the derived results can be
easily transferred to all other standard models for random k-CNF formulas.

3.1. Random k-SAT. For any formula F , given truth assignments σ1, σ2, . . . ∈
{0, 1}n, we will write σ1, σ2, . . . |= F to denote that all of σ1, σ2, . . . satisfy F . Let
X = X(F) denote the number of satisfying assignments of a formula F . Then, for a
k-CNF formula with random clauses c1, c2, . . . , cm we have

E[X] = E

[∑
σ

1σ|=F

]
=

∑
σ

E

[∏
ci

1σ|=ci

]
=

∑
σ

∏
ci

E[1σ|=ci] = 2n(1 − 2−k)m,

(4)

since clauses are drawn independently and the probability that σ satisfies the ith
random clause, i.e., E[1σ|=ci], is 1 − 2−k for every σ and i. Similarly, for E[X2] we
have

E[X2] = E

⎡
⎣
(∑

σ

1σ|=F

)2
⎤
⎦ = E

[∑
σ,τ

1σ,τ |=F

]
=

∑
σ,τ

∏
ci

E[1σ,τ |=ci].(5)

We claim that E[1σ,τ |=ci], i.e., the probability that a fixed pair of truth assignments
σ, τ satisfy the ith random clause, depends only on the number of variables z to which

RANDOM k-SAT: TWO MOMENTS SUFFICE 747

σ and τ assign the same value. Specifically, if the overlap is z = αn, we claim that
this probability is

fS(α) = 1 − 21−k + 2−kαk.(6)

Our claim follows by inclusion-exclusion and observing that if ci is not satisfied by
σ, the only way for it to also not be satisfied by τ is for all k variables in ci to lie
in the overlap of σ and τ . Thus, fS quantifies the correlation between the events
that σ and τ are satisfying as a function of their overlap. In particular, observe that
truth assignments with overlap n/2 are uncorrelated since fS(1/2) = (1 − 2−k)2 =
Pr[σ is satisfying]2.

Since the number of ordered pairs of assignments with overlap z is 2n
(
n
z

)
, we thus

have

E[X2] = 2n
n∑

z=0

(
n

z

)
fS(z/n)m.(7)

Writing z = αn and using the approximation
(
n
z

)
= (αα(1 − α)1−α)−n × poly(n), we

see that

E[X2] = 2n
(

max
0≤α≤1

[
fS(α)r

αα(1 − α)1−α

])n

× poly(n)

≡
(

max
0≤α≤1

ΛS(α)

)n

× poly(n).

At the same time observe that E[X]2 =
(
2n(1 − 2−k)rn

)2
= (4fS(1/2)r)

n
= ΛS(1/2)n.

Therefore, if there exists some α ∈ [0, 1] such that ΛS(α) > ΛS(1/2), then the second
moment is exponentially greater than the square of the expectation and we get only an
exponentially small lower bound for Pr[X > 0]. Put differently, unless the dominant
contribution to E[X2] comes from “uncorrelated” pairs of satisfying assignments, i.e.,
pairs with overlap n/2, the second moment method fails.

With these observations in mind, in Figure 1 we plot ΛS(α) for k = 5 and different
values of r. We see that, unfortunately, for all values of r shown, ΛS is maximized at
some α > 1/2. If we look closely into the two factors comprising ΛS , the reason for the
failure of the second moment method becomes apparent: While the entropic factor(
αα(1 − α)1−α

)−1
is symmetric around 1/2, the correlation function fS is strictly

increasing in [0, 1]. Therefore, the derivative of ΛS is never 0 at 1/2, instead becoming
0 at some α > 1/2 where the benefit of positive correlation balances with the cost of
decreased entropy. (Indeed, this is true for all k = o(log n) and constant r > 0.)

3.2. Random NAE k-SAT. Let us now repeat the above analysis but with
X = X(F) being the number of NAE-satisfying truth assignments of a formula F .
Recall that σ is an NAE-satisfying assignment if and only if under σ every clause has
at least one satisfied literal and at least one unsatisfied literal. Thus, for a k-CNF
formula with random clauses c1, c2, . . . , cm, proceeding as in (4), we get

E[X] = 2n(1 − 21−k)m,(8)

since the probability that σ NAE-satisfies the ith random clause is 1− 21−k for every
σ and i.

Regarding the second moment, proceeding exactly as in (5), we write E[X2] as a
sum over the 4n ordered pairs of assignments of the probability that both assignments

748 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
α

k = 5, r = 16, 18, 20, 22, 24 (top to bottom)

Fig. 1. The nth root of the expected number of pairs of satisfying assignments at distance αn.

are NAE-satisfying. As for k-SAT, for any fixed pair this probability depends only
on the overlap. The only change is that if σ, τ agree on z = αn variables, then the
probability that they both NAE-satisfy a random clause ci is

Pr[σ and τ NAE-satisfy ci] = 1 − 22−k + 21−k
(
αk + (1 − α)k

)
≡ fN (α).(9)

Again, this claim follows from inclusion-exclusion and observing that for both σ, τ to
NAE-violate ci, the variables of ci must either all be in the overlap of σ and τ or all
be in their nonoverlap.

Applying Stirling’s approximation for the factorial again and observing that the
sum defining E[X2] has only a polynomial number of terms, we now get (analogously
to ΛS in random k-SAT)

E[X2] = 2n
(

max
0≤α≤1

[
fN (α)r

αα(1 − α)1−α

])n

× poly(n)

≡
(

max
0≤α≤1

ΛN (α)

)n

× poly(n).(10)

As before, it is easy to see that E[X]2 = ΛN (1/2)n. Therefore, if ΛN (1/2) >
ΛN (α) for every α
= 1/2, then (10) implies that the ratio between E[X2] and E[X]2

is at most polynomial in n. Indeed, with a more careful analysis of the interplay
between the summation and Stirling’s approximation, we will later show that when-
ever ΛN (1/2) is a global maximum, the ratio E[X2]/E[X]2 is bounded by a constant,
implying that NAE-satisfiability holds w.u.p.p. So, all in all, again we hope that the
dominant contribution to E[X2] comes from pairs of assignments with overlap n/2.

The crucial difference is that now the correlation function fN is symmetric around
1/2 and, hence, so is ΛN . As a result, the entropy-correlation product ΛN always has
a local extremum at 1/2. Moreover, since the entropic term is always maximized at
α = 1/2 and is independent of r, for sufficiently small r this extremum is a global
maximum. With these considerations in mind, in Figure 2 we plot ΛN (α) for k = 5
and various values of r.

Let us start with the picture on the left, where r increases from 8 to 12 as we go
from top to bottom. For r = 8, 9 we see that indeed ΛN has a global maximum at 1/2
and the second moment method succeeds. For the cases r = 11, 12, on the other hand,
we see that ΛN (1/2) is actually a global minimum. In fact, we see that ΛN (1/2) < 1,

RANDOM k-SAT: TWO MOMENTS SUFFICE 749

0.9

1

1.1

1.2

1.3

1.4

0 0.2 0.4 0.6 0.8 1
α

k = 5, r = 8, 9, 10, 11, 12 (top to bottom)

1.05

1.06

1.07

1.08

1.09

1.1

0 0.2 0.4 0.6 0.8 1
α

k = 5, r = 9.973

Fig. 2. The nth root of the expected number of pairs of NAE-assignments at distance αn.

implying that E[X]2 = ΛN (1/2)n = o(1) and so w.h.p. there are no NAE-satisfying
assignments for such r. It is worth noting that for r = 11, even though X = 0 w.h.p.,
the second moment is exponentially large (since ΛN > 1 near 0 and 1).

The most interesting case is r = 10. Here Λ(1/2) = 1.0023 . . . is a local maximum
and greater than 1, but the two global maxima occur at α = 0.08 . . . and α = 0.92 . . . ,
where the function equals 1.0145. . . . As a result, again, the second moment method
gives only an exponentially small lower bound on Pr[X > 0]. Note that this is in spite
of the fact that E[X] is now exponentially large. Indeed, the largest value for which
the second moment succeeds for k = 5 is r = 9.973 . . . when the two side peaks reach
the same height as the peak at 1/2 (see the plot on the right in Figure 2).

So, the situation can be summarized as follows. By requiring that we count
only NAE-satisfying truth assignments, we make it roughly twice as hard to satisfy
each clause. This manifests itself in the additional factor of 2 in the middle term
of fN compared to fS . On the other hand, now, the third term of f , capturing
“joint” behavior, is symmetric around 1/2, making Λ itself symmetric around 1/2.
This enables the second moment method which, indeed, breaks down only when the
density gets within an additive constant of the upper bound for the NAE k-SAT
threshold.

3.3. How symmetry reduces variance. Given a truth assignment σ and an
arbitrary CNF formula F , let Q = Q(σ, F) denote the total number of literal occur-
rences in F satisfied by σ. With this definition at hand, a potential explanation of
how symmetry reduces the variance is suggested by considering the following trivial
refinement of our generative model: First (i) draw km literals uniformly and indepen-
dently just as before and then (ii) partition the drawn literals randomly into k-clauses
(rather than assuming that the first k literals form the first clause, the next k the
second, etc.).

In particular, imagine that we have just finished performing the first generative
step above and we are about to perform the second. Observe that at this point the
value of Q has already been determined for every σ ∈ {0, 1}n. Moreover, for each
fixed σ the conditional probability of yielding a satisfying assignment corresponds to
a balls-in-bins experiment: Distribute Q(σ) balls in m bins, each with capacity k, so
that every bin receives at least one ball. It is clear that those truth assignments for
which Q is large at the end of the first step have a big advantage in the second.

To get an idea of what Q typically looks like on {0, 1}n we begin by observing that
the number of occurrences of a fixed literal �, B�, is distributed as Bin(km, 1/(2n)).

750 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Thus, E[B�] = O(1) and, moreover, the random variables B� are very weakly corre-
lated. In particular, Q takes its maximum value on the subcube of truth assignments
where every variable is assigned its majority value and, typically, decreases gradually
away from there. Thus, at the end of the first step the “more promising” truth assign-
ments are highly correlated: In satisfying many literal occurrences (thus increasing
their odds for the second step), they tend to overlap with each other (and the majority
assignment) at more than half the variables.

In contrast, if we focus on NAE-satisfying assignments, at the end of the first step
the most promising assignments σ are those for which Q(σ) is very close to its average
value km/2. So, when the problem is symmetric, the typical case becomes the most
favorable case and the clustering around truth assignments that satisfy many literal
occurrences disappears.

If indeed “populism,” i.e., the tendency of each variable to assume its majority
value in the formula, is the main source of correlations in random k-SAT, then the
second moment method is a good candidate for k-CNF models which do not encourage
this tendency.1 For example, one such model is regular random k-SAT, in which every
literal occurs exactly the same number of times. Such formulas can be analyzed using a
model analogous to the configuration model of random graphs, i.e., by taking precisely
d copies of each literal and partitioning the resulting 2dn copies into clauses randomly
(exactly as in the second step of our two-step model for random k-SAT).

3.4. Geometry and connections to statistical physics. A key quantity in
statistical physics is the overlap distribution between configurations of minimum en-
ergy, known as ground states. When a constraint satisfaction problem is satisfiable,
ground states correspond to solutions, such as satisfying assignments, valid colorings,
and so on. In the case of random k-SAT, the overlap distribution is the probability
P (α) that a random pair of satisfying assignments have overlap αn. Our calcula-
tion of the expected number of pairs of solutions at each possible distance is thus a
weighted average of P (α) over all formulas, whereby formulas with more solutions
contribute more heavily. Physicists call this weighted average the “annealed approx-
imation” of P (α) and denote it Pann(α). It is worth pointing out that, while the
annealed approximation clearly overemphasizes formulas with more satisfying assign-
ments, Monasson and Zecchina conjectured in [50], based on the replica method, that
it becomes asymptotically tight as k → ∞.

On a more rigorous footing, it is easy to see that as long as Λ has a global maxi-
mum at 1/2, Pann(α) is tightly concentrated around 1/2, since Λ(α)n is exponentially
smaller than Λ(1/2)n for all other α. Our results establish that Λ is maximized at
1/2 for densities up to 2k−1 ln 2 − O(1). In other words, for densities almost all the
way to the threshold, in the annealed approximation, almost all pairs of solutions
have distance n/2 + Θ(

√
n), just as if solutions were scattered uniformly at random

throughout the hypercube.

Note that even if P (α) is concentrated around 1/2 (rather than just Pann(α))
this still allows for a typical geometry where there are exponentially many exponen-
tially large clusters, each centered at a random assignment. Indeed, this is precisely
the picture suggested by some very recent groundbreaking work of Mézard, Parisi,
and Zecchina [47] and Meźard and Zecchina [48], based on nonrigorous techniques of
statistical physics. If this is indeed the true picture, establishing it rigorously would
require considerations much more refined than the second moment of the number of

1We describe recent developments on this point in the conclusions.

RANDOM k-SAT: TWO MOMENTS SUFFICE 751

solutions. More generally, getting a better understanding of the typical geometry and
its potential implications for algorithms appears to us a very challenging and very
important open problem.

4. Groundwork.

4.1. Generative models. Given a set V of n Boolean variables, let Ck = Ck(V)
denote the set of all proper k-clauses on V , i.e., the set of all 2k

(
n
k

)
disjunctions

of k literals involving distinct variables. Similarly, given a set V of n vertices, let
Ek = Ek(V) be the set of all

(
n
k

)
k-subsets of V . As we saw, a random k-CNF

formula Fk(n,m) is formed by selecting uniformly a random m-subset of Ck, while a
random k-uniform hypergraph Hk(n,m) is formed by selecting uniformly a random
m-subset of Ek.

While Fk(n,m) and Hk(n,m) are perhaps the most natural models for generating
random k-CNF formulas and random k-uniform hypergraphs, respectively, there are a
number of slight variations of each model. Those are largely motivated by amenability
to certain calculations. To simplify the discussion we focus on models for random
formulas in the rest of this subsection. All our comments transfer readily to models
for random hypergraphs.

For example, it is fairly common to consider the clauses as ordered k-tuples (rather
than as k-sets) and/or to allow replacement in sampling the set Ck. Clearly, for
properties such as satisfiability the issue of ordering is irrelevant. Moreover, as long
as m = O(n), essentially the same is true for the issue of replacement. To see that,
observe that w.h.p. the number of repeated clauses is q = o(n) and the subset of m−q
distinct clauses is uniformly random. Thus, if a monotone decreasing property (such
as satisfiability) holds with probability p for a given m = r∗n when replacement is
allowed, it holds with probability p − o(1) for all r < r∗ when replacement is not
allowed.

The issue of selecting the literals of each clause with replacement (which might
result in some “improper” clauses) is completely analogous. That is, the probability
that a variable appears more than once in a given clause is at most k2/n = O(1/n)
and hence w.h.p. there are o(n) improper clauses. Finally, we note that by standard
techniques our results also transfer to the Fk(n, p) model where every clause appears
independently of all others with probability p, for any p such that the expected number
of k-clauses is r∗n− nβ for some β > 1/2 (see [33]).

4.2. Strategy and tools. Our plan is to consider random k-CNF formulas
formed by generating km independently and identically distributed random literals,
where m = rn, and proving that if X = X(F) is the number of NAE-satisfying
assignments, then the following lemma holds.

Lemma 2. For all ε > 0, k ≥ k0(ε), and r < 2k−1 ln 2 − (1 + ln 2)/2 − ε, there
exists some constant C = C(k, r) > 0 such that for all sufficiently large n,

E[X2] < C × E[X]2.

By Lemma 1 and our discussion in section 4.1, this implies that Fk(n, rn− o(n))
is NAE-satisfiable, and thus satisfiable, w.u.p.p. Therefore, for all r as in Lemma 2,
Fk(n, rn) is satisfiable w.u.p.p. To boost this to a high probability result, thus estab-
lishing Theorem 1, we employ the following immediate corollary of Theorem 3.

Corollary 1. If Fk(n, r
∗n) is satisfiable w.u.p.p., then for all r < r∗, Fk(n, rn)

is satisfiable w.h.p.

752 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Friedgut’s arguments [32] also apply to NAE k-SAT, implying that Fk(n, rn) is
w.h.p. NAE-satisfiable for r as in Lemma 2. Thus, Lemma 2 readily yields (12)
below, while (11) comes from noting that the expected number of NAE-satisfying
assignments is [2(1 − 21−k)r]n. (Similarly to hypergraphs, the techniques of [44, 24]
can be used to improve the bound in (11) to 2k−1 ln 2 − (ln 2)/2 − 1/4 + tk, where
tk → 0.) Indeed, we will see that the proof of Theorem 5 will yield Theorem 2 for
random hypergraphs with little additional effort.

Theorem 5. For all k ≥ 3, Fk(n,m = rn) is w.h.p. non–NAE-satisfiable if

r > 2k−1 ln 2 − ln 2

2
.(11)

There exists a sequence tk → 0 such that for all k ≥ 3, Fk(n,m = rn) is w.h.p.
NAE-satisfiable if

r < 2k−1 ln 2 − ln 2

2
− 1 + tk

2
.(12)

As we saw in section 3.2, the second moment of the number of NAE-satisfying
assignments is

2n
n∑

z=0

(
n

z

)
fN (z/n)rn.

A slightly more complicated sum will occur when we bound the second moment of the
number of 2-colorings. To bound both sums we will use the following lemma which
we prove in section 8.

Lemma 3 (Laplace lemma). Let φ be a positive, twice-differentiable function on
[0, 1] and let q ≥ 1 be a fixed integer. Let t = n/q and let

Sn =

t∑
z=0

(
t

z

)q

φ(z/t)n.

Letting 00 ≡ 1, define g on [0, 1] as

g(α) =
φ(α)

αα (1 − α)1−α
.

If there exists αmax ∈ (0, 1) such that g(αmax) ≡ gmax > g(α) for all α
= αmax and
g′′(αmax) < 0, then there exists a constant C = C(q, gmax, g

′′(αmax), αmax) > 0 such
that for all sufficiently large n,

Sn < C n−(q−1)/2 gnmax.

5. Bounding the second moment for NAE k-SAT. Recall that if X is the
number of NAE-assignments, then

E[X] = 2n(1 − 21−k)rn

and

E[X2] = 2n
n∑

z=0

(
n

z

)
fN (z/n)rn,(13)

RANDOM k-SAT: TWO MOMENTS SUFFICE 753

where

fN (α) = 1 − 22−k + 21−k
(
αk + (1 − α)k

)
.

To bound the sum in (13) we apply Lemma 3 with q = 1 and φ(α) = fN (α)r. Thus,
g = gr, where

gr(α) =
fN (α)r

αα(1 − α)1−α
.(14)

To show that Lemma 3 applies, we will prove in section 7 that the following lemma
holds.

Lemma 4. For every ε > 0, there exists k0 = k0(ε) such that for all k ≥ k0, if

r < 2k−1 ln 2 − ln 2

2
− 1

2
− ε,

then gr(α) < gr(1/2) for all α
= 1/2, and g′′r (1/2) < 0.
Therefore, for all r, k, and ε as in Lemma 4, there exists a constant C = C(k, r) >

0 such that

E[X2] < C × 2ngr(1/2)n.

Since E[X]2 = 2ngr(1/2)n, we get that for all r, k, ε as in Lemma 4

E[X2] < C × E[X]2.

6. Bounding the second moment for hypergraph 2-colorability. Just as
for NAE k-SAT, it will be easier to work with the model in which generating a
random hypergraph corresponds to choosing km vertices uniformly at random with
replacement and letting the first k vertices form the first hyperedge, the second k
vertices form the second hyperedge, etc.

In [5] we proved (2) of Theorem 2 by letting X be the set of all 2-colorings and
using a convexity argument to show that E[X2] is dominated by the contribution of
balanced colorings, i.e., colorings with an equal number of black and white vertices.
Here we follow a simpler approach suggested by Karger; namely, we define X to be
the number of balanced 2-colorings. We emphasize that, while technically convenient,
the restriction to balanced 2-colorings is not essential for the second moment method
to succeed on hypergraph 2-colorability; i.e., one has E[X2] = O(E[X]2) even if X is
the number of all 2-colorings.

Of course, in order for balanced colorings to exist n must be even and we will
assume that in our calculations below. To get Theorem 2 for all sufficiently large n,
we observe that if for a given c∗, Hk(2n,m = 2c∗n) is w.h.p. 2-colorable, then for all
c < c∗, Hk(n, cn) is w.h.p. 2-colorable since deleting a random vertex of Hk(2n, 2c

∗n)
w.h.p. removes o(n) edges. With this in mind, in the following we let X be the number
of balanced 2-colorings and assume that n is even.

Since the vertices in each hyperedge are chosen uniformly with replacement, the
probability that a random hyperedge is bichromatic in a fixed balanced partition is
1 − 21−k. Since there are

(
n

n/2

)
such partitions and the m hyperedges are drawn

independently, we have

E[X] =

(
n

n/2

) (
1 − 21−k

)m
.(15)

754 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

To calculate the second moment, as we did for [NAE] k-SAT, we write E[X2] as a
sum over all pairs of balanced partitions. In order to estimate this sum we first observe
that if two balanced partitions σ and τ have exactly z black vertices in common, then
they must also have exactly z white vertices in common. Thus σ and τ define four
groups of vertices: z that are black in both, z that are white in both, n/2− z that are
black in σ and white in τ , and n/2 − z that are white in σ and black in τ . Clearly, a
random hyperedge is monochromatic in both σ and τ if and only if all its vertices fall
into the same group. Since the vertices of each hyperedge are chosen uniformly with
replacement, this probability is

2
(z

n

)k

+ 2

(
n/2 − z

n

)k

= 21−k

[(
2z

n

)k

+

(
1 − 2z

n

)k
]
.

Thus, by inclusion-exclusion, the probability that a random hyperedge is bichromatic
in both σ and τ is

1 − 22−k + 21−k

[(
2z

n

)k

+

(
1 − 2z

n

)k
]

= fN (2z/n),

where fN (α) = 1 − 22−k + 21−k(αk + (1 − α)k) is the function we defined for NAE
k-SAT in (9).

Moreover, observe that the number of pairs of partitions with such overlap is

(
n

z, z, n/2 − z, n/2 − z

)
=

(
n

n/2

)(
n/2

z

)2

.

Since hyperedges are drawn independently and with replacement, by summing over z
we thus get

E[X2] =

(
n

n/2

) n/2∑
z=0

(
n/2

z

)2

fN (2z/n)cn.

To bound this sum we apply Lemma 3 with q = 2 and φ(α) = fN (α)c. Felicitously,
we find ourselves maximizing a function gc which, if we replace c with r, is exactly
the same function gr we defined in (14) for NAE k-SAT. Thus, setting c = r where
k, r and ε are as in Lemma 4, gc is maximized at α = 1/2 with g′′(1/2) < 0, and
Lemma 3 implies that there exists a constant C = C(r, k) > 0 such that

E[X2] < C n−1/2

(
n

n/2

)
gc(1/2)n.

We now bound E[X] from below using Stirling’s approximation (29) and get

E[X2]

E[X]2
< C ×

n−1/2
(

n
n/2

)
gc(1/2)n(

n
n/2

)2
(1 − 21−k)2cn

= C × n−1/2 2n(
n

n/2

) → C ×
√

π

2
.

To complete the proof, analogously to [NAE] k-SAT, we use the following “boosting”
corollary of Theorem 4.

Corollary 2. If Hk(n, c
∗n) is w.u.p.p. 2-colorable, then for all c < c∗, Hk(n, cn)

is w.h.p. 2-colorable.

RANDOM k-SAT: TWO MOMENTS SUFFICE 755

7. Proof of Lemma 4. We need to prove g′′r (1/2) < 0 and gr(α) < gr(1/2) for
all α
= 1/2. As gr is symmetric around 1/2, we can restrict to α ∈ (1/2, 1]. We divide
(1/2, 1] into two parts and handle them with two separate lemmata. The first lemma
deals with α ∈ (1/2, 0.9] and also establishes that g′′r (1/2) < 0.

Lemma 5. Let α ∈ (1/2, 0.9]. For all k ≥ 74, if r ≤ 2k−1 ln 2, then gr(α) <
gr(1/2) and g′′r (1/2) < 0.

The second lemma deals with α ∈ (0.9, 1].
Lemma 6. Let α ∈ (0.9, 1]. For every ε > 0 and all k ≥ k0(ε), if r ≤ 2k−1 ln 2 −

ln 2
2 − 1

2 − ε, then gr(α) < gr(1/2).
Combining Lemmata 5 and 6 we see that for every ε > 0 and k ≥ k0 = k0(ε), if

r ≤ 2k−1 ln 2 − ln 2

2
− 1

2
− ε,

then gr(α) < gr(1/2) for all α
= 1/2 and g′′r (1/2) < 0, establishing Lemma 4.
We prove Lemmata 5 and 6 below. The reader should keep in mind that we have

made no attempt to optimize the value of k0 in Lemma 6, aiming instead for proof
simplicity. For the lower bounds presented in Table 1 we computed numerically, for
each k, the largest value of r for which the conclusions of Lemma 4 hold. In each
case, the condition g′′(1/2) < 0 was satisfied with room to spare, while establishing
g(1/2) > g(α) for all α
= 1/2 was greatly simplified by the fact that g never has more
than three local extrema in [0, 1].

Proof of Lemma 5. We will first prove that for k ≥ 74, gr is strictly decreasing
in α = (1/2, 0.9], thus establishing gr(α) < gr(1/2). Since gr is positive, to do
this it suffices to prove that (ln gr)

′ = g′r/gr < 0 in this interval. In fact, since
g′r(α) = (ln gr)

′ = 0 at α = 1/2, it will suffice to prove that for α ∈ [1/2, 0.9] we have
(ln gr)

′′ < 0. Now,

(ln gr(α))′′ = r

(
f ′′(α)

f(α)
− f ′(α)2

f(α)2

)
− 1

α(1 − α)

≤ r
f ′′(α)

f(α)
− 1

α(1 − α)
.(16)

To show that the right-hand side (R.H.S.) of (16) is negative we first note that for
α ≥ 1/2 and k > 3,

f ′′(α) = 21−kk(k − 1)(αk−2 + (1 − α)k−2) < 22−kαk−2k2

is monotonically increasing. Therefore, f ′′(α) ≤ f ′′(0.9) < 22−k 0.9k−2 k2.
Moreover, for all α, f(α) ≥ f(1/2) = (1−2−k)2. Therefore, since 1/(α(1−α)) ≥ 4

and r ≤ 2k−1 ln 2, it suffices to observe that for all k ≥ 74,

(2k−1 ln 2) × 22−k 0.9k−2 k2

(1 − 2−74)2
− 4 < 0.

Finally, recalling that g′(1/2) = 0 and using

(ln gr)
′′ =

g′′r (α)

gr(α)
− g′r(α)2

gr(α)2
,

we see that g′′r (1/2) < 0 since (ln gr)
′′(1/2) < 0.

756 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Proof of Lemma 6. We let h(α) = −α lnα− (1− α) ln(1− α) denote the entropy
function and for all α > 1/2 we define

w(α) ≡ f(α) − f(1/2)

f(1/2)
=

21−k(αk + (1 − α)k − 21−k)

(1 − 21−k)2
> 0.

By the definition of gr, we thus see that gr(α) < gr(1/2) if and only if

r

ln 2 − h(α)
<

1

ln(1 + w(α))
.(17)

Moreover, we observe that for any x > 0,

1

ln(1 + x)
≥ 1

x
+

1

2
− x

12
.

Since f(α) − f(1/2) < 21−k and f(1/2) > 1 − 22−k, we thus see that (17) holds
as long as

r

ln 2 − h(α)
<

2k−1 − 2

αk + (1 − α)k − 21−k
+

1

2
− 21−k

12(1 − 22−k)
.(18)

Now observe that for any 0 < α < 1 and 0 ≤ q < αk,

1

αk − q
≥ 1 + k(1 − α) + q.

Since α > 1/2 we can set q = 21−k − (1 − α)k, yielding

1

αk + (1 − α)k − 21−k
≥ 1 + k(1 − α) + 21−k − (1 − α)k.

Since 2k(1 − α)k < 5−k, we find that (18) holds as long as r ≤ φ(y) − 23−k, where

φ(α) ≡
(
ln 2 − h(α)

)(
2k−1 + (2k−1 − 2)k(1 − α) − 1

2

)
.

We are thus left to minimize φ in (0.9, 1]. Since φ is differentiable, its minima can
only occur at 0.9 or 1, or where φ′ = 0. The derivative of φ is

φ′(α) = (2k−1 − 2) ×
[
−k (ln 2 − h(α)) + (lnα− ln(1 − α))

(
1 + k(1 − α) +

3

2k − 4

)]
.

(19)

Note now that for all k > 1

lim
α→1

φ′(α)

ln(1 − α)
= −2k − 1

2
;

i.e., the derivative of φ as α → 1 becomes positively infinite. At the same time,

φ′(0.9) < −0.07 × 2kk + 1.1 (2k − 1) + 0.3 k

RANDOM k-SAT: TWO MOMENTS SUFFICE 757

is negative for k ≥ 16. Therefore, φ is minimized in the interior of (0.9, 1] for all
k ≥ 16. Setting φ′ to zero gives

− ln(1 − α) =
k (ln 2 − h(α))

1 + k(1 − α) + 3/(2k − 4)
− lnα.(20)

By “bootstrapping” we derive a tightening series of lower bounds on the solution
for the left-hand side (L.H.S.) of (20) for α ∈ (0.9, 1). Note first that we have an easy
upper bound,

− ln(1 − α) < k ln 2 − lnα.(21)

At the same time, if k > 2, then 3/(2k − 4) < 1, implying

− ln(1 − α) >
k (ln 2 − h(α))

2 + k(1 − α)
− lnα.(22)

If we write k(1 − α) = B, then (22) becomes

− ln(1 − α) >
ln 2 − h(α)

1 − α

(
B

B + 2

)
− lnα.(23)

By inspection, if B ≥ 3, the R.H.S. of (23) is greater than the L.H.S. for all
α > 0.9, yielding a contradiction. Therefore, k(1 − α) < 3 for all k > 2. Since
ln 2 − h(α) > 0.36 for α > 0.9, we see that for k > 2, (22) implies

− ln(1 − α) > 0.07 k.(24)

Finally, observe that (24) implies that as k increases, the denominator of (20) ap-
proaches 1.

To bootstrap, we note that since α > 1/2 we have

h(α) ≤ −2(1 − α) ln(1 − α)(25)

< 2 e−0.07 k(k ln 2 − ln 0.9)(26)

< 2 k e−0.07 k,

where (26) relies on (21) and (24). Moreover, α > 1/2 implies − lnα ≤ 2(1 − α) <
2 e−0.07 k. Thus, by using (24) and the fact 1/(1 + x) > 1− x for all x > 0, (20) gives
for k ≥ 3

− ln(1 − α) >
k (ln 2 − h(α))

1 + k(1 − α) + 3/(2k − 4)

>
k (ln 2 − 2 k e−0.07 k)

1 + 2 k e−0.07 k

> k (ln 2 − 2 k e−0.07 k)(1 − 2 k e−0.07 k)

> k ln 2 − 4 k2 e−0.07 k.(27)

For k ≥ 166, 4 k2 e−0.07 k < 1. Thus, by (27), we have 1−α < 3× 2−k. This, in turn,
implies − lnα ≤ 2(1 − α) < 6 × 2−k and thus, by (25) and (21), we have for α > 0.9

h(α) < 6 × 2−k(k ln 2 − lnα) < 5 k 2−k.(28)

758 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Plugging (28) into (20) to bootstrap again, we get that for k ≥ 166

− ln(1 − α) >
k (ln 2 − 5 k 2−k)

1 + 3 k 2−k + 3/(2k − 4)

>
k (ln 2 − 5 k 2−k)

1 + 6 k 2−k

> k (ln 2 − 5 k 2−k)(1 − 6 k 2−k)

> k ln 2 − 11 k2 2−k.

Since ex < 1 + 2x for x < 1 and 11 k2 2−k < 1 for k > 10, we see that for k ≥ 166,

1 − α < 2−k + 22 k2 2−2k.

Plugging into (21) the fact − lnα < 6×2−k, we get − ln(1−α) < k ln 2+6×2−k.
Using that e−x ≥ 1 − x for x ≥ 0, we get the closely matching upper bound,

1 − α > 2−k − 6 × 2−2k.

Thus, we see that for k ≥ 166, φ is minimized at an αmin which is within δ of
1−2−k, where δ = 22 k2 2−2k. Let T be the interval [1−2−k− δ, 1−2−k + δ]. Clearly
the minimum of φ is at least φ(1−2−k)−δ×maxα∈T |φ′(α)|. It is easy to see from (19)
that if α ∈ T , then |φ′(α)| ≤ 2 k 2k.

Now, a simple calculation using that ln(1 − 2−k) > −2−k − 2−2k for k ≥ 1 gives

φ(1 − 2−k) =
1

2

(
(2k − k) ln 2 + (2k − 1) ln(1 − 2−k)

)
×

(
1 + (k − 1) 2−k − k 22−2k

)

> 2k−1 ln 2 − ln 2

2
− 1

2
− k2 2−k.

Therefore,

φmin ≥ 2k−1 ln 2 − ln 2

2
− 1

2
− 45 k3 2−k.

Finally, recall that (17) holds as long as r < φmin − 23−k, for example, if

r < 2k−1 ln 2 − ln 2

2
− 1

2
− 46 k3 2−k.

Clearly, we can take k0 = O(ln ε−1) so that for all k ≥ k0 the error term 46 k3 2−k is
smaller than any ε > 0.

8. Proof of Lemma 3. The idea behind Lemma 3 is that sums of this type
are dominated by the contribution of Θ(n1/2) terms around the maximum term. The
proof amounts to replacing the sum by an integral and using the Laplace method for
asymptotic integrals [23].

We start by establishing two upper bounds for the terms of Sn, a crude one and
one which is sharper when α = z/t is bounded away from both 0 and 1. For the
sharper bound we will use the following form of Stirling’s approximation, valid for all
n > 0:

√
2πn <

n!

(n/e)n
<

√
2πn (1 + 1/n) .(29)

RANDOM k-SAT: TWO MOMENTS SUFFICE 759

The zth term of Sn is
(
t
z

)q
φ(z/t)n, where n = qt and φ(α) = g(α)αα(1 − α)1−α.

Fix any δ > 0 and suppose that z = αt, where α ∈ [δ, 1 − δ]. Then (29) yields(
t

z

)q

φ(z/t)n < s(α) g(α)n
(
1 +

q

n

)q

,(30)

where s(α) = (2πα(1 − α)t)
−q/2

. In addition to (30), valid for z ∈ [tδ, t(1 − δ)], we
will also use a cruder bound, valid for all 0 ≤ z ≤ t. Namely, by induction on t− z it
is easy to show that

(
t
z

)
≤ tt/[zz(t− z)t−z], implying

(
t

z

)q

φ(z/t)n < g(α)n.(31)

Recall now that g(αmax) > g(α) for all α
= αmax. If Iε denotes the interval
[αmax − ε, αmax + ε], then for every ε > 0, there exists a constant gε < g(αmax) = gmax

such that g(α) < gε for all α /∈ Iε. Let z−ε = �(αmax − ε)t and z+
ε = �(αmax + ε)t�,

and let

S(ε)
n =

z+
ε∑

z=z−
ε

(
t

z

)q

φ(z/t)n.(32)

We use (30) to bound the terms in S
(ε)
n and (31) to bound the remaining terms of

Sn. Since limn→∞ (1 + q/n)
q

= 1, and since limn→∞ ns gnε /g
n
max = 0 for any s, we see

that for every ε > 0

Sn < (Cεt)
−q/2 ×

z+
ε∑

z=z−
ε

g(z/t)n(33)

for any constant Cε > 2π ×min{(αmax − ε)(1− αmax + ε), (αmax + ε)(1− αmax − ε)}.
Say that a twice-differentiable function ψ(x) is unimodal on an interval [a, b] if

ψ′ has a unique zero c ∈ [a, b] with a < c < b and, furthermore, ψ′′(c) < 0. Since
gmax > g(α) for all α
= αmax and g′′(αmax) < 0, we can take ε small enough so that
g is unimodal on Iε. This implies that ln g is also unimodal on Iε and, for n ≥ 1, that
gn is unimodal also. For any function γ(x) which is nonnegative and unimodal on an
interval [a, b] with maximum γmax, no matter how tightly peaked, we have

	bt
∑
z=�at�

γ(z/t) ≤ t

∫ b

a

γ(x) dx + γmax,

and thus

z+
ε∑

z=z−
ε

g(z/t)n ≤ n

q

∫
Iε

g(x)n dx + gnmax.(34)

We evaluate this last integral using Lemma 7, i.e., the Laplace method for asymptotic
integrals.

Lemma 7 (see [23, section 4.2]). Let h(x) be unimodal on [a, b], where c is the
unique zero of h′ in [a, b]. Then

lim
n→∞

∫ b

a

enh(x) dx ∼
√

2π

n |h′′(c)| enh(c).

760 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

Applying Lemma 7 to (34) with h = ln g and c = αmax, we see that

Sn < C n−(q−1)/2 gnmax,

where C = (2π)−(q−1)/2 × qq/2 ×
√
gmax/|g′′(αmax)|.

9. Conclusions. Before this work, lower bounds on the thresholds of random
constraint satisfaction problems were largely derived by analyzing very simple heuris-
tics. Here, instead, we derive such bounds by applying the second moment method to
the number of solutions. In particular, for random NAE k-SAT and random hyper-
graph 2-colorability we determine the location of the threshold within a small additive
constant for all k. As a corollary, we establish that the asymptotic order of the random
k-SAT threshold is Θ(2k), answering a long-standing open question.

Since this work first appeared [4, 5], our methods have been extended and applied
to other problems. For random k-SAT, Achlioptas and Peres [7] confirmed our sus-
picion (see section 3.3) that the main source of correlations in random k-SAT is the
“populist” tendency of satisfying assignments toward the majority vote assignment.
By considering a carefully constructed random variable which focuses on balanced
solutions, i.e., on satisfying assignments that satisfy roughly half of all literal occur-
rences, they showed rk ≥ 2k ln 2 − k/2 −O(1), establishing rk ∼ 2k ln 2.

In [8], Achlioptas, Naor, and Peres extended the approach of balanced solutions
to Max k-SAT. Let us say that a k-CNF formula is p-satisfiable if there exists a truth
assignment which satisfies at least (1 − 2−k + p2−k) of all clauses; note that every
k-CNF is 0-satisfiable. For p ∈ (0, 1] let rk(p) denote the threshold for Fk(n,m = rn)
to be p-satisfiable (so that rk(1) = rk). In [8], the result rk = rk(1) ∼ 2k ln 2 of [7]
was extended to all p ∈ (0, 1], showing that

rk(p) ∼
2k ln 2

p + (1 − p) ln(1 − p)
.

In both [7] and [8], controlling the variance crucially depends on focusing on
an appropriate subset of solutions (akin to our NAE-assignments but less heavy-
handed). In [9], Achlioptas and Naor applied the naive second moment method to
the canonical symmetric constraint satisfaction problem, i.e., to the number of k-
colorings of a random graph. Bearing out our belief that the naive approach should
work for symmetric problems, they obtained asymptotically tight bounds for the k-
colorability threshold, and in [10] Achlioptas and Moore extended this analysis to
random d-regular graphs. The difficulty here is that the “overlap parameter” is a
k × k matrix rather than a single real α ∈ [0, 1]. Since k → ∞, this makes the
asymptotic analysis dramatically harder and much closer to the realm of statistical
mechanics calculations.

We propose several questions for further work.
1. Does the second moment method give tight lower bounds on the threshold of

all constraint satisfaction problem with a permutation symmetry?
2. Does it perform well for problems that are symmetric “on average”? For

example, does it perform well for regular random k-SAT where every literal
appears an equal number of times?

3. What rigorous connections can be made between the success of the second
moment method and the notion of “replica symmetry” in statistical physics?

4. Is there a polynomial-time algorithm that succeeds with uniformly positive
probability close to the threshold, or at least for r = ω(k) × 2k/k where
ω(k) → ∞?

RANDOM k-SAT: TWO MOMENTS SUFFICE 761

Acknowledgments. We are grateful to Paul Beame, Ehud Friedgut, Michael
Molloy, Assaf Naor, Yuval Peres, Alistair Sinclair, and Chris Umans for reading earlier
versions and making many helpful suggestions, and to Remi Monasson for discussions
on the replica method. We would like to thank Henry Cohn for bringing [23] to our
attention. Finally, we would like to thank the anonymous referees for a number of
excellent suggestions.

REFERENCES

[1] D. Achlioptas, Setting two variables at a time yields a new lower bound for random 3-SAT,
in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000, pp.
28–37.

[2] D. Achlioptas, P. Beame, and M. Molloy, A sharp threshold in proof complexity, J. Comput.
System Sci., 68 (2004), pp. 238–268.

[3] D. Achlioptas, P. Beame, and M. Molloy, Exponential bounds for DPLL below the sat-
isfiability threshold, in Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, New Orleans, 2004, pp. 132–133.

[4] D. Achlioptas and C. Moore, The asymptotic order of the random k-SAT threshold, in
Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science,
2002, pp. 779–788.

[5] D. Achlioptas and C. Moore, On the 2-colorability of random hypergraphs, in Randomization
and Approximation Techniques in Computer Science, Lecture Notes in Comput. Sci. 2483,
Springer-Verlag, Berlin, 2002, pp. 78–90.

[6] D. Achlioptas, J. H. Kim, M. Krivelevich, and P. Tetali, Two-coloring random hyper-
graphs, Random Structures Algorithms, 20 (2002), pp. 249–259.

[7] D. Achlioptas and Y. Peres, The random k-SAT threshold is 2k ln 2−O(k), J. Amer. Math.
Soc., 17 (2004), pp. 947–973.

[8] D. Achlioptas, A. Naor, and Y. Peres, On the maximum satisfiability of random formulas,
in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
2003, pp. 362–370.

[9] D. Achlioptas and A. Naor, On the k-colorability threshold, Ann. of Math. (2), 162 (2005),
pp. 1333–1349.

[10] D. Achlioptas and C. Moore, The chromatic number of random regular graphs, in Proceed-
ings of the 8th International Workshop on Randomization and Computation, Lecture Notes
in Comput. Sci. 3122, Springer-Verlag, Berlin, 2004, pp. 219–228.

[11] D. Achlioptas and G. B. Sorkin, Optimal myopic algorithms for random 3-SAT, in Proceed-
ings of the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000, pp.
590–600.

[12] N. Alon and J. Spencer, A Note on Coloring Random k-Sets, manuscript.
[13] N. Alon and J. Spencer, The Probabilistic Method, Wiley & Sons, New York, 1992.
[14] J. Beck, On 3-chromatic hypergraphs, Discrete Math., 24 (1978), pp. 127–137.
[15] F. Bernstein, Zur theorie der trigonometrische reihe, Leipz. Ber., 60 (1908), pp. 325–338.
[16] A. Z. Broder, A. M. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability

of random 3-CNF formulas, in Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, Austin, TX, 1993, pp. 322–330.

[17] M.-T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability
problem, SIAM J. Comput., 15 (1986), pp. 1106–1118.

[18] M.-T. Chao and J. Franco, Probabilistic analysis of a generalization of the unit-clause literal
selection heuristics for the k-satisfiability problem, Inform. Sci., 51 (1990), pp. 289–314.

[19] P. Cheeseman, R. Kanefsky, and W. Taylor, Where the really hard problems are, in Pro-
ceedings of the 12th International Joint Conference on Artificial Intelligence, 1991, pp.
331–337.

[20] V. Chvátal and B. Reed, Mick gets some (the odds are on his side), in Proceedings of the
33rd Annual IEEE Symposium on Foundations of Computer Science, 1992, pp. 620–627.

[21] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988), pp.
759–768.

[22] S. A. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd Annual
ACM Symposium on Theory of Computing, 1971, pp. 151–158.

[23] N. G. de Bruijn, Asymptotic Methods in Analysis, Dover, New York, 1981.
[24] O. Dubois and Y. Boufkhad, A general upper bound for the satisfiability threshold of random

r-SAT formulae, J. Algorithms, 24 (1997), pp. 395–420.

762 DIMITRIS ACHLIOPTAS AND CRISTOPHER MOORE

[25] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae and the satisfia-
bility threshold, in Electronic Colloquium on Computational Complexity 10, 2003; available
online from http://www.informatik.uni-trier.de/∼ley/db/journals/eccc/eccc10.html; also
available in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, San Francisco, 2000, pp. 126–127.

[26] A. El Maftouhi and W. Fernandez de la Vega, On random 3-SAT, Combin. Probab.
Comput., 4 (1995), pp. 189–195.

[27] P. Erdős, On a combinatorial problem, Nordisk Mat. Tidskr., 11 (1963), pp. 5–10.
[28] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related

questions, in Infinite and Finite Sets, Vol. II, Colloq. Math. Soc. Janos Bolyai 10, North–
Holland, Amsterdam, 1975, pp. 609–627.

[29] W. Fernandez de la Vega, On Random 2-SAT, manuscript, 1992.
[30] P. Flajolet, D. E. Knuth, and B. Pittel, The first cycles in an evolving graph, Discrete

Math., 75 (1989), pp. 167–215.
[31] J. Franco and M. Paull, Probabilistic analysis of the Davis–Putnam procedure for solving

the satisfiability problem, Discrete Appl. Math., 5 (1983), pp. 77–87.
[32] E. Friedgut, Necessary and sufficient conditions for sharp thresholds of graph properties, and

the k-SAT problem, J. Amer. Math. Soc., 12 (1999), pp. 1017–1054.
[33] A. M. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT,

J. Algorithms, 20 (1996), pp. 312–355.
[34] A. Frieze and N. C. Wormald, Random k-SAT: A tight threshold for moderately growing k,

Combinatorica, 25 (2005), pp. 297–305.
[35] A. Goerdt, A threshold for unsatisfiability, J. Comput. System Sci., 53 (1996), pp. 469–486.
[36] M. Hajiaghayi and G. B. Sorkin, The satisfiability threshold of random 3-SAT is at least

3.52, submitted; available online from http://www.arxiv.org/abs/math.CO/0310193.
[37] A. Haken, The intractability of resolution, Theoret. Comput. Sci., 39 (1985), pp. 297–308.
[38] S. Janson, T. �Luczak, and A. Ruciński, Random Graphs, John Wiley & Sons, New York,

2000.
[39] S. Janson, Y. C. Stamatiou, and M. Vamvakari, Bounding the unsatisfiability threshold of

random 3-SAT, Random Structures Algorithms, 17 (2000), pp. 103–116.
[40] A. Kamath, R. Motwani, K. Palem, and P. Spirakis, Tail bounds for occupancy and the

satisfiability threshold conjecture, Random Structures Algorithms, 7 (1995), pp. 59–80.
[41] A. Kaporis, L. M. Kirousis, and E. Lalas, Selecting complementary pairs of literals, in

Proceedings of LICS 2003 Workshop on Typical Case Complexity and Phase Transitions,
2003.

[42] A. Kaporis, L. M. Kirousis, Y. C. Stamatiou, M. Vamvakari, and M. Zito, The unsatis-
fiability threshold revisited, Discrete Math., to appear.

[43] M. Karoński and T. �Luczak, Random hypergraphs, in Combinatorics, Paul Erdős Is Eighty,
Vol. 2 (Kesztheley, 1993), Bolyai Soc. Math. Stud. 2, Janos Bolyai Math. Soc., Budapest,
1996, pp. 283–293.

[44] L. M. Kirousis, E. Kranakis, D. Krizanc, and Y. Stamatiou, Approximating the unsat-
isfiability threshold of random formulas, Random Structures Algorithms, 12 (1998), pp.
253–269.

[45] M. Krivelevich and B. Sudakov, The chromatic numbers of random hypergraphs, Random
Structures Algorithms, 12 (1998), pp. 381–403.

[46] L. Lovász, Coverings and coloring of hypergraphs, in Proceedings of the Fourth Southeastern
Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1973, pp.
3–12.

[47] M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random sat-
isfiability problems, Science, 297 (2002), pp. 812–815.

[48] M. Mézard and R. Zecchina, Random K-satisfiability: From an analytic solution to a new
efficient algorithm, Phys. Rev. E (3), 66 (2002), 056126.

[49] D. G. Mitchell, B. Selman, and H. J. Levesque, Hard and easy distributions of SAT
problems, in Proceedings of the 10th National Conference on Artificial Intelligence, 1992,
pp. 459–462.

[50] R. Monasson and R. Zecchina, Statistical mechanics of the random K-satisfiability model,
Phys. Rev. E (3), 56 (1997), pp. 1357–1370.

[51] J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph 2-
coloring, Random Structures Algorithms, 16 (2000), pp. 4–32.

[52] J. Schmidt-Pruzan, E. Shamir, and E. Upfal, Random hypergraph coloring algorithms and
the weak chromatic number, J. Graph Theory, 8 (1985), pp. 347–362.

[53] A. Urquhart, Hard examples for resolution, J. ACM, 34 (1987), pp. 209–219.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 763–778

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS∗

WIM VAN DAM† , SEAN HALLGREN‡ , AND LAWRENCE IP§

Abstract. Almost all of the most successful quantum algorithms discovered to date exploit the
ability of the Fourier transform to recover subgroup structures of functions, especially periodicity.
The fact that Fourier transforms can also be used to capture shift structure has received far less
attention in the context of quantum computation. In this paper, we present three examples of
“unknown shift” problems that can be solved efficiently on a quantum computer using the quantum
Fourier transform. For one of these problems, the shifted Legendre symbol problem, we give evidence
that the problem is hard to solve classically, by showing a reduction from breaking algebraically
homomorphic cryptosystems. We also define the hidden coset problem, which generalizes the hidden
shift problem and the hidden subgroup problem. This framework provides a unified way of viewing
the ability of the Fourier transform to capture subgroup and shift structure.

Key words. quantum computing, efficient algorithms, Legendre symbol

AMS subject classifications. 81P68, 68W40, 11Y16

DOI. 10.1137/S009753970343141X

1. Introduction. The first problem to demonstrate a superpolynomial sepa-
ration between random and quantum polynomial time was the recursive Fourier
sampling problem [6]. Exponential separations were subsequently discovered by Si-
mon [35], who defined a problem with respect to an oracle, and by Shor [34], who
found polynomial-time quantum algorithms for factoring and discrete logarithms. We
now understand that the natural generalization of Simon’s problem and the factoring
and discrete log problems is the hidden subgroup problem (HSP), and that when the
underlying group is abelian and finitely generated, we can solve the HSP efficiently
on a quantum computer. While recent results have continued to study important
generalizations of the HSP (for example, [19, 21, 24, 25, 27, 37]), only the recursive
Fourier sampling problem remains outside the abelian HSP framework.

In this paper, we give quantum algorithms for several hidden shift problems where
we are given two functions f , g such that there is a shift s for which f(x) = g(x + s)
for all x. The problem is then to find s. We show how to solve this problem for
several classes of functions, but perhaps the most interesting example is the shifted
Legendre symbol problem, where g is the Legendre symbol with respect to a prime

∗Received by the editors July 15, 2003; accepted for publication (in revised form) February 28,
2006; published electronically October 24, 2006. A preliminary version appeared as [15].

http://www.siam.org/journals/sicomp/36-3/43141.html
†Departments of Computer Science and Physics, University of California, Santa Barbara, Santa

Barbara, CA 93106-5110 (vandam@cs.ucsb.edu). This author’s work was supported in part by the
NSA and ARDA under ARO contract W911NF-04-R-0009. Part of this work was done while the
author was at MIT, University of California, Berkeley, MSRI, and HP Labs.

‡NEC Laboratories America, Inc., Princeton, NJ 08540 (hallgren@nec-labs.com). This author’s
work was supported at Caltech in part by an NSF Mathematical Sciences Postdoctoral Fellowship
and in part by the NSF through the Institute for Quantum Information at the California Institute of
Technology. Most of this work was done while the author was at the Mathematical Sciences Research
Institute and the University of California, Berkeley, with partial support from DARPA QUIST grant
F30602-01-2-0524.

§Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (lip@google.com). This
author’s work was supported by NSF grant CCR-0049092, DARPA grant F30602-00-2-0601, and
DARPA QUIST grant F30602-01-2-2054. This work was done while the author was at the University
of California, Berkeley, and the Institute for Quantum Information at the California Institute of
Technology.

763

764 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

size finite field, and the problem is the following: “Given the function f(x) =
(
x+s
p

)
as an oracle, find s.”

The oracle problem that our algorithms solve can be viewed as the problem of
predicting a pseudorandom function f . Such tasks play an important role in cryptog-
raphy and have been studied extensively under various assumptions about how one
is allowed to query the function (nonadaptive versus adaptive, deterministic versus
randomized, etc.) [7, 31]. In this paper we consider the case where the function is
queried in a quantum mechanical superposition of different values x. We show that if
f(x) is an s-shifted multiplicative character χ(x+s)—like the Legendre symbol—then
a polynomial-time quantum algorithm making such queries can determine the hidden
shift s, breaking the pseudorandomness of f .

We conjecture that classically the shifted Legendre symbol is a pseudorandom
function; that is, it is impossible to efficiently predict the value of the function after
a polynomial number of queries if one is allowed only a classical algorithm with or-
acle access to f . Damg̊ard gave partial evidence for this conjecture, proposing the
related task: “Given a part of the Legendre sequence

(
s
p

)
,
(
s+1
p

)
, . . . ,

(
s+�
p

)
, where �

is O(log p), predict the next value
(
s+�+1

p

)
” as a hard problem with applications in

cryptography [17].

As further evidence of our conjecture, we show that breaking certain algebraically
homomorphic cryptosystems can be reduced to the shifted Legendre symbol problem.
The reduction, together with our quantum algorithm for the shifted Legendre symbol
problem, yields a polynomial-time quantum algorithm for breaking such cryptosys-
tems. The best known classical algorithm [9] for breaking these cryptosystems is
subexponential and is based on a smoothness assumption. Thus the shifted Legendre
symbol problem is a problem for which there is an exponential separation between a
quantum algorithm and the fastest known classical algorithm. These cryptosystems
can also be broken by Shor’s algorithm for period finding, but the two attacks on the
cryptosystems appear to use completely different ideas.

While current quantum algorithms solve problems based on an underlying group
and the Fourier transform over that group, we initiate the study of problems where
there is an underlying ring or field. The Fourier transform over the additive group of
the ring is defined using the characters of the additive group, the additive characters of
the ring. Similarly, the multiplicative group of units induces multiplicative characters
of the ring. The interplay between additive and multiplicative characters is well
understood [30, 36], and we show that this connection can be exploited in quantum
algorithms. In particular, we put a multiplicative character into the phase of the
registers and compute the Fourier transform over the additive group. The resulting
phases are the inner products between the multiplicative character and each of the
additive characters, a Gauss sum. We hope the new tools presented here will lead to
other quantum algorithms.

We give algorithms for three types of hidden shift problems. In the first problem, g
is a multiplicative character of a finite field. Given f , a shifted version of g, the shift is
uniquely determined from f and g. An example of a multiplicative character of Z/pZ

is the Legendre symbol. Our algorithm uses the Fourier transform over the additive
group of a finite field. In the second problem, g is a multiplicative character of the ring
Z/nZ. This problem has the feature that the shift is not uniquely determined by f
and g, and our algorithm identifies all possible shifts. An example of a multiplicative
character of Z/nZ is the Jacobi symbol. In the third problem we have the same setup
as in the second problem with the additional twist that n is unknown.

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 765

We also define the hidden coset problem, which is a generalization of the hidden
shift problem and the hidden subgroup problem. This definition provides a unified
way of viewing the quantum Fourier transform’s ability to capture subgroup and shift
structure.

Some of our hidden shift problems can be reduced to the nonabelian HSP, al-
though efficient algorithms for these HSP instances are not known. The shifted
Legendre symbol problem over Z/pZ can be reduced to an instance of the HSP
over the dihedral group Dp = Z/pZ � Z/2Z if we assume a conjecture about sub-
sequences of the Legendre symbol. Let f(x, 0) =

((
x
p

)
,
(
x+1
p

)
, . . . ,

(
x+�
p

))
and f(x, 1) =((

x+s
p

)
,
(
x+s+1

p

)
, . . . ,

(
x+s+�

p

))
, where s is unknown and � = polylog(p). Then the hid-

den subgroup is H = {(0, 0), (s, 1)}. The conjecture that is necessary to ensure that
f will be distinct on distinct cosets of H is thus the statement that the subsequence((

x+s
p

)
,
(
x+s+1

p

)
, . . . ,

(
x+s+�

p

))
is unique for every x (cf. Conjecture 2.1 in [9]). For the

general shifted multiplicative character problem, the analogous reduction to the HSP
may fail because f may not be distinct on distinct cosets. However, we can efficiently
generate random coset states, that is, superpositions of the form |x, 0〉 + |x + s, 1〉,
although it is unknown how to use these to efficiently find s [18]. The issue of nondis-
tinctness on cosets in the HSP has been studied for some groups [8, 20, 23, 22].

The existence of a time-efficient quantum algorithm for the shifted Legendre sym-
bol problem was posed as an open question in [13]. The Fourier transform over the
additive group of a finite field was independently proposed for the solution of a dif-
ferent problem in [4]. The current paper subsumes [14, 15, 26]. Building on the ideas
in this paper, a quantum algorithm for estimating Gauss sums is described in [16].

This paper is organized as follows. Section 2 contains some definitions and facts.
In section 3, we give some intuition for the ideas behind the algorithms. In section 4,
we present an algorithm for the shifted multiplicative problem over finite fields, of
which the shifted Legendre symbol problem is a special case, and show how we can
use this algorithm to break certain algebraically homomorphic cryptosystems. In
section 5, we extend our algorithm to the shifted multiplicative problem over rings
Z/nZ. This has the feature that, unlike in the case of the finite field, the possible
shifts may not be unique. We then show that this algorithm can be extended to the
situation where n is unknown. In section 6, we show that all these problems lie within
the general framework of the hidden coset problem. We give an efficient algorithm for
the hidden coset problem provided g satisfies certain conditions. We also show how
our algorithm can be interpreted as solving a deconvolution problem using Fourier
transforms.

2. Background.

2.1. Notation and conventions. We use the following notation: ωn is the nth

root of unity exp(2πi/n), and f̂ denotes the Fourier transform of the function f . An
algorithm computing in Fq, Z/nZ, or G runs in polynomial time if it runs in time
polynomial in log q, log n, or log |G|.

In a ring Z/nZ or a field Fq, additive characters ψ : Z/nZ → C
∗ or ψ : Fq → C

∗

are characters of the additive group, that is, ψ(x+ y) = ψ(x)ψ(y), and multiplicative
characters χ : (Z/nZ)∗ → C

∗ or χ : F
∗
q → C

∗ are characters of the multiplicative
group of units, that is, χ(xy) = χ(x)χ(y) for all x and y. We extend the definition
of a multiplicative character to the entire ring or field by assigning the value zero to
elements outside the unit group. All nonzero χ(x) values have unit norm and thus
χ(x−1) = χ(x).

766 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

We ignore the normalization term in front of a superposition unless we need to
explicitly calculate the probability of measuring a particular value.

2.2. Computing superpositions. We will need to be able to compute the
superposition

∑
x f(x)|x〉, where the function f : G → C describes the amplitudes of

the state in an efficient way. The specific functions f that we deal with in this article
have the property that for each x either f(x) = 0 or f(x) is an mth root of unity. Hence
there is a function f ′ : G → Z such that if f(x) �= 0, then f(x) = exp(2πif ′(x)/m).
This additional function helps us in the following lemma, which describes how to
construct the superpositions in an efficient way.

Lemma 2.1 (computing superpositions). Let f : G → C be a complex-valued
function with a finite domain G that is characterized by a function f ′ : G → Z/mZ∪
{i∞} such that f(x) = ω

f ′(x)
m for all x with f ′(x) ∈ Z/mZ and f(x) = 0 if f ′(x) = i∞.

Then there is an efficient algorithm for creating the superposition
∑

x f(x)|x〉 with
success probability equal to the fraction of x ∈ G with f(x) nonzero and that uses two
queries to the function f ′.

Proof. Start with the superposition over all x ∈ G:
∑

x |x, 0〉. Compute f ′(x)
into the second register and measure to see whether f ′(x) �= i∞. This succeeds with
probability equal to the fraction of x such that f(x) is nonzero. If successful, we are
left with a superposition over all x such that f(x) is nonzero. Next, compute the

phase shift ω
f ′(x)
m by adding mod m the value f ′(x) to the superposition

∑
j ω

−j
m |j〉

(which by itself is the Fourier transform over Z/mZ of the state | − 1〉), such that

∑
x∈G,f(x) �=0

|x〉 ⊗ 1√
m

∑
j∈Z/mZ

ω−j
m |j〉
→

∑
x∈G,f(x) �=0

|x〉 ⊗ 1√
m

∑
j∈Z/mZ

ω−j
m |j + f ′(x)〉

=
∑

x∈G,f(x) �=0

ωf ′(x)
m |x〉 ⊗ 1√

m

∑
j∈Z/mZ

ω−j
m |j〉

=
∑
x∈G

f(x)|x〉 ⊗ 1√
m

∑
j∈Z/mZ

ω−j
m |j〉.

If necessary, the state
∑

j ω
−j
m |j〉 = F| − 1〉 can be approximated arbitrarily closely

(see [33, section 5.1]).

2.3. The Fourier transform and approximate Fourier sampling. Although
it is not known how to efficiently compute the quantum Fourier transform over Z/nZ

exactly, it is known how to efficiently approximate such transformations [12, 23, 28,
29]. The current section deals with the problem of approximating the right probability
distribution induced by the Fourier transform if the size of the group is not known.
This result will be used in section 5.2.

Fourier sampling a quantum state is the process of computing the Fourier trans-
form and measuring the resulting state. The best-known example is Shor’s factoring
algorithm which finds the period of a function f defined on Z. In that case the func-
tion f is periodic with period r and is injective in {0, . . . , r − 1}. By evaluating the
function in superposition up to some chosen value q and measuring the function value,

the state |φ〉 =
√

r
q

∑q/r−1
i=0 |k + ir〉 is created, where k depends on which function

value was measured. If q were a multiple of r, then Fourier sampling |φ〉 would result
in a random integer multiple of q/r.

When a multiple of r is not known, we must understand the distribution induced
by Fourier sampling |φ〉 for values of q that we choose. This understanding was at the

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 767

heart of Shor’s factoring algorithm when he showed that it is possible to still compute
multiples of q/r using continued fractions. This principle has been generalized for
arbitrary states |φ〉 and is known as approximate Fourier sampling [23]. This process,
described below, allows one to sample from a distribution which is close to the one that
could be generated if a multiple of r were known. This will be required in section 5.2
for finding the period of the shifted character problem. In that case the shifted
character problem will have a property very different from that of Shor’s periodic
function. In particular, the periodic function f in Shor’s case takes r different values,
whereas there are nontrivial cases of the shifted character problem when the function
only takes two values (ignoring zero amplitudes, which appear in an exponentially
small fraction of the amplitudes and thus are insignificant).

Approximate Fourier sampling works as follows: Let |φ〉 =
∑n−1

x=0 φx|x〉 be an

arbitrary superposition, and let D̂|φ〉 be the distribution induced by Fourier sampling

|φ〉 over Z/nZ. Let the superposition |φ̃〉 =
∑q′−1

x=0 φxmodn|x〉 be |φ〉 repeated until

some arbitrary integer q′, not necessarily a multiple of n. Let D̂|φ̃〉 be the distribution

induced by Fourier sampling |φ̃〉 over Z/qZ, where q > q′ and φx = 0 if x ≥ q′.

Since D̂|φ〉 is a distribution on Z/nZ and D̂|φ̃〉 is a distribution on Z/qZ, we define

new distributions over fractions which can be compared. Define D̂RF
|φ〉(j, k) = D̂|φ〉(jm)

if mk = n. The distribution D̂RF
|φ〉 is the distribution on the reduced fractions of D̂|φ〉

since it describes the process of sampling x from D̂|φ〉 and returning the fraction x/n
in lowest terms.

Let D̂CF

|φ̃〉 be the distribution induced on fractions from sampling D̂|φ̃〉 to obtain
x, and then using continued fractions to compute the closest approximation to x/q

with denominator at most n. It is a theorem that if q′ = Ω(n
2

ε2) and q = Ω(q
′

ε), then

|D̂RF
|φ〉 − D̂CF

|φ̃〉|1 < ε [23].

It is easy to apply this to the periodic function with period r that is injective on
{0, . . . , r−1}. Let n = r and consider the state |φ〉 =

∑r
i=1 |k〉. The distribution D̂RF

|φ〉

is uniform over {0, 1/r, 2/r, . . . , (r− 1)/r}. By the theorem, if a large enough value q
is chosen, then D̂CF

|φ̃〉 will be ε-close to this and efficiently computable.

2.4. Legendre symbol and Jacobi symbol. The Legendre symbol
(·
p

)
: Fp →

{0,±1} is a quadratic multiplicative character of Fp defined by

(
x

p

)
=

⎧⎨
⎩

0 if x = 0,
+1 if x is a nonzero square in Fp,
−1 if x is not a square in Fp.

The Legendre symbol satisfies
(
x
p

)
= x(p−1)/2 mod p, which shows that we can effi-

ciently compute the Legendre symbol using repeated squaring modp.

The Jacobi symbol
(·
n

)
: Z/nZ → {0,±1} is a quadratic multiplicative character

of Z/nZ with n an odd integer. It is defined so that it satisfies the relation
(
a
bc

)
=(

a
b

)(
a
c

)
and reduces to the Legendre symbol when the lower parameter is prime. With

n = pr11 · · · prkk and all pi odd primes, this gives the definition
(
x
n

)
=

(
x
p1

)r1 · · · (x
pk

)rk
such that

(
x
n

)
�= 0 if and only if x ∈ Z/nZ

∗. The value of the Jacobi symbol can
be calculated efficiently without factoring n using the quadratic reciprocity theorem,
which states that

(
m
n

)
= (−1)(m−1)(n−1)/4

(
n
m

)
in combination with the rule that

(
m
n

)
=(

m′

n

)
if m = m′ mod n.

768 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

2.5. Finite fields. The elements of a finite field Fq (where q = pr for some
prime p) can be represented as polynomials in Fp[X] modulo a degree r irreducible
polynomial in Fp[X]. In this representation, addition, subtraction, multiplication,
and division can all be performed in O((log q)2) time [2].

We will need to compute the Fourier transform over the additive group of a
finite field, which is isomorphic to (Z/pZ)r. The additive characters are of the form

ψy(x) = ω
Tr(xy)
p , where Tr : Fq → Fp is the trace of the finite field Tr(x) =

∑r−1
j=0 x

pj

and y ∈ Fq [30]. We can efficiently compute the Fourier transform over the additive
group of a finite field. (The efficiency of this transform was independently shown
in [4].)

An operation U approximates U ′ to within ε if for any unit vector |ψ〉, ||U |ψ〉 −
U ′|ψ〉||2 ≤ ε.

Lemma 2.2 (Fourier transform over Fq). The Fourier transform

|x〉
→ 1
√
q

∑
y∈Fq

ωTr(xy)
p |y〉

for all x ∈ Fq can be approximated to within error ε in time polynomial in log q and
log 1/ε.

Proof. Let q = pr, where p is the prime number that denotes the base field:
Fq = Fp[X]/f(X), with f(X) an irreducible polynomial of degree r. Assume that the

mapping |x〉
→
⊗r−1

j=0 |Tr(xXj)〉 can be computed in polynomial time. First apply
this map and then compute the Fourier transform over (Z/pZ)r. This gives us the
final state

r−1⊗
j=0

1
√
p

∑
yj∈Fp

ωTr(xXj)yj
p |yj〉 =

1
√
q

∑
y∈Fq

ωTr(xy)
p |y〉.

We first show that the map |x〉
→ |Tr(x),Tr(xX), . . . ,Tr(xXr−1)〉 is reversible and
then that it can be computed in polynomial time. Let T (x) = (Tr(x), Tr(xX), . . . ,
Tr(xXr−1)). T is additive since Tr is; thus if T (a) = T (b), then T (a− b) is the zero
vector. If T is not one-to-one, there is a nonzero x with T (x) equal to the zero vector.
Since Tr is not the zero map, choose a ∈ Fq such that Tr(a) �= 0. Choose elements of
the base field z0, . . . , zr−1 such that x ·

∑
j zjX

j = a (these must exist because x is

nonzero). Then Tr(a) = Tr(
∑

j zjxX
j) =

∑
j zjTr(xXj) = 0, since Tr(xXj) = 0 for

all j. But this contradicts Tr(a) �= 0. Thus T is one-to-one.
We now show that the map is computable in polynomial time. Write x =∑r−1

j=0 xjX
j , where the xj are from the base field of Fq. Then for the trace Tr(xXk) =∑r−1

j=0 xjTr(Xj+k); hence the components of T (x) are linear combinations of the xjs
and thus can be computed in polynomial time.

So far we have assumed that all operations are performed exactly. As we ob-
served earlier in Lemma 2.1 we can approximate the powers of ωp to within ε in
time polynomial in log p and log 1/ε. The Fourier transform over (Z/pZ)r can also be
approximated to within ε in time polynomial in log pr and log 1/ε.

For clarity of exposition we assume throughout the rest of the paper that the
Fourier transform over Fq can be performed exactly, as we can make the errors due
to the approximation exponentially small with only polynomial overhead.

2.6. Multiplicative characters and their Fourier transforms. The multi-
plicative group F

∗
q of a finite field Fq is cyclic. Let g be a generator of F

∗
q . Then the

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 769

multiplicative characters of Fq are of the form χ(g�) = ωk�
q−1 for all � ∈ {0, . . . , q− 2},

where the q − 1 different multiplicative characters are indexed by k ∈ {0, . . . , q − 2}.
The trivial character is the character with k = 0. We can extend the definition
of χ to Fq by defining χ(0) = 0. On a quantum computer we can efficiently com-
pute χ(x) because the value is determined by the discrete logarithm logg(x), which
can be computed efficiently using Shor’s algorithm [34]. The Fourier transform
of a multiplicative character χ of the finite field Fq is given by χ̂(0) = 0, and

χ̂(y) = χ(y)χ̂(1) = ω−k�
q−1

∑
j ω

kj
q−1ω

Tr(gj)
p , where y = g� [30, 36].

Let n = pm1
1 · · · pmk

k be the prime factorization of n. Then by the Chinese remain-
der theorem, (Z/nZ)∗ ∼= (Z/pm1

1 Z)∗×· · ·×(Z/pmk

k Z)∗. Every multiplicative character
χ of Z/nZ can be written as the product χ(x) = χ1(x1) · · ·χk(xk), where χi is a multi-
plicative character of Z/pmi

i Z and xi ≡ x mod pmi
i . We say χ is completely nontrivial

if each of the χi is nontrivial. We extend the definition of χ to all of Z/nZ by defining
χ(y) = 0 if gcd(y, n) �= 1. The character χ is aperiodic on {0, . . . , n − 1} if and only
if all its χi factors are aperiodic over their respective domains {0, . . . , pmi

i − 1}. We
call χ a primitive character if it is completely nontrivial and aperiodic. Hence, χ is
primitive if and only if all its χi terms are primitive.

If χ is primitive, the Fourier transform of χ is the product of the Fourier transform
of its components and has an expression analogous to the Fourier transform of a
multiplicative transform of a finite field. That is,

χ̂(y) = χ̂1(y1) · · · χ̂k(yk)

= χ1(y1)χ̂1(1) · · ·χk(yk)χ̂k(1)

= χ1(y1) · · ·χk(yk)χ̂1(1) · · · χ̂k(1)

= χ(y)χ̂(1).

If χ is completely nontrivial but periodic with period �, let χ′ be the primitive char-
acter of Z/�Z given by χ′(x) = χ(x) for x ∈ {0, . . . , �− 1}. The Fourier transform of
χ is then given by

χ̂(y) =

{
0 if n/� � y,

χ̂′(y�/n) = χ′(y�/n)χ̂′(1) if n/� | y.

See the book by Tolimieri, An, and Lu [36] for details.

3. The intuition behind the algorithms for the hidden shift problem.
We give some intuition for the ideas behind our algorithms for the hidden shift prob-
lem. We use the shifted Legendre symbol problem as our running example, but the
approach works more generally. In the shifted Legendre symbol problem we are given
a function fs : Z/pZ → {0,±1} such that fs(x) =

(
x+s
p

)
, and are asked to find s.

The algorithm starts by putting the function value in the phase to get |fs〉 =∑
x fs(x)|x〉 =

∑
x

(
x+s
p

)
|x〉. For random f we can expect the functions fz to be

mutually (near) orthogonal, so that the inner product squared |〈fz|fs〉|2 approximates
the delta function δs(z). The Legendre sequence

(
0
p

)
,
(
1
p

)
, . . . ,

(
p−1
p

)
has many pseudo-

random properties, and for its autocorrelation we have, in fact, |〈fz|fs〉|2 = δs(z)− 1
p .

With this, we define the (near) unitary matrix C, where the zth row is |f−z〉. The
state |fs〉 is one of the rows; hence C|fs〉 = | − s〉. The problem then reduces to
the following: How do we efficiently implement C? By definition, C is a circulant

770 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

|0〉

F |x〉
→ fs(x)|x〉 F |x〉
→ ĝ−1(x)|x〉 F
FE
°°°

...
...

|0〉
FE
°°°

Fig. 3.1. Circuit for hidden shift problem for a known function g and an unknown shift s of
the black-box fs(x) = g(x+ s). Notice that the function values of fs and ĝ−1 are computed into the
phase.

|0〉

F

•

F
FE
°°°

...
...

...
|0〉 •

FE
°°°

|x〉
→ |x, f(x)〉

Fig. 3.2. Circuit for hidden subgroup problem. Here f is computed into a register.

matrix (cx,y = f−x(y) = f0(y − x) = f−(x+1)(y + 1) = cx+1,y+1). Since the Fourier
transform matrix diagonalizes a circulant matrix, we can write C = F(F−1CF)F−1 =
FDF−1, where D is diagonal. Thus we can implement C if we can implement D.
The vector on the diagonal of D is the vector F−1|f0〉 = F−1

∑
x

(
x
p

)
|x〉, the inverse

Fourier transform of the Legendre symbol. The Legendre symbol is an eigenvector
of the Fourier transform, so the diagonal matrix contains the values of the Legendre
symbol times a global constant that can be ignored. Because the Legendre symbol
can be computed efficiently classically, it can be computed into the phase, so C can
be implemented efficiently.

In summary, to implement C for the hidden shift problem for the Legendre sym-
bol, compute the Fourier transform, compute

(
x
p

)
into the phase at |x〉, and then

compute the Fourier transform again (it is not important whether we use F or F−1).
Figure 3.1 shows a circuit diagram outlining the algorithm for the hidden shift prob-
lem for a general function g. Contrast this with the circuit for the hidden subgroup
problem shown in Figure 3.2.

4. Shifted multiplicative characters of finite fields. In this section we show
how to solve the hidden shift problem for any nontrivial multiplicative character of a
finite field. The Fourier transform we use is the Fourier transform over the additive
group of the finite field.

Definition 4.1 (shifted multiplicative character problem over Fq). Given a
nontrivial multiplicative character χ : Fq → C (where q = pr for some prime p) and
a black-box function f for which there is an s such that f(x) = χ(x + s) for all x,
find s.

Algorithm 1 (shifted multiplicative character problem over finite field Fq).

1. Create
∑

x∈Fq
χ(x + s)|x〉, using Lemma 2.1.

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 771

2. Compute the Fourier transform to obtain the state
∑

y∈Fq
ω

Tr(−sy)
p χ̂(y)|y〉,

using Lemma 2.2.

3. For all y �= 0, compute χ(y) into the phase to obtain χ̂(1)
∑

y∈F∗
q
ω

Tr(−sy)
p |y〉.

4. Compute the inverse Fourier transform and measure the outcome −s.

Theorem 4.2. For any finite field Fq and any nontrivial multiplicative character,
Algorithm 1 solves the shifted multiplicative character problem over finite fields with
probability (1 − 1/q)2.

Proof.

1. Since χ(x) = 0 only at x = 0, by Lemma 2.1 we can create the superposition
with probability 1 − 1/q.

2. By Lemma 2.2 we can compute the Fourier transform efficiently. The Fourier
transform moves the shift s into the phase as described.

3. Because χ̂(y) = χ(y)χ̂(1) for every nonzero y, the phase change |y〉
→ χ(y)|y〉
establishes the required transformation.

4. The amplitude of | − s〉 is

1
√
q

1√
q − 1

∑
y∈F∗

q

ωTr(−sy)
p ωTr(sy)

p =
1
√
q

1√
q − 1

∑
y∈F∗

q

1

=

√
q − 1

q
,

and thus the probability of measuring −s is 1 − 1/q.

4.1. The Legendre symbol and homomorphic encryption. The quantum
algorithm of the previous section showed us how we can determine the shift s ∈ Fp

given the function fs(x) =
(
x+s
p

)
. We now show how this algorithm enables us to

break schemes for “algebraically homomorphic encryption.”

A cryptosystem is algebraically homomorphic [9] if given the encryption of two
plaintexts E(x), E(y) with x, y ∈ Fp, an untrusted party can construct the encryption
of the plaintexts E(x + y) and E(xy) in polynomial time. More formally, we have
the secret encryption and decryption functions E : Fp → S and D : S → Fp, in
combination with the public add and multiplication transformations A : S2 → S and
M : S2 → S such that D(A(E(x), E(y))) = x + y and D(M(E(x), E(y))) = xy for
all x, y ∈ Fp. We assume that the functions E, D, A, and M are deterministic. This
definition is slightly more general than the definition in [9, Definition 4.1] because
we require equality between texts after unencryption rather than equality between
encrypted texts. In other words, the decryption function may be many-to-one. As
a result the encryption of a given number can vary depending on how the number
is constructed. For example, A(E(4), E(2)) may not be equal to M(E(2), E(3)). In
addition to the public A and M functions, we also assume the existence of a public zero
tester Z : S → {0, 1}, with Z(E(x)) = 0 if x = 0, and Z(E(x)) = 1 otherwise. In [9]
the existence of a zero tester is trivial because the decryption function is injective.

An algebraically homomorphic cryptosystem is a cryptographic primitive that
enables two players to perform noninteractive secure function evaluation. It is an
open problem whether or not such a cryptosystem can be constructed. We say we can
break such a cryptosystem if, given E(s), we can recover s in time polylog(p) with
the help of the public functions A,M , and Z. The best known classical attack, due to
Boneh and Lipton [9], has expected running time O

(
exp

(
c
√

log p log log p
))

for the
field Fp and is based on a smoothness assumption.

772 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

Suppose we are given the ciphertext E(s). Test E(s) using the Z function. If s
is not zero, create the encryption E(1) via the identity xp−1 ≡ 1 mod p, which holds
for all nonzero x. In particular, using E(s) and the M function, we can use repeated
squaring and compute E(s)p−1 = E(1) in log p steps.

Clearly, from E(1) and the A function we can construct E(x) for every x ∈ Fp.
Then, given such an E(x), we can compute f(x) =

(
x+s
p

)
in the following way. Add

E(s) and E(x), yielding E(x+s), and then compute the encrypted (p−1)/2th power of
x+s, giving E(

(
x+s
p

)
). Next, add E(0), E(−1), or E(1) and test if it is an encryption

of zero, and return 0, 1, or −1 accordingly. Applying this method on a superposition of
|x〉 states, we can create (after reversibly uncomputing the garbage of the algorithm)
the state 1√

p−1

∑
x fs(x)|x〉. We can then recover s by using Algorithm 1.

Corollary 4.3. Given an efficient test to decide if a value is an encryption
of zero, Algorithm 1 can be used to break any algebraically homomorphic encryption
system.

We can also break algebraically homomorphic cryptosystems using Shor’s discrete
log algorithm as follows. Suppose g is a generator for F

∗
p and that we are given the

unknown ciphertext E(gs). Create the superposition
∑

i,j |i, j, E(gsi+j)〉 and then

append the state |ψsi+j〉 =
∑

t

(
gsi+j+t

p

)
|t〉 to the superposition in i, j by the procedure

described above. Next, uncompute the value E(gsi+j), which gives
∑

i,j |i, j〉|ψsi+j〉.
Rewriting this as

∑
i,r |i, r− si〉|ψr〉 and observing that the ψr are almost orthogonal,

we see that we can apply the methods used in Shor’s discrete log algorithm to recover
s and thus gs.

5. Shifted multiplicative characters of finite rings. In this section we show
how to solve the shifted multiplicative character problem for Z/nZ for any completely
nontrivial multiplicative character of the ring Z/nZ and extend this to the case when
n is unknown. Unlike in the case for finite fields, the characters may be periodic.
Thus the shift may not be unique. The Fourier transform is now the familiar Fourier
transform over the additive group Z/nZ.

5.1. Shifted multiplicative characters of Z/nZ for known n. We start
with the following definition.

Definition 5.1 (shifted multiplicative character problem over Z/nZ). Given χ,
a completely nontrivial multiplicative character of Z/nZ, and a function f for which
there is an s such that f(x) = χ(x + s) for all x, find all t satisfying f(x) = χ(x + t)
for all x.

Multiplicative characters of Z/nZ may be periodic, so to solve the shifted mul-
tiplicative character problem we first find the period and then we find the shift. If
the period is �, then the possible shifts will be {s, s + �, s + 2�, . . . }. Note that step
1 of Algorithm 2, which computes the period of χ, uses different properties of a peri-
odic function than Shor’s algorithm. In particular, when χ is the Legendre symbol,
the function takes only three values, whereas Shor’s algorithm assumes functions are
injective in {0, . . . , r − 1} when the period is r.

Algorithm 2 (shifted multiplicative character problem over Z/nZ).

1. Find the period � of χ. Let χ′ be χ restricted to {0, . . . , �− 1}.
(a) Create

∑n−1
x=0 χ(x + s)|x〉 using f .

(b) Compute the Fourier transform over Z/nZ to obtain the superposition∑�−1
y=0 ω

−sy
� χ̂′(y)|yn/�〉.

(c) Measure |yn/�〉. Compute n/� = gcd(n, yn/�).

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 773

2. Find s using the period � and χ′.
(a) Create

∑�−1
x=0 χ

′(x + s)|x〉.
(b) Compute the Fourier transform over Z/�Z to obtain

∑
y ω

−sy
� χ̂′(y)|y〉.

(c) For all y coprime to �, compute χ̂′(y)−1 into the phase to obtain∑
y:χ̂′(y) �=0 ω

−sy
� |y〉.

(d) Compute the inverse Fourier transform and measure.
Theorem 5.2. Algorithm 2 solves the shifted multiplicative character problem

over Z/nZ for completely nontrivial multiplicative characters of Z/nZ in polynomial
time with probability at least (φ(n)/n)3 = Ω((1

log log n)3), where φ is Euler’s totient

function; φ(n) is the number of positive integers less than n that are coprime to n.
Proof. Note that because χ is completely nontrivial, χ′ is a primitive character

of Z/�Z.
1. (a) χ(x + s) is nonzero exactly when gcd(x + s, n) = 1; thus by Lemma 2.1

we can create the superposition with probability φ(n)/n.
(b) Since χ has period �, the Fourier transform is nonzero only on multiples

of n/�.
(c) Since χ̂′(y) = χ′(y)χ̂′(1), and χ′(y) is nonzero precisely when gcd(y, n) =

1, when we measure yn/� we have n/� = gcd(n, yn/�).
2. (a) Similar to the argument above, we can create the superposition with

probability φ(�)/�.
(b) The Fourier transform moves the shift s into the phase.
(c) As in the case for the finite field, this can be done by computing the

phase of χ′(y) into the phase of |y〉.
(d) Let A = {y ∈ Z/�Z : χ̂′(y) �= 0}. A = (Z/�Z)∗ and thus |A| = φ(�).

Then the amplitude of | − s〉 after the Fourier transform is

1√
φ(�)

1√
�

⎛
⎝∑

y∈A

ω−ys
� ωys

�

⎞
⎠ =

1√
φ(�)

1√
�

⎛
⎝∑

y∈A

1

⎞
⎠

=

√
φ(�)

�
.

Hence the probability of measuring | − s〉 is φ(�)/�.
Thus the algorithm succeeds with probability (φ(n)/n)(φ(�)/�)2, which is lower bounded
by Ω((1

log log n)3) (because of the bound φ(n) = Ω(n/ log log n)).

5.2. Shifted multiplicative characters of Z/nZ for unknown n. We now
consider the case when n is unknown.

Definition 5.3 (shifted multiplicative character problem over Z/nZ with un-
known n). Given a completely nontrivial multiplicative character χ : Z/nZ → C for
some unknown n, and a function f for which there is an s such that f(x) = χ(x+ s)
for all x, find all t satisfying f(x) = χ(x + t) for all x.

Theorem 5.4. Given an upper bound on the size of the period of f , we can
efficiently solve the shifted multiplicative character problem over Z/nZ for unknown
n on a quantum computer.

Proof. Let � be the period of f and χ′ be χ restricted to Z/�Z. Using the Fourier
sampling algorithm described in section 2.3, we can approximately Fourier sample
f over Z/�Z. Because χ′(y) is nonzero precisely when gcd(y, �) = 1, this Fourier
sampling algorithm returns y/� with high probability, where y is coprime to �. Thus
we can find � with high probability. Next, apply Algorithm 2 to find s mod �.

774 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

6. The hidden coset problem. In this section we define the hidden coset
problem and give an algorithm for solving the problem for abelian groups under
certain conditions on the functions. As we will show, this problem abstracts out
two properties that appeared in the hidden shift problems in earlier sections. We
will also show how finding the coset representative can be interpreted as solving a
deconvolution problem.

Definition 6.1 (hidden coset problem). Given functions f and g defined on a
group G such that for some s ∈ G, f(x) = g(x + s) for all x in G, find the set of all
t satisfying f(x) = g(x + t) for all x in G. The function f is given as an oracle, and
g is known but not necessarily efficiently computable.

Lemma 6.2. The answer to the hidden coset problem is a coset of some subgroup
H of G, and g is constant on cosets of H.

Note that g is not necessarily a hidden subgroup problem instance because while
it is constant on cosets, it does not have to be distinct on different cosets.

Proof. Let S = {t ∈ G : f(x) = g(x + t) for all x ∈ G} be the set of all solutions
and let H be the largest subgroup of G such that g is constant on cosets of H.
Clearly this is well defined (note that H may be the trivial subgroup as in the shifted
Legendre symbol problem). Suppose t1, t2 are in S. Then we have g(x+(−t2 + t1)) =
g((x− t2) + t1) = f(x− t2) = g((x− t2) + t2) = g(x) for all x in G; thus −t2 + t1 is
in H. This shows that S is contained in a coset of H. Since s is in S we must have
that S is contained in s+H. Conversely, suppose s+h is in s+H (where h is in H).
Then g(x+ s+h) = g(x+ s) = f(x) for all x in G; hence s+h is in S. It follows that
S = s+H. While this proof was written with additive notation, it carries through if
the group is nonabelian.

A familiar example of a nonabelian case of the hidden coset problem is given by the
graph isomorphism problem. For each n vertex graph X we let M(X) ∈ {0, 1}n×n de-
note the adjacency matrix of X, and given X we define the function g : Sn → {0, 1}n×n

by g : σ
→ M(σ(X)) for all permutations σ ∈ Sn in the symmetric group. Now, the
shifted function f : Sn → {0, 1}n×n coincides with a description of the permuted
adjacency matrix M(π(X)) and has f(σ) = M(σ · π(X)) for all σ. This shows how
the search for an element σ′ ∈ Sn such that f(σ) = g(σ · σ′) is identical to the search
for a permutation that transforms X to π(X): the Graph Isomorphism problem.
Moreover, the determination of the constant subgroup of g of all the permutations
σ that have M(X) = M(σ(X)) solves the Graph Automorphism problem of the
graph X.

Unlike for the hidden subgroup problem, we can prove that there are cases of the
hidden coset problem that cannot be solved efficiently on a quantum computer. Let
g : Z/nZ → {0, 1} be the delta function δ0 with g(0) = 1, and g(x) = 0 otherwise.
Consequently, fs will be the unknown delta function δ−s, which determines the hidden
coset {s}. However, given fs and g, finding s amounts to searching a list of n items,
which requires Ω(

√
n) queries to fs [5].

The algorithm for the hidden coset problem instances that we can solve consists
of two parts: identifying the subgroup on which g is constant and finding a coset
representative, where computing a coset representative corresponds to computing one
hidden shift. The algorithms in this article that compute the subgroup and a coset
representative exploit different facets of the power of the quantum Fourier transform.
After computing a Fourier transform, the subgroup structure is captured in the mag-
nitude, whereas the shift structure is captured in the phase. In the hidden subgroup
problem we measure after computing the Fourier transform and so discard informa-
tion about shifts. Our algorithms for hidden shift problems do additional processing

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 775

to take advantage of the information encoded in the phase. Thus the solution to the
hidden coset problem requires fully utilizing the abilities of the Fourier transform.

6.1. Identifying the unknown subgroup. The first step of the hidden coset
problem algorithm is to compute the unknown subgroup of g. As the examples in
the previous section show, computing the subgroup may be difficult for at two least
reasons. First, g may be an HSP instance over a nonabelian group, for which no
efficient algorithm is known. Second, while g is constant on cosets, it may not be
distinct on different cosets; that is, it may not be an HSP instance.

We start by finding the subgroup H. We need two different algorithms for de-
termining H: the “standard” algorithm for the hidden subgroup problem and the
algorithm we used in section 5.

In the standard algorithm for the hidden subgroup problem we form a superposi-
tion over all inputs, compute g(x) into a register, measure the function value, compute
the Fourier transform, and then sample. The standard algorithm may fail when g is
not distinct on different cosets of H. In such cases, we need other restrictions on g
to be able to find the hidden subgroup H using the standard algorithm. Boneh and
Lipton [8], Mosca and Ekert [32], and Hales and Hallgren [23] have all given criteria
under which the standard hidden subgroup algorithm outputs H even when g is not
distinct on different cosets of H.

In section 5 we used a different algorithm to determine H because the function
we were considering did not satisfy the conditions mentioned above. In this algorithm
we compute the value of g into the amplitude, Fourier transform, and then sample,
whereas in the standard hidden subgroup algorithm we compute the value of g into
a register. In general, this algorithm works when the fraction of values for which ĝ is
zero is sufficiently small and the nonzero values of ĝ have constant magnitude.

6.2. Finding a coset representative as a deconvolution problem. Once
we have identified H, we can find a coset representative by solving the associated
hidden coset problem for f ′ and g′, where f ′ and g′ are defined on the quotient group
G/H and are consistent in the natural way with f and g. For notational convenience
we assume that f and g are defined on G and that H is trivial, that is, the shift is
uniquely defined.

The hidden shift problem may be interpreted as a deconvolution problem. In a
deconvolution problem, we are given functions g and f = g � h (the convolution of g
with some unknown function h) and asked to find this h. Let δy(x) = δ(x− y) be the
delta function centered at y. In the hidden shift problem, f is the convolution of δ−s

and g, that is, f = g � δ−s. Finding s or, equivalently, finding δ−s, given f and g, is
therefore a deconvolution problem.

Recall that under the Fourier transform convolution becomes pointwise multipli-
cation. Thus, taking Fourier transforms, we have f̂ = ĝ · δ̂−s and hence δ̂−s = ĝ−1 · f̂ ,
provided that ĝ is everywhere nonzero. For the multiplication by ĝ−1 to be performed
efficiently on a quantum computer would require ĝ to have constant magnitude and
be everywhere nonzero. However, even if only a fraction of the values of ĝ are zero
we can still approximate division of ĝ by only dividing when ĝ is nonzero and doing
nothing otherwise. The zeros of ĝ correspond to loss of information about δ−s.

Algorithm 3.

1. Create
∑

x∈G g(x + s)|x〉.
2. Compute the Fourier transform to obtain

∑
y∈G ψy(s)ĝ(ψy)|y〉, where ψy are

the characters of the group G.

776 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

3. For all y for which ĝ(ψy) is nonzero compute ĝ(ψy)
−1 into the phase of |y〉 to

obtain
∑

y,ĝ(ψy) �=0 ψy(s)|y〉.
4. Compute the inverse Fourier transform and measure to obtain −s.

Theorem 6.3. Suppose f and ĝ are efficiently computable, the magnitude of f(x)
is constant for all values of x in G for which f(x) is nonzero, and the magnitude of
ĝ(ψy) is constant for all values of ψy in Ĝ for which ĝ(ψy) is nonzero. Let α be the

fraction of x in G for which f(x) is nonzero and let β be the fraction of ψy in Ĝ for
which ĝ(ψy) is nonzero. Then Algorithm 3 outputs −s with probability αβ.

Proof.
1. By Lemma 2.1 we can create the superposition with probability α.
2. The Fourier transform moves the shift s into the phase.
3. Because ĝ has constant magnitude, for values where ĝ is nonzero, ĝ(ψy)

−1 =

Cĝ(ψy) for some constant C. So we can perform this step by computing the
phase of ĝ into the phase. For the values where ĝ is zero we can just leave
the phase unchanged as those terms are not present in the superposition.

4. Let A = {y ∈ G : ĝ(ψy) �= 0}. Then the amplitude of | − s〉 is

1√
|A|

1√
|G|

⎛
⎝∑

y∈A

ψy(s)ψy(−s)

⎞
⎠ =

1√
|A|

1√
|G|

⎛
⎝∑

y∈A

1

⎞
⎠

=

√
|A|
|G|

=
√
β.

Hence we measure | − s〉 with probability β.
Thus the algorithm succeeds in identifying s with probability αβ and requires only
one query of f and one query of ĝ.

6.3. Examples. We show how the hidden shift problems we considered earlier
fit into the framework of the hidden coset problem. In the shifted multiplicative
character problem over finite fields, G is the additive group of Fq, g = χ, and H is
trivial since the shift is unique for nontrivial χ. In the shifted multiplicative character
problem over Z/nZ, G is the additive group of Z/nZ, g = χ, and H is the subgroup
{0, �, . . . , n/�}, where � (which is a factor of n) is the period of χ. In the shifted period
multiplicative character problem over Z/nZ for unknown n, G is the additive group
of Z, g = χ, and H is the infinite subgroup �Z.

Acknowledgments. We would like to thank the anonymous referee who pointed
out the application of the shifted Legendre symbol problem to algebraically homomor-
phic cryptosystems, and Umesh Vazirani, whose many suggestions greatly improved
this paper. We also thank Dylan Thurston and an anonymous referee for pointing out
that algebraically homomorphic cryptosystems can be broken using Shor’s algorithm
for discrete log. Thanks to Lisa Hales for helpful suggestions.

REFERENCES

[1] M. Abadi and J. Feigenbaum, Secure circuit evaluation. A protocol based on hiding informa-
tion from an oracle, J. Cryptology, 2 (1990), pp. 1–12.

[2] E. Bach and J. Shallit, Algorithmic Number Theory—Efficient Algorithms, Vol. I, MIT
Press, Cambridge, MA, 1996.

QUANTUM ALGORITHMS FOR SOME HIDDEN SHIFT PROBLEMS 777

[3] R. Beals, Quantum computation of Fourier transforms over symmetric groups, in Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 48–53.

[4] J. Niel de Beaudrap, R. Cleve, and J. Watrous, Sharp quantum versus classical query
complexity separations, Algorithmica, 34 (2002), pp. 449–461.

[5] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of
quantum computing, SIAM J. Comput., 26 (1997), pp. 1510–1523.

[6] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM J. Comput., 26 (1997),
pp. 1411–1473.

[7] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random
bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[8] D. Boneh and R. J. Lipton, Quantum cryptanalysis of hidden linear functions, in Advances
in Cryptology—CRYPTO ’95, Lecture Notes in Comput. Sci. 963, Springer-Verlag, Berlin,
1995, pp. 424–437.

[9] D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to cryp-
tography, in Advances in Cryptology—CRYPTO ’96, Lecture Notes in Comput. Sci. 1109,
Springer-Verlag, Berlin, 1996, pp. 283–297.

[10] R. Cleve, The query complexity of order-finding, Inform. and Comput., 192 (2004), pp. 162–
171.

[11] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, R.
Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 339–354.

[12] R. Cleve and J. Watrous, Fast parallel circuits for the quantum Fourier transform, in Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Com-
puter Society Press, Los Alamitos, CA, 2000, pp. 526–536.

[13] W. van Dam, Quantum algorithms for weighing matrices and quadratic residues, Algorithmica,
34 (2002), pp. 413–428.

[14] W. van Dam and S. Hallgren, Efficient Quantum Algorithms for Shifted Quadratic Character
Problems, http://www.arxiv.org/abs/quant-ph/0011067 (2000).

[15] W. van Dam, S. Hallgren, and L. Ip, Quantum algorithms for some hidden shift problems,
in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
2003, pp. 489–498.

[16] W. van Dam and G. Seroussi, Efficient Quantum Algorithms for Estimating Gauss Sums,
http://www.arxiv.org/abs/quant-ph/0207131 (2002).

[17] I. B. Damg̊ard, On the randomness of Legendre and Jacobi sequences, in Advances in
Cryptology—CRYPTO’88, Lecture Notes in Comput. Sci. 403, Springer-Verlag, Berlin,
1990, pp. 163–172.

[18] M. Ettinger and P. Høyer, On quantum algorithms for noncommutative hidden subgroups,
Adv. in Appl. Math., 25 (2000), pp. 239–251.

[19] M. Ettinger, P. Høyer, and E. Knill, Hidden Subgroup States Are Almost Orthogonal,
http://www.arxiv.org/abs/quant-ph/9901034 (1999).

[20] K. Friedl, F. Magniez, M. Santha, and P. Sen, Quantum testers for hidden group prop-
erties, in Proceedings of the 28th International Symposium on Mathematical Foundations
of Computer Science, Lecture Notes in Comput. Sci. 2747, Springer-Verlag, Berlin, 2003,
pp. 419–428.

[21] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani, Quantum mechanical algorithms
for the nonabelian hidden subgroup problem, Combinatorica, 24 (2004), pp. 137–154.

[22] L. Hales, The Quantum Fourier Transform and Extensions of the Abelian Hidden Subgroup
Problem, Ph.D. thesis, University of California-Berkeley, Berkeley, CA, 2002.

[23] L. Hales and S. Hallgren, An improved quantum Fourier transform algorithms and applica-
tions, in Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 515–525.

[24] S. Hallgren, Polynomial-time quantum algorithms for Pell’s equation and the principal ideal
problem, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
2002, pp. 653–658.

[25] S. Hallgren, A. Russell, and A. Ta-Shma, The hidden subgroup problem and quantum
computation using group representations, SIAM J. Comput., 32 (2003), pp. 916–934.

[26] L. Ip, Solving Shift Problems and the Hidden Coset Problem Using the Fourier Transform,
http://www.arxiv.org/abs/quant-ph/0205034 (2002).

[27] G. Ivanyos, F. Magniez, and M. Santha, Efficient quantum algorithms for some instances
of the non-abelian hidden subgroup problem, Internat. J. Found. Comput. Sci., 14 (2003),
pp. 723–739.

[28] A. Yu. Kitaev, Quantum Measurements and the Abelian Stabilizer Problem, http://www.
arxiv.org/abs/quant-ph/9511026 (1995).

778 WIM VAN DAM, SEAN HALLGREN, AND LAWRENCE IP

[29] A. Yu. Kitaev, Quantum computations: Algorithms and error correction, Russian Math.
Surveys, 52 (1997), pp. 1191–1249.

[30] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Encyclopedia Math. Appl. 20, Cambridge
University Press, Cambridge, UK, 1997.

[31] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptology,
CRC Press, Boca Raton, FL, 1997.

[32] M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation on a
quantum computer, in Proceedings of the 1st NASA International Conference on Quantum
Computing and Quantum Communication, Lecture Notes in Comput. Sci. 1509, Springer-
Verlag, Berlin, 1999, pp. 174–188.

[33] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cam-
bridge University Press, Cambridge, UK, 2000.

[34] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer, SIAM J. Comput., 26 (1997), pp. 1484–1509.

[35] D. R. Simon, On the power of quantum computation, SIAM J. Comput., 26 (1997), pp. 1474–
1483.

[36] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and Convolution,
Springer-Verlag, New York, 1989.

[37] J. Watrous, Quantum algorithms for solvable groups, in Proceedings of the 33rd Annual ACM
Symposium on Theory of Computing, 2001, pp. 60–67.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 779–802

TESTING POLYNOMIALS OVER GENERAL FIELDS∗

TALI KAUFMAN† AND DANA RON‡

In memory of Bilha Segev (1963–2005), a true scientist

Abstract. In this work we fill the knowledge gap concerning testing polynomials over finite
fields. As previous works show, when the cardinality of the field, q, is sufficiently larger than the
degree bound, d, then the number of queries sufficient for testing is polynomial or even linear in d.
On the other hand, when q = 2 then the number of queries, both sufficient and necessary, grows
exponentially with d. Here we study the intermediate case where 2 < q = O(d) and show a smooth
transition between the two extremes. Specifically, let p be the characteristic of the field (so that p
is prime and q = ps for some integer s ≥ 1). Then the number of queries performed by the test
grows like � · q2�+1, where � =

⌈
d+1

q−q/p

⌉
. Furthermore, qΩ(�) queries are necessary when q = O(d).

The test itself provides a unifying view of the tests for these two extremes: it considers random
affine subspaces of dimension � and verifies that the function restricted to the selected subspaces is
a polynomial of degree at most d. Viewed in the context of coding theory, our result shows that
Reed–Muller codes over general fields (usually referred to as generalized Reed–Muller (GRM) codes)
are locally testable. In the course of our analysis we provide a characterization of small-weight words
that span the code. Such a characterization was previously known only when the field size is a prime
or is sufficiently large, in which case the minimum-weight words span the code.

Key words. testing, polynomials, Reed–Muller codes

AMS subject classifications. 68Q25, 68W40, 68W20, 12Y05, 94B05

DOI. 10.1137/S0097539704445615

1. Introduction. In this paper we consider the problem of testing, for a given
finite field F and degree-bound d, whether a function f : Fn → F is a multivariate
polynomial of total degree at most d over F . Specifically, the testing algorithm is
given query access to f and a parameter ε > 0. If f is a polynomial of degree at
most d then the testing algorithm must accept. On the other hand, if f differs from
every such polynomial on more than an ε-fraction of the domain elements, then the
test should reject with probability at least 2/3. Our aim is to design algorithms that
perform this task using as few queries as possible.

The problem of testing multivariate low-degree polynomials over finite fields has
been studied extensively, mainly due to its applications to probabilistically checkable
proofs systems (see, for example, [32, 3]). This is true both for the special case of
linear functions (degree-1 polynomials) [15, 7, 18, 10, 11, 9, 31] and for the more
general case of degree-d polynomials [7, 6, 20, 18, 30, 19, 4]. However, all these results
apply only to testing polynomials over fields that are larger than the degree-bound,
d. In particular, when the field size |F | is at least c · d, for some sufficiently large

∗Received by the editors August 7, 2004; accepted for publication (in revised form) May 30,
2006; published electronically October 30, 2006. An extended abstract of this work appeared in the
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2004.

http://www.siam.org/journals/sicomp/36-3/44561.html
†Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA 02138 (kaufmant@

MIT.EDU). This work is part of the author’s Ph.D. thesis done at Tel Aviv University under the
supervision of Professor Noga Alon and Professor Michael Krivelevich. The research was performed
in part while visiting the Radcliffe Institute of Advanced Study at Harvard.

‡Department of Electrical Engineering-Systems, Tel Aviv University, Tel Aviv 69978, Israel
(danar@eng.tau.ac.il). This research was done during a fellowship year at the Radcliffe Institute
of Advanced Study at Harvard.

779

780 TALI KAUFMAN AND DANA RON

constant c, then a number of queries that is linear in d is sufficient [29, 19], and when
d + 2 ≤ |F | < c · d then the dependence on d is known to be polynomial [19, 30]. In
recent work, Alon et al. [1] studied the same property for the case |F | = 2 and for
d ≥ 2. Namely, they considered the case in which the degree-bound may be (much)
larger than the field size, but their result holds only for F = GF(2). They showed
that the number of queries both necessary and sufficient in this case is exponential in
d. Hence we encounter a very large gap in terms of the dependence on d between the
query complexity when |F | > d and the query complexity when |F | = 2.

Our main result. In this work we bridge the gap between the two cases mentioned
above and show a smooth transition between them. In particular, we prove the
following theorem.

Theorem 1. There exists a testing algorithm for polynomials of degree at most
d over finite fields of cardinality q where 2 ≤ q = O(d). The algorithm performs
O
(
� · q2�+1 + 1/ε

)
queries, where for prime q, � =

⌈
d+1
q−1

⌉
, and, more generally, when

q is a power of a prime p, then � =
⌈

d+1
q−q/p

⌉
.

Observe that as the field size q increases, the dependence on d decreases from
being exponential to being polynomial. We note that this query complexity (when
q = O(d)) is almost tight: for prime fields (and constant ε) Ω(q�−1) queries are
necessary, and for nonprime fields Ω

(
q��/2�−1

)
queries are necessary. As we discuss

in more detail subsequently, the “gap phenomenon” that we observe is not unique to
testing polynomials: analogous gaps arise in other property testing problems.

Characterization of degree-d polynomials over GF(q). One of the building blocks
of our analysis is a characterization of (total) degree-d multivariate polynomials over
finite fields. In particular, we prove the following theorem.

Theorem 2. Let F = GF(q) where q = ps and p is prime. Let d be an integer,
and let f : Fn → F . Then f is a polynomial of degree at most d if and only if its
restriction to every affine subspace of dimension � =

⌈
d+1

q−q/p

⌉
is a polynomial of degree

at most d.

Theorem 2 generalizes the characterization result of Friedl and Sudan [19] that
refers to the case q − q/p ≥ d + 1 (that is, � = 1). We also note that this value, �, of
the dimension of the considered subspaces, is tight. Namely, there exist polynomials
of degree greater than d whose restrictions to affine subspaces of dimension less than
� are all degree-d polynomials.

A unifying approach to testing low-degree polynomials over GF(q)n. The testing
algorithm presented in this work utilizes the characterization in Theorem 2 (which is
shown to be robust in the sense defined in [30]). Specifically, the algorithm selects
random affine subspaces (of dimension � as defined in Theorem 2) and checks that
the restriction of the input function f to each of the selected subspaces is indeed
a polynomial of degree at most d. Such a check is implemented by verifying that
various linear combinations of the values of f on the subspace sum to 0. Observe that
when the size of the field F is sufficiently larger than the degree-bound d, then � = 1.
That is, when the field is sufficiently large, then the algorithm checks whether the
univariate polynomials that correspond to restrictions of the function f to random
lines in Fn all have degree at most d. This is essentially the original low-degree test of
Rubinfeld and Sudan [30]. The reason we say “essentially” is that when |F | > d then
it is not necessary to query f on all points on a selected line, but rather it suffices to
interpolate using d+1 points and check that the resulting degree-d polynomial agrees
with a random point on the line.

On the other hand, when q = 2 then the test in [1] works by uniformly selecting

TESTING POLYNOMIALS OVER GENERAL FIELDS 781

d+1
q−1 = d + 1 points in GF(2)n and verifying that the sum of the values of f taken
over all sums of subsets of these points is 0. This too can be shown to amount to
checking whether the restriction of f to the (d + 1)-dimensional subspace spanned
by the selected points is a polynomial of degree at most d. Thus our test suggests a
uniform view of the aforementioned tests for low-degree polynomials.

Relation to coding. The generalized Reed–Muller (GRM) code of rank d and length
qn over GF(q), which we denote by GRMq(d, n),1 consists of all words of length qn

that correspond to the evaluations of degree-d polynomials over GF(q)n. (When q = 2
then the code is simply referred to as Reed–Muller (RM).) The weight of a codeword
is the number of its nonzero symbols. An equivalent view of our main result, from a
coding theory perspective, is that GRM codes are locally testable. Furthermore, our
characterization of low-degree polynomials translates into a characterization of a set
of small-weight words that span the dual code, where the dual code of GRMq(d, n)
is the GRM code GRMq(n(q− 1)− (d+1), n) (see [5, Theorem 5.4.2]). The question
concerning when GRM codes are spanned by their minimum-weight words has been
studied in the coding theory literature.2 Specifically, Ding and Key [16] have shown
that if q is prime or q is sufficiently larger than d, then the minimum-weight words
of a GRM code indeed span the code, but this is not true in general. In particular,
this is not true when q is not prime and q− q/p < d+ 1. To be precise, there are two
special cases in which the minimum-weight words do span the code though q is not
prime and q − q/p < d + 1: the special case of n = 1 (Reed–Salomon codes) and the
special case that d is almost the maximum possible degree n · (q − 1).

We complement the result of Ding and Key by deducing the following corollary
from Theorem 2.

Corollary 3. Every GRM code is spanned by words of weight that is at most
quadratic in the weight of its minimum-weight words.

We note that our interest in small-weight words that span a GRM code is due to
the way our test works. Similarly to other low-degree tests, our test can be viewed
as randomly selecting small-weight words from the dual code (which is a GRM code
itself) and checking that each is indeed orthogonal to the tested word. Thus the
weight of the selected words is an important factor in the query complexity of our
algorithm.

The paper of Jutla et al. [25]. Independently from our work, Jutla et al. [25]
studied the problem of testing low-degree polynomials and described a testing algo-
rithm that has the same query complexity as our algorithm. However, their algorithm
works only for prime fields. We further discuss the relation between our approaches
in section 6.

A broader perspective: The gap phenomenon in property testing. Property testing
[30, 21] in general deals with distinguishing between objects that have a particular
predetermined property and objects that are far from having the property. Low-degree
testing clearly falls under this framework. As discussed above, for this property we
encounter a huge gap in a different setting of the problem. Interestingly, a similar gap
phenomenon is encountered for the property of graph bipartiteness. Specifically, dense
graphs can be tested for bipartiteness with complexity Θ(1) [21], while the complexity

1We note that in the coding theory literature, the code is usually denoted by GRMq(r,m) (or
Rq(r,m)), and n is used to denote the codeword length qm.

2The minimum-weight words of GRMq(d, n) have weight (q − t)qn−r−1, where r(q − 1) + t = d
and 0 ≤ t < q − 1, and the points in the support of each such word belong to an affine subspace of
dimension (n− r).

782 TALI KAUFMAN AND DANA RON

of testing bipartiteness in constant-degree graphs is Θ(
√
n) [23, 22], where n is the

number of vertices in the graph. It has been shown [26] that for this property too
there is an algorithm that gives a smooth transition between the two extremes, and
there is an almost matching lower bound. Additional properties that exhibit similar
gaps are k-colorability and subgraph-freeness, where there has been recent progress
on the latter problem [2].

Other related results on locally testing codes. The problem of designing good codes
that are locally testable was explicitly defined, e.g., in [19, 30, 3]. By good we mean
that they have high rate and large distance. This question has regained attention
recently. Goldreich and Sudan [24] initiated a systematic study of the problem and
showed (by probabilistic arguments) that there exist locally testable (linear) codes
over binary alphabets, with almost constant rate, and linear minimum distance. Their
construction was derandomized in [14] and further improved in [12]. The best locally
testable codes known to date are given by Dinur [17]. In [13] it was shown that
local testing of random low-density parity-check codes, which have linear minimum
distance and constant rate, requires Ω(n) queries. In [8] it was proved that there are
no locally testable cyclic codes that have constant rate and linear minimum distance.

Subsequent work. In recent work, Kaufman and Litsyn [27] provided a sufficient
condition for local testability of linear codes. The sufficient condition is related to
the weight distribution (spectra) of the code and of its dual. They use the condition
to show that every linear code of length n and minimum distance n

2 − Θ(
√
n) is

locally testable. Such codes contain polynomially many codewords, and hence they
are called sparse codes. Moreover, in [27] it is shown that in such a case the dual code
is spanned by small-weight codewords. Their results imply that dual-BCH codes and
some subcodes of algebraic-geometric codes are locally testable.

2. Preliminaries. Let F be a field of cardinality q and characteristic p (that
is, q = ps where p is prime). Let ω ∈ F be a generator of the field F , so that
F = {0, ω1 = ω, ω2, . . . , ωq−2, ωq−1 = 1}. We note that this order of the elements in
F in which 1 is represented by ωq−1 rather than ω0 will serve us better than the more
standard order F = {0, ω0 = 1, ω1 = ω, ω2, . . . , ωq−2}. In particular, using this order,
for any n ≥ 1 we consider a one-to-one mapping between [q − 1]n and Fn (where

[q − 1]
def
= {0, 1, . . . , q − 1}). Specifically, for each β ∈ [q − 1]n, the point x ∈ Fn that

corresponds to β is defined as follows: xi = 0 if βi = 0, and otherwise xi = ωβi .

Consider the standard (and unique) representation of the function f as a polyno-
mial over F with degree at most q − 1 in each variable:

f(x) =
∑

α∈[q−1]n

Cf
α · xα, where xα =

n∏
i=1

xαi
i .(2.1)

Here �Cf is the coefficients vector (indexed by points α ∈ [q − 1]n). If we view the

function f as a qn-dimensional vector �f (where for β ∈ [q−1]n, fβ is the evaluation of
f on the point x ∈ Fn that corresponds to β), then we can write (2.1) in the following
equivalent form:

�f = Hn · �Cf .

Here Hn is the qn×qn matrix whose entries are indexed by pairs β, α ∈ [q−1]n where
Hn(β, α) is the evaluation of the term xα at the point x ∈ Fn that corresponds to β.

TESTING POLYNOMIALS OVER GENERAL FIELDS 783

By inverting Hn (which is nonsingular) we can represent the coefficients vector �Cf in

terms of �f as follows:

�Cf = An · �f.(2.2)

Both Hn and An can be defined recursively using tensor products:

Hn = H1 ⊗Hn−1 and An = A1 ⊗An−1,(2.3)

where

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
1 ω ω2 . . . 1
1 ω2 ω4 . . . 1
...

...
...

...
...

1 ωq−2 ω2(q−2) . . . 1
1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

and

A1 = (−1) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . . . 0
0 ω−1 ω−2 . . . 1
0 ω−2 ω−4 . . . 1
...

...
...

...
...

0 ω−(q−2) ω−2(q−2) . . . 1
1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.(2.5)

For our purposes, the important thing that should be noted is that every coefficient Cf
α

of the polynomial representation of f is some (easy to compute) linear combination
of the values of f on different domain elements x ∈ Fn. In particular, for α =
〈q − 1, . . . , q − 1〉, Cf

α = (−1)n ·
∑

x∈Fn f(x).
Definition 1. Let POLYn,d denote the class of all functions f : Fn → F that

are polynomials of total degree at most d (where the degree in each variable is at most
q−1). Namely, if we consider the representation of f as defined in (2.1), then Cf

α = 0
for every α ∈ [q − 1]n such that

∑n
i=1 αi > d.

Definition 2. For m ≥ 1 and any choice of a point y ∈ Fn and m linearly
independent points y1, . . . , ym ∈ Fn, let S(y0, y1, . . . , ym) denote the affine subspace of
dimension m that contains all points of the form y0+

∑m
i=1 aiyi, where a1, . . . , am ∈ F .

Note that y0 has a different role from all other yi’s.
Observe that in the special case that y0 is a linear combination of y1, . . . , ym, then

S(y0, y1, . . . , ym) is a linear subspace of dimension m.
Definition 3. For a function f : Fn → F , a point y0 ∈ Fn, and m linearly

independent points y1, . . . , ym ∈ Fn, we denote by f|(y0,y1,...,ym) the restriction of f to
the affine subspace S(y0, y1, . . . , ym). Namely, f|(y0,y1,...,ym) : Fm → F is defined as
follows: for every v ∈ Fm, f|(y0,y1,...,ym)(v) = f(y0 +

∑m
i=1 viyi). With slight abuse of

notation (and for the sake of succinctness), we shall sometimes use the notation f|S
instead, where S = S(y0, y1, . . . , ym) is the subspace spanned by the points. In case the
set of points spanning the subspace S is not explicitly stated, then f|S is determined
by some canonical choice of a basis.3

3Our interest lies in the degree of these functions (represented as polynomials). Since for any
given subspace this degree is invariant with respect to the choice of the basis, the particular choice
of the basis is only a matter of convenience.

784 TALI KAUFMAN AND DANA RON

Definition 4. For any two functions f, g : Fn → F , let dist(f, g) =
Pry∈Fn [f(y)
= g(y)] (where y is selected uniformly).

3. The characterization. In this section we prove Theorem 2, which was stated
in the introduction and provides a characterization of polynomials of total degree at
most d over finite fields. Using the notation introduced in section 2, Theorem 2 states
that a function f : Fn → F belongs to POLYn,d if and only if for every affine subspace
S of Fn having dimension � =

⌈
d+1

q−q/p

⌉
, we have that f|S ∈ POLY�,d.

In particular, when q is prime, that is, q = p, we get that � =
⌈
d+1
q−1

⌉
and we obtain

a set of words having weight at most q�
d+1
q−1� that span the code GRMq(n(q−1)−(d+

1), n) (which is dual to GRMq(d, n)). If we further have that d+1 is divisible by q−1,
then these are exactly the minimum-weight words of GRMq(n(q−1)−(d+1), n) (i.e.,
the characteristic vectors of affine subspaces of dimension �). Otherwise, they have
weight that is at most a factor of q larger than the minimum weight words (which
correspond to weighted sums of characteristic vectors of affine subspaces of dimension
� − 1). As noted in the introduction, in the case of GRM codes over prime fields, it
is known that the minimum-weight words span the code [16]. However, when q is not
prime then this is not the case (unless n = 1 or d is very large) [16]. Thus, as stated
in Corollary 3 in the introduction, we obtain a new result concerning small-weight
words that span GRM codes: Since p ≥ 2, we have that q − q/p > (q − 1)/2, and so
the words that span the code have weight that is at most quadratic in the weight of
the minimum weight words.

The following theorem shows that Theorem 2 is tight.

Theorem 4. For any given d and q = ps, let � be as defined in Theorem 2. Then
there exists a function f : Fn → F such that for every affine subspace S of Fn having
dimension less than �, the function f restricted to S is a degree-d polynomial, but f
is not a degree-d polynomial.

Proof. Let f = x
(p−1)ps−1

1 · x(p−1)ps−1

2 · · ·x(p−1)ps−1

� , so that the degree of f is
� · (p − 1)ps−1, which is at least d + 1. On the other hand, consider any choice of �
points y0, y1, . . . , y�−1 (where y1, . . . , y�−1 are linearly independent). Then

f|(y0,y1,...,y�−1)(z1, . . . , z�−1) =

�∏
j=1

(
y0,j +

�−1∑
i=1

zi · yi,j

)(p−1)ps−1

=

�∏
j=1

(
yp

s−1

0,j +

�−1∑
i=1

(
yp

s−1

i,j · zp
s−1

i

))p−1

(3.1)

(where we have used the fact that (a+ b)p = ap + bp). If we group together all terms
that correspond to the same monomial in the zi’s, then we get a sum of terms of the
following form:

C ·
�−1∏
i=1

zp
s−1·Ai

i ,(3.2)

where
∑�−1

i=1 Ai ≤ �(p− 1) and C is a coefficient that is a function of the yi,j ’s. Recall
that zqi = zi for every zi ∈ F . We claim that this implies that the total degree of each
of the monomials in (3.2) is at most (�− 1) · (p− 1)ps−1.

TESTING POLYNOMIALS OVER GENERAL FIELDS 785

To verify this, consider any choice of A = A1, . . . , A�−1 such that
∑�−1

i=1 Ai ≤
�(p− 1), and let DA denote the degree of the corresponding monomial. That is,

DA =

�−1∑
i=1

(
(ps−1 ·Ai) mod (q − 1)

)
.(3.3)

Note that each summand on the right-hand side of (3.3) is computed modulo q − 1,
but the sum is then taken over the integers. Let us fix any choice of A = A1, . . . , A�−1

and show that DA ≤ (� − 1)(p − 1)ps−1. Assume, without loss of generality, that
A1 = max1≤i≤�−1{Ai}. If A1 ≤ p−1 then clearly DA ≤ (�−1)(p−1)ps−1. Otherwise,

A1 = (p− 1) + a where 0 < a ≤ (�− 1)(p− 1) and
∑�−1

i=2 Ai ≤ (�− 1)(p− 1)− a. Now

DA ≤ (ps−1 ·A1) mod (q − 1) +

�−1∑
i=2

ps−1 ·Ai

≤ (ps−1 · (p− 1 + a)) mod (q − 1) + ps−1 ·
(
(�− 1)(p− 1) − a

)

= (�− 1)(p− 1)ps−1 − aps−1 + ((p− 1 + a)ps−1) mod (q − 1)

< (�− 1)(p− 1)ps−1 .

We have thus established that the monomial with the highest degree has degree at
most (�− 1) · (p− 1)ps−1. But now,

(�− 1) · (p− 1)ps−1 =

(⌈
d + 1

(p− 1)ps−1

⌉
− 1

)
· (p− 1)ps−1 < d + 1

and since (�− 1) · (p− 1)ps−1 is an integer, we are done.
Proof of Theorem 2. As noted in the introduction, our proof of Theorem 2 general-

izes the proof of the special case of � = 1, which is presented in [19]. If f ∈ POLYn,d,
then clearly f|S ∈ POLY�,d for every affine subspace S of dimension �. We prove the
other direction by induction. Namely, we prove that for every m ≥ � and every affine
subspace S of Fn having dimension m, if for every affine subspace S′ of S that has
dimension �, we have f|S′ ∈ POLY�,d, then f|S ∈ POLYm,d. Theorem 2 follows by
setting m = n. The base case m = � clearly holds, and so we turn to the induction
step.

Assume the induction claim holds for every m ≥ �; we prove it for m+1. Namely,
we take any (m + 1)-dimensional affine subspace T of Fn and consider the function
h = f|T : Fm+1 → F . We then use the induction hypothesis by which for every affine
subspaces S of Fm+1 having dimension m (which is isomorphic to an affine subspace
of T having dimension m), the restriction of h = f|T to S is a degree-d polynomial.

Let the coefficients of the polynomial representation of h be denoted by
{Ch

α}α∈[q−1]m+1 . Our goal is to show that for each α ∈ [q − 1]m+1 such that∑m+1
i=1 αi > d, we have that Ch

α = 0. Let us fix any such α, denote it by α∗, and prove
that Ch

α∗ = 0. We break the proof into three cases.
Case 1. There exists a subset R ⊂ {1, . . . ,m + 1}, where |R| = m, such that∑

i∈R α∗
i > d.

Assume, without loss of generality (since the variables of h, and the corresponding
α∗
i ’s can be reordered), that R = {1, . . . ,m}, and assume, contrary to the claim, that

Ch
α∗
= 0. We will show that this implies that there exist y0, y1, . . . , ym ∈ Fm+1

and γ = γ1, . . . , γm, where γi ∈ [q − 1], and
∑m

i=1 γi > d, such that for the affine

786 TALI KAUFMAN AND DANA RON

subspace of S = S(y0, y2, . . . , ym) of dimension m we have C
h|S
γ
= 0, contradicting

the induction hypothesis.

Specifically, for i = 1, . . . ,m+ 1 we denote by ei the ith unit vector of dimension
m + 1. Let yi = ei for i = 1, . . . ,m, and for each b ∈ F , let y0(b) = b · em+1. Let
gb = h|(y0(b),y1,...,ym) (so that gb : Fm → F). Then for each choice of b ∈ F we have

gb(z1, . . . , zm) = h(z1, . . . , zm, b)

=
∑

α∈[q−1]m+1

Ch
α ·

m∏
i=1

zαi
i · bαm+1 .

Consider the coefficient of the term z
α∗

1
1 · zα

∗
2

2 · · · zα
∗
m

m in gb, that is, Cgb
α∗

1 ,...,α
∗
m

(where

recall that α∗ satisfies
∑m+1

i=1 α∗
i > d, as well as the premise of this case). This

coefficient has the following form:

Cgb
α∗

1 ,...,α
∗
m

=

q−1∑
j=0

Ch
α∗

1 ,...,α
∗
m,j · bj .

Namely, it is the evaluation, at b, of the univariate polynomial:
∑q−1

j=0 C
h
α∗

1 ,...,α
∗
m,j ·xj .

Note that for j = α∗
m+1, the coefficient of xj in this polynomial is Ch

α∗ , which is nonzero
by our counterassumption. Hence, this polynomial is a nonzero polynomial of degree
at most q − 1 over F . This implies that for at least one value of b, this polynomial
attains a nonzero value. But this means that for some choice of b, Cgb

α∗
1 ,...,α

∗
m

= 0.

Since
∑m

i=1 α
∗
i > d, we have reached a contradiction and hence completed the proof

for this case.

Case 2. There exists a pair of indices i, j ∈ {1, . . . ,m+ 1} such that α∗
i , α

∗
j
= 0,

and α∗
i + α∗

j < q.

Assume, without loss of generality, that i = m and j = m + 1. Here too we
assume, contrary to the claim, that Ch

α∗
= 0, and we reach a contradiction to the
induction hypothesis.

Let y0 be the all-0 vector, let yi = ei for i = 1, . . . ,m − 1, and for each b ∈ F ,
let ym(b) = 〈0, . . . , 0, 1, b〉 (recall that y0, . . . , ym ∈ Fm+1). Here too we denote
gb = h|(y0,...,ym(b)). Then for each choice of b ∈ F we have

gb(z1, . . . , zm) = h(z1, . . . , zm, b · zm)

=
∑

α∈[q−1]m+1

Ch
α ·

m−1∏
i=1

zαi
i · zαm

m · (zm · b)αm+1

=
∑

α∈[q−1]m+1

Ch
α ·

m−1∏
i=1

zαi
i · zαm+αm+1

m · bαm+1 .

Consider the coefficient of the term z
α∗

1
1 · · · z

α∗
m−1

m−1 · zα
∗
m+α∗

m+1
m in gb (recall that

α∗
m + α∗

m+1 < q). This coefficient has the following form:

Cgb
α∗

1 ,...,α
∗
m−1,α

∗
m+α∗

m+1
=

∑
j,k∈[q−1]2

j+k=α∗
m+α∗

m+1

Ch
α∗

1 ,...,α
∗
m−1,j,k

· bk.

TESTING POLYNOMIALS OVER GENERAL FIELDS 787

That is, it is the evaluation, at b, of the univariate polynomial

q−1∑
k=0

Ch
α∗

1 ,...,α
∗
m−1,α

∗
m+α∗

m+1−k,k. · xk.

Note that for k = α∗
m+1, the coefficient of xk in this polynomial is Ch

α∗ , which is
nonzero by our counterassumption. Hence, this polynomial is a nonzero polynomial
of degree at most q−1 over F , which implies that for at least one value of b it attains
a nonzero value. But this means that for some choice of b, Cgb

α∗
1 ,...,α

∗
m−1,α

∗
m+α∗

m+1

= 0

and the proof of this case follows.

Remark. We observe that if � =
⌈ 2(d+1)

q

⌉
then either Case 1 or Case 2 must hold.

This implies that Theorem 2 is established for q that is a power of 2 (since in this
case q − q/p = q/2). It also follows that for any value of q, a variant of Theorem 2
which takes � to be at most a factor of 2 larger than that stated in the theorem, is
established as well.

In order to get the tighter result which holds for � =
⌈

d+1
q−(q/p)

⌉
and any q, we need

to analyze the third and final case.
Case 3 (neither Case 1 nor Case 2 holds). For every subset R ⊂ {1, . . . ,m + 1},

|R| = m, we have that
∑

i∈R α∗
i ≤ d, and for every pair of indices i, j ∈ {1, . . . ,m+1}

we have that α∗
i + α∗

j ≥ q.
Our proof of this case is similar in its general structure to the proofs of Cases

1 and 2, but is somewhat more involved since we take into account a larger set of
m-dimensional affine subspaces. In what follows, when we write t · a, where a ∈ F
and t is an integer, we mean the sum a + a + . . . + a︸ ︷︷ ︸

t

in the field F . For every choice

of a1, . . . , am, b each in F , let y0 = b ·em+1, and for i = 1, . . . ,m, let yi = ai ·ei+em+1.
Consider the function ga1,...,am,b = h|(y0(b),y1(a1),...,ym(am)) : Fm → F . By definition,

ga1,...,am,b(z1, . . . , zm)

= h
(
a1 · z1, . . . , am · zm,

m∑
i=1

zi + b
)

=
∑

α∈[q−1]m+1

Ch
α ·

m∏
i=1

(ai · zi)αi ·
(

m∑
i=1

zi + b

)αm+1

=
∑

α∈[q−1]m+1

∑
δ∈[q−1]m∑m
i=1 δi≤αm+1

(
αm+1

δ1, . . . , δm

)
· Ch

α

·
m∏
i=1

aαi
i · bαm+1−

∑
δi ·

m∏
i=1

zαi+δi
i .(3.4)

Roughly speaking, for each α ∈ [q − 1]m+1, the exponent αm+1 “gets distributed”
among the different zi’s (i = 1, . . . ,m) and b. Note that if αi+δi = q then zαi+δi

i = zi,

and, more generally, if αi + δi ≥ q then zαi+δi
i = z

(αi+δi) mod (q−1)
i . In what follows

we use the shorthand (j)q to denote (j mod (q − 1)).
For any choice of γ = γ1, . . . , γm, γi ∈ [q − 1], we consider the coefficient of the

term
∏m

i=1 z
γi

i in the representation of ga1,...,am,b(z1, . . . , zm) as a polynomial of degree

at most q − 1 in each variable (that is, C
ga1,...,am,b
γ). It follows from (3.4) that this

788 TALI KAUFMAN AND DANA RON

coefficient is the evaluation of the multivariate polynomial

Hγ(x1, . . . , xm+1) =
∑

α∈[q−1]m+1

αm+1≥
∑m

i=1(γi−αi)q

(
αm+1

(γ1 − α1)q, . . . , (γm − αm)q

)

· Ch
α ·

m∏
i=1

xαi
i · xαm+1−

∑m
i=1(γi−αi)q

m+1(3.5)

at the point x1 = a1, . . . , xm = am, xm+1 = b.
As in Cases 1 and 2, we would like to show that under the assumption that Ch

α∗
= 0

for α∗ such that
∑m+1

i=1 α∗
i > d, we can get the following. There exist a1, . . . , am and

b in F and γ1, . . . , γm ∈ [q − 1] such that
∑m

i=1 γi > d and the coefficient of the term∏m
i=1 z

γi

i in the representation of ga1,...,am,b as a polynomial of degree at most q−1 (in
each variable) is nonzero. Since we want to exploit the existence of α∗ ∈ [q−1]m+1 as
stated above, we shall consider γ1, . . . , γm of the form γi = α∗

i + δi, where δ1, . . . , δm
(δi ∈ [q − 1]) obey the following conditions:

C1.
∑m

i=1 δi ≤ α∗
m+1;

C2. α∗
i + δi (= γi) ≤ q − 1 for every i, 1 ≤ i ≤ m;

C3.
∑m

i=1(α
∗
i + δi) > d (that is,

∑m
i=1 γi > d);

C4.
(α∗

m+1

δ1,...,δm

)
is not divisible by p. (If q is prime, that is, q = p, then this condition

follows from condition C1, but this is not true in general.)
Suppose we have a setting of the δi’s that satisfies conditions C1–C4 (where we later
show how to obtain such a setting). Let γ = γ1, . . . , γm be such that γi = α∗

i + δi.
By condition C3,

∑m
i=1 γi > d, and by condition C2 we have that γi ≤ q − 1 and

δi = (γi − α∗
i)q. We claim that Hγ (which is defined in (3.5)) includes at least

one nonzero coefficient. To verify this first note that by condition C1 (and since
δi = (γi − α∗

i)q), the sum in (3.5) includes α = α∗. By our counterassumption,

Ch
α∗
= 0. Combining this with condition C4 we get that (α∗

m+1

δ1,...,δm
) · Ch

α∗ is a nonzero

coefficient of the term
∏m

i=1 x
α∗

i
i · xα∗

m+1−
∑m

i=1 δi
m+1 in the polynomial Hγ , so that Hγ is

a nonzero polynomial. That is, there exists a choice of a1, . . . , am and b on which the
value of Hγ is nonzero. But by definition of Hγ this means that C

ga1,...,am,b
γ
= 0 for

γ that satisfies
∑m

i=1 γi > d, in contradiction to the induction hypothesis.
It remains to show how we find a setting of the δi’s that satisfies conditions C1–C4.
Subcase 1: q is prime. Consider first the case that q is prime. That is, q = p.

In this case m ≥ � =
⌈
d+1
q−1

⌉
. Let δ1 = q − 1 − α∗

1, and recall that, by the premise of
this case, for every i, j we have α∗

i + α∗
j ≥ q, so that necessarily δ1 < α∗

m+1. Next let
δ2 = min{q−1−α∗

2, α
∗
m+1−δ1}, and in general, δi = min{q−1−α∗

i , α
∗
m+1−

∑
j<i δj}.

Conditions C1 and C2 directly follow from the definition of the δi’s, and condition C4
is implied by C1 (since q is prime). It remains to verify that condition C3 holds. If
there exists an index i such that δi = α∗

m+1 −
∑

j<i δj , then

m∑
i=1

(α∗
i + δi) =

m+1∑
i=1

α∗
i > d.

Otherwise, δi = q − 1 − α∗
i for every 1 ≤ i ≤ m and so

m∑
i=1

(α∗
i + δi) = m · (q − 1) ≥ � · (q − 1) ≥ d + 1.

TESTING POLYNOMIALS OVER GENERAL FIELDS 789

Subcase 2: q is not prime. When q is not a prime number, so that q = ps for
s > 1, then the setting of the δi’s is a bit more involved because condition C4 does
not follow from any of the other conditions, and we have to attend to it separately.
Since(

α∗
m+1

δ1, . . . , δm

)

=

(
α∗
m+1

δ1

)
·
(
α∗
m+1 − δ1

δ2

)
. . .

(
α∗
m+1 −

∑
j<i δj

δi

)
. . .

(
α∗
m+1 −

∑
j<m δj

δm

)

it suffices to show that each term in the above product is not divisible by p. Let us
hence rewrite condition C4.

C4. For every 1 ≤ i ≤ m,
(α∗

m+1−
∑

j<i δj
δi

)
is not divisible by p.

We shall use the following notation: For each α∗
i , let ki,j for j ∈ [p − 1] be such

that α∗
i =

∑s−1
j=0 ki,jp

j . That is, in the representation of α∗
i in basis p, ki,j is the

coefficient of pj . Let us assume without loss of generality that α∗
m+1 is the smallest

α∗
i and that α∗

1 ≤ α∗
2 ≤ · · · ≤ α∗

m (we may reorder the variables to get that). We
know that α∗

1 < (p − 1)ps−1 (or else
∑m

i=1 α
∗
i ≥ (p − 1)ps−1 · � ≥ d + 1). Since, by

the premise of this case, α∗
i + α∗

1 ≥ q = ps for every i > 1, necessarily α∗
i > ps−1 for

i > 1. Similarly, α∗
1 > ps−1 (since α∗

1 + α∗
m+1 ≥ q). Hence for each α∗

i we have that
1 ≤ ki,s−1 ≤ p− 1.

For 1 ≤ i ≤ m, let ti
def
= p − 1 − ki,s−1 (for technical purposes t0

def
= 0). That is,

ti indicates the maximum number that can be added to the coefficient ki,s−1 of ps−1

without “going over” p − 1. Recall that α∗
1, . . . , α

∗
m are in nondecreasing order, and

so the ti’s are in nonincreasing order. In particular, if ti = 0 then ti′ = 0 for every
i′ > i > 0. We shall use the following technical claim that was given in [19] and whose
proof is provided for the sake of completeness in the appendix.

Claim 1. Let q = ps for a prime number p and an integer s, and let r and t be
integers that satisfy 0 < r ≤ t ≤ q − 1. If r = kps−1 for some integer k then

(
t
r

)
is

not divisible by p.
The setting of the δi’s. We now show how to set the δi’s so that conditions C1–C4

hold. We start with an informal description of how to “distribute” the weight of α∗
m+1

between the δi’s. Consider the representation of α∗
m+1 in basis p as described above.

The highest coefficient in the representation is km+1,s−1. That is,

α∗
m+1 =

s−1∑
j=0

km+1,jp
j = km+1,s−1p

s−1 +

s−2∑
j=0

km+1,jp
j .

We view α∗
m+1 as having km+1,s−1 “units of ps−1” to be distributed, and some “left

over.” Note that this left-over,
∑s−2

j=0 km+1,jp
j , is strictly smaller than ps−1.

Starting from δ1, each δi in its turn will be assigned the maximum possible integer
multiple of ps−1. Namely, as long as the number of remaining “ps−1 units” is more
than the number of such units that can still be added to α∗

i (i.e., ti) and ti > 0, then
δi is assigned ti units of ps−1. For these i’s we get that ki,s−1p

s−1 + δi = (p− 1)ps−1.
If we reach an index i such that ti = 0, then we stop distributing what is left of
α∗
m+1. Alternatively, if we reach an index i for which the number of ps−1 units that

can be added to it (i.e., ti) is bigger than the amount of ps−1 units that remain to be
distributed, then we assign δi the rest of the weight of α∗

m+1 that was not distributed
yet.

We now turn to a more formal definition. We initialize i to 1 and do the following:

790 TALI KAUFMAN AND DANA RON

1. While i ≤ m and 0 < ti ≤ km+1,s−1 −
∑

j<i tj :

Set δi = tip
s−1, and increase i by 1.

2. If i ≤ m:
(a) If ti = 0 then for every i′, i ≤ i′ ≤ m, set δi = 0. (Recall that the ti’s

are nonincreasing so that if ti = 0 then for every i′ > i we also have
ti′ = 0.)

(b) Else (ti > km+1,s−1 −
∑

j<i tj), set δi = α∗
m+1 −

∑
j<i δj , and for every

i′ > i set δi′ = 0. Note that

δi =
(
km+1,s−1 −

∑
j<i

tj

)
ps−1 +

s−2∑
j=0

km+1,jp
j < tip

s−1.

We next verify that conditions C1–C4 hold for this setting of the δi’s. Condition C1
(
∑m

i=1 δi ≤ α∗
m+1) directly follows from the above process. By the definition of the

δi’s, for every 1 ≤ i ≤ m, δi ≤ ti · ps−1. Since ti = p− 1 − ki,s−1, we get that

α∗
i + δi ≤ (p− 1) · ps−1 +

s∑
�=2

ki,s−�p
s−� < q,

and so condition C2 holds.
We next verify that condition C3 holds, that is,

∑m
i=1(α

∗
i + δi) > d. Let i0 be

the index reached at the end of step 1 in the process. Observe that for every i < i0,
δi = ti ·ps−1. By definition of ti this implies that α∗

i +δi ≥ (p−1)ps−1. If i0 > m then,
since m ≥ � =

⌈
d+1

(p−1)ps−1

⌉
, we get that

∑m
i=1(α

∗
i + δi) ≥ d+1, as required. If i0 ≤ m,

then there are two cases. In case ti0 = 0 (so that for every i′ ≥ i0 we have ti′ = 0),
then α∗

i ≥ (p − 1)ps−1 for every i ≥ i0, so again we get that
∑m

i=1(α
∗
i + δi) ≥ d + 1.

In case ti0 > km+1,s−1 −
∑

j<i tj , then we set δi0 = α∗
m+1 −

∑
j<i0

δj , so that

m∑
i=1

(α∗
i + δi) =

m+1∑
i=1

α∗
i > d.

Finally, we verify that condition C4 holds. That is, for every 1 ≤ i ≤ m,(α∗
m+1−

∑
j<i δj

δi

)
is not divisible by p. Let i0 be as defined above in our verification

of condition C3. Since for every i < i0 we have that δi = tip
s−1, by Claim 1,(α∗

m+1−
∑

j<i δj
δi

)
is not divisible by p. If i0 > m then we are done. Otherwise there are

two cases. In the first case δi = 0 for every i ≥ i0, so clearly the condition holds. In
the second case, δi0 = α∗

m+1−
∑

j<i0
δj and δi = 0 for every i > i0. Thus condition C4

holds in this case too. We have thus completed the proof of Case 3 (Subcase 2), and
hence of Theorem 2.

4. The test. In this section we present and analyze our testing algorithm for
degree-d polynomials over fields of cardinality q = O(d).

Algorithm 1. Testing Algorithm for Degree-d Polynomials
1. Let � = �(q, d) =

⌈
d+1

q−q/p

⌉
and repeat the following t = Θ

(
� · q�+1 + 1

ε·q�
)

times:
(a) Uniformly at random select � linearly independent points

y1, . . . , y� ∈ Fn, and a point y0 ∈ Fn.
(b) If f|(y0,y1,...,y�) /∈ POLY�,d then output reject.

2. If no step caused rejection then output accept.

Recall that checking whether f|S /∈ POLY�,d (where S = S(y0, y1, . . . , y�)) can

TESTING POLYNOMIALS OVER GENERAL FIELDS 791

be done by querying f on all points in the subspace S and verifying that all linear

constraints corresponding to the coefficients C
f|S
α such that

∑�
i=1 αi > d hold. Hence

the total number of queries performed by the algorithm is O(t · q�) = O(� · q2�+1 + 1
ε)

(where the q� term is due to the number of points in each affine subspace).
As noted in the introduction, when q is sufficiently larger than d so that � = 1

(the subspaces are lines), then it is not necessary to query f on all points on the line,
but rather d+ 2 points suffice. We note that these checks involving d+ 2 points on a
line can be interpreted as selecting minimum-weight words from the dual GRM code
and checking that they are orthogonal to the word defined by f .

Given Algorithm 1, Theorem 1, as stated in the introduction, follows from the
next lemma.

Lemma 2. If f ∈ POLYn,d then Algorithm 1 accepts with probability 1, and if
dist(f,POLYn,d) > ε then Algorithm 1 rejects with probability at least 2/3.

Lemma 2 shall be proved using the “self-correcting approach,” which has been
applied in the analysis of many previous low-degree tests. Namely, given the function
f we define another function g based on certain “majority votes” of f . We then show
that if f passes the test with sufficiently high probability, then g is close to f and g
is a polynomial of degree at most d. Bounding the distance between f and g follows
easily from the definition of g, and hence the analysis is focused on showing that g is
a polynomial of degree at most d. The analysis can be viewed as generalizing both
the analysis in [30] (where the subspaces considered by the test are lines) and the
analysis in [1] (where the subspaces are larger but the field is GF (2), and the analysis
relies on the fact that the field is GF (2)).

We start by introducing several notations.
Definition 5. Let

η = η(f, d)
def
= Pry0,y1,...,y�

[
f|(y0,y1,...,y�) /∈ POLY�,d

]
,(4.1)

where the probability is taken over y0, y1, . . . , y� such that y1, . . . , y� are linearly inde-
pendent.

By definition of Algorithm 1, η is the probability that a single step of the algorithm
causes f to be rejected. That is, it is the probability that the restriction of f to a
random affine subspace of dimension � is not a polynomial of degree at most d.

Definition 6. For each α ∈ [q − 1]�, y ∈ Fn, and linearly independent points
y1, . . . , y� ∈ Fn, let Cf

α(y0, y1, . . . , y�) denote the coefficient Cα of the polynomial rep-
resentation of f|(y0,y1,...,y�). We shall use the notation Bf (y0, y1, . . . , y�) as a short-

hand for the coefficient Cf
〈q−1,...,q−1〉(y0, y1, . . . , y�). That is, Bf (y0, y1, . . . , y�) denotes

the coefficient of the highest-degree monomial xq−1
1 · xq−1

2 · · ·xq−1
� in the polynomial

representation of f|(y0,y1,...,y�). Recall that this coefficient equals (−1)� times the sum
of the values of f taken over all points in the subspace.

We denote by V f (y; y1, . . . , y�) the value that f(y) “should have” so that
Bf (y, y1, . . . , y�) = 0. That is,

V f (y; y1, . . . , y�) = −
∑

b1,...,b�∈F
∃i s.t. bi =0

f
(
y +

�∑
i=1

bi · yi
)
.(4.2)

We refer to V f (y; y1, . . . , y�) as the vote of (y1, . . . , y�) on the value assigned to y.
For succinctness of the notation, we shall remove f from the last two notations

(i.e., B(·) = Bf (·) and V (·) = V f (·)).

792 TALI KAUFMAN AND DANA RON

Note that for η as in Definition 5,

η ≥ Pry,y1,...,y�
[V (y; y1, . . . , y�)
= f(y)],

where the probability is taken over y1, . . . , y� that are linearly independent. This is
true since the test checks that all coefficients Cf

α(y, y1, . . . , y�) for which
∑�

i=1 αi > d
are 0.

In our analysis, we shall sometimes have to address the case that y1, . . . , y� are
linearly dependent and we shall use the notation V (y; y1, . . . , y�) (as defined in (4.2)),
in this case as well. This is despite the fact that it no longer has the same meaning
of a “vote” on the value of f(y) (or at least not an “objective vote”). We show the
following.

Lemma 3. For every y ∈ Fn and for y1, . . . , y� ∈ Fn that are linearly dependent,
V (y; y1, . . . , y�) = f(y).

Proof. Since y1, . . . , y� are linearly dependent, we can write y� as a linear com-
bination of the other points. That is, y� =

∑�−1
i=1 aiyi, where a1, . . . , a�−1 ∈ F . By

definition of V (·),

V (y; y1, . . . , y�) = −
∑

b1,...,b�∈F

f
(
y +

�∑
i=1

bi · yi
)

+ f(y) .(4.3)

Since y� =
∑�−1

i=1 aiyi,

∑
b1,...,b�∈F

f
(
y +

�∑
i=1

bi · yi
)

=
∑

b1,...,b�∈F

f
(
y +

�−1∑
i=1

bi · yi + b�

�−1∑
i=1

aiyi

)
(4.4)

=
∑
b�∈F

∑
b1,...,b�−1∈F

f
(
y +

�∑
i=1

(bi + b� · ai)yi
)

(4.5)

= |F | ·
∑

c1,...,c�−1∈F

f
(
y +

�∑
i=1

ciyi

)
(4.6)

= 0 .(4.7)

In the above sequence of equalities, (4.6) follows from the fact that for each b� ∈ F ,
and for every choice of c1, . . . , c�−1 ∈ F , there exists a choice of b1, . . . , b�−1 ∈ F such
that ci = bi + b� · ai (i.e., bi = ci − b� · a).

We are now ready to define the self-corrected version of f , denoted by g.
Definition 7. Let g be a plurality function that is defined as follows. For each

y ∈ Fn,

g(y) = argmaxa∈F

{
Pry1,...,y�∈Fn [V (y; y1, . . . , y�) = a]

}
.(4.8)

The next lemma readily follows from the definition of g.
Lemma 4. For any function f and for η and g as defined in (4.1) and (4.8),

respectively, dist(f, g) ≤ 2η.
Proof. First observe that if the test selects points y0, y1, . . . , y� ∈ Fn such that

f(y0)
= V (y0; y1, . . . , y�), then this means that B(y0; y1, . . . , y�)
= 0 (where B(·)
is as defined in Definition 6), which causes the test to reject. Recall that the test
selects y1, . . . , y� that are linearly independent. If y1, . . . , y� are linearly dependent

TESTING POLYNOMIALS OVER GENERAL FIELDS 793

then by Lemma 3, V (y0; y1, . . . , y�) = f(y0). Let U ⊆ Fn consist of all (“bad”) points
y ∈ Fn such that Pry1,...,y�∈Fn [f(y)
= V (y; y1, . . . , y�)] > 1/2. By definition of η (and
Lemma 3) we know that |U |/qn < 2η. But for every x ∈ Fn \ U , by definition of g
we have that f(x) = g(x), and the lemma follows.

In the next series of lemmas we prove that if η is sufficiently small then g is
a polynomial of total degree at most d. In the first, and central lemma, we show
that for every y, the value of g(y), which by Definition 7 is the “plurality vote” of
V (y; y1, . . . , y�), taken over all y1, . . . , y�, equals the vote of a large fraction of the
�-tuples y1, . . . , y� (assuming η is sufficiently small).

Lemma 5. For any fixed y ∈ Fn, let

γ(y)
def
= Pry1,...,y�

[
V (y; y1, . . . , y�) = g(y)

]
.(4.9)

Then γ(y) ≥ 1 − 2q�η.
In order to prove Lemma 5 it will actually be more convenient to work with

another measure of “correctness” (or “consistency”) of a point y.
Lemma 6. For any fixed y ∈ Fn, let

δ(y) = Pry1,...,y�,z1,...,z�

[
V (y; y1, . . . , y�) = V (y; z1, . . . , z�)

]
(4.10)

and let γ(y) be as defined in (4.9). Then γ(y) ≥ δ(y).
Proof. Let βa(y) = Pry1,...,y�

[V (y; y1, . . . , y�) = a] (so that in particular,∑
a∈F βa(y) = 1). By definition of γ(y) we have that γ(y) = maxa βa(y), and by

definition of δ(y) we have that δ(y) =
∑

a∈F (βa(y))
2. By convexity, maxa βa(y) ≥∑

a∈F (βa(y))
2, and the claim follows.

An auxiliary “voting graph.” In order to show that δ(y) is large (and hence γ(y)
is large), it will be useful to consider the following auxiliary graph. The definition
of this graph was inspired by the way Shpilka and Wigderson used Cayley graphs in
their work [31] and can also be viewed as formalizing and generalizing part of the
analysis in [1]. Each vertex in this graph is labeled by a subset (multiset) of � points,
{y1, . . . , y�}, yi ∈ Fn. The neighbors of {y1, . . . , y�} are of the form {y2, . . . , y�+1}.
Each vertex corresponds to � points that can “vote” on the value of f(y) for any given
y and hence we refer to it as the voting graph.

For a fixed point y ∈ Fn, we say that an edge between {y1, . . . , y�} and
{y2, . . . , y�+1} is good with respect to y if V (y; y1, . . . , y�) = V (y; y2, . . . , y�+1).

Recall that for linearly independent y1, . . . , y�, B(y0, y1, . . . , y�) denotes the coef-
ficient C〈q−1,...,q−1〉(y0, y1, . . . , y�), of the restriction of f to the �-dimensional affine
subspace determined by y0, y1, . . . , y�. That is,

B(y0, y1, . . . , y�) = (−1)� ·
∑

b1,...,b�∈F

f
(
y +

�∑
i=1

yi

)
.

Lemma 7. For any choice of y, y1, . . . , y�+1 ∈ Fn such that y1, . . . , y�+1 are
linearly independent,

V (y; y1, . . . , y�) − V (y; y2, . . . , y�+1)

= (−1)�

⎛
⎝ ∑

a∈F, a=0

B(y + a · y�+1, y1, . . . , y�) −
∑

a∈F, a=0

B(y + a · y1, y2, . . . , y�+1)

⎞
⎠ .

794 TALI KAUFMAN AND DANA RON

Proof. By definition of V (y; ·) we have

V (y; y1, . . . , y�) − V (y; y2, . . . , y�+1)

= −
∑

b1,...,b�∈F
b1 =0

f
(
y +

�∑
i=1

bi · yi
)

+
∑

b2,...,b�+1∈F
b�+1 =0

f
(
y +

�+1∑
i=2

bi · yi
)

= −
∑

b1,...,b�∈F
b1 =0

f
(
y +

�∑
i=1

bi · yi
)
−

∑
b1,...,b�+1∈F
b1,b�+1 =0

f
(
y +

�+1∑
i=1

bi · yi
)

+
∑

b2,...,b�+1∈F
b�+1 =0

f
(
y +

�+1∑
i=2

bi · yi
)

+
∑

b1,...,b�+1∈F
b1,b�+1 =0

f
(
y +

�+1∑
i=1

bi · yi
)

= −
∑

b1,...,b�+1∈F
b1 =0

f
(
y + b1 · y1 +

�+1∑
i=2

bi · yi
)

+
∑

b1,...,b�+1∈F
b�+1 =0

f
(
y + b�+1 · y�+1 +

�∑
i=1

bi · yi
)

= (−1)�

(∑
a∈F, a=0

B(y + a · y�+1, y1, . . . , y�)

−
∑

a∈F, a=0

B(y + a · y1, y2, . . . , y�+1)

)
.

Proof of Lemma 5. Given Lemma 6, it suffices to show that for every y ∈ Fn,
δ(y) ≥ 1 − 2q�η. For any (random) choice of y1, . . . , y� and z1, . . . , z�, and for
each 0 ≤ i ≤ � let vi = {y1, . . . , yi, zi+1, . . . , z�}, where we view vi as a vertex in
the voting graph. In particular, v� = {y1, . . . , y�} and v0 = {z1, . . . , z�}. Since
y1, . . . , y�, z1, . . . , z� are selected uniformly and at random, each vi is a random vari-
able. Consider the path v�, . . . , v0 between v� and v0. In what follows we shall use
the shorthand V (y; vi) for the vote V (y; y1, . . . , yi, zi+1, . . . , z�). Recall that an edge
(vi, vi−1) is good if V (y; vi) = V (y; vi−1).

We next show that the probability (taken over the choice of y1, . . . , y�, z1, . . . , z�)
that an edge (vi, vi−1) on the path is not good is at most 2qη. By taking a union bound
it follows that the probability that all the edges on the path are good is at least 1−2q�η.
That is, with probability at least 1 − 2q�η, V (y; y1, . . . , y�) = V (y; y1, . . . , y�−1, z�) =
· · · = V (y; z1, . . . , z�), and the lemma follows.

Consider any edge (vi, vi−1). We say that V (y; vi) is an independent vote for y if
y1, . . . , yi, zi+1, . . . , z� are linearly independent points; otherwise we say that V (y; vi)
is a dependent vote for y. If both votes for y are dependent, then by Lemma 3,
V (y; vi) = f(y) and V (y; vi−1) = f(y) so that V (y; vi) = V (y; vi−1) and the edge is
good. If one of the votes is a dependent vote and the other is an independent vote,
then the probability that the edge is not good is the probability that an independent
vote for y differs from f(y), which is η.

We next show that if both V (y; vi) and V (y; vi−1) are independent votes for y
then the edge (vi, vi−1) is not good with probability at most 2qη. Indeed, by Lemma 7

TESTING POLYNOMIALS OVER GENERAL FIELDS 795

such an edge is good if

∑
a∈F,a=0

B(y + a · yi, y1, . . . , yi−1, zi, . . . , z�)

−
∑

a∈F,a=0

B(y + a · zi, y1, . . . , yi, zi+1, . . . , z�) = 0.(4.11)

Since y1, . . . , yi, zi+1, . . . , z� and y1, . . . , yi−1, zi, . . . , z�. are two sets of linearly inde-
pendent vectors selected uniformly at random, each of the B(·)’s in the above sum-
mation is nonzero with probability at most η. Hence, by applying a union bound, the
probability that (vi, vi−1) is not good is at most 2qη as claimed.

We next show that if η is sufficiently small then g ∈ POLYn,d. This is obtained
by showing that the restriction of g to every affine subspace of dimension � results in
a polynomial of degree at most d. By applying Theorem 2 we conclude that in such
a case g is indeed in POLYn,d. In order to show that the restriction of g to every
affine subspace of dimension � is a polynomial of degree at most d, we generalize the
proof technique applied in [1] for the case of F = GF (2). Roughly speaking, we show
that the high degree coefficients in the polynomial representation of the restriction of
g to any fixed subspace, can be expressed as linear combinations of these coefficients
in the restriction of f to random subspaces.

Lemma 8. If η < 1
2(�+1)q�+1 , then g ∈ POLYn,d.

Proof. Consider any fixed set of points y0, y1, . . . , y� ∈ Fn such that y1, . . . , y� are
linearly independent. We shall show that g|(y0,y1,...,y�) ∈ POLY�,d. Lemma 8 follows
by applying Theorem 2. We start by describing the high-level idea of the proof. By
using a probabilistic argument we shall show that there exists a choice of a subset of
elements, denoted {zi,j}, for which the following conditions hold. First, the value of g
on every point w in the subspace S(y0, y1, . . . , y�) equals the vote on w of a set, Tw, of
� points that are linear combinations of the zi,j ’s. Next, for each of these sets of points
Tw, the restriction of f to the affine subspace defined by w and Tw is a polynomial
of degree at most d. That is, all high degree coefficients in each of these restrictions
are 0. We then show that each high degree coefficient in the restriction of g to the
subspace S(y0, y1, . . . , y�) is a linear combinations of the high degree coefficients in
the abovementioned restrictions of f , and is hence 0. A formal proof follows.

Each point w in the affine subspace S(y0, y1, . . . , y�) is of the form y0 +
∑�

i=1 biyi,

where bi ∈ F . Now consider (�+1) · � elements in Fn, denoted {zi,j}j=1,...,�
i=0,...,� . Suppose

that for every choice of b1, . . . , b� ∈ F ,

g
(
y0 +

�∑
i=1

bi · yi
)

= V
(
y0 +

�∑
i=1

bi · yi ; z0,1 +

�∑
i=1

bi · zi,1, . . . , z0,� +

�∑
i=1

bi · zi,�
)
.(4.12)

If we select the elements {zi,j} uniformly and at random, then by Lemma 5 and the
union bound, this event occurs with probability at least 1−2q�η ·q�. We assume from
this point on that (4.12) holds for every choice of b1, . . . , b� ∈ F .

In order to show that g|(y0,y1,...,y�) ∈ POLY�,d we need to show that for every

α ∈ [q − 1]� such that
∑�

i=1 αi > d, we have that Cg
α(y0, y1, . . . , y�) = 0. Let us fix

any such α, and let Rα denote the row vector A�(α, ·) (where the matrix A� is as

796 TALI KAUFMAN AND DANA RON

defined by (2.3) and (2.5)). Recall that the coordinates of Rα are indexed by strings
β ∈ [q − 1]� (where we denote the corresponding coordinate by Rβ

α ∈ F). In what
follows we use the notation ex(βi) = ωβi if βi
= 0 and ex(βi) = 0 if βi = 0. Consider
the structure of A� presented in section 2. We need to show that

∑
β∈[q−1]�

Rβ
α · g

(
y0 +

�∑
i=1

ex(βi) · yi
)

= 0.(4.13)

For any fixed β ∈ [q− 1]�, by our assumption that (4.12) holds, and by definition
of V (·), we have

g
(
y0 +

�∑
i=1

ex(βi) · yi
)

= −
∑

γ∈[q−1]�

γ =(0,0,...,0)

f

(
y0 +

�∑
i=1

ex(βi) · yi +

�∑
j=1

ex(γj) ·
(
z0,j +

�∑
i=1

ex(βi) · zi,j
))

= −
∑

γ∈[q−1]�

γ =(0,0,...,0)

f

(
y0 +

�∑
j=1

ex(γj) · z0,j +

�∑
i=1

ex(βi) ·
(
yi +

�∑
j=1

ex(γj) · zi,j
))

.

This implies (by switching the order of summations) that
∑

β∈[q−1]� R
β
α · g(y0 +∑�

i=1 ex(βi) · yi), which we would like to show is 0, is the sum over all nonzero
γ ∈ [q − 1]� and all β ∈ [q − 1]� of Rβ

α times the evaluation of f at

y0 +

�∑
j=1

ex(γj) · z0,j +

�∑
i=1

ex(βi) ·
(
yi +

�∑
j=1

ex(γj) · zi,j
)
.

But for any given choice of γ = γ1, . . . , γ�,

∑
β∈[q−1]�

Rβ
α · f

(
y0 +

�∑
j=1

ex(γj) · z0,j +

�∑
i=1

ex(βi) ·
(
yi +

�∑
j=1

ex(γj) · zi,j
))

= Cf
α

(
y0 +

�∑
j=1

ex(γj) · z0,j , y1 +

�∑
j=1

ex(γj) · z1,j , . . . , y� +

�∑
j=1

ex(γj) · z�,j
)
.

Consider the event that for every choice of γ1, . . . , γ� that are not all 0,

y1 +

�∑
j=1

ex(γj) · z1,j , . . . , y� +

�∑
j=1

ex(γj) · z�,j

are linearly independent. This event occurs with probability at least 1 − q� · q�−n.
In what follows we shall assume that this is indeed the case. Since γ1, . . . , γ� are not
all 0, then we know that for each setting of γ1, . . . , γ�, with probability at most η over
the choice of the zi,j ’s, for every α such that

∑�
i=1 αi > d,

Cf
α

(
y0 +

�∑
j=1

ex(γj) · z0,j , y1 +

�∑
j=1

ex(γj) · z1,j , . . . , y� +

�∑
j=1

ex(γj) · z�,j
)

= 0 .

TESTING POLYNOMIALS OVER GENERAL FIELDS 797

By taking a union bound over all γ1, . . . , γ�, adding the probability that we have at
least one linearly dependent combination, and adding the probability that (4.12) does
not hold for some β ∈ [q − 1]�, we get that with probability at least

1 − q�η − 2q�ηq� − q2�−n(4.14)

there exist zi,j ’s that satisfy all required constraints. Hence (4.13) holds as desired.
Note that our algorithm performs Θ(�q2�+1 + 1/ε) queries, so that we may assume
that �q2�+1 < qn (or else the algorithm would simply query all qn points). Therefore,
the expression in (4.14) is greater than 0 and the lemma follows.

By combining Lemmas 4 and 8 we obtain that if f is Ω(1
�q�

)-far from POLYn,d,

then η = Ω(1
�q�

), and so the algorithm rejects f with sufficiently high constant prob-
ability.

The next lemma, which will help us deal with the case in which η is small, is a
variant of a very similar lemma that was proved in [1]. For the sake of completeness
we provide its proof in the appendix.

Lemma 9. Let ζ
def
= 1−q�·dist(f,g)

1+q�·dist(f,g)
·q� ·dist(f, g). If we uniformly and independently

select y0, y1, . . . , y� ∈ Fn where y1, . . . , y� are linearly independent, then the probability
that for exactly one choice of b1, . . . , b� ∈ F , we have that f(y0 +

∑�
i=1 bi · yi)
=

g(y0 +
∑�

i=1 bi · yi) is at least ζ.

We are now ready to wrap up the proof of Lemma 2 (and hence Theorem 1).

Proof of Lemma 2. If f ∈ POLYn,d, then, as stated in Theorem 2, f|S ∈ POLY�,d

for every affine subspace S of dimension �, and so the tester accepts with probability 1.
We next show that if f is ε-far from POLYn,d, then the tester rejects with probability
at least 2

3 .

Suppose that dist(f,POLYn,d) > ε. We shall show that η ≥ min{ 1
2q

�ε,
1

2(�+1)q�+1 }. Since η is the probability that a single iteration of the algorithm causes

f to be rejected, and the algorithm performs Θ(1/η) iterations, the lemma follows.
If η ≥ 1

2(�+1)q�+1 then we are done. Hence, assume that η < 1
2(�+1)q�+1 . We shall

show that in such a case η ≥ 1
2 · q� · dist(f, g) > 1

2 · q� · ε. To verify this, first note
that by Lemma 8 we have that g ∈ POLYn,d (since η < 1

2(�+1)q�+1). Next observe

that if f and g disagree on exactly one point in a subspace S of dimension �, then
f|S /∈ POLY�,d. It follows from Lemma 9 and the definition of η that η ≥ ζ (where ζ

is as defined in Lemma 9). In particular, since by Lemma 4 dist(f, g) ≤ 2η ≤ 1
(�+1)q�+1

where � ≥ 1 and q ≥ 2, we get that

η ≥ 1 − q� · dist(f, g)

1 + q� · dist(f, g)
· q� · dist(f, g)

≥
1 − 1

q(�+1)

1 + 1
q(�+1)

· q� · dist(f, g)

≥ 1 − 1/4

1 + 1/4
· q� · dist(f, g)

>
1

2
· q� · dist(f, g)

as claimed.

798 TALI KAUFMAN AND DANA RON

5. A lower bound.

Theorem 5. Every algorithm for testing POLYn,d with distance parameter ε
must perform Ω

(
max{ 1

ε , q
�−1}

)
queries when q is prime, and Ω

(
max{ 1

ε , q
��/2�−1}

)
queries otherwise.

In order to establish Theorem 5, we consider the relation between polynomials and
codes. Specifically, recall that the family POLYn,d over a field F = GF(q) = GF(ps)
corresponds to the GRM code GRMq(d, n). Namely, each codeword (having length
qn) is determined by the evaluation of a polynomial in POLYn,d on all points in the
domain Fn. The minimum distance, Δ(GRMq(d, n)), of the code is the following
(cf. [16]): If d = r(q − 1) + t, where 0 ≤ t < q − 1, and r is an integer, then
Δ(GRMq(d, n)) = (q− t)qn−r−1. The dual code of Δ(GRM(d, n)) is the GRM code

GRMq(n(q − 1)− (d+ 1), n), so that it has distance Ω(q�
d+1
q−1�−1). Let us denote the

distance of the dual code by Δ(GRMq(d, n), and let � =
⌈

d+1
q−q/p

⌉
be as in our previous

notation. Hence, if q is prime then Δ(GRMq(d, n)) = Ω(q�−1), and for nonprime q
we can say that Δ(GRMq(d, n)) = Ω(q��/2�−1).

Theorem 5 follows by applying the theorem below, which is a straightforward
generalization of a similar theorem proved in [1] for binary codes. For the sake of
completeness we include the proof in the appendix.

Theorem 6. Let F be any family of functions f : Fn → F that corresponds to
a linear code C. Let Δ(C) denote the minimum distance of the code C and let Δ(C)
denote the minimum distance of the dual code of C.

Every testing algorithm for the family F must perform Ω(Δ(C)) queries, and if
the distance parameter ε is at most Δ(C)/(2qn), then Ω(1/ε) is also a lower bound for
the necessary number of queries.

6. The paper of Jutla et al. [25]. As noted in the introduction, independently
from our work, Jutla et al. [25] give a testing algorithm for low-degree polynomials
over prime fields. They too provide a characterization of low-degree polynomials
(over prime fields) and define their test based on this characterization. As we discuss
below, our characterization (in the case of prime fields) is related to the one in [25].
However, our approach, and hence the proofs for the characterizations, are different,
and in particular our characterization holds for all fields. Our testing algorithms
and their analysis have a similar structure (which follows that of previous low-degree
tests), but there are several technical and expositional differences (partly due to our
unifying view of low-degree testing). We next discuss how the characterization in [25]
relates to ours.

Recall that we show that for F = GF(q) (where q = ps and p is prime), a function
f : Fn → F is a polynomial of degree at most d if and only if its restriction to every
affine subspace of dimension � =

⌈
d+1

q−q/p

⌉
is a polynomial of degree at most d. In

other words, if we consider the unique representation of each such restriction of f
as a polynomial over � variables, then all coefficients that correspond to monomials
having degree greater than d must be 0. Each such coefficient can be shown to equal
a certain linear combination of the values of f in the subspace (see section 2).

The characterization of Jutla et al. for prime fields (q = p) is that one particular
linear constraint over each subspace must hold. They do not approach the problem as
we do (that is, by characterizing low-degree polynomials as functions whose restric-
tions to lower-dimensional spaces are low-degree polynomials). However, translating
their result using our terminology, it can be shown that the linear constraint they
consider corresponds to the coefficient of exactly one monomial of degree d+ 1. This

TESTING POLYNOMIALS OVER GENERAL FIELDS 799

monomial has the following form: xq−1
1 · xq−1

2 · · ·xq−1
�−1 · xt

�, where 1 ≤ t ≤ q − 1 and
d + 1 = (�− 1)(q − 1) + t.

In retrospect we observe that our analysis can be slightly extended so as to show
that in the case that q is prime then the characterization can be restricted to a
single polynomial coefficient. When q is not prime then it is not clear whether the
characterization can be restricted in a similar manner.

Appendix. Proofs of Claim 1, Lemma 9, and Theorem 6.

Claim 1. Let q = ps for a prime number p and an integer s, and let r and t be
integers that satisfy 0 < r ≤ t ≤ q − 1. If r = kps−1 for some integer k then

(
t
r

)
is

not divisible by p.

Proof. For any positive integer j, the largest power of p that divides j! is

�j/p� + �j/p2� + �j/p3� + · · · .

But for r = kps−1, the identity �t/pi� = �r/pi�+ �(t− r)/pi� holds. Thus the largest
power of p that divides t! is

∞∑
i=1

�t/pi� =

∞∑
i=1

(
�r/pi� + �(t− r)/pi�

)
.

Therefore t! and r!(t− r)! are divisible by exactly the same power of p.

Lemma 9. Let ζ
def
= 1−q�dist(f,g)

1+q�dist(f,g)
· q�dist(f, g). If we uniformly and independently

select y0, y1, . . . , y� ∈ Fn where y1, . . . , y� are linearly independent, then the probability
that for exactly one choice of b1, . . . , b� ∈ F , we have that f(y0 +

∑�
i=1 bi · yi)
=

g(y0 +
∑�

i=1 bi · yi) is at least ζ.

Proof. For each β = β1, . . . , β�, βi ∈ [q − 1] let Xβ be the indicator random

variable whose value is 1 if and only if f(y0 +
∑�

i=1 ex(βi)yi)
= g(y0 +
∑�

i=1 ex(βi)yi).
Thus Pr[Xβ = 1] = dist(f, g) for every β. It is not difficult to verify that the random
variables Xβ are pairwise independent. This is true since for any two distinct β1, β2,

the points (y0 +
∑�

i=1 ex(β1
i)yi) and (y0 +

∑�
i=1 ex(β2

i)yi) attain each pair of distinct
values in Fn with equal probability. It follows that the random variable X =

∑
β Xβ ,

which counts the number of points v = (y0 +
∑�

i=1 ex(βi)yi) in which f(v)
= g(v), has
expectation E[X] = q� ·dist(f, g) and variance Var[X] = q� ·dist(f, g)·(1−dist(f, g)) ≤
E[X]. Our objective is to lower bound the probability that X = 1. We need the well-
known fact that for a random variable X that attains nonnegative, integer values,

Pr[X > 0] ≥

(
E[X]

)2

E[X2]
.

Indeed, if X attains the value i with probability νi for i > 0, then, by Cauchy–Schwarz,

(
E[X]

)2

=
(∑
i>0

iνi

)2

=
(∑
i>0

i
√
νi
√
νi

)2

≤
(∑
i>0

i2νi

)
·
(∑
i>0

νi

)

= E[X2] · Pr[X > 0] .

800 TALI KAUFMAN AND DANA RON

In our case, this implies

Pr[X > 0] ≥

(
E[X]

)2

E[X2]
≥

(
E[X]

)2

E[X] +
(
E[X]

)2 =
E[X]

1 + E[X]
.

Therefore

E[X] ≥ Pr[X = 1] +
(E[X]

1 + E[X]
− Pr[X = 1]

)
· 2 =

2E[X]

1 + E[X]
− Pr[X = 1] ,

implying that

Pr[X = 1] ≥ E[X] − (E[X])2

1 + E[X]
.

Substituting the value of E[X], the desired result follows.

Theorem 6. Let F be any family of functions f : Fn → F that corresponds to
a linear code C. Let Δ(C) denote the minimum distance of the code C and let Δ(C)
denote the minimum distance of the dual code of C.

Every testing algorithm for the family F must perform Ω(Δ(C)) queries, and if
the distance parameter ε is smaller than Δ(C)/(2qn), then Ω(1/ε) is also a lower
bound for the necessary number of queries.

Proof. We start by showing that Ω(Δ(C)) queries are necessary. A well-known fact
from coding theory (see [28, Chap. 1, Thm. 10]) states the following: for every linear
code C whose dual code has distance Δ(C), if we examine a subword having length Δ′,
where Δ′ < Δ(C), of a uniformly selected codeword in C, then the resulting subword
is uniformly distributed in FΔ′

. Hence it is not possible to distinguish between a
random codeword in C and a random word in Fn (which with high probability is far
from any codeword) using less than Δ(C) queries.

We now turn to the case ε < Δ(C)/2qn. To prove the lower bound here, we apply,
as usual, the Yao principle by defining two distributions, one of positive instances, and
the other of negative ones, and then showing that in order to distinguish between those
distributions any algorithm must perform Ω(1/ε) queries. The positive distribution
has all its mass at the zero vector 0̄ = (0, . . . , 0). To define the negative distribution,
partition the set of all coordinates randomly into t = 1/ε nearly equal parts I1, . . . , It
and give weight 1/t to each of the characteristic vectors wi of Ii, i = 1, . . . , t. (Observe
that indeed 0̄ ∈ C due to linearity, and dist(wi, C) = ε due to the assumption on the
minimum distance of C.) Finally, a random instance is generated by first choosing
one of the distributions with probability 1/2 and then generating a vector according
to the chosen distribution.

Consider the two distributions that were defined. Let A be a deterministic testing
algorithm with query complexity s (where s is a function of ε). We need to show that
if A gives an incorrect answer with probability at most 1/3, it must be that s > 1/(3ε).
If A is incorrect on 0̄ (that is, it does not accept it), then it is already incorrect with
probability at least 1/2. Otherwise A should accept the input if all the s queried bits
are 0. Therefore it accepts as well at least t− s (where t = 1/ε is as defined above) of
the inputs wi. This shows that A gives an incorrect answer with probability at least
(t− s)/2t. For this to be smaller than 1/3 it must be the case that s > 1/(3ε).

TESTING POLYNOMIALS OVER GENERAL FIELDS 801

Acknowledgments. We are greatly indebted to Madhu Sudan who suggested
the unifying view for testing polynomials over finite fields that we apply in this work.
We would also like to thank Simon Litsyn, Alex Samorodnitsky, and Adam Smith
for helpful discussions. Finally, we would like to thank two anonymous reviewers for
helpful comments.

REFERENCES

[1] N. Alon, M. Krivelevich, T. Kaufman, S. Litsyn, and D. Ron, Testing Reed-Muller codes,
IEEE Trans. Inform. Theory, 51 (2005), pp. 4032–4038.

[2] N. Alon, M. Krivelevich, T. Kaufman, and D. Ron, Testing triangle-freeness in general
graphs, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 2006.

[3] S. Arora, Probabilistic Checking of Proofs and the Hardness of Approximation Problems,
Ph.D. thesis, UC Berkeley, Berkeley, CA, 1994.

[4] S. Arora and M. Sudan, Improved low-degree testing and its applications, in Proceedings
of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, ACM, New
York, 1997, pp. 485–495.

[5] E. F. Assmus, Jr., and J. D. Key, Designs and Their Codes, Cambridge Tracts in Math. 103,
Cambridge University Press, Cambridge, UK, 1992.

[6] L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations in polylogarith-
mic time, in Proceedings of the Twenty-Third Annual ACM Symposium on Theory of
Computing, ACM, New York, 1991, pp. 21–31.

[7] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover
interactive protocols, Comput. Complexity, 1 (1991), pp. 3–40.

[8] L. Babai, A. Shpilka, and D. Stefankovic, Locally testable cyclic codes, IEEE Trans. Inform.
Theory, 51 (2005), pp. 2849–2858.

[9] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi, and M. Sudan, Linearity testing over
characteristic two, IEEE Trans. Inform. Theory, 42 (1996), pp. 1781–1795.

[10] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically checkable
proofs and applications to approximation, in Proceedings of the Twenty-Fifth Annual ACM
Symposium on the Theory of Computing, ACM, New York, 1993, pp. 294–304.

[11] M. Bellare and M. Sudan, Improved non-approximability results, in Proceedings of the
Twenty-Sixth Annual ACM Symposium on the Theory of Computing, ACM, New York,
1994, pp. 184–193.

[12] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust PCPs of
proximity, shorter PCPs and applications to coding, in Proceedings of the Thirty-Sixth
Annual ACM Symposium on the Theory of Computing, ACM, New York, 2004, pp. 1–10.

[13] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3CNF properties are hard to test,
SIAM J. Comput., 35 (2005), pp. 1–21.

[14] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson, Derandomizing low degree tests
via epsilon-biased spaces, in Proceedings of the Thirty-Fifth Annual ACM Symposium on
the Theory of Computing, ACM, New York, 2003, pp. 612–621.

[15] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[16] P. Ding and J. D. Key, Minimum-weight codewords as generators of generalized Reed-Muller
codes, IEEE Trans. Inform. Theory, 46 (2000), pp. 2152–2157.

[17] I. Dinur, The PCP theorem via gap amplification, in Proceedings of the Thirty-Eighth Annual
ACM Symposium on the Theory of Computing, ACM, New York, 2006, pp. 241–250.

[18] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is
almost NP-complete, JACM, (1996), pp. 268–292.

[19] K. Friedl and M. Sudan, Some improvements to total degree tests, in Proceed-
ings of the 3rd Annual Israel Symposium on Theory of Computing and Sys-
tems, Tel Aviv, Israel, 1995, pp. 190–198; corrected version available online at
http://theory.lcs.mit.edu/∼madhu/papers/friedl.ps.

[20] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-testing/
correcting for polynomials and for approximate functions, in Proceedings of the Twenty-
Third Annual ACM Symposium on Theory of Computing, ACM, New York, 1991, pp.
32–42.

802 TALI KAUFMAN AND DANA RON

[21] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning
and approximation, JACM, 45 (1998), pp. 653–750.

[22] O. Goldreich and D. Ron, A sublinear bipartite tester for bounded degree graphs, Combina-
torica, 19 (1999), pp. 335–373.

[23] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica, 32 (2002),
pp. 302–343.

[24] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost-linear length, in
Proceedings of the Forty-Third Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Los Alamitos, CA, 2002, pp. 13–22.

[25] C. S. Jutla, A. C. Patthak, A. Rudra, and D. Zuckerman, Testing low-degree polyno-
mials over prime fields, in Proceedings of the Forty-Fifth Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2004, pp.
423–432.

[26] T. Kaufman, M. Krivelevich, and D. Ron, Tight bounds for testing bipartiteness in general
graphs, SIAM J. Comput., 33 (2004), pp. 1441–1483.

[27] T. Kaufman and S. Litsyn, Almost orthogonal linear codes are locally testable, in Proceedings
of the Forty-Sixth Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Los Alamitos, CA, 2005, pp. 317–326.

[28] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North–
Holland, Amsterdam, 1977.

[29] A. Polishchuk and D. Spielman, Nearly-linear size holographic proofs, in Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, ACM, New York, 1994,
pp. 194–203.

[30] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[31] A. Shpilka and A. Wigderson, Derandomizing homomorphism testing in general groups, in
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, ACM,
New York, 2004, pp. 427–435.

[32] M. Sudan, Efficient Checking of Polynomials and Proofs and the Hardness of Approximation
Problems, Lecture Notes in Comput. Sci. 1001, Springer-Verlag, Berlin, 1996.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 803–814

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA
WITH A STRONG FAIRNESS ACCEPTANCE CONDITION∗

SHMUEL SAFRA†

Abstract. In [S. Safra, Proceedings of the 29th IEEE Symposium on Foundations of Com-
puter Science, 1988, pp. 319–327] an exponential determinization procedure for Büchi automata was
shown, yielding tight bounds for decision procedures of some logics (see [A. E. Emerson and C. Jutla,
Proceedings of the 29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 328–337;
Safra (1988); S. Safra and M. Y. Vardi, Proceedings of the 21st ACM Symposium on Theory of
Computing, 1989, pp. 127–137; and D. Kozen and J. Tiuryn, Logics of program, in Handbook of
Theoretical Computer Science, Elsevier, Amsterdam, 1990, pp. 789–840]). In Safra and Vardi (1989)
the complexity of determinization and complementation of ω-automata was further investigated,
leaving as an open question the complexity of the determinization of a single class of ω-automata.
For this class of ω-automata with strong fairness as an acceptance condition (Streett automata), Safra
and Vardi (1989) managed to show an exponential complementation procedure; however, the blow-up
of translating these automata—to any of the classes known to admit exponential determinization—
is inherently exponential. This might suggest that the blow-up of the determinization of Streett
automata is inherently doubly exponential. This paper shows an exponential determinization con-
struction for Streett automata. In fact, the complexity of our construction is roughly the same as
the complexity achieved in Safra (1988) for Büchi automata. Moreover, a simple observation extends
this upper bound to the complementation problem. Since any ω-automaton that admits exponential
determinization can be easily converted into a Streett automaton, we have obtained a single proce-
dure that can be used for all of these conversions. Furthermore, this construction is optimal (up to a
constant factor in the exponent) for all of these conversions. Our results imply that Streett automata
(with strong fairness as an acceptance condition) can be used instead of Büchi automata (with the
weaker acceptance condition) without any loss of efficiency.

Key words. ω-automata, verification, reactive systems

AMS subject classification. 68Q45

DOI. 10.1137/S0097539798332518

1. Introduction. Finite automata on infinite words (ω-automata), despite their
seemingly fantastic definition, have quite an earthly role in the formal analysis of on-
going (reactive) systems. A reactive system is one whose goal is to continuously
interact with its environment, as opposed to computing a function on an input and
terminating. Take, for example, a file editor; it is not computing a function of a
preset input, and its execution should not terminate, unless the environment so insists.
(Other examples of such systems are control programs of a robot or an unmanned
spacecraft.) Suppose one would like to make sure that a reactive system functions
properly. For systems that compute functions, we need to verify that the system
always terminates and computes the correct value of the function; what would be the
reactive system’s equivalent?

First, one needs to make sure that every reaction produced by the system is proper
(safety), and second, that every anticipated reaction is eventually produced (liveness).
In our file editor example, once an editor command is given, it must eventually be

∗Received by the editors January 6, 1998; accepted for publication (in revised form) February 4,
2004; published electronically November 3, 2006. Part of this work was carried out while the author
was at MIT and was supported in part by a Weizmann fellowship and NSF grant CCR-8912586. Part
of this work was also carried out while the author was at IBM Almaden and Stanford University.

http://www.siam.org/journals/sicomp/36-3/33251.html
†Computer Science Department, Tel-Aviv University, 69978 Tel Aviv, Israel (safra@math.tau.ac.

il).

803

804 SHMUEL SAFRA

carried out. This demonstrates the notion usually referred to as weak fairness:
• Weak fairness: Any continuously enabled action is eventually carried out.

Now suppose we are working on a paper1 on an operating system that can run
several file editors concurrently, but there is only one display on which we can see
how the paper will look once printed. So, every now and then, while we continue to
work on the paper, we try to display it, but each time there is someone else’s paper
already on display. The system might be “weakly fair” and yet not display the paper,
since this action is not continuously enabled. Still, some might find it unfair if they
try again and again to display their file but never get the chance. This demonstrates
the stronger notion of fairness usually referred to as strong fairness:

• Strong fairness: Any action that is repeatedly enabled is eventually carried
out.

Notice a problem here; suppose some action is enabled every now and then, and
the computation ends without the action having been carried out. Just by observing
a finite computation, how can one distinguish between the two cases (a) the system
is not strongly fair, and (b) the system is slow and whoever wanted the action taken
eventually gave up. (Decided to print the paper?)

Our solution is to interpret reactive systems over infinite computations; it does
not mean we actually run infinite computations,2 rather that we analyze the fairness
of the system on infinite computations. On such computations we can distinguish
between the case of a slow system and an unfair one, using algorithms that run in
finite time. The two fairness conditions above look as follows:

• Weak fairness: A computation is unfair if there is an action that is enabled
continuously from some point on but is carried out only finitely many times.

• Strong fairness: A computation is unfair if there is an action that is enabled
infinitely often but is carried out only finitely many times.

Therefore, our computations are infinite objects (an infinite sequence for linear
time, and an infinite tree for branching time), and the formal meaning (semantics) of
a system is the set of computations it may produce. The specification of the system
is given in some specification language (logic) over these infinite objects. In order
to verify that the system functions properly, we check that the set of computations
produced by the system is a subset of the computations that meet the specification.

For a complete exposition of the above subjects and related ones, the reader is
referred to [HP85, Fra86, MP91].

Finite memory systems. We now restrict our attention to systems that can be
described as finite-state machines (at least for the purpose of the formal analysis). It
turns out that any reasonable logic for specification in the finite-state case describes a
set of computations acceptable by a finite automaton over infinite objects (described
below). Moreover, the most efficient decision procedures for these logics are usually
obtained by translating a formula in the logic to an automaton and checking emptiness
of the language this automaton accepts [VW86]. The most efficient procedures for
the problem of model checking (checking that a program meets some specification)
are also usually obtained using automata. A finite-state program can be viewed as
a finite-state machine, and in order to check that it meets some specification, it is
enough to check the containment of the language accepted by this finite-state machine
in the language accepted by the specification automaton [VW86a].

1at the latest possible time to meet the deadline, quite naturally.
2if anyone has doubts.

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA 805

There are two basic automata conversions that come up in these procedures:
complementation and determinization.

This type of procedure was first suggested by Büchi [Büc62] in his original paper
introducing ω-automata, in order to show that the validity of S1S (the monadic second
order theory of one successor) is decidable. Büchi showed that ω-automata are closed
under complementation; however, the blow-up of the complementation procedure he
suggested is doubly exponential. McNaughton [McN66] showed that ω-automata can
be determinized (into a deterministic automaton with a stronger acceptance condi-
tion than the one Büchi suggested). The blow-up of his determinization construction,
however, is also doubly exponential. Rabin introduced tree automata and used Mc-
Naughton’s result to show that these automata are closed under complementation. He
could then give a decision procedure for a stronger logic—S2S (the monadic second
order theory of many successors).

The decision of these logics is known to be nonelementary [Mey75], and thus there
is no hope of achieving a reasonable complexity. However, when considering simpler
logics and attempting to obtain more efficient procedures, the blow-up of the above
constructions was prohibitive.

Sistla, Vardi, and Wolper [SVW87] showed an exponential complementation pro-
cedure for Büchi automata and utilized this result to obtain tight bounds for various
logics. The exponential determinization of Büchi automata [Saf88], which also im-
proves on [SVW87], was used [EJ88] to show a tight bound for the complexity of the
decision procedure of various logics, which allow quantification over time-paths and
thus require translation to tree automata (e.g., CTL*, Δ-PDL, μ-calculus, etc.). An
exponential complementation for Streett automata was shown [SV89] and was utilized
so as to improve the upper bound for the decision of linear-time logics that are trans-
latable more efficiently to automata with strong fairness as an acceptance condition.

Finite automata over infinite objects. Automata on infinite words (ω-auto-
mata) are the same as automata on finite words except that, since a run over a word
does not have a final state, the acceptance condition is on the set of states visited
infinitely often in the run. The simplest acceptance condition was suggested by Büchi
[Büc62], in which some of the states are designated as accepting, and a run is accepting
if it visits infinitely many times the accepting set of states.

Muller [Mul63] suggested deterministic ω-automata, with a different acceptance
condition, as a means of describing the behavior of nonstabilizing circuits. The accep-
tance condition he suggested is to specify explicitly all the “good” infinity sets (the
infinity set of a run ξ is the set of states that occur infinitely many times in ξ). A
run is accepting if its infinity set is one of the designated accepting sets. When we
consider acceptance conditions based on the infinity set, this is obviously the most
expressive condition.

A Rabin acceptance condition is, syntactically, a set of pairs of subsets of the
states, {(Li, Ui)}i. A run ξ is accepting if, for one of the pairs i, ξ visits infinitely
many times some states in Li (the “good” states), and only finitely often the states
in Ui (the “bad” states).

Streett [Str82] suggested the complementary condition to Rabin’s condition, which
is syntactically the same: a set of pairs of subsets of the states. A run ξ is accepting
according to Streett’s condition if, for all pairs i, if the run visits infinitely many
times Li it also visits infinitely many times Ui.

We may write Rabin’s condition as
∨

i Li∧¬Ui and Streett’s condition as
∧

i Li →
Ui. Streett’s condition corresponds to strong fairness (as defined above) since for each

806 SHMUEL SAFRA

event e the acceptance condition could contain a pair 〈Li, Ui〉, in which Li is the set
of states in which e is enabled and Ui is the set of states in which e is taken (weak
fairness can be expressed by Büchi automata).

Previous best results on determinization and complementation. In
[Saf88, SV89, Kla91] the complexities of determinization and complementation of
different classes of ω-automata were studied, and they were solved in full except for
the complexity of determinization of Streett automata. An exponential complementa-
tion procedure was shown for Streett automata in [SV89] and with a better exponent
in [Kla91]. It was shown [SV89] that the blow-up of the translation of Streett au-
tomata to any of the classes of ω-automata that were known to admit exponential
determinization is inherently exponential.

Our results. Our main result (Theorem 1) is a new determinization construc-
tion for Streett automata. Given a Streett automaton with n state and h accepting
pairs, we construct a deterministic Rabin automaton with 2O(nh lognh) states and
nh accepting pairs. Using the small number of accepting pairs in the determinized
Rabin automaton, and a simple complementation construction for deterministic Ra-
bin automata, which is exponential only in the number of accepting pairs (Lemma 3),
we show that nondeterministic Streett automata can be converted into determinis-
tic Streett automata with the same (exponential) blow-up (Corollary 4). Since the
same deterministic automaton interpreted as a Streett or Rabin automaton accepts
two complementary languages, this implies that Streett automata can be simultane-
ously complemented and determinized (codeterminized) into both Streett or Rabin
automata with only an exponential blow-up.

The exact complexity of the complementation procedures obtained in this way
matches the complexity of the complementation procedure of [Kla91].

The results reported herein were first published as an extended abstract [Saf92].
It is worthwhile noting that an independent work reported in [Wa93] may share some
of these methods in a somewhat different setting.

2. Basic definitions. An ω-automaton over an alphabet Σ, A = 〈Σ, Q, q0, δ, C〉,
consists of a finite set of states Q, an initial state q0 ∈ Q, a transition relation
δ : Q × Σ → 2Q, and an acceptance condition C. We extend δ to sets of states
and sequences of letters in the usual way.

A sequence of states, ξ ∈ Qω, is an A-run over a word σ ∈ Σω if ξ0 = q0 and, for
every i, ξi+1 is a σi successor of ξi, i.e., ξi+1 ∈ δ(ξi, σi).

The infinity set of a sequence of letters (or states) σ, inf(σ), is the set of letters
that appear infinitely many times in σ (i.e., inf(σ) = {a s.t. |{i s.t. σi = a}| = ∞}).

An infinite word σ ∈ Σω is accepted by an automaton A if there exists an accepting
A-run over σ. The language accepted by an automaton is the set of all words accepted
by it.

An automaton is deterministic if for all a ∈ Σ, q ∈ Q, |δ(q, a)| = 1, i.e., δ is a
function into Q. Obviously, any word has exactly one run in a deterministic automa-
ton.

We define classes of automata corresponding to the different acceptance condi-
tions. We write N for nondeterministic and D for deterministic, and B, M, R, S for
Büchi, Muller, Rabin, and Streett, respectively.

The acceptance conditions are summarized in the following table:

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA 807

Syntax Semantics
B F ⊆ Q inf(ξ) ∩ F �= φ

M F ⊆ 2Q inf(ξ) ∈ F
R

∨
i Li ∧ ¬Ui ∃i : inf(ξ) ∩ Li �= φ ∧

inf(ξ) ∩ Ui = φ
S

∧
i Li → Ui ∀i : inf(ξ) ∩ Li �= φ →

inf(ξ) ∩ Ui �= φ

Concerning the size of an automaton, we denote both the number of states and
the size of the acceptance condition (except for Büchi automata, where the accep-
tance condition may be neglected). For example, our main result can be written as
NS(n, h) → DR(2O(nh log(nh)), nh).

3. Determinization of NS.
Theorem 1. NS(n, h) → DR(2O(nh lognh), nh); i.e., for any NS automaton A =

〈Σ, Q, q0, δ,
∧

0<i≤h Li → Ui〉 with n states and h acceptance pairs, there exists an

equivalent DR automaton D = 〈Σ, Q̃, q̃0, δ̃,
∨

0<i≤nh Gi ∧ ¬Bi〉, with 2O(nh log(nh))

states and nh acceptance pairs.

Proof of Theorem 1. Throughout this proof we denote by H the set of indexes
[1..h].

Intuition. It is easier to look at the deterministic Rabin automaton D as a program
with bounded memory and some infinitary acceptance condition. This program reads
the input one letter at a time and changes its memory accordingly. The corresponding
finite ω-automaton has a different state for each of the possible states of the program’s
memory. The infinite string is accepted if the set of memory states visited infinitely
often satisfies the acceptance condition. We now describe D informally.

An accepting A-run ξ has a witness set J ⊆ H for which ξ visits infinitely many
times each Uj for j ∈ J and only finitely many time any Lj for j /∈ J .

Given a witness set J , one can construct a small nondeterministic Büchi automa-
ton that accepts all strings for which there is an accepting run ξ with witness set J .
This automaton consists of two parts; the first one is a copy of A (without the ac-
ceptance condition). Each run at each point can nondeterministically guess that no
state in any of the sets Lj , for j /∈ J , will be visited from now on, and choose to move
to the second part. The second part consists of |J | + 1 copies of A, in which the run
can move to the next copy only after visiting the set Uj corresponding to the current
copy. A run is accepting if it cycles infinitely through all the copies. All states q ∈ Lj

for j /∈ J are removed from all the copies of A in the second part. Hence an accepting
run visits only finitely many times copies of q ∈ Lj for j /∈ J , and infinitely many
times copies of q ∈ Uj for each j ∈ J .

This automaton can be determinized with only an exponential blow-up [Saf88].
However, since the number of possible witness sets is exponential, a construction of
an automaton that deterministically considers all the witness sets results in a doubly
exponential blow-up.

The determinization construction suggested here may be viewed as a deterministic
dynamic process that at each point in time considers only a polynomial number of
witness sets.

The deterministic automaton D, while maintaining the subset of A-states reached
by reading the prefix of the input, starts by assuming that the witness set of the
accepting run (if one exists) is H, i.e., D tries, during each run, to cycle through all
the Uj ’s. Whenever a run is waiting to visit some Uj1 , D, assuming (the worst) that
the run will never again visit Uj1 , spawns off a parallel construction, with possibly a

808 SHMUEL SAFRA

smaller subset of the A-states, and with the witness set J ′ = J \ {j1} (disallowing
any state q ∈ Lj1 in the subprocess). Any run that eventually visits Uj1 is advanced
to the next index. In the subprocess, if again a run is waiting for Uj2 , D branches
off recursively with a smaller witness set. An important observation is that, for each
such parallel process and for each state that appears in the subset maintained by the
process, one needs to consider only one index—the most advanced one; hence the
subset of the A-states maintained by the process is partitioned among the different
indexes. In the good case, in which eventually all A-states have runs that completed
a cycle, all the subprocesses are killed and the process is restarted. If any of these
processes is restarted infinitely many times, D accepts.

However, suppose that some runs completed a cycle, but some other runs are
stuck waiting for some Uj1 . The latter runs prevent the former runs from restarting
the process. Therefore, for all runs that completed a cycle through Uj for every
j ∈ J , D spawns off a parallel process with a smaller set of A-states (this is similar
to the determinization construction of [Saf88]). In addition (again following [Saf88])
D maintains an order among the subprocesses according to which subprocess was
spawned first. Whenever a state appears in more than one subprocess (with the same
index; otherwise, as mentioned above, the more advanced index takes priority) it is
removed from all but the one spawned first.

Since for each state in each process one needs to consider only one Uj it is wait-
ing for, the number of witness sets we need to try in parallel at any given time is
polynomial.

We now return to the formal proof of Theorem 1. We start with some definitions
we need for the construction of the set Q̃ of states of D.

Let V = [1..2nh] be the set of names (these are used by D to preserve the identity
of different parallel applications of some basic construction).

For S ⊆ Q, let an S-atom be 〈v, S〉, where v ∈ V .
For S ⊆ Q and J ⊆ H, we give a recursive definition of an (S, J)-decomposition:
1. An S-atom is an (S, J)-decomposition.
2. Let v ∈ V .

Let S1, . . . , Sl be a partition of S (i.e.,
⋃

i Si = S and for any i 	= j ∈ [1..l],
Si ∩ Sj = φ).
Let j1, . . . , jl ∈ J∪{0}, where at least one of the j’s is nonzero. Denote by Ji,
for each i ∈ [1..l], the set J \ {ji}.
Let Π1, . . . ,Πl be such that for each i ∈ [1..l], Πi is an (Si, Ji)-decomposition.
Then 〈v, (Π1, j1), . . . , (Πl, jl)〉 is an (S, J)-decomposition.

For an (S, J)-decomposition we refer to the decompositions used in the recursion of
this definition as subdecompositions.

An (S, J)-decomposition has a good name if the names assigned to each of the
subdecompositions are all different. We consider, from now on, only decompositions
with a good name.

Note that the recursion in the definition of an (S, J)-decomposition is finite, since
not all the indexes j can be 0, and thus either the set of states S or the set of indexes J
decreases each level down the recursion.

We can even give a more specific bound on the size and number of decompositions,
as follows.

Lemma 2. The number of subdecompositions in an (S,H)-decomposition (S ⊆ Q)
is at most nh, and the total number of (S,H)-decompositions (S ⊆ Q) is at most
2O(nh log(nh)).

Proof. For an (S, J)-decomposition Π we say that a pair (q, j), for q ∈ Q, j ∈ H, is

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA 809

special for a (S′, J ′)-subdecomposition Π′ of Π if the following three conditions hold:
• q ∈ S′;
• the index set of the immediate subdecomposition of Π′ that contains q is a

strict subset of J ′ (i.e., this subdecomposition is not indexed by 0);
• if a subdecomposition has index set J ′′ 	= J ′ such that J ′ ⊆ J ′′, then j ∈ J ′′.

Now, each pair (q, j) is special for a subdecomposition, and each subdecomposi-
tion Π′ has a pair (q, j) which is special for it. Therefore, Π can be represented as a
partial function from the set of pairs (q, j) to the set of names V .

The construction of D.
The set of states. Q̃ is the set of all (S,H)-decompositions for a subset of the

states S ⊆ Q.
The initial state. q̃0 = 〈1, {q0}〉, i.e., the {q0}-atom with 1 (arbitrarily) as its

name.
The transition function. For each D-state q̃ ∈ Q̃ and a letter a ∈ Σ, δ̃(q̃, a) is the

result of applying the following sequence of operations to q̃:
1. Replace each atom 〈v, S〉 in q̃ by 〈v, δ(S, a)〉.

This results in some structure that may violate the requirement, in the defi-
nition of an (S, J)-decomposition above, that the sets S1, . . . , Sl be disjoint.
At the end of the following several steps, this requirement is restored.

2. For any nonatomic (S, J)-subdecomposition in q̃, let j1, . . . , jl be the indexes
as in the definition of a decomposition above, and let S′

1, . . . , S
′
l be its sets of

A-states after step 1. For each A-state q and i such that q ∈ S′
i,

• if q ∈ Lji , then remove q from S′
i and append to the list of subdecom-

positions an atom 〈v, {q}〉 with index j = max {J};
• otherwise, if q ∈ Uji , then append an atom 〈v, {q}〉 with index j =

max {(J ∪ {0}) ∩ {0, . . . , ji − 1}}.
In both cases v ∈ V is an unused name in q̃, and each new atom is assigned
a different name. This is possible since, by Lemma 2, only nh out of 2nh
names in V are used in q̃.
For atomic (S, J)-subdecompositions, we follow the same procedure, assuming
S is a one-item list with the maximal index in J as its index.

3. For a nonatomic subdecomposition in q̃ for which, after the previous steps,
an A-state q appears in a set S′

i with index j and a set S′
i′ with index j′ > j,

remove q from S′
i′ .

4. For a nonatomic subdecomposition in q̃ for which, after the previous steps,
an A-state q appears in a set S′

i and a set S′
i′ , where i′ > i, remove q from S′

i′ .
5. Remove any empty set from any list.
6. Replace any nonatomic (S, J)-subdecomposition whose name is v, in which

after the previous steps all indexes are 0, by an atom 〈v, S〉.
The acceptance condition. For each name v ∈ V , let Gv be the set of states q̃ in

which v is the name of an atom, and let Bv be the set of states q̃ in which v is not
used in the decomposition.

Correctness. L(D) ⊆ L(A): Given that there is a name v, which in the D-run ξ
over a word σ is used (in the decompositions ξi) continuously from some point on,
and is the name of an atom infinitely many times, we prove that there is an accepting
A-run over σ.

For two positions 0 ≤ l < k, we denote by σ[l, k) the finite word σl, . . . , σk−1.
Let l be the largest such that v is not used in the decomposition ξl, and let Si,

for i > l, be the set such that v is the name of an (Si, J)-subdecomposition of ξi. Let

810 SHMUEL SAFRA

l1 < l2 < · · · (where l1 > l) be the positions at which v is the name of an atom in ξlk .
By the construction, Sl1 ⊆ δ(q0, σ[1, l1)). The condition to make a subdecomposition
become an atom (step 6) and the conditions to create new subdecompositions and
maintain them (steps 2 and 1) ensure that for each q ∈ Slk+1

, for k > 0, there exists
some q′ ∈ Slk , as well as an A-run over σ[lk, lk+1) which leads from q′ to q while
visiting all Uj for j ∈ J and no Lj for j /∈ J .

Intending to use König’s lemma, we construct a tree whose nodes are all the pairs
of the form (q, k) for q ∈ Slk . As the parent of a node (q, k + 1) we pick one of the
pairs (q′, k) such that q′ ∈ Slk and there exists an A-run from q′ to q, as described
above. The root of the tree is (q0, 0).

By König’s lemma, since there are infinitely many pairs, and the number of pairs
at each level of the tree is bounded, there is an infinite path, (q0, 0), (q1, 1), . . . , in the
tree. By the construction of this tree, for each k > 0 there is an A-run, as described
above, from qk to qk+1, over σ[lk, lk+1). The infinite concatenation of these segments
gives an A-run over σ which visits each A-state in Uj for j ∈ J infinitely many times,
and visits any state in Lj for j /∈ J only at the first segment. This A-run is accepting.

L(A) ⊆ L(D): Given that, for a string σ, there is an accepting A-run, ξ, we prove
that there is a name v which in the D-run over σ is used continuously from some
point on and is the name of an atom infinitely many times.

Let l be the length of the finitary prefix of ξ; i.e., every state ξk for k > l appears

infinitely many times in ξ. Let the ith state q̃i of the D̃-run over σ be an (Si, H)-
decomposition; then it must be that ξi ∈ Si. Therefore, Si is never empty and its
name v1 remains fixed in all q̃i. If q̃i becomes an atom infinitely many times, we are
done. Otherwise, let i1 be the largest such that q̃i is an atom. For i > i1, as i increases,
the A-state ξi appears in subdecompositions with monotonically nonincreasing index,
and thus its index is eventually fixed. Thereafter, ξi can move only closer to the
beginning of the sequence of immediate subdecompositions. Hence, there is an i′1 such
that for all i > i′1, ξi appears in a subdecomposition with a fixed name v2. We can
now repeat the argument and show that if v2 is not a name of an atom infinitely many
times, then eventually the state of ξ appears one level down in the decomposition.
Since the depth of the decomposition is finite, there must be a subdecomposition
which becomes an atom infinitely many times.

This completes the proof of our main theorem.

4. Complementation of DR. In order to see how to codeterminize (construct
a deterministic automaton that accepts the complement) Streett automata, we need
the following lemma.3

Lemma 3. DS(n, h) → DR(n · 2h log h, h + 1); i.e., for any deterministic Streett
automaton with n states and h accepting pairs, there exists an equivalent deterministic
Rabin automaton with n · 2h log h states and h + 1 accepting pairs.

One should comment here that one can quite easily complement such automata
while leaving the set of states fixed, translating the acceptance condition from Rabin’s
to Streett’s. Such a translation, however, would incur an exponential blow-up in the
size of the acceptance condition. The above lemma is useful when applying it to the
main theorem, as the size of the acceptance condition remains polynomial in the size
of the original automaton, while the number of states becomes exponential.

Proof. We show an explicit construction, given a DS automaton, D = 〈Σ, Q, q0, δ,

3This lemma appears in [Saf88] but only in the journal version and is repeated here for the 21st
century reader.

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA 811

∧
1≤i≤h Li → Ui〉, of a DR automaton, D̃ = 〈Σ, Q̃, q̃0, δ̃,

∨
1≤i≤h+1 ¬L̃i ∧ Ũi〉.

Intuition. Again let us think of the automaton D̃ as a program with bounded
memory; the states of D̃ will be all possible data states that this program’s memory
can be in.

D̃ maintains, aside from the state D reaches after reading the prefix of the input,
a permutation of the set of indexes [1..h]. Whenever a state in some Uj is visited,
the index j is moved to the end of the permutation (if several are visited, all of their
indexes are moved to the end with no particular order). Hence, for every accepting
run, let J be its witness set and let i = h− |J |; then eventually the first i elements of
the permutation are fixed, and for each index j in the suffix of the permutation, Uj

is visited infinitely many times. The Rabin acceptance condition contains, for each
i ∈ [0..h], a pair in which the “bad” set contains all states in which some Lj for j in
the first i elements in the permutation is visited, and the “good” set contains all states
in which Uj is visited for j being the (i + 1)th element in the permutation.

We now give the formal proof of the lemma.
The construction. The states of D̃, Q̃ have the form of a tuple, (q, π, r, g), where

q ∈ Q, π is a permutation of [1..h], and r, g ∈ [1..h + 1]. The initial state q̃0 =
(q0, 〈1, . . . , h〉 , h + 1, h + 1).

Consider a state q̃ = (q, π, r, g), where π = 〈i1, . . . , ih〉. For a letter a ∈ Σ define

δ̃(q̃, a) to be the state q̃′ = (q′, π′, r′, g′) as follows:
• q′ = δ(q, a).
• g′ is the minimal index i such that q′ ∈ Uji , if it exists, and otherwise g′ =

h + 1.
• r′ is the minimal index i such that q′ ∈ Lji , if it exists, and otherwise r′ =
h + 1.

• π′ = 〈j1, . . . , jg′−1, jg′+1, . . . , jh, jg′〉 if g′ ≤ h; otherwise, π′ = π.

For i, 1 ≤ i ≤ h + 1, L̃i consists of all the states q̃ in which r < i, and Ũi consists of
all the states q̃ in which g = i.

Note that after reading a finite prefix of the input, there is a part to the left of π
which is fixed from then on, and that contains all the indexes j such that Uj is visited
only finitely many times. If that prefix is of length i, then from then on g > i.

L(D̃) ⊆ L(D): Assume that for some i, r ≥ i from some point on, and g = i
infinitely many times. Since g = i infinitely many times, for every j, if Uj is visited
only finitely many times, eventually j is placed in π with an index smaller than i
(j = jk for k < i), and by the construction, from then on, Lj is never visited.

L(D) ⊆ L(D̃): Assume there is an accepting D-run; then there exists a maximal
set J ⊆ [1..h] such that for k ∈ J , Ujk is visited infinitely many times, and for k /∈ J ,
neither Ljk nor Ujk is visited from some point on. There exists a further point, after
which [1..h] \ J occupies the leftmost positions in π, and none of its indexes changes
its place. Let i = h − |J |. Obviously, r ≥ j beyond this point. We claim that g = i
infinitely many times. At any point, let ji = k. Since the run visits Uk infinitely
many times, on the next visit to Uk, g will be i.

Complexity. The number of states is n ·h! · (h+1)2 < n · 2h log h (for h > 5).
Since in their deterministic versions the same automaton interpreted as a Rabin

automaton and as a Streett automaton accept two complementary languages, we can
conclude the following.

Corollary 4. NS(n, h) → DR(2O(nh log(nh)), nh + 1).
Hence, NS can be translated to DS with this complexity.

812 SHMUEL SAFRA

5. Complementation of Streett tree automata. Rabin [Rab69, Rab70] in-
troduced automata on infinite trees. The input of such an automaton is an infi-
nite binary tree, whose nodes are labeled by letters from some finite alphabet Σ,
T : {0, 1}∗ → Σ. A Σ-tree automaton, T = 〈Σ, Q, q0, δ, C〉, is similar to an ω-
automaton except that the transition function specifies, for a state q ∈ Q and a
letter a ∈ Σ, a set of pairs of states containing both a left successor state ql and a
right successor state qr (i.e., δ : Q×Σ → 2Q×Q). A T -run is a Q-tree, Γ: {0, 1}∗ → Q,
in which the root node is q0, and all the nodes satisfy δ, i.e., for each node p ∈ {0, 1}∗,
(Γ(p0),Γ(p1)) ∈ δ(Γ(p), T (p)). The acceptance condition C is any ω-condition, such
as those of Büchi, Rabin, Muller, or Streett. A T -run Γ is defined to be accepting if
the infinity set of every infinite path in Γ satisfies C.

Given a tree automaton A, the complementary tree automaton Ā may be viewed
as supplying a proof, given some input tree, that every nondeterministic A-run has
a path that does not satisfy A’s acceptance condition. Following the procedure of
Gurevich and Harrington [GH82] the proof is supplied by a finite memory strategy. A
finite memory strategy is one that can be represented by a set of finite tables, for each
node in the tree, giving for each state and some finite information about the history
of the run so far either a left direction or a right direction. Such a strategy serves as
a proof that the input tree is not accepted by A if, for any choice of nondeterministic
moves, and following the direction the strategy supplies for each move, the resulting
infinite sequence of states is not accepted according to A’s acceptance condition.

Using the techniques of [EJ91] it can be shown [Jutla] that the complement of a
Streett tree automaton has a memoryless strategy; i.e., Ā, for each node in the input
tree, needs to guess a table showing for each state (i.e., no information at all on the
history of the run) the direction to go for a nonaccepting path. Using the exponential
determinization for Streett automata shown here this implies an exponential comple-
mentation procedure for Streett tree automata. A different proof for this theorem
appeared first in [Kla92].

Discussion. This paper showed that ω-automata with a strong fairness accep-
tance condition can replace Büchi automata in all applications without loss of effi-
ciency. This should have further applications than those shown here, in the formal
analysis of finite-state systems, and, in general, for a better understanding of the
notion of fairness.

The main result of this paper has applications with regards to the complementa-
tion of tree automata: Streett tree automata were shown to have exponential com-
plementation construction [Kla92]; the results reported herein imply a simple such
exponential complementation procedure for these automata. The main open problem
left in this area is the complexity of complementation of Rabin tree automata; is it
doubly exponential, or can one show an upper bound similar to the one for Streett
tree automata?

Acknowledgments. I would like to thank Moshe Vardi and Amir Pnueli for
many most insightful discussions on this problem, and the unnamed referees for most
constructive comments.

REFERENCES

[BL69] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite-state strate-
gies, Trans. Amer. Math. Soc., 138 (1969), pp. 295–311.

EXPONENTIAL DETERMINIZATION FOR ω-AUTOMATA 813

[Büc62] J. R. Büchi, On a decision method in restricted second order arithmetics, in Proceedings
of the International Congr. on Logic, Method. and Phil. of Sci., 1960, E. Nagel et al.,
eds., Stanford University Press, Stanford, CA, 1962, pp. 1–12.

[EJ88] A. E. Emerson and C. Jutla, The complexity of tree automata and logics of programs,
in Proceedings of the 29th IEEE Symposium on Foundations of Computer Science,
1988, pp. 328–337.

[EJ91] A. E. Emerson and C. Jutla, Tree automata mu-calculus and determinacy, in Pro-
ceedings of the 32nd IEEE Symposium on Foundations of Computer Science, 1991,
pp. 368–377.

[ES84] A. E. Emerson and P. A. Sistla, Deciding full branching time logic, Inform. and
Control, 61 (1984), pp. 175–201.

[Fra86] N. Francez, Fairness, Springer-Verlag, New York, 1986.
[GH82] Y. Gurevich and L. Harrington, Trees, automata, and games, in Proceedings of the

14th ACM Symposium on Theory of Computing, 1982, pp. 60–65.
[HP85] D. Harel and A. Pnueli, On the development of reactive systems, in Logics and Models

of Concurrent Systems, K. R. Apt, ed., Springer, Berlin, 1985, pp. 477–498.
[Jutla] C. Jutla, personal communication.
[Kla91] N. Klarlund, Progress measures for complementation of ω-automata with application

to temporal logic, in Proceedings of the 32nd IEEE Symposium on Foundations of
Computer Science, 1991, pp. 358–367.

[Kla92] N. Klarlund, Progress measures, immediate determinacy, and a subset construction for
tree automata, in Proceedings of the 7th IEEE Symposium on Logic in Computer
Science, 1992, pp. 382–393.

[KT90] D. Kozen and J. Tiuryn, Logics of programs, in Handbook of Theoretical Computer
Science, Vol. B, J. Van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 789–840.

[MP91] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer, New York, 1991.

[McN66] R. McNaughton, Testing and generating infinite sequences by a finite automaton, In-
form. and Control, 9 (1966), pp. 521–530.

[Mey75] A. R. Meyer, Weak monadic second order theory of successor is not elementary recur-
sive, in Proceedings of the Boston University Logic Colloquium, 1973, Lecture Notes
in Math. 453, Springer, Berlin, 1975, pp. 132–154.

[Mul63] D. E. Muller, Infinite sequences and finite machines, in Proceedings of the 4th IEEE
Symposium on Switching Circuit Theory and Logical Design, 1963, pp. 3–16.

[Pec86] J. P. Pecuchet, On the complementation of Büchi automata, Theoret. Comput. Sci.,
47 (1986), pp. 95–98.

[Rab69] M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans.
Amer. Math. Soc., 141 (1969), pp. 1–35.

[Rab70] M. O. Rabin, Weakly definable relations and special automata, in Proceedings of the
Symposium on Mathematical Logic and Foundation of Set Theory, Y. Bar-Hillel,
ed., North-Holland, Amsterdam, 1970, pp. 1–23.

[Saf88] S. Safra, On the complexity of ω-automata, in Proceedings of the 29th IEEE Symposium
on Foundations of Computer Science, 1988, pp. 319–327. An extended version to
appear in J. Comput. System Sci.

[Saf92] S. Safra, Exponential determinization for ω-automata with strong-fairness acceptance
condition (extended abstract), in Proceedings of the 24th ACM Symposium on The-
ory of Computing, 1992, pp. 275–282.

[SV89] S. Safra and M. Y. Vardi, On ω-automata and temporal logic, in Proceedings of the
21st ACM Symposium on Theory of Computing, 1989, pp. 127–137.

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper, The complementation problem for Büchi
automata with application to temporal logic, Theoret. Comput. Sci., 49 (1987),
pp. 217–237.

[Str82] R. S. Streett, Propositional dynamic logic of looping and converse is elementary de-
cidable, Inform. and Control, 54 (1982), pp. 121–141.

[Var85] M. Y. Vardi, Automatic verification of probabilistic concurrent finite-state programs,
in Proceedings of the 26th IEEE Symposium on Foundations of Computer Science,
1985, pp. 327–338.

[VS85] M. Y. Vardi and L. Stockmeyer, Improved upper and lower bounds for modal logics
of program, in Proceedings of the 17th ACM Symposium on Theory of Computing,
1985, pp. 240–251.

[VW86] M. Y. Vardi and P. Wolper, Automata theoretic techniques for modal logics of pro-
grams, J. Comput. System Sci., 32 (1986), pp. 183–221.

814 SHMUEL SAFRA

[VW86a] M. Y. Vardi and P. Wolper, An automata-theoretic approach to automatic program
verification, in Proceedings of the 1st IEEE Symposium on Logic in Computer Sci-
ence, 1986, pp. 332–344.

[Wa93] I. Walukiewicz, A complete deductive system for the μ-calculus, in Proceedings of the
8th IEEE Symposium on Logic in Computer Science, 1993, pp. 136–147.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 815–834

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE∗

PANKAJ K. AGARWAL† , MARK OVERMARS‡ , AND MICHA SHARIR§

Abstract. Let S be a set of n points in R
2. Given an integer 1 ≤ k ≤ n, we wish to find a

maximally separated subset I ⊆ S of size k; this is a subset for which the minimum among the
(k
2

)

pairwise distances between its points is as large as possible. The decision problem associated with
this problem is to determine whether there exists I ⊆ S, |I| = k, so that all

(k
2

)
pairwise distances

in I are at least 2. This problem can also be formulated in terms of disk-intersection graphs: Let
D be the set of unit disks centered at the points of S. The disk-intersection graph G of D has as
edges all pairs of disks with nonempty intersection. Any set I with the above properties is then the
set of centers of disks that form an independent set in the graph G. This problem is known to be
NP-complete if k is part of the input. In this paper we first present a linear-time ε-approximation
algorithm for any constant k. Next we give exact algorithms for the cases k = 3 and k = 4 that run in

time O(n4/3polylog(n)). We also present a simpler nO(
√
k)-time exact algorithm (as compared with

the recent algorithm in [J. Alber and J. Fiala, J. Algorithms, 52 (2004), pp. 134–151]) for arbitrary
values of k.

Key words. disk-intersection graphs, independent set, geometric optimization

AMS subject classifications. 68Q25, 68U05, 68W25

DOI. 10.1137/S0097539704446591

1. Introduction. Let S be a set of n points in the plane. We are interested in
finding a small subset I of S such that all the pairwise distances between points in I
are large. To be more precise, let I be a subset of S of cardinality k, for 1 ≤ k ≤ n.
We define the separation distance dsep(I) to be the minimum among the

(
k
2

)
pairwise

distances between its k points. We call I δ-separated if dsep(I) ≥ δ. We call I a
maximally separated subset of S if dsep(I) ≥ dsep(I ′) for all subsets I ′ ⊆ S of size k.
Let dksep(S) = maxI⊆S, |I|=k dsep(I).

In this paper we study algorithms for computing such maximally separated sub-
sets. We consider small (constant) values of k, but we also address the general case.
For the case k = 2 the problem is equivalent to finding a diametral pair of S and thus
can be solved (exactly) in O(n log n) time [10], and can be ε-approximated in linear
time (see, e.g., [1]). For larger k, the problem becomes considerably more complicated,
and is known to be NP-complete if k is part of the input [9].

∗Received by the editors November 29, 2004; accepted for publication (in revised form) April 6,
2006; published electronically November 3, 2006. The work of P.A. and M.S. was supported by a
grant from the U.S.-Israeli Binational Science Foundation. Work by P.A. was also supported by
NSF under grants CCR-00-86013, EIA-98-70724, EIA-99-72879, EIA-01-31905, and CCR-02-04118.
Work by M.S. was also supported by NSF grants CCR-97-32101 and CCR-00-98246, by a grant from
the Israel Science Fund (for a Center of Excellence in Geometric Computing), and by the Hermann
Minkowski–MINERVA Center for Geometry at Tel Aviv University. Part of the research was done
during the 2003 Bellairs Workshop on Computational Geometry, organized by Godfried Toussaint,
and the 2003 Dagstuhl Workshop on Computational Geometry. A preliminary version of this paper
has appeared in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
New Orleans, 2004, pp. 509–518.

http://www.siam.org/journals/sicomp/36-3/44659.html
†Department of Computer Science, Duke University, Durham, NC 27708-0129 (pankaj@cs.duke.

edu).
‡Department of Computer Science, Utrecht University, Utrecht, The Netherlands (markov@

cs.uu.nl).
§School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute

of Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il).

815

816 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

Finding small well-separated subsets is important in certain pattern-matching
problems, where the points in the subset form a representation of the total set of
points. For example, Vleugels and Veltkamp [23] describe a method for fast indexing
of multimedia databases using so-called vantage objects. These vantage objects are
points in the feature space for the matching problem. It has been observed that, for
the application at hand, the chosen vantage objects best be well-separated.

The decision problem associated with the problem of computing a maximally
separated subset of size k calls for determining whether a δ-separated subset I of
size k exists for a given δ > 0. This problem can also be formulated in terms of disk-
intersection graphs: Let D be the set of disks of radius δ/2 centered at the points of S.
The disk-intersection graph G of D has the disks as nodes and two disks are connected
by an edge if they intersect. Clearly, a δ-separated subset I is the set of centers of
an independent set in G (and vice versa). So the decision problem is equivalent to
the problem of finding an independent set of size k in the disk-intersection graph G.
Recently, the problem of computing the maximum independent set in intersection
graphs has attracted considerable attention because of its application in geographic
information systems (GIS); see [2, 11, 12] and references therein.

Related work. The problem of computing an independent set in a graph is one of
the earliest problems known to be NP-complete [13]. In fact, for a general graph with n
vertices, there cannot be a polynomial-time algorithm with approximation ratio better
than n1−ε, for any ε > 0, unless NP = ZPP [15]. The best known polynomial-time
algorithm finds an independent set of size Ω((κ log2 n)/n), where κ is the size of the
maximum independent set in the graph [6]. However, better approximation algorithms
are known for intersection graphs of geometric objects. The maximum independent
set in the intersection graph of intervals on a line can be computed in polynomial
time, but the problem remains NP-complete for intersection graphs of orthogonal
segments, unit disks, and unit squares [9]. Still, ε-approximation algorithms have
been proposed for intersection graphs of unit disks, unit squares, arbitrary disks, and
fat objects [7, 9, 11, 17, 19, 20, 22], and an O(log n)-approximation algorithm is known
for intersection graphs of rectangles [2].

Little is known about computing maximally separated sets. Formann and Wag-
ner [12] developed a 2-approximation algorithm under the L∞-metric. Alber and

Fiala [5] present an algorithm that computes, in time nO(
√
k), an independent set of

cardinality k in the intersection graph of a set of disks. Their algorithm, however, is
rather complicated, and they do not consider cases involving small values of k. More-
over, since they compute all pairwise distances between input points, their algorithm
takes Ω(n2) time even for small values of k.

Our results. In this paper we consider both the general problem and special
instances of it that involve small values of k, and develop exact and approximation
algorithms for these problems. The paper contains four main results:

(i) For any constant k, we present in Section 2 a simple, linear-time algorithm
that returns a subset I of size k such that dsep(I) ≥ (1 − ε)dksep(S). Such
an approximation algorithm is suitable for the pattern-matching application
mentioned above.

(ii, iii) We present in Sections 3 and 4 O(n4/3polylog(n))-time algorithms for com-
puting (exactly) maximally separated subsets of size 3 and 4, respectively.

(iv) We also present, in Section 5, a simpler nO(
√
k)-time exact algorithm (as

compared with the algorithm in [5]) for arbitrary values of k.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 817

2. An ε-approximation algorithm. In this section we show that, for any
constant k and for any constant 0 < ε < 1, we can find in linear time a subset I of S
of cardinality k such that dsep(I) ≥ (1 − ε)dksep(S). The running time is exponential
in k. We refer to such an I as an ε-approximation of the optimal solution.

As a warm-up exercise let us consider the case k = 2. We want to find an ε-
approximation of the diameter of the set S in linear time. This is an already solved
problem (see, e.g., [1]), but we sketch a solution (a) for the sake of completeness, and
(b) to prepare for tackling the general case k ≥ 3.

Let B be the axis-parallel bounding box of S. Let w be the width of B and h
its height, and let us assume, without loss of generality, that w ≥ h. Clearly, the
diameter d lies between w and

√
2w. Choose δ = εw/2

√
2 and divide the box B into

O
(
1/ε2

)
squares of size δ× δ. In each nonempty square τ we pick a single point from

τ ∩ S and retain only the highest and lowest point in each row or column of the grid.
So we end up with a subset S′ of S with O(1/ε) points. We compute the diameter d′

of S′ exactly, which takes O((1/ε) log(1/ε)) = O(1) time. Now it is easy to see that
the actual diameter d satisfies

d ≤ d′ + 2
√

2δ.

So

d′ ≥ d− 2
√

2δ ≥ d− εw ≥ (1 − ε)d,

since d ≥ w. Hence the diameter of the set S′ is an ε-approximation for the diameter
of S. As computing the bounding box and the set S′ takes O(n) time, this procedure
computes an ε-approximate diameter of S in O(n + (1/ε) log(1/ε)) time.

Let us next assume that k ≥ 3. Our algorithm uses recursion on k. As above, we
compute the smallest axis-parallel bounding box B of S, denote its width and height
as w and h, respectively, and assume that w ≥ h.

We first consider the case in which dksep(S) ≤ w/(k + 1). (Note that this case
cannot arise for k = 2.) We subdivide the box B into k + 1 vertical strips s0, . . . , sk,
each of width w/(k + 1), and set Si := S ∩ si, for i = 0, . . . , k. Any solution will use
points from at most k of these k + 1 strips. Therefore, for each strip si, we compute
an ε-approximation of a maximally separated set in S \ Si. The best among those
k + 1 solutions is the answer we are looking for.

For each i = 0, . . . , k, we process S \ Si as follows. A crucial observation is that,
for 1 ≤ i ≤ k − 1, we may assume that the optimal solution uses points that lie on
both sides of si. Indeed, if an optimal solution I consists only of points that lie, say,
to the right of si, replace I by I ′ ∪ {pL}, where pL is the leftmost point of P (which
lies on the left edge of B), and I ′ is an optimal solution with k − 1 points for the
subset SR of S that lies to the right of si. Since dksep(S) ≤ w/(k + 1), it follows that
the separation of the new solution, which does have points on both sides of si, is at
least as large as that of dsep(I). The same argument works for i = 0 and for i = k (in
the latter case we use the rightmost point pR of S instead of pL). As is easily seen,
these observations also carry over to ε-approximations of the optimal solution.

Hence, for i = 0 and i = k, we invoke the procedure recursively for finding an
ε-approximate solution with k−1 points for the set S\Si, and then add to the solution
the leftmost point of S (for i = 0) or the rightmost point (for i = k).

Consider then the case 1 ≤ i ≤ k− 1. Put SL :=
⋃

j<i Sj and SR :=
⋃

j>i Sj . We
need to guess the number t of points of the optimal solution that lie in SL (so that
k − t points lie in SR). As argued above, we may assume that 1 ≤ t ≤ k − 1. For

818 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

each value of t in this range, we compute recursively an ε-approximation IL (resp.,
IR) of a maximally separated set of size t in SL (resp., of size k − t in SR). Then
IL∪ IR form an ε-approximation of the optimal solution to the whole problem. Thus,
for each strip we solve 2(k − 1) problems with size smaller than k. In total, we need
to solve O(k2) subproblems. Denoting by Tk(n, ε) the maximum time needed to ε-
approximate dksep(S), over sets S of n points, we thus obtain a procedure that handles

the case dksep(S) ≤ w/(k + 1), with total cost of O(n + k2Tk−1(n, ε)).

So we are left with the case in which the maximal separation distance dksep(S) is
larger than w/(k+1). We proceed in a manner similar to that for the case k = 2. Let

δ =
εw

2
√

2(k + 1)
.

We partition the bounding box B of the set S into O(k2/ε2) grid cells of size at most
δ×δ, choose an arbitrary single point of S from each nonempty cell of the grid, obtain
a set A of O(k2/ε2) representative points, and compute an exact maximally separated
set I of size k for A, using any, potentially brute-force, method. (One possibility is
to use the algorithm presented in Section 5.)

We claim that dsep(I) ≥ (1 − ε)dksep(S). Indeed, let {p1, . . . , pk} ⊆ S be a
maximally separated set of S of size k. Since ε < 1, these points must lie in different
cells. Let p′i ∈ A be the representative point from the cell in which pi lies, and let
I ′ = {p′1, . . . , p′k}. As in the case k = 2, it is easily seen that

dsep(I ′) ≥ dksep(S) − 2
√

2δ = dksep(S) − εw

k + 1
> (1 − ε)dksep(S),

because dksep(S) > w/(k + 1). Since we solve the problem exactly for A, dsep(I) ≥
dsep(I ′) > (1− ε)dksep(S), as asserted. The running time bound Tk(n, ε) thus satisfies
the recurrence

Tk(n, ε) = O(n + k2Tk−1(n, ε) + Ck(O(k2/ε2))),

where Ck(m) is the time needed to compute exactly a maximally separated subset
of size k in a set of m points. Clearly, the solution of this recurrence is O(n), for
any constant k. More precisely, it is upper bounded by ck(k!)2n + b(k)/εa(k), for
some constant c > 0, where b(k) is exponential in k, and a(k) is at most linear in k.
(For example, using a brute-force solution for the case of large separation, for which
Ck(m) = O(mk), we obtain b(k) ≤ (c′k)2k, for some constant c′ > 0, and a(k) = 2k.)
Thus, we have the following theorem.

Theorem 2.1. For a set S of n points in R
2 and any constants k and 0 < ε <

1, we can compute in kO(k)n + (k/ε)O(k) time a subset I ⊆ S of size k such that
dsep(I) ≥ (1 − ε)dksep(S).

3. Computing a maximally separated triple. Let S be a set of n points in
R

2. We wish to compute a maximally separated triple in S. Our overall approach
consists of three steps. First, we perform a binary search on the pairwise distances of
S, and for each distance δ that the search encounters, we determine whether S contains
a δ-separated triple. Next, in order to determine the existence of a δ-separated triple,
we draw a sufficiently small grid within the bounding box of S so that each point
of a δ-separated triple of S lies in a distinct grid cell. We thus reduce the problem
of computing a δ-separated triple to a trichromatic variant of this problem. Finally,
we determine the existence of a trichomatic δ-separated triple in O(n4/3 log2 n) time.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 819

For simplicity, we describe these steps in the reverse order. That is, we first describe
the decision algorithm for the trichromatic version, then we show how to reduce
the original decision problem to the trichromatic problem, and finally we sketch the
binary-search procedure.

1

11

c1 c2

c3

D3

D1
D2

Fig. 1. An instance of three point sets (contained in the shaded disks) with property (�).

We need a few notations. First, we may assume for the decision problem that
δ = 1. For a point p ∈ R

2, let D(p) denote the disk of unit radius centered at p. For
a set A of points in R

2, let K(A) =
⋂

p∈A D(p). K(A) is a convex region bounded by
circular arcs that lie on the boundaries of the disks D(p), and each disk contributes
at most one such arc to ∂K(A); K(A) can be constructed in time O(|A| log |A|) [10].

3.1. Computing a trichromatic 1-separated triple. Let S1, S2, and S3 be
three sets of n points each in R

2 that satisfy the following property.
() There is a constant δ ≤ 1/6 so that, for i = 1, 2, 3, Si is contained in a disk

Di of radius δ centered at a point ci, and |c1c2| = |c2c3| = |c3c1| = 1.
Without loss of generality, we assume that c1 = (0, 0), c2 = (1, 0), and c3 = (1/2,√

3/2); see Figure 1. We wish to compute a 1-separated triple in S1 × S2 × S3, or to
determine that no such triple exists. Clearly, no other triple of points in S1 ∪ S2 ∪ S3

can be 1-separated.
Before continuing, we remark that, informally, property () captures the hard

case for finding a 1-separated trichromatic triple. If two of the sets Si are too close to
each other, then no trichromatic 1-separated triple exists, and if some pairs of sets are
too far apart, the problem reduces to finding a diametral pair. This will be discussed
in detail in section 3.2.

Let G ⊆ S1 × S2 denote the bipartite graph

G = {(p, q) | p ∈ S1, q ∈ S2; |pq| ≥ 1}.

Using the algorithm of Katz and Sharir [18], we compute, in O(n4/3 log n) time, a
family F = {A1 ×B1, . . . , Au×Bu}, which is a partition of G into complete bipartite
graphs, satisfying

∑
i

(|Ai| + |Bi|) = O(n4/3 log n).

For each 1 ≤ i ≤ u, let Ri = K(Ai)∪K(Bi). Set R :=
⋂u

i=1 Ri. The following lemma
is a straightforward reformulation of the original problem.

Lemma 3.1. There exists a 1-separated (trichromatic) triple in S1 × S2 × S3 if
and only if S3
⊆ R.

Proof. Let p ∈ S3 be a point that does not lie in R. Then there exists an i ≤ u
so that p
∈ Ri = K(Ai) ∪K(Bi). Since p
∈ K(Ai), there is a point q ∈ Ai so that

820 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

D(p)

1
δ

∂K(P)

C+

C−

c ξ

p

Fig. 2. The annulus that contains ∂K(P) (drawn as a thick curve).

p
∈ D(q). Similarly there is a point r ∈ Bi so that p
∈ D(r). Hence, |pq|, |pr| ≥ 1.
Moreover, |qr| ≥ 1 because (q, r) ∈ Ai × Bi, thereby implying that (q, r, p) is a 1-
separated triple. The converse implication is established in a similar manner: Suppose
that q ∈ S1, r ∈ S2, and p ∈ S3 form a 1-separated triple. Since |qr| ≥ 1, there exists
an i such that (q, r) ∈ Ai × Bi. Since |pq|, |pr| ≥ 1, it follows that p /∈ K(Ai) and
p /∈ K(Bi), and therefore p /∈ R.

The following simple technical observation is important for our algorithm.
Lemma 3.2. Let P be a set of points in R

2 lying in a disk of radius δ centered at
a point c. Then ∂K(P) lies between two concentric circles of radius 1 + δ and 1 − δ
centered at c.

Proof. Let C+ (resp., C−) denote the circle of radius 1 + δ (resp., 1− δ) centered
at c. Fix a point p ∈ P . For any point ξ ∈ ∂D(p),

1 − δ ≤ |ξp| − |pc| ≤ |ξc| ≤ |ξp| + |pc| ≤ 1 + δ.

Hence, ∂D(p) lies between C− and C+. Since this is true for every point p ∈ P ,
∂K(P) lies between C− and C+; see Figure 2.

Lemma 3.3. For each 1 ≤ i ≤ u, the upper (resp., lower) boundaries of K(Ai)
and K(Bi) cross at exactly one point.

Proof. Let W1 (resp., W2) denote the annulus bounded by the concentric circles of
radii 1+δ and 1−δ centered at c1 (resp., c2). By Lemma 3.2, ∂K(Ai) (resp., ∂K(Bi))
is contained in W1 (resp., W2). Therefore ∂K(Ai)∩∂K(Bi) ⊆ W1∩W2. Since δ < 1/6
and |c1c2| = 1, the inner circles of W1 and W2 intersect, and thus W1 ∩W2 consists of
two connected components Σ+,Σ−, where Σ+ lies above the x-axis and Σ− below the
x-axis; see Figure 3. An easy calculation shows that the x-coordinate of the leftmost
(resp., rightmost) point of Σ+ is 1/2− 2δ (resp., 1/2 + 2δ), and that the y-coordinate
of the bottommost point is

√
(1 − δ)2 − 1/4. Since δ ≤ 1/6, Σ+ lies fully to the right

of D1, to the left of D2, and above both these disks. This implies that, within Σ+,
the boundary of each D(p), for p ∈ Ai, is the graph of a strictly decreasing function,
and thus ∂K(Ai) is also the graph of a strictly decreasing function within Σ+. By
a fully symmetric argument, ∂K(Bi) is the graph of a strictly increasing function
within Σ+. Moreover, ∂K(Ai) ∩ Σ+ is contained in the upper boundary of K(Ai),

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 821

K(Bi)
Σ+

K(Ai)

W1 W2

D1 D2
δ 1

1
−
δ

Fig. 3. The annuli W1,W2 and their top intersection Σ+. For δ ≤ 1/6, the lowest point of Σ+

lies above the line y = δ, and its leftmost point has x-coordinate ≥ δ.

K(Ai) K(Bi)

Fig. 4. K(Ai), K(Bi) (whose top boundaries are drawn as thick curves), and the edges of Γi

(drawn as dashed arcs).

and similarly for K(Bi), because Σ+ lies above D1 and D2. This is easily seen to
imply the assertion of the lemma.

Lemma 3.3 implies that ∂Ri consists of a connected portion of ∂K(Ai) and a
connected portion of ∂K(Bi). The leftmost and rightmost points of Ri partition
∂Ri into two parts, which we refer to as the upper and lower boundaries of Ri. Let Γi

be the set of circular arcs forming the upper boundary of Ri; we have |Γi| ≤ |Ai|+|Bi|.
See Figure 4. Set Γ :=

⋃u
i=1 Γi; then |Γ| ≤

∑u
i=1(|Ai| + |Bi|). Let LΓ denote the

lower envelope of Γ.
Lemma 3.4. A point p ∈ S3 lies inside R if and only if p lies below the lower

envelope LΓ.
Proof. If p ∈ R, then it lies below the upper boundary of each Ri, thereby

implying that p lies below LΓ. Conversely, suppose that p lies below LΓ. Then p lies
below the upper boundary of every Ri. Let Σ+ be the same region as in the proof
of Lemma 3.3. Since |c1c2| = |c1c3| = |c2c3| = 1, and δ ≤ 1/6, a simple calculation
shows that D3 ⊂ Σ+, and thus S3 is also contained in Σ+. The argument in the proof
of Lemma 3.3 implies that Σ+ lies above the lower boundaries of every K(Ai) and of
every K(Bi). Hence, if p lies below the boundary of each Ri, it lies in each Ri and
thus also in R.

In view of Lemma 3.4, we may proceed as follows. For each i, we compute K(Ai),
K(Bi), Ri, and Γi. The total time spent in this step is

O

(
u∑

i=1

(|Ai| + |Bi|) log n

)
= O

(
n4/3 log2 n

)
.

Since each arc in Γ is a portion of the upper boundary of a unit-radius disk, two
arcs of Γ intersect in at most one point. Hence, we can compute the lower envelope

822 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

jR

CiLjL

jL

CiM jM

CiRjR

jL + µ + 1
jR – µ

(i) (ii)

Fig. 5. (i) Drawing a grid and the graph G. (ii) The case where C spans more than 3μ + 1
columns.

LΓ of Γ in O(|Γ| log n) time, using the algorithm of Hershberger [16] (see also [21]).
For each edge ξ of LΓ we store the index j such that ξ is (a portion of) an arc in
Γj . Finally, for each point p ∈ S3 we determine whether p lies below or above LΓ,
using a simple binary search over the arcs of LΓ. If p lies above LΓ, then the test
yields an arc of LΓ that lies below p. This arc is contained in an arc of some Γi,
and we can thus deduce that p /∈ Ri (by Lemma 3.4). Then, scanning the points of
Ai ∪ Bi in additional O(|Ai| + |Bi|) time, we are certain to find a 1-separated triple
(a, b, p) ∈ Ai × Bi × S3. The total running time of the algorithm is O(n4/3 log2 n).
Hence, we obtain the following result.

Theorem 3.5. Let S1, S2, and S3 be three finite point sets in R
2 that satisfy

property (), and put ni = |Si|, for i = 1, 2, 3. Then one can construct, in time
O(n4/3 log2 n), a 1-separated triple in S1 × S2 × S3, if one exists, or determine that
no such triple exists.

3.2. Reduction to the trichromatic case. Let S be a set of n points in R
2.

We wish to compute a 1-separated triple in S if one exists, or else to determine that
no such triple exists. We fix a small constant ε � 1/16, and set μ = 1/ε�. We
draw a square grid of size ε in the plane. For i, j ∈ Z, let Cij denote the grid cell
[iε, (i + 1)ε) × [jε, (j + 1)ε), and let Sij = S ∩Cij . Let C denote the set of nonempty
grid cells (i.e., those with Sij
= ∅). We construct a graph G = (C,E) where (C,C ′) ∈ E

if min{|pp′| | p ∈ C, p ∈ C ′} < 1; see Figure 5 (i).
Lemma 3.6. If G is not connected, then we can compute a 1-separated triple in

S (or determine that no such triple exists) in O(n log n) time.
Proof. First, note that if two nonempty grid cells Cij , Ckl ∈ C lie in different

connected components of G, then for any pair (p, q) ∈ Sij × Skl, |pq| ≥ 1. If G has
three (or more) connected components C1, C2, C3, then a 1-separated triple is obtained
by choosing one point of S lying in a single grid cell of each of C1, C2, C3. If G has at
least two connected components, then let S1 ⊆ S be the subset of points lying in the
grid cells of one connected component, and put S2 := S \ S1. We test, in O(n log n)
time, whether max{diam(S1),diam(S2)} ≥ 1. Suppose that p, q is a diametral pair
of, say, S1 and that |pq| ≥ 1; then we choose an arbitrary point r ∈ S2 and return
(p, q, r). By construction, this is a 1-separated triple. If diam(S1),diam(S2) are both
smaller than 1, then clearly no 1-separated triple exists. Hence, if G is not connected,
then we can construct in time O(n log n) a 1-separated triple in S if one exists, or
determine that no such triple exists.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 823

Lemma 3.7. If G is connected and C spans more than 3μ + 1 columns or rows
of the grid, i.e., it has cells in two columns (or rows) whose indices jL, jR satisfy
jR−jL ≥ 3μ+1, then a 1-separated triple in S exists, and can be constructed in O(n)
time.

Proof. Without loss of generality, it suffices to consider the case where C spans
more than 3μ+1 columns. Let CiLjL (resp., CiRjR) be a grid cell of C in the leftmost
(resp., rightmost) column, let pL ∈ SiLjL , and let pR ∈ SiRjR . By assumption,
jR− jL ≥ 3μ+1; see Figure 5 (ii). We group the columns between the jLth and jRth
columns (exclusive) into three pairwise-disjoint vertical strips V1, V2, V3, appearing in
this left-to-right order, each of width at least με ≥ 1. It is easily seen that V2 must
contain a point of S, or else G would not be connected. Then pL, pR, and any point in
V2 ∩S form a 1-separated triple. Clearly, finding these points takes linear time.

By Lemmas 3.6 and 3.7, it remains to consider the case in which G is connected
and C spans at most 3μ + 1 rows and at most 3μ + 1 columns. Clearly, in this
case |C| ≤ (3μ + 1)2. We consider all triples C1, C2, C3 ∈ C and determine whether
S1 × S2 × S3 contains a 1-separated triple, where Si = Ci ∩ S, for i = 1, 2, 3. If the
maximum distance between two of these three cells, say, C1 and C2, is less than 1,
then no 1-separated triple in S1 × S2 × S3 exists. Hence, we can assume that the
maximum distance between every pair of C1, C2, C3 is at least 1. There are four cases
to consider, depending on the number k of edges of G between these three cells:

(i) k = 0; that is, C1, C2, C3 is an independent set in G. Then any triple in
S1 × S2 × S3 is 1-separated, and we return one of these triples.

(ii) k = 1; suppose, without loss of generality, that (C1, C2) ∈ E and (C1, C3), (C2,
C3)
∈ E. We compute a diametral pair (p, q) of S1 ∪ S2. If |pq| ≥ 1, then we
return (p, q, r), where r is any point of S3. If |pq| < 1, no triple in S1×S2×S3

is 1-separated. This step takes O(n log n) time.
(iii) k = 2; suppose, without loss of generality, that (C1, C2), (C1, C3) ∈ E and

(C2, C3)
∈ E. We compute K(S2) and K(S3). If a point p ∈ S1 lies neither
in K(S2) nor in K(S3), then there exists a pair (q, r) ∈ S2 × S3 so that
p
∈ D(q) ∪ D(r) and thus (p, q, r) is 1-separated. If S1 ⊆ K(S2) ∪ K(S3),
then, arguing as in the proof of Lemma 3.1, no triple in S1 × S2 × S3 is
1-separated. This step too takes O(n log n) time.

(iv) k = 3; that is, (C1, C2), (C1, C3), (C2, C3) ∈ E. In other words, for any pair
i
= j ∈ {1, 2, 3} we have

min {|xy| | x ∈ Ci, y ∈ Cj} < 1 ≤ max {|xy| | x ∈ Ci, y ∈ Cj}.

By the triangle inequality, this implies that any x ∈ Ci, y ∈ Cj satisfy 1 − 2
√

2ε ≤
|xy| ≤ 1 + 2

√
2ε. We claim that our choice of ε implies that there exist points

c1, c2, c3 ∈ R
2 so that |cicj | = 1 for each pair of distinct points ci, cj , and Si is

contained in the disk Di of radius δ ≤ 1/6 centered at ci, for i = 1, 2, 3. To see this,
pick any pair of points c1 ∈ C1, c2 ∈ C2, such that |c1c2| = 1. Let c3 ∈ R

2 be a point
such that Δc1c2c3 is equilateral and c3 lies on the same side of the line through c1
and c2 as C3 (our choice of ε is easily seen to imply that C3 does not intersect such
a line). By what we have just argued, C3 is fully contained in the intersection of the
two annuli

1 − 2
√

2ε ≤ |c1x| ≤ 1 + 2
√

2ε,

1 − 2
√

2ε ≤ |c2x| ≤ 1 + 2
√

2ε.

824 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

A simple calculation then shows that C3 is fully contained in the disk of radius 1/6
centered at c3. In other words, in this case S1, S2, and S3 satisfy property (), and
we can therefore use Theorem 3.5 to compute a 1-separated triple in S1 × S2 × S3, if
one exists, or to determine that no such triple exists.

The total running time of the algorithm is dominated by the overall cost of han-
dling case (iv), and is thus, by Theorem 3.5, O(n4/3 log2 n) since μ = O(1). We thus
obtain the following main result of this section.

Theorem 3.8. Let S be a set of n points in R
2. We can compute, in O(n4/3 log2 n)

time, a 1-separated triple in S, if one exists, or determine that no such triple exists.
Finally, we run a binary search on the

(
n
2

)
pairwise distances in S. The kth

smallest pairwise distance δk in S, for any 1 ≤ k ≤
(
n
2

)
, can be computed in time

O(n4/3 log2 n) [18], and by Theorem 3.8, we can determine whether a δk-separated
triple exists in S within the same time bound. Hence, we obtain the following theorem.

Theorem 3.9. Let S be a set of n points in R
2. We can compute, in O(n4/3 log3 n)

time, a maximally separated triple in S.

4. Computing a maximally separated quadruple. Our overall approach to
this problem is similar to the one in Section 3. We first consider a multicolored version
of this problem, in which we are given four sets, S1, S2, S3, and S4, of points, placed
“reasonably far” from each other, and we wish to determine whether there exists a
1-separated quadruple in S1 × S2 × S3 × S4. The easy cases are when some pairs of
subsets Si, Sj are either too far from each other or too near each other. The difficult
case is when these sets are arranged in a so-called diamond configuration, and we
present in Section 4.1 below an algorithm for handling this case. We then present the
overall algorithm, which, as in the previous section, runs a binary search through the
pairwise distances in S, and, for each fixed distance, reduces the general problem to
a constant number of multicolored instances.

4.1. The diamond configuration. Let S1, S2, S3, and S4 be sets of n points
each in R

2 that satisfy the following property:
(�) There is a constant δ ≤ 1/8 so that each Si, for i = 1, . . . , 4, is contained in a

disk Di of radius δ centered at a point ci, so that |c1c3|, |c2c3|, |c1c4|, |c2c4| = 1,
and 1 ≤ |c1c2| ≤ 1 + 2δ < |c3c4|.

Without loss of generality assume that c3 = (0, 0), c4 lies on the x-axis to the right
of c3, and c1 (resp., c2) lies below (resp., above) the x-axis (in symmetric positions).
The conditions on the ci’s imply that

1 ≤ |c1c2| ≤ 1 + 2δ <
√

2 ≤ |c3c4| ≤
√

3.

See Figure 6.
Note that one helpful property of the diamond configuration is that any pair of

points in S3×S4 is 1-separated, so only five of the six pairwise distances in a quadruple
in S1 × S2 × S3 × S4 need to be considered.

For a point p ∈ S1, let S
(3)
p = {q ∈ S3 | |pq| ≥ 1} and S

(4)
p = {q ∈ S4 | |pq| ≥ 1}.

(We ignore for the time being the issue of efficient construction of these sets; this will
be addressed later on.) We remove from S1 any point p for which one of these sets is
empty, because such a p cannot be part of a 1-separated quadruple in S1×S2×S3×S4.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 825

1

1
1

1

c4

c2

D3 D1

D2

D4

c1

c3

Fig. 6. A diamond configuration. The missing edge between D3 and D4 indicates that every
pair of points in S3 × S4 is 1-separated.

Set, for each remaining p ∈ S1,

K
(3)
p :=

⋂
q∈S

(3)
p

D(q), K(4)
p :=

⋂
q∈S

(4)
p

D(q),

Rp := K(3)
p ∪K(4)

p ∪ D(p), R :=
⋂

p∈S1

Rp.

The following lemma is fairly straightforward (cf. Lemma 3.1).
Lemma 4.1. There exists a 1-separated quadruple in S1 × S2 × S3 × S4 if and

only if S2
⊆ R.
Proof. If there exists a point q ∈ S2 \ R, then there exists a point p ∈ S1 so that

q
∈ Rp = K
(3)
p ∪K

(4)
p ∪D(p), which implies that there is a pair (u, v) ∈ S

(3)
p ×S

(4)
p so

that q
∈ D(u)∪D(v)∪D(p). Therefore, |pu|, |qu|, |pv|, |qv|, |pq| ≥ 1. By property (�),
|uv| ≥ 1 too. Hence, (p, q, u, v) is 1-separated. The converse implication is argued in
the same manner.

The following is a variant of Lemma 3.3, proved in a similar manner.
Lemma 4.2.

(i) For any p ∈ S1, ∂K
(3)
p and ∂K

(4)
p intersect above the x-axis at exactly one

point σp, which lies on the upper boundaries of both regions.

(ii) For any p ∈ S1, ∂K
(3)
p and ∂D(p) intersect above the x-axis exactly once, and

similarly for ∂K
(4)
p and ∂D(p).

Proof. (i) Let W3 (resp., W4) denote the annulus bounded by the concentric

circles of radii 1 + δ and 1 − δ centered at c3 (resp., c4). By Lemma 3.2, ∂K
(3)
p

(resp., ∂K
(4)
p) is contained in W3 (resp., W4). Therefore ∂K

(3)
p ∩ ∂K

(4)
p ⊆ W3 ∩W4.

Since δ < 1 −
√

3/2 and |c3c4| ≤
√

3, the inner circles of W3 and W4 intersect and
thus W3 ∩ W4 consists of two connected components Σ+,Σ−, where Σ+ lies above
the x-axis and Σ− below the x-axis (as in Figure 3(i)). Moreover, by the choice of
δ, Σ+ lies fully to the right of D3, to the left of D4, and above both these disks,
as is easily verified. This implies that, within Σ+, the boundary of each D(q), for

q ∈ S
(3)
p , is the graph of a decreasing function, and thus ∂K

(3)
p is also the graph of a

decreasing function within Σ+. By a fully symmetric argument, ∂K
(4)
p is the graph

of an increasing function within Σ+. Moreover, ∂K
(3)
p ∩Σ+ is contained in the upper

boundary of K
(3)
p , and similarly for K

(4)
p , because Σ+ lies above D3 and D4. This is

easily seen to imply the assertion in (i).
(ii) The center p of D(p) lies to the right of the center of the circle of any arc

that appears on ∂K
(3)
p , and only the upper semicircle of D(p) can be above the x-axis.

826 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

λp

ρp

σp

K
(4)
p

γ
(4)
p

K
(3)
p

p

γ
(3)
p

K(3)
p ρp

γ(3)
p

λp K(4)
p

γ(4)
p

p

αp βp

D(p)

(i) (ii)

Fig. 7. (i) Implicit representation of the upper boundary of Rp when D(p) does not appear on
this boundary. (ii) Implicit representation of the upper boundary of Rp when D(p) appears on it. In
both cases, the boundary is drawn as a thick curve.

Hence, above the x-axis, ∂D(p) intersects any arc γ that bounds ∂K
(3)
p in at most

one point, and lies above γ to the right of that point. Hence ∂D(p) lies above ∂K
(3)
p

to the right of any intersection point between the two curves, which readily implies
(ii).

Definition 4.3. For a point p ∈ S1, let σp denote, as in Lemma 4.2, the unique

intersection point of the upper boundaries of K
(3)
p and K

(4)
p , and let αp (resp., βp)

denote the intersection point of the upper boundary of K
(3)
p (resp., K

(4)
p) with D(p) if

such a point exists.

Consider the upper envelope of the upper boundaries of K
(3)
p , K

(4)
p , and D(p). The

preceding analysis implies that the envelope has one of the following two structures:
(a) Either D(p) does not appear on the envelope, and then the envelope consists of a

connected portion γ
(3)
p of the upper boundary of K

(3)
p and a connected portion γ

(4)
p

of the upper boundary of K
(4)
p , meeting at the point σp (see Figure 7 (i)); or (b)

D(p) appears on the envelope, and then the envelope consists of a connected portion

γ
(3)
p of the upper boundary of K

(3)
p , a connected portion δp of the upper boundary of

D(p), and a connected portion γ
(4)
p of the upper boundary of K

(4)
p , so that the first

and second portions meet at αp and the second and third portions meet at βp (see
Figure 7 (ii)).

Let Γ(3) = {γ(3)
p | p ∈ S1}, Γ(4) = {γ(4)

p | p ∈ S1}, and Δ = {δp | p ∈ S1}. Note
the difference between this notation and the one in section 3. There Γi was a family
of circular arcs, whereas here each arc in Γ(3) or Γ(4) is a sequence of circular arcs.
Let L(3) (resp., L(4), L(1)) denote the lower envelope of Γ(3) (resp., Γ(4), Δ).

The following corollary follows from Lemmas 3.4 and 4.2. Its proof uses the
obvious observation that the lower envelope of L(3), L(4), and L(1) is the same as the
lower envelope of the upper boundaries of the regions Rp, for p ∈ S1. (We follow
here the convention that if a curve is undefined at some x, it is assumed to be +∞
there.) Arguing in much the same way as in Section 3 and exploiting the fact that
δ < 1/8, one can show that a point of S2 does not lie below the lower boundary of

any K
(3)
p ,K

(4)
p , or D(p). Hence, we obtain the following corollary.

Corollary 4.4. A point q ∈ S2 lies in R if and only if q lies below each of L(3),
L(4), and L(1).

We thus compute each of the envelopes L(3), L(4), and L(1) separately, and de-
termine whether any point of S2 lies above any of them. If the answer is yes, we can
conclude that a 1-separated quadruple in S1×S2×S3×S4 exists, and we can compute

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 827

it in additional linear time. Otherwise no such quadruple exists.
However, unlike the situation in Section 3, computing these envelopes explicitly is

expensive, because they consist of too many arcs, so we represent them implicitly. We
first describe the implicit representation of the envelopes and of their arcs, following
a similar representation used by Agarwal, Sharir, and Welzl [4], and then present the
algorithm for computing and searching in the envelopes.

Implicit representation of K
(3)
p ,K

(4)
p , and of the lower envelopes. For a subset Q ⊆

S1, let L
(3)
Q denote the lower envelope of arcs in the set {γ(3)

p | p ∈ Q}. We represent

L
(3)
Q by the sequence of its breakpoints in increasing order of their x-coordinates.

The breakpoints are defined so that each portion ξ of L
(3)
Q between two consecutive

breakpoints is contained in a single γ
(3)
p (such a ξ may overlap with many γ

(3)
p ’s, but

there is (at least) one point p ∈ S1 such that ξ is fully contained in γ
(3)
p). We maintain

ξ implicitly, by recording a point p ∈ Q that satisfies ξ ⊆ γ
(3)
p . Recall that each γ

(3)
p

may consist of many circular arcs, bounding different disks centered at points of S
(3)
p ;

our implicit representation avoids the costly explicit enumeration of these arcs.

Let D3 = {D(q) | q ∈ S3}. To represent each γ
(3)
p implicitly, we choose a pa-

rameter n ≤ s ≤ n2, and use the result of Katz and Sharir [18], which shows that
there exists a family F(3) = {D(1), . . . ,D(u)} of canonical subsets of D, with a cor-
responding family of intersection regions I(i) =

⋂
D(i), for i = 1, . . . , u, such that∑u

i=1 |D(i)| = O(s log n), and such that for any p ∈ S1, K
(3)
p can be represented as

the intersection of O((n/
√
s) log n) of these canonical regions I(i). Let J

(3)
p denote the

set of indices of these canonical regions, i.e., K
(3)
p =

⋂
j∈J

(3)
p

I(j). We represent each

arc γ
(3)
p by its endpoints and by the set J

(3)
p . We also store the vertices of all I(j) in

a single master list Λ, sorted in increasing order of their x-coordinates.

As shown in [18], F(3) and the sets J
(3)
p for all p ∈ S3 can be computed in time

O((s + n2/
√
s) log n), and we spend another O(s log2 n) time to compute the regions

I(j). A similar representation was developed by Agarwal, Sharir, and Welzl [4], who
showed that the above representation enables us to perform each of the following four

operations on {∂K(3)
p }p∈S1

in O((n/
√
s) log3 n) time.

(S1) Leftmost and rightmost points: Given a point p ∈ S1, compute the leftmost

and rightmost points of K
(3)
p .

(S2) Intersection point(s) with a vertical line: Given a vertical line � and a point

p ∈ S1, determine the intersection point(s) of � with ∂K
(3)
p .

(S3) Intersection points with a unit disk: Given a unit disk D and a point p ∈ S1,

determine the intersection point(s) of D with ∂K
(3)
p .

(S4) Crossing point of two arcs: Given two points p, q ∈ S1 and an x-interval [a, b]

contained in the x-span of the top boundaries of K
(3)
p and K

(3)
q , determine

whether they cross in [a, b]. If so, return their crossing point. If they weakly
cross in [a, b], i.e., overlap over some subinterval J of [a, b] and their vertical
order to the right of J is the reverse of their vertical order to the left of J ,
then return the leftmost endpoint of their common overlap in [a, b].

In a fully analogous fashion, we process S4 in O((s + (n2/
√
s)) log n) time, to

compute an implicit representation of all the arcs γ
(4)
p . Each of the operations (S1)–

(S4) on {∂K(4)
p }p∈S1 can also be performed in O((n/

√
s) log3 n) time. Moreover, given

any p ∈ S1, the intersection point of the top boundaries of K
(3)
p and K

(4)
p can also be

828 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

computed in O((n/
√
s) log3 n) time.

Computing L(3), L(4), and L(1). Using the subroutine (S1), we first compute the

lefmost point λp of K
(3)
p and the rightmost point ρp of K

(4)
p , for each p ∈ S1. Next,

using (S3) and (S4), we compute the intersection point σp of the upper boundaries of

K
(3)
p and K

(4)
p , the intersection point αp of the upper boundaries of K

(3)
p and D(p),

and the intersection point βp of the upper boundaries of K
(4)
p and D(p). By comparing

the x-coordinates of these three points, we can determine whether the upper boundary
of Rp is of the first kind (disjoint from D(p)) or of the second kind (overlapping an

arc of D(p)). In the first case, γ
(3)
p (resp., γ

(4)
p) is the portion of the upper boundary

of K
(3)
p (resp., K

(4)
p) between λp and σp (resp., σp and ρp). In the second case it is

the portion of ∂K
(3)
p (resp., ∂K

(4)
p) between λp and αp (resp., βp and ρp). We thus

have the endpoints of γp and its implicit representation at our disposal.
The x-coordinate of any point p ∈ S1 is at most

√
3/2 + δ and the x-coordinate

of the rightmost point of Rp is at least 1 − δ. This easily implies that p lies below

K
(3)
p (i.e., the vertical ray emanating upward from p intersects K

(3)
p). Since this holds

for any point p ∈ S1, Theorem 2.8 of Agarwal, Sharir, and Welzl [4] (concerning

the “pseudo-segment” property of the upper portions of ∂K
(3)
p) implies that, for any

p, q ∈ S1, γ
(3)
p and γ

(3)
q cross in at most one point. A similar argument proves the

corresponding claim for the curves in Γ(4). Hence, each of Γ(3),Γ(4) is a collection
of pseudo-segments. We can therefore compute the lower envelopes L(3),L(4) using
the divide-and-conquer algorithm of Hershberger [16], mentioned above. In the main

step of this algorithm, we have envelopes L
(3)
A ,L

(3)
B of two subsets A,B ⊆ Γ(3) at

our disposal, and we need to merge these envelopes to compute L
(3)
A∪B . The only

nontrivial part in the merge step is computing the crossing point of two arcs γ
(3)
p

and γ
(3)
q in a given x-interval [a, b] that is contained in the x-span of both γ

(3)
p and

γ
(3)
q . Using the subroutine (S4), we can compute, in O((n/

√
s) log3 n) time, the cross-

ing point of the upper boundaries of K
(3)
p and K

(4)
p in the interval [a, b], if it exists.

If so, this is the crossing point of γ
(3)
p and γ

(3)
q ; otherwise, these arcs do not inter-

sect over [a, b]. Plugging this bound into Hershberger’s algorithm, we can compute
an implicit representation of L(3) in overall time O((n2/

√
s) log4 n + s log2 n). Simi-

larly, we can compute an implicit representation of L(4) within the same time bound
O((n2/

√
s) log4 n + s log2 n). Computing L(1) is easier, since no implicit represen-

tation is needed here: We simply have to compute the lower envelope of at most n
upper unit circular arcs that behave as pseudo-segments, so their envelope can be
computed in O(n log n) time (as in [16]). Finally, for each point q ∈ S2, we determine
in O((n/

√
s) log3 n) time, using the subroutine (S2), whether q lies above L(3) or above

L(4). Testing whether q lies above L(1) is easy to accomplish in O(log n) time. The

total time spent is thus O
(
(n2/

√
s) log4 n + s log2 n

)
. By choosing s = n4/3 log4/3 n,

we obtain the following summary result.
Theorem 4.5. Let S1, S2, S3, and S4 be four sets of n points each in R

2 that
satisfy property (�). One can determine, in time O(n4/3 log10/3 n), whether S1×S2×
S3 × S4 contains a 1-separated quadruple, and, if so, compute such a quadruple.

4.2. Reduction to the multicolored case. As in section 3, we construct a
square grid of size ε, for a sufficiently small constant parameter ε > 0. Let Cij , Sij , C, G,
and μ be as in section 3.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 829

Lemma 4.6. If G is not connected, then we can compute a 1-separated quadruple
in S (or determine that no such quadruple exists) in O(n4/3 log2 n) time.

Proof. If G has at least two connected components, then let S1 ⊆ S be the subset
of points lying in the grid cells of one connected component, and put S2 := S \S1. If a
1-separated quadruple exists, then there also exists a 1-separated quadruple that has
points in both S1 and S2. Indeed, if (p1, p2, p3, p4) is a 1-separated quadruple that is
contained in, say, S1, then the quadruple obtained by replacing, say, p1 by any point
of S2 is also 1-separated. Hence it suffices to look for 1-separated quadruples that
have two points in each of S1, S2, or have three points in one of these sets and one
point in the other set. Moreover, it suffices to find the two parts of such a quadruple
independently—putting together any pair of such parts, one contained in S1, the other
in S2, and consisting together of four points, will form a 1-separated quadruple in S.
In the former case, it suffices to check that min{diam(S1),diam(S2)} ≥ 1, and then
return a pair of diametral points in each of S1, S2. In the latter case, we apply the
decision procedure of Section 3 to S1 and to S2. If either of these applications yields
a 1-separated triple, combining it with any point in the other set yields a 1-separated
quadruple in S. If none of these steps succeeds, S has no 1-separated quadruple. The
overall cost of the procedure just sketched is, by Theorem 3.8, O(n4/3 log2 n).

Lemma 4.7. If G is connected and C spans more than 5μ+1 columns or rows of the
grid, i.e., it has cells in two columns (or rows) whose indices j, j′ satisfy j′−j ≥ 5μ+1,
then a 1-separated quadruple in S exists, and can be constructed in O(n) time.

Proof. Consider the case where C spans more than 5μ + 1 columns. Let CiLjL

(resp., CiRjR) be a grid cell of C in the leftmost (resp., rightmost) column, and let
pL ∈ SiLjL , and pR ∈ SiRjR . By assumption, jR − jL ≥ 5μ + 1. We group the
columns between the jLth and jRth columns (exclusive) into five pairwise-disjoint
vertical strips V1, . . . , V5, appearing in this left-to-right order, each of width at least
με ≥ 1. We argue that each of V2, V4 must contain points of S, or else G would not
be connected. Then pL, pR, any point in V2 ∩ S, and any point in V4 ∩ S form a
1-separated quadruple. Clearly, finding these points takes linear time.

By Lemmas 4.6 and 4.7, we may therefore assume that G is connected and that
C spans at most 5μ + 1 rows and at most 5μ + 1 columns. In this case, we try
all quadruples C1, C2, C3, C4 ∈ C and determine whether the corresponding product
S1 × S2 × S3 × S4 contains a 1-separated quadruple. We can assume that, for each
pair of cells, the maximum distance between points in these two cells is at least one,
and that the subgraph induced by these four cells is connected, because if the former
assumption is violated, then no 1-separated quadruple exists, and if the latter is
violated, then we can find a 1-separated quadruple (or determine that none exists),
proceeding as in Lemma 4.6. In other words, we may assume that, for each Ci, Cj ,

1 ≤ max
x∈Ci, y∈Cj

|xy| ≤ 1 + 2
√

2ε.

We now proceed by case analysis, according to the structure of the edges of G that
connect the cells C1, . . . , C4. Figure 8 shows all the possible cases, up to symmetries.
It is easily checked that the complete graph on C1, . . . , C4 is impossible, if ε is chosen
sufficiently small.

In cases (i), (ii), and (iii), there is at least one node that has degree 1 in G. It is
then easy to reduce the problem to the case of finding a 1-separated triple. Consider
for example case (iii), where the only edge incident to C2 is (C2, C3). We then replace

830 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

C1 C1 C1 C1 C1

C3 C3 C3 C3

(i) (ii) (iii)

C3

(iv) (v)

C4 C4 C4 C4 C4

C2C2C2C2C2

Fig. 8. Possible graphs for k = 4.

S3 by the set

S′
3 =

{
p ∈ S3 | max

q∈S2

|pq| ≥ 1
}
.

S′
3 can be computed in time O(n log n), by constructing K(S2) and choosing all points

of S3 that lie outside K(S2). We now find, in time O(n4/3 log2 n), a 1-separated triple
in S1×S2×S′

3, or determine that none exists. Once such a triple (p, q, r) is found, any
point s ∈ S2 for which |rs| ≥ 1 can be added to it to form a 1-separated quadruple;
s can be found in additional O(n) time.

This leaves us with cases (iv) and (v). Pick points ci ∈ Ci, for i = 1, 2, 3, 4, such
that |c1c3| = |c2c4| = 1. Then

1 − 2
√

2ε ≤ |c2c3|, |c1c4| ≤ 1 + 2
√

2ε.

Hence, by translating c2c4 by distance ≤ 2
√

2ε, we can also enforce |c2c3| = 1, and
1−4

√
2ε ≤ |c1c4| ≤ 1+4

√
2ε. Note that ∠c1c3c2 and ∠c3c2c4 cannot be much smaller

than π/3 each, because otherwise c1 and c2, or c3 and c4, would be too close to each
other, contrary to what we are assuming. For the same reason, these angles cannot
be much larger than 2π/3.

This is easily seen to imply that, by slightly rotating c4 around c2, we can make
the distance |c1c4| also equal to 1. The new points ci are no longer necessarily inside
the respective cells Ci, for i = 2, 3, 4, but they remain close to these cells. If ε is
chosen sufficiently small, the disk of radius δ = 1/8 around ci will fully contain Ci,
for i = 1, . . . , 4. Moreover, by slightly flexing the rhombus c1c3c2c4, we can also
assume that |c1c2| ≥ 1, while the containment property just mentioned continues
to hold. If |c1c2| ≤ 1 + 2δ = 5/4, then S1, S2, S3, S4 satisfy property (�). In this
case, we can apply the algorithm of Theorem 4.5 to find a 1-separated quadruple in
S1 × S2 × S3 × S4, or to determine that none exists, in time O(n4/3 log10/3 n).

If |c1c2| > 5/4, any pair of points p ∈ S1, q ∈ S2 is 1-separated. We can then apply
a simpler variant of the algorithm in section 4.1, in which we ignore any interaction
between S1 and S2. Thus we may ignore the family Δ of disks, and only consider the
intersection points σp and not αp, βp. Alternatively, we can run the algorithm as is,
and the disks D(p), for p ∈ S1, will never show up on the overall envelope. In either

case, the running time is O(n4/3 log10/3 n).
In summary, we show the following theorem.
Theorem 4.8. Let S be a set of n points in R

2. A 1-separated quadruple in S
can be computed (or be determined not to exist) in time O(n4/3 log10/3 n).

Finally, by performing a binary search on the pairwise distances in S, as in section
3, we obtain the following main result of this section.

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 831

(i) (ii) (iii) (iv)

Fig. 9. Possible graphs for k = 5.

Theorem 4.9. Let S be a set of n points in R
2. A maximally separated quadruple

in S can be computed in O(n4/3 log13/3 n) time.

4.3. Discussion. The technique that we have presented in sections 3 and 4 can
be extended in principle to larger values of k. As above, it suffices to solve the decision
problem: Determine whether a 1-separated k-tuple exists in S. Lemmas 4.6 and 4.7
can be extended in a straightforward manner, and they reduce the problem to O(1)
subproblems. In each subproblem we have k ε × ε square cells C1, . . . , Ck of a grid,
and subsets Si = S∩Ci, for i = 1, . . . , k. Every pair of cells is such that the maximum
distance between their points is at least 1, and some pairs of cells are such that the
minimum distance between their points is at most 1. The collection of the pairs of
the second kind constitutes the edge set of a graph G, and the problem proceeds by
case analysis, depending on the structure of G. As above, we may assume that G is
connected, and that the degree of each node is at least two.

For example, consider the case k = 5. The possible graphs G that need to be
considered are shown in Figure 9. We leave it as an open problem to design efficient
algorithms for the decision problem on each of these graphs, and thus to obtain an
efficient algorithm for finding a maximally separated 5-tuple in S.

5. An exact algorithm for an arbitrary k. Let S be a set of n points in R
2,

and let k ≥ 2 be an integer. We describe an nO(
√
k)-time algorithm for computing a

maximally separated subset of S of size k. As in the previous sections, it suffices to
focus on the decision problem: Given a set D of n unit disks and an integer 1 ≤ k ≤ n,
is there a subset I ⊆ D of k pairwise-disjoint disks?

Suppose that all the disks of D lie inside a horizontal strip W of (integer) width
w. Using a sweep-line algorithm, similar to the one by Gonzalez [14] for computing a
k-center of a set of points, we can compute a largest subset of pairwise-disjoint disks
in nO(w) time, as follows.

We define the index of a set A = {D1, . . . , Dq} of unit disks, for q ≤ n, to be the
2n-vector

σ(A) = (0, . . . , 0, x1, . . . , xq︸ ︷︷ ︸
n

, 0, . . . , 0, y1, . . . , yq︸ ︷︷ ︸
n

),

where (xi, yi) is the center of Di, x1 ≤ x2 ≤ · · · ≤ xq, and if xi = xi+1, then yi < yi+1.
We refer to the set of pairwise-disjoint disks with the maximal index in lexicographic
order as the optimal independent set. The sweep-line algorithm computes the optimal
independent set of D, as follows.

832 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

For a subset A ⊆ D and a vertical line �, let χ(A, �) ⊆ A be the set of disks
in A that intersect �. We sweep a vertical line � from left to right, stopping at the
leftmost and rightmost point of each disk in D. At any time, the algorithm maintains a
family F = {I1, . . . , Iu} of subsets of pairwise-disjoint disks that satisfies the following
invariants:

(I.1) For every 1 ≤ j ≤ u, no disk in Ij ⊆ D is contained in the (closed) halfplane
lying to the right of the sweep line.

(I.2) For a
= b, χ(Ia, �)
= χ(Ib, �).
(I.3) If there is a subset A ⊆ D of pairwise-disjoint disks so that no disk in A lies

completely to the right of �, then there is a subset Ij ∈ F so that χ(Ij , �) =
χ(A, �) (χ(Ij , �) may be empty) and σ(A) ≤lex σ(Ij).

Since at most O(w) pairwise-disjoint disks of D can intersect �, invariant (I.2)
implies that |F| = nO(w) throughout the sweep. When the sweep line � passes through
the leftmost point of a disk D ∈ D, we test, for each set I ∈ F, whether D does not
intersect any disk in I, and, if so, we add the set I ∪ {D} to F (and we also keep I in
F). When � passes through the rightmost point of a disk D, we delete all the sets Ia
from F for which there is another set Ib ∈ F with σ(Ia) <lex σ(Ib) and χ(Ia, �)\{D} =
χ(Ib, �) \ {D}. We spend O(|F|2n) time at each leftmost or rightmost point of a disk,
so the overall running time remains nO(w) (with an appropriate calibration of the
constant of proportionality in the exponent). The reader can easily verify that the
invariants (I.1)–(I.3) ensure that the algorithm computes the optimal independent set
of D.

If w ≤ 2
√
k+2, we use the above algorithm to determine, in nO(

√
k) time, whether

D contains k pairwise-disjoint disks. So assume that w > 2
√
k + 2. Let Π be the set

of at most 2n horizontal lines tangent to disks in D. The following packing lemma
was proved by Agarwal and Procopiuc [3].

Lemma 5.1. Let D be a set of n disks in R
2, and let D′ ⊆ D be a subset of at

most k pairwise-disjoint unit disks that lie in a horizontal strip of width larger than
2
√
k + 2. Then there exists a horizontal line tangent to one of the disks in D that

intersects at most
√
k disks of D′.

For any h ∈ Π and I ⊆ D, we call (h, I) a canonical pair if |I| ≤
√
k, the disks in

I are pairwise disjoint, and all disks in I intersect h (in general, h may also intersect
other disks of D). We define a c-strip to be a triple τ = (ω,A1, A2), where ω is a strip
bounded by two lines �1, �2 ∈ Π, with �1 lying above �2, and (�1, A1) and (�2, A2) are
canonical pairs; A1, A2 are not necessarily disjoint. Let Dτ ⊆ D be the set of disks
that do not intersect �1, �2 or any disk of A1∪A2. We define the optimal independent
set of τ , denoted by Iτ , to be the optimal independent set of Dτ , and set κτ := |Iτ |.
We call τ thin if the width of ω is at most 2

√
k + 2, and thick otherwise.

For a given τ = (ω,A1, A2), we compute Iτ as follows. If τ is thin, then we
compute Iτ using the sweep-line algorithm described above. So assume that τ is thick.
If Dτ
= ∅, then by Lemma 5.1, there exists a canonical pair (h, I) so that h divides
ω into two strips ω+, ω− each of width less than that of ω. Let τ+ = (ω+, A1, I) and
τ− = (ω−, I, A2). We compute Iτ+ and Iτ− recursively, and output Iτ := Iτ+∪I∪Iτ− .
Since we do not know the true canonical pair (h, I), we try all canonical pairs and
choose the one for which the solution has the largest index. Moreover, instead of
solving the problem recursively, we use a bottom-up approach based on dynamic
programming.

In particular, we build a table, each of whose entries corresponds to a c-strip
τ = (w,A1, A2) and stores κτ and στ = σ(Iτ). If we ever encounter an entry with

COMPUTING MAXIMALLY SEPARATED SETS IN THE PLANE 833

κτ > k, we can conclude that the size of the largest independent set in D is greater
than k, and we restart the algorithm with a new larger value of k. So we assume
that κτ ≤ k for all entries. We fill the entries of the table as follows. If Dτ = ∅,
we set Iτ := ∅, and if τ is thin, we compute Iτ using the sweep-line algorithm and
fill the entry. Otherwise, we compute all canonical pairs (h, I) for which h lies inside
ω, and let ω+ (resp., ω−) be the portion of ω lying above (resp., below), and let
τ+ = (ω+, A1, I) and τ− = (ω−, I, A2). Compute

κτ := max
(h,I)

{κτ+ + κτ− + |I \ (A1 ∪A2)|} ,

where the maximum is taken over all canonical pairs. Let (h∗, I∗) be the canonical
pair for which the maximum is attained. Then σ(τ) is the index of Iτ∗

+
∪ Iτ∗

−
∪ I∗,

where τ∗+, τ
∗
− are the c-strips defined by the canonical pair (h∗, I∗). If the maximum

value of κτ is attained by more than one canonical pair, we choose the one for which
σ(τ) is maximal.

Let (ω1, . . . , ωM), for M = O(n2), be the sequence of horizontal strips determined
by pairs of lines in Π, sorted in nondecreasing order of their widths. We fill out the
entries of the table having ωi as the first component of the index before filling the
entries with ωi+1 as their first component. If D contains an independent set of size
at most k, then the optimal solution for the c-strip (ωM , ∅, ∅) gives the size and index

of the optimal independent set of D. Since there are n2 · nO(
√
k) · nO(

√
k) c-strips,

and each entry can be filled in nO(
√
k) time, the overall running time of the decision

algorithm is nO(
√
k) (again, with calibration of the constant of proportionality). We

thus obtain the following theorem.
Theorem 5.2. Let D be a set of n unit disks in R

2. The optimal independent

set I of D can be computed in time nO(
√
k), where k is the size of I.

Returning to the problem of computing a maximally separated subset of S of
size k, we perform a binary search on the pairwise distances in S. At each step, we
need to determine whether there exists a maximally separated subset I ⊆ S of size
k with dsep(I) ≥ r, for a given r, which reduces to determining whether there is an
independent set of size k in the set {D(p, r) | p ∈ S}. Using Theorem 5.2, we thus
obtain the following theorem.

Theorem 5.3. Let S be a set of n points in R
2, and let 1 ≤ k ≤ n be an integer.

A maximally separated subset of S of size k can be computed in nO(
√
k) time.

6. Conclusion. In this paper we have presented efficient exact and approxi-
mation algorithms for computing maximally separated subsets of a set of points in
the plane. The approximation algorithm runs in linear time for fixed values of k,

and the exact algorithm runs in time nO(
√
k). We also presented O(n4/3polylog(n))-

time algorithms for k = 3, 4. As mentioned in Section 4.3, it is not clear whether
our approach gives a subquadratic algorithm for k = 5. Another interesting open
problem is whether a maximally separated subset of size k can be computed in time

nO(1) + kO(
√
k).

REFERENCES

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent measures of
points, J. ACM, 51 (2004), pp. 606–635.

[2] P. K. Agarwal, M. van Kreveld, and S. Suri, Label placement by maximum independent
set in rectangles, Comput. Geom., 11 (1998), pp. 209–218.

834 PANKAJ AGARWAL, MARK OVERMARS, AND MICHA SHARIR

[3] P. K. Agarwal and C. M. Procopiuc, Exact and approximation algorithms for clustering,
Algorithmica, 33 (2002), pp. 201–226.

[4] P. K. Agarwal, M. Sharir, and E. Welzl, The discrete 2-center problem, Discrete Comput.
Geom., 20 (1998), pp. 287–305.

[5] J. Alber and J. Fiala, Geometric separation and exact solutions for the parameterized inde-
pendent set problem on disk graphs, J. Algorithms, 52 (2004), pp. 134–151.

[6] R. Boppana and M. M. Halldórsson, Approximating maximum independent sets by excluding
subgraphs, BIT, 32 (1992), pp. 180–196.

[7] T. M. Chan, Polynomial-time approximation schemes for packing and piercing fat objects, J.
Algorithms, 46 (2003), pp. 178–189.

[8] T. M. Chan, A note on maximum independent sets in rectangle intersection graphs, Inform.
Process. Lett., 89 (2004), pp. 19–23.

[9] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete Math., 86
(1990), pp. 165–177.

[10] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf, Computational
Geometry: Algorithms and Applications, 2nd ed., Springer-Verlag, Berlin, 2000.

[11] T. Erlebach, K. Jansen, and E. Seidel, Polynomial-time approximation schemes for geo-
metric intersection graphs. SIAM J. Comput., 34 (2005), pp. 1302–1323.

[12] M. Formann and F. Wagner, A packing problem with applications to lettering of maps, in
Proceedings of the 7th Annual Symposium on Computational Geometry, North Conway,
NH, 1991, pp. 281–288.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[14] T. Gonzalez, Clustering to minimize the maximum intercluster distance, Theoret. Comput.
Sci., 38 (1985), pp. 293–306.

[15] J. Hastad, Clique is hard to approximate within n1−ε, Acta Math., 182 (1999), pp. 105–142.
[16] J. Hershberger, Finding the upper envelope of n line segments in O(n logn) time, Inform.

Process. Lett., 33 (1989), pp. 169–174.
[17] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz,

and R. E. Stearns, NC-approximation schemes for NP- and PSPACE-hard problems for
geometric graphs, J. Algorithms, 26 (1998), pp. 238–274.

[18] M. Katz and M. Sharir, An expander-based approach to geometric optimization, SIAM J.
Comput., 26 (1997), pp. 1384–1408.

[19] M. V. Marathe, H. Beru, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz, Simple
heuristics for unit graphs, Networks, 25 (1995), pp. 59–68.

[20] D. Marx, Efficient approximation schemes for geometric problems?, in Proceedings of the 13th
Annual European Symposium Algorithm, Palma de Mallorca, Spain, 2005, pp. 448–459.

[21] M. Sharir and P. K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Appli-
cations, Cambridge University Press, Cambridge, UK, 1995.

[22] E. J. van Leeuwen, Approximation algorithms for unit disk graphs, Proceedings of the 31st
International Workshop on Graph Theoretic Algorithms, Metz, France, 2005, pp. 351–361.

[23] J. Vleugels and R. C. Veltkamp, Efficient image retrieval through vantage objects, Pattern
Recognition, 35 (2002), pp. 69–80.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 835–843

A PROBABILISTIC APPROACH TO THE DICHOTOMY PROBLEM∗

TOMASZ �LUCZAK† AND JAROSLAV NEŠETŘIL‡

Abstract. Let R(n, k) denote the random k-ary relation defined on the set [n] = {1, 2, . . . , n}.
We show that the probability that ([n],R(n, k)) is projective tends to one, as either n or k tends
to infinity. This result implies that for most relational systems (B,R) the CSP(B,R) problem is
NP-complete (and thus that the dichotomy conjecture holds with probability 1), and confirms a
conjecture of Rosenberg [I. G. Rosenberg, Rocky Mountain J. Math., 3 (1973), pp. 631–639].

Key words. CSP, projectivity, random relation

AMS subject classifications. Primary, 68Q15; Secondary, 08A05, 05D40, 68R05

DOI. 10.1137/S0097539703435492

1. Introduction. Let Δ = (δi)i∈I be a finite sequence of positive integers. A
relational system of type Δ is a pair (A,R), where A is a finite set, R = (Ri)i∈I ,
and Ri is a δi-ary relation on A, i.e., Ri ⊆ Aδi for i ∈ I. A system (A, (Ri)i∈I) is
loop-free if for every a ∈ A and i ∈ I the δi-tuple (a, . . . , a) is not in Ri. If (A,R),
(A′, R′) are relational systems of the same type Δ = (δi)i∈I , then by a homomorphism
from (A′, R′) to (A′′, R′′) we mean a map f : A′ → A′′ such that for every i ∈ I, we
have (f(x1), . . . f(xδi)) ∈ R′′

i whenever (x1, . . . , xδi) ∈ R′
i (for a recent introduction

to homomorphisms of graphs and structures, see [8].)
Relational structures and homomorphisms express various decision and counting

combinatorial problems such as coloring, satisfiability, and linear algebra problems.
Many of them can be reduced to special cases of a general constraint satisfaction
problem CSP(B,R) which, in the language of homomorphisms, can be stated as fol-
lows (cf. [6]): given a relational system (A,R′) decide if there exists a homomorphism
f : (A,R′) → (B,R). A number of such problems have been studied and have known
complexity, e.g., when we deal with undirected graphs or the problem is restricted to
small sets A (see [4, 7, 14]). However at this moment we are far from understand-
ing the behavior of the CSP(B,R) problem even for binary relations (B,R) (i.e., for
relational systems of type Δ = (2)). It seems that “most” CSP(B,R) are hard (NP-
complete) problems while few exceptions from this seem to be polynomial. Thus, for
instance, for undirected graphs (i.e., symmetric binary relations) CSP(B,R) is always
a hard problem with exactly three exceptions: when (B,R) is a loop, or a single vertex
(with no relation), or a symmetric edge [7]. Results for other solved cases are similar
(see [4, 14]).

One of the basic unsolved questions in this area of constraint satisfaction problems
is the following [6].

Conjecture 1 (dichotomy conjecture). Every CSP(B,R) problem is either NP-
complete or polynomially solvable.

∗Received by the editors September 26, 2003; accepted for publication (in revised form) April 29,
2006; published electronically November 14, 2006.

http://www.siam.org/journals/sicomp/36-3/43549.html
†Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznań,

Poland (tomasz@amu.edu.pl). This author was partially supported by KBN grant 2 P03A 016 23.
‡Department of Applied Mathematics, Institute of Theoretical Computer Sciences (ITI),

Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic (nesetril@
kam.ms.mff.cuni.cz). This author was partially supported by grants LN00A56 and 1M0021620808 of
the Czech Ministry of Education.

835

836 TOMASZ �LUCZAK AND JAROSLAV NEŠETŘIL

This remains widely open even for Δ = (2) (in fact, the complexity of the problem
is reflected by this case). In this paper we consider a “probabilistic version” of this
problem showing that CSP(B,R) is NP-complete for most “large” loop-free relational
systems (B,R).

Theorem 2. Let Δ = (δi)i∈I be such that maxi∈I δi ≥ 2. Then CSP(B,R) is
NP-complete for almost all loop-free relational systems (B,R) of type Δ.

Note that for (B,R) of type (1, 1, . . . , 1) the problem CSP(B,R) is trivial. We
also remark that our probabilistic approach is very different from those considered
by Achlioptas et al. [1] who study random instances of CSP(B,R) for a given (i.e.,
nonrandom) relational system (B,R).

The paper is organized as follows. In the following section we formulate the
main result of the paper, Theorem 4, which states that most relational systems are
strongly rigid, as conjectured by Rosenberg [13]. We also make the formulation of
Theorem 2 precise by introducing a notion of a random k-ary relation and remark
that Theorem 2 follows from Theorem 4. Then, we introduce “reach” relations and
show that reachness implies projectivity. Finally, in section 4, we prove Theorem 4.

2. Projective and rigid relational system. Let (A,R) be a relational system
of type Δ = (δi)i∈I . By (A�, R�) we denote the relational system of type Δ such that
for every i ∈ I

(
(a1

1, . . . , a
1
�), . . . , (a

k
1 , . . . , a

k
�)
)
∈ R�

i

if and only if (a1
j , . . . , a

k
j) ∈ Ri for each j = 1, . . . , � (thus k = δi). An operation

(polymorphism in [2, 5, 9, 13]) of a relational system (A,R) is a homomorphism
f : A� → A from (A�, R�) to (A,R) for some � ≥ 1. Such an operation is idempotent if
f(a, . . . , a) = a for every a ∈ A, and it is a projection (on the jth coordinate) if there
exists j, 1 ≤ j ≤ �, such that for every (a1, . . . , a�) ∈ A� we have f(a1, . . . , a�) = aj .
We say that a system (A,R) is projective if for every � ≥ 1 every idempotent operation
f : A� → A is a projection (cf., [10, 11]). The system (A,R) is rigid if the identity
mapping is the only homomorphism from A to A and strongly rigid if it is both
projective and rigid. It is easy to see that (A,R) is strongly rigid if and only if for
each � ≥ 1 every operation f : A� → A is a projection.

The notions of projective and rigid relational systems play an important role
in investigations of complexity of CSP(B,R) problems. In particular, it is known
that these problems are hard whenever the system (B,R) is strongly rigid, i.e., the
following result holds (see, for instance, [2, 3, 5, 9]).

Theorem 3. If a relational system (B,R) is strongly rigid, then the problem
CSP(B,R) is NP-complete.

Thus, in order to show Theorem 2, it is enough to verify that most of relational
systems are strongly rigid. In order to make this statement precise, let R(n, k) denote
a random k-ary relation defined on a set [n] = {1, 2, . . . , n} for which the probability
that (a1, . . . , ak) ∈ R(n, k) is equal to 1/2 independently for each (a1, . . . , ak), where
1 ≤ ar ≤ n for r = 1, . . . , k and not all ai’s are equal; for a ∈ [n], we put (a, a, . . . , a) /∈
R(n, k). Let ([n], (R(δi, n)i∈I)) denote the random relational system of type Δ =
(δi)i∈I . We shall show that the probability that ([n], (R(δi, n)i∈I)) is strongly rigid
tends to one as either n or maxi δi tends to infinity. Note that a relational system
(A,R) is strongly rigid, provided for some i0 ∈ I the system (A,Ri0) of type (δi0) is
strongly rigid (although the converse implication, in general, does not hold). Thus,
it is enough to prove our result for “simple” relational systems which consist of just
one k-ary relation.

A PROBABILISTIC APPROACH TO THE DICHOTOMY PROBLEM 837

Theorem 4. For a fixed k ≥ 2,

lim
n→∞

Pr
(
([n],R(k, n)) is strongly rigid

)
= 1,(1)

while, for a given n ≥ 2,

lim
k→∞

Pr
(
([n],R(k, n)) is strongly rigid

)
= 1.(2)

The proof of Theorem 4 we postpone until section 4. It is based on an argument
which is somewhat similar to that used by the authors in [12] to show that almost
every graph (i.e., almost every binary symmetric relation) is strongly rigid.

We also remark that (2) settles in the affirmative a conjecture posed by Rosen-
berg [13].

3. Reach relational systems. Let R be a k-ary relation on a set A. A system
(A,R) is reach if there exist elements z1, . . . , zk−2 ∈ A such that for any four different
elements x1, x2, y1, y2 ∈ A, there is a w ∈ A such that for r = 1, 2, we have

(z1, . . . , zk−2, w, xr) ∈ R but (z1, . . . , zk−2, w, yr) /∈ R.(3)

We shall show that reachness implies projectivity.
Theorem 5. Each reach system (A,R) with |A| ≥ 5 is projective.
Before we prove Theorem 5 we introduce some more notation. Let f : A� → A

be an idempotent operation from A� to A. For an �-tuple (a1, . . . , a�) ∈ A�, we set

Ξ(a1, . . . , a�) = {a ∈ A : a = ai for some i = 1, 2, . . . , �},

by ξ(a1, . . . , a�) = |Ξ(a1, . . . , a�)| we denote the number of different coordinates of
(a1, . . . , a�), and we set

Λf (a1, . . . , a�) = {i : f(a1, . . . , a�) = ai}.

Hence, for instance, Ξ(a, . . . , a) = {a}, ξ(a, . . . , a) = 1, and, since f is idempotent,
Λf (a, . . . , a) = {1, 2, . . . , �}. Our proof of Theorem 5 is based on the following two
claims.

Claim 1. If (A,R) is reach, then for every idempotent operation f : A� → A,
and every (a1, . . . , a�) ∈ A�,

Λf (a1, . . . , a�) �= ∅.(4)

Proof. We shall use induction on ξ(a1, . . . , a�). As we have already observed, the
fact that f is idempotent implies that Λf (a, . . . , a) = {1, 2, . . . , �}. Let us suppose that
the assertion holds for every (a1, . . . , a�) with at most m, 1 ≤ m ≤ � − 1, different
coordinates, and let (b1, . . . , b�) be such that Ξ(b1, . . . , b�) = {c1, . . . , cm+1}. For a
contradiction let us assume that

f(b1, . . . , b�) = d /∈ {c1, . . . , cm+1}.

Because R is reach one can choose from A elements ei, i = 1, . . . , k − 2, and c̄j ,
j = 1, . . . ,m, such that for each j = 1, . . . ,m, we have

(e1, . . . , ek−2, c̄j , cj) ∈ R but (e1, . . . , ek−2, c̄j , d) /∈ R,

838 TOMASZ �LUCZAK AND JAROSLAV NEŠETŘIL

and

(e1, . . . , ek−2, c̄m, cm+1) ∈ R.

For i = 1, 2, . . . , �, define

b̄i =

{
c̄j if bi = cj for some j = 1, . . . ,m,

c̄m if bi = cm+1.

Then ξ(b̄1, . . . , b̄�) = m and so, by the inductive assumption, for some s0 = 1, . . . ,m,
we have f(b̄1, . . . , b̄�) = c̄s0 . Note however that the k-tuple

(
(e1, . . . , e1), (e2, . . . , e2), . . . , (ek−2, . . . , ek−2), (b̄1, . . . , b̄�), (b1, . . . , b�)

)

belongs to R� but is mapped by f into (e1, . . . , ek−2, c̄s0 , d), which, due to the choice
of c̄s0 , does not belong to R. This contradiction shows that Λf (b1, . . . , b�) �= ∅.

Claim 2. If (A,R) is reach, then for every idempotent operation f : A� → A,
and every pair of �-tuples (a1, . . . , a�), (b1, . . . , b�), there exists t, 1 ≤ t ≤ �, such that

{at, bt} ⊆ {f(a1, . . . , a�), f(b1, . . . , b�)}.(5)

Proof. Claim 1 implies that f(a1, . . . , a�) = aj1 , f(b1, . . . , b�) = bj2 for some
indices j1, j2, 1 ≤ j1, j2 ≤ �. Since (A,R) is reach one can find elements ei, i =
1, . . . , k − 2, and c1, . . . , c� such that for each s = 1, . . . , �,

(e1, . . . , ek−2, cs, as), (e1, . . . , ek−2, cs, bs) ∈ R(6)

but

(e1, . . . , ek−2, cs, w) /∈ R for w ∈ {aj1 , bj2} \ {as, bs}.(7)

From Claim 1 it follows that f(c1, . . . , c�) = ct for some t, 1 ≤ t ≤ �. Note also that
both k-tuples

(
(e1, . . . , e1), . . . , (ek−2, . . . , ek−2), (c1, . . . , c�), (a1, . . . , a�)

)

and

(
(e1, . . . , e1), . . . , (ek−2, . . . , ek−2), (c1, . . . , c�), (b1, . . . , b�)

)

belong to R�, and so we must have

(e1, . . . , ek−2, ct, aj1), (e1, . . . , ek−2, ct, bj2) ∈ R .

This fact, together with (7), implies that {at, bt} ⊆ {aj1 , bj2}.
Proof of Theorem 5. Let

Â� = {(a1, . . . , a�) ∈ A� : ξ(a1, . . . , a�) ≤ 3}.

Let us observe that for some (a1, . . . , a�) ∈ Â� we have |Λf (a1, . . . , a�)| = 1. In-

deed, take (a1, . . . , a�) ∈ Â� for which |Λf (a1, . . . , a�)| is minimal. Since, by Claim 1,

A PROBABILISTIC APPROACH TO THE DICHOTOMY PROBLEM 839

|Λf (a1, . . . , a�)| ≥ 1, assume that j ∈ Λf (a1, . . . , a�). Let b, b′ ∈ A \ Ξ(a1, . . . , a�) and
let

ci =

⎧⎪⎨
⎪⎩
b if i = j,

b′ if i ∈ Λf (a1, . . . , a�) \ {j},
aj if i /∈ Λf (a1, . . . , a�).

Then (c1, . . . , c�) ∈ Â�, but Claim 2 implies that Λf (c1, . . . , c�) is a proper subset of
Λf (a1, . . . , a�). Hence, there is an (a1, . . . , a�) ∈ A� such that Λf (a1, . . . , a�) = {t} for
some 1 ≤ t ≤ �.

Let us fix such (a1, . . . , a�) and t, pick b ∈ A \ Ξ(a1, . . . , a�), and define

āi =

{
b if i = t,

ai if i �= t.

Then, using again Claims 1 and 2, we infer that Λf (ā1, . . . , ā�) = {t}. A similar
argument shows that Λf (d1, . . . , d�) = {t} whenever (d1, . . . , d�) belongs to the set

Ã� ⊂ Â� which consists of all �-tuples (d1, . . . , d�) such that for all i, j �= t we have
di = dj �= dt.

Now let (a1, . . . , a�) be any �-tuple of A� and suppose that f(a1, . . . , a�) = as �= at
for some s, 1 ≤ s ≤ �. Consider (d1, . . . , d�) ∈ Ã� such that

di =

{
as if i = t,

at if i �= s.

Then, the pair (a1, . . . , a�), (d1, . . . , d�) contradicts Claim 2. Consequently, for every
(a1, . . . , a�) we have f(a1, . . . , a�) = at, and the assertion follows.

In order to deal with relational systems defined on small sets, we introduce one
more definition. Let 2 ≤ i ≤ k−1 and (A,R) be a relation system with k-ary relation
R. We call (A,R) i-reach if (A,R) is reach and there exist elements z1, . . . , zk−i−1 ∈ A
such that for every two different i-tuples (x1, . . . , xi), (y1, . . . , yi) ∈ Ai, there is a
w ∈ A for which

(z1, . . . , zk−i−1, w, x1, . . . , xi) ∈ R(8)

but

(z1, . . . , zk−i−1, w, y1, . . . , yi) /∈ R.(9)

It turns out that (A,R) is projective also for |A| ≥ 2 if the assumption of Theo-
rem 5 is slightly strengthened.

Theorem 6. If (A,R) is 3-reach, then (A,R) is projective.
The following result, which is, in a way, a generalization of Claim 1, can be shown

by imitating the proof of Claim 2.
Claim 3. If (A,R) is i-reach for some i ≥ 2, then for every set of i �-tuples

(ar1, . . . , a
r
�), r = 1, 2, . . . , i, we have

i⋂
r=1

Λf (ar1, . . . , a
r
�) �= ∅.(10)

840 TOMASZ �LUCZAK AND JAROSLAV NEŠETŘIL

Proof. Let us assume that (A,R) is i-reach, and let (ar1, . . . , a
r
�) ∈ A� for r =

1, . . . , i. From Claim 1 it follows that there exist indices jr, 1 ≤ jr ≤ �, such that
f(ar1, . . . , a

r
�) = arjr for r = 1, . . . , i. Since (A,R) is i-reach one can find elements ei,

i = 1, . . . , k − i− 1, and c1, . . . , c�, such that for each s = 1, . . . , �,

(e1, . . . , ek−i−1, cs, a
1
s, . . . , a

i
s) ∈ R(11)

but

(e1, . . . , ek−2, cs, a
1
j1 , . . . , a

i
ji) /∈ R unless (a1

s, . . . , a
i
s) = (a1

j1 , . . . , a
i
ji).(12)

Claim 1 implies that f(c1, . . . , c�) = ct for some t, 1 ≤ t ≤ �. Note that for each
r = 1, 2, . . . , i, the k-tuple

(
(e1, . . . , e1), . . . , (ek−i−1, . . . , ek−i−1), (c1, . . . , c�), (a

1
1, . . . , a

1
�), . . . , (a

i
1, . . . , a

i
�)
)

belongs to R�, and so its image under f , equal to (e1, . . . , ek−i−1, ct, a1
j1
, . . . , aiji),

belongs to R. But then (12) implies that (a1
t , . . . , a

i
t) = (a1

j1
, . . . , aiji), i.e.,

t ∈
i⋂

r=1

Λf (ar1, . . . , a
r
�).

Proof of Theorem 6. As in the proof of Theorem 5 we show first that for some
(a1, . . . , a�) ∈ A� we have |Λf (a1, . . . , a�)| = 1.

Indeed, suppose that |Λf (a1, . . . , a�)| is minimal, |Λf (a1, . . . , a�)| ≥ 2. Choose
j ∈ Λf (a1, . . . , a�), and b ∈ A \ {aj}. Define

ci =

{
aj if i �= j,

b if i = j.

Then we have the following possibilities for Λf (c1, . . . , c�):
(i) Λf (c1, . . . , c�) = {j} (in the case f(c1, . . . , c�) = b),
(ii) Λf (c1, . . . , c�) ∩ Λf (a1, . . . , a�) = ∅ (if f(c1, . . . , c�) �= aj , b),
(iii) Λf (c1, . . . , c�) = Λf (a1, . . . , a�) (in the case f(c1, . . . , c�) = aj).
In the first case we are done, the second case is impossible by Claim 3, and the last

case is impossible as we have chosen (a1, . . . , a�) such that |Λf (a1, . . . , a�)| is minimal.
Thus, for some (a1, . . . , a�) ∈ A�, we have Λf (a1, . . . , a�) = {t}. Now the assertion
follows from Claim 3.

4. Proof of the main result. Let us start with the following result, which, in
fact, gives more than we need.

Lemma 7. Let i ≥ 2 be a fixed natural number.
(i) For a fixed k > i

lim
n→∞

Pr
(
([n],R(n, k)) is i-reach

)
= 1.

(ii) For a fixed n ≥ 2

lim
k→∞

Pr
(
([n],R(n, k)) is i-reach

)
= 1.

A PROBABILISTIC APPROACH TO THE DICHOTOMY PROBLEM 841

Proof. Let k > i ≥ 2 be fixed and let z1, . . . , zk−i−1 be any given elements of [n],
say, zr = r for r = 1, . . . , k − i− 1. Then, the probability that for two given i-tuples
(x1, . . . , xi), (y1, . . . , yi) for all elements w either (8) or (9) does not hold is bounded
from above by (3/4)n. Hence the probability that one cannot find a required w, for
some of at most n2i possible choices for x’s and y’s, is smaller than n2i(3/4)n and
tends to 0 as n → ∞. This proves the first part of the lemma.

In order to show (ii) observe first that there are at most 4n2i+1 choices for i-tuples
(x1, . . . , xi), (y1, . . . , yi) and w ∈ [n]. The probability that for all these choices and for
given z1, . . . , zk−i−1 each of the relations (3), (8), and (9) holds is bounded from below

by ρ = 2−4n2i+1

. But there are N = nk−i−1 possible choices for z’s and so the number
of (k− i− 1)-tuples (z1, . . . , zk−i−1) for which (3), (8), and (9) hold is bounded from
below by the random variable Z with binomial distribution Bi(N, ρ). Since N → ∞
as k → ∞ but ρ remains bounded away from 0, with probability tending to 1 as
k → ∞, we have Z > 0. Hence, with probability tending to 1 as k → ∞, there exists
a choice of z1, . . . , zk−i−1 for which (3), (8), and (9) hold (for all w ∈ A !) and (ii)
follows.

Let us remark that in Lemma 7(i) it would be sufficient for our purposes to prove
that for every fixed k ≥ 2 we have

lim
n→∞

Pr
(
([n],R(n, k)) is reach

)
= 1.

This can be proved similarly to (i); nevertheless Lemma 7 gives a stronger (and
more symmetric) result. However there are two exceptions: for k = 2, 3, where
(according to Theorem 6) we have to use the reach property only.

We shall also need to know that the system ([n],R(n, k)) typically has no non-
trivial endomorphisms. This is a variant on the well-known result for graphs; see,
e.g., [8].

Lemma 8.

(i) For a fixed k ≥ 2,

lim
n→∞

Pr
(
([n],R(n, k)) is rigid

)
= 1.

(ii) For a fixed n ≥ 2,

lim
k→∞

Pr
(
([n],R(n, k)) is rigid

)
= 1.

Proof. Let us consider first the case when k is fixed. Let f : [n] → [n] be an
endomorphism of ([n],R(n, k)). Note that with probability tending to 1 as n → ∞
for any S ⊆ [n], |S| = m0 = �2 log n, we have |f(S)| ≥ 2. Indeed, if S is mapped
into a single point, then, since R(n, k) is loop-free, for all a1, . . . , ak ∈ S we have
(a1, . . . , ak) /∈ R(n, k), and the probability that such an S exists is bounded from
above by

(
n

m0

)(1

2

)mk
0 ≤

(en
m

(1

2

)mk−1
0

)m0

→ 0 .

Let us denote by W the number of vertices of [n] which are not fixed by f . We
show that with probability 1− o(1) we have |W | ≤ 17 log2 n. Let us assume that this
is not the case. Then, using the fact we have just proved, one can greedily construct

two disjoint sets S1 ⊆ W , S2 ⊆ f(W), |S1|, |S2| ≥ 17 log2 n
2 log n+1 ≥ m1 = �8 log n , such

842 TOMASZ �LUCZAK AND JAROSLAV NEŠETŘIL

that f |S1 is a bijective homomorphism from S1 to S2. However, the probability that
two such sets exist is bounded from above by

∑
m1≥log2 n

(
n

m1

)(
n

m1

)
m1!

(3

4

)mk
1 ≤

∑
m1≥log2 n

(
e2n2

m1

(3

4

)mk−1
1

)m1

→ 0 ,(13)

since the probability that, given f : S1 → S2, and a1, . . . , ak ∈ S1, we have (a1, . . . , ak) ∈
R(n, k) but (f(a1), . . . , f(ak)) /∈ R(n, k) is equal to 1/4.

In order to complete the proof of (i) one can argue as in the proof of Lemma 7
that with probability 1− o(1), for each pair of elements v, w ∈ [n] and each W ⊆ [n],
|W | ≤ 17 log2 n, there are vertices z1, . . . , zk−1 ∈ [n] \W such that (z1, . . . , zk−1, v) ∈
R(n, k) but (z1, . . . , zk−1, w) /∈ R(n, k) tends to one. Hence, with probability tending
to one as n → ∞, we have W = ∅; i.e., each endomorphism of ([n],R(n, k)) is an
identity.

In order to show (ii) observe that, since with probability tending to 1 as k → ∞
the relation R(n, k) is nonempty (see Lemma 7), the image of each homomorphism
of ([n],R(n, k)) contains at least two points. Let us take any nontrivial function
f : [n] → [n] with |f([n])| ≥ 2, and let j, j′ ∈ [n], be such that f(j) �= j, f(j′). For
r = 1, . . . , k, s = 1, . . . , k, let

asr =

{
j if r ≤ s,

j′ if r > s.

Note that all 2k k-tuples (as1, . . . , a
s
k), (f(as1), . . . , f(ask)), s = 1, . . . , k, are different.

Furthermore, the probability that for some s = 1, . . . , k, it does not happen that
(as1, . . . , a

s
k) ∈ R(n, k) and (f(as1), . . . , f(ask)) �∈ R(n, k), is 3/4. Consequently, the

probability that for each of at most nn possible nontrivial mappings f : [n] → [n]
none of the pairs (as1, . . . , a

s
k), (f(as1), . . . , f(ask)), s = 1, . . . , k, is a “witness” that f

is not a homomorphism is bounded from above by nn(3/4)k and tends to 0 when n
is fixed and k → ∞. Consequently, if n ≥ 2 is fixed and k → ∞, the probability that
there exists nontrivial endomorphism of ([n],R(n, k)) tends to 0.

Proof of Theorem 4. Theorem 4 follows immediately from Theorems 5 and 6 and
Lemmas 7 and 8 (and the remark following the proof of Lemma 7).

REFERENCES

[1] D. Achlioptas, L. M. Kirousis, E. Kranakis, D. Krizanc, M. S. O. Molloy, and Y. C. Sta-

matiou, Random constraint satisfaction: A more accurate picture, Constraints, 6 (2001),
pp. 329–344.

[2] M. Bodirsky and J. Nešetřil, Constraint satisfaction with countable homogeneous templates,
in Computer Science Logic, Lecture Notes in Comput. Sci. 2803, Springer-Verlag, Berlin,
2003, pp. 44–57.

[3] V. G. Bodnarčuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov, Galois theory for
Post algebras I–II, Kibernetika, 3 (1969), pp. 1–10 and 5 (1969), pp. 1–9 (in Russian);
Cybernetics, (1969), pp. 243–252, 531–539 (English version).

[4] A. Bulatov, A dichotomy theorem for constraints on a three element set, in Proceedings of
the IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los
Alamitos, CA, 2002, pp. 649–658.

[5] A. Bulatov, A. Krokhin, and P. G. Jeavons, The complexity of maximal constraint lan-
guages, in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York,
2001, pp. 667–674.

[6] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory, SIAM J. Comput., 28
(1998), pp. 57–104.

A PROBABILISTIC APPROACH TO THE DICHOTOMY PROBLEM 843

[7] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48
(1990), pp. 92–110.

[8] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University Press, Oxford,
UK, 2004.

[9] P. G. Jeavons, On the algebraic structure of combinatorial problems, Theoret. Comput. Sci.,
200 (1998), pp. 185–204.

[10] B. Larose and C. Tardif, Strongly rigid graphs and projectivity, Mult.-Valued Log., 7 (2001),
pp. 339–361.

[11] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph
Theory, 40 (2002), pp. 162–171.

[12] T. �Luczak and J. Nešetřil, A note on projective graphs, J. Graph Theory, 47 (2004), pp. 81–
86.

[13] I. G. Rosenberg, Strongly rigid relations, Rocky Mountain J. Math., 3 (1973), pp. 631–639.
[14] T. Schaefer, The complexity of satisfiability problems, in Proceedings of the ACM Symposium

on Theory of Computing, ACM, New York, 1978, pp. 216–226.

SPECIAL ISSUE ON RANDOMNESS AND COMPLEXITY

The idea of a SICOMP special issue on randomness and complexity occurred to us
when we were in residence at the Radcliffe Institute for Advanced Study at Harvard
University during the academic year 2003–2004. We were part of a science cluster
in theoretical computer science at the Radcliffe Institute whose other members were
Eli Ben-Sasson, Dana Ron, Ronitt Rubinfeld, and Salil Vadhan. The focus of this
cluster was randomness and computation. The extensive interaction within the cluster
members as well as with frequent visitors (most notably Irit Dinur, Shafi Goldwasser,
and Tali Kaufman) made us more aware than ever of the richness of the area, and the
idea of editing a special issue on randomness and complexity emerged naturally.

The interplay of randomness and complexity is at the heart of modern cryptog-
raphy and plays a fundamental role in the design of algorithms and in complexity
theory at large. Specifically, this interplay is pivotal to several intriguing notions
of probabilistic proof systems (e.g., interactive proofs, zero-knowledge proofs, and
probabilistically checkable proofs), is the focus of the computational approach to ran-
domness, and is essential for various types of sub–linear time algorithms. All these
areas were at the focus of extensive research in the last two decades, but each research
generation brings its own new perspective (and/or focus) to them. This special issue
reports some of the recent progress achieved in these related areas, where recent re-
lates to spring 2004, when papers were invited for this issue. Following are some of
the issue’s main themes.

Cryptography. The paper of Applebaum, Ishai, and Kushilevitz provides strong
evidence that many cryptographic primitives and tasks can be implemented at very
low complexity. For example, they show that the existence of one-way functions
that can be evaluated in NC1 implies the existence of one-way functions that can be
evaluated in NC0. Whereas the former are widely believed to exist (e.g., based on
the standard factoring assumption), most researchers have previously believed that
the latter do not exist. We stress that evaluation in NC0 means that each output bit
only depends on a constant number of input bits. The new work further shows that
dependence on four input bits suffices (whereas dependence on at least three input
bits is definitely necessary).

Probabilistically checkable proofs (PCPs). Current research in the area is marked
by a renewed attention to aspects such as the following:

1. Achieving constructs of almost-linear length that can be tested by very few
(say constant number of) queries.

2. Obtaining a combinatorial proof of the PCP theorem.
3. Exploration of the relationship between PCP and coding theory (e.g., locally

testable codes).
4. Applications of PCPs to obtaining new inapproximability results regarding

long-standing problems such as min-bisection.

Specifically, the paper of Ben-Sasson et al. presents significant improvements to the
trade-off between proof-length and the number of queries. The paper of Dinur and
Reingold makes a major step in the project of obtaining combinatorial proofs of the
PCP theorem. Both papers share a reformulation of the proof-composition paradigm,
where “proximity testing” and “robustness” play a central role. Finally, Khot’s paper
puts forward new PCP parameters and introduces new PCP constructions that are
used to provide evidence that min-bisection is not approximable up to some constant.

ix

x SPECIAL ISSUE ON RANDOMNESS AND COMPLEXITY

Randomness extraction. The construction of randomness extractors has received
much attention in the last two decades. Much of the past work (especially in the
1990s) has focused on extracting randomness from a single weak source while using
an auxiliary short (uniformly distributed) seed. The focus was on using the weakest
possible form of a source (i.e., a min-entropy source). In contrast, the current era is
marked by a focus on stronger sources while disallowing the use of an auxiliary (uni-
formly distributed) seed. The paper of Gabizon, Raz, and Shaltiel studies bit-fixing
sources, whereas the paper of Barak, Impagliazzo, and Wigderson studies extraction
from a constant number of independent sources of linear min-entropy (which may
be viewed as a single source consisting of a constant number of independent blocks).
Indeed, each of these papers revisits problems raised in the mid 1980s, which were
neglected in the 1990s (due to the focus of that era on obtaining the best results for
seed-assisted extraction from a single min-entropy source). Needless to say, we be-
lieve that the renewed interest in these problems (especially the second one) is highly
justified.

We wish to seize the opportunity to say a few words regarding seed-assisted
versus seedless randomness extraction. Seed-assisted randomness extraction found
many applications (via direct and indirect connections to other important problems),
but still one may ask what they mean for the original problem of implementing a
randomized procedure using a weak source of randomness. One answer is that the seed
can be obtained from an expensive high-quality auxiliary source and that one wishes
to minimize the use of this source (and thus uses a cheaper low-quality random source
for the bulk of the randomness required). Another answer is that if the seed is short
enough, then one may afford to try all possible seeds, invoke the procedure with the
corresponding randomness extracted (from the same source output and varying seeds),
and rule by majority. This suggestion is adequate for the implementation of standard
randomized algorithms, but not in “adversarial” settings (e.g., cryptography) in which
a randomized procedure is invoked in order to protect against some (adversarial) party.
Thus, seedless randomness extraction is essential in many applications.

Worst-case to average-case reductions. The question of whether worst-case to
average-case reductions or even merely “hardness amplification” exist for NP has re-
ceived much interest recently. The first part of the question is studied in the paper of
Bogdanov and Trevisan which provides a negative indication, restricted to nonadap-
tive reductions. The second part of the question is unfortunately not represented in
this special issue (and the interested reader is directed to [1]).

Zero-knowledge. Vadhan’s paper presents an unconditional study of computa-
tional zero-knowledge, yielding valuable transformations between various forms of
zero-knowledge (e.g., from a weak form of zero-knowledge to the standard form).
This work builds on studies of statistical zero-knowledge that were conducted in the
late 1990s, thus fulfilling a prophecy made at the time.

Low-degree tests. The celebrated low-degree tests have been revisited recently
with a focus on derandomization and on low-degree tests over small finite fields. The
first direction is represented by the work of Shpilka and Wigderson that seems to
provide a “proof from The Book” for (a derandomized version of) the linearity test.
The second direction is unfortunately not represented in this special issue (and the
interested reader is directed to [2, 3]).

Acknowledgments. We are grateful to the contributing authors for accepting
our invitation to publish in this special issue. In some cases, they had to decline other
competitive invitations in order to do so.

SPECIAL ISSUE ON RANDOMNESS AND COMPLEXITY xi

We are grateful to Eva Tardos for handling the refereeing process of the paper by
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan.

REFERENCES

[1] A. Healy, S. Vadhan, and E. Viola, Using nondeterminism to amplify hardness, in Proceed-
ings of the 36th Symposium on Theory of Computing, 2004, pp. 192–201.

[2] C. S. Jutla, A. C. Patthak, A. Rudra, and D. Zuckerman, Testing low-degree polynomi-
als over prime fields, in Proceedings of the 45th Symposium on Foundations of Computer
Science, 2004, pp. 423–432.

[3] T. Kaufman and D. Ron, Testing polynomials over general fields, in Proceedings of the 45th
Symposium on Foundations of Computer Science, 2004, pp. 413–422.

Oded Goldreich
Madhu Sudan
guest editors

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 845–888

CRYPTOGRAPHY IN NC0∗

BENNY APPLEBAUM† , YUVAL ISHAI† , AND EYAL KUSHILEVITZ†

Abstract. We study the parallel time-complexity of basic cryptographic primitives such as one-
way functions (OWFs) and pseudorandom generators (PRGs). Specifically, we study the possibility
of implementing instances of these primitives by NC0 functions, namely, by functions in which each
output bit depends on a constant number of input bits. Despite previous efforts in this direction,
there has been no convincing theoretical evidence supporting this possibility, which was posed as an
open question in several previous works.

We essentially settle this question by providing strong positive evidence for the possibility of
cryptography in NC0. Our main result is that every “moderately easy” OWF (resp., PRG), say
computable in NC1, can be compiled into a corresponding OWF (resp., “low-stretch” PRG) in
which each output bit depends on at most 4 input bits. The existence of OWFs and PRGs in
NC1 is a relatively mild assumption, implied by most number-theoretic or algebraic intractability
assumptions commonly used in cryptography. A similar compiler can also be obtained for other
cryptographic primitives such as one-way permutations, encryption, signatures, commitment, and
collision-resistant hashing.

Our techniques can also be applied to obtain (unconditional) constructions of “noncryptographic”
PRGs. In particular, we obtain ε-biased generators and a PRG for space-bounded computation in
which each output bit depends on only 3 input bits.

Our results make use of the machinery of randomizing polynomials [Y. Ishai and E. Kushilevitz,
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2000, pp. 294–304], which was originally motivated by questions in the domain of information-
theoretic secure multiparty computation.

Key words. cryptography, constant depth circuits, NC0, cryptographic primitives, pseudo-
random generator, one-way function, randomizing polynomials

AMS subject classifications. 94A60, 68P25, 68Q15

DOI. 10.1137/S0097539705446950

1. Introduction. The efficiency of cryptographic primitives is of both theoret-
ical and practical interest. In this work, we consider the question of minimizing the
parallel time-complexity of basic cryptographic primitives such as one-way functions
(OWFs) and pseudorandom generators (PRGs) [11, 52]. Taking this question to an
extreme, it is natural to ask if there are instances of these primitives that can be
computed in constant parallel time. Specifically, the following fundamental question
was posed in several previous works (e.g., [32, 22, 16, 41, 43]):

Are there one-way functions, or even pseudorandom generators, in NC0?

Recall that NC0 is the class of functions that can be computed by (a uniform family of)
constant-depth circuits with bounded fan-in. In an NC0 function each bit of the output
depends on a constant number of input bits. We refer to this constant as the output
locality of the function and denote by NC0

c the class of NC0 functions with locality c.
The above question is qualitatively interesting, since one might be tempted to

conjecture that cryptographic hardness requires some output bits to depend on many

∗Received by the editors February 2, 2005; accepted for publication (in revised form) September
8, 2005; published electronically December 15, 2006. A preliminary version of this paper appeared
in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2004. This research was supported by grant 36/03 from the Israel Science Foundation.

http://www.siam.org/journals/sicomp/36-4/44695.html
†Computer Science Department, Technion–Israel Institute of Technology, Haifa 32000, Israel

(abenny@cs.technion.ac.il, yuvali@cs.technion.ac.il, eyalk@cs.technion.ac.il).

845

846 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

input bits. Indeed, this view is advocated by Cryan and Miltersen [16], whereas
Goldreich [22] takes an opposite view and suggests a concrete candidate for OWFs
in NC0. However, despite previous efforts, there has been no convincing theoretical
evidence supporting either a positive or a negative resolution of this question.

1.1. Previous work. Linial, Mansour, and Nisan show that pseudorandom
functions cannot be computed even in AC0 [42]. However, no such impossibility
result is known for PRGs. The existence of PRGs in NC0 has been recently studied in
[16, 43]. Cryan and Miltersen [16] observe that there is no PRG in NC0

2 and prove that
there is no PRG in NC0

3 achieving a superlinear stretch, namely, one that stretches
n bits to n + ω(n) bits.1 Mossel, Shpilka, and Trevisan [43] extend this impossibility
to NC0

4. Viola [50] shows that a PRG in AC0 with superlinear stretch cannot be
obtained from an OWF via nonadaptive black-box constructions. Negative results for
other restricted computation models appear in [20, 54].

On the positive side, Impagliazzo and Naor [36] construct a (sublinear-stretch)
PRG in AC0, relying on an intractability assumption related to the subset-sum prob-
lem. PRG candidates in NC1 (or even TC0) are more abundant and can be based
on a variety of standard cryptographic assumptions including ones related to the
intractability of factoring [39, 44], discrete logarithms [11, 52, 44], and lattice prob-
lems [2, 33] (see Remark 6.6).2

Unlike the case of pseudorandom generators, the question of OWFs in NC0 is
relatively unexplored. The impossibility of OWFs in NC0

2 follows from the easiness
of 2-SAT [22, 16]. H̊astad [32] constructs a family of permutations in NC0 whose
inverses are P-hard to compute. Cryan and Miltersen [16], improving on [1], present
a circuit family in NC0

3 whose range decision problem is NP-complete. This, however,
gives no evidence of cryptographic strength. Since any PRG is also an OWF, all PRG
candidates cited above are also OWF candidates. (In fact, the one-wayness of an NC1

function often serves as the underlying cryptographic assumption.) Finally, Goldreich
[22] suggests a candidate OWF in NC0, whose conjectured security does not follow
from any well-known assumption.

1.2. Our results. As indicated above, the possibility of implementing most
cryptographic primitives in NC0 was left wide open. We present a positive answer
to this basic question, showing that, surprisingly, many cryptographic tasks can be
performed in constant parallel time.

Since the existence of cryptographic primitives implies that P �= NP, we can-
not expect unconditional results and have to rely on some unproven assumptions.3

However, we avoid relying on specific intractability assumptions. Instead, we assume
the existence of cryptographic primitives in a relatively “high” complexity class and
transform them to the seemingly degenerate complexity class NC0 without substantial
loss of their cryptographic strength. These transformations are inherently nonblack-
box, thus providing further evidence for the usefulness of nonblack-box techniques in
cryptography.

1From here on, we use a crude classification of PRGs into ones having sublinear, linear, or
superlinear additive stretch. Note that a PRG stretching its seed by just one bit can be invoked in
parallel (on seeds of length nε) to yield a PRG stretching its seed by n1−ε bits for an arbitrary ε > 0.

2In some of these constructions it seems necessary to allow a collection of NC1 PRGs and use
polynomial-time preprocessing to pick (once and for all) a random instance from this collection. This
is similar to the more standard notion of an OWF collection (cf. [23, section 2.4.2]). See Appendix A
for further discussion of this slightly relaxed notion of PRGs.

3This is not the case for noncryptographic PRGs such as ε-biased generators, for which we do
obtain unconditional results.

CRYPTOGRAPHY IN NC0 847

We now give a more detailed account of our results.
A general compiler. Our main result is that any OWF (resp., PRG) in a relatively

high complexity class, containing uniform NC1 and even ⊕L/poly, can be efficiently
“compiled” into a corresponding OWF (resp., sublinear-stretch PRG) in NC0

4. (The

class ⊕L/poly contains the classes L/poly and NC1 and is contained in NC2. In a
nonuniform setting it also contains the class NL/poly [51].) The existence of OWFs
and PRGs in this class is a mild assumption, implied in particular by most number-
theoretic or algebraic intractability assumptions commonly used in cryptography.
Hence, the existence of OWFs and sublinear-stretch PRGs in NC0 follows from a
variety of standard assumptions and is not affected by the potential weakness of a
particular algebraic structure. A similar compiler can also be obtained for other cryp-
tographic primitives including one-way permutations, encryption, signatures, com-
mitment, and collision-resistant hashing.

It is important to note that the PRG produced by our compiler will generally have
a sublinear additive stretch even if the original PRG has a large stretch. However,
one cannot do much better when insisting on an NC0

4 PRG, as there is no PRG with
superlinear stretch in NC0

4 [43].
OWFs with optimal locality. The above results leave a small gap between the

possibility of cryptography in NC0
4 and the known impossibility of implementing even

OWFs in NC0
2. We partially close this gap by providing positive evidence for the

existence of OWFs in NC0
3. In particular, we construct such OWFs based on the

intractability of decoding a random linear code.
Noncryptographic generators. Our techniques can also be applied to obtain un-

conditional constructions of noncryptographic PRGs. In particular, building on an
ε-biased generator in NC0

5 constructed by Mossel, Shpilka, and Trevisan [43], we ob-
tain a linear-stretch ε-biased generator in NC0

3. This generator has optimal locality,
answering an open question posed in [43]. It is also essentially optimal with respect
to stretch, since locality 3 does not allow for a superlinear stretch [16]. Our tech-
niques also apply to other types of noncryptographic PRGs such as generators for
space-bounded computation [6, 45], yielding such generators (with sublinear stretch)
in NC0

3.

1.3. Organization. In section 2 we provide an overview of our techniques, which
evolve around the notion of “randomized encoding” introduced in this work. Following
some preliminaries (section 3), in section 4 we formally define our notion of random-
ized encoding and discuss some of its variants, properties, and constructions. We then
apply randomized encodings to obtain NC0 implementations of different primitives:
OWFs (section 5), cryptographic and noncryptographic PRGs (section 6), and other
cryptographic primitives (section 7). In section 8 we construct OWFs with optimal
locality based on specific intractability assumptions. We conclude in section 9 with
some further research directions and open problems. We also call the reader’s atten-
tion to Appendix A which discusses collections of cryptographic primitives and how
they fit in the context of the current work.

2. Overview of techniques. Our key observation is that instead of computing
a given “cryptographic” function f(x), it might suffice to compute a function f̂(x, r)
having the following relation to f :

1. For every fixed input x and a uniformly random choice of r, the output distri-
bution f̂(x, r) forms a “randomized encoding” of f(x), from which f(x) can

be decoded. That is, if f(x) �= f(x′), then the random variables f̂(x, r) and

f̂(x′, r′), induced by a uniform choice of r, r′, should have disjoint supports.

848 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

2. The distribution of this randomized encoding depends only on the encoded
value f(x) and does not further depend on x. That is, if f(x) = f(x′), then

the random variables f̂(x, r) and f̂(x′, r′) should be identically distributed.
Furthermore, we require that the randomized encoding of an output value
y be efficiently samplable given y. Intuitively, this means that the output
distribution of f̂ on input x reveals no information about x except what
follows from f(x).

Each of these requirements alone can be satisfied by a trivial function f̂ (e.g., f̂(x, r) =

x and f̂(x, r) = 0, respectively). However, the combination of the two requirements
can be viewed as a nontrivial natural relaxation of the usual notion of computing. In a
sense, the function f̂ defines an “information-theoretically equivalent” representation
of f . In the following, we refer to f̂ as a randomized encoding of f .

For this approach to be useful in our context, two conditions should be met. First,
we need to argue that a randomized encoding f̂ can be securely used as a substitute
for f . Second, we hope that this relaxation is sufficiently liberal, in the sense that it
allows us to efficiently encode relatively complex functions f by functions f̂ in NC0.
These two issues are addressed in the following subsections.

2.1. Security of randomized encodings. To illustrate how a randomized en-
coding f̂ can inherit the security features of f , we consider the case where f is an
OWF. We argue that the hardness of inverting f̂ reduces to the hardness of inverting
f . Indeed, a successful algorithm A for inverting f̂ can be used to successfully invert
f as follows: Given an output y of f , apply the efficient sampling algorithm guaran-
teed by requirement 2 to obtain a random encoding ŷ of y. Then, use A to obtain a
preimage (x, r) of ŷ under f̂ , and output x. It follows from requirement 1 that x is
indeed a preimage of y under f . Moreover, if y is the image of a uniformly random x,
then ŷ is the image of a uniformly random pair (x, r). Hence, the success probability

of inverting f is the same as that of inverting f̂ .
The above argument can tolerate some relaxations in the notion of randomized

encoding. In particular, one can relax the second requirement to allow a small statis-
tical variation of the output distribution. On the other hand, to maintain the security
of other cryptographic primitives, it may be required to further strengthen this notion.
For instance, when f is a PRG, the above requirements do not guarantee that the
output of f̂ is pseudorandom, or even that its output is longer than its input. How-
ever, by imposing suitable “regularity” requirements on the output encoding defined
by f̂ , it can be guaranteed that if f is a PRG, then so is f̂ . Thus, different security
requirements suggest different variations of the above notion of randomized encoding.

2.2. Complexity of randomized encodings. It remains to address the second
issue: Can we encode a complex function f by an NC0 function f̂? Our best solutions
to this problem rely on the machinery of randomizing polynomials, described below.
But first, we outline a simple alternative approach4 based on Barrington’s theorem [7],
combined with a randomization technique of Kilian [40].

Suppose f is a boolean function in NC1. (Nonboolean functions are handled
by repeating the following procedure for each bit of the output.) By Barrington’s
theorem, evaluating f(x), for such a function f , reduces to computing an iterated
product of polynomially many elements s1, . . . , sm from the symmetric group S5,
where each si is determined by a single bit of x (i.e., for every i there exists j such

4In fact, a modified version of this approach has been applied for constructing randomizing
polynomials in [15].

CRYPTOGRAPHY IN NC0 849

that si is a function of xj). Now, let f̂(x, r) = (s1r1, r
−1
1 s2r2, . . . , r

−1
m−2sm−1rm−1,

r−1
m−1sm), where the random inputs ri are picked uniformly and independently from

S5. It is not hard to verify that the output (t1, . . . , tm) of f̂ is random subject to
the constraint that t1t2 · · · tm = s1s2 · · · sm, where the latter product is in one-to-one
correspondence to f(x). It follows that f̂ is a randomized encoding of f . Moreover, f̂
has constant locality when viewed as a function over the alphabet S5, and thus yields
the qualitative result we are after.

However, the above construction falls short of providing a randomized encoding
in NC0, since it is impossible to sample a uniform element of S5 in NC0 (even up to

a negligible statistical distance).5 Also, this f̂ does not satisfy the extra “regularity”
properties required by more “sensitive” primitives such as PRGs or one-way permuta-
tions. The solutions presented next avoid these disadvantages and, at the same time,
apply to a higher complexity class than NC1 and achieve a very small constant locality.

Randomizing polynomials. The concept of randomizing polynomials was intro-
duced by Ishai and Kushilevitz [37] as a representation of functions by vectors of low-
degree multivariate polynomials. (Interestingly, this concept was motivated by ques-
tions in the area of information-theoretic secure multiparty computation, which seems
unrelated to the current context.) Randomizing polynomials capture the above encod-
ing question within an algebraic framework. Specifically, a representation of f(x) by

randomizing polynomials is a randomized encoding f̂(x, r) as defined above, in which

x and r are viewed as vectors over a finite field F and the outputs of f̂ as multivariate
polynomials in the variables x and r. In this work, we will always let F = GF(2).

The most crucial parameter of a randomizing polynomial representation is its
algebraic degree, defined as the maximal (total) degree of the outputs (i.e., the output
multivariate polynomials) as a function of the input variables in x and r. (Note
that both x and r count toward the degree.) Quite surprisingly, it is shown in [37,
38] that every boolean function f : {0, 1}n → {0, 1} admits a representation by
degree-3 randomizing polynomials whose number of inputs and outputs is at most
quadratic in its branching program size.6 (Moreover, this degree bound is tight in
the sense that most boolean functions do not admit a degree-2 representation.) Note
that a representation of a nonboolean function can be obtained by concatenating
representations of its output bits, using independent blocks of random inputs. This
concatenation leaves the degree unchanged.

The above positive result implies that functions whose output bits can be com-
puted in the complexity class ⊕L/poly admit an efficient representation by degree-3
randomizing polynomials. This also holds if one requires the most stringent notion
of representation required by our applications. We note, however, that different con-
structions from the literature [37, 38, 15] are incomparable in terms of their exact
efficiency and the security-preserving features they satisfy. Hence, different construc-
tions may be suitable for different applications. These issues are discussed in section 4.

Degree vs. locality. Combining our general methodology with the above results on
randomizing polynomials already brings us close to our goal, as it enables “degree-3
cryptography.” Proceeding from this point, we show that any function f : {0, 1}n →
{0, 1}m of algebraic degree d admits an efficient randomized encoding f̂ of (degree

d and) locality d + 1. That is, each output bit of f̂ can be computed by a degree-
d polynomial over GF(2) depending on at most d + 1 inputs and random inputs.

5Barrington’s theorem generalizes to apply over arbitrary nonsolvable groups. Unfortunately,
there are no such groups whose order is a power of two.

6By default, the notion of “branching programs” refers here to mod-2 branching programs, which
output the parity of the number of accepting paths. See section 3.

850 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

Combined with the previous results, this allows us to make the final step from degree
3 to locality 4.

3. Preliminaries.
Probability notation. Let Un denote a random variable that is uniformly dis-

tributed over {0, 1}n. Different occurrences of Un in the same statement refer to
the same random variable (rather than independent ones). If X is a probability
distribution, we write x ← X to indicate that x is a sample taken from X. If S
is a set, we write x ∈R S to indicate that x is uniformly selected from S. The
statistical distance between discrete probability distributions X and Y is defined as

‖X − Y ‖ def
= 1

2

∑
z |Pr[X = z] − Pr[Y = z]|. Equivalently, the statistical distance

between X and Y may be defined as the maximum, over all boolean functions T , of
the distinguishing advantage |Pr[T (X) = 1]−Pr[T (Y) = 1]|. A function ε(·) is said to
be negligible if ε(n) < n−c for any c > 0 and sufficiently large n. For two distribution
ensembles X = {Xn} and Y = {Yn}, we write X ≡ Y if Xn and Yn are identically dis-

tributed, and X
s≈ Y if the two ensembles are statistically indistinguishable; namely,

‖Xn − Yn‖ is negligible in n.
We will rely on the following standard properties of statistical distance.
Fact 3.1. For all distributions X,Y, Z we have ‖X−Z‖ ≤ ‖X−Y ‖+‖Y −Z‖.
Fact 3.2. For all distributions X,X ′, Y, Y ′ we have ‖(X ×X ′) − (Y × Y ′)‖ ≤

‖X − Y ‖+ ‖X ′ − Y ′‖, where A×B denotes the product distribution of A,B, i.e., the
joint distribution of independent samples from A and B.

Fact 3.3. For all distributions X,Y and every function f we have ‖f(X) −
f(Y)‖ ≤ ‖X − Y ‖.

Fact 3.4. Let {Xz}z∈Z , {Yz}z∈Z be distribution ensembles. Then, for every
distribution Z over Z, we have ‖(Z,XZ)−(Z, YZ)‖ = Ez←Z [‖Xz−Yz‖]. In particular,
if ‖Xz − Yz‖ ≤ ε for every z ∈ Z, then ‖(Z,XZ) − (Z, YZ)‖ ≤ ε.

Branching programs. A branching program (BP) is defined by a tuple BP =
(G,φ, s, t), where G = (V,E) is a directed acyclic graph, φ is a labeling function
assigning each edge either a positive literal xi, a negative literal x̄i, or the constant 1,
and s, t are two distinguished nodes of G. The size of BP is the number of nodes in
G. Each input assignment w = (w1, . . . , wn) naturally induces an unlabeled subgraph
Gw, whose edges include all e ∈ E such that φ(e) is satisfied by w (e.g., an edge
labeled xi is satisfied by w if wi = 1). BPs may be assigned different semantics: In
a nondeterministic BP, an input w is accepted if Gw contains at least one path from
s to t; in a (counting) mod-p BP, the BP computes the number of paths from s to t
modulo p. In this work, we will mostly be interested in mod-2 BPs. An example of a
mod-2 BP is given in Figure 3.1.

s tx1

x2

x2

x3

x3

1

1

s t

Fig. 3.1. A mod-2 branching program computing the majority of three bits (left side), along
with the graph G110 induced by the assignment 110 (right side).

CRYPTOGRAPHY IN NC0 851

Function families and representations. We associate with a function f : {0, 1}∗ →
{0, 1}∗ a function family {fn}n∈N, where fn is the restriction of f to n-bit inputs. We
assume all functions to be length regular; namely, their output length depends only on
their input length. Hence, we may write fn : {0, 1}n → {0, 1}l(n). We will represent
functions f by families of circuits, branching programs, or vectors of polynomials
(where each polynomial is represented by a formal sum of monomials). Whenever f
is taken from a uniform class, we assume that its representation is uniform as well.
That is, the representation of fn is generated in time poly(n) and in particular is of
polynomial size. We will often abuse notation and write f instead of fn even when
referring to a function on n bits.

Locality and degree. We say that f is c-local if each of its output bits depends on
at most c input bits.7 For a constant c, the nonuniform class NC0

c includes all c-local
functions. We will sometimes view the binary alphabet as the finite field F = GF(2),
and say that a function f : Fn → F l(n) has degree d if each of its outputs can be
expressed as a multivariate polynomial of degree (at most) d in the inputs.

Complexity classes. For brevity, we use the (somewhat nonstandard) convention
that all complexity classes are polynomial-time uniform unless otherwise stated. For
instance, NC0 refers to the class of functions admitting uniform NC0 circuits, whereas
nonuniform NC0 refers to the class of functions admitting nonuniform NC0 circuits.
We let NL/poly (resp., ⊕L/poly) denote the class of boolean functions computed by
a polynomial-time uniform family of nondeterministic (resp., modulo-2) BPs. (Recall
that in a uniform family of circuits or branching programs computing f , it should be
possible to generate the circuit or branching program computing fn in time poly(n).)
Equivalently, the class NL/poly (resp., ⊕L/poly) is the class of functions computed by
NL (resp., ⊕L) Turing machines taking a uniform advice. (The class ⊕L/poly contains
the classes L/poly and NC1 and is contained in NC2. In a nonuniform setting it also
contains the class NL/poly [51].) We extend boolean complexity classes, such as
NL/poly and ⊕L/poly, to include nonboolean functions by letting the representation
include l(n) branching programs, one for each output. Uniformity requires that the
l(n) branching programs all be generated in time poly(n).

4. Randomized encoding of functions. In this section we formally introduce
our notion of randomized encoding. In section 4.1 we introduce several variants of
randomized encoding and in section 4.2 we prove some of their useful properties.
Finally, in section 4.3 we construct NC0

4 encodings for branching programs, building
on [37, 38].

4.1. Definitions. We start by defining a randomized encoding of a finite func-
tion f . This definition will be later extended to a (uniform) family of functions.

Definition 4.1 (randomized encoding). Let f : {0, 1}n → {0, 1}l be a func-

tion. We say that a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private
randomized encoding of f if it satisfies the following:

• δ-correctness. There exists a deterministic8 algorithm C, called a decoder,
such that for every input x ∈ {0, 1}n, Pr[C(f̂(x, Um)) �= f(x)] ≤ δ.

7A boolean function depends on the ith input bit if there exists an assignment such that flipping
the ith input bit changes the value of the function.

8We restrict the decoder to be deterministic for simplicity. This restriction does not compromise
generality, in the sense that one can transform a randomized decoder to a deterministic one by
incorporating the coins of the former in the encoding itself.

852 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

• ε-privacy. There exists a randomized algorithm S, called a simulator, such
that for every x ∈ {0, 1}n, ‖S(f(x)) − f̂(x, Um)‖ ≤ ε.

We refer to the second input of f̂ as its random input and to m and s as the ran-
domness complexity and output complexity of f̂ , respectively.

Note that the above definition refers only to the information about x revealed
by f̂(x, r) and does not consider the complexity of the decoder and the simulator.

Intuitively, the function f̂ defines an “information-theoretically equivalent” represen-
tation of f . The correctness property guarantees that from ŷ = f̂(x, r) it is possible
to reconstruct f(x) (with high probability), whereas the privacy property guarantees
that by seeing ŷ one cannot learn too much about x (in addition to f(x)). The en-
coding is δ-correct (resp., ε-private) if it is correct (resp., private) up to an “error” of
δ (resp., ε). This is illustrated by the next example.

Example 4.2. Consider the function f(x1, . . . , xn) = x1∨x2∨· · ·∨xn. We define

a randomized encoding f̂ : {0, 1}n × {0, 1}ns → {0, 1}s by f̂(x, r) = (
∑n

i=1 xiri,1, . . . ,∑n
i=1 xiri,s), where x = (x1, . . . , xn), r = (ri,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ s, and addition

is over GF(2). First, observe that the distribution of f̂(x, Uns) depends only on the
value of f(x). Specifically, let S be a simulator that outputs an s-tuple of zeros if
f(x) = 0, and a uniformly chosen string in {0, 1}s if f(x) = 1. It is easy to verify that

S(f(x)) is distributed the same as f̂(x, Uns) for any x ∈ {0, 1}n. It follows that this
randomized encoding is 0-private. Also, one can obtain an efficient decoder C that,
given a sample y from the distribution f̂(x, Uns), outputs 0 if y = 0s and otherwise

outputs 1. Such an algorithm will err with probability 2−s; thus f̂ is 2−s-correct.

On uniform randomized encodings. The above definition naturally extends to
functions f : {0, 1}∗ → {0, 1}∗. In this case, the parameters l,m, s, δ, ε are all viewed
as functions of the input length n, and the algorithms C, S receive 1n as an additional
input. In our default uniform setting, we require that f̂n, the encoding of fn, be com-
putable in time poly(n) (given x ∈ {0, 1}n and r ∈ {0, 1}m(n)). Thus, in this setting
both m(n) and s(n) are polynomially bounded. We also require both the decoder and
the simulator to be efficient. (This is not needed by some of the applications but is a
feature of our constructions.) We formalize these requirements below.

Definition 4.3 (uniform randomized encoding). Let f : {0, 1}∗ → {0, 1}∗ be
a polynomial-time computable function and l(n) an output length function such that

|f(x)| = l(|x|) for every x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a
δ(n)-correct ε(n)-private uniform randomized encoding of f if the following hold:

• Length regularity. There exist polynomially bounded and efficiently com-
putable length functions m(n), s(n) such that for every x ∈ {0, 1}n and r ∈
{0, 1}m(n), we have |f̂(x, r)| = s(n).

• Efficient evaluation. There exists a polynomial-time evaluation algorithm
that, given x ∈ {0, 1}∗ and r ∈ {0, 1}m(|x|), outputs f̂(x, r).

• δ-correctness. There exists a polynomial-time decoder C, such that for every
x ∈ {0, 1}n we have Pr[C(1n, f̂(x, Um(n))) �= f(x)] ≤ δ(n).

• ε-privacy. There exists a probabilistic polynomial-time simulator S, such that
for every x ∈ {0, 1}n we have ‖S(1n, f(x)) − f̂(x, Um(n))‖ ≤ ε(n).

When saying that a uniform encoding f̂ is in a (uniform) circuit complexity class,
we mean that its evaluation algorithm can be implemented by circuits in this class.
For instance, we say that f̂ is in NC0

d if there exists a polynomial-time circuit generator

G such that G(1n) outputs a d-local circuit computing f̂(x, r) on all x ∈ {0, 1}n and
r ∈ {0, 1}m(n).

CRYPTOGRAPHY IN NC0 853

From here on, a randomized encoding of an efficiently computable function is
assumed to be uniform by default. Moreover, we will freely extend the above defini-
tion to apply to a uniform collection of functions F = {fz}z∈Z , for some index set

Z ⊆ {0, 1}∗. In such a case it is required that the encoded collection F̂ = {f̂z}z∈Z is
also uniform, in the sense that the same efficient evaluation algorithm, decoder, and
simulator should apply to the entire collection when given z as an additional input.
(See Appendix A for a more detailed discussion of collections of functions and crypto-
graphic primitives.) Finally, for the sake of simplicity we will sometimes formulate our
definitions, claims, and proofs using finite functions, under the implicit understanding
that they naturally extend to the uniform setting.

We move on to discuss some variants of the basic definition. Correctness (resp.,
privacy) can be either perfect, when δ = 0 (resp., ε = 0), or statistical, when δ(n)
(resp., ε(n)) is negligible. In fact, we can further relax privacy to hold only against
efficient algorithms, i.e., to require that for every x ∈ {0, 1}n, every polynomial-time

algorithm A distinguishes between the distributions S(f(x)) and f̂(x, Um) with no
more than negligible advantage. Such an encoding is referred to as computationally
private and it suffices for the purpose of many applications discussed in this paper.
(Further details and additional applications appear in [4].) However, while for some of
the primitives (such as OWFs) computational privacy and statistical correctness will
do, others (such as PRGs or one-way permutations) require even stronger properties
than perfect correctness and privacy. One such additional property is that the simu-
lator S, when invoked on a uniformly random string from {0, 1}l (the output domain

of f), will output a uniformly random string from {0, 1}s (the output domain of f̂).
We call this property balance. Note that the balance requirement does not impose
any uniformity condition on the output of f , which in fact can be concentrated on a
strict subset of {0, 1}l.

Definition 4.4 (balanced randomized encoding). A randomized encoding f̂ :
{0, 1}n × {0, 1}m → {0, 1}s of a function f : {0, 1}n → {0, 1}l is called balanced if it
has a perfectly private simulator S such that S(Ul) ≡ Us. We refer to S as a balanced
simulator.

A last useful property is a syntactic one: We sometimes want f̂ to have the same
additive stretch as f . Specifically, we say that f̂ is stretch-preserving (with respect to
f) if s− (n + m) = l − n or, equivalently, m = s− l.

We are now ready to define our two main variants of randomized encoding.

Definition 4.5 (statistical randomized encoding). A statistical randomized en-
coding is a randomized encoding that is statistically correct and statistically private.

Definition 4.6 (perfect randomized encoding). A perfect randomized encoding
is a randomized encoding that is perfectly correct, perfectly private, balanced, and
stretch-preserving.

A combinatorial view of perfect encoding. To gain better understanding of the
properties of perfect encoding, we take a closer look at the relation between a function
and its encoding. Let f̂ : {0, 1}n+m → {0, 1}s be an encoding of f : {0, 1}n → {0, 1}l.
The following description addresses the simpler case where f is onto. Every x ∈ {0, 1}n
is mapped to some y ∈ {0, 1}l by f , and to a 2m-size multiset {f̂(x, r)|r ∈ {0, 1}m}
which is contained in {0, 1}s. Perfect privacy means that this multiset is common to
all the x’s that share the same image under f ; thus we have a mapping from y ∈ {0, 1}l
to multisets in {0, 1}s of size 2m (such a mapping is defined by the perfect simulator).
Perfect correctness means that these multisets are mutually disjoint. However, even
perfect privacy and perfect correctness together do not promise that this mapping

854 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

covers all of {0, 1}s. The balance property guarantees that the multisets form a
perfect tiling of {0, 1}s; moreover it promises that each element in these multisets has
the same multiplicity. If the encoding is also stretch-preserving, then the multiplicity
of each element must be 1, so that the multisets are actually sets. Hence, a perfect
randomized encoding guarantees the existence of a perfect simulator S whose 2l output
distributions form a perfect tiling of the space {0, 1}s by sets of size 2m.

Remark 4.7 (a padding convention). We will sometimes view f̂ as a function of a
single input of length n+m(n) (e.g., when using it as an OWF or a PRG). In this case,
we require m(·) to be monotone nondecreasing, so that n+m(n) uniquely determines

n. We apply a standard padding technique for defining f̂ on inputs whose length is
not of the form n+m(n). Specifically, if n+m(n)+ t < (n+1)+m(n+1), we define

f̂ ′ on inputs of length n+m(n)+ t by applying f̂n on the first n+m(n) bits and then

appending the t additional input bits to the output of f̂n. This convention respects
the security of cryptographic primitives such as OWFs, PRGs, and collision-resistant
hashing, provided that m(n) is efficiently computable and is sufficiently dense (both

of which are guaranteed by a uniform encoding). That is, if the unpadded function f̂

is secure with respect to its partial domain, then its padded version f̂ ′ is secure in the
standard sense, i.e., over the domain of all strings.9 (See a proof for the case of OWFs

in [23, Proposition 2.2.3].) Note that the padded function f̂ ′ has the same locality

and degree as f̂ . Moreover, f̂ ′ also preserves syntactic properties of f̂ ; for example, it
preserves the stretch of f̂ and if f̂ is a permutation, then so is f̂ ′. Thus, it is enough
to prove our results for the partially defined unpadded function f̂ and keep the above
conventions implicit.

Finally, we define two complexity classes that capture the power of randomized
encodings in NC0.

Definition 4.8 (the classes SREN , PREN). The class SREN (resp., PREN)
is the class of functions f : {0, 1}∗ → {0, 1}∗ admitting a statistical (resp., perfect)
uniform randomized encoding in NC0.

4.2. Basic properties. We now put forward some useful properties of random-
ized encodings. We first argue that an encoding of a nonboolean function can be
obtained by concatenating encodings of its output bits, using an independent random
input for each bit. The resulting encoding inherits all the features of the concatenated
encodings and, in particular, preserves their perfectness.

Lemma 4.9 (concatenation). Let fi : {0, 1}n → {0, 1}, 1 ≤ i ≤ l, be the
boolean functions computing the output bits of a function f : {0, 1}n → {0, 1}l. If

f̂i : {0, 1}n × {0, 1}mi → {0, 1}si is a δ-correct ε-private encoding of fi, then the

function f̂ : {0, 1}n × {0, 1}m1+···+ml → {0, 1}s1+···+sl defined by f̂(x, (r1, . . . , rl))
def
=

(f̂1(x, r1), . . . , f̂l(x, rl)) is a (δl)-correct, (εl)-private encoding of f . Moreover, if all

f̂i are perfect, then so is f̂ .
Proof. We start with correctness. Let Ci be a δ-correct decoder for f̂i. Define a

decoder C for f̂ by C(ŷ1, . . . , ŷl) = (C1(ŷ1), . . . , Cl(ŷl)). By a union bound argument,

C is a (δl)-correct decoder for f̂ as required.

We turn to analyze privacy. Let Si be an ε-private simulator for f̂i. An (εl)-

private simulator S for f̂ can be naturally defined by S(y) = (S1(y1), . . . , Sl(yl)),

9This can be generally explained by viewing each slice of the padded function f̂ ′ (i.e., its re-
striction to inputs of some fixed length) as a perfect randomized encoding of a corresponding slice

of f̂ .

CRYPTOGRAPHY IN NC0 855

where the invocations of the simulators Si use independent coins. Indeed, for every
x ∈ {0, 1}n we have

‖S(f(x)) − f̂(x, (Um1
, . . . , Uml

))‖ = ‖(Si(yi))
l
i=1 − (f̂i(x, Umi

))li=1‖

≤
l∑

i=1

‖Si(yi) − f̂i(x, Umi)‖

≤ εl,

where y = f(x). The first inequality follows from Fact 3.2 and the independence of
the randomness used for different i, and the second from the ε-privacy of each Si.

Note that the simulator S described above is balanced if all Si are balanced.
Moreover, if all f̂i are stretch-preserving, i.e., si−1 = mi, then we have

∑l
i=1 si− l =∑l

i=1 mi and hence f̂ is also stretch-preserving. It follows that if all f̂i are perfect,

then so is f̂ .

We state the following uniform version of Lemma 4.9, whose proof is implicit in
the above.

Lemma 4.10 (concatenation: uniform version). Let f : {0, 1}∗ → {0, 1}∗ be
a polynomial-time computable function, viewed as a uniform collection of functions
F = {fn,i}n∈N,1≤i≤l(n); that is, fn,i(x) outputs the ith bit of f(x) for all x ∈ {0, 1}n.

Suppose that F̂ = {f̂n,i}n∈N,1≤i≤l(n) is a perfect (resp., statistical) uniform random-

ized encoding of F . Then, the function f̂ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ defined by

f̂(x, (r1, . . . , rl(|x|)))
def
= (f̂|x|,1(x, r1), . . . , f̂|x|,l(|x|)(x, rl(|x|))) is a perfect (resp., statis-

tical) uniform randomized encoding of f .

Another useful feature of randomized encodings is the following intuitive com-
position property: Suppose we encode f by g and then view g as a deterministic
function and encode it again. Then, the resulting function (parsed appropriately) is
a randomized encoding of f . Again, the resulting encoding inherits the perfectness of
the encodings from which it is composed.

Lemma 4.11 (composition). Let g(x, rg) be a δg-correct, εg-private encoding of
f(x) and let h((x, rg), rh) be a δh-correct, εh-private encoding of g((x, rg)) (viewed

as a single-argument function). Then, the function f̂(x, (rg, rh))
def
= h((x, rg), rh) is a

(δg + δh)-correct, (εg + εh)-private encoding of f . Moreover, if g, h are perfect (resp.,

statistical) uniform randomized encodings, then so is f̂ .

Proof. We start with correctness. Let Cg be a δg-correct decoder for g and Ch a

δh-correct decoder for h. Define a decoder C for f̂ by C(ŷ) = Cg(Ch(ŷ)). The decoder
C errs only if either Ch or Cg errs. Thus, by the union bound we have for every x

Pr
rg,rh

[C(f̂(x, (rg, rh))) �= f(x)] ≤ Pr
rg,rh

[Ch(h((x, rg), rh)) �= g(x, rg)]

+ Pr
rg

[Cg(g(x, rg)) �= f(x)]

≤ δh + δg,

as required.

Privacy is argued similarly. Let Sg be an εg-private simulator for g and let Sh be

an εh-private simulator for h. We define a simulator S for f̂ by S(y) = Sh(Sg(y)).

856 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

Letting mg,mh denote the randomness complexity of g, h, respectively, we have for
every x

‖S(f(x)) − f̂(x, (Umg
, Umh

))‖ = ‖Sh(Sg(f(x))) − h((x, Umg
), Umh

)‖
≤ ‖Sh(Sg(f(x))) − Sh(g(x, Umg))‖

+ ‖Sh(g(x, Umh
)) − h((x, Umg), Umh

)‖
≤ εg + εh,

where the first inequality follows from the triangle inequality (Fact 3.1), and the
second from Facts 3.3 and 3.4.

It is easy to verify that if Sg and Sh are balanced, then so is S. Moreover, if g
preserves the additive stretch of f and h preserves the additive stretch of g, then h
(hence also f̂) preserves the additive stretch of f . Thus f̂ is perfect if both g, h are
perfect. All of the above naturally carries over to the uniform setting, from which the
last part of the lemma follows.

Finally, we prove two useful features of a perfect encoding.
Lemma 4.12 (unique randomness). Suppose f̂ is a perfect randomized encoding

of f . Then, (a) f̂ satisfies the following unique randomness property: For any input x,

the function f̂(x, ·) is injective; namely, there are no distinct r, r′ such that f̂(x, r) =

f̂(x, r′). Moreover, (b) if f is a permutation, then so is f̂ .

Proof. Let f : {0, 1}n → {0, 1}l and f̂ : {0, 1}n × {0, 1}m → {0, 1}s. To prove

part (a), assume toward a contradiction that f̂ does not satisfy the unique randomness

property. Then, by perfect privacy, we have |Im(f̂)| < |Im(f)| · 2m. On the other
hand, letting S be a balanced simulator, we have

|Im(f̂)| · 2−s = Pr
y←Ul

[S(y) ∈ Im(f̂)]

≥ Pr
y←Ul

[S(y) ∈ Im(f̂)|y ∈ Im(f)] · Pr
y←Ul

[y ∈ Im(f)]

= 1 · |Im(f)|
2l

,

where the last equality follows from perfect privacy. Since g is stretch-preserving (s−
l = m), we get from the above that |Im(f̂)| ≥ |Im(f)| · 2m and derive a contradiction.

If f is a permutation, then n = l and since f̂ is stretch-preserving, we can write
f̂ : {0, 1}s → {0, 1}s. Thus, to prove part (b), it is enough to prove that f̂ is injective.

Suppose that f̂(x, r) = f̂(x′, r′). Then, since f is injective and f̂ is perfectly correct,
it follows that x = x′; hence, by part (a), r = r′ and the proof follows.

4.3. Constructions. In this section we construct randomized encodings in NC0.
We first review a construction from [38] of degree-3 randomizing polynomials based
on mod-2 branching programs and analyze some of its properties. Next, we introduce
a general locality reduction technique, allowing us to transform a degree-d encoding
to a (d + 1)-local encoding. Finally, we discuss extensions to other types of BPs.

Degree-3 randomizing polynomials from mod-2 branching programs [38]. Let BP =
(G,φ, s, t) be a mod-2 BP of size �, computing a boolean10 function f : {0, 1}n →
{0, 1}; that is, f(x) = 1 if and only if the number of paths from s to t in Gx equals 1

10The following construction generalizes naturally to a (counting) mod-p BP, computing a function
f : {0, 1}n → Zp. In this work, however, we will be interested only in the case p = 2.

CRYPTOGRAPHY IN NC0 857

⎛
⎜⎜⎜⎜⎜⎝

1 r
(1)
1 r

(1)
2 · r

(1)
�−2

0 1 · · ·
0 0 1 · ·
0 0 0 1 r

(1)

(�−1
2)

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗

0 −1 ∗ ∗ ∗
0 0 −1 ∗ ∗
0 0 0 −1 ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 r
(2)
1

0 1 0 0 r
(2)
2

0 0 1 0 ·
0 0 0 1 r

(2)
�−2

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

Fig. 4.1. The matrices R1(r(1)), L(x), R2(r(2)) (from left to right). The symbol ∗ represents a
degree-1 polynomial in an input variable.

modulo 2. Fix some topological ordering of the vertices of G, where the source vertex
s is labeled 1 and the terminal vertex t is labeled �. Let A(x) be the �× � adjacency
matrix of Gx viewed as a formal matrix whose entries are degree-1 polynomials in the
input variables x. Specifically, the (i, j) entry of A(x) contains the value of φ(i, j) on
x if (i, j) is an edge in G, and 0 otherwise. (Hence, A(x) contains the constant 0 on
and below the main diagonal and degree-1 polynomials in the input variables above
the main diagonal.) Define L(x) as the submatrix of A(x) − I obtained by deleting
column s and row t (i.e., the first column and the last row). As before, each entry of
L(x) is a degree-1 polynomial in a single input variable xi; moreover, L(x) contains
the constant −1 in each entry of its second diagonal (the one below the main diagonal)
and the constant 0 below this diagonal. (See Figure 4.1.)

Fact 4.13 (see [38]). f(x) = det(L(x)), where the determinant is computed over
GF(2).

Proof sketch. Since G is acyclic, the number of s − t paths in Gx mod 2 can be
written as (I+A(x)+A(x)2 + · · ·+A(x)�)s,t = (I−A(x))−1

s,t , where I denotes an �×�
identity matrix and all arithmetic is over GF(2). Recall that L(x) is the submatrix
of A(x)− I obtained by deleting column s and row t. Hence, expressing (I −A(x))−1

s,t

using the corresponding cofactor of I −A(x), we have

(I −A(x))−1
s,t = (−1)s+t det(−L(x))

det(I −A(x))

= detL(x).

Let r(1) and r(2) be vectors over GF(2) of length
∑�−2

i=1 i =
(
�−1
2

)
and � − 2,

respectively. Let R1(r
(1)) be an (�−1)× (�−1) matrix with 1’s on the main diagonal,

0’s below it, and the elements of r(1) in the remaining
(
�−1
2

)
entries above the diagonal

(a unique element of r(1) is assigned to each matrix entry). Let R2(r
(2)) be an (� −

1)×(�−1) matrix with 1’s on the main diagonal, the elements of r(2) in the rightmost
column, and 0’s in each of the remaining entries. (See Figure 4.1.)

Fact 4.14 (see [38]). Let M,M ′ be (� − 1) × (� − 1) matrices that contain the
constant −1 in each entry of their second diagonal and the constant 0 below this
diagonal. Then, det(M) = det(M ′) if and only if there exist r(1) and r(2) such that
R1(r

(1))MR2(r
(2)) = M ′.

Proof sketch. Suppose that R1(r
(1))MR2(r

(2)) = M ′ for some r(1) and r(2). Then,
since det(R1(r

(1))) = det(R2(r
(2))) = 1, it follows that det(M) = det(M ′).

For the second direction assume that det(M) = det(M ′). We show that there
exist r(1) and r(2) such that R1(r

(1))MR2(r
(2)) = M ′. Multiplying M by a matrix

R1(r
(1)) on the left is equivalent to adding to each row of M a linear combination

858 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

of the rows below it. On the other hand, multiplying M by a matrix R2(r
(2)) on

the right is equivalent to adding to the last column of M a linear combination of the
other columns. Observe that a matrix M that contains the constant −1 in each entry
of its second diagonal and the constant 0 below this diagonal can be transformed,
using such left and right multiplications, to a canonic matrix Hy containing −1’s in
its second diagonal, an arbitrary value y in its top-right entry, and 0’s elsewhere.
Since det(R1(r

(1))) = det(R2(r
(2))) = 1, we have det(M) = det(Hy) = y. Thus, when

det(M) = det(M ′) = y we can write Hy = R1(r
(1))MR2(r

(2)) = R1(s
(1))M ′R2(s

(2))
for some r(1), r(2), s(1), s(2). Multiplying both sides by R1(s

(1))−1, R2(s
(2))−1 and

observing that each set of matrices R1(·) and R2(·) forms a multiplicative group
finishes the proof.

Lemma 4.15 (implicit in [38]). Let BP be a mod-2 branching program computing

the boolean function f . Define a degree-3 function f̂(x, (r(1), r(2))) whose outputs con-
tain the

(
�
2

)
entries on or above the main diagonal of the matrix R1(r

(1))L(x)R2(r
(2)).

Then, f̂ is a perfect randomized encoding of f .
Proof. We start by showing that the encoding is stretch-preserving. The length

of the random input of f̂ is m =
(
�−1
2

)
+ � − 2 =

(
�
2

)
− 1 and its output length is

s =
(
�
2

)
. Thus we have s = m + 1, and since f is a boolean function its encoding f̂

preserves its stretch.
We now describe the decoder and the simulator. Given an output of f̂ , represent-

ing a matrix M , the decoder C simply outputs det(M). (Note that the entries below
the main diagonal of this matrix are constants and therefore are not included in the
output of f̂ .) By Facts 4.13 and 4.14, det(M) = det(L(x)) = f(x); hence the decoder
is perfect.

The simulator S, on input y ∈ {0, 1}, outputs the
(
�
2

)
entries on and above the

main diagonal of the matrix R1(r
(1))HyR2(r

(2)), where r(1), r(2) are randomly chosen
and Hy is the (�− 1) × (�− 1) matrix that contains −1’s in its second diagonal, y in
its top-right entry, and 0’s elsewhere.

By Facts 4.13 and 4.14, for every x ∈ {0, 1}n the supports of f̂(x, Um) and of
S(f(x)) are equal. Specifically, these supports include all strings in {0, 1}s repre-
senting matrices with determinant f(x). Since the supports of S(0) and S(1) form a
disjoint partition of the entire space {0, 1}s (by Fact 4.14) and since S uses m = s−1
random bits, it follows that |support(S(b))| = 2m for b ∈ {0, 1}. Since both the
simulator and the encoding use m random bits, it follows that both distributions,
f̂(x, Um) and S(f(x)), are uniform over their support and therefore are equivalent.

Finally, since the supports of S(0) and S(1) halve the range of f̂ (that is, {0, 1}s),
the simulator is also balanced.

Reducing the locality. It remains to convert the degree-3 encoding into one in NC0.
To this end, we show how to construct for any degree-d function (where d is constant)

a (d+1)-local perfect encoding. Using the composition lemma, we can obtain an NC0

encoding of a function by first encoding it as a constant-degree function and then
applying the locality construction.

The idea for the locality construction is to represent a degree-d polynomial as a
sum of monomials, each having locality d, and randomize this sum using a variant
of the method for randomizing group product described in section 2.2. (A direct use
of the latter method over the group Z2 gives a (d + 2)-local encoding instead of the
(d + 1)-local one obtained here.)

Construction 4.16 (locality construction). Let f(x) = T1(x) + · · · + Tk(x),
where f, T1, . . . , Tk : GF(2)n → GF(2) and summation is over GF(2). The local

CRYPTOGRAPHY IN NC0 859

encoding f̂ : GF(2)n+(2k−1) → GF(2)2k is defined by

f̂(x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1))

def
= (T1(x) − r1, T2(x) − r2, . . . , Tk(x) − rk,

r1 − r′1, r
′
1 + r2 − r′2, . . . , r

′
k−2 + rk−1 − r′k−1, r

′
k−1 + rk).

For example, applying the locality construction to the polynomial x1x2 +
x2x3 + x4 results in the encoding (x1x2 − r1, x2x3 − r2, x4 − r3, r1 − r′1, r

′
1 + r2 − r′2,

r′2 + r3).

Lemma 4.17 (locality lemma). Let f and f̂ be as in Construction 4.16. Then,

f̂ is a perfect randomized encoding of f . In particular, if f is a degree-d polynomial
written as a sum of monomials, then f̂ is a perfect encoding of f with degree d and
locality max(d + 1, 3).

Proof. Since m = 2k − 1 and s = 2k, the encoding f̂ is stretch-preserving.
Moreover, given ŷ = f̂(x, r), we can decode the value of f(x) by summing up the bits
of ŷ. It is not hard to verify that such a decoder never errs. To prove perfect privacy
we define a simulator as follows. Given y ∈ {0, 1}, the simulator S uniformly chooses
2k − 1 random bits r1, . . . , r2k−1 and outputs (r1, . . . , r2k−1, y − (r1 + · · · + r2k−1)).
Obviously, S(y) is uniformly distributed over the 2k-length strings whose bits sum up

to y over GF(2). It thus suffices to show that the outputs of f̂(x, Um) are uniformly
distributed subject to the constraint that they add up to f(x). This follows by
observing that, for any x and any assignment w ∈ {0, 1}2k−1 to the first 2k − 1

outputs of f̂(x, Um), there is a unique way to set the random inputs ri, r
′
i so that the

output of f̂(x, (r, r′)) is consistent with w. Indeed, for 1 ≤ i ≤ k, the values of x,wi

uniquely determine ri. For 1 ≤ i ≤ k−1, the values wk+i, ri, r
′
i−1 determine r′i (where

r′0
def
= 0). Therefore, S(f(x)) ≡ f̂(x, Um). Moreover, S is balanced since the supports

of S(0) and S(1) halve {0, 1}s and S(y) is uniformly distributed over its support for
y ∈ {0, 1}.

In Appendix B we describe a graph-based generalization of Construction 4.16,
which in some cases can give rise to a (slightly) more compact encoding f̂ .

We now present the main theorem of this section.
Theorem 4.18. ⊕L/poly ⊆ PREN . Moreover, any f ∈ PREN admits a perfect

randomized encoding in NC0
4.

Proof. The first part of the theorem is derived by combining the degree-3 con-
struction of Lemma 4.15 together with the locality lemma (Lemma 4.17), using the
composition lemma (Lemma 4.11) and the concatenation lemma (Lemma 4.10).

To prove the second part, we first encode f by a perfect encoding f̂ in NC0

(guaranteed by the fact that f is in PREN). Then, since f̂ is in ⊕L/poly, we can

use our constructions (Lemmas 4.15, 4.17, 4.11, 4.10) to perfectly encode f̂ by a

function f̂ ′ in NC0
4. By the composition lemma (Lemma 4.11), f̂ ′ perfectly encodes

the function f .
Remark 4.19. An alternative construction of perfect randomized encodings in NC0

can be obtained using a randomizing polynomial construction from [38, section 3],
which is based on an information-theoretic variant of Yao’s garbled circuit tech-
nique [53]. This construction yields an encoding with a (large) constant locality,
without requiring an additional “locality reduction” step (of Construction 4.16). This
construction is weaker than the current one in that it only efficiently applies to func-
tions in NC1 rather than ⊕L/poly. For functions in NC1, the complexity of this
alternative (in terms of randomness and output length) is incomparable to the com-
plexity of the current construction.

860 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

There are variants of the above construction that can handle nondeterministic
branching programs as well, at the expense of losing perfectness [37, 38]. For instance,
it is shown in [37] that if f is represented by a nondeterministic BP of size �, then

the function f̂(x, (R1, R2))
def
= R1L(x)R2 is a perfectly private, statistically correct

encoding of f provided that R1, R2 are uniformly random (� − 1) × (� − 1) matrices
over GF(p), where p is prime and p > ��. (The matrix L(x) is as defined above, except
that here it is interpreted as a matrix over GF(p).) To obtain an encoding over a binary
alphabet, we rely on the facts that one can sample an almost uniform element of GF(p)
(up to a negligible statistical distance) as well as perform multiplications in GF(p)
using NC1 boolean circuits. Thus, we get a statistical binary encoding in NC1, which
can be converted (using Theorem 4.18 and the composition lemma (Lemma 4.11)) to
a statistical encoding in NC0

4. Based on the above, we get the following theorem.
Theorem 4.20. NL/poly ⊆ SREN . Moreover, any f ∈ SREN admits a statis-

tical randomized encoding in NC0
4.

Note that the second part of Theorem 4.20 can be proved similarly to the second
part of Theorem 4.18.

5. One-way functions in NC0. A one-way function (OWF) f : {0, 1}∗ →
{0, 1}∗ is a polynomial-time computable function that is hard to invert; namely, every
polynomial-time algorithm that tries to invert f on input f(x), where x is picked
from Un, succeeds only with a negligible probability. Formally, we have the following
definition.

Definition 5.1 (one-way function). A function f : {0, 1}∗ → {0, 1}∗ is called a
one-way function (OWF) if it satisfies the following two properties:

• Easy to compute: There exists a deterministic polynomial-time algorithm
computing f(x).

• Hard to invert: For every probabilistic polynomial-time algorithm, B, the
probability Prx←Un

[B(1n, f(x))∈ f−1(f(x))] is negligible in n (where the prob-
ability is taken over a uniform choice of x and the internal coin tosses of B).

The function f is called weakly one-way if the second requirement is replaced with the
following (weaker) one:

• Slightly hard to invert: There exists a polynomial p(·), such that for ev-
ery probabilistic polynomial-time algorithm, B, and all sufficiently large n’s
Prx←Un [B(1n, f(x)) /∈ f−1(f(x))] > 1

p(n) (where the probability is taken over

a uniform choice of x and the internal coin tosses of B).
The above definition naturally extends to functions whose domain is restricted to

some infinite subset I ⊂ N of the possible input lengths, such as ones defined by a
randomized encoding f̂ . As argued in Remark 4.7, such a partially defined OWF can
be augmented into a fully defined OWF provided that the set I is polynomially dense
and efficiently recognizable (which is a feature of functions f̂ obtained via uniform
encodings).

5.1. Key lemmas. In the following we show that a perfectly correct and sta-
tistically private randomized encoding f̂ of an OWF f is also an OWF. The idea, as
described in section 2.1, is to argue that the hardness of inverting f̂ reduces to the
hardness of inverting f . The case of a statistical randomized encoding that does not
enjoy perfect correctness is more involved and will be dealt with later in this section.

Lemma 5.2. Suppose that f : {0, 1}∗ → {0, 1}∗ is hard to invert and f̂(x, r) is

a perfectly correct, statistically private uniform encoding of f . Then f̂ , viewed as a
single-argument function, is also hard to invert.

CRYPTOGRAPHY IN NC0 861

Proof. Let s = s(n),m = m(n) be the lengths of the output and of the random

input of f̂ , respectively. Note that f̂ is defined on input lengths of the form n+m(n);
we prove that it is hard to invert on these inputs. Assume, toward a contradiction, that
there is an efficient algorithm B̂ inverting f̂(x, r) with success probability φ(n+m) >

1
q(n+m) for some polynomial q(·) and infinitely many n’s. We use B̂ to construct

an efficient algorithm B that inverts f with similar success. On input (1n, y), the

algorithm B runs S, the statistical simulator of f̂ , on the input (1n, y) and gets a
string ŷ as the output of S. Next, B runs the inverter B̂ on the input (1n+m, ŷ),

getting (x′, r′) as the output of B̂ (i.e., B̂ “claims” that f̂(x′, r′) = ŷ). B terminates
with output x′.

Complexity. Since S and B̂ are both polynomial-time algorithms, and since m(n)
is polynomially bounded, it follows that B is also a polynomial-time algorithm.

Correctness. We analyze the success probability of B on input (1n, f(x)), where
x ← Un. Let us assume for a moment that the simulator S is perfect. Observe
that, by perfect correctness, if f(x) �= f(x′), then the support sets of f̂(x, Um) and

f̂(x′, Um) are disjoint. Moreover, by perfect privacy the string ŷ, generated by B̂, is

always in the support of f̂(x, Um). Hence, if B̂ succeeds (that is, indeed ŷ = f̂(x′, r′)),
then so does B (namely, f(x′) = y). Finally, observe that (by Fact 3.4) the input

ŷ on which B invokes B̂ is distributed identically to f̂n(Un, Um(n)), and therefore B
succeeds with probability ≥ φ(n + m). Formally, we can write

Pr
x←Un

[B(1n, f(x)) ∈ f−1(f(x))] ≥ Pr
x←Un,ŷ←S(1n,f(x))

[B̂(1n+m, ŷ) ∈ f̂−1(ŷ)]

= Pr
x←Un,r←Um(n)

[B̂(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))]

≥ φ(n + m).

When S is only statistically private, we lose negligible success probabilities in the
first and second transitions. The first loss is due to the fact that the simulator invoked
on y = f(x) might output (with negligible probability) ŷ which is not in the support

of f̂(x, Um). The second loss is due to the fact that the input ŷ on which B invokes

B̂ is not distributed identically to f̂(Un, Um), on which B̂ is guaranteed to succeed
with probability φ(n + m). However, it follows from Fact 3.4 that the second loss is
also negligible. Thus, if S is ε(n)-private for a negligible function ε(·), we have

Pr
x←Un

[B(1n, f(x)) ∈ f−1(f(x))] ≥ Pr
x←Un,ŷ←S(1n,f(x))

[B̂(1n+m, ŷ) ∈ f̂−1(ŷ)] − ε(n)

≥ Pr
x←Un,r←Um(n)

[B̂(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))]

− ε(n) − ε(n)

≥ φ(n + m) − 2ε(n) >
1

q(n + m)
− 2ε(n) >

1

q′(n)

for some polynomial q′(·) and infinitely many n’s. It follows that f is not hard to
invert, in contradiction to the hypothesis.

The efficiency of the simulator S is essential for Lemma 5.2 to hold. Indeed,
without this requirement one could encode any one-way permutation f by the identity
function f̂(x) = x, which is obviously not one-way. (Note that the output of f̂(x) can
be simulated inefficiently based on f(x) by inverting f .)

862 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

The perfect correctness requirement is also essential for Lemma 5.2 to hold. To see
this, consider the following example. Suppose f is a one-way permutation. Consider
the encoding f̂(x, r) which equals f(x) except if r is the all-zero string, in which case

f̂(x, r) = x. This is a statistically correct and statistically private encoding, but f̂ is
easily invertible since on value ŷ the inverter can always return ŷ itself as a possible
preimage. Still, we show below that such an f̂ (which is only statistically correct) is
a distributionally one-way function. We will later show how to turn a distributionally
one-way function in NC0 into an OWF in NC0.

Definition 5.3 (distributionally one-way function [35]). A polynomial-time com-
putable function f : {0, 1}∗ → {0, 1}∗ is called distributionally one-way if there exists
a positive polynomial p(·) such that for every probabilistic polynomial-time algorithm,
B, and all sufficiently large n’s, ‖(B(1n, f(Un)), f(Un)) − (Un, f(Un))‖ > 1

p(n) .

Before proving that a statistical randomized encoding of an OWF is distribution-
ally one-way, we need the following lemma.

Lemma 5.4. Let f, g : {0, 1}∗ → {0, 1}∗ be two functions that differ on a negligible
fraction of their domain; that is, Prx←Un [f(x) �= g(x)] is negligible in n. Suppose that
g is slightly hard to invert (but is not necessarily computable in polynomial time) and
that f is computable in polynomial time. Then, f is distributionally one-way.

Proof. Let fn and gn be the restrictions of f and g to n-bit inputs, that is

f = {fn} , g = {gn}, and define ε(n)
def
= Prx←Un

[f(x) �= g(x)]. Let p(n) be the polyno-
mial guaranteed by the assumption that g is slightly hard to invert. Assume, toward a
contradiction, that f is not distributionally one-way. Then, there exists a polynomial-
time algorithm, B, such that for infinitely many n’s, ‖(B(1n, fn(Un)), fn(Un)) −
(Un, fn(Un))‖ ≤ 1

2p(n) . Since (Un, fn(Un)) ≡ (x′, fn(Un)) where x′ ← f−1
n (fn(Un)),

we get that for infinitely many n’s, ‖(B(1n, fn(Un)), fn(Un))− (x′, fn(Un))‖ ≤ 1
2p(n) .

It follows that for infinitely many n’s,

Pr[B(1n, f(Un)) ∈ g−1
n (fn(Un))] ≥ Pr

x′←f−1
n (fn(Un))

[x′ ∈ g−1
n (fn(Un))] − 1

2p(n)
.(5.1)

We show that B inverts g with probability greater than 1 − 1
p(n) and derive a

contradiction. Specifically, for infinitely many n’s we have

Pr[B(1n, gn(Un)) ∈ g−1
n (gn(Un))] ≥ Pr[B(1n, fn(Un)) ∈ g−1

n (fn(Un))] − ε(n)

≥ Pr
x′←f−1

n (fn(Un))
[x′ ∈ g−1

n (f(Un))] − 1

2p(n)
− ε(n)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(Un)] − 1

2p(n)
− ε(n)

= Pr
x′←f−1

n (fn(Un))
[gn(x′) = fn(x′)] − 1

2p(n)
− ε(n)

= 1 − ε(n) − 1

2p(n)
− ε(n)

≥ 1 − 1

p(n)
,

where the first inequality is due to the fact that f and g are ε-close, the second in-
equality uses (5.1), the second equality follows since f(Un) = f(x′), the third equality
is due to x′ ≡ Un, and the last inequality follows since ε is negligible.

CRYPTOGRAPHY IN NC0 863

We now use Lemma 5.4 to prove the distributional one-wayness of a statistically
correct encoding f̂ based on the one-wayness of a related, perfectly correct, encod-
ing g.

Lemma 5.5. Suppose that f : {0, 1}∗ → {0, 1}∗ is a one-way function and

f̂(x, r) is a statistical randomized encoding of f . Then f̂ , viewed as a single-argument
function, is distributionally one-way.

Proof. Let C and S be the decoder and the simulator of f̂ . Define the function
ĝ(x, r) in the following way: If C(f̂(x, r)) �= f(x), then ĝ(x, r) = f̂(x, r′) for some

r′ such that C(f̂(x, r′)) = f(x) (such an r′ exists by the statistical correctness);

otherwise, ĝ(x, r) = f̂(x, r). Obviously, ĝ is a perfectly correct encoding of f (as C
perfectly decodes f(x) from ĝ(x, r)). Moreover, by the statistical correctness of C, we

have that f̂(x, ·) and ĝ(x, ·) differ only on a negligible fraction of the r’s. It follows that

ĝ is also a statistically private encoding of f (because ĝ(x, Um)
s≈ f̂(x, Um)

s≈ S(f(x))).
Since f is hard to invert, it follows from Lemma 5.2 that ĝ is also hard to invert. (Note
that ĝ might not be computable in polynomial time; however, the proof of Lemma 5.2
requires only that the simulator’s running time and the randomness complexity of ĝ be
polynomially bounded.) Finally, it follows from Lemma 5.4 that f̂ is distributionally
one-way as required.

5.2. Main results. Based on the above, we derive the main theorem of this
section.

Theorem 5.6. If there exists an OWF in SREN , then there exists an OWF in
NC0

4.
Proof. Let f be an OWF in SREN . By Lemma 5.5, we can construct a

distributional OWF f̂ in NC0 and then apply a standard transformation (cf. [35,

Lemma 1], [23, p. 96], [52]) to convert f̂ to an OWF f̂ ′ in NC1. This transformation
consists of two steps: Impagliazzo and Luby’s NC1 construction of weak OWFs from
distributional OWFs [35], and Yao’s NC0 construction of a (standard) OWF from a
weak OWF [52] (see [23, section 2.3]).11 Since NC1 ⊆ PREN (Theorem 4.18), we can

use Lemma 5.2 to encode f̂ ′ by an OWF in NC0, in particular, by one with locality
4.

Combining Lemmas 5.2 and 4.12 and Theorem 4.18, we get a similar result for
one-way permutations (OWPs).

Theorem 5.7. If there exists an OWP in PREN , then there exists an OWP in
NC0

4.
In particular, using Theorems 4.18 and 4.20, we conclude that an OWF (resp.,

OWP) in NL/poly (resp., ⊕L/poly) implies an OWF (resp., OWP) in NC0
4.

Theorem 5.7 can be extended to trapdoor permutations (TDPs) provided that the
perfect encoding satisfies the following randomness reconstruction property: Given x
and f̂(x, r), the randomness r can be efficiently recovered. If this is the case, then

the trapdoor of f can be used to invert f̂(x, r) in polynomial time (but not in NC0).

First, we compute f(x) from f̂(x, r) using the decoder; second, we use the trapdoor-
inverter to compute x from f(x); and, finally, we use the randomness reconstruction

algorithm to compute r from x and f̂(x, r). The randomness reconstruction property
is satisfied by the randomized encodings described in section 4.3 and is preserved
under composition and concatenation. Thus, the existence of TDPs computable in
NC0

4 follows from their existence in ⊕L/poly.

11We will later show a degree-preserving transformation from a distributional OWF to an OWF
(Lemma 8.2); however, in the current context the standard transformation suffices.

864 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

More formally, a collection of permutations F = {fz : Dz → Dz}z∈Z is referred to
as a TDP if there exist probabilistic polynomial-time algorithms (I,D, F, F−1) with
the following properties. Algorithm I is an index selector algorithm that on input
1n selects an index z from Z and a corresponding trapdoor for fz; algorithm D is
a domain sampler that on input z samples an element from the domain Dz; F is a
function evaluator that given an index z and x returns fz(x); and F−1 is a trapdoor-
inverter that given an index z, a corresponding trapdoor t, and y ∈ Dz returns f−1

z (y).
Additionally, the collection should be hard to invert, similar to a standard collection
of OWPs. (For a formal definition see [23, Definition 2.4.4].) By the above argument
we derive the following theorem.

Theorem 5.8. If there exists a TDP F whose function evaluator F is in
⊕L/poly, then there exists a TDP F̂ whose function evaluator F̂ is in NC0

4.

Remarks on Theorems 5.6, 5.7, and 5.8.
1. Constructiveness. In section 4.3, we give a constructive way of transform-

ing a branching program representation of a function f into an NC0 circuit
computing its encoding f̂ . It follows that Theorems 5.6 and 5.7 can be made
constructive in the following sense: There exists a polynomial-time compiler
transforming a branching program representation of an OWF (resp., OWP) f

into an NC0 representation of a corresponding OWF (resp., OWP) f̂ . A sim-
ilar result holds for other cryptographic primitives considered in this paper.

2. Preservation of security: a finer look. Loosely speaking, the main security
loss in the reduction follows from the expansion of the input. (The simula-
tor’s running time has only a minor effect on the security, since it is added
to the overall running time of the adversary.) Thus, to achieve a level of
security similar to that achieved by applying f on n-bit inputs, one would
need to apply f̂ on n+m(n) bits (the random input part of the encoding does
not contribute to the security). Going through our constructions (bit-by-bit
encoding of the output based on some size-�(n) BPs, followed by the locality
construction), we get m(n) = l(n) · �(n)O(1), where l(n) is the output length
of f . If the degree of all nodes in the BPs is bounded by a constant, the com-
plexity is m(n) = O(l(n) · �(n)2). It is possible to further reduce the overhead
of randomized encoding for specific representation models, such as balanced
formulas, using constructions of randomizing polynomials from [38, 15].

3. Generalizations. The proofs of the above theorems carry over to OWFs whose
security holds against efficient nonuniform adversaries (inverters). The same
is true for all cryptographic primitives considered in this work. The proofs
also naturally extend to the case of collections of OWFs and OWPs (see
Appendix A for discussion).

4. Concrete assumptions. The existence of an OWF in SREN (in fact, even in
NC1) follows from the intractability of factoring and lattice problems [2]. The
existence of an OWF collection in SREN follows from the intractability of
the discrete logarithm problem. Thus, we get OWFs in NC0

4 under most stan-
dard cryptographic assumptions. In the case of OWPs, we can get a collection
of OWPs in NC0

4 based on the discrete logarithm problem [11, 52] (see also
Appendix A) or RSA with a small exponent [49].12 The latter assumption is
also sufficient for the construction of TDP in NC0

4.

12Rabin’s factoring-based OWP collection [47] seems insufficient for our purposes, as it cannot be
defined over the set of all strings of a given length. The standard modification (cf. [24, p. 767]) does
not seem to be in ⊕L/poly.

CRYPTOGRAPHY IN NC0 865

6. Pseudorandom generators in NC0. A pseudorandom generator (PRG)
is an efficiently computable function G : {0, 1}n → {0, 1}l(n) such that (1) G has
a positive stretch, namely l(n) > n, where we refer to the function l(n) − n as the
stretch of the generator and (2) any “computationally restricted procedure” D, called
a distinguisher, has a negligible advantage in distinguishing G(Un) from Ul(n). That
is, |Pr[D(1n, G(Un)) = 1] − Pr[D(1n, Ul(n)) = 1]| is negligible in n.

Different notions of PRGs differ mainly in the computational bound imposed on
D. In the default case of cryptographic PRGs, D can be any probabilistic polynomial-
time algorithm (alternatively, polynomial-size circuit family). In the case of ε-biased
generators, D can only compute a linear function of the output bits, namely the
exclusive-or of some subset of the bits. Other types of PRGs, e.g., for space-bounded
computation, have also been considered. The reader is referred to [21, Chapter 3] for
a comprehensive and unified treatment of pseudorandomness.

We start by considering cryptographic PRGs. We show that a perfect randomized
encoding of such a PRG is also a PRG. We then obtain a similar result for other types
of PRGs.

6.1. Cryptographic generators.
Definition 6.1 (pseudorandom generator). A pseudorandom generator (PRG)

is a polynomial-time computable function, G : {0, 1}n → {0, 1}l(n), satisfying the
following two conditions:

• Expansion: l(n) > n for all n ∈ N.
• Pseudorandomness: For every probabilistic polynomial-time algorithm, D, the

distinguishing advantage |Pr[D(1n, G(Un)) = 1] − Pr[D(1n, Ul(n)) = 1]| is
negligible in n.

Remark 6.2 (PRGs with sublinear stretch). An NC0 PRG, G, that stretches its
input by a single bit can be transformed into another NC0 PRG, G′, with stretch
l′(n) − n = nc for an arbitrary constant c < 1. This can be done by applying G
on nc blocks of n1−c bits and concatenating the results. Since the output of any
PRG is computationally indistinguishable from the uniform distribution even by a
polynomial number of samples (see [23, Theorem 3.2.6]), the block generator G′ is
also a PRG. This PRG gains a pseudorandom bit from every block and therefore
stretches ncn1−c = n input bits to n + nc output bits. Obviously, G′ has the same
locality as G.

Remark 6.2 also applies to other types of generators considered in this section,
and therefore we only use a crude classification of the stretch as being “sublinear,”
“linear,” or “superlinear.”

Lemma 6.3. Suppose G : {0, 1}n → {0, 1}l(n) is a PRG and Ĝ : {0, 1}n ×
{0, 1}m(n) → {0, 1}s(n) is a uniform perfect randomized encoding of G. Then Ĝ,
viewed as a single-argument function, is also a PRG.

Proof. Since Ĝ is stretch-preserving, it is guaranteed to expand its seed. To
prove the pseudorandomness of its output, we again use a reducibility argument.
Assume, toward a contradiction, that there exists an efficient distinguisher D̂ that
distinguishes between Us and Ĝ(Un, Um) with some nonnegligible advantage φ, i.e.,
φ such that φ(n + m) > 1

q(n+m) for some polynomial q(·) and infinitely many n’s.

We use D̂ to obtain a distinguisher D between Ul and G(Un) as follows. On input

y ∈ {0, 1}l, run the balanced simulator of Ĝ on y and invoke D̂ on the resulting ŷ. If
y is taken from Ul, then the simulator, being balanced, outputs ŷ that is distributed
as Us. On the other hand, if y is taken from G(Un), then, by Fact 3.4, the output
of the simulator is distributed as Ĝ(Un, Um). Thus, the distinguisher D we get for

866 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

G has the same advantage as the distinguisher D̂ for Ĝ. That is, the advantage of
D is φ′(n) = φ(n + m). Since m(n) is polynomial, this advantage φ′ is not only
nonnegligible in n + m but also in n, in contradiction to the hypothesis.

Remark 6.4 (the role of balance and stretch preservation). Dropping either the
balance or stretch preservation requirements, Lemma 6.3 would no longer hold. To see
this, consider the following two examples. Let G be a PRG, and let Ĝ(x, r) = G(x).
Then, Ĝ is a perfectly correct, perfectly private, and balanced randomized encoding
of G (the balanced simulator is S(y) = y). However, when r is sufficiently long,
Ĝ does not expand its seed. On the other hand, we can define Ĝ(x, r) = G(x)0,
where r is a single random bit. Then, Ĝ is perfectly correct, perfectly private, and
stretch-preserving, but its output is not pseudorandom.

Using Lemma 6.3 and Theorem 4.18, we get the following theorem.

Theorem 6.5. If there exists a PRG in PREN (in particular, in ⊕L/poly), then
there exists a PRG in NC0

4.

As in the case of OWFs, an adversary that breaks the transformed generator Ĝ
can break, in essentially the same time, the original generator G. Therefore, again,
although the new PRG uses m(n) extra random input bits, it is not more secure than
the original generator applied to n bits. Moreover, we stress that the PRG Ĝ one
gets from our construction has a sublinear stretch even if G has a large stretch. This
follows from the fact that the length m(n) of the random input is typically superlinear
in the input length n.

Remark 6.6 (on the existence of a PRG in PREN). The existence of PRGs in
PREN follows from most standard concrete intractability assumptions. In particu-
lar, using Theorem 6.5 (applied to PRG collections) one can construct a collection
of PRGs in NC0

4 based on the intractability of factoring [39, 44] and the discrete
logarithm problem [11, 52]. The existence of PRGs in PREN also follows from the
existence in PREN of any regular OWF, i.e., an OWF f = {fn} that maps the
same (polynomial-time computable) number of elements in {0, 1}n to every element
in Im(fn). (This is the case, for instance, for any one-to-one OWF.) Indeed, the PRG
construction from [33] (Theorem 5.4), when applied to a regular OWF f , involves
only the computation of universal hash functions and hard-core bits, which can all
be implemented in NC1.13 Thus a regular OWF in PREN can be transformed first
into a regular OWF in NC0 and then, using [33], into a PRG in NC1. Combined with
Theorem 6.5, this yields a PRG in NC0

4 based on any regular OWF in PREN .14 This

13In the general case (when the OWF f is not regular) the construction of H̊astad et al. (see
[33, Construction 7.1]) is not in uniform NC1, as it requires an additional nonuniform advice of
logarithmic length. This (slightly) nonuniform NC1 construction translates into a polynomial-time
construction by applying the following steps: (1) construct a polynomial number of PRG candidates
(each using a different guess for the nonuniform advice); (2) increase the stretch of each of these
candidates using the standard transformation of Goldreich and Micali (cf. [23, Theorem 3.3.3]);
(3) take the exclusive-or of all PRG candidates to obtain the final PRG. The second step requires
polynomially many sequential applications of the PRGs, and therefore this construction is not in
NC1. (If we skip the second step, the resulting generator will not stretch its input.)

14In fact, the same result can be obtained under a relaxed regularity requirement. Specifically,
for each n and y ∈ Im(fn) define the value Df,n(y) = log |f−1

n (y)| and the random variable Rn =
Df,n(f(Un)). The NC1 construction of [33, Construction 7.1] needs to approximate, in poly(n)
time, the expectations of both Rn and R2

n. This is trivially possible when f is regular in the
strict sense defined above, since in this case Rn is concentrated on a single (efficiently computable)
value. Using a recent NC1 construction from [30], only the expectation of R2

n needs to be efficiently
approximated. We finally note that in a nonuniform computation model one can rely on [33] (which
gives a nonuniform NC1 construction of a PRG from any OWF) and get a PRG in nonuniform NC0

4
from any OWF in SREN .

CRYPTOGRAPHY IN NC0 867

way, for example, one can construct a (single) PRG in NC0
4 based on the intractability

of lattice problems [33, 2].
Remark 6.7 (on unconditional NC0 reductions from PRG to OWF). Our ma-

chinery can be used to obtain an NC0 reduction from a PRG to any regular OWF
(in particular, to any one-to-one OWF), regardless of the complexity of f .15 More-
over, this reduction only makes a black-box use of the underlying regular OWF f
(given its regularity parameter |Im(fn)|). The general idea is to encode the NC1

construction of [33, Construction 7.1] into a corresponding NC0 construction. Specif-
ically, suppose G(x) = g(x, f(q1(x)), . . . , f(qm(x))) defines a black-box construction
of a PRG G from an OWF f , where g is in PREN and the qi’s are in NC0. (The
functions g, q1, . . . , qm are fixed by the reduction and do not depend on f .) Then,
letting ĝ((x, y1, . . . , ym), r) be a perfect NC0 encoding of g, the function Ĝ(x, r) =
ĝ((x, f(q1(x)), . . . , f(qm(x))), r) perfectly encodes G, and hence defines a black-box
NC0 reduction from a PRG to an OWF. The construction of [33, Construction 7.1]

is of the form of G(x) above,16 assuming that f is regular. Thus, Ĝ defines an NC0

reduction from a PRG to a regular OWF.

Comparison with lower bounds. The results of [43] rule out the existence of a
superlinear-stretch cryptographic PRG in NC0

4. Thus our NC0
4 cryptographic PRGs

are not far from optimal despite their sublinear stretch. In addition, it is easy to see
that there is no PRG with degree 1 or locality 2 (since we can easily decide whether
a given string is in the range of such a function). It seems likely that a cryptographic
PRG with locality 3 and degree 2 can be constructed (e.g., based on its existence in
a higher complexity class), but our positive result is one step short in terms of both
locality and degree. (See also Table 6.1.)

6.2. ε-biased generators. The proof of Lemma 6.3 uses the balanced simulator
to transform a distinguisher for a PRG G into a distinguisher for its encoding Ĝ.
Therefore, if this transformation can be made linear, then the security reduction goes
through also in the case of ε-biased generators.

Definition 6.8 (ε-biased generator). An ε-biased generator is a polynomial-time
computable function, G : {0, 1}n → {0, 1}l(n), satisfying the following two conditions:

• Expansion: l(n) > n for all n ∈ N.
• ε-bias: For every linear function L : {0, 1}l(n) → {0, 1} and all sufficiently

large n’s,

|Pr[L(G(Un)) = 1] − Pr[L(Ul(n)) = 1]| < ε(n)

(where a function L is linear if its degree over GF(2) is 1). By default, the function
ε(n) is required to be negligible.

Lemma 6.9. Let G be an ε-biased generator and Ĝ a perfect randomized encoding
of G. Assume that the balanced simulator S of Ĝ is linear in the sense that S(y)
outputs a randomized linear transformation of y (which is not necessarily a linear
function of the simulator’s randomness). Then, Ĝ is also an ε-biased generator.

Proof. Let G : {0, 1}n → {0, 1}l(n) and let Ĝ : {0, 1}n × {0, 1}m(n) → {0, 1}s(n).
Assume, toward a contradiction, that Ĝ is not ε-biased; that is, for some linear
function L : {0, 1}s(n) → {0, 1} and infinitely many n’s, |Pr[L(Ĝ(Un+m)) = 1] −

15Viola, in a concurrent work [50], obtains an AC0 reduction of this type.
16The functions q1, . . . , qm are simply projections there. Interestingly, the recent NC1 construc-

tion from [30] is not of the above form and thus we cannot encode it into an (unconditional) NC0

construction.

868 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

Pr[L(Us) = 1]| > 1
p(n+m) > 1

p′(n) , where m = m(n), s = s(n), and p(·), p′(·) are

polynomials. Using the balance property we get

|Pr[L(S(G(Un))) = 1] − Pr[L(S(Ul)) = 1]| = |Pr[L(Ĝ(Un+m)) = 1] − Pr[L(Us) = 1]|

>
1

p′(n)
,

where S is the balanced simulator of Ĝ and the probabilities are taken over the inputs
as well as the randomness of S. By an averaging argument we can fix the randomness
of S to some string ρ and get |Pr[L(Sρ(G(Un))) = 1] − Pr[L(Sρ(Ul(n))) = 1]| >

1
p′(n) , where Sρ is the deterministic function defined by using the constant string

ρ as the simulator’s random input. By the linearity of the simulator, the function
Sρ : {0, 1}l → {0, 1}s is linear; therefore the composition of L and Sρ is also linear,
and thus the last inequality implies that G is not ε-biased in contradiction to the
hypothesis.

We now argue that the balanced simulators obtained in section 4.3 are all linear
in the above sense. In fact, these simulators satisfy a stronger property: For every
fixed random input of the simulator, each bit of the simulator’s output is determined
by a single bit of its input. This simple structure is due to the fact that we encode
nonboolean functions by concatenating the encodings of their output bits. We state
here the stronger property as it will be needed in the next subsection.

Observation 6.10. Let S be a simulator of a randomized encoding (of a function)
that is obtained by concatenating simulators (i.e., S is defined as in the proof of
Lemma 4.9). Then, fixing the randomness ρ of S, the simulator’s computation has
the following simple form: Sρ(y) = σ1(y1)σ2(y2) · · ·σl(yl), where each σi maps yi (i.e.,
the ith bit of y) to one of two fixed strings. In particular, S computes a randomized
degree-1 function of its input.

Recall that the balanced simulator of the NC0
4 encoding for functions in ⊕L/poly

(promised by Theorem 4.18) is obtained by concatenating the simulators of boolean
functions in ⊕L/poly. By Observation 6.10, this simulator is linear. Thus, by
Lemma 6.9, we can construct a sublinear-stretch ε-biased generator in NC0

4 from any
ε-biased generator in ⊕L/poly. In fact, one can easily obtain a nontrivial ε-biased
generator even in NC0

3 by applying the locality construction to each of the bits of
the degree-2 generator defined by G(x, x′) = (x, x′, 〈x, x′〉), where 〈·, ·〉 denotes inner
product modulo 2. Again, the resulting encoding is obtained by concatenation and
thus, by Observation 6.10 and Lemma 6.9, is also ε-biased. (This generator actually
fools a much larger class of statistical tests; see section 6.3 below.) Thus, we have the
following theorem.

Theorem 6.11. There is a (sublinear-stretch) ε-biased generator in NC0
3.

Building on a construction of Mossel, Shpilka, and Trevisan [43], it is in fact
possible to achieve linear stretch in NC0

3 as stated in the following theorem.
Theorem 6.12. There is a linear-stretch ε-biased generator in NC0

3.
Proof. Mossel, Shpilka, and Trevisan present an ε-biased generator in NC0 with

degree 2 and a linear stretch [43, Theorem 13].17 Let G be their ε-biased genera-

17In fact, the generator of [43, Theorem 13] is in nonuniform NC0
5 (and it has a slightly superlinear

stretch). However, a similar construction gives an ε-biased generator in uniform NC0 with degree
2 and linear stretch. (The locality of this generator is large but constant.) This can be done by
replacing the probabilistic construction given in [43, Lemma 12] with a uniform construction of
constant-degree bipartite expander with some “good” expansion properties—such a construction is
given in [13, Theorem 7.1].

CRYPTOGRAPHY IN NC0 869

tor. We can apply the locality construction (4.16) to G (using concatenation) and
get, by Lemma 6.9 and Observation 6.10, an ε-biased generator Ĝ in NC0

3. We
now relate the stretch of Ĝ to the stretch of G. Let n, n̂ be the input complex-
ity of G, Ĝ, respectively, let s, ŝ be the output complexity of G, Ĝ, respectively,
and let c · n be the stretch of G, where c is a constant. The generator Ĝ is stretch
preserving; hence ŝ− n̂ = s−n = c ·n. Since G is in NC0, each of its output bits can
be represented as a polynomial that has a constant number of monomials and thus
the locality construction adds only a constant number of random bits for each output
bit of G. Therefore, the input length of Ĝ is linear in the input length of G. Hence,
ŝ− n̂ = s−n = c ·n = ĉ · n̂ for some constant ĉ and thus Ĝ has a linear stretch.

Comparison with lower bounds. It is not hard to see that there is no ε-biased gen-
erator with degree 1 or locality 2.18 In [16] it was shown that there is no superlinear-
stretch ε-biased generator in NC0

3. Thus, our linear-stretch NC0
3 generator (building

on the one from [43]) is not only optimal with respect to locality and degree but is
also essentially optimal with respect to stretch.

6.3. Generators for space-bounded computation. We turn to the case of
PRGs for space-bounded computation. A standard way of modeling a randomized
space-bounded Turing machine is by having a random tape on which the machine can
access the random bits one by one but cannot “go back” and view previous random
bits (i.e., any bit that the machine wishes to remember, it must store in its limited
memory). For the purpose of derandomizing such machines, it suffices to construct
PRGs that fool any space-bounded distinguisher having a similar one-way access to
its input. Following Babai, Nisan, and Szegedy [6], we refer to such distinguishers as
space-bounded distinguishers.

Definition 6.13 (space-bounded distinguisher [6]). A space-s(n) distinguisher
is a deterministic Turing machine M , and an infinite sequence of binary strings a =
(a1, . . . , an, . . .) called the advice strings, where |an| = 2O(s(n)). The machine has
the following tapes: read-write work tapes, a read-only advice tape, and a read-only
input tape on which the tested input string, y, is given. The input tape has a one-way
mechanism to access the tested string; namely, at any point it may request the next
bit of y. In addition, only s(n) cells of the work tapes can be used. Given an n-bit
input, y, the output of the distinguisher, Ma(y), is the (binary) output of M where y
is given on the input tape and an is given on the advice tape.

This class of distinguishers is a proper subset of the distinguishers that can be
implemented by a space-s(n) Turing machine with a two-way access to the input.
Nevertheless, even logspace distinguishers are quite powerful, and many distinguishers
fall into this category. In particular, this is true for the class of linear distinguishers
considered in section 6.2.

Definition 6.14 (PRG for space-bounded computation). We say that a
polynomial-time computable function G : {0, 1}n → {0, 1}l(n) is a PRG for space
s(n) if l(n) > n and G(Un) is indistinguishable from Ul(n) to any space-s(n) distin-
guisher. That is, for every space-s(n) distinguisher Ma, the distinguishing advantage
|Pr[Ma(G(Un)) = 1] − Pr[Ma(Ul(n)) = 1]| is negligible in n.

Several constructions of high-stretch PRGs for space-bounded computation exist
in the literature (e.g., [6, 45]). In particular, a PRG for logspace computation from [6]
can be computed using logarithmic space and thus, by Theorem 4.18, admits an

18A degree-1 generator contains more than n linear functions over n variables, which must be
linearly dependent and thus biased. The nonexistence of a 2-local generator follows from the fact
that every nonlinear function of two input bits is biased.

870 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

efficient perfect encoding in NC0
4. It can be shown (see proof of Theorem 6.15) that

this NC0
4 encoding fools logspace distinguishers as well; hence, we can reduce the

security of the randomized encoding to the security of the encoded generator and get
an NC0

4 PRG that fools logspace computation. However, as in the case of ε-biased
generators, constructing such PRGs with a low stretch is much easier. In fact, the
same “inner product” generator we used in section 6.2 can work here as well.

Theorem 6.15. There exists a (sublinear-stretch) PRG for sublinear-space com-
putation in NC0

3.
Proof. Consider the inner product generator G(x, x′) = (x, x′, 〈x, x′〉), where

x, x′ ∈ {0, 1}n. It follows from the average-case hardness of the inner product function
for two-party communication complexity [14] that G fools all sublinear-space distin-
guishers. (Indeed, a sublinear-space distinguisher implies a sublinear-communication
protocol predicting the inner product of x and x′. Specifically, the party holding x
runs the distinguisher until it finishes reading x and then sends its configuration to
the party holding x′.)

Applying the locality construction to G, we obtain a perfect encoding Ĝ in NC0
3.

(In fact, we can apply the locality construction only to the last bit of G and leave the
other outputs as they are.) We argue that Ĝ inherits the pseudorandomness of G. As
before, we would like to argue that if M̂ is a sublinear-space distinguisher breaking
Ĝ and S is the balanced simulator of the encoding, then M̂(S(·)) is a sublinear-space
distinguisher breaking G. Similarly to the proof of Lemma 6.9, the fact that M̂(S(·))
can be implemented in sublinear space will follow from the simple structure of S.
However, in contrast to Lemma 6.9, here it does not suffice to require S to be linear
and we need to rely on the stronger property guaranteed by Observation 6.10.19

We now formalize the above. As argued in Observation 6.10, fixing the random-
ness ρ of S, the simulator’s computation can be written as Sρ(y) = σ1(y1)σ2(y2) · · ·
σl(yl), where each σi maps a bit of y to one of two fixed strings. We can thus use S
to turn a sublinear-space distinguisher M̂a breaking Ĝ into a sublinear-space distin-
guisher Ma′

breaking G. Specifically, let the advice a′ include, in addition to a, the
2l strings σi(0), σi(1) corresponding to a “good” ρ which maintains the distinguishing
advantage. (The existence of such ρ follows from an averaging argument.) The ma-
chine Ma′

(y) can now emulate the computation of M̂a(Sρ(y)) using sublinear space

and a one-way access to y by applying M̂a in each step to the corresponding string
σi(yi).

6.4. Pseudorandom generators—Conclusion. We conclude this section with
Table 6.1, which summarizes some of the PRGs constructed here as well as previous
ones from [43] and highlights the remaining gaps.

7. Other cryptographic primitives. In this section, we describe extensions of
our results to other cryptographic primitives. Aiming at NC0 implementations, we can
use our machinery in two different ways: (1) compile a primitive in a relatively high
complexity class (say NC1) into its randomized encoding and show that the encoding
inherits the security properties of this primitive; or (2) use known reductions between
cryptographic primitives, together with NC0 primitives we already constructed (e.g.,

19Indeed, in the current model of (nonuniform) space-bounded computation with one-way access

to the input (and two-way access to the advice), there exist a boolean function M̂ computable in

sublinear space and a linear function S such that the composed function M̂(S(·)) is not computable in

sublinear space. For instance, let M̂(y1, . . . , y2n) = y1y2+y3y4+· · ·+y2n−1y2n and S(x1, . . . , x2n) =
(x1, xn+1, x2, xn+2, . . . , xn, x2n).

CRYPTOGRAPHY IN NC0 871

Table 6.1

Summary of known pseudorandom generators. Results of Mossel, Shpilka, and Trevisan [43]
appear in the top part and results of this paper in the bottom part. A parameter is marked as optimal
(�) if when fixing the other parameters it cannot be improved. A stretch entry is marked with ��
if the stretch is sublinear and cannot be improved to be superlinear (but might be improved to be
linear). The symbol * indicates a conditional result.

Type Stretch Locality Degree

ε-biased superlinear 5 2 �
ε-biased nΩ(

√
k) large k Ω(

√
k)

ε-biased Ω(n2)� Ω(n) 2 �
ε-biased linear � 3 � 2 �
ε-biased sublinear �� 3 � 2 �
Space sublinear �� 3 � 2 �

Cryptographic * sublinear �� 4 3

OWFs or PRGs), to obtain new NC0 primitives. Of course, this approach is useful
only when the reduction itself is in NC0.20 We mainly adopt the first approach, since
most of the known reductions between primitives are not in NC0. (An exception in
the case of symmetric encryption will be discussed below.)

7.1. Collision-resistant hashing in NC0. We start with a formal definition
of collision-resistant hash-functions (CRHFs).

Definition 7.1 (collision-resistant hashing). Let �, �′ : N → N be such that
�(n) > �′(n) and let Z ⊆ {0, 1}∗. A collection of functions {hz}z∈Z is said to be
collision-resistant if the following hold:

1. There exists a probabilistic polynomial-time key-generation algorithm, G, that
on input 1n outputs an index z ∈ Z (of a function hz). The function hz maps
strings of length �(n) to strings of length �′(n).

2. There exists a polynomial-time evaluation algorithm that on input z ∈ G(1n),
x ∈ {0, 1}�(n) computes hz(x).

3. Collisions are hard to find. Formally, a pair (x, x′) is called a collision for
a function hz if x �= x′ but hz(x) = hz(x

′). The collision-resistance require-
ment states that every probabilistic polynomial-time algorithm B that is given
input (z = G(1n), 1n) succeeds in finding a collision for hz with a negligible
probability in n (where the probability is taken over the coin tosses of both G
and B).

Lemma 7.2. Suppose that H = {hz}z∈Z is collision-resistant and Ĥ = {ĥz}z∈Z

is a uniform perfect randomized encoding of H. Then Ĥ is also collision-resistant.

Proof. Since ĥz is stretch-preserving, it is guaranteed to shrink its input as hz.
The key-generation algorithm G of H is used as the key-generation algorithm of Ĥ.
By the uniformity of the collection Ĥ, there exists an efficient evaluation algorithm for
this collection. Finally, any collision ((x, r), (x′, r′)) under ĥz (i.e., (x, r) �= (x′, r′) and

ĥz(x, r) = ĥz(x
′, r′)) defines a collision (x, x′) under hz. Indeed, perfect correctness

ensures that hz(x) = hz(x
′) and unique randomness (see Lemma 4.12) ensures that

20If the reduction is in NC1, one can combine the two approaches: First apply the NC1 reduction
to an NC0 primitive of type X that was already constructed (e.g., an OWF or a PRG) to obtain a
new NC1 primitive of type Y , and then use the first approach to compile the latter primitive into
an NC0 primitive (of type Y). As in the first approach, this construction requires one to prove that
a randomized encoding of a primitive Y preserves its security.

872 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

x �= x′. Thus, an efficient algorithm that finds collisions for Ĥ with nonnegligible
probability yields a similar algorithm for H.

By Lemma 7.2 and Theorem 4.18, we get the following theorem.
Theorem 7.3. If there exists a CRHF H = {hz}z∈Z such that the function

h′(z, x)
def
= hz(x) is in PREN (in particular, in ⊕L/poly), then there exists a CRHF

Ĥ = {ĥz}z∈Z such that the mapping (z, y) �→ ĥz(y) is in NC0
4.

Using Theorem 7.3, we can construct CRHFs in NC0 based on the intractability
of factoring [17], discrete logarithm [46], or lattice problems [25, 48]. All these can-
didates are computable in NC1 provided that some precomputation is done by the
key-generation algorithm. Note that the key-generation algorithm of the resulting
NC0 CRHF is not in NC0. For more details on NC0 computation of collections of
cryptographic primitives, see Appendix A.

7.2. Encryption in NC0. We turn to the case of encryption. Suppose that
E = (G,E,D) is a public-key encryption scheme, where G is a key-generation al-
gorithm, the encryption function E(e, x, r) encrypts the message x using the key e
and randomness r, and D(d, y) decrypts the cipher y using the decryption key d. As
usual, the functions G,E,D are polynomial-time computable, and the scheme pro-
vides correct decryption and satisfies indistinguishability of encryptions [29]. Let Ê

be a randomized encoding of E, and let D̂(d, ŷ)
def
= D(d,C(ŷ)) be the composition

of D with the decoder C of Ê. We argue that the scheme Ê def
= (G, Ê, D̂) is also a

public-key encryption scheme. The efficiency and correctness of Ê are guaranteed by
the uniformity of the encoding and its correctness. Using the efficient simulator of Ê,
we can reduce the security of Ê to that of E . Namely, given an efficient adversary Â
that distinguishes between encryptions of x and x′ under Ê , we can break E by using
the simulator to transform original ciphers into “new” ciphers, and then invoke Â.
The same argument holds in the private-key setting. We now formalize this argument.

Definition 7.4 (public-key encryption). A secure public-key encryption (PKE)
scheme is a triple (G,E,D) of probabilistic polynomial-time algorithms satisfying the
following conditions:

• Viability: On input 1n the key-generation algorithm, G, outputs a pair of keys
(e, d). For every pair (e, d) such that (e, d) ∈ G(1n), and for every plaintext
x ∈ {0, 1}∗, the algorithms E,D satisfy

Pr[D(d,E(e, x)) �= x] ≤ ε(n),

where ε(n) is a negligible function and the probability is taken over the internal
coin tosses of algorithms E and D.

• Security: (Indistinguishability of encryptions of a single message.) For every
(nonuniform) polynomial-time distinguisher B, every polynomial p(·), all suf-
ficiently large n’s, and every pair of plaintexts x, x′ such that |x| = |x′| ≤ p(n),
the distinguisher cannot distinguish between encryptions of x and x′ with more
than 1

p(n) advantage; namely,

∣∣∣∣ Pr
(e,d)←G(1n)

[B(e, E(e, x)) = 1] − Pr
(e,d)←G(1n)

[B(e, E(e, x′)) = 1]

∣∣∣∣ ≤ 1

p(n)
,

where the probabilities are taken over the coin tosses of G,E.
The definition of a private-key encryption scheme is similar, except that the dis-

tinguisher does not get the the encryption key e as an additional input. An extension

CRYPTOGRAPHY IN NC0 873

to multiple-message security, where the indistinguishability requirement should hold
for encryptions of polynomially many messages, follows naturally (see [24, Chapter
5] for formal definitions). In the public-key case, multiple-message security is im-
plied by single-message security as defined above, whereas in the private-key case it
is a strictly stronger notion. In the following we explicitly address only the (single-
message) public-key case, but the treatment easily holds for the case of private-key
encryption with multiple-message security.

Lemma 7.5. Let E = (G,E,D) be a secure PKE scheme, where E(e, x, r) is
viewed as a polynomial-time computable function that encrypts the message x using the
key e and randomness r. Let Ê((e, x), (r, s)) = Ê((e, x, r), s) be a uniform statistical

randomized encoding of E and let D̂(d, ŷ)
def
= D(d,C(ŷ)) be the composition of D with

the decoder C of Ê. Then, the scheme Ê def
= (G, Ê, D̂) is also a secure public-key

encryption scheme.
Proof. The uniformity of the encoding guarantees that the functions Ê and D̂

can be efficiently computed. The viability of Ê follows in a straightforward way from
the correctness of the decoder C. Indeed, if (e, d) are in the support of G(1n), then
for any plaintext x we have

Pr
r,s

[D̂(d, Ê(e, x, r, s)) �= x] = Pr
r,s

[D(d,C(Ê(e, x, r, s))) �= x]

≤ Pr
r,s

[C(Ê((e, x, r), s)) �= E(e, x, r)]

+ Pr
r

[D(d,E(e, x, r)) �= x]

≤ ε(n),

where ε(·) is negligible in n and the probabilities are also taken over the coin tosses of
D; the first inequality follows from the union bound and the second from the viability
of E and the statistical correctness of Ê.

We move on to prove the security of the construction. Assume, toward a con-
tradiction, that Ê is not secure. It follows that there exists an efficient (nonuniform)
distinguisher B̂ and a polynomial p(·), such that for infinitely many n’s there exist
two plaintexts x, x′ such that |x| = |x′| ≤ p(n), and∣∣∣∣ Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x, r, s)) = 1] − Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x′, r, s)) = 1]

∣∣∣∣ > 1

p(n)
,

where r, s are uniformly chosen random strings of an appropriate length. We use
B̂ to construct a distinguisher B that distinguishes between encryptions of x and
x′ under E and derive a contradiction. Define a (nonuniform) distinguisher B by

B(e, y)
def
= B̂(e, S(y)), where S is the efficient (statistical) simulator of Ê. Then, for

some negligible ε,∣∣∣∣ Pr
(e,d)←G(1n),r

[B(e, E(e, x, r)) = 1] − Pr
(e,d)←G(1n),r

[B(e, E(e, x′, r)) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
(e,d)←G(1n),r

[B̂(e, S(E(e, x, r))) = 1] − Pr
(e,d)←G(1n),r

[B(e, S(E(e, x′, r))) = 1]

∣∣∣∣
≥

∣∣∣∣ Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x, r, s)) = 1] − Pr
(e,d)←G(1n),r,s

[B̂(e, Ê(e, x′, r, s)) = 1]

∣∣∣∣− ε(n)

>
1

p(n)
− ε(n) >

1

q(n)

874 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

for some polynomial q(·) and infinitely many n’s. The first inequality is due to sta-
tistical privacy and the second follows from our hypothesis. Hence, we derive a con-
tradiction to the security of E , and the lemma follows.

In particular, if the scheme E = (G,E,D) enables errorless decryption and the
encoding Ê is perfectly correct, then the scheme Ê also enables errorless decryption.
Additionally, the above lemma is easily extended to the case of private-key encryption
with multiple-message security. Thus we get the following theorem.

Theorem 7.6. If there exists a secure PKE scheme (resp., a secure private-
key encryption scheme) E = (G,E,D), such that E is in SREN (in particular, in
NL/poly), then there exists a secure PKE scheme (resp., a secure private-key encryp-

tion scheme) Ê = (G, Ê, D̂), such that Ê is in NC0
4.

Specifically, one can construct an NC0 PKE based on either factoring [47, 28, 10],
the Diffie–Hellman assumption [19, 28] or lattice problems [3, 48]. (These schemes
enable an NC1 encryption algorithm given a suitable representation of the key.)

On decryption in NC0. Our construction provides an NC0 encryption algorithm
but does not promise anything regarding the parallel complexity of the decryption
process. This raises the question of whether decryption can also be implemented
in NC0. In Appendix C.1, we argue that, in many settings, decryption in NC0 is
impossible regardless of the complexity of encryption. In contrast, if the scheme is
restricted to a single message of a bounded length (even larger than the key) we
can use our machinery to construct a private-key encryption scheme in which both
encryption and decryption can be computed in NC0. This can be done by using the
output of an NC0 PRG to mask the plaintext. Specifically, let E(e, x) = G(e)⊕x and
D(e, y) = y⊕G(e), where e is a uniformly random key generated by the key-generation
algorithm and G is a PRG. Unfortunately, the resulting scheme is severely limited
by the low stretch of our PRGs. This approach can be also used to give multiple-
message security, at the price of requiring the encryption and decryption algorithms
to maintain a synchronized state. In such a stateful encryption scheme the encryption
and decryption algorithms take an additional input and produce an additional output,
corresponding to their state before and after the operation. The seed of the generator
can be used, in this case, as the state of the scheme. In this setting, we can obtain
multiple-message security by refreshing the seed of the generator in each invocation;
e.g., when encrypting the current bit the encryption algorithm can randomly choose
a new seed for the next session, encrypt it along with the current bit, and send this
encryption to the receiver (alternatively, see [24, Construction 5.3.3]). In the resulting
scheme both encryption and decryption are NC0 functions whose inputs include the
inner state of the algorithm.

Theorem 7.6 can be easily extended to stronger notions of security. In particular,
randomized encoding preserves security against chosen plaintext attacks (CPA) as well
as a priori chosen ciphertext attacks (CCA1). However, randomized encoding does
not preserve security against a posteriori chosen ciphertext attacks (CCA2). Still, it
can be shown that the encoding of a CCA2-secure scheme enjoys a relaxed security
property that suffices for most applications of CCA2-security. See Appendix C.2 for
further discussion.

7.3. Signatures, commitments, and zero-knowledge proofs. The con-
struction that was used for encryption can be adapted to other cryptographic prim-
itives including (noninteractive) commitments, signatures, message authentication
schemes (MACs), and noninteractive zero-knowledge proofs (for definitions see
[23, 24]). In all these cases, we can replace the sender (i.e., the encrypting party,

CRYPTOGRAPHY IN NC0 875

committing party, signer, or prover, according to the case) with its randomized encod-
ing and let the receiver (the decrypting party or verifier) use the decoding algorithm
to translate the output of the new sender to an output of the original one. The se-
curity of the resulting scheme reduces to the security of the original one by using the
efficient simulator and decoder. In fact, such a construction can also be generalized to
the case of interactive protocols such as zero-knowledge proofs and interactive com-
mitments. As in the case of encryption discussed above, this transformation results
in an NC0 sender but does not promise anything regarding the parallel complexity
of the receiver. An interesting feature of the case of commitment is that we can also
improve the parallel complexity at the receiver’s end (see below). The same holds for
applications of commitment such as coin-flipping and zero-knowledge proofs. We now
briefly sketch these constructions and their security proofs.

Signatures. Let S = (G,S, V) be a signature scheme, where G is a key-generation
algorithm that generates the signing and verification keys (s, v), the signing function
S(s, α, r) computes a signature β on the document α using the key s and randomness
r, and the verification algorithm V (v, α, β) verifies that β is a valid signature on α
using the verification key v. The scheme is secure (unforgeable) if it is infeasible to
forge a signature in a chosen message attack. Namely, any polynomial-time adversary
that gets the verification key and an oracle access to the signing process S(s, ·) fails
to produce a valid signature β on a document α (with respect to the corresponding
verification key v) for which it has not requested a signature from the oracle. Let Ŝ

be a statistical randomized encoding of S, and let V̂ (v, α, β̂)
def
= V (v, α, C(β̂)) be the

composition of V with the decoder C of the encoding Ŝ. We claim that the scheme

Ŝ def
= (G, Ŝ, V̂) is also a signature scheme. Given an adversary Â that breaks Ŝ, we

can break S by invoking Â and emulating the oracle Ŝ using the simulator of the
encoding and the signature oracle S. If the forged signature (α, β̂) produced by Â is
valid under Ŝ, then it is translated into a valid signature (α, β) under S by using the

decoder, i.e., β = C(β̂). A similar argument holds also in the private-key setting (i.e.,
in the case of MACs).

Commitments. A commitment scheme enables one party (a sender) to commit
itself to a value while keeping it secret from another party (the receiver). Later, the
sender can reveal the committed value to the receiver, and it is guaranteed that the
revealed value is equal to the one determined at the commit stage. We start with
the simple case of a perfectly binding, noninteractive commitment. Such a scheme
can be defined by a polynomial-time computable function Send(b, r) that outputs
a commitment c to the bit b using the randomness r. We assume, without loss
of generality, that the scheme has a canonical decommit stage in which the sender
reveals b by sending b and r to the receiver, who verifies that Send(b, r) is equal
to the commitment c. The scheme should be both (computationally) hiding and
(perfectly) binding. Hiding requires that c = Send(b, r) keeps b computationally
secret (as formalized in Definition 7.4 for the case of encryption). Binding means
that it is impossible for the sender to open its commitment in two different ways;
that is, there are no r0 and r1 such that Send(0, r0) = Send(1, r1). Let ˆSend(b, r, s)
be some randomized encoding of Send(b, r). It can be shown that if ˆSend is a
perfectly correct (and statistically private) encoding of Send, then ˆSend defines a
computationally hiding perfectly binding, noninteractive commitment: Hiding follows
from the privacy of the encoding, as argued for the case of encryption in section 7.2.
The binding property of ˆSend follows from the perfect correctness; namely, given a
cheating sender Ŝ∗ for ˆSend that produces ambiguous commitment (r0, r

′
0), (r1, r

′
1)

876 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

such that ˆSend(0, r0, s0) = ˆSend(1, r1, s1), we construct a cheating sender S∗ for the
original scheme that invokes Ŝ∗ and outputs r0, r1. By perfect correctness it holds
that Send(0, r0) = Send(1, r1), and hence the new adversary succeeds with the same
probability as the original one.21

Using a standard construction ([9], [23, Construction 4.4.2]), it follows that com-
mitments in NC0 are implied by the existence of a one-to-one OWF in PREN . It is
important to note that in contrast to the noninteractive perfectly binding primitives
described so far, here we also improve the parallel complexity at the receiver’s end. In-
deed, on input ĉ, b, r, s the receiver’s computation consists of computing ˆSend(b, r, s)
and comparing the result to ĉ. Assuming ˆSend is in NC0, the receiver can be imple-
mented by an NC0 circuit augmented with a single (unbounded fan-in) AND gate.
We refer to this special type of AC0 circuit as an NC0[AND] circuit. As an immediate
application, we get a 3-round protocol for flipping a coin [9] between an NC0 circuit
and an NC0[AND] circuit.

One can apply a similar transformation to other variants of commitment schemes,
such as unconditionally hiding (and computationally binding) interactive commit-
ments. Schemes of this type require some initialization phase, which typically involves
a random key sent from the receiver to the sender. We can turn such a scheme into a
similar scheme between an NC0 sender and an NC0[AND] receiver, provided that it
conforms to the following structure: (1) the receiver initializes the scheme by locally
computing a random key k (say, a prime modulus and powers of two group elements
for schemes based on a discrete logarithm) and sending it to the sender; (2) the sender
responds with a single message computed by the commitment function Send(b, k, r)
which is in PREN (actually, perfect correctness and statistical privacy suffice); (3) as
in the previous case, the scheme has a canonical decommit stage in which the sender
reveals b by sending b and r to the receiver, who verifies that Send(b, k, r) is equal to
the commitment c. Using the CRHF-based commitment scheme of [18, 31], one can
obtain schemes of the above type based on the intractability of factoring, discrete log-
arithm, and lattice problems. Given such a scheme, we replace the sender’s function
by its randomized encoding and get as a result an unconditionally hiding commitment
scheme whose sender is in NC0. The new scheme inherits the round complexity of
the original scheme and thus consists of only two rounds of interaction. (The security
proof is similar to the previous case of perfectly binding, noninteractive commitment.)
If the random key k cannot be computed in NC0[AND] (as in the case of factoring-
and discrete logarithm-based schemes), one can compute k once and for all during
the generation of the receiver’s circuit and hardwire the key to the receiver’s circuit.
(See Appendix A.)

Zero-knowledge proofs. We end this section by addressing the case of zero-
knowledge protocols. Suppose that the prover’s computations are in SREN . Then,
similarly to the case of encryption, we can compile the prover into its (statistical)
randomized encoding and obtain a prover whose local computations (viewed as a
function of its randomness, the common instance of the language, the private witness,
and previously received messages) are in NC0. The new verifier uses the decoder
to translate the prover’s encoded messages to the corresponding messages of original

21A modification of this scheme remains secure even if we replace Send with a statistical ran-
domized encoding. However, in this modification we cannot use the canonical decommitment stage.
Instead, the receiver should verify the decommitment by applying the decoder C to ĉ and comparing
the result to the computation of the original sender; i.e., the receiver checks whether C(ĉ) equals
Send(b, r). A disadvantage of this alternative decommitment is that it does not enjoy the enhanced
parallelism feature discussed below.

CRYPTOGRAPHY IN NC0 877

Table 7.1

Sufficient properties for preserving the security of different primitives.

Primitive Encoding Efficient simulator Efficient decoder

One-way function statistical required —
One-way permutation perfect required —
Trapdoor permutation perfect required required
Pseudorandom generator perfect required —
Collision-resistant hashing perfect — —
Encryption (public, private) statistical required required
Signatures, MAC statistical required required
Commit + Decommit perfectly correct required —
Zero-knowledge proof statistical required required

protocol, and then invokes the original verifier. The completeness and soundness of
the new protocol follow from the correctness of the encoding, and its zero-knowledge
property from the privacy of the encoding. (The verifier can produce transcripts of
the new protocol by composing the simulator of the encoding with the simulator of
the original protocol.) A similar transformation applies to zero-knowledge arguments.

As before, this general approach does not parallelize the verifier; in fact, the
verifier is now required to “work harder” and decode the prover’s messages. However,
we can improve the verifier’s complexity by relying on specific, commitment-based,
zero-knowledge protocols from the literature. For instance, in the constant-round
protocol for graph 3-colorability of [26], the computations of the prover and the verifier
consist of invoking two commitments (of both types, perfectly binding as well as
statistically hiding), in addition to some AC0 computations. Hence, we can use the
parallel commitment schemes described before to construct a constant-round protocol
for 3-colorability between an AC0 prover and an AC0 verifier. Since 3-colorability is
NP complete under AC0 reductions, we get constant-round zero-knowledge proofs in
AC0 for every language in NP.

7.4. Summary and discussion. Table 7.1 summarizes the properties of ran-
domized encoding that suffice for encoding different cryptographic primitives. (In the
case of TDPs, efficient randomness recovery is also needed.) We note that in some
cases it suffices to use a computationally private randomized encoding, in which the
simulator’s output should only be computationally indistinguishable from that of the
encoding. This relaxation, recently studied in [4], allows one to construct (some)
primitives in NC0 under more general assumptions.

The case of pseudorandom functions. It is natural to ask why our machinery can-
not be applied to pseudorandom functions (PRFs) (assuming there exists a PRF in
PREN), as is implied from the impossibility results of Linial, Mansour, and Nisan [42].

Suppose that a PRF family fk(x) = f(k, x) is encoded by the function f̂(k, x, r).

There are two natural ways to interpret f̂ as a collection: (1) to incorporate the

randomness into the key, i.e., gk,r(x)
def
= f̂(k, x, r); (2) to append the randomness to

the argument of the collection, i.e., hk(x, r)
def
= f̂(k, x, r). To rule out the security

of approach (1), it suffices to note that the mapping f̂(·, r) is of degree 1 when r is
fixed; thus, to distinguish gk,r from a truly random function, one can check whether
the given function is affine (e.g., verify that gk,r(x) + gk,r(y) = gk,r(x+ y) + gk,r(0)).
The same attack applies to the function hk(x, r) obtained by the second approach,
by fixing the randomness r. More generally, the privacy of a randomized encoding
is guaranteed only when the randomness is secret and is freshly picked; thus our

878 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

methodology works well for cryptographic primitives which employ fresh secret ran-
domness in each invocation. PRFs do not fit into this category: While the key contains
secret randomness, it is not freshly picked in each invocation.

We finally note that by combining the positive results regarding the existence of
various primitives in NC0 with the negative results of [42] that rule out the possibility
of PRFs in AC0, one can derive a separation between PRFs and other primitives such
as PRGs. In particular, we conclude that it is unlikely that a PRF is AC0-reducible
to a PRG.

8. One-way functions with optimal locality. The results presented so far
leave a small gap between the strong positive evidence for cryptography in NC0

4 and
the known impossibility of even OWFs in NC0

2. In this section we attempt to close
this gap for the case of OWFs, providing positive evidence for the existence of OWFs
in NC0

3.
A natural approach for closing the gap would be to reduce the degree of our general

construction of randomized encodings from 3 to 2. (Indeed, the locality construction
transforms a degree-2 encoding into one in NC0

3.) However, the results of [37] provide
some evidence against the prospects of this general approach, ruling out the existence
of degree-2 perfectly private encodings for most nontrivial functions. We thus take the
following two alternative approaches: (1) seek direct constructions of degree-2 OWFs
based on specific intractability assumptions; and (2) employ degree-2 randomized
encodings with a weak (but nontrivial) privacy property (called semiprivacy), which
enables the representation of general functions.

In section 8.1, we use approach (1) to construct an OWF with optimal locality
based on the presumed intractability of decoding a random linear code. In section
8.2 we briefly demonstrate the usefulness of approach (2) by sketching a construction
of an OWF with optimal locality based on an OWF that enjoys a certain strong
“robustness” property, which is satisfied by a variant of an OWF candidate suggested
in [22]. We note that neither of the above approaches yields a general result in the
spirit of the results of the previous sections. Thus, we happen to pay for optimal
degree and locality with the loss of generality.

8.1. OWFs in NC0
3 from the intractability of decoding random linear

codes. Several cryptographic schemes are based on hard problems from the theory
of error-correcting codes. In particular, the problem of decoding random linear codes,
which is a longstanding open question in coding theory, was suggested as a basis
for OWFs [27]. An (n, k, δ) binary linear code is a k-dimensional linear subspace of
GF(2)n in which the Hamming distance between each two distinct vectors (codewords)
is at least δn. We refer to the ratio k/n as the rate of the code and to δ as its
(relative) distance. Such a code can be defined by a k × n generator matrix whose
rows span the space of codewords. It follows from the Gilbert–Varshamov bound
that whenever k/n < 1 − H2(δ) − ε (where H2 is the binary entropy function and ε
is an arbitrarily small positive constant), almost all k × n generator matrices form
(n, k, δ)-linear codes.

Before defining our intractability assumption, imagine the following “decoding
game.” Let k/n < 1−H2(1/3)−ε for some constant ε > 0. Pick a random k×n matrix
C representing a linear code (which is with overwhelming probability an (n, k, 1

3 + ε)
code) and a random information word x. Encode x with C and transmit the resulting
codeword y = xC over a binary symmetric channel in which every bit is flipped
with probability 1

4 . If more than 1
3 of the bits were flipped, output the zero word;

otherwise, output the noisy codeword ỹ along with the code’s description C. In the

CRYPTOGRAPHY IN NC0 879

former event the adversary always wins (however, note that the probability of this
event is negligible). In the latter event, the adversary’s task is to find some codeword
y which is at most (n/3)-far from ỹ. The fact that the noise is random (rather than
adversarial) guarantees, by Shannon’s coding theorem, that y will be unique with
overwhelming probability.

The intractability assumption on which we rely asserts that every polynomial-
time adversary loses in the above game with noticeable probability. That is, roughly
speaking, we assume that it is intractable to correct n/4 random errors in a random
linear code of relative distance 1

3 . More precisely we have the following assumption.
Intractability Assumption 8.1 (decoding a random linear code). There ex-

ists a constant c < 1−H2(
1
3) such that the following function fcode is a weak OWF: 22

fcode(C, x, e)
def
=

{
0 weight(e1e2, . . . , e2n−1e2n) ≥ n/3,

(C, xC + (e1e2, . . . , e2n−1e2n)) otherwise,

where C is a k × n binary generator matrix with k = �cn�, x ∈ {0, 1}k, e ∈ {0, 1}2n,
weight(·) denotes Hamming weight, and arithmetic is over GF(2).

Namely, inverting fcode on a uniformly chosen input corresponds to winning in
the above decoding game. (Two random bits, ei and ei+1, are multiplied to emulate
a noise rate of 1

4 .) The plausibility of Assumption 8.1 is supported by the fact that
a successful inverter would imply a major breakthrough in coding theory. Similar
assumptions were put forward in [27, 8, 23]. It is possible to base our construction
on different variants of this assumption (e.g., one in which the number of errors is
bounded by half the minimal distance, as in [27]); the above formulation is preferred
for simplicity (and seems even weaker than the one in [27]).

We now construct a degree-2 OWF assuming the (weak) one-wayness of fcode.

Consider the degree-2 function f ′
code defined by f ′

code(C, x, e)
def
= (C, xC + (e1e2, . . . ,

e2n−1e2n)). The function f ′
code by itself is not one-way; indeed, as there is no restric-

tion on the choice of e, an inverter can arbitrarily pick x and then fix e to be consistent
with C, x, and ỹ. However, f ′

code is still distributionally one-way. This follows by
noting that f ′

code differs from fcode only on a negligible fraction of their domain and
by using Lemma 5.4. To conclude the proof we need the following lemma.

Lemma 8.2. A degree-2 distributional OWF implies a degree-2 OWF in NC0
3.

Proof. First observe that a degree-2 weak OWF can be transformed into a degree-2
(standard) OWF (cf. [52], [23, Theorem 2.3.2]). Combined with the locality construc-
tion, we get that the existence of a degree-2 weak OWF implies the existence of a
degree-2 OWF in NC0

3. Hence it is enough to show how to transform a degree-2
distributional OWF into a degree-2 weak OWF.

Let f be a degree-2 distributional OWF. Consider the function F (x, i, h) =
(f(x), hi(x), i, h), where x ∈ {0, 1}n, i ∈ {1, . . . , n}, h : {0, 1}n → {0, 1}n is a pairwise
independent hash function, and hi denotes the i-bit-long prefix of h(x). This function
was defined by Impagliazzo and Luby [35], who showed that in this case F is weakly
one-way (see also [23, p. 96]). Note that h(x) can be computed as a degree-2 function
of x and (the representation of) h by using the hash family hM,v(x) = xM + v, where
M is an n × n matrix and v is a vector of length n. However, hi(x) is not of degree
2 when considered as a function of h, x, and i, since “chopping” the last n− i bits of

22In fact, it seems likely that the function fcode is even strongly one-way.

880 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

h(x) raises the degree of the function when i is not fixed. We get around this problem
by applying n copies of F on independent inputs, where each copy uses a different

i. Namely, we define the function F ′((x(i), h(i))ni=1)
def
= (F (x(i), i, h(i)))ni=1. Since each

of the i’s is now fixed, the resulting function F ′ can be computed by degree-2 poly-
nomials over GF(2). Moreover, it is not hard to verify that F ′ is weakly one-way if
F is weakly one-way. We briefly sketch the argument. Given an efficient inverting
algorithm B for F ′, one can invert y = F (x, i, h) = (f(x), hi(x), i, h) as follows. For
every j �= i, uniformly and independently choose x(j), h(j), set zj = F (x(j), j, h(j)) and
zi = y, and then invoke B on (zj)

n
j=1 and output the ith block of the answer. This

inversion algorithm for F has the same success probability as B on a polynomially
related input.

Applying Lemma 8.2 to f ′
code we get the following theorem.

Theorem 8.3. If Assumption 8.1 holds, there is a degree-2 OWF in NC0
3.

8.2. OWFs in NC0
3 using semiprivate encoding. In this section we briefly

address the possibility of obtaining optimal locality for OWFs (i.e., locality 3 rather
than 4) by relaxing the privacy requirement of the encoding. Further details appear
in [5].

We start by sketching an alternative approach for constructing OWFs in NC0
3

based on Assumption 8.1. The basic idea is the following. Consider the degree-2
function f ′

code defined above. This function is not one-way. However, it is possible
to augment it to a (weakly) one-way function by appending to its output a single
bit, φ(e), indicating whether the error vector e exceeds the weight threshold. That
is, φ(e) = 1 if and only if weight(e1e2, . . . , e2n−1e2n) ≥ n/3. (This ensures that,
with high probability, the inverter will be forced to pick a low-weight error.) While
we cannot encode the predicate φ(e) using degree-2 polynomials, it turns out that we
can achieve this using the following type of semiprivate encoding. Specifically, we relax
the simulation requirement to hold only when φ(e) = 0. Thus, the encoding φ̂(e, r)
keeps e private only when φ(e) = 0, i.e., when e defines a low-weight error vector.
It is possible to efficiently construct such a degree-2 semiprivate encoding from the
branching program representation of φ. (This can be done by using a variant of the
BP construction described in section 4.3.) Hence, under Assumption 8.1, the degree-2

encoding f̂code((C, x, e), r)
def
= (f ′

code(C, x, e), φ̂(e, r)) is weakly one-way.

Given any OWF f , one could attempt to apply a semiprivate encoding as de-
scribed above to every output bit of f , obtaining a degree-2 function f̂ . However, f̂
will typically not be one-way: Every output bit of f that evaluates to 1 might reveal
the entire input (through the corresponding block in the output of f̂). This motivates
the following notion of a robust OWF. Loosely speaking, an OWF f is said to be
robust if it remains (slightly) hard to invert even if a random subset of its output bits
are “exposed,” in the sense that all input bits leading to these outputs are revealed.
Intuitively, the purpose of the robustness requirement is to guarantee that the infor-
mation leaked by the semiprivate encoding leaves enough uncertainty about the input
to make inversion difficult. It can be shown that (1) every robust OWF with a low
locality (say, logarithmic in the number of inputs) can be turned into an OWF in
NC0

3; and (2) a variant of an OWF candidate from [22] satisfies the latter property,
assuming that it is indeed one-way. Thus, an intractability assumption of the flavor
of the one suggested in [22] implies the existence of OWFs in NC0

3.

9. Conclusions and open problems. Our results provide strong evidence for
the possibility of cryptography in NC0. They are also close to optimal in terms of the

CRYPTOGRAPHY IN NC0 881

exact locality that can be achieved. Still, several questions are left for further study,
in particular, the following:

• What are the minimal assumptions required for cryptography in NC0? For
instance, does the existence of an arbitrary OWF imply the existence of an
OWF in NC0? We show that an OWF in NL/poly implies an OWF in NC0.

• Is there a PRG with linear stretch or even superlinear stretch in NC0? In
particular, is there a PRG with linear stretch in NC0

4? (The possibility of
a PRG with superlinear stretch in NC0

4 is ruled out in [43].) We show that
there exists a PRG with sublinear stretch in NC0

4, assuming the existence of
a PRG in ⊕L/poly.

• Can the existence of an OWF (or PRG) in NC0
3 be based on more general

assumptions? We construct such an OWF under the intractability of decoding
a random linear code.

• Is it possible to obtain constant input locality, i.e., construct primitives in
which each input influences only a constant number of outputs? (A candidate
OWF of this type is given in [22].) Note that the results of this work only
address the case of a constant output locality, which does not imply a constant
input locality.

• Can our paradigm for achieving better parallelism be of any practical use?

The above questions motivate a closer study of the complexity of randomized
encodings, which so far was only motivated by questions in the domain of secure
multiparty computation. In [4] we continue this study by considering a relaxed vari-
ant of randomized encoding referred to as computationally private encoding. We
show that, under relatively mild assumptions, one can encode every polynomial-time
computable function by a computationally private encoding in NC0. This gives new
sufficient conditions for cryptography in NC0, as well as new NC0 reductions between
different cryptographic primitives.

Appendix A. On collections of cryptographic primitives.

In most cases, we view a cryptographic primitive (e.g., an OWF or a PRG) as
a single function f : {0, 1}∗ → {0, 1}∗. However, it is often useful to consider more
general variants of such primitives, defined by a collection of functions {fz}z∈Z , where
Z ⊆ {0, 1}∗ and each fz is defined over a finite domain Dz. The full specification
of such a collection usually consists of a probabilistic polynomial-time key-generation
algorithm that chooses an index z of a function (given a security parameter 1n), a
domain sampler algorithm that samples a random element from Dz given z, and a
function evaluation algorithm that computes fz(x) given z and x ∈ Dz. The primitive
should be secure with respect to the distribution defined by the key-generation and
the domain sampler. (See a formal definition for the case of OWFs in [23, Definition
2.4.3].)

Collections of primitives arise naturally in the context of parallel cryptography, as
they allow one to shift “nonparallelizable” operations such as prime number selection
and modular exponentiations to the key-generation stage (cf. [44]). They also fit
naturally into the setting of P-uniform circuits, since the key-generation algorithm
can be embedded in the algorithm generating the circuit. Thus, it will be convenient
to assume that z is a description of a circuit computing fz. When referring to a
collection of functions from a given complexity class (e.g., NC1, NC0

4, or PREN ,
cf. Definition 4.8) we assume that the key-generation algorithm outputs a description
of a circuit from this class. In fact, one can view collections in our context as a
natural relaxation of uniformity, allowing the circuit generator to be randomized.

882 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

(The above discussion also applies to other P-uniform representation models we use,
such as branching programs.)

Our usage of collections differs from the standard one in that we insist on Dz being
the set of all strings of a given length (i.e., the set of all possible inputs for the circuit
z) and restrict the domain sampler to be a trivial one which outputs a uniformly ran-
dom string of the appropriate length. This convention guarantees that the primitive
can indeed be invoked with the specified parallel complexity, and does not implicitly
rely on a (possibly less parallel) domain sampler.23 In most cases, it is possible to
modify standard collections of primitives to conform to the above convention. We
illustrate this by outlining a construction of an NC1 collection of OWPs based on the
intractability of the discrete logarithm problem. The key-generator, on input 1n, sam-
ples a random prime p such that 2n−1 ≤ p < 2n along with a generator g of Z∗

p , and

lets z be a description of an NC1 circuit computing the function fp,g defined as follows.
On an n-bit input x (viewed as an integer such that 0 ≤ x < 2n) define fp,g(x) = gx

mod p if 1 ≤ x < p and fp,g(x) = x otherwise. It is easy to verify that fp,g indeed
defines a permutation on {0, 1}n. Moreover, it can be computed by an NC1 circuit by
incorporating p, g, g2, g4, . . . , g2n

into the circuit. Finally, assuming the intractability
of the discrete logarithm problem, the above collection is weakly one-way. It can be
augmented into a collection, of (strongly) OWPs by using the standard reduction of
strong OWFs to weak OWFs (i.e., using f ′

p,g(x1, . . . , xn) = (fp,g(x1), . . . , fp,g(xn))).

When defining the cryptographic security of a collection of primitives, it is as-
sumed that the adversary (e.g., inverter or distinguisher) is given the key z, in addition
to its input in the single-function variant of the primitive. Here one should make a
distinction between “private-coin collections,” where this is all of the information
available to the adversary, and “public-coin collections” in which the adversary is
additionally given the internal coin tosses of the key-generator. (A similar distinction
has recently been made in the specific context of CRHFs [34]; also, see the discus-
sion of “enhanced TDP” in [24, Appendix C.1].) The above example for an OWP
collection is of the public-coin type. Any public-coin collection is also a private-coin
collection, but the converse may not be true.

Summarizing, we consider cryptographic primitives in three different settings:

1. Single function setting. The circuit family {Cn}n∈N that computes the primi-
tive is constructed by a deterministic polynomial time circuit generator that,
given an input 1n, outputs the circuit Cn. This is the default setting for most
cryptographic primitives.

2. Public-coin collection. The circuit generator is a probabilistic polynomial
time algorithm that, on input 1n, samples a circuit from a collection of cir-
cuits. The adversary gets as an input the circuit produced by the generator,
along with the randomness used to generate it. The experiments defining the
success probability of the adversary incorporate the randomness used by the
generator, in addition to the other random variables. As in the single function
setting, this generation step can be thought of as being done “once and for
all,” e.g., in a preprocessing stage. Public-coin collections are typically useful
for primitives based on discrete logarithm assumptions, where a large prime
group should be set up along with its generator and precomputed exponents
of the generator.

23Note that unlike the key-generation algorithm, which can be applied “once and for all,” the
domain sampler should be invoked for each application of the primitive.

CRYPTOGRAPHY IN NC0 883

3. Private-coin collection. This is the same as (2) except that the adversary
does not know the randomness that was used by the circuit generator. This
relaxation is typically useful for factoring-based constructions, where the ad-
versary should not learn the trapdoor information associated with the public
modulus (see [39, 44]).

We note that our general transformations apply to all of the above settings. In
particular, given an NC1 primitive in any of these settings, we obtain a corresponding
NC0 primitive in the same setting.

Appendix B. A generalization of the locality construction. In the locality
construction (Construction 4.16), we showed how to encode a degree-d function by an
NC0

d+1 encoding. We now describe a graph-based construction that generalizes the

previous one. The basic idea is to view the encoding f̂ as a graph. The nodes of the
graph are labeled by terms of f and the edges by random inputs of f̂ . With each
node we associate an output of f̂ in which we add to its term the labels of the edges
incident to the node. Formally, we have the following construction.

Construction B.1 (general locality construction). Let f(x) = T1(x) + · · · +
Tk(x), where f, T1, . . . , Tk : GF(2)n → GF(2) and summation is over GF(2). Let
G = (V,E) be a directed graph with k nodes V = {1, . . . , k} and m edges. The

encoding f̂G : GF(2)n+m → GF(2)k is defined by

f̂G(x, (ri,j)(i,j)∈E)
def
=

⎛
⎝Ti(x) +

∑
j|(j,i)∈E

rj,i −
∑

j|(i,j)∈E

ri,j

⎞
⎠

k

i=1

.

From here on, we will identify with the directed graph G its underlying undi-
rected graph. The above construction yields a perfect encoding when G is a tree (see

Lemma B.2). The locality of an output bit of f̂G is the locality of the corresponding
term plus the degree of the node in the graph. The locality construction described in
Construction 4.16 attempts to minimize the maximal locality of a node in the graph;
hence it adds k “dummy” 0 terms to f and obtains a tree in which all of the k non-
dummy terms of f are leaves and the degree of each dummy term is at most 3. When
the terms of f vary in their locality, a more compact encoding f̂ can be obtained by
increasing the degree of nodes which represent terms with lower locality.

Lemma B.2 (generalized locality lemma). Let f and f̂G be as in Construc-
tion B.1. Then, the following hold:

(1) f̂G is a perfectly correct encoding of f .

(2) If G is connected, then f̂G is also a balanced encoding of f (and in particular
it is perfectly private).

(3) If G is a tree, then f̂G is also stretch-preserving; that is, f̂G perfectly encodes
f .

Proof. (1) Given ŷ = f̂G(x, r), we decode f(x) by summing up the bits of ŷ. Since
each random variable ri,j appears only in the ith and jth output bits, it contributes
0 to the overall sum and therefore the bits of ŷ always add up to f(x).

To prove (2) we use the same simulator as in the locality construction (see proof
of Lemma 4.17). Namely, given y ∈ {0, 1}, the simulator S chooses k− 1 random bits
r1, . . . , rk−1 and outputs (r1, . . . , rk−1, y−(r1+· · ·+rk−1)). This simulator is balanced
since the supports of S(0) and S(1) halve {0, 1}k and S(y) is uniformly distributed over

its support for y ∈ {0, 1}. We now prove that f̂G(x, Um) ≡ S(f(x)). Since the support

884 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

of S(f(x)) contains exactly 2k−1 strings (namely, all k-bit strings whose bits sum up
to f(x)), it suffices to show that for any input x and output w ∈ support(S(f(x)))

there are 2m/2k−1 random inputs r such that f̂G(x, r) = w. (Note that m ≥ k − 1
since G is connected.) Let T ⊆ E be a spanning tree of G. We argue that for any
assignment to the m−(k−1) random variables that correspond to edges in E\T there
exists an assignment to the other random variables that is consistent with w and x.
Fix some assignment to the edges in E \ T . We now recursively assign values to the
remaining edges. In each step we make sure that some leaf is consistent with w by
assigning the corresponding value to the edge connecting this leaf to the graph. Then,
we prune this leaf and repeat the above procedure. Formally, let i be a leaf which is
connected to T by an edge e ∈ T . Assume, without loss of generality, that e is an
incoming edge for i. We set re to wi − (Ti(x) +

∑
j|(j,i)∈E\T rj,i −

∑
j|(i,j)∈E\T ri,j)

and remove i from T . By this we ensure that the ith bit of f̂G(x, r) is equal to wi.
(This equality will not be violated by the following steps as i is removed from T .) We
continue with the above step until the tree consists of one node. Since the outputs of
f̂G(x, r) always sum up to f(x) it follows that this last bit of f̂G(x, r) is equal to the
corresponding bit of w. Thus, there are at least 2|E\T | = 2m−(k−1) values of r that
lead to w as required.

Finally, to prove (3) note that when G is a tree we have m = k − 1, and

therefore the encoding is stretch-preserving; combined with (1) and (2), f̂G is also
perfect.

Appendix C. More on encryption schemes in NC0. We consider two issues
regarding encryption, briefly mentioned in section 7.2.

C.1. On the impossibility of NC0 decryption. In this section we show
that, in many settings, decryption in NC0 is impossible regardless of the complexity
of encryption. Here we consider standard stateless encryption schemes in contrast to
the discussion at the end of section 7.2. We begin with the case of multiple-message
security (in either the private-key or public-key setting). If a decryption algorithm
D(d, y) is in NC0

k, then an adversary that gets n encrypted messages can correctly
guess the first bits of all the plaintexts (jointly) with at least 2−k probability. To do
so, the adversary simply guesses at random the k (or fewer) bits of the key d on which
the first output bit of D depends, and then computes this first output bit (which is
supposed to be the first plaintext bit) on each of the n ciphertexts using the subkey
it guessed. Whenever the adversary guesses the k bits correctly, it succeeds in finding
the first bits of all n messages. When n > k, this violates the semantic security of the
encryption scheme. Indeed, for the encryption scheme to be secure, the adversary’s
success probability (when the messages are chosen at random) can only be negligibly
larger than 2−n. (That is, an adversary cannot do much better than simply guessing
these first bits.)

Even in the case of a single-message private-key encryption, it is impossible to
implement decryption in NC0

k with an arbitrary (polynomial) message length. Indeed,
when the message length exceeds (2|d|)k (where |d| is the length of the decryption
key), there must be more than 2k bits of the output of D which depend on the same
k bits of the key, in which case we are in the same situation as before. That is, we can
guess the value of more than 2k bits of the message with constant success probability
2−k. Again, if we consider a randomly chosen message, this violates semantic security.

C.2. Security against CPA, CCA1, and CCA2 attacks. In this section we
address the possibility of applying our machinery to encryption schemes that enjoy

CRYPTOGRAPHY IN NC0 885

stronger notions of security. In particular, we consider schemes that are secure against
CPA, CCA1, and CCA2. In all three attacks the adversary has to win the standard
indistinguishability game (i.e., given a ciphertext c = E(e,mb), find out which of the
two predefined plaintexts m0,m1 was encrypted), and so the actual difference lies in
the power of the adversary. In a CPA attack the adversary can obtain encryptions
of plaintexts of his choice (under the key being attacked), i.e., the adversary gets an
oracle access to the encryption function. In CCA1 attack the adversary may also
obtain decryptions of his choice (under the key being attacked), but he is allowed to
do so only before the challenge is presented to him. In both cases, the security is
preserved under randomized encoding. We briefly sketch the proof idea.

Let B̂ be an adversary that breaks the encoding Ê via a CPA attack (resp., CCA1
attack). We use B̂ to obtain an adversary B that breaks the original scheme E . As
in the proof of Lemma 7.5, B uses the simulator to translate the challenge c, an
encryption of the message mb under E , into a challenge ĉ, which is an encryption of
the same message under Ê . Similarly, B answers the encryption queries of B̂ (to the
oracle Ê) by directing these queries to the oracle E and applying the simulator to the
result. Also, in the case of CCA1 attack, whenever B̂ asks the decryption oracle D̂
to decrypt some ciphertext ĉ′, the adversary B uses the decoder (of the encoding) to
translate ĉ′ into a ciphertext c′ of the same message under the scheme E , and then
uses the decryption oracle D to decrypt c′. This allows B to emulate the oracles D̂
and Ê and thus to translate a successful CPA attack (resp., CCA1 attack) on the new
scheme into a similar attack on the original scheme.

The situation is different in the case of a CCA2 attack. As in the case of a CCA1
attack, a CCA2 attacker has an oracle access to the decryption function corresponding
to the decryption key in use; however, the adversary can query the oracle even after
the challenge has been given to him, under the restriction that he cannot ask the
oracle to decrypt the challenge c itself.

We start by observing that when applying a randomized encoding to a CCA2-
secure encryption scheme, CCA2 security may be lost. Indeed, in the resulting encryp-
tion one can easily modify a given ciphertext challenge ĉ = Ê(e, x, r) into a ciphertext
ĉ′ �= ĉ which is also an encryption of the same message under the same encryption
key. This can be done by applying the decoder (of the randomized encoding Ê) and
then the simulator on ĉ, that is ĉ′ = S(C(ĉ)). Hence, one can break the encryption
by simply asking the decryption oracle to decrypt ĉ′.

It is instructive to understand why the previous arguments fail to generalize to
the case of CCA2 security. In the case of CCA1 attacks we transformed an adversary
B̂ that breaks the encoding Ê into an adversary B for the original scheme in the
following way: (1) we used the simulator to convert a challenge c = E(e,mb) into a
challenge ĉ which is an encryption of the same message under Ê ; (2) when B̂ asks
D̂ to decrypt a ciphertext ĉ′, the adversary B uses the decoder (of the encoding) to
translate ĉ′ into a ciphertext c′ of the same message under the scheme E , and then
asks the decryption oracle D to decrypt c′. However, recall that in a CCA2 attack
the adversaries are not allowed to ask the oracle to decrypt the challenge itself (after
the challenge is presented). So if c′ = c but ĉ′ �= ĉ, the adversary B cannot answer
the (legitimate) query of B̂.

To complement the above, we show that when applying a randomized encoding
to a CCA2-secure encryption scheme not all is lost. Specifically, the resulting scheme
still satisfies replayable CCA (RCCA) security, a relaxed variant of CCA2 security
that was suggested in [12]. Loosely speaking, RCCA security captures encryption
schemes that are CCA2 secure except that they allow anyone to generate new ciphers

886 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

that decrypt to the same value as a given ciphertext. More precisely, an RCCA attack
is a CCA2 attack in which the adversary cannot ask the oracle to decrypt any cipher
c′ that decrypts to either m0 or m1 (cf. [12, Figure 3]). This limitation prevents the
problem raised in the CCA2 proof, in which a legitimate query for D̂ translates by
the decoder into an illegitimate query for D. That is, if ĉ′ does not decrypt under Ê
to either m0 or m1, then (by correctness) the ciphertext c′ obtained by applying the
decoder to ĉ′ also does not decrypt to either of these messages. Hence, randomized
encoding preserves RCCA security. As argued in [12], RCCA security suffices in most
applications of CCA2 security.

Acknowledgments. We are grateful to Oded Goldreich for many useful sugges-
tions and comments that helped improve this paper and, in particular, for simplifying
the proof of Lemma 5.4. We also thank Iftach Haitner and Emanuele Viola for en-
lightening us about old and new constructions of PRGs from OWFs and for sharing
with us the results of [30] and [50]. Finally, we thank Moni Naor and Amir Shpilka
for helpful comments.

REFERENCES

[1] M. Agrawal, E. Allender, and S. Rudich, Reductions in circuit complexity: An isomorphism
theorem and a gap theorem, J. Comput. System Sci., 57 (1998), pp. 127–143.

[2] M. Ajtai, Generating hard instances of lattice problems, in Proceedings of the 28th Annual
ACM Symposium on Theory of Computing (STOC), 1996, pp. 99–108; full version in
Electronic Colloquium on Computational Complexity (ECCC).

[3] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence,
in Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC),
1997, pp. 284–293.

[4] B. Applebaum, Y. Ishai, and E. Kushilevitz, Computationally private randomizing poly-
nomials and their applications, in Proceedings of the 20th Annual IEEE Conference on
Computational Complexity (CCC), 2005, pp. 260–274.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz, On One-way Functions with Optimal Locality,
unpublished manuscript, 2005; available online at http://www.cs.technion.ac.il/∼abenny.

[6] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols and logspace-hard pseudorandom
sequences, in Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), 1989, pp. 1–11.

[7] D. A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1, in Proceedings of the 18th Annual ACM Symposium on Theory of
Computing (STOC), 1986, pp. 1–5.

[8] A. Blum, M. Furst, M. Kearns, and R. J. Lipton, Cryptographic primitives based on hard
learning problems, in Advances in Cryptology—CRYPTO ’93, Lecture Notes in Comput.
Sci. 773, Springer-Verlag, Berlin, 1994, pp. 278–291.

[9] M. Blum, Coin flipping by telephone: A protocol for solving impossible problems, SIGACT
News, 15 (1983), pp. 23–27.

[10] M. Blum and S. Goldwasser, An efficient probabilistic public-key encryption scheme which
hides all partial information, in Advances in Cryptology—CRYPTO ’84, Lecture Notes in
Comput. Sci. 196, Springer-Verlag, Berlin, 1985, pp. 289–299.

[11] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random
bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[12] R. Canetti, H. Krawczyk, and J. B. Nielsen, Relaxing chosen ciphertext security, in Ad-
vances in Cryptology—CRYPTO ’03, Lecture Notes in Comput. Sci. 2729, Springer-Verlag,
Berlin, 2003, pp. 565–582.

[13] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, Randomness conductors and
constant-degree lossless expanders, in Proceedings of the 34th Annual ACM Symposium
on Theory of Computing (STOC), 2002, pp. 659–668.

[14] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic
communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[15] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz, Efficient multi-party computation
over rings, in Advances in Cryptology—EUROCRYPT ’03, Springer-Verlag, Berlin, 2003,
pp. 596–613.

CRYPTOGRAPHY IN NC0 887

[16] M. Cryan and P. B. Miltersen, On pseudorandom generators in NC0, in Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 2136, Springer-Verlag,
Berlin, 2001, pp. 272–284.

[17] I. B. Damg̊ard, Collision free hash functions and public key signature schemes, in Advances
in Cryptology—EUROCRYPT ’87, Lecture Notes in Comput. Sci. 304, Springer-Verlag,
Berlin, 1988, pp. 203–216.

[18] I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, On the existence of statistically hiding
bit commitment schemes and fail-stop signatures, J. Cryptology, 10 (1997), pp. 163–194.

[19] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms,
IEEE Trans. Inform. Theory, 31 (1985), pp. 469–472.

[20] A. V. Goldberg, M. Kharitonov, and M. Yung, Lower bounds for pseudorandom num-
ber generators, in Proceedings of the 30th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1989, pp. 242–247.

[21] O. Goldreich, Modern Cryptography, Probabilistic Proofs, and Pseudorandomness, Algo-
rithms Combin. 17, Springer-Verlag, Berlin, 1999.

[22] O. Goldreich, Candidate one-way functions based on expander graphs, Electronic Colloquium
on Computational Complexity (ECCC), 7 (2000).

[23] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cam-
bridge, UK, 2001.

[24] O. Goldreich, Foundations of Cryptography: Basic Applications, Cambridge University Press,
Cambridge, UK, 2004.

[25] O. Goldreich, S. Goldwasser, and S. Halevi, Collision-free hashing from lattice problems,
Electronic Colloquium on Computational Complexity, 96 (1996).

[26] O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof systems
for NP, J. Cryptology, 9 (1996), pp. 167–189.

[27] O. Goldreich, H. Krawczyk, and M. Luby, On the existence of pseudorandom generators,
SIAM J. Comput., 22 (1993), pp. 1163–1175.

[28] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, in Proceedings
of the 21st Annual ACM Symposium on Theory of Computing (STOC), 1989, pp. 25–32.

[29] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270–299.

[30] I. Haitner, D. Harnik, and O. Reingold, On the Power of the Randomized Iterate, Tech.
report, ECCC TR05-135, 2005.

[31] S. Halevi and S. Micali, Practical and provably-secure commitment schemes from collision-
free hashing, in Advances in Cryptology—CRYPTO ’96, Lecture Notes in Comput.
Sci. 1109, Springer-Verlag, Berlin, 1996, pp. 201–215.

[32] J. Håstad, One-way permutations in NC0, Inform. Process. Lett., 26 (1987), pp. 153–155.
[33] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any

one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.
[34] C. Y. Hsiao and L. Reyzin, Finding collisions on a public road, or do secure hash functions

need secret coins?, in Advances in Cryptology—CRYPTO ’04, Lecture Notes in Comput.
Sci. 3152, Springer-Verlag, Berlin, 2004, pp. 92–105.

[35] R. Impagliazzo and M. Luby, One-way functions are essential for complexity based cryptog-
raphy, in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1989, pp. 230–235.

[36] R. Impagliazzo and M. Naor, Efficient cryptographic schemes provably as secure as subset
sum, J. Cryptology, 9 (1996), pp. 199–216.

[37] Y. Ishai and E. Kushilevitz, Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation, in Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2000, pp. 294–304.

[38] Y. Ishai and E. Kushilevitz, Perfect constant-round secure computation via perfect random-
izing polynomials, in Automata, Languages and Programming, Lecture Notes in Comput.
Sci. 2380, Springer-Verlag, Berlin, 2002, pp. 244–256.

[39] M. Kharitonov, Cryptographic hardness of distribution-specific learning, in Proceedings of
the 25th Annual ACM Symposium on Theory of Computing (STOC), 1993, pp. 372–381.

[40] J. Kilian, Founding cryptography on oblivious transfer, in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC), 1988, pp. 20–31.

[41] M. Krause and S. Lucks, On the minimal hardware complexity of pseudorandom function gen-
erators (extended abstract), in STACS 2001, Lecture Notes in Comput. Sci. 2010, Springer-
Verlag, Berlin, 2001, pp. 419–430.

[42] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and
learnability, J. ACM, 40 (1993), pp. 607–620.

888 B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ

[43] E. Mossel, A. Shpilka, and L. Trevisan, On ε-biased generators in NC0, in Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2003,
pp. 136–145.

[44] M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-random func-
tions, J. ACM, 51 (2004), pp. 231–262.

[45] N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica, 12 (1992),
pp. 449–461.

[46] T. Pedersen, Noninteractive and information-theoretic secure verifiable secret sharing, in
Advances in Cryptology—CRYPTO ’91, Lecture Notes in Comput. Sci. 576, Springer-
Verlag, Berlin, 1991, pp. 129–149.

[47] M. O. Rabin, Digitalized Signatures and Public Key Functions as Intractable as Factoring,
Tech. report 212, Laboratory for Computer Science, MIT, 1979.

[48] O. Regev, New lattice based cryptographic constructions, in Proceedings of the 35th Annual
ACM Symposium on Theory of Computing (STOC), 2003, pp. 407–416.

[49] R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126.

[50] E. Viola, On constructing parallel pseudorandom generators from one-way functions, in Pro-
ceedings of the 20th Annual IEEE Conference on Computational Complexity (CCC), 2005,
pp. 183–197.

[51] A. Wigderson, NL/poly ⊆ ⊕L/poly, in Proceedings of the 9th Annual Structure in Complexity
Theory Conference, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 59–62.

[52] A. C. Yao, Theory and application of trapdoor functions, in Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 1982, pp. 80–91.

[53] A. C. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1986, pp. 162–167.

[54] X. Yu and M. Yung, Space lower-bounds for pseudorandom-generators, in Proceedings of the
9th Annual Structure in Complexity Theory Conference, IEEE Computer Society Press,
Los Alamitos, CA, 1994, pp. 186–197.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 889–974

ROBUST PCPS OF PROXIMITY, SHORTER PCPS,
AND APPLICATIONS TO CODING∗

ELI BEN-SASSON† , ODED GOLDREICH‡ , PRAHLADH HARSHA§ , MADHU SUDAN¶,

AND SALIL VADHAN‖

Abstract. We continue the study of the trade-off between the length of probabilistically check-
able proofs (PCPs) and their query complexity, establishing the following main results (which refer
to proofs of satisfiability of circuits of size n):

1. We present PCPs of length exp(o(log logn)2) ·n that can be verified by making o(log logn)
Boolean queries.

2. For every ε > 0, we present PCPs of length exp(logε n) · n that can be verified by making
a constant number of Boolean queries.

In both cases, false assertions are rejected with constant probability (which may be set to be arbitrar-
ily close to 1). The multiplicative overhead on the length of the proof, introduced by transforming
a proof into a probabilistically checkable one, is just quasi polylogarithmic in the first case (of query
complexity o(log logn)), and is 2(log n)ε , for any ε > 0, in the second case (of constant query com-
plexity). Our techniques include the introduction of a new variant of PCPs that we call “robust
PCPs of proximity.” These new PCPs facilitate proof composition, which is a central ingredient
in the construction of PCP systems. (A related notion and its composition properties were discov-
ered independently by Dinur and Reingold.) Our main technical contribution is a construction of a
“length-efficient” robust PCP of proximity. While the new construction uses many of the standard
techniques used in PCP constructions, it does differ from previous constructions in fundamental
ways, and in particular does not use the “parallelization” step of Arora et al. [J. ACM, 45 (1998),
pp. 501–555]. The alternative approach may be of independent interest. We also obtain analogous
quantitative results for locally testable codes. In addition, we introduce a relaxed notion of locally
decodable codes and present such codes mapping k information bits to codewords of length k1+ε for
any ε > 0.

Key words. probabilistically checkable proofs, PCP, locally testable codes, locally decodable
codes, property testing

AMS subject classifications. 68Q17, 68P30, 94B60

DOI. 10.1137/S0097539705446810

∗Received by the editors December 27, 2004; accepted for publication (in revised form) January 24,
2006; published electronically December 15, 2006. Preliminary versions of this paper have appeared
in Proceedings of the 36th ACM Symposium on Theory of Computing [BGH+04a] and Electronic
Colloquium on Computational Complexity [BGH+04b]. Part of the work was done while the first,
second, fourth, and fifth authors were fellows at the Radcliffe Institute for Advanced Study of Harvard
University.

http://www.siam.org/journals/sicomp/36-4/44681.html
†Department of Computer Science, Technion – Israel Institute of Technology, Haifa, Israel (eli@cs.

technion.ac.il).
‡Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel (oded.

goldreich@weizmann.ac.il). The research of this author was partially supported by the Israel Science
Foundation (grant 460/05).

§Toyota Technological Institute, Chicago, IL 60637 (prahladh@tti-c.org). This work was done
while the author was at the Massachusetts Institute of Technology. The work of this author was
supported in part by NSF Award CCR-0312575.

¶Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139 (madhu@mit.edu). The work of this author was supported in part by NSF
Award CCR-0312575.

‖Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
(salil@eecs.harvard.edu). This author’s work was supported in part by NSF grant CCR-0133096,
ONR grant N00014-04-1-0478, and by a Sloan Research Fellowship.

889

890 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

1. Introduction. Probabilistically checkable proofs (PCPs) [FGL+96, AS98,
ALM+98] (aka holographic proofs [BFLS91]) are NP witnesses that allow efficient
probabilistic verification based on probing few bits of the NP witness. The celebrated
PCP theorem [AS98, ALM+98] asserts that probing a constant number of bits suffices,
and it turned out that three bits suffice for rejecting false assertions with probability
almost 1/2 (cf. [H̊as01, GLST98]).

Optimizing the query complexity of PCPs has attracted a lot of attention, moti-
vated in part by the significance of query complexity for nonapproximability results
(see, for example, [BGLR93, BGS95, H̊as01, GLST98, ST00]). However, these works
guarantee only that the new NP witness (i.e., the PCP) is of a length that is upper-
bounded by a polynomial in the length of the original NP witness.1 Optimizing the
length of the new NP witness was the focus of [BFLS91, PS94, HS00, GS02, BSVW03],
and in this work we continue the latter research direction.

In our view, the significance of PCPs extends far beyond their applicability to
deriving nonapproximability results. The mere fact that NP witnesses can be trans-
formed into a format that supports superfast probabilistic verification is remarkable.
From this perspective, the question of how much redundancy is introduced by such a
transformation is fundamental. Furthermore, PCPs have been used not only to derive
nonapproximability results but also for obtaining positive results (e.g., computation-
ally sound (CS) proofs [Kil92, Mic00] and their applications [Bar01, CGH04]), and
the length of the PCP affects the complexity of those applications.

In any case, the length of PCPs is also relevant to nonapproximability results;
specifically, it affects their tightness with respect to the running time (as noted in
[Sze99]). For example, suppose (exact) satisfiability (SAT) has complexity 2Ω(n). The
original PCP theorem [AS98, ALM+98] implies only that approximating maximum
satisfiability (MaxSAT) requires time 2n

α

for some (small) α > 0. The work of [PS94]
makes α arbitrarily close to 1, whereas the results of [GS02, BSVW03] further improve

the lower-bound to 2n
1−o(1)

. Our results reduce the o(1) term.2

1.1. PCPs with better length versus query trade-off. How short can a
PCP be? The answer may depend on the number of bits we are willing to read in
order to reject false assertions (say) with probability at least 1/2. It is implicit in the
work of [PS94] that, for proofs of satisfiability of circuits of size n, if we are willing to

read n0.01 bits, then the length of the new NP witness may be Õ(n). That is, stretching
the NP witness by only a polylogarithmic amount, allows us to dramatically reduce
the number of bits read (from n to n0.01). More precisely, see the following theorem.3

Theorem 1.1 (implicit in [PS94]). Satisfiability of circuits of size n can be
probabilistically verified by probing an NP witness of length poly(logn) · n in no(1) bit
locations. In fact, for any integer value of a parameter m ≤ log n, there is a PCP
having randomness complexity (1−m−1) · log2 n+O(log log n)+O(m logm) and query
complexity poly(logn) · n1/m.

Recall that the proof length of a PCP is at most 2r · q, where r is the randomness
complexity and q is the query complexity of the PCP. Thus, the first part of the above
theorem follows by setting m = log logn/ log log log n in the second part.

Our results show that the query complexity can be reduced dramatically if we are

1We stress that in all the above works, as well as in the current work, the new NP witness can
be computed in polynomial time from the original NP witness.

2A caveat: It is currently not known whether these improved lower-bounds can be achieved
simultaneously with optimal approximation ratios, but the hope is that this can eventually be done.

3All logarithms in this work are of base 2, but in some places we choose to emphasize this fact
by using the notation log2 rather than log.

ROBUST PCPS OF PROXIMITY 891

willing to increase the length of the proof slightly. First, with a quasi-polylogarithmic
stretch, the query complexity can be made double-logarithmic as follows.

Theorem 1.2. Satisfiability of circuits of size n can be probabilistically verified
by probing an NP witness of length exp(o(log log n)2)·n in o(log log n) bit locations. In
fact, it has a PCP having randomness complexity log2 n+O

(
(log log n)2/ log log log n

)
and query complexity O(log log n/ log log logn).

We mention that the only prior work claiming query complexity below exp(
√

log n)
(cf. [GS02, BSVW03]) required stretching the NP witness by at least an exp(

√
log n)

factor. With approximately such a stretch factor, these works actually achieved con-
stant query complexity (cf. [GS02, BSVW03]). Thus, Theorem 1.2 represents a vast
improvement in the query complexity of PCPs that use very short proofs (i.e., in
the range between exp(o(log log n)2) · n and exp(

√
log n) · n). On the other hand,

considering NP witnesses that allow probabilistic verification by a constant number
of queries, we reduce the best known stretch factor from exp(log0.5+ε n) (established
in [GS02, BSVW03]) to exp(logε n), for any ε > 0 as follows.

Theorem 1.3. For every constant ε > 0, satisfiability of circuits of size n can
be probabilistically verified by probing an NP witness of length exp(logε n) · n in a
constant number of bit locations. In fact, it has a PCP having randomness complexity
log2 n + logε n and query complexity O(1/ε).

It may indeed be the case that the trade-off (between length blow-up factors
and query complexity) offered by Theorems 1.1–1.3 merely reflects our (incomplete)
state of knowledge. In particular, we wonder whether circuit satisfiability can be
probabilistically verified by a PCP having proof length n · poly(logn) and constant
query complexity.

1.2. New notions and main techniques. A natural approach to reducing the
query complexity of the PCP provided by Theorem 1.1 is via the “proof composition”
paradigm of [AS98]. However, that PCP (as constructed in [PS94]) does not seem
amenable to composition when the parameter m is nonconstant.4 The reason is that
standard proof composition requires the “outer” proof system to make a constant
number of multivalue oracle queries (or be converted to such), whereas this specific
PCP does not have this property and we cannot afford the standard parallelization
involved in a suitable conversion. Thus, we begin by giving a new PCP construction
whose parameters match those in Theorem 1.1, but is suitable for composition. As we
will see, we cannot afford the standard proof composition techniques, and thus also
introduce a new, more efficient composition paradigm.

The initial PCP. Our new proof of Theorem 1.1 modifies the constructions of
[PS94] and [HS00]. The latter construction was already improved in [GS02, BSVW03]

to reduce the length of PCPs to n · 2Õ(
√

logn). Our results go further by re-examining
the “low-degree test” (query-efficient tests that verify if a given function is close to
being a low-degree polynomial) and observing that the small-biased sample sets of
[BSVW03] give an even more significant savings on the randomness complexity of
low-degree tests than noticed in that work. However, exploiting this advantage takes
a significant effort in modifying known PCP modules and redefining the ingredients
in “proof composition.”

For starters, PCP constructions tend to use many (i.e., a superconstant number
of) functions and need to test if each is a low-degree polynomial. In prior results,

4Also for constant m, we get stronger quantitative results by using our new PCP construction
as a starting point.

892 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

this was performed efficiently by combining the many different functions on, say, m
variables, into a single new one on m+ 1 variables, where the extra variable provides
an index into the many different old functions. Testing if the new function is of low-
degree implicitly tests all the old functions. Such tricks, which involve introducing
a few extra variables, turn out to be too expensive in our context. Furthermore,
for similar reasons, we cannot use other “parallelization” techniques [FRS94, LS97,
ALM+98, GS00, Raz98], which were instrumental to the proof composition technique
of [AS98]. In turn, this forces us to introduce a new variant of the proof composition
method, which is much more flexible than the one of [AS98]. Going back to the PCP
derived in Theorem 1.1, we adapt it for our new composition method by introducing a
“bundling” technique that offers a randomness-efficient alternative to parallelization.

Our new proof composition method refers to two new notions: the notion of a
PCP of proximity and the notion of a robust PCP. Our method is related to the
method discovered independently by Dinur and Reingold [DR04]. (There are signifi-
cant differences between the two methods, as explained in section 1.3, where we also
discuss our method in relation to Szegedy’s work [Sze99].)

PCPs of proximity. Recall that a standard PCP is given an explicit input (which
is supposedly in some NP language) as well as access to an oracle that is supposed
to encode a “probabilistically verifiable” NP witness. The PCP verifier uses oracle
queries (which are counted) in order to probabilistically verify whether the input,
which is explicitly given to it, is in the language. In contrast, a PCP of proximity is
given access to two oracles, one representing an input (supposedly in the NP language)
and the other being a redundant encoding of an NP witness (as in a PCP). Indeed,
the verifier may query both the input oracle and the proof oracle, but its queries
to the input oracle are also counted in its query complexity. As usual we focus on
verifiers having very low query complexity, certainly smaller than the length of the
input. Needless to say, such a constrained verifier cannot distinguish inputs in the
language from inputs out of the language, but it is not required to do so. A verifier
for a PCP of proximity is required only to accept inputs that are in the language
and reject inputs that are far from the language (i.e., far in Hamming distance from
any input in the language). Indeed, PCPs of proximity are related to holographic
proofs [BFLS91] and to “PCP spot-checkers” [EKR04]; see a further discussion in
section 1.3.

Robust PCPs. To discuss robust PCPs, let us review the soundness guarantee
of standard (nonadaptive) PCPs. The corresponding verifier can be thought of as
determining, based on its coin tosses, a sequence of oracle positions and a predicate
such that evaluating this predicate on the indicated oracle bits always accepts if the
input is in the language and rejects with high probability otherwise. That is, in the
latter case, we require that the assignment of oracle bits to the predicate satisfies the
predicate. In a robust PCP we strengthen the latter requirement. We require that
the said assignment (of oracle bits) not only fail to satisfy the predicate but also be
far from any assignment that satisfies the predicate.

Proof composition. The key observation is that our proof composition works very
smoothly when we compose an outer robust PCP with an inner PCP of proximity.
We need neither worry about how many queries the outer robust PCP makes nor
care about what coding the inner PCP of proximity uses in its proof oracle (much
less apply the same encoding to the outer answers). All that we should make sure
of is that the lengths of the objects match and that the distance parameter in the
robustness condition (of the outer verifier) is at least as big as the distance parameter

ROBUST PCPS OF PROXIMITY 893

in the proximity condition (of the inner verifier).
Indeed, Theorems 1.2 and 1.3 are proved by first extending Theorem 1.1 to pro-

vide a robust PCP of proximity of similar complexities, and then applying the new
“proof composition” method. We stress that our contribution is in providing a proof of
Theorem 1.1 that lends itself to a modification that satisfies the robustness property,
and in establishing the latter property. In particular, the aforementioned “bundling”
is applied in order to establish the robustness property. Some care is required when
deriving Theorem 1.2 using a nonconstant number of proof compositions. In partic-
ular, Theorem 1.2 (resp., Theorem 1.3) is derived in a way that guarantees that the
query complexity is linear rather than exponential in the number of proof composi-
tions, where the latter is o(log log n) (resp., 1/ε). This, in turn, requires obtaining
strong bounds on the robustness property of the (“robust”) extension of Theorem 1.1.

We stress that the flexibility in composing robust PCPs of proximity plays an
important role in our ability to derive quantitatively stronger results regarding PCPs.
We believe that robust PCPs of proximity may play a similar role in other quantitative
studies of PCPs. We note that the standard PCP theorem of [AS98, ALM+98] can
be easily derived using a much weaker and simpler variant of our basic robust PCP
of proximity, and the said construction seems easier than the basic PCPs used in the
proof composition of [AS98, ALM+98].

In addition to their role in our proof composition method, PCPs of proximity
also provide a good starting point for deriving improved locally testable codes (see
the discussion in section 1.4). The relation of PCPs of proximity to “property testing”
is further discussed in section 1.3.

1.3. Related work. As mentioned above, the notion of a PCP of proximity is
related to notions that have appeared in the literature.

Relation to holographic proofs. First, the notion of a PCP of proximity generalizes
the notion of holographic proofs set forth by Babai et al. [BFLS91]. In both cases,
the verifier is given oracle access to the input, and we count its probes to the input in
its query complexity. The key issue is that holographic proofs refer to inputs that are
presented in an error-correcting format (e.g., one aims to verify that a graph that is
represented by an error-correcting encoding of its adjacency matrix (or incidence list)
is 3-colorable). In contrast, a PCP of proximity refers to inputs that are presented
in any format but makes assertions only about their proximity to acceptable inputs
(e.g., one is interested in whether a graph, represented by its adjacency matrix (or
incidence list), is 3-colorable or is far from being 3-colorable).

Relation to property testing. PCPs of proximity are implicit in the low-degree
testers that utilize auxiliary oracles (e.g., an oracle that provides the polynomial
representing the value of the function restricted to a queried line); cf. [AS98, ALM+98].
PCPs of proximity are a natural special case of the PCP spot-checkers defined by
Ergün, Kumar, and Rubinfeld [EKR04]. On the other hand, PCPs of proximity
extend property testing [RS96, GGR98]. Loosely speaking, a property tester is given
oracle access to an input and is required to distinguish the case in which the input
has the property from the case in which it is far (say, in Hamming distance) from any
input having the property. Typically, the interest is in testers that query their input
on few bit locations (or at the very least on a sublinear number of such locations).
In a PCP of proximity such a tester (now called a verifier) is also given oracle access
to an alleged proof. Thus, the relation of PCPs of proximity to property testing
is analogous to the relation of NP to BPP (or RP). Put differently, while property
testing provides a notion of approximation for decision procedures, a PCP of proximity

894 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

provides a notion of approximation for (probabilistic) proof-verification procedures.
In both cases, approximation means that inputs in the language should be accepted
(when accompanied by suitable proofs), while inputs that are far from the language
should be rejected (no matter what false proof is provided).

We comment that PCPs of proximity are provably stronger than property testers;
that is, there are (natural) separations between property testers and PCPs of prox-
imity (which may be viewed as the “approximation” versions of BPP and NP). For
further discussions, refer to section 2.2.

Relation to assignment testers and another proof composition method. As stated
above, our proof composition method is related to the method discovered indepen-
dently by Dinur and Reingold [DR04]. Both methods use the same notion of PCPs of
proximity (which are called assignment testers in [DR04]). A key difference between
the two methods is that, while our method refers to the new notion of robustness
(i.e., to the robustness of the outer verifier), the method of Dinur and Reingold refers
to the number of (non-Boolean) queries (made by the outer verifier). Indeed, the
method of Dinur and Reingold uses a (new) parallelization procedure (which reduces
the number of queries by a constant factor), whereas we avoid parallelization alto-
gether (but rather use a related “bundling” of queries into a nonconstant number of
“bundles” such that robustness is satisfied at the bundle level).5 We stress that we
cannot afford the cost of any known parallelization procedure because, at the very
least, these procedures increase the length of the proof by a factor related to the
answer length, which is far too large in the context of Theorem 1.1 (which in turn
serves as the starting point for all the other results in this work). We comment that
the parallelization procedure of [DR04] is combinatorial (albeit inapplicable in our
context), whereas our bundling relies on the algebraic structure of our proof system.

Relation to Szegedy’s work [Sze99]. Some of the ideas presented in the current
work are implicit in Szegedy’s work [Sze99]. In particular, notions of robustness
and proximity are implicit in [Sze99], in which a robust PCP of proximity (attributed
to [PS94]) is composed with itself in a way that is similar to our composition theorem.
We note that Szegedy does not seek to obtain PCPs with improved parameters, but
rather to suggest a framework for deriving nicer proofs of existing results such as
those in [PS94]. Actually, he focuses on proving the main result of [PS94] (i.e., a PCP
of nearly linear length and constant number of queries) using as a building block a

robust PCP of proximity that has length Õ(n) and makes Õ(
√
n) queries (plus the

constant query PCP of [ALM+98]).
We note that the aforementioned robust PCP of proximity is not presented

in [Sze99], but is rather attributed to [PS94]. Indeed, observe that Theorem 1.1

above (implicit in [PS94]) achieves Õ(n) length and Õ(
√
n) queries when the param-

eter m = 2. Thus, Szegedy’s assertion is that this PCP can be strengthened to be a
robust PCP of proximity, similarly to our main construct (specifically, Theorem 3.1,
specialized to m = 2). However, our main construct achieves stronger parameters
than those claimed in [Sze99], especially with respect to robust soundness. Indeed,

5The main part of the bundling technique takes place at the level of analysis, without modifying
the proof system at all. Specifically, we show that the answers read by the verifier can be partitioned
into a nonconstant number of (a priori fixed) bundles so that on any no instance, with high probability
a constant fraction of the bundles read should be modified to make the verifier accept. We stress
that the fact that certain sets of queries (namely, those in each bundle) are always made together
is a feature that our particular proof system happens to have (or rather it was somewhat massaged
to have). Once robust soundness is established at the bundle level, we need only modify the proof
system so that the bundles become queries and the answers are placed in (any) good error-correcting
format, which implies robustness at the bit level.

ROBUST PCPS OF PROXIMITY 895

the parameters claimed in [Sze99] allow only for the robust PCP of proximity to be
composed with itself a constant number of times.6 As mentioned above, a signifi-
cant amount of our effort is aimed at ensuring that our robust PCP of proximity has
sufficiently strong parameters to be composed a nonconstant number of times and,
moreover, to ensure that the query complexity grows only linearly rather than expo-
nentially with the number of compositions. (See section 3.2 for further explanation.)

1.4. Applications to coding problems. The flexibility of PCPs of proximity
makes them relatively easy to use towards obtaining results regarding locally testable
and decodable error-correcting codes. In particular, using a suitable PCP of proxim-
ity, we obtain an improvement in the rate of locally testable codes (improving over
the results of [GS02, BSVW03]). Loosely speaking, a codeword test (for a code C) is
a randomized oracle machine that is given oracle access to a string. The tester may
query the oracle at a constant number of bit locations and is required to (always)
accept every codeword and reject with (relatively) high probability every string that
is “far” from the code. The locally testable codes of [GS02, BSVW03] used codewords
of length exp(log0.5+ε k) · k in order to encode k bits of information for any constant
ε > 0. Here we reduce the length of the codewords to exp(logε k) · k as follows.

Theorem 1.4 (loosely stated; see section 4.1 for details). For every constant
ε > 0, there exists locally testable codes that use codewords of length exp(logε k) · k in
order to encode k bits of information.

We also introduce a relaxed notion of locally decodable codes and show how to
construct such codes using any PCP of proximity (and ours in particular). Loosely
speaking, a code is said to be locally decodable if, whenever relatively few location are
corrupted, the decoder is able to recover each information bit, with high probability,
based on a constant number of queries to the (corrupted) codeword. This notion was
formally defined by Katz and Trevisan [KT00] and the best known locally decodable
code has codewords of a length that is subexponential in the number of information
bits. We relax the definition of locally decodable codes by requiring that, whenever
few locations are corrupted, the decoder be able to recover most of the individual
information bits (based on few queries), and for the rest of the locations, the decoder
may output a fail symbol (but not the wrong value). That is, the decoder must still
avoid errors (with high probability), but is allowed to say “don’t know” on a few bit
locations. We show that this relaxed notion of local decodability can be supported
by codes that have codewords of a length that is almost linear in the number of
information bits as follows.

Theorem 1.5 (loosely stated; see section 4.2 for details). For every constant
ε > 0, there exists relaxed locally decodable codes that use codewords of length k1+ε in
order to encode k bits of information.

1.5. Subsequent work. Since the presentation of our results, there has been
considerable progress in the construction of short PCPs.

Ben-Sasson and Sudan [BS05] constructed “shorter” PCPs for NP at the cost
of a slightly larger query complexity. More precisely, they construct PCPs of length
n · poly(logn) (to prove satisfiability of circuits of size n) that can be verified by
querying at most poly(logn) bits of the proof. They achieve this improvement in

6In the language of section 2, his soundness and robustness parameters are unspecified functions
of the proximity parameter. In retrospect, it seems that the ideas of [PS94] may lead to a robust PCP
of proximity with robustness that is at best linearly related to the proximity parameter; this would
make the query complexity increase exponentially with the number of compositions (as discussed in
section 3.2).

896 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

length by constructing PCPs of proximity for a specific problem, verifying membership
in a Reed–Solomon code (i.e., verifying if a given function is close to the evaluation of
some univariate polynomial of specified degree). Their construction also yields locally
testable codes with similar parameters.

More recently, Dinur introduced a novel gap amplification technique to yield a
fully combinatorial proof of the PCP theorem [Din06]. In addition, by applying the
gap-amplification technique to the PCP constructed by Ben-Sasson and Sudan [BS05],
she obtained PCPs for NP of length n · poly(logn) and verifiable with a constant
number of probes into the proof. Thus while Ben-Sasson and Sudan [BS05] reduce
the proof length while increasing the number of queries, Dinur shows how to reduce
the query size back to a constant, thereby improving both our results and those of
[BS05].

The PCP verifiers in the constructions of both our paper and [BS05] require time
at least polynomial in the length of the proof, though the verifiers probe at most
poly(logn) locations in the proof. In a subsequent paper [BGH+05], we demonstrate
that both these constructions can in fact be accompanied with superefficient verifiers,
i.e., verifiers that run in time at most polylogarithmic in the length of the proof.

Finally, the question of whether there exist nearly linear-sized PCPs for NP that
achieve strong query-soundness trade-offs (e.g., achieving the parameters of H̊astad
[H̊as01]) remains open. The recent work of Moshkovitz and Raz [MR06] may be useful
towards answering this.

1.6. Organization. Theorems 1.2 and 1.3, which are the work’s main results,
are proved by constructing and using a robust PCP of proximity that achieves a very
good trade-off between randomness and query complexity. Thus, this robust PCP
of proximity is the main building block that underlies our work. Unfortunately, the
construction of a very efficient robust PCP of proximity is quite involved and is thus
deferred to the second part of this work (which starts with an overview). In the
first part of this work we show how the aforementioned robust PCP of proximity can
be used to derive all the results mentioned in the introduction (and, in particular,
Theorems 1.2 and 1.3). Thus, the overall structure of this work is as follows.

Part I: Using the main building block (sections 2–4). We start by pro-
viding a definitional treatment of PCPs of proximity and robust PCPs. The basic
definitions as well as some observations and useful transformations are presented in
section 2. Most important, we analyze the natural composition of an outer robust
PCP with an inner PCP of proximity.

In section 3, we state the properties of our main building block (i.e., a highly
efficient robust PCP of proximity), and show how to derive Theorems 1.2 and 1.3,
by composing this robust PCP of proximity with itself multiple times. Specifically,
o(log log n) compositions are used to derive Theorem 1.2, and 1/ε compositions are
used to derive Theorem 1.3. The coding applications stated in Theorems 1.4 and 1.5
are presented in section 4.

Part II: Constructing the main building block (sections 5–8). We start
this part by providing an overview of the construction. This overview (i.e., section 5)
can be read before reading Part I, provided that the reader is comfortable with the
notion of a robust PCP of proximity.

The construction itself is presented in section 6–8. We start by presenting a
(highly efficient) ordinary PCP (establishing Theorem 1.1), which lends itself to the
subsequent modifications. In section 7, we augment this PCP with a test of proximity,
deriving an analogous PCP of proximity. In section 8 we present a robust version of

ROBUST PCPS OF PROXIMITY 897

the PCP of proximity derived in the previous sections.
Part III: Appendices. The construction presented in section 3 also uses a PCP

of proximity of polynomial randomness complexity and constant query complexity.
Such a PCP of proximity can be derived by a simple augment of the Hadamard-based
PCP of [ALM+98], which we present in Appendix A.

In Appendix B, we recall results regarding randomness-efficient low-degree tests
and a related sampling lemma, which are used in Part II.

1.7. Relation to previous versions of this work. The current version in-
cludes a discussion of Szegedy’s work [Sze99], of which we were unaware when writing
the first version [BGH+04b]. The relation of his work to ours is now discussed in
section 1.3.

Section 4 has been extensively revised, adding formal definitions and providing
more precise descriptions of the main constructions and proofs. In addition, we iden-
tified a weaker form of the definition of a relaxed locally decodable code, proved that
it essentially implies the original form, and restructured our presentation accordingly
(see section 4.2).

The parameters of Theorem 1.2 in this version are stronger (to a limited extent)
than that of earlier versions of this paper [BGH+04b, BGH+04a]. More specifically,
we show that satisfiability of circuits of size n can be verified by probing o(log log n)
bit locations in an NP witness of length exp(o(log log n)2) · n as opposed to an NP

witness of length exp(Õ(log log n)2) ·n, as was claimed in earlier versions. We achieve
this strengthening by improving the robustness parameter of the ALMSS-type robust
PCP of proximity (Theorem 7.2) constructed in Part II of this paper, taking advantage
of the greater slackness allowed in the randomness complexity of this PCP. (ALMSS-
type robust PCP of proximity is one of the PCPs of proximity constructed in Part II.
It is so called as it has parameters similar to the PCP constructed in [ALM+98].)

Part I. All but the main construct.

2. PCPs and variants: Definitions, observations, and transformations.
Notation. Except when otherwise noted, all circuits in this paper have fan-in 2

and fan-out 2, and we allow arbitrary unary and binary Boolean operations as internal
gates. The size of a circuit is the number of gates. We will refer to the following
languages associated with circuits: the P-complete language Circuit Value, defined
as CktVal = {(C,w) : C(w) = 1}; the NP-complete Circuit Satisfiability,
defined as CktSAT = {C : ∃wC(w) = 1}; and the NP-complete Nondeterministic

CircuitValue, defined as NCktVal = {(C,w) : ∃zC(w, z) = 1}. (In the latter, we
assume that the partition of the variables of C into w-variables and z-variables is
explicit in the encoding of C.)

We will extensively refer to the relative distance between strings/sequences over
some alphabet Σ: For u, v ∈ Σ�, we denote by Δ(u, v) the fraction of locations on
which u and v differ (i.e., Δ(u, v) � |{i : ui �= vi}|/�, where u = u1 · · ·u� ∈ Σ� and
v = v1 · · · v� ∈ Σ�). We say that u is δ-close to v (resp., δ-far from v) if Δ(u, v) ≤ δ
(resp., Δ(u, v) > δ). The relative distance of a string from a set of strings is defined in
the natural manner; that is, Δ(u, S) � minv∈S{Δ(u, v)}. Occasionally, we will refer
to the absolute Hamming distance, which we will denote by Δ(u, v) � |{i : ui �= vi}|.
We will also use the t-repetition xt of a string x to denote the string formed by
concatenating t copies of x (i.e., xt = x . . . t times . . . x).

Organization of this section. After recalling the standard definition of PCP (in
section 2.1), we present the definitions of PCPs of proximity and robust PCPs (in

898 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

section 2.2 and 2.3, respectively). We then discuss (in section 2.4) the composition
of a robust PCP with a PCP of proximity. Various observations and transformations
regarding the new notions are presented in section 2.5.

2.1. Standard PCPs. We begin by recalling the formalism of a PCP verifier.
Throughout this work, we restrict our attention to nonadaptive verifiers, not only for
simplicity but also because one of our variants (namely robust PCPs) only makes
sense for nonadaptive verifiers.

Definition 2.1 (PCP verifiers).
• A verifier is a probabilistic polynomial-time algorithm V that, on an input
x of length n, tosses r = r(n) random coins R and generates a sequence of
q = q(n) queries I = (i1, . . . , iq) and a circuit D : {0, 1}q → {0, 1} of size at
most d(n).
We think of V as representing a probabilistic oracle machine that queries its
oracle π for the positions in I, receives the q answer bits π|I � (πi1 , . . . , πiq),
and accepts iff D(π|I) = 1.

• We write (I,D)
R← V (x) to denote the queries and circuit generated by V on

input x and random coin tosses and write (I,D) = V (x;R) if we wish to
specify the coin tosses R.

• We call r the randomness complexity, q the query complexity, and d the
decision complexity of V .

For simplicity in these definitions, we treat the parameters r, q, and d above (and
other parameters below) as functions of only the input length n. However, at times
we may also allow them to depend on other parameters, which should be understood
as being given to the verifier together with the input. We now present the standard
notion of PCPs, restricted to perfect completeness for simplicity.

Definition 2.2 (standard PCPs). For a function s : Z
+ → [0, 1], a verifier V is

a probabilistically checkable proof system for a language L with soundness error s if
the following two conditions hold for every string x:

Completeness: If x ∈ L, then there exists π such that V (x) accepts oracle π with
probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D(π|I) = 1] = 1.

Soundness: If x �∈ L, then for every oracle π, the verifier V (x) accepts π with
probability strictly less than s. Formally,

∀π Pr
(I,D)

R←V (x)

[D(π|I) = 1] < s(|x|).

If s is not specified, then it is assumed to be a constant in (0, 1).

Our main goal in this work is to construct short PCPs that use very few queries.
Recalling that the length of a (nonadaptive) PCP is upper-bounded by 2r(n) · q(n),
we focus on optimizing the (trade-off between) randomness and query complexities.

We will focus on constructing PCPs for the NP-complete problem Circuit Satis-

fiability, defined as CktSAT = {C : ∃w C(w) = 1}. Recall that every language in
NTIME(t(n)) reduces to CktSAT in time O(t(n) log t(n)) (cf. [HS66, PF79, Coo88]),
and so a nearly linear-sized PCP for CktSAT implies PCPs for NTIME(t(n)) of
length nearly linear in t(n) for every polynomial t(n).

ROBUST PCPS OF PROXIMITY 899

2.2. PCPs of proximity. We now present a relaxation of PCPs that verify only
that the input is close to an element of the language. The advantage of this relaxation
is that it allows for the possibility that the verifier may read only a small number of
bits from the input. Actually, for greater generality, we will divide the input into
two parts (x, y), giving the verifier x explicitly and y as an oracle, and we count only
the verifier’s queries to the latter. Thus we consider languages consisting of pairs of
strings, which we refer to as pair languages. One pair language to keep in mind is
the CircuitValue problem CktVal = {(C,w) : C(w) = 1}. For a pair language L,
we define L(x) = {y : (x, y) ∈ L}. For example, CktVal(C) is the set of satisfying
assignments to C. It will be useful below to treat the two oracles to which the verifier
has access as a single oracle; thus for oracles π0 and π1, we define the concatenated
oracle π = π0 ◦ π1 as πb,i = πb

i .

Definition 2.3 (PCPs of proximity (PCPPs)). For functions s, δ : Z
+ → [0, 1],

a verifier V is a probabilistically checkable proof of proximity (PCPP) system for a
pair language L with proximity parameter δ and soundness error s if the following
two conditions hold for every pair of strings (x, y):

Completeness: If (x, y) ∈ L, then there exists π such that V (x) accepts oracle
y ◦ π with probability 1. Formally,

∃π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] = 1.

Soundness: If y is δ(|x|)-far from L(x), then for every π, the verifier V (x) accepts
oracle y ◦ π with probability strictly less than s(|x|). Formally,

∀π Pr
(I,D)

R←V (x)

[D((y ◦ π)|I) = 1] < s(|x|).

If s and δ are not specified, then both are assumed to be constants in (0, 1).

Note that the parameters (soundness, randomness, etc.) of a PCPP are measured
as a function of the length of x, the explicit portion of the input.

In comparing PCPPs and PCPs, one should note two differences that have con-
flicting effects. On one hand, the soundness criterion of PCPPs is a relaxation of the
soundness of PCPs. Whereas a PCP is required to reject (with high probability) every
input that is not in the language, a PCPP is only required to reject input pairs (x, y)
in which the second element (i.e., y) is far from being suitable for the first element
(i.e., y is far from L(x)). That is, in a PCPP, nothing is required in the case that y is
close to L(x) and yet y �∈ L(x). On the other hand, the query complexity of a PCPP
is measured more stringently, as it accounts also for the queries to the input-part y
(on top of the standard queries to the proof π). This should be contrasted with a
standard PCP that has free access to all its input and is charged only for access to an
auxiliary proof. To summarize, PCPPs are required to do less (i.e., their performance
requirements are more relaxed), but they are charged for more things (i.e., their com-
plexity is evaluated more stringently). Although it may not be a priori clear, the
stringent complexity requirement prevails. That is, PCPPs tend to be more difficult
to construct than PCPs of the same parameters. For example, while CktVal has a
trivial PCP (since it is in P), a PCPP for it implies a PCP for CktSAT as follows.

Proposition 2.4. If CktVal has a PCPP, then CktSAT has a PCP with
identical parameters (randomness, query complexity, decision complexity, and sound-
ness).

900 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

An analogous statement holds for any pair language L and the corresponding
projection on first element L1 � {x : ∃y s.t. (x, y) ∈ L}; that is, if L has a PCPP,
then L1 has a PCP with identical parameters.

Proof. A PCP π for “C ∈ CktSAT” can be taken to be w ◦ π′, where w
is a satisfying assignment to C and π′ is a PCPP for (C,w) ∈ CktVal. This proof π
can be verified using the PCPP verifier. The key observation is that if C �∈ CktSAT,
then there exists no w that is 1-close to CktVal(C), because the latter set is
empty.

Note that we obtain only a standard PCP for CktSAT rather than a PCP of
proximity. Indeed, CktSAT is not a pair language, so it does not even fit syntactically
into the definition of a PCPP. However, we can give a PCPP for the closely related
(and also NP-complete) pair language Nondeterministic Circuit Value. Recall
that it is the language NCktVal = {(C,w) : ∃zC(w, z) = 1} (where the variables of
C are explicitly partitioned into w-variables and z-variables).

Proposition 2.5. If CktVal has a PCPP with proximity parameter δ(n),
soundness s(n), randomness r(n), query complexity q(n), and decision complexity
d(n), then Nondeterministic Circuit Value has a PCPP with proximity parame-
ter 2δ(4n), soundness s(4n), randomness r(4n), query complexity q(4n), and decision
complexity d(4n).

Proof. Given a circuit C(·, ·) of size n whose variables are partitioned into one
group of size k and another of size �, we transform it into a new circuit C ′(·, ·) of
size n′ = 4n in which the first group has size k′ ≥ � and the second group has size �.
Specifically, we set t = ��/k and k′ = t · k and define C ′(x′, y) to be a circuit that
checks whether x′ = xt for some x such that C(x, y) = 1. It can be verified that this
can be done in size n+ 3tk ≤ 4n (over the full binary basis). In addition, if w is δ-far
from being extendable to a satisfying assignment of C, then wt is δ-far from being
extendable to a satisfying assignment of C ′.

Now, the NCktVal-verifier, on explicit input C and input oracle w ∈ {0, 1}k, will
construct C ′ as above and expect a proof oracle of the form z ◦ π, where z ∈ {0, 1}m
and π is a PCPP for (C ′, wt ◦ z) ∈ CktVal satisfies as constructed above. That is,
the NCktVal-verifier will simulate the CktVal-verifier on explicit input C ′, input
oracle wt ◦z (which can easily be simulated given oracle access to w and z), and proof
oracle π. Completeness can be verified by inspection. For soundness, suppose that
w is 2δ-far from being extendable to a satisfying assignment of C. Then wt is 2δ-far
from being extendable to a satisfying assignment of C ′, which implies that, for any
z, wt ◦ z is δ-far from satisfying C ′. Thus, by the soundness of the CktVal-verifier,
the acceptance probability is at most s(n′) = s(4n) for any proof oracle π.

Relation to property testing. Actually, the requirements of a PCPP for a pair lan-
guage L refer only to its performance on the (“gap”) promise problem Π = (ΠY ,ΠN),
where ΠY = L and ΠN = {(x, y) : y is δ-far from L(x)}. That is, this PCPP is
required only to (always) accept inputs in ΠY and reject (with high probability) in-
puts in ΠN (whereas nothing is required with respect to inputs not in ΠY ∪ ΠN).
Such a gap problem corresponds to the notion of approximation in property test-
ing [RS96, GGR98].7 Indeed, property testers are equivalent to PCPP verifiers
that have no access to an auxiliary proof π. Thus, the relation between property
testing and PCPPs is analogous to the relation between BPP and NP (or MA).
For example, the problem of testing bipartiteness can be cast by the pair language

7This notion of approximation (of decision problems) should not be confused with the approxi-
mation of (search) optimization problems, which is also closely related to PCPs [FGL+96, ALM+98].

ROBUST PCPS OF PROXIMITY 901

L = {(n,G) : the n-vertex graph G is bipartite}, where the first (i.e., explicit) input
is used only to specify the length of the second (i.e., nonexplicit) input G, to which
the tester has oracle access (measured in its query complexity). We comment that
the formulation of pair languages allows us to capture more general property testing
problems, where more information about the property (to be tested) itself is specified
as part of the input (e.g., by a circuit, as in CktVal).

In both property testers and PCPPs, the interest is in testers/verifiers that query
their input (and proof oracle) in only a small (preferably constant, and certainly
sublinear) number of bit locations. It turns out that PCPPs are provably stronger
than property testers; that is, there are (natural) separations between property testers
and PCPPs. (Some of the following examples were pointed out in [EKR04].) In the
adjacency matrix model (cf. [GGR98]), bipartiteness has a PCPP in which the verifier
makes only O(1/δ) queries and rejects any graph that is δ-far from being bipartite
with probability at least 2/3. (The proof oracle consists of an assignment of vertices
to the two parts, and the verifier queries the assignment of the end-points of O(1/δ)
random edges. This construction also generalizes to k-colorability, and in fact to any
generalized graph partition property (cf. [GGR98]) with an efficient one-sided tester.)
In contrast, Bogdanov and Trevisan [BT04] showed that any tester for bipartiteness
that rejects graphs that are δ-far from being bipartite must make Ω(δ−3/2) queries.
More drastic separations are known in the incidence-lists (bounded-degree) model
(of [GR02]): testing bipartiteness (resp., 3-colorability) of n-vertex graphs has query
complexity Ω(

√
n) [GR02] (resp., Ω(n) [BOT02]), but again a PCPP will use only

O(1/δ) queries.
Another example comes from the domain of codes. For any good code (or “even”

any code of linear distance), there exists a PCPP with constant queries for checking
whether a given word is a codeword.8 This stands in contrast to the linear lower-
bound on the query complexity of codeword testing for some (good) linear codes,
proved by Ben-Sasson, Harsha, and Raskhodnikova [BHR05].

Needless to say, there may be interesting cases in which PCPPs do not outperform
property testers.

Queries versus proximity. Intuitively, the query complexity of a PCPP should
depend on the proximity parameter δ. Proposition 2.8 (in section 2.5) confirms this
intuition.

The relation of PCPP to other works. As discussed in the introduction (see sec-
tion 1.3), notions related to (and equivalent to) PCPPs have appeared previously in
the literature [BFLS91, EKR04]. In particular, holographic proofs are a special case
of PCPPs (which refer to pair languages L = {(n, C(x)) : x ∈ L′ ∩ {0, 1}n}, where C
is an error-correcting code and L′ ∈ NP), whereas PCPPs are a special case of PCP
spot-checkers (when viewing decision problems as a special case of search problems).
In addition, PCPPs play an important role also in the work of Dinur and Rein-
gold [DR04]; again, see section 1.3. Recall that both our use and their use of PCPPs
is for facilitating proof composition (of PCP-type constructs). Finally, existing PCP
constructions (such as [ALM+98]) can be modified to yield PCPPs.

2.3. Robust soundness. In this section, we present a strengthening of the stan-
dard PCP soundness condition. Instead of asking that the bits which the verifier reads
from the oracle be merely rejected with high probability, we ask that the bits which

8Indeed, this is a special case of our extension of the result of Babai et al. [BFLS91], discussed
in section 1.3. On the other hand, this result is simpler than the locally testable code mentioned in
section 1.4 because here the PCPP is not part of the codeword.

902 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the verifier reads be far from being accepted with high probability. The main moti-
vation for this notion is that, in conjunction with PCPPs, it allows for a very simple
composition without the usual costs of “parallelization.”

Definition 2.6 (robust soundness). For functions s, ρ : Z
+ → [0, 1], a PCP

verifier V for a language L has robust-soundness error s with robustness parameter ρ
if the following holds for every x /∈ L: For every oracle π, the bits read by the verifier
V are ρ-close to being accepted with probability strictly less than s. Formally,

∀π Pr
(I,D)

R←V (x)

[∃a s.t. D(a) = 1 and Δ(a, π|I) ≤ ρ] < s(|x|).

If s and ρ are not specified, then they are assumed to be constants in (0, 1). PCPPs
with robust soundness are defined analogously, with the π|I being replaced by (y ◦π)|I .

Note that for PCPs with query complexity q, robust soundness with any robust-
ness parameter ρ < 1/q is equivalent to standard PCP soundness. However, there can
be robust PCPs with large query complexity (e.g., q = nΩ(1)) yet constant robustness,
and indeed such robust PCPs will be the main building block of our construction.

Various observations regarding robust PCPs are presented in section 2.5. We
briefly mention here the relation of robustness to parallelization; specifically, when
applied to a robust PCP, the simple query-reduction technique of Fortnow, Rompel,
and Sipser [FRS94] performs less poorly than usual (i.e., the resulting soundness is
determined by the robustness parameter rather than by the number of queries).

2.4. Composition. As promised, a robust “outer” PCP composes very easily
with an “inner” PCPP. Loosely speaking, we can compose such schemes provided
that the decision complexity of the outer verifier matches the input length of the
inner verifier, and soundness holds provided that the robustness parameter of the
outer verifier upper-bounds the proximity parameter of the inner verifier. Note that
composition does not refer to the query complexity of the outer verifier, which is
always upper-bounded by its decision complexity.

Theorem 2.7 (composition theorem). Suppose that for functions rout, rin, dout,
din, qin : N→N, and εout, εin, ρout, δin : N→ [0, 1], the following hold:

• Language L has a robust PCP verifier Vout with randomness complexity rout,
decision complexity dout, robust-soundness error 1− εout, and robustness pa-
rameter ρout.

• CktVal has a PCPP verifier Vin with randomness complexity rin, query com-
plexity qin, decision complexity din, proximity parameter δin, and soundness
error 1 − εin.

• δin(dout(n)) ≤ ρout(n) for every n.
Then, L has a (standard) PCP, denoted Vcomp, with

• randomness complexity rout(n) + rin(dout(n)),
• query complexity qin(dout(n)),
• decision complexity din(dout(n)), and
• soundness error 1 − εout(n) · εin(dout(n)).

Furthermore, there exists a universal algorithm with black-box access to Vout and Vin

that can perform the actions of Vcomp (i.e., evaluating (I,D) ← Vcomp(x;R)). On
inputs of length n, this algorithm runs in time nc for a universal constant c, with one
call to Vout on an input of length n and one call to Vin on an input of length dout(n).
In addition,

• if (instead of being a PCP) the verifier Vout is a PCPP with proximity pa-
rameter δout(n), then Vcomp is a PCPP with proximity parameter δout(n);

ROBUST PCPS OF PROXIMITY 903

• if Vin has robust soundness with robustness parameter ρin(n), then Vcomp has
robust soundness with robustness parameter ρin(dout(n)).

Proof. We will use the inner PCPP to verify that the oracle positions selected by
the (robust) outer verifier are close to being accepted by the outer verifier’s decision
circuit. Thus, the new proof will consist of a proof for the outer verifier as well as
proofs for the inner verifier, where each of the latter corresponds to a possible setting
of the outer verifier’s coin tosses (and is intended to prove that the bits that should
have been read by the outer verifier satisfy its decision circuit). We will index the
positions of the new (combined) oracle by pairs such that (out, i) denotes the ith
position in the part of the oracle that represents the outer verifier’s proof oracle, and
(R, j) denotes the jth position in the Rth auxiliary block (which represents the Rth
possible proof oracle (for the inner verifiers), which in turn is associated with the
outer verifier’s coins R ∈ {0, 1}rout). For notational convenience, we drop the input
length n from the notation below; all parameters of Vout are with respect to length n
and all parameters of Vin are with respect to length dout(n). With these conventions,
the following is the description of the composed verifier Vcomp(x):

1. Choose R
R←{0, 1}rout .

2. Run Vout(x;R) to obtain Iout = (i1, . . . , iqout) and Dout.
3. Run Vin(Dout) (on random coin tosses) to obtain Iin = ((b1, j1), . . . , (bqin , jqin))

and Din.
(Recall that Vin, as a PCPP verifier, expects two oracles, an input oracle and
a proof oracle, and thus makes queries of the form (b, j), where b ∈ {0, 1}
indicates which oracle it wishes to query.)

4. For each � = 1, . . . , qin, determine the queries of the composed verifier as
follows:
(a) If b� = 0, set k� = (out, ij�); that is, Vin’s queries to its input oracle

are directed to the corresponding locations in Vout’s proof oracle. Recall
that the jth bit in Vin’s input oracle is the jth bit in the input to Dout,
which in turn is the ijth bit in the proof oracle of Vout.

(b) If b� = 1, set k� = (R, j�); that is, Vin’s queries to its Rth possible proof
oracle are directed to the corresponding locations in the auxiliary proof.
Recall that the jth bit in the proof oracle that Vin is using to verify the
claim referring to the outer verifier’s coins R is the jth bit in the Rth
block of the auxiliary proof.

5. Output Icomp = (k1, . . . , kqin) and Din.

The claims about Vcomp’s randomness, query, decision, and computational com-
plexities can be verified by inspection. Thus, we proceed to check completeness and
soundness.

Suppose that x ∈ L. Then, by completeness of the outer verifier, there ex-
ists a proof πout making Vout accept with probability 1. In other words, for every
R ∈ {0, 1}rout , if we set (Iout, Dout) = Vout(x;R), we have Dout(πout|Iout

) = 1. By
completeness of the inner verifier, there exists a proof πR such that Vin(Dout) ac-
cepts the oracle πout|Iout ◦ πR with probability 1. If we set π(t, ·) = πt(·) for all
t ∈ {out} ∪ {0, 1}rout , then Vcomp accepts π with probability 1.

Suppose that x /∈ L, and let π be any oracle. Define oracles πt(·) = π(t, ·). By
the robust soundness (of Vout), with probability greater than εout over the choices
of R ∈ {0, 1}rout , if we set (Iout, Dout) = Vout(x;R), then πout|Iout is ρout-far from
satisfying Dout. Fixing such an R, by the PCPP soundness of Vin (and δin ≤ ρout),
it holds that Vin(Dout) rejects the oracle πout|Iout ◦ πR (or, actually, any proof oracle

904 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

augmenting the input oracle πout|Iout
) with probability greater than εin. Therefore,

Vcomp(x) rejects oracle π with probability at least εout · εin.
The additional items follow by similar arguments. If Vout is a PCPP verifier,

then the input is of the form (x, y), where y is given via oracle access. In this case,
throughout the proof above we should replace oracle πout with oracle y ◦ πout, and
for soundness we should consider the case that y is δout-far from L(x). If Vin has
robust soundness, then at the end of the soundness analysis, we note that not only
is πout|Iout ◦ πR rejected with probability greater than εin but it is also ρin-far from
being accepted by Vin (and hence also by Vcomp).

The above theorem can serve as a substitute for the original composition theorem
in the derivation of the original PCP theorem [ALM+98]. Specifically, one simply
needs to modify the (precomposition) verifiers of [ALM+98] to both test proximity
and have robust soundness. As we shall see in the next section, robust soundness
can be obtained automatically from “parallelized PCPs” (as already constructed in
[ALM+98]). In addition, the PCPs [ALM+98] can easily be made PCPPs by aug-
menting them with appropriate “proximity tests.” Thus, all the technical work in
Part II is not forced by the new notion of robust PCPPs, but rather is aimed at
constructing PCPPs (and thus PCPs) which have nearly linear length.

2.5. Various observations and transformations. Most of this subsection
refers to robust PCPs, but we start with an observation regarding PCPPs.

Queries versus proximity. Intuitively, the query complexity of a PCPP should
depend on the proximity parameter δ. The following proposition confirms this intu-
ition.

Proposition 2.8 (queries versus proximity). Suppose pair language L has a
PCPP with proximity parameter δ, soundness error 1 − ε, and query complexity q.
Suppose further that there exists (x, y) ∈ L such that |x| = n and |y| = m, such that
if we let z ∈ {0, 1}m be a random string of relative Hamming distance δ′ � δ′(x) from
y, we have

Pr
z

[z is δ-far from L(x)] ≥ γ � γ(x).

Then

q >
ε · γ
δ′

In particular, if L = CktVal, then q ≥ ε/(δ + O(1/n)).
The first part of Proposition 2.8 does not specify the relation of δ′ to δ (although,

surely, δ′ > δ must hold for any γ > 0 because Δ(z, L(x)) ≤ Δ(z, y) = δ′). The second
part relies on the fact that, for Circuit Value, one may set δ′ as low as δ+O(1/n).

Proof. By completeness, there exists an oracle π such that the PCPP verifier
V (x) accepts oracle y ◦ π with probability 1. Consider z = y⊕η, where η ∈ {0, 1}m
is a uniformly distributed string with relative Hamming weight δ′. If we invoke V (x)
with oracle z ◦ π, then the probability (over the choice of η) that any of the positions
read by V has been changed is at most q · δ′. Thus, V (x) rejects oracle (y ⊕ η) ◦ π
with probability at most q · δ′.

On the other hand, by assumption z is δ-far from L(x) with probability at least
γ, in which case V (x) should reject oracle z ◦π with probability greater than ε by the
PCPP soundness. Thus, V (x) should reject with probability greater than γ · ε (over
the choice of z and the coin tosses of V), and we conclude that q ·δ′ > γ ·ε, as desired.

ROBUST PCPS OF PROXIMITY 905

For the application to Circuit Value, let C : {0, 1}m → {0, 1} be a circuit
of size n that accepts only the all-zeroes string 0m, for m = Ω(n). Then we have
(C, 0m) ∈ CktVal, but for every δ′ > δ and every string z of relative Hamming
weight δ′, we see that (C, z) is δ-far from satisfying C. Setting γ = 1 and δ′ such that
δ′m is the least integer greater than δm completes the proof.

Expected robustness. Occasionally, we will be interested in a variant of robust
soundness, which refers to distance on average rather than with high probability.

Definition 2.9 (expected robustness). For a function ρ : Z
+ → [0, 1], a PCP

has expected robustness ρ if for every x /∈ L, we have

∀π,E
(I,D)

R←V (x)
[Δ(π|I , D−1(1))] > ρ(|x|).

Expected robustness for PCPPs is defined analogously.
We now present several generic transformations regarding robustness and sound-

ness. Although we state them only for PCPs, all of these results also hold for PCPPs,
with no change in the proximity parameter. The following proposition relates robust
soundness to expected robustness.

Proposition 2.10 (robust soundness versus expected robustness). If a PCP has
robust-soundness error 1 − ε with robustness ρ, then it has expected robustness ε · ρ.
On the other hand, if a PCP has expected robustness ρ, then for every ε ≤ ρ, it has
robust-soundness error 1 − ε with robustness parameter ρ− ε.

Expected robustness can easily be amplified to standard robustness with low
robust-soundness error, using any averaging (i.e., oblivious) sampler (cf. [Gol97]).
Combined with Proposition 2.10, we get a (soundness) error reduction for robust
PCPs. For example, using the expander-neighborhood sampler of [GW97], we have
the following.

Lemma 2.11 (error reduction via expander neighborhoods). If a language L has
a PCP with expected robustness ρ, randomness complexity r, query complexity q, and
decision complexity d, then for every two functions s, γ : Z

+ → [0, 1] then L has a
PCP with

• robust-soundness error s with robustness parameter ρ− γ,
• randomness complexity r + O(log(1/s) + log(1/γ)),
• query complexity O(1/(sγ2)) · q, and
• decision complexity O(1/(sγ2)) · d.

An alternative error-reduction procedure that will also be used is given by pairwise
independent samples as follows.

Lemma 2.12 (error reduction via pairwise independence). If a language L has
a PCP with expected robustness ρ, randomness complexity r, query complexity q, and
decision complexity d such that ρ · 2r ≥ 2, then L has a PCP with

• robust-soundness error 1/2 with robustness parameter ρ/2,
• randomness complexity 2r,
• query complexity 2q/ρ, and
• decision complexity 2d/ρ.

Non-Boolean PCPs. The next few transformations involve non-Boolean PCPs,
that is, PCPs in which the oracle returns symbols over some larger alphabet Σ =
{0, 1}a rather than bits; we refer to a = a(n) as the answer length of the PCP. (Often,
non-Boolean PCPs are discussed in the language of multiprover interactive proofs,
but it is simpler for us to work with the PCP formulation.)

Robust soundness of a non-Boolean PCP is defined in the natural way, using
Hamming distance over the alphabet Σ. (In the case of a robust non-Boolean PCPP,

906 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

we still treat the input oracle as binary.)
The first transformation provides a way of converting non-Boolean PCPs to

Boolean PCPs in a way that preserves robust soundness.
Lemma 2.13 (alphabet reduction). If a language L has a non-Boolean PCP with

answer length a, query complexity q, randomness complexity r, decision complexity
d, and robust-soundness error s with robustness parameter ρ, then L has a Boolean
PCP with query complexity O(a · q), randomness complexity r, decision complexity
d+O(a · q), and robust soundness error s with robustness parameter Ω(ρ). If, instead
of robust-soundness, the non-Boolean PCP has expected robustness ρ, then the Boolean
PCP has expected robustness Ω(ρ).

The proof uses a good error-correcting code (i.e., constant relative distance and
rate). Furthermore, to obtain decision complexity d + O(a · q) we should use a code
having linear-sized circuits for encoding (cf. [Spi96]). Using more classical codes would

only give decision complexity d+Õ(a ·q), which is actually sufficient for our purposes.
Proof. This transformation is analogous to converting non-Boolean error-correcting

codes to Boolean ones via “code concatenation.” Let V be the given non-Boolean PCP
verifier, with answer length a. Let ECC : {0, 1}a → {0, 1}b for b = O(a) a binary
error-correcting code of constant relative minimum distance, which can be computed
by an explicit circuit of size O(a). We will augment the original oracle π having a-bit
entries with an additional oracle τ having b-bit entries, where τi is supposed to be
ECC(πi). (We note that including the original oracle simplifies the argument as well
as frees us from assuming a noiseless decoding algorithm.)

Our new verifier V ′(x), on oracle access to π ◦ τ , will simulate V (x), and for each
query i made by V , will query the a bits in πi and the b bits in τi, for a total of
q · (a+ b) binary queries. That is, if V queries positions I = (i1, . . . , iq), V

′ will query
positions I ′ = ((0, i1), . . . , (0, iq), (1, i1), . . . , (1, iq)). If V outputs a decision circuit
D : ({0, 1}a)q → {0, 1}, V ′ will output the circuit D′ : ({0, 1}a)q × ({0, 1}b)q → {0, 1}
defined by

D′(x1, . . . , xq, y1, . . . , yq) = D(x1, . . . , xq) ∧ C(x1, . . . , xq, y1, . . . , yq),

where

C(x1, . . . , xq, y1, . . . , yq) =

q∧
i=1

(yi = ECC(xi)).

Since ECC can be evaluated by a circuit of size O(a), we see that |D′| = |D|+O(a ·q),
as desired.

For completeness of V ′, we note that any accepting oracle π for V can be aug-
mented to be an accepting oracle for V ′ by setting τi = ECC(πi) for all i. For
soundness of V ′, suppose x /∈ L and let (π, τ) be any pair of oracles. Define a “de-
coded” oracle π̂ by setting π̂i to be the string x ∈ {0, 1}a which minimizes the distance
between ECC(x) and τi. We will relate the robustness of V on oracle π̂ to the ro-
bustness of V ′ on oracles π and τ . Specifically, let β > 0 be a constant such that
the (absolute) minimum distance of ECC is greater than 2β · (a + b). Then we will
show that for every sequence R of coin tosses and for every α > 0, if the bits read
by V ′(x;R) from π ◦ τ are αβ-close to being accepted, then the bits read by V from
π̂ are α-close to being accepted. Thus, both robustness parameters (standard and
expected) decrease by at most a factor of β.

Consider any sequence R of coin tosses, let (I,D) = V (x;R), and write I =
(i1, . . . , iq). Suppose that (πi1 , . . . , πiq , τi1 , . . . , τiq) is αβ-close to some (π′

i1
, . . . , π′

iq
,

ROBUST PCPS OF PROXIMITY 907

τ ′i1 , . . . , τ
′
iq

) that satisfies D′ = D ∧ C. Then, for at least a 1 − α fraction of j ∈ [q],

the pair (πij , τij) is β-close to (π′
ij
, τ ′ij) = (π′

ij
,ECC(π′

ij
)). For such j, the choice of β

implies that ECC(π′
ij

) is the closest codeword to τij and hence π̂ij = π′
ij

. Since the

π′’s satisfy D, we conclude that the π̂’s are α-close to satisfying D, as desired.

The usual “parallelization” paradigm of PCPs [LS97, ALM+98] converts a Boolean
PCP with many queries into a non-Boolean PCP with a constant number of queries,
where this is typically the first step in PCP composition. As mentioned in the intro-
duction, we cannot afford parallelization, and robust soundness will be our substitute.
Nevertheless, there is a close (but not close enough for us) connection between paral-
lelized PCPs and PCPs with robust soundness as follows.

Proposition 2.14 (parallelization versus robustness).

1. If a language L has a non-Boolean PCP with answer length a, query complex-
ity q, randomness complexity r, decision complexity d, and soundness error s, then L
has a (Boolean) PCP with query complexity O(a · q), randomness complexity r, deci-
sion complexity d + O(a · q), and robust-soundness error s with robustness parameter
ρ = Ω(1/q).

2. If a language L has a (Boolean) PCP with query complexity q, randomness
complexity r, decision complexity d, and expected robustness ρ, then L has a 2-query
non-Boolean PCP with answer length q, randomness complexity r + log q, decision
complexity d + O(1), and soundness error 1 − ρ.

Thus, for constant soundness and constant robustness parameters, q-query robust
(Boolean) PCPs are essentially equivalent to constant query non-Boolean PCPs with
answer length Θ(q). However, note that in passing from robust soundness to a 2-query
non-Boolean PCP, the randomness complexity increases by log q. It is precisely this
cost that we cannot afford, and hence we work with robust soundness in the rest of
the paper.

Proof. For item 1, note that any non-Boolean PCP with query complexity q and
soundness error s has robust-soundness error s for any robustness parameter ρ < 1/q.
Thus, the claim follows from Lemma 2.13.

Turning to item 2, let V be a robust PCP verifier for L with the stated parameters.
We use the usual query-reduction technique for PCPs [FRS94] and observe that when
applied to a robust PCP, the detection probability (i.e., one minus the soundness
error) does not deteriorate by a factor of q as usual. Instead, the detection probability
of the resulting 2-query (non-Boolean) PCP equals the expected robustness of V .9

Specifically, the 2-query non-Boolean PCP verifier V ′ is defined as follows:

• V ′ expects two oracles: one Boolean oracle π corresponding to the oracle for
V , and a second oracle τ with answer length q, indexed by random strings of
V .

• On input x, the verifier V ′ selects a random string R for V and j
R← [q]

and computes (I,D) = V (x;R), where I = (i1, . . . , iq). It sets I ′ = (R, ij)
(which means the queries for the values τR and πij) and D′(a, b) = [(D(a) =
1) ∧ (aj = b)]; that is, it accepts if and only if [D(τR) = 1] ∧ [(τR)j = πij].

9It may be more instructive (but more cumbersome) to discuss what is happening in terms of
ordinary robustness. Suppose that V has robust-soundness error s = 1−d with respect to robustness
ρ. The standard analysis ignores the robustness and asserts that the 2-query (non-Boolean) PCP
has soundness error s′ = 1 − d′, where d′ = d/q. This crude analysis implicitly assumes the trivial
bound (i.e., 1/q) of the robustness parameter. A more refined analysis takes advantage of the actual
bound of the robustness parameter and asserts that the 2-query (non-Boolean) PCP has soundness
error s′ = 1 − ρ · d.

908 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

It can be verified that the probability that V ′ rejects a false assertion is precisely the
expected robustness of V . In particular, suppose that V ′(x) accepts the oracle pair
(π, τ) with probability p. We may assume, without loss of generality, that D(τR) = 1
for any R, where (·, D) = V (x;R). Then, it follows that the expected (relative)
distance of π|I from τR, where (I,D) = V (x;R) for a random R, equals 1−p (because
1− p = PrR,j [(τR)j �= πij], which in turn equals ER[Δ(τR, π|I)]). This means that on
the average, π is (1 − p)-close to assignments that satisfy the corresponding decision
circuits. Thus, if x �∈ L, then 1 − p > ρ, and p < 1 − ρ follows.

Robustness versus proximity. Finally, for PCPPs, we prove that the robustness
parameter is upper-bounded by the proximity parameter.

Proposition 2.15 (robustness versus proximity). Suppose a pair language L has
a PCPP with proximity parameter δ and expected robustness ρ. Suppose further that
there exists (x, y) ∈ L such that |x| = n and |y| = m, such that if we let z ∈ {0, 1}m
be a random string at relative Hamming distance δ′ � δ′(x) from y, we have

Pr
z

[z is δ-far to L(x)] ≥ γ � γ(x).

Then

ρ ≤ δ′/γ.

In particular, if L = CktVal, then ρ ≤ δ + O(1/n).
Proof. The proof is similar to that of Proposition 2.8. By completeness, there

exists an oracle π such that the PCPP verifier V (x) accepts oracle y ◦ π with proba-
bility 1. If we run V (x) with oracle z ◦ π instead, then bits read by V have expected
distance at most δ′ from being accepted, where the expectation is taken over the
choices of z (even when fixing the coins of V).

On the other hand, z is δ-far from L(x) with probability at least γ, and for any
such fixed z the bits read by V from z ◦π should have expected distance greater than
ρ from being accepted (over the coin tosses of V). Thus, the expected distance of
z ◦ π from being accepted is greater than γ · ρ, where here the expectation is taken
over the choice of z and the coin tosses of V . We conclude that δ′ > γ · ρ, as desired.

Recall that in the proof of Proposition 2.8, we have demonstrated the existence
of a pair (C,w) such that for any string z at distance δ′ = δ+O(1/n) from w it holds
that w is δ-far from satisfying C. Setting γ = 1, the second part follows.

3. Very short PCPs with very few queries. In this section we prove the
main results of this work; that is, we establish Theorems 1.2 and 1.3. Our starting
point is the following robust PCPP, which is constructed in Part II, sections 5–8.

Theorem 3.1 (main construct). There exists a universal constant c such for all
n,m ∈ Z

+, 0 < δ, γ < 1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c, CktVal has a
robust PCPP (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ));

• decision complexity n1/m ·poly(logn, 1/δ); which also upper-bounds the query
complexity;10

• perfect completeness; and
• for proximity parameter δ, a verifier having robust-soundness error γ with

robustness parameter (1 − γ)δ.

10In fact, we will upper-bound the query complexity by q = n1/m ·poly(logn, 1/δ) and show that

the verifier’s decision can be implemented by a circuit of size Õ(q), which can also be bounded by
n1/m · poly(logn, 1/δ) with a slightly larger unspecified polynomial.

ROBUST PCPS OF PROXIMITY 909

We comment that the condition δ < γ/c merely means that we present robust
PCPPs only for the more difficult cases (when δ is small), and our robustness pa-
rameter does not improve for larger values of δ. We call the reader’s attention to
the typically small values of the query and randomness complexities, which yield a
proof length that is upper-bounded by poly(mm log n) · n (for δ and γ as small as
1/poly(mm, log n)), as well as to the small values of the soundness error and the small
deterioration of robustness with respect to proximity.

Note that the main construct (of Theorem 3.1) works only when n, the size of
the input circuit, is not too small (more precisely, when n1/m ≥ mcm/δ3). While
constructing our short PCPs (via proof composition), we need robust PCPPs that
work for even smaller values of n. For this purpose, we also construct the following
robust PCPP (of Theorem 3.2) that has parameters similar to a PCP constructed
in [ALM+98]. In comparison to the main construct (of Theorem 3.1), this PCPP
is not as efficient in randomness (i.e., it has randomness complexity O(log n) rather
than (1 − o(1)) log2 n). However, since we plan to use the latter (robust) PCPP only
towards the final stages of composition, we can afford to pay this cost in randomness.
Theorem 3.2 will be proved in the second part of this work by modifying the proof
of Theorem 3.1. An alternate construction of this robust PCPP can be obtained by
adding a suitable proximity test to the “parallelized PCPs” of [ALM+98].

Theorem 3.2 (ALMSS-type robust PCPP). For all n ∈ Z
+ and δ ∈ (0, 1),

CktVal has a robust PCPP (for circuits of size n) with the following parameters:
• randomness O(log n);
• decision complexity poly logn, which also upper-bounds the query complexity;
• perfect completeness; and
• for proximity parameter δ, a verifier having robust-soundness error 1 − Ω(δ)

with robustness parameter Ω(1).
Theorems 3.1 and 3.2 differ also in their robustness parameters. Theorem 3.2

provides a better bound on the robustness parameter (i.e., Ω(1) rather than (1− γ)δ
provided by Theorem 3.1), while guaranteeing only a much weaker robust-soundness
error (i.e., 1−Ω(δ) rather than γ), where γ > δ > 0 is typically small. It is instructive
to compare the expected robustness provided by the two results: The expected robust-
ness in Theorem 3.1 is at least (1−γ)2δ, while that in Theorem 3.2 is Ω(δ)·Ω(1) = Ω(δ).
Thus, for γ � 1, the expected robustness in Theorem 3.1 can be very close to the
proximity parameter δ (which is close to optimal; see Proposition 2.15), whereas in
Theorem 3.2 the expected robustness is always a constant factor smaller than the
proximity parameter. Hence, the robust PCPP of Theorem 3.1 is suitable for a large
number of proof composition operations, whereas the one in Theorem 3.2 is useful
when the query complexity of the outer verifier is already very small (and Theo-
rem 3.1 can no longer be applied). Indeed, this is exactly how these two theorems are
used in the construction of our short PCPs. Using Theorems 3.1 and 3.2, we derive a
general trade-off between the length of PCPs and their query complexity as follows.

Theorem 3.3 (randomness versus query complexity trade-off for PCPPs). For
every parameter n, t ∈ N such that 3 ≤ t ≤ 2 log log n

log log log n there exists a PCPP for

CktVal (for circuits of size n) with the following parameters:
• randomness complexity log2 n + At(n), where

At(n) � O(t + (logn)1/t) log log n + O((log n)2/t);(3.1)

• query complexity O(1);
• perfect completeness; and

910 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

• soundness error 1 − Ω(1/t) with respect to proximity parameter Θ(1/t).

Alternatively, we can have query complexity O(t) and soundness error 1/2 maintaining
all other parameters.

For t ∈ [3, . . . , 0.99 log log n
log log log n], we have (log n)1/t > (log log n)1/0.99, and thus At(n) =

O((log n)2/t). On the other hand, for t ≥ 1.01 log log n
log log log n , we have (log n)1/t ≤ (log log n)1/1.01,

and thus At(n) = O
((log log n)2

log log log n

)
= o(log log n)2.

Theorem 3.3 actually asserts a PCPP (for CktVal), but a PCP for CktSAT and
a PCPP for Nondeterministic Circuit Value (of the same complexity) follow;
see Propositions 2.4 and 2.5. Theorems 1.2 and 1.3 follow by suitable settings of the
parameter t. Further details as well as a corollary appear in section 3.2.

3.1. Proof of Theorem 3.3. Theorem 3.3 is proved by using the robust PCPP
described in Theorem 3.1. Specifically, this robust PCPP is composed with itself
several times (using the composition theorem from section 2). Each such composition
drastically reduces the query complexity of the resulting PCP, while only increasing
very moderately its randomness complexity. The deterioration of the soundness error
and the robustness is also very moderate. After composing the robust PCPP with
itself O(t(n)) times, we compose the resulting robust PCP with the ALMSS-type
robust PCPP thrice to reduce the query complexity to poly log log logn. Finally, we
compose this resultant robust PCPP with a PCPP parameter roughly Ω(1/t) that
has query complexity O(1) and exponential length. The latter PCPP can be obtained
by a suitable modification of the Hadamard-based PCP of [ALM+98], as shown in
Appendix A. We now turn to the actual proof.

Proof. We construct the PCPP of Theorem 3.3 by composing the robust PCPP
described in Theorem 3.1 with itself several times. Each such composition reduces
the query complexity from n to approximately n1/m. Ideally, we would like to do
the following: Set m = (logn)1/t and compose the robust PCPP of Theorem 3.1
with parameter m with itself t − 1 times. This would result in a robust PCPP of
query complexity roughly n1/mt

= n1/logn = O(1), giving us the desired result.
However, we cannot continue this repeated composition for all the t − 1 steps, as
the requirements of Theorem 3.1 (namely, n1/m ≥ mcm/(δγ)3) are violated in the
last two steps of the repeated composition. So we instead do the following: In the
first stage, we compose the (new and) highly efficient verifier from Theorem 3.1 with

itself t − 3 times. This yields a verifier with query complexity roughly n1/mt−2

=
(n1/mt

)m
2

= 2m
2

= exp(log2/t n) � n, while the soundness error is bounded away
from 1 and robustness is Ω(1/t). In the second stage, we compose the resultant robust
PCPP a constant number of times with the ALMSS-type robust PCPP described in
Theorem 3.2 to reduce the query complexity to poly log log logn (and keeping the
other parameters essentially the same). The ALMSS-type PCPP is (relatively) poor
in terms of randomness; however, the input size to the ALMSS-type PCPP is too
small to affect the randomness of the resultant PCPP. Finally, we compose with the
Hadamard-based verifier of Theorem A.1 to bring the query complexity down to O(1).
In all stages, we invoke the composition theorem (Theorem 2.7).

Throughout the proof, n denotes the size of the circuit that is given as the explicit
input to the PCPP verifier that we construct. We shall actually construct a sequence
of such verifiers. Each verifier in the sequence will be obtained by composing the prior
verifier (used as the outer verifier in the composition) with an adequate inner verifier.
In the first stage, the inner verifier will be the verifier obtained from Theorem 3.1,
whereas in the second and third stages it will be the one obtained from Theorem 3.2

ROBUST PCPS OF PROXIMITY 911

and Theorem A.1, respectively. Either way, the inner verifier will operate on circuits of
much smaller size (than n) and will use a proximity parameter that is upper-bounded
by the robustness parameter of the corresponding outer verifier.

Stage I. Let m = (logn)
1
t ≥ 2 and γ = 1

t . For this choice of m and γ, let V0

be the verifier obtained from Theorem 3.1. We recall the parameters of this verifier:
For circuits of size � and any proximity parameter δ0 ∈ (γ/3c, γ/c), its randomness
complexity is r0(�) � (1− 1

m) · log2 �+O(log log �)+O(m logm)+O(log t), its decision

(and query) complexity is d0(�) � �
1
m ·poly(log �, t), its soundness error is s0 � γ, and

its robustness is ρ0 ≥ (1 − γ)δ0.

We compose V0 with itself t − 3 times for the same fixed choice of m and γ to
obtain a sequence of verifiers of increasingly smaller query complexity.11 While doing
so, we will use the largest possible proximity parameter for the inner verifier (V0) in
each step; that is, in the ith composition, we set the proximity parameter of the inner
verifier to equal the robustness of the outer verifier, where the latter is the result of
i − 1 compositions of V0 with itself. We get a sequence of verifiers V1, . . . , Vt−2 such
that V1 = V0 and the verifier Vi is obtained by composing (the outer verifier) Vi−1

with (the inner verifier) V0, where the proximity parameter of the latter is set to equal
the robustness of the former. Unlike V0, which is invoked on different circuit sizes and
(slightly) different values of the proximity parameter, all the Vi’s (i ∈ [t− 2]) refer to
circuit size n and proximity parameter δ � γ/c < 1/t.

Let ri, di, δi, si, and ρi denote the randomness complexity, decision (and query)
complexity, proximity parameter, soundness error, and the robustness parameter of
the verifier Vi. (Recall that Vi will be composed with the inner verifier V0, where in this
composition the input size and proximity parameter of the latter will be set to di and

ρi, respectively, and so we will need to verify that d
1/m
i ≥ mcm/(γρi)

3 and ρi < γ/c for
i < t− 2).12 We first claim that the decision complexity, proximity, soundness-error,
robustness, and proof length parameters satisfy the following conditions:

(1) Decision complexity: di(n) ≤ a(n,m)2 · n1/mi

, where a(�,m) � d0(�)/�
1/m =

poly(log �, t). On the other hand, di(n) ≥ n1/mi

.
(2) Proximity: δi = δ.
(3) Soundness error: si ≤ 1 − (1 − γ)i. (In particular, si < iγ.)
(4) Robustness: ρi ≥ (1 − γ)i · δ. On the other hand, ρi ≤ ρ0 < γ/c.
(5) Proof length: 2ri(n)di(n) ≤ b(n,m)i · n, where b(�,m) � 2r0(�) · d0(�)/� =

poly(mm, log �, t).

We prove this claim by induction on i. For starters, note that the base case (i.e.,
i = 1) follows from the properties of V0; in particular, d1(n) ≤ poly(logn, t) · n1/m

and 2r1(n)d1(n) ≤ poly(mm, log n, t) ·n. Turning to the induction step, assuming that

11We assume, for simplicity, that t ≥ 3. Note that it suffices to establish the claimed result for t
greater than any universal constant.

12We also need to verify that n1/m ≥ mcm/(γδ0)3 and δ0 < γ/c for the initial verifier V1 = V0,
but this is true for our choice of parameters. Furthermore, as ρi can only deteriorate with each
composition, we have that δ0 = ρi ≤ ρ0 ≤ γ/c. Thus, the only condition that needs to be verified is

d
1/m
i ≥ mcm/(γρi)

3 for i < t− 2.

912 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

these claims holds for Vi, we prove that they hold also for Vi+1. For (1), note that

di+1(n) = d0(di(n)) [by the composition theorem]
= a(di(n),m) · di(n)1/m [by definition of a(·, ·)]
≤ a(n,m) · di(n)1/m [by monotonicity of a(·, ·) and

di(n) ≤ n]

≤ a(n,m) ·
(
a(n,m)2 · n1/mi

)1/m

[by induction]

≤ a(n,m)2 · n1/mi+1

[using m ≥ 2]

and di+1(n) ≥ di(n)1/m ≥ n1/mi+1

also holds. Clearly δi = δ and the bound on
si is straightforward from the composition theorem. Recalling that the proximity
parameter for V0 in this composition is set to ρi, we see that the robustness of the
composed verifier Vi+1 is ρi+1 = (1 − γ)ρi = (1 − γ)i+1δ as desired. Furthermore,
ρi = (1 − γ)iδ ≥ (1 − 1

t)
tδ ≥ e−1δ = γ/O(1). We now move to the last condition

(essentially bounding the randomness). Notice first that ri+1(n) = ri(n) + r0(di(n)),
and thus

2ri+1(n) · di+1(n) = 2ri(n) · 2r0(di(n)) · d0(di(n)) [by the composition theorem]
= 2ri(n) · di(n) · b(di(n),m) [by definition of b(·, ·)]
≤ b(n,m)i · n · b(n,m) [by induction and

monotonicity of b(·, ·)]
= n · b(n,m)i+1.

Thus, Part (5) is verified. Recall that we have to verify that d
1/m
i ≥ mcm/(γρi)

3

for i < t − 2 as promised. We have d
1/m
i ≥ (n1/mi

)1/m = n1/mi+1 ≥ n1/mt−2

(since

i < t − 2). Since m = (logn)1/t, we have n1/mt

= 2. Hence, d
1/m
i ≥ (n1/mt

)m
2

=

2m
2

. On the other hand, mcm/(γρi)
3 ≤ mcm/(e−1γδ)3 = mcm · poly(t) because

δ = γ/c and γ = 1/t. Thus it suffices to verify that 2m
2

/mcm ≥ poly(t) for 2 ≤ t ≤
2 log log n/ log log log n, which is straightforward.13

Lastly, we consider the running time of Vi, denoted Ti, which ought to be poly-
nomial. A careful use of the composition theorem (Theorem 2.7) indicates that
Ti(n) = poly(n) + Ti−1(n) for every i = 2, . . . , t − 2, where T1(n) = poly(n) (since
V1 = V0). Alternatively, unraveling the inductive composition, we note that Vi con-
sists of invoking V0 i times, where in the first invocation V0 is invoked on Vi’s input
and in later invocations V0 is invoked on an input obtained from the previous invoca-
tion. Furthermore, the output of Vi is obtained by combining the inputs obtained in
these i ≤ t− 2 < n invocations.

We now conclude the first stage by showing that the final verifier Vc = Vt−2 has the
desired properties. By Part (5) above (and the fact that dt−2 ≥ 1), we have rc(n) =
rt−2(n) ≤ log n+(t−2)·log b(n,m) ≤ log n+t log b(n,m). By the definition of b(n,m),
we have log b(n,m) = O(log log n) + O(m logm) + O(log t) = O(log log n + m logm),

whereas m logm = (logn)
1
t · 1

t log log n. Thus rc(n) ≤ log2 n + O(t · log log n) + t ·
O(m logm) = log2 n + O(t + (logn)

1
t) · log log n. The decision complexity of Vc is

dc(n) = dt−2(n) ≤ a(n,m)2 · n1/mt−2

= a(n,m)2 · 2m
2

, because n1/mt

= 2. Using

13Note that as t varies from 2 to 2 log log n/ log log log n, the value of m varies from√
logn to

√
log logn. For t ∈ [2, 2 log log n/ log log log n], the maximum value of poly(t) is

poly(log log n/ log log log n) = poly(log log n). On the other hand, for m ∈ [
√

log logn,
√

logn], the

minimum value of 2m
2
/mcm > 2m

2/2 is 2
√

log log n2/2 =
√

logn � poly(log log n).

ROBUST PCPS OF PROXIMITY 913

a(n,m) = poly(logn, t), it follows that dc(n) ≤ 2m
2 ·poly(logn). The proximity of Vc

equals δ, its soundness error is sc = st−2 = 1−(1−γ)t−2 = 1−(1−1/t)t−2 < 1−Ω(1),
and its robustness is ρc = ρt−2 ≥ (1 − γ)t−2δ = δ/e = Ω(1/t).

Stage II. We now compose the verifier Vc with the ALMSS-type verifier Va de-
scribed in Theorem 3.2 thrice to obtain the verifiers V ′, V ′′, and V ′′′, respectively; that
is, V ′ equals Vc composed with Va, whereas V ′′ equals V ′ composed with Va, and V ′′′

equals V ′′ composed with Va. We apply composition as before, setting the proximity
parameter of the inner verifier to equal the robustness parameter of the outer verifier.
Recall from Theorem 3.2 that the ALMSS-type verifier Va has the following param-
eters: randomness ra(�, δa) = O(log �), decision complexity da(�, δa) = poly log �,
soundness error sa(�, δa) = 1 − Ω(δa), and robustness ρa(�, δa) = Ω(1) for input
size � and proximity parameter δa. Recall that when composing Vc with Va we
set δa = ρc = Ω(1/t), whereas when composing V ′ (resp., V ′′) with Va we set
δa = ρ′ = Ω(1) (resp., δa = ρ′′ = Ω(1)). Each composition with the inner verifier Va

adds O(log d) to the randomness, while reducing the query complexity to poly log d,
where d is the decision complexity of the outer verifier. Furthermore, when composing
any of these outer verifiers (i.e., either Vc, V

′, or V ′′) with Va, the resulting verifier
has robustness parameter Ω(1) while its robust-soundness error is 1 − Ω((1 − s)ρ),
where ρ and s are the robustness parameter and soundness error of the outer verifier.
Hence, the parameters of the verifiers V ′, V ′′, and V ′′′ are as follows:

Parameters of V ′ (recall that dc = 2m
2 · poly(logn) and ρc = Ω(δ)):

r′ = rc + O(log dc(n)) = rc + O(m2 + log log n),
d′ = poly(log dc(n)) = poly(m, log log n),
s′ = 1 − Ω((1 − sc)ρc) = 1 − Ω(δ),
and ρ′ = Ω(1).

Parameters of V ′′:
r′′ = r′ + O(log d′) = r′ + O(logm + log log logn),
d′′ = poly(log d′) = poly(logm, log log log n),
s′′ = 1 − Ω((1 − s′)ρ′) = 1 − Ω(δ),
and ρ′′ = Ω(1).

Parameters of V ′′′:
r′′′ = r′′ + O(log d′′) = r′′ + O(log logm + log log log logn),
d′′′ = poly(log d′′) = poly(log logm, log log log logn),
s′′′ = 1 − Ω((1 − s′′)ρ′′) = 1 − Ω(δ),
and ρ′′′ = Ω(1).

Recall that the proximity parameter for all three verifiers equals that of Vc (i.e., δ).
We have that

r′′′ = rc + O(m2 + log log n)

= log2 n + O(t + (logn)1/t) · log log n + O(m2),

q′′′ < d′′′ = poly(log log log logn, log logm),

whereas s′′′ = 1 − Ω(δ) and ρ′′′ = Ω(1). Substituting m = (logn)1/t, we get r′′′ =
log2 n + O(t + (logn)1/t) · log log n + O((log n)2/t) and q′′′ = poly(log log logn).

Stage III. Finally, we compose V ′′′ with the Hadamard-based inner verifier Vh

of Theorem A.1 to obtain our final verifier Vf . The query complexity of Vh, and

hence that of Vf , is constant. The randomness complexity of Vf is rf (n) � r′′′(n) +
rh(q′′′(n)) = r′′′(n) + poly(log log logn), because rh(�) = O(�2). Thus, rf (n) =
log2 n + O(t + (logn)1/t) · log log n + O((log n)2/t). On proximity parameter δh, the
soundness error of Vh is sh = 1 − Ω(δh). Setting δh = ρ′′′ = Ω(1), we conclude that

914 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the soundness error of Vf on proximity parameter δ is 1 − Ω(δ) = 1 − Ω(1/t), since
the soundness error of V ′′′ is 1 − Ω(δ).

To obtain soundness error 1/2, we perform O(t) repetitions of Vf , yielding a query
complexity of O(t). This can be done without increasing the randomness complexity
by using “recycled randomness” (specifically, the neighbors of a uniformly selected
vertex in a Ramanujan expander graph; see [Gol97, Apdx. C.4]).

Comment. We note that the tight bound on the robustness (as a function of the
proximity parameter) in our main construct (Theorem 3.1) plays an important role in
the proof of Theorem 3.3. The reason is that when we compose two robust PCPPs,
the proximity parameter of the second must be upper-bounded by the robustness
parameter of the first. Thus, when we compose many robust PCPPs, the robustness
parameter deteriorates exponentially in the number of composed systems, where the
base of the exponent is determined by the tightness of the robustness (of the second
verifier). That is, let τ � ρ/δ, where δ and ρ are the proximity and robustness
parameters of the system. Then composing this system t times with itself means
that at the lowest PCP-instance we need to set the proximity parameter to be τ t−1

times the initial proximity. This requires the lowest PCP-instance to make at least
1/τ t−1 queries (or be composed with a PCPP that can handle proximity parameter
τ t, which again lower-bounds the number of queries). For a constant τ < 1, we get
exp(t) query complexity, whereas for τ = 1− γ = (1− (1/t)) we get query complexity
that is linear in 1/((1 − γ)t · γ) = O(t). Finally, we argue that in the context of such
an application, setting γ = 1/t is actually the “natural” choice. Such a choice assigns
to each proof oracle encountered in the composition an almost equal weight (of 1/t);
that is, such a proof oracle is assigned weight 1/t when it appears as the current
proof oracle and maintains its weight when it appears as part of the input oracle in
subsequent compositions.

3.2. Corollary to Theorem 3.3. Recall that Theorem 3.3 asserts a PCPP
(for CktVal) with randomness complexity log2 n + At(n), where At(n) � O(t +
(log n)1/t) log logn + O((log n)2/t) and query complexity O(t) (for soundness error
1/2). For constant t ≥ 3, we have At(n) = O((log n)2/t). On the other hand, for
t ≥ 1.01 log log n

log log log n , we have At(n) = o(log log n)2. Using Proposition 2.4, these PCPPs
yield corresponding PCPs for CktSAT.

Deriving Theorems 1.2 and 1.3. Two extreme choices of t(n) are when t(n) = 2
ε

for some ε > 0 (which maintains a constant query complexity) and t(n) = 2 log log n
log log log n

(which minimizes the randomness complexity of the verifier). Setting t(n) = 2
ε

yields Theorem 1.3 (i.e., constant query complexity O(1
ε) and randomness log2 n +

O(logε n)), whereas setting t(n) = 2 log log n
log log log n yields Theorem 1.2 (i.e., query complex-

ity O
(

log log n
log log log n

)
and randomness log2 n+O

(
(log log n)2

log log log n

)
. Thus, both Theorems 1.2

and 1.3 follow from Theorem 3.3.
Deriving a PCPP for Nondeterministic Circuit Value. By Proposition 2.5,

we conclude that for every 3 ≤ t(n) ≤ 2 log log n
log log log n , there exists a PCPP for Nonde-

terministic Circuit Value of the same complexities (i.e., randomness complexity
log2 n + At(n), query complexity O(t(n)), perfect completeness, and soundness error
1/2 with respect to proximity δ = Ω(1/t(n))).

A more flexible notion of a PCPP. Our definition of a PCPP (see Definition 2.3)
specifies for each system a unique proximity parameter. In many settings (see, e.g.,
section 4.1), it is better that the proximity parameter is given as an input to the
verifier and that the latter behaves accordingly (i.e., makes an adequate number of

ROBUST PCPS OF PROXIMITY 915

queries). We refrain from presenting either a formal definition of such relaxed PCPPs
or a general transformation of PCPPs into their more relaxed form. Instead, we state
the following corollary to Theorem 3.3.

Corollary 3.4. For all parameters n, t1, t2 ∈ N such that 3 ≤ t1 ≤ t2 ≤
2 log log n

log log log n there exists a PCPP for CktVal (for circuits of size n) with proof length

2At1 (n) · n, where At(n) is as in (3.1), query complexity O(t2), perfect completeness,
and soundness error 1/2 with respect to proximity parameter 1/t2. Furthermore, when
given (as auxiliary input) a proximity parameter δ ≥ 1/t2, the verifier makes only
O(max{1/δ, t1}) queries and rejects any input oracle that is δ-far from satisfying the
circuit with probability at least 1/2.

Underlying the following proof is a general transformation of PCPPs to the more
relaxed form as stated in Corollary 3.4.

Proof. The proof oracle consists of a sequence of proofs for the system of Theo-
rem 3.3, when instantiated with proximity parameter 2−i for i = �log2 t1�, . . . , �log2 t2.
When the new verifier is invoked with proximity parameter δ, it invokes the original
verifier with proximity parameter 2−i, where i = �log2 1/δ, and emulates the answers
using the ith portion of its proof oracle.

4. Applications to coding problems. In this section we show that, combined
with any good code, any PCPP yields a locally testable code (LTC). Using our PCPPs,
we obtain an improvement in the rate of LTCs (improving over the results of [GS02,
BSVW03]). We also introduce a relaxed notion of locally decodable codes (LDCs)
and show how to construct such codes using any PCPP (and ours in particular).

Preliminaries For a string w ∈ {0, 1}n and i ∈ [n] � {1, 2, . . . , n}, unless stated
differently, wi denotes the ith bit of w.

We consider codes mapping sequences of k (input) bits into sequences of n ≥ k
(output) bits. Such a generic code is denoted by C : {0, 1}k → {0, 1}n, and the
elements of {C(x) : x ∈ {0, 1}k} ⊆ {0, 1}n are called codewords (of C). Throughout
this section, the integers k and n are to be thought of as parameters, and we are
typically interested in the relation of n to k (i.e., how n grows as a function of k).
Thus, we actually discuss infinite families of codes (which are associated with infinite
sets of possible k’s), and whenever we say that some quantity of the code is a constant
we mean that this quantity is constant for the entire family (of codes).

The distance of a code C : {0, 1}k → {0, 1}n is the minimum (Hamming) distance
between its codewords; that is, minx�=y{Δ(C(x),C(y))}, where Δ(u, v) denotes the
number of bit locations on which u and v differ. Throughout this work, we focus on
codes of “linear distance,” that is, codes C : {0, 1}k → {0, 1}n of distance Ω(n). The
distance of w ∈ {0, 1}n from a code C : {0, 1}k → {0, 1}n, denoted ΔC(w), is the min-
imum distance between w and the codewords, that is, ΔC(w) � minx{Δ(w,C(x))}.
For δ ∈ [0, 1], the n-bit long strings u and v are said to be δ-far (resp., δ-close) if
Δ(u, v) > δ · n (resp., Δ(u, v) ≤ δ · n). Similarly, w is δ-far from C (resp., δ-close to
C) if ΔC(w) > δ · n (resp., ΔC(w) ≤ δ · n).

As in the case of PCPs, all oracle machines considered below are nonadaptive.
Here these oracle machines will model highly efficient testing and decoding procedures,
which probe their input w ∈ {0, 1}n in relatively few places. Thus, these procedures
are modeled as oracle machines having oracle access to w (which is viewed as a function
w : {1, . . . , n} → {0, 1}).

4.1. LTCs. Loosely speaking, by a codeword test (for the code C : {0, 1}k →
{0, 1}n) we mean a randomized (nonadaptive) oracle machine, also called a tester,

916 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

that is given oracle access to w ∈ {0, 1}n. The tester may query the oracle at a
constant number of bit locations and is required to (always) accept every codeword
and reject with (relatively) high probability every oracle that is “far” from the code.
Indeed, since our focus is on positive results, we use a strict formulation in which
the tester is required to accept each codeword with probability 1. (This corresponds
to “perfect completeness” in the PCP setting.) The first definition below provides a
general template (in terms of several parameters) for the rejection condition. Later
we will discuss the kinds of asymptotic parameters we would like to achieve.

Definition 4.1 (codeword tests). A randomized (nonadaptive) oracle machine
M is called a (δ, s)-codeword test for C : {0, 1}k → {0, 1}n if it satisfies the following
two conditions:

1. Accepting codewords (i.e., completeness): For every x ∈ {0, 1}k, given oracle
access to w = C(x), machine M accepts with probability 1. That is, Pr[MC(x) =1] =
1 for every x ∈ {0, 1}k.

2. Rejection of noncodeword (i.e., soundness): Given oracle access to any w ∈
{0, 1}n that is δ-far from C, machine M accepts with probability at most s. That is,
Pr[Mw =1] ≤ s for every w ∈ {0, 1}n that is δ-far from C.

The parameter δ is called the proximity parameter and s is called the soundness
error. The query complexity q of M is the maximum number of queries it makes
(taken over all sequences of coin tosses).

Note that this definition requires nothing with respect to noncodewords that are
relatively close to the code (i.e., are δ-close to C). In addition to the usual goals
in constructing error-correcting codes (e.g., maximizing minimum distance and min-
imizing the blocklength n = n(k)), here we are also interested in simultaneously
minimizing the query complexity q, the proximity parameter δ, and the soundness
error s. More generally, we are interested in the trade-off between q, δ, and s. (As
usual, the soundness error can be reduced to sk by increasing the query complexity
to k · q.) A minimalistic goal is to have a family of codes with q, δ, and s all fixed
constants. However, note that this would be interesting only if δ were sufficiently
small with respect to the distance parameters of the code, e.g., smaller than half the
relative minimum distance. (For example, if δ is larger than the “covering radius” of
the code, then there does not exist any string that is δ-far from the code, and the
soundness condition becomes vacuous.) A stronger definition requires the tester to
work for any given proximity parameter δ > o(1), but allows its query complexity to
depend on δ as follows.

Definition 4.2 (LTCs). A family of codes {Ck : {0, 1}k → {0, 1}n}k∈N is locally
testable if it satisfies the following.

1. Linear distance: There is a constant ρ > 0, such that for every k, Ck has
minimum distance at least ρ · n.

2. Local testability: There is a randomized, nonadaptive oracle machine M such
that for every constant δ > 0, there is a constant q = q(δ) such that for all sufficiently
large k, Mw(1k, δ) is a (δ, 1/2)-codeword test for Ck with query complexity q.
The family is called explicit if both Ck and Mw(1k, δ) can be evaluated with compu-
tation time polynomial in k.

We comment that Definition 4.2 is somewhat weaker than the definitions used
in [GS02].14

14In the stronger of the definitions in [GS02], the tester is not given δ as input (and thus has query
complexity that is a fixed constant independent of δ) but is required to be a (δ, 1 − Ω(δ))-codeword
test for every constant δ > 0 and sufficiently large k. That is, strings that are δ-far from the code

ROBUST PCPS OF PROXIMITY 917

Using an adequate PCPP, we can transform any code to a related code that has
a codeword tester. This is done by appending each codeword with a PCPP proving
the codeword is indeed the encoding of a message. One technical problem that arises
is that the PCPP constitutes most of the length of the new encoding. Furthermore,
we cannot assume much about the Hamming distance between different proofs of the
same statement, and thus the distance of the new code may deteriorate. But this is
easily fixed by repeating the codeword many times so that the PCPP constitutes only
a small fraction of the total length.15 Specifically, given a code C0 : {0, 1}k → {0, 1}m,
we consider the code C(x) � (C0(x)t, π(x)), where t = (d(k)− 1) · |π(x)|/|C0(x)| such
that (say) d(k) = log k, and π(x) is a PCPP that asserts that an m-bit string (given
as an input oracle) is a codeword (of C0).

Construction 4.3. Let d be a free parameter to be determined later, let C0 :
{0, 1}k → {0, 1}m be a code, and let V be a PCPP verifier for membership in S0 =
{C0(x) : x∈{0, 1}k}. Let π(x) be the proof oracle corresponding to the claim that the
input oracle equals C0(x); that is, π(x) is the canonical proof obtained by using x as an
NP witness for membership of C0(x) in S0. Consider the code C(x) � (C0(x)t, π(x)),
where t = (d− 1) · |π(x)|/|C0(x)|.

The codeword test emulates the PCP verifier in the natural way. Specifically,
given oracle access to w = (w1, . . . , wt, π) ∈ {0, 1}t·m+�, the codeword tester selects
uniformly i ∈ [t] and emulates the PCP verifier, providing it with oracle access to
the input oracle wi and to the proof oracle π. In addition, the tester checks that the
repetitions are valid (by inspecting randomly selected positions in some qrep randomly
selected pairs of m-bit long blocks, where qrep is a free parameter to be optimized
later). Let us denote this tester by T . That is, Tw

1. uniformly selects i ∈ [t] and invokes V wi,π.
2. repeats the following qrep times: Uniformly selects i1, i2 ∈ [t] and j ∈ [m] and

checks whether (wi1)j = (wi2)j .
Proposition 4.4. Let d and qrep be the free parameters in the above construction

of the code C and tester T . Suppose that the code C0 : {0, 1}k → {0, 1}m has a relative
minimum distance of ρ0, and that the PCPP has a proof length of � > m, soundness
error 1/4 for proximity parameter δpcpp, and query complexity qpcpp. Then, the code
C and tester T have the following properties:

1. The blocklength of C is n � d · � and its relative minimum distance is at least
ρ0 − 1/d.

2. The oracle machine T is a (δ, 1
2)-codeword tester for the C, where δ = δpcpp+

4
qrep

+ 1
d .

3. The query complexity of T is q = qpcpp + 2qrep.
Proof. The parameters of the code C are obvious from the construction. In

particular, C has blocklength t · m + � = d · � = n, and the PCPP π(x) constitutes
only an �/n = 1/d fraction of the length of the codeword C(x). Since the remainder
consists of replicated versions of C0(x), it follows that the relative minimum distance
of C is at least (n− �)ρ0/n > ρ0 − 1/d.

The query complexity of T is obvious from its construction, and so we need
only show that it is a good codeword tester. Completeness follows immediately from

are rejected with probability Ω(δ). Such a tester implies a tester as in Definition 4.2, with query
complexity q(δ) = O(1/δ).

15Throughout this section we will use repetitions to adjust the “weights” of various parts of our
codes. An alternative method would be to work with weighted Hamming distance (i.e., where different
coordinates of a codeword receive different weights), and indeed these two methods (weighting and
repeating) are essentially equivalent. For the sake of explicitness we work only with repetitions.

918 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the completeness of the PCPP, and so we focus on the soundness condition. We
consider an arbitrary w = (w1, . . . , wt, π) ∈ {0, 1}t·m+� that is δ-far from C, and
observe that w′ = (w1, . . . , wt) must be δ′-far from C′ = {C0(x)t : x ∈ {0, 1}k},
where δ′ ≥ (δn − �)/n = δ − (1/d). Let u ∈ {0, 1}m be a string that minimizes
Δ(w′, ut) =

∑t
i=1 Δ(wi, u); that is, ut is the “repetition sequence” closest to w′. We

consider two cases:
Case 1. Δ(w′, ut) ≥ 1/qrep. In this case, a single execution of the basic repetition

test (comparing two locations) rejects with probability:

Er,s∈[t] [Δ(wr, ws)] ≥ Er∈[t] [Δ(wr, u)]

= Δ(w′, ut)

≥ 1/qrep,

where the last inequality is due to the case hypothesis. It follows that qrep executions of
the repetition test would accept with probability at most (1−1/qrep)qrep < 1/e < 1/2.

Case 2. Δ(w′, ut) ≤ 1/qrep. In this case

ΔC0
(u) = ΔC′(ut) ≥ ΔC′(w′) − Δ(w′, ut) ≥ δ′ − 1

qrep
,

where the last inequality is due to the case hypothesis. Also, recalling that on the
average (i.e., average i) wi is 1/qrep-close to u, it holds that at least two-thirds of
the wi’s are 3/qrep-close to u. Recalling that u is (δ′ − (1/qrep))-far from C0 and
using δpcpp = δ′ − (4/qrep), it follows that at least two-thirds of the wi’s are δpcpp-far
from C0. Thus, by the soundness condition of the PCP of proximity, these wi will be
accepted with probability at most 1/4. Thus, in the current case, the tester accepts
with probability at most 1

3 + 2
3 · 1

4 = 1
2 . The soundness condition follows.

To prove Theorem 1.4, we instantiate the above construction as follows. We let
C0 : {0, 1}k → {0, 1}m come from a family of codes with a constant relative minimum

distance of ρ0 > 0 and nearly linear blocklength m = Õ(k), where encoding can be

done by circuits of nearly linear size s0 = s0(k) = Õ(k). We take the PCPP from
Corollary 3.4, setting t1 = O(1/ε) (for an arbitrarily small constant ε > 0) and t2 =

2 log log s0/ log log log s0 = ω(1). Thus, we obtain proof length � = s0 · exp(logε/2 s0)
and query complexity qpcpp = O(max{1/δpcpp, t1}) = O(1/δpcpp) for any proximity
parameter δpcpp ≥ 1/t2 = o(1). We actually invoke the verifier twice to reduce its
soundness error to 1/4. Setting d = log k = ω(1), we obtain a final blocklength
of n = d · � < k · exp(logε k) and relative distance ρ0 − o(1). We further specify
the test T as follows. Given a proximity parameter δ ≥ 6/t2 = o(1), the tester T
invokes the aforementioned PCPP with δpcpp = δ/6 and performs the repetition test
qrep = 6/δ times. Observing that δpcpp + (4/qrep) + (1/d) < δ, we conclude that the
resulting test (i.e., T = T (1k, δpcpp)) is a (δ, 1/2)-codeword tester of query complexity
O(1/δpcpp) + 2qrep = O(1/δ). Thus we conclude as follows.

Conclusion (restating Theorem 1.4). For every constant ε > 0, there exists
a family of LTCs Ck : {0, 1}k → {0, 1}n, where n = exp(logε k) · k, with query
complexity q(δ) = O(1/δ) (i.e., for every δ > 0, the tester rejects words that are δ-far
from C with probability 1/2 by querying at most q(δ) = O(1/δ) queries).

4.2. Relaxed LDCs. We first recall the definition of LDCs, as formally stated
by Katz and Trevisan [KT00]. A code C : {0, 1}k → {0, 1}n is locally decodable if
for some constant δ > 0 (which is independent of k) there exists an efficient oracle

ROBUST PCPS OF PROXIMITY 919

machine M that, on input, any index i ∈ [k] and access to any oracle w ∈ {0, 1}n
such that Δ(w,C(x)) ≤ δ, recovers the ith bit of x with probability at least 2/3 while
making a constant number of queries to w. That is, whenever relatively few locations
are corrupted, the decoder should be able to recover each information bit, with high
probability, based on a constant number of queries to the (corrupted) codeword.

Katz and Trevisan showed that if M makes q queries, then n = Ω(k1+1/(q−1))
must hold [KT00].16 This lower-bound is quite far from the best known upper-
bound, due to Beimal et al. [BIKR02], that asserts n = O(exp(kε(q))), where ε(q) =
O((log log q)/(q log q)) = o(1/q), which improves (already for q = 4) a previous upper-
bound where ε(q) = 1/(2q + 1). It has been conjectured that, for a constant number
of queries, n should be exponential in k; that is, for every constant q there exists a
constant ε > 0 such that n > exp(kε) must hold. In view of this state of affairs, it
is natural to relax the definition of LDCs, with the hope of obtaining more efficient
constructions (e.g., n = poly(k)).

We relax the definition of LDCs by requiring that, whenever few location are cor-
rupted, the decoder should be able to recover most (or almost all) of the individual
information bits (based on few queries), and for the remaining locations the decoder
outputs either the right message bit or a fail symbol (but not the wrong value). That
is, the decoder must still avoid errors (with high probability), but is allowed to say
“don’t know” on a few bit locations. The following definition is actually weaker, yet,
the (aforementioned) stronger formulation is obtained when considering ρ ≈ 1 (and
using amplification to reduce the error from 1/3 to any desired constant).17 Further-
more, it is desirable to recover all bits of the information whenever the codeword is
not corrupted.

Definition 4.5 (relaxed LDC). A code C : {0, 1}k → {0, 1}n is relaxed locally
decodable if for some constants δ, ρ > 0 there exists an efficient probabilistic oracle
machine M that makes a constant number of queries and satisfies the following three
conditions with respect to any w ∈ {0, 1}n and x ∈ {0, 1}k such that Δ(w,C(x)) ≤ δ:

1. If w = C(x) is a codeword, then the decoder correctly recovers every bit of x
with probability at least 2

3 . That is, for every x ∈ {0, 1}k and i ∈ [k], it holds that

Pr[MC(x)(i) = xi] ≥ 2
3 .

2. On input, any index i ∈ [k] and given access to the oracle w, with probability
at least 2

3 machine M outputs either the ith bit of x or a special failure symbol, denoted
⊥. That is, for every i, it holds that Pr[Mw(i) ∈ {xi,⊥}] ≥ 2

3 .
3. For at least a ρ fraction of the indices i ∈ [k], on input i and oracle access to

w ∈ {0, 1}n, with probability at least 2
3 , machine M outputs the ith bit of x. That is,

there exists a set Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw it holds that
Pr[Mw(i) = xi] ≥ 2

3 .
We call δ the proximity parameter.
One may strengthen the definition by requiring that ρ be greater than 1/2 or any

other favorite constant smaller than 1 (but one should probably refrain from setting
ρ > 1 − δ, for example). A different strengthening is for condition 1 to hold with

16Their lower-bound refers to nonadaptive decoders and yields a lower-bound of n =
Ω(k1+1/(2q−1)) for adaptive decoders. A lower-bound of n = Ω(k1+1/O(q)) for adaptive decoders
was presented in [DJK+02], and a lower-bound of n = Ω(k1+1/(q/2−1)) for nonadaptive decoders
was presented in [KdW04]. (We note that we use a nonadaptive (relaxed) decoder.)

17Here error reduction may be performed by estimating the probability that the machine outputs
each of the possible bits, and outputting the more frequent bit only if it has sufficient statistical
support (e.g., 50% support, which the wrong bit cannot have). Otherwise, one outputs the don’t

know symbol.

920 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

probability 1 (i.e., Pr[MC(x)(i) = xi] = 1). In fact, we achieve both the stronger
forms.

Remark 4.6. The above definition refers only to strings w that are δ-close to
the code. However, using Construction 4.3, any relaxed LDC can be augmented so
that strings that are δ-far from the code are rejected with high probability (i.e., for
every index i, the decoder outputs ⊥ with high probability). This can be achieved
with only a nearly linear increase in the length of the code (from length n to length
n · exp(logε n)).

Remark 4.7. We stress that condition 2 does not mean that, for every i, and
for every w that is δ-close to C(x), either Pr[Mw(i) = xi] ≥ 2

3 or Pr[Mw(i) = ⊥] ≥
2
3 holds. We refer to the latter condition as condition X and conjecture that the
seemingly minor difference between conditions 2 and X is actually substantial. This
conjecture is enforced by a recent work of Buhrman and de Wolf [BdW04] who showed
that codes that satisfy condition X are actually locally decodable in the standard,
nonrelaxed sense (i.e., according to the definition of [KT00]).

4.2.1. Definitional issues and transformations. Note that it is very easy
to come up with constructions that satisfy each one of the three conditions of Def-
inition 4.5. For example, condition 2 can be satisfied by (any code and) a trivial
decoder that always returns ⊥. On the other hand, the identity encoding (combined
with a trivial decoder) satisfies conditions 1 and 3.18 Our aim, however, is to obtain
a construction that satisfies all conditions and beats the performance of the known
LDCs.

It turns out that codes that satisfy conditions 1 and 2 can be converted into
“equally good” codes that satisfy all three conditions. Let us start with a key defini-
tion, which refers to the distribution of the decoder’s queries when asked to recover a
random bit position.

Definition 4.8 (average smoothness). Let M be a randomized nonadaptive
oracle machine having access to an oracle w ∈ {0, 1}n and getting input i ∈ [k].
Further suppose that M always makes q queries. Let M(i, j, r) denote the jth query
of M on input i and coin tosses r. We say that M satisfies the average smoothness
condition if, for every v ∈ [n],

1

2n
< Pri,j,r[M(i, j, r) = v] <

2

n
,

where the probability is taken uniformly over all possible choices of i ∈ [k], j ∈ [q],
and coin tosses r.

By having M randomly permute its queries, average smoothness implies that for
every j ∈ [q] and v ∈ [n], it holds that 1

2n < Pri,r[M(i, j, r) = v] < 2
n , where now the

probability is taken uniformly over all possible choices of i ∈ [k] and the coin tosses
r. We stress that average smoothness is different from the notion of smoothness as
defined by Katz and Trevisan [KT00]: They require that for every i ∈ [k] (and for
every j ∈ [q] and v ∈ [n]), it holds that 1

2n < Prr[M(i, j, r) = v] < 2
n . Indeed,

average smoothness is a weaker requirement, and (as we will shortly see) any code
and decoder pair can be easily modified to satisfy it, while preserving the decoding
properties (of Definition 4.5). (In contrast, Katz and Trevisan [KT00] present a

18In case one wishes the code to have a linear distance this can be achieved too, consider C(x) =
(x,C′(x)), where C′ is any code of linear length and linear distance, and a decoder that merely
retrieves the desired bit from the first part.

ROBUST PCPS OF PROXIMITY 921

modification that achieves smoothness while preserving strict local decodability, but
their transformation does not preserve Definition 4.5.)

Lemma 4.9. Let C : {0, 1}k → {0, 1}n be a code and M a machine that satisfies
conditions 1 and 2 of Definition 4.5 with respect to proximity parameter δ. Then,
for some n′ ∈ [3n, 4n], there exists a code C′ : {0, 1}k → {0, 1}n′

and a machine M ′

that satisfies average smoothness as well as conditions 1 and 2 of Definition 4.5 with
respect to proximity parameter δ′ = δ/20. Furthermore, the query complexity of M ′

is twice the one of M , and if M satisfies also condition 3, with respect to a constant
ρ, then so does M ′.

Jumping ahead, we mention that, for a decoder that satisfies average smooth-
ness, conditions 1 and 2 essentially imply condition 3. Hence our interest in average
smoothness and in Lemma 4.9.

Proof. As noted above, we may assume without loss of generality that each of M ’s
queries is distributed identically. Throughout the analysis, we refer to the distribution
of queries for a uniformly distributed index i ∈ [k]. Let q denote the query complexity
of M .

We first modify M such that for a random i ∈ [k], each query probes each possible
location with probability Ω(1/n). This is done by adding q dummy queries, each being
uniformly distributed. Thus, each location gets probed by each query with probability
at least 1/2n.

Next we modify the code and the decoder such that each location is probed with
almost uniform distribution. The idea is to repeat heavily probed locations for an
adequate number of times and have the decoder probe a random copy. Specifically, let
pv be the probability that location v is probed (i.e., pv � Pri∈[k],r[M(i, 1, r) = v] or
equivalently pv =

∑
i∈[k],j∈[2q] Prr[M(i, j, r) = v]/2kq). By the above modification,

we have pv ≥ 1/2n. Now, we repeat location v rv = �4npv� times. Note that
rv ≤ 4npv and rv > 4npv − 1 ≥ 2 − 1 (and so rv ≥ 2). We obtain a new code C′

of length n′ =
∑

v rv ≤ 4n. (Note that n′ > 3n.) The relative distance of C′ is at
least one-fourth that of C, and the rate changes in the same way. The new decoder,
M ′, when seeking to probe location v, will select and probe at random one of the rv
copies of that location. (Interestingly, there is no need to augment this decoder by a
testing of the consistency of the copies of an original location.)

Each new location is probed with probability p′v � pv · 1
rv

(by each of these queries).
Recalling that pv

rv
= pv

	4npv
 , it follows that p′v ≥ 1/4n and p′v ≤ pv

4npv−1 ≤ 1/2n (using

pv ≥ 1/2n). Recalling that n′ ∈ [3n, 4n], each p′v is in [(3/4) · (1/n′), 2 · (1/n′)], i.e.,
within a factor of 2 from uniform.

Clearly, M ′ satisfies condition 1 (of Definition 4.5), and we show that it (essen-
tially) satisfies condition 2 as well. Let w = (w1, . . . , wn) ∈ {0, 1}n′

be δ′-close to
C′(x), where |wv| = rv. Let Yv be a 0-1 random variable that represents the value
of a random bit in wv; that is, Pr[Yv = 1] equals the fraction of 1’s in wv. Then,
Pr[Yv �= C(x)v] > 0 implies that Δ(wv, cv) ≥ 1, where C′(x) = (c1, . . . , cn) and
|cv| = rv. For Y = Y1 · · ·Yn, it follows that E(Δ(Y,C(x))) ≤ Δ(w,C′(x)), and so
E(Δ(Y,C(x))) ≤ δ′n′ ≤ (δ/5) · n (since δ′ = δ/20 and n′ ≤ 4n). Thus, with proba-
bility at least 4/5, the random string Y is δ-close to C(x), in which case the M must
succeed with probability at least 2/3. Noting that M ′w(i) merely invokes MY (i), we
conclude that

Pr[M ′w(i) ∈ {xi,⊥}] = Pr[MY (i) ∈ {xi,⊥}]
≥ Pr[Δ(Y,C(x)) ≤ δn] · Pr[MY (i) ∈ {xi,⊥} |Δ(Y,C(x)) ≤ δn]

≥ 4

5
· 2

3
=

8

15
.

922 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

An analogous argument can be applied in the case M satisfies condition 3. In both
cases, additional error reduction is needed in order to satisfy the actual conditions,
which require success with probability at least 2/3. (For details see footnote 17.)

Lemma 4.10. Let C : {0, 1}k → {0, 1}n be a code and M be a machine that
satisfies conditions 1 and 2 of Definition 4.5 with respect to a constant δ. Suppose
that M satisfies the average smoothness condition and has query complexity q. Then,
invoking M for a constant number of times (and ruling as in footnote 17) yields a
decoder that satisfies all three conditions of Definition 4.5. Specifically, condition 3
holds with respect to a constant ρ = 1 − 18qδ. Furthermore, for any w and x, for a
1 − 18qΔ(w,C(x)) fraction of the i’s, it holds that Pr[Mw(i) = xi] ≥ 5/9.

Our usage of the average smoothness condition actually amounts to using the
hypothesis that, for a uniformly distributed i ∈ [k], each query hits any fixed position
with probability at most 2/n.

Proof. By condition 1, for any x ∈ {0, 1}k and every i ∈ [k], it holds that
Pr[MC(x)(i) = xi] ≥ 2/3. Considering any w that is δ-close to C(x), the probability
that on input a uniformly distributed i ∈ [k] machine M queries a location on which
w and C(x) disagree is at most q · (2/n) · δn = 2qδ. This is due to the fact that, for a
uniformly distributed i, the queries are almost uniformly distributed; specifically, no
position is queried with probability greater than 2/n (by a single query).

Let pwi denote the probability that on input i machine M queries a location on

which w and C(x) disagree. We have just established that (1/k) ·
∑k

i=1 p
w
i ≤ 2qδ.

For Iw � {i ∈ [k] : pwi ≤ 1/9}, it holds that |Iw| ≥ (1 − 18qδ) · k. Observe that
for any i ∈ Iw, it holds that Pr[Mw(i) = xi] ≥ (2/3) − (1/9) = 5/9. Note that, by
replacing δ with Δ(w,C(x))/n, the above argument actually establishes that for a
1 − 18q · Δ(w,C(x)) fraction of the i’s, it holds that Pr[Mw(i) = xi] ≥ 5/9.

Additional error reduction is needed in order to satisfy the actual definition (of
condition 3), which requires success with probability at least 2/3. The error reduction
should be done in a manner that preserves conditions 1 and 2 of Definition 4.5. For
details see footnote 17.

In view of the last sentence of Lemma 4.10, it makes sense to state a stronger
definition of relaxed LDCs.

Definition 4.11 (relaxed LDC, revisited). A code C : {0, 1}k → {0, 1}n is
relaxed locally decodable if for some constants δ > 0 there exists an efficient proba-
bilistic oracle machine M that makes a constant number of queries and satisfies the
following two conditions with respect to any w ∈ {0, 1}n and x ∈ {0, 1}k such that
Δ(w,C(x)) ≤ δn:

1. For every i ∈ [k] it holds that Pr[Mw(i) ∈ {xi,⊥}] ≥ 2
3 .

2. There exists a set Iw ⊆ [k] of density at least 1−O(Δ(w,C(x))/n) such that
for every i ∈ Iw it holds that Pr[Mw(i) = xi] ≥ 2

3 .
Note that the “everywhere good” decoding of codewords (i.e., condition 1 of

Definition 4.5) is implied by condition 2 of Definition 4.11. By combining Lemmas 4.9
and 4.10, we get the following theorem.

Theorem 4.12. Let C : {0, 1}k → {0, 1}n be a code and M be a machine that
makes a constant q number of queries and satisfies conditions 1 and 2 of Definition 4.5
with respect to a constant δ. Then, for some n′ ∈ [3n, 4n], there exists a code C′ :
{0, 1}k → {0, 1}n′

that is relaxed locally decodable with respect to proximity parameter
δ′ = δ/20. Furthermore, this code satisfies Definition 4.11.

4.2.2. Constructions. In view of Lemma 4.10, we focus on presenting codes
with decoders that satisfy conditions 1 and 2 of Definition 4.5 as well as the average

ROBUST PCPS OF PROXIMITY 923

smoothness property. (The latter property will save us the need to invoke Lemma 4.9.)
We will start with a code that has nearly quadratic length (i.e., n = k2+o(1)), which
serves as a good warm-up towards our final construction in which n = k1+ε for any
desired constant ε > 0.

Motivation to our construction. We seek a code of linear distance that has some
weak “local decodability” properties. One idea is to separate the codeword into two
parts, the first allowing for “local decodability” (e.g., using the identity map) and
the second providing the distance property (e.g., using any code of linear distance).
It is obvious that a third part that guarantees the consistency of the first two parts
should be added, and it is natural to try to use a PCPP in the latter part. The
natural decoder will check consistency (via the PCPP), and in case it detects no error
will decode according to the first part. Indeed, the first part may not be “robust to
corruption” but the second part is “robust to corruption” and consistency means that
both parts encode the same information. Considering this vague idea, we encounter
two problems. First, a PCPP is unlikely to detect a small change in the first part.
Thus, if we use the identity map in the first part, then the decoder may output the
wrong value of some (although few) bits. In other words, the “proximity relaxation”
in PCPPs makes sense for the second part of the codewords but not for the first
part. Our solution is to provide, for each bit (position) in the first part, a proof of the
consistency of this bit (value) with the entire second part. The second problem is that
the PCPPs (let alone all of them combined) are much longer than the first two parts,
whereas the corruption rate is measured in terms of the entire codeword. This problem
is easy to fix by repeating the first two parts sufficiently many times. However, it is
important not to “overdo” this repetition because if the third part is too short, then
corrupting it may prevent meaningful decoding (as per condition 3 of Definition 4.5)
even at low corruption rates (measured in terms of the entire codeword). In other
words, if the third part is too short, then we have no chance to satisfy the average
smoothness condition.

The actual construction. Let C0 : {0, 1}k → {0, 1}m be a good code of relative
distance δ0; then we encode x ∈ {0, 1}k by C(x) � (xt,C0(x)t

′
, π1(x), . . . , πk(x)),

where t = |π1(x), . . . , πk(x)|/|x| (resp., t′ = |π1(x), . . . , πk(x)|/|C0(x)|), and πi(x)
is a PCPP to be further discussed. We first note that the replicated versions of x
(resp., C0(x)) take a third of the total length of C(x). As for πi(x), it is a PCPP
that refers to an input of the form (z1, z2) ∈ {0, 1}m+m and asserts that there exists
an x = x1 · · ·xk (indeed the one that is a parameter to πi) such that z1 = xm

i and
z2 = C0(x).19 We use our PCPP from Theorem 3.3, while setting its parameters such
that the proximity parameter is small enough but the query complexity is a constant.
Specifically, let δpcpp > 0 be the proximity parameter of the PCPP, which will be
set to be sufficiently small, and let q = O(1/δpcpp) denote the number of queries the
verifier makes in order to support a soundness error of 1/6 (rather than the standard
1/2). A key observation regarding this verifier is that its queries to its input-oracle are
uniformly distributed. The queries to the proof oracle can be made almost uniform
by a modification analogous to the one used in the proof of Lemma 4.9.

Observe that the code C maps k-bit long strings to codewords of length n � 3·k ·�,
where � = s0(m)1+o(1) denotes the length of the PCPP proof and s0(m) denotes the
size of the circuit for encoding relative to C0. Using a good code C0 : {0, 1}k → {0, 1}m
(i.e., of constant relative distance δ0, linear length m = O(k), and s0(m) = Õ(m)),
we obtain n = k2+o(1). The relative distance of C is at least δ0/3.

19Indeed, z1 is merely the bit xi repeated |C0(x)| times in order to give equal weight to each part
in measuring proximity.

924 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

We now turn to the description of the decoder D. Recall that a valid codeword
has the form (xt,C0(x)t

′
, π1(x), . . . , πk(x)). The decoding of the ith information bit

(i.e., xi) will depend on a random (possibly wrong) copy of xi located in the first part
(which supposedly equals xt), a random (possibly corrupted) copy of C0(x) located in
the second part, and the relevant (i.e., ith) proof located in the third part (which is also
possibly corrupted). On input i ∈ [k] and oracle access to w = (w1, w2, w3) ∈ {0, 1}n,
where |w1| = |w2| = |w3|, the decoder invokes the PCPP verifier while providing
it with access to an input oracle (z1, z2) and a proof oracle π that are defined and
emulated as follows: The decoder selects uniformly r ∈ [t] and r′ ∈ [t′], and defines
each bit of z1 to equal the ((r − 1)k + i)th bit of w1, the string z2 is defined to equal
the r′th (m-bit long) block of w2, and π is defined to equal the ith block (�-bit long)
of w3. That is, when the verifier asks to access the jth bit of z1 (resp., z2, resp., π),
the decoder answers with the ((r − 1)k + i)th bit of w1 (resp., ((r′ − 1)m + j)th bit
of w2 (resp., the ((i − 1)� + j)th bit of w3). If the verifier rejects, then the decoder
outputs a special (failure) symbol. Otherwise, it outputs the ((r − 1)k + i)th bit of
w1.

The above construction can be performed for any sufficiently small constant prox-
imity parameter δ ∈ (0, δ0/18). All that this entails is setting the proximity parameter
of the PCPP to be sufficiently small but positive (e.g., δpcpp = (δ0 − 18δ)/2). We
actually need to augment the decoder such that it makes an equal number of queries
to each of the three (equal length) parts of the codeword, which is easy to do by
adding (a constant number of) dummy queries. Let us denote the resulting decoder
by D.

Proposition 4.13. The above code and decoder satisfy conditions 1 and 2 of
Definition 4.5 with respect to proximity parameter δ ∈ (0, δ0/18). Furthermore, this
decoder satisfies the average smoothness property.

Proof. Condition 1 (of Definition 4.5) is obvious from the construction (and the
completeness property of the PCPP). In fact, the perfect completeness of the PCPP
implies that bits of an uncorrupted codeword are recovered with probability 1 (rather
than with probability at least 2/3). The average smoothness property of the decoder
is obvious from the construction and the smoothness property of the PCPP. We thus
turn to establish condition 2 (of Definition 4.5).

Fixing any x ∈ {0, 1}k, we consider an arbitrary oracle w = (w1, w2, w3) that
is δ-close to C(x), where w1 (resp., w2) denotes the alleged replication of x (resp.,
C0(x)) and w3 = (u1, . . . , uk) denotes the part of the PCPPs. Note that w2 is 3δ-close
to C0(x)t

′
. To analyze the performance of Dw(i), we define random variables Z1 and

Z2 that correspond to the input oracles to which the PCP verifier is given access.
Specifically, Z1 = σm, where σ is set to equal the ((r − 1)k + i)th bit of w1, when r
is uniformly distributed in [t]. Likewise, Z2 is determined to be the r′th block of w2,
where r′ is uniformly distributed in [t′]. Finally, we set the proof oracle, π, to equal
the ith block of w3 (i.e., π = ui). We bound the probability that the decoder outputs
¬xi by considering three cases as follows.

Case 1. σ = xi. Recall that σ is the bit read by D from w1, and that by con-
struction D always outputs either σ or ⊥. Thus, in this case, Condition 2 is satisfied
(because, regardless of whether D outputs σ or ⊥, the output is always in {xi,⊥}).

Case 2. Z2 is 18δ-far from C0(x). Recall that w2 is 3δ-close to C0(x)t
′
, which

means that the expected relative distance of Z2 and C0(x) is at most 3δ. Thus, the
current case occurs with probability at most 1/6.

Case 3. Z2 is 18δ-close to C0(x) and σ �= xi. Then, on one hand, (Z1, Z2) is 1/2-

ROBUST PCPS OF PROXIMITY 925

far from (xm
i ,C0(x)), because Z2 = σt. On the other hand, Z2 is (δ0 − 18δ)-far from

any other codeword of C0, because Z2 is 18δ-close to C0(x) and the codewords of C0

are δ0-far from one another. Thus, (Z1, Z2) is (δ0 − 18δ)/2-far from any string of the
form (ymi ,C0(y)). Using δpcpp ≤ (δ0 − 18δ)/2, we conclude that the PCPP verifier
accepts (Z1, Z2) with probability at most 1/6. It follows that, in the current case, the
decoder outputs ¬xi with probability at most 1/6.

Thus, in total, the decoder outputs ¬xi with probability at most 1/6 + 1/6 =
1/3.

Improving the rate. The reason that our code has quadratic length codewords
(i.e., n = Ω(k2)) is that we augmented a standard code with proofs regarding the
relation of the standard codeword to the value of each information bit. Thus, we had
k proofs, each relating to a statement of length Ω(k). Now, consider the following
improvement: Partition the message into

√
k blocks, each of length

√
k. Encode the

original message, as well as each of the smaller blocks, via a good error-correcting
code. Let w be the encoding of the entire message, and let wi (i = 1, . . . ,

√
k) be

the encodings of the blocks. For every i = 1, . . . ,
√
k, append a PCPP for the claim

“wi is the encoding of the ith block of a message encoded by w.” In addition, for
each message bit x(i−1)

√
k+j residing in block i, append a PCPP of the statement

“x(i−1)
√
k+j is the jth bit of the

√
kbit long string encoded in wi.” The total encoding

length has decreased, because we have
√
k proofs of statements of length O(k) and k

proofs of statements of length O(
√
k), leading to a total length that is almost linear

in k3/2.

In general, for any constant �, we consider � successively finer partitions of the
message into blocks, where the (i+1)st partition is obtained by breaking each block of
the previous partition into k1/� equally sized pieces. Thus, the ith partition uses ki/�

blocks, each of length k1−(i/�). Encoding is done by providing, for each i = 0, 1, . . . , �,
encodings of each of the blocks in the ith partition by a good error-correcting code.
Thus, for i = 0 we provide the encoding of the entire messages, whereas for i = �
we provide an “encoding” of individual bits. Each of these � + 1 levels of encodings
will be assigned equal weight (via repetitions) in the new codeword. In addition, the
new codeword will contain PCPPs that assert the consistency of “directly related”
blocks (i.e., blocks of consecutive levels that contain one another). That is, for every
i = 1, . . . , � and j ∈ [ki/�], we place a proof that the encoding of the jth block in the
ith level is consistent with the encoding of the �j/k1/�th block in the (i− 1)st level.
The ith such sequence of proofs contains ki/� proofs, where each such proof refers to
statements of length O(k1−(i/�) + k1−((i−1)/�)) = O(k1−((i−1)/�)), which yields a total
proof length that is upper-bounded by ki/� · (k1−((i−1)/�))1+o(1) = k1+(1/�)+o(1). Each
of these sequences will be assigned equal weight in the new codeword, and the total
weight of all the encodings will equal the total weight of all proofs. The new decoder
will just check the consistency of the � relevant proofs and act accordingly. We stress
that, as before, the proofs in use are PCPPs. In the current context these proofs refer
to two input oracles of vastly different lengths, and so the bit positions of the shorter
input oracle are given higher “weight” (by repetition) such that both input oracles
are assigned the same weight.20

Construction 4.14. Let C0 be a code of minimal relative distance δ0, con-
stant rate, and nearly linear-sized encoding circuits. For simplicity, assume that a
single bit is encoded by repetitions; that is, C0(σ) = σO(1) for σ ∈ {0, 1}. Let

20Indeed, this was also done in the simpler code analyzed in Proposition 4.13.

926 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

V be a PCPP of membership in S0 = {C0(x) : x ∈ {0, 1}∗} having almost linear
proof length, query complexity O(1/δpcpp), and soundness error 1/9, for proximity
parameter δpcpp. Furthermore, V ’s queries to both its input oracle and proof ora-

cle are distributed almost uniformly.21 For a fixed parameter � ∈ N, let b � k1/�.
For x ∈ {0, 1}k, we consider � different partitions of x, such that the jth par-
tition denoted (xj,1, . . . , xj,bj), where xj,j′ = x(j′−1)·b�−j+1 · · ·xj′·b�−j . We define

Cj(x) � (C0(xj,1),C0(xj,2), . . . ,C0(xj,bj)), and πj(x) = (πj,1(x), . . . , πj,bj (x)), where
pj,j′(x) is a PCPP proof oracle that asserts the consistency of j′th block of Cj(x)
and the �j′/bth block of Cj−1(x). That is, pj,j′(x) refers to an input oracle of the
form (z1, z2), where |z1| = |z2| = O(b�−j+1), and asserts the existence of x such that
z1 = C0(xj,j′)

b and z2 = C0(xj−1,�j′/b�). We consider the code

C(x) � (C0(x)t0 ,C1(x)t0 , . . . ,C�(x)t0 , πt1
1 , . . . , πt�

�),

where the tj’s are selected such that each of the 2� + 1 parts of C(x) has the same
length. The decoder, denoted D, operates as follows on input i ∈ [k] and oracle access
to w = (w0, w1, . . . , w�, v1, . . . , v�), where |w0| = |wj | = |vj | for all j:

• D selects uniformly r0, r1, . . . , r� ∈ [t0], and (r′1, r
′
2, . . . , r

′
�) ∈ [t1]× [t2]×· · ·×

[t�].
• For j = 1, . . . , �, D invokes the PCPP verifier, providing it with access to an

input oracle (z1, z2) and a proof oracle π that are defined as follows:
– z1 = ub, where u is the ((rj − 1) · bj + �i/b�−j)th block of wj.
– z2 is the ((rj−1 − 1) · bj−1 + �i/b�−j+1)th block of wj−1.
– π is the ((r′j − 1) · bj + �i/b�−j)th block of vj.

The PCPP verifier is invoked with proximity parameter δpcpp = 13�δ > 0,
where δ ≤ δ0/81� is the proximity parameter sought for the decoder.

• If the PCPP verifier rejects, in any of the aforementioned � invocations, then
the decoder outputs a special (failure) symbol. Otherwise, the decoder outputs
a random value in the ((r� − 1) · k + i)th block of w� (which is supposedly a
repetition code of xi).

• D satisfies the average smoothness property when we issue some dummy
queries that are uniformly distributed in adequate parts of w that are queried
less by the above. (In other words, suppose that V makes q1 (resp., q2) queries
to the first (resp., second) part of its input oracle and q′ queries to its proof
oracle. Then, w0 is accessed q2 times, w� is accessed q1 times, each other wj

is accessed q1 + q2 times, and each vj is accessed q′ times. Thus, we may
add dummy queries to make each part accessed max(q1 + q2, q

′) times, which
means increasing the number of queries by a factor of at most (2�+1)/(�−1)
assuming � ≥ 2.)

Using an adequate PCPP, it holds that |C(x)| = � · (|x|1+(1/�))1+o(1) < |x|1+ε

for ε = 2/�. The query complexity of D is O(�) · O(1/δpcpp) = O(�2). The proof of
Proposition 4.13 can be extended, obtaining the following.

Proposition 4.15. The code and decoder of Construction 4.14 satisfy condi-
tions 1 and 2 of Definition 4.5 with respect to proximity parameter δ ≤ δ0/81�. Fur-
thermore, this decoder satisfies the average smoothness property.

Using Lemma 4.10, Theorem 1.5 follows.

21Recall that all these conditions hold for the PCPP of Theorem 3.3, where almost uniformly
distributed queries to the proof oracle are obtained by a modification analogous to the proof of
Lemma 4.9.

ROBUST PCPS OF PROXIMITY 927

Proof. Again, condition 1 as well as the average smoothness property are obvious
from the construction, and thus we focus on establishing condition 2. Thus, we fix an
arbitrary i ∈ [k] and follow the outline of the proof of Proposition 4.13.

We consider an oracle (w0, w1, . . . , w�, π1, . . . , π�) that is δ-close to an encoding
of x ∈ {0, 1}k, where each wj is assumed to consist of encodings of the kj/� (nonover-
lapping) k1−(j/�)-bit long blocks of x, and πi consists of the corresponding proofs of
consistency. It follows that each wj is (2�+ 1) · δ-close to Cj(x)t0 . Let Zj denote the
block of wj that was selected and accessed by D. Thus, the expected relative distance
of Z0 from C0(x) is at most (2�+1) · δ, but we do not know the same about the other
Zj ’s because their choice depends on i (or rather on �i/b�−j). Assuming, without
loss of generality, that δ0 < 1/3 (and � ≥ 1), we consider three cases as follows.

Case 1. Z� is 1/9-close to C0(xi). In this case, D outputs either ⊥ or a uniformly
selected bit in Z�, and so D outputs ¬xi with probability at most 1/9.

Using δ ≤ δ0/81� and δ0 < 1/3, it follows that 27�δ < 1/9. Thus, if Case 1 does
not hold, then Z� is 27�δ-far from C0(xi).

Case 2. Z0 is 27�δ-far from C0(x). This case may occur with probability at most
1/9, because E[Δ(Z0,C0(x))] ≤ 3�δ · |C0(x)|.

Note that if both Cases 1 and 2 do not hold, then Z0 is 27�δ-close to C0(x) but
Z� is 27�δ-far from C0(xi). Also note that x = x0,1 and xi = x�,i.

Case 3. For some j ∈ [�], it holds that Zj−1 is 27�δ-close to Cj−1(xj−1,�i/b�−j+1�)

but Zj is 27�δ-far from Cj(xj,�i/b�−j�). In this case, the pair (Zb
j , Zj−1) is 27�δ/2-far

from the consistent pair (Cj(xj,�i/b�−j�),Cj−1(xj−1,�i/b�−j+1�)) and is (δ0 − 27�δ)/2-
far from any other consistent pair. Using δpcpp = 13�δ < min(27�δ/2, (δ0 − 27�δ)/2),
which holds because δ ≤ δ0/81�, it follows that in the current case the PCPP verifier
accepts (and the decoder does not output ⊥) with probability at most 1/9.

Thus, in total, the decoder outputs ¬xi with probability at most 1/3.
Conclusion (restatement of Theorem 1.5). For every constant ε > 0, there

exists a code C : {0, 1}k → {0, 1}n, where n = k1+ε, that is relaxed locally decodable
under Definition 4.11. The query complexity of the corresponding decoder is O(1/ε2)
and the proximity parameter is ε/O(1).

Open problem. We wonder whether one can obtain a relaxed LDC that can be
decoded using q queries while having length n = o(k1+/(q−1)). The existence of such
a relaxed LDC will imply that our relaxation (i.e., relaxed LDC) is actually strict,
because such codes will beat the lower-bound currently known for LDC (cf. [KT00]).
Alternatively, it may be possible to improve the lower-bound for the (q-query) LDC

to n > k1+
√

c/q for any constant c and every sufficiently large constant q (where, as
usual, k is a parameter, whereas q is a fixed constant). In fact, some conjecture that
n must be superpolynomial in k for any constant q.

4.3. Linearity of the codes. We note that the codes presented above (estab-
lishing both Theorems 1.4 and 1.5) are actually F2-linear codes whenever the base
code C0 is also F2-linear. Proving this assertion reduces to proving that the PCPPs
used (in the aforementioned constructions) have proof oracles in which each bit is
a linear function of the bits to which the proof refers. The main part of the latter
task is undertaken in section 8.4, where we show the main construct (i.e., the PCPPs
stated in Theorems 3.1 and 3.2) when applied to a linear circuit yields an F2-linear
transformation of assignments (satisfying the circuit) to proof oracles (accepted by
the verifier). In addition, we also need to show that the construction underlying the
proof of Theorem 3.3 satisfies this property. This is done next, and consequently we
get the following.

928 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Proposition 4.16. If C is a linear circuit (see Definition 8.13), then there is a
linear transformation T mapping satisfying assignments w of C to proof oracles T (w)
such that the PCPP verifier of Theorem 3.3 will, on input C, accept oracle (w, T (w))
with probability 1.

Proof sketch. In section 8.4, we establish a corresponding result for the main
construct (i.e., Proposition 8.14 refers to the linearity of the construction used in the
proof of Theorem 3.1, which in turn underlies Theorems 3.1 and 3.2). Here we show
that linearity is preserved in composition as well as by the most inner (i.e., bottom)
verifier.

In each composition step, we append the proof oracle with new (inner) PCPPs
per each test of the (outer) verifier. Since all these tests are linear, we can apply
Proposition 8.14 and infer that the new appended information is a linear transforma-
tion of the input oracle and the outer proof oracle (where, by induction, the latter is
a linear transformation of the input).

At the bottom level of composition we apply a Hadamard-based PCP (Appendix
A). The encoding defined there is not F2-linear (rather it is quadratic), but this was
necessary for dealing with nonlinear gates. It can be verified that for a linear circuit,
one can perform all necessary tests of Appendix A with the Hadamard encoding of
the input. Thus, we conclude that this final phase of the encoding is also linear, and
this completes the proof of Proposition 4.16.

Part II. The main construct: A short, robust PCPP.

5. Overview of our main construct. Throughout this section, n denotes the
length of the explicit input given to the PCPP verifier, which in the case of CktVal is
defined as the size of the circuit (given as explicit input). As stated in the introduction,
our main results rely on the following highly efficient robust PCPP.

Theorem 3.1 (main construct restated). There exists a universal constant c such
that for all n,m ∈ Z

+, 0 < δ, γ < 1/2 satisfying n1/m ≥ mcm/(γδ)3 and δ ≤ γ/c,
CktVal has a robust PCPP (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ));

• decision complexity n1/m ·poly(logn, 1/δ), which also upper-bounds the query
complexity;22

• perfect completeness; and
• for proximity parameter δ, the verifier has robust-soundness error Ω(γ) with

robustness parameter (1 − γ)δ.
A (simplified) variant of Theorem 3.1 also yields the ALMSS-type robust PCPP

(of Theorem 3.2). Following is an overview of the proof of Theorem 3.1; the actual
proof is given in the subsequent three sections.

Theorem 3.1 is proved by modifying a construction that establishes Theorem 1.1.
We follow [HS00] and modify their construction. (An alternative approach would
be to start from [PS94], but that construction does not seem amenable to achieving
robust soundness.) The construction of [HS00] may be abstracted as follows: To
verify the satisfiability of a circuit of size n, a verifier expects oracles Ai : F

m →
F, i ∈ {1. . . . , t = poly logn}, where F is a field and m is a parameter such that
|Fm| ≈ mm · n. The verifier then needs to test that (1) each of the Ai’s is close to an
m-variate polynomial of low degree and (2) the polynomials satisfy some consistency

22In fact, we will upper-bound the query complexity by q = n1/m ·poly(logn, 1/δ) and show that

the verifier’s decision can be implemented by a circuit of size Õ(q), which can also be bounded by
n1/m · poly(logn, 1/δ) with a slightly larger unspecified polynomial.

ROBUST PCPS OF PROXIMITY 929

properties which verify that Ai is locally consistent with Ai−1.
23 (These consistency

checks include tests which depend on the input circuit and verify that Ai’s actually
encode a satisfying assignment to the circuit.)

We work within this framework—namely, our verifier will also try to access oracles
for the Ai’s and test low degreeness and consistency. Our key modification to this
construction is a randomness reduction in the low-degree test obtained by using the
small collection of (small-biased) lines of [BSVW03], while using only the “canonical”
representations of these lines (and avoiding any complication that was introduced
towards proof composition). In particular, unlike in [HS00, GS02, BSVW03], we
cannot afford to pack the polynomials A1, . . . ,At into a single polynomial (by using
an auxiliary variable that blows up the proof length by a factor of the size of the field
in use). Instead, we just maintain all these t polynomials separately and test them
separately to obtain Theorem 1.1. (In the traditional framework of parallelized PCPs,
this would give an unaffordable increase in the number of (non-Boolean) queries.
However, we will later ameliorate this loss by a bundling technique that will yield
robust soundness.)

The resulting PCP is converted into a PCPP by comparing the input oracle
(i.e., the supposed satisfying assignment to the circuit) to the proof oracle (which is
supposed to include an encoding of the said assignment). That is, we read a random
location of the input and the corresponding location of the proof oracle, and test
for equality. Actually, these locations of the proof oracle must be accessed via a
self-correction mechanism (rather than by merely probing at the desired points of
comparison), since they constitute only a small part of the proof oracle (and thus
corruptions there may not be detected). This technique was already suggested in
[BFLS91].

The most complex and subtle part of the proof of Theorem 3.1 is establishing
the robust-soundness property. We sketch how we do this below, first dealing with
the low-degree test and the consistency tests separately, and then showing how to
reconcile the two “different” fixes.

Low-degree tests of A1, . . . ,At. Selecting a random line � : F → F
m (from the

aforementioned sample space), we can check that (for each i) the restriction of Ai to
the line � (i.e., the function fi(j) � Ai(�(j))) is a low-degree (univariate) polynomial.
Each of these tests is individually robust; that is, if Ai is far from being a low-degree
polynomial, then with high probability the restriction of Ai to a random line � (in
the sample space) is far from being a low-degree polynomial. The problem is that
the conjunction of the t tests is not sufficiently robust; that is, if one of the Ai’s is
δ-far from being a low-degree polynomial, then it is guaranteed only that the sequence
of t restrictions (i.e., the sequence of the fi’s) is (δ/t)-far from being a sequence of
t low-degree (univariate) polynomials. Thus, robustness decreases by a factor of t,
which we cannot afford for nonconstant t.

Our solution is to observe that we can “bundle” the t functions together into
a function A : F

m → F
t such that if one of the Ai’s is far from being a low-degree

polynomial, then the restriction of A to a random line will be far from being a bundling
of t low-degree univariate polynomials. Specifically, for every x ∈ F

m, define A(x) �
(A1(x), . . . ,At(x)). To test that A is a bundling of low-degree polynomials, select a

23Strictly speaking, the consistency checks are a little more complicated, with the functions really
being indexed by two subscripts, and consistency tests being between Ai,j and Ai,j−1, as well as
between Ai,0 and Ai+1,0. However, these differences don’t alter our task significantly—we ignore
them in this section to simplify our notation.

930 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

random line � (as above), and check that f �(j) = A(�(j)) is a bundling of low-degree
univariate polynomials. Thus, we establish robustness at the bundle level; that is, if
one of the Ai’s is far from being low degree then, with high probability, one must
modify f � on a constant fraction of values in order to make the test accept. The point
is that this robustness refers to the Hamming distance over the alphabet F

t, rather
than alphabet F as before. We can afford this increase in alphabet size, as we later
encode the values of A using an error-correcting code in order to derive robustness at
the bit level.

We wish to highlight a key point that makes the above approach work: when we
look at the values of A restricted to a random line, we get the values of the individual
Ai’s restricted to a random line, which is exactly what a low-degree test of each Ai

needs. This fact is not very surprising, given that we are subjecting all Ai’s to the
same test. But what happens when we need to make two different types of tests? This
question is not academic and does come up in the consistency tests.

Consistency tests. To bundle the t consistency tests between Ai and Ai+1 we
need to look into the structure of these tests. We note that for every i, a random
test essentially refers to the values of Ai and Ai+1 on (random) ith axis-parallel
lines. That is, for every i, and a random x′ = (x1, . . . , xi−1) ∈ F

i−1 and x′′ =
(xi+1, . . . , xm) ∈ F

m−i, we need to check some relation between Ai(x
′, ·, x′′) and

Ai+1(x
′, ·, x′′).24 Clearly, querying A as above on the ith axis-parallel line, we can

obtain the relevant values from A(x′, ·, x′′), but this works only for one specific value
of i, and other values of i will require us to make other queries. The end result is
that we gain nothing from the bundling (i.e., from A) over using the individual Ai’s,
which yields a factor of t loss in the robustness.25 Fortunately, a different bundling
works in this case.

Consider A
′
such that A

′
(x) � (A1(x),A2(S(x)), . . . ,At(S

t−1(x))), for every x ∈
F
m, where S denotes a (right) cyclic-shift (i.e., S(x1, . . . , xm) = (xm, x1, . . . , xm−1)

and Si(x1, . . . , xm) = (xm−(i−1), . . . , xm, x1, x2, . . . , xm−i)). Now, if we ask for the

value of A
′

on the first and last axis-parallel lines (i.e., on (·, x2, . . . , xm) and
(x2, . . . , xm, ·) = S−1(·, x2, . . . , xm)), then we get all we need for all the m tests.

Specifically, for every i, the ith component in the bundled function A
′
(·, x2, . . . , xm) is

Ai(S
i−1(·, x2, . . . , xm)) = Ai(xm−i+2, . . . , xm, ·, x2, . . . , xm−i+1), whereas the

(i + 1)st component in A
′
(S−1(·, x2, . . . , xm)) is Ai+1(S

i(S−1(·, x2 . . . , xm))) =
Ai+1(xm−i+2, . . . , xm, ·, x2, . . . , xm−i+1). Thus, we need only query two bundles (rather
than t), and robustness drops only by a constant factor.

Reconciling the two bundlings. But what happens with the low-degree tests that
we need to do (which were “served” nicely by the original bundling A)? Note that

we cannot use both A and A
′
, because this will requires testing consistency between

them, which will introduce new problems as well as a cost in randomness that we

cannot afford. Fortunately, the new bundling (i.e., A
′
), designed to serve the axis-

parallel line comparisons, can also serve the low-degree tests. Indeed, the various
Ai’s will not be inspected on the same lines, but this does not matter, because the
property of being a low-degree polynomial is preserved when “shifted” (under S).

24Again, this is an oversimplification but suffices to convey the main idea of our solution.
25It turns out that for constant m (e.g., m = 2) this does not pose a problem. However, a

constant m would suffice only for proving a slightly weaker version of Theorem 1.2 (where o(log logn)
is replaced by log log n) and not for proving Theorem 1.3, which requires setting and m = logε n for
constant ε > 0.

ROBUST PCPS OF PROXIMITY 931

Tightening the gap between robustness and proximity. The above description suf-
fices for deriving a weaker version of Theorem 3.1 in which the robustness is only, say,
δ/3 rather than (1 − γ)δ for a parameter γ that may be set as low as 1/poly(logn).
Such a weaker result yields a weaker version of Theorem 3.3 in which the query com-
plexity is exponentially larger (e.g., for proof length exp(o(log log n)2) · n, we would

have obtained query complexity exp(o(log log n)) = logo(1) n rather than o(log log n));
see the comment at the end of section 3.1. To obtain the stronger bound on the ro-
bustness parameter, we take a closer look at the conjunction of the standard PCP test
and the proximity test. The PCP test can be shown to have constant robustness c > 0,
whereas the proximity test can be shown to have robustness δ′ � (1 − γ)δ. When
combining the two tests, we obtain robustness equal to min(αc, (1−α)δ′), where α is
the relative length of queries used in the PCP test (as a fraction of the total number
of queries). A natural choice, which yields the weaker result, is to weight the queries
(or replicate the smaller part) so that α = 1/2. (This yields robustness of approxi-
mately min(c, δ′)/2.) In order to obtain the stronger bound, we assign weights such
that α = γ, and obtain robustness min(γc, (1 − γ)δ′) > min(Ω(γ), (1 − 2γ)δ), which
simplifies to (1−2γ)δ for δ < γ/O(1). (The above description avoids the fact that the
PCP test has constant soundness error, but the soundness error can be decreased to
γ by using sequential repetitions while paying a minor cost in randomness and while
approximately preserving the robustness. We comment that the proximity test, as is,
has soundness error γ.)

6. A randomness-efficient PCP. In this section, we present a “vanilla” ver-
sion (Theorem 6.1) of Theorem 3.1. More specifically, we construct a regular PCP
for CktSAT (i.e., a robust PCPP without either the robustness or proximity prop-
erties). We favor this construction over earlier PCP constructions in the fact that it
is very efficient in randomness. As mentioned earlier, this theorem suffices to prove
Theorem 1.1.

Theorem 6.1. There exists a universal constant 0 < ε < 1 such that the following
holds. Suppose m ∈ Z

+ satisfies m ≤ log n/ log log n. Then there exists a PCP for
CktSAT (for circuits of size n) with the following parameters:

• randomness (1 − 1
m) log n + O(m logm) + O(log log n),

• query complexity q = O(m2n1/m log2 n) and decision complexity Õ(q),
• perfect completeness,
• and soundness error 1 − ε.

The construction of the PCP for CktSAT proceeds in three steps. First, we
transform the input circuit ϕ into a well-structured circuit ϕ′ along the lines of Pol-
ishchuk and Spielman [PS94, Spi95] (section 6.1). ϕ′ is only slightly larger than ϕ,
but has an algebraic structure that will be crucial to our verification process. Any
legal assignment to the gates of ϕ (i.e., one that preserves the functionality of the
gates of ϕ) can be transformed into a legal assignment to ϕ′. The important property
of ϕ′ is the following: If we encode an assignment to the gates of ϕ′ using a specific
sequence of Reed–Muller codewords (i.e., low-degree polynomials), then the legality
of the assignment can be locally verified (by reading a small random portion of the
encoding). The encoding via low-degree polynomials (and resulting local tests) is as
in Harsha and Sudan [HS00] and is described in section 6.2. Thus, our PCP verifier
will essentially test (i) that the encoding of the purported satisfying assignment to
ϕ′ is formed of low-degree polynomials (this part will be done using the randomness-
efficient low-degree test of Ben Sasson et al. [BSVW03]); and (ii) that the assignment
is legal. Section 6.3 describes the construction of the PCP verifier and section 6.4

932 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

analyzes its properties. Most of the above results are implicit in the literature, but
carefully abstracting the results and putting them together helps us in significantly
reducing the randomness of the PCP verifier.

6.1. Well-structured Boolean circuits. The main problem with designing a
randomness-efficient PCP verifier directly for CktSAT is that we need to encode the
assignment to all gates of the input circuit using certain Reed–Muller based codes, in
such a way that will allow us to locally verify the legality of all gates of the circuit,
using only the encoded assignment. In order to do this, we require the circuit to have a
well-behaved structure (amenable to our specific encoding and verification demands).
Of course, an arbitrary circuit does not necessarily have this structure, but we are
lucky to have the technology to overcome this. More to the point, we can restructure
any circuit into a well-behaved circuit that will suit our needs. The natural encoding
(used, e.g., in the Hadamard-based PCP, Appendix A) incurs a quadratic blow-up in
length. To get over this problem, Polishchuk and Spielman [PS94, Spi95] introduced a
different, more efficient restructuring process that embeds the input circuit into well-
structured graphs known as de Bruijn graphs. Indeed, the blow-up in circuit size using
these circuits is merely by a logarithmic multiplicative factor, and their usefulness for
the local verification of legal assignments will become evident later (in section 6.2). As
in Polishchuk and Spielman [PS94, Spi95], we embed the input circuit into wrapped
de Bruijn graphs (see Definition 6.2). We use a slightly different definition of de
Bruijn graphs, more convenient for our purposes, than that used in [PS94, Spi95].
However, it can be easily checked that these two definitions yield isomorphic graphs.
The main advantage with the de Bruijn graphs is that the neighborhood relations
can be expressed very easily using simple bit-operations like cyclic-shifts and bit-flips.
In [PS94, Spi95] the vertex set of these graphs is identified with a vector space. We
instead work with a strict embedding of these graphs in a vector space, where the
vertices are a strict subset of the vector space. The benefit of both approaches is that
the neighborhood functions can be expressed as an affine functions (see section 6.2
for more details). The reason for our approach will be explained at the end of section
6.2.

Definition 6.2. The wrapped de Bruijn graph GN,l is a directed graph with l
layers, each with 2N nodes which are represented by N -bit strings. The layers are
numbered 0, 1, . . . , l − 1. The node represented by v = (b0, . . . , bi∗ , . . . , bN−1) in layer
i has edges pointing to the nodes represented by Γi,0(v) = (b0, . . . , bi∗ , . . . , bN−1) and
Γi,1(v) = (b0, . . . , bi∗⊕1, . . . , bN−1) in layer (i + 1) modulo l, where i∗ is i modulo N
and a⊕b denotes the sum of a and b modulo 2. See Figure 1 for an example.

We now describe how to embed a circuit into a wrapped de Bruijn graph (see
Figure 2 for a simple example). Given a circuit C with n gates (including both
input and output gates), we associate with it a wrapped de Bruijn graph GN,l, where
N = log n and l = 5N = 5 log n. We then associate the nodes in layer 0 with the
gates of the circuit. Now, we wish to map each wire in the circuit to a path in GN,l

between the corresponding nodes of layer 0. Standard packet-routing techniques (see
[Lei92]) can be used to show that if the number of layers l is at least 5N , then such
a routing can be done with edge-disjoint paths. (Recall that we work with circuits
whose fan-in and fan-out are 2.)

Thus, we can find “switches” for each of the nodes in layers 1, . . . , l − 1 of the
graph such that the output of each gate (i.e., node in layer 0) is routed to the input of
the gates that require it. Each node has two inputs and two outputs, and thus there is
a constant number of switches routing incoming edges to outgoing ones (see Figure 3).

ROBUST PCPS OF PROXIMITY 933

Labels

001

010

011

100

101

110

111

Layers

000
2 00 1

Fig. 1. The wrapped de Bruijn graph G3,3. Notice the first and last layers are the same.

For nodes in layer 0, instead of specifying a switch, we specify the functionality of
the Boolean gate associated to that node in the circuit (e.g., AND, OR, PARITY,
NOT, INPUT, OUTPUT). Actually unary gates (such as NOT and OUTPUT) have
two forms (NOT, NOT′, OUTPUT, OUTPUT′) in order to specify which of the two
incoming edges in the de Bruijn graph to use.

This specifies the embedding of the input circuit into a well-structured circuit
(based on a de Bruijn graph). More precisely, let C = {type of switching actions} ∪
{type of Boolean gates} be the set of allowable gates of the well-structured circuit
(see Figure 3). Given a circuit on n gates, we can construct, in polynomial time, a
wrapped de Bruijn graph GN,l (where N = log n and l = 5 logN) and l functions
T0, T1, . . . , Tl−1 : {0, 1}N → C, where each function Ti is a specification of the gates
of layer i (i.e., a specification of the switching action or Boolean functionality).

We now demonstrate how to translate a proof that a circuit is satisfiable into an
assignment that satisfies the embedded circuit. A proof that a circuit is satisfiable
consists of an assignment of 0’s and 1’s to the inputs and the gates of the circuit such
that each gate’s output is consistent with its inputs and the output gate evaluates to
1. The corresponding assignment to the embedded circuit consists of an assignment of
0’s and 1’s to the edges entering and leaving the nodes of the wrapped de Bruijn graph
that is consistent with the functionality of the gates (in layer 0) and the switching
actions of the nodes (in the other layers). Since we are assigning values to nodes of the
embedded graph (and not their edges), the assignment actually associates a 4-tuple

934 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

x x x x

x

x

x

x x

x

x

x

1

1 1

2 3 4
2 2

3 3

4 4

Fig. 2. Embedding of a circuit into G3,3. In this example all paths between nodes at the 0 layer
are vertex disjoint. For general circuits we merely need edge disjoint paths.

In1 In1 In1

In2 In2 In2

Out1 Out1 Out1

Out2 Out2 Out2

Gate Gate Gate31 2

Fig. 3. Some gates of a well-structured circuit. Gates 1–2 are switching gates, and gate 3 sits
in layer 0 and computes the parity (xor) function.

of 0’s and 1’s to each of the nodes in the graph indicating the value carried by the
four edges incident at that node (two incoming and two outgoing). More formally,
the embedded assignment is given by a set of l functions A0, A1, . . . , Al−1, where each
function Ai : {0, 1}N → {0, 1}4 specifies the values carried by the four edges incident
at that vertex.

We now list the constraints on the embedded circuit that assure us that the
only legal assignments are the ones that correspond to legal satisfying assignments of
the original circuit, i.e., assignments that correctly propagate along the edges of the
circuit, correctly compute the value of every gate, and produce a 1 at the output gate.

Definition 6.3. The assignment constraints for each node of the well-structured
circuit require that

• the two outgoing values at the node are propagated correctly to the incoming
values of its neighbors at the next level;

• for nodes at layers �= 0, the two outgoing values have the unique values dic-
tated by the incoming values and the switching action;

• for non-OUTPUT nodes in layer 0, both outgoing values equal the unique
value dictated by the gate functionality and the incoming values (the INPUT
functionality merely requires that the two outgoing values are equal to each
other);

• for nodes in layer 0 with an OUTPUT functionality, the appropriate incoming

ROBUST PCPS OF PROXIMITY 935

Legal0

0
1

01

1

Illegal
0

1

1

0
1

1

Fig. 4. Example of legal and illegal assignments. The two vertices on the left are the inputs
(at layer i − 1) to a gate at layer i. Recall that assignments evaluate each incoming and outgoing
edge of a gate.

value equals 1.
Let ψ : C × ({0, 1}4)3 → {0, 1} be the Boolean function such that ψ(t, a, a0, a1) = 0 iff
a node whose T -gate is t, A-assignment is a, and whose neighbors in the next layer
have A-assignments a0 and a1, respectively, satisfies the aforementioned assignment
constraints. See Figure 4 for an example of legal and illegal assignments.

Observe that the definition of ψ is independent of N , the assignments Ai, and
gates Ti. By definition, the assignment A = (A0, . . . , Al−1) is legal for an embedded
circuit defined by T0, . . . , Tl−1 iff for every layer i and every node v in layer i,

ψ

(
Ti(v), Ai(v), Ai+1

(
Γi,0(v)

)
, Ai+1

(
Γi,1(v)

))
= 0.

We are now ready to formally define the well-structured circuit satisfiability prob-
lem (Structured-CktSAT).

Definition 6.4. The problem Structured-CktSAT has as its instances 〈GN,l,
{T0, T1, . . . , Tl−1}〉, where GN,l is a wrapped de Bruijn graph with l layers and Ti :
{0, 1}N → C is a specification of the node types of layer i of the graph (Ti’s are
specified by a table of values).

〈GN,l, {T0, . . . , Tl−1}〉 ∈ Structured-CktSAT if there exists a set of assign-
ments A0, A1, . . . , Al−1, where Ai : {0, 1}N → {0, 1}4 is an assignment to the nodes
of layer i of GN such that for all layers i and all nodes v in layer i,

ψ

(
Ti(v), Ai(v), Ai+1

(
Γi,0(v)

)
, Ai+1

(
Γi,1(v)

))
= 0.

The above discussion also demonstrates the existence of a reduction from CktSAT

to Structured-CktSAT, which does not blow up the length of the target instance
by more than a logarithmic multiplicative factor.

Proposition 6.5. There exists a polynomial-time reduction R from CktSAT

to Structured-CktSAT such that for any circuit C, it holds that C ∈ CktSAT iff
R(C) ∈ Structured-CktSAT. Moreover, if C is a circuit of size n, then R(C) =
〈GN,l, {T0, . . . , Tl−1}〉, where N = �log n and l = 5N .

Remark 6.6. The above reduction, though known to take polynomial time (via
routing techniques), is not known to be of almost linear time.

Remark 6.7. We observe that if C is a satisfiable circuit, then any set of assign-
ments A0, . . . , Al proving that the reduced instance R(C) = 〈GN,l, {T0, . . . , Tl−1}〉 is
a YES instance of Structured-CktSAT contains within it a satisfying assignment

936 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

to the circuit C. Specifically, let I be the set of nodes in layer 0 that have gate
functionality INPUT associated with them. Then the assignment A0 restricted to
the set of nodes I (i.e., A0|I) contains a satisfying assignment. More precisely, the
satisfying assignment is obtained by concatenating the third bit (i.e., first outgoing
bit) of A0|i ∈ {0, 1}4 for all i ∈ I. Conversely, every satisfying assignment w to C can
be extended to A0, . . . , Al−1 such that A0|I contains w. This is done by computing
the values of all gates in the computation of C(w), setting the outgoing bits of A0 ac-
cording to these values, and routing them throughout GN,l according to the switching
actions to obtain A1, . . . , Al−1 and the incoming bits of A0. This observation will be
vital while constructing PCPPs (see section 7).

Remark 6.8. Suppose the input circuit C is a linear circuit, in the sense that
all gates are INPUT, OUTPUT, or PARITY gates, and the OUTPUT gates test
for 0 rather 1 (see Definition 8.13). Then it can be verified that the transformation
mapping satisfying assignments w of C to legal assignments A0, . . . , Al−1 of R(C) is
F2-linear. The reason is that each gate in the computation of C(w) is an F2-linear
function of w. These remarks will be used in the coding applications, to obtain linear
codes (see section 8.4 for more information).

6.2. Arithmetization. In this section, we construct an algebraic version of
Structured-CktSAT by arithmetizing it along the lines of Harsha and Sudan [HS00].
The broad overview of the arithmetization is as follows: We embed the nodes in each
layer of the wrapped de Bruijn graph GN,l into a vector space and extend the gate
specifications and assignments to low-degree polynomials over this space. Finally,
we express the assignment constraints (see Definition 6.3) as a pair of polynomial
identities satisfied by these polynomials.

First, we have some notation. Let m be a parameter. Set h such that h = N/m,
where 2N is the number of nodes in each layer of the de Bruijn graph. Choose a
finite extension field F of F2 of size roughly cFm

22h = cFm
22N/m, where cF is a

suitably large constant to be specified later. Specifically, take F = F
�
2 = F2� for

� = h+2 logm+log cF . Let {e0, e1, . . . , e�−1} be a basis of F over F2. Set H to be a
subspace of F

�
2 (and hence a subset of F) spanned by {e0, . . . , eh−1}. Note that Hm is

a subset of the space F
m. Furthermore, |Hm| = 2N . Hence, we can embed each layer

of the graph GN,l in F
m by identifying the node v = (b0, . . . , bN−1) ∈ {0, 1}N with the

element (b0e0+· · ·+bh−1eh−1, bhe0+· · ·+b2h−1eh−1, . . . , b(m−1)he0+· · ·+bmh−1eh−1)
of Hm. Henceforth, we use both representations (N -bit string and element of Hm)
interchangeably. The representation will be clear from the context.

Any assignment S : Hm → F can be interpolated to obtain a polynomial S̃ :
F
m → F of degree at most |H| in each variable (and hence a total degree of at most

m|H|) such that S̃|Hm = S (i.e., the restriction of S̃ to Hm coincides with the function
S). Conversely, any polynomial S̃ : F

m → F can be interpreted as an assignment from
Hm to F by considering the function restricted to the subdomain Hm.

Recall that C and {0, 1}4 are the set of allowable gates and assignments given by
the gate functions Ti and assignments Ai in the Structured-CktSAT problem. We
identify C with a fixed subset of F and identify {0, 1}4 with the set of elements spanned
by {e0, e1, e2, e3} over F2. With this identification, we can view the assignments Ai

and gates Ti as functions Ai : Hm → F and Ti : Hm → F, respectively. Furthermore,
we can interpolate these functions, as mentioned above, to obtain polynomials Ãi :
F
m → F and T̃i : F

m → F of degree at most m|H| over F.

We now express the neighborhood functions of the graph in terms of affine func-
tions over F

m. This is where the nice structure of the wrapped de Bruijn graph will be

ROBUST PCPS OF PROXIMITY 937

useful. For any positive integer i, define affine transformations Γ̃i,0, Γ̃i,1 : F
m → F

m

as follows: Γ̃i,0 is the identity function. For Γ̃i,1, first let t = �i/h� mod m and

u = i mod h. Then Γ̃i,1(z0, . . . , zm−1) = (z0, . . . , zt−1, zt + eu, zt+1, . . . , zm−1).
26 It

can be checked from the above definition that for any layer i and node x in layer i
(which we view as a point in Hm), we have Γ̃i,j(x) = Γi,j(x) for j = 0, 1. In other

words, Γ̃ is an extension of the neighborhood relations of the graph GN,l over F
m.

Finally, we now express the assignment constraints (see Definition 6.3) as poly-
nomial identities. The first of these identities checks that the assignments given by
the assignment polynomial Ãi are actually elements of {0, 1}4 for points in Hm. For
this purpose, let ψ0 : F → F be the univariate polynomial of degree 24 given by

ψ0(z) =
∏

α∈{0,1}4

(z − α).(6.1)

This polynomial satisfies ψ0(z) = 0 iff z ∈ {0, 1}4 (recall we identified {0, 1}4 with a
subset of F spanned by e0, . . . , e3). We check that ψ0(Ãi(x)) = 0 for all x ∈ Hm and all
layers i. We then arithmetize the rule ψ (from Definition 6.3) to obtain a polynomial
ψ1 : F

4 → F. In other words, ψ1 : F
4 → F is a polynomial such that ψ1(t, a, a0, a1) =

ψ(t, a, a0, a1) for all (t, a, a0, a1) ∈ C × ({0, 1}4)3. The degree of ψ1 can be made con-
stant, because |C| and |{0, 1}4| are constant.27 The two polynomial identities we would
like to check are ψ0(Ãi(x)) = 0 and ψ1(T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)), Ãi+1(Γ̃i,1(x))) = 0
for all x ∈ Hm. For notational convenience, we express these two conditions to-
gether as a pair of polynomials ψ′ = (ψ0, ψ1) : F

4 → F
2 such that ψ′(x1, x2, x2, x4) =

(ψ0(x2), ψ1(x1, x2, x3, x4)).
28 Let κ be the maximum of the degree of these two poly-

nomials. In order to make these polynomial identities sufficiently redundant, we set
cF to be a sufficiently large constant (say 100) such that κm22h/|F| is low.

We have thus reduced Structured-CktSAT to an algebraic consistency prob-
lem, which we shall call the AS-CktSAT(Algebraic-Structured-CktSAT) prob-
lem.29

Definition 6.9. The promise problem AS-CktSAT = (AS-CktSAT
YES, AS-

CktSAT
NO) has as its instances 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉, where F is a finite

extension field of F2 (i.e., F = F2� for some �), H an F2-linear subspace of F, and T̃i :
F
m → F for i = 0, . . . , l− 1 a sequence of polynomials of degree d, where |H| = n1/m,

26An alternate description of Γ̃i,1 is as follows: Since F = F
�
2 , we can view F

m as
an m�-dimensional space over F2. Hence, any vector (z0, . . . , zm−1) can be written as
(b0,0, . . . , b0,�−1, b1,0, . . . , b1,�−1, . . . , bm−1,0, . . . , bm−1,�−1). Furthermore, we note that for any

vector (z0, . . . , zm−1) in Hm, br,s = 0 for all s ≥ h and all r. It can now be checked that Γ̃i,1 is the
affine transformation that flips the bit bt,u, where t = �i/h� mod m and u = i mod h.

27Notice that we do not specify ψ1 uniquely at this stage. Any choice of a constant-degree
polynomial will work in this section, but to enforce linearity, we will use a somewhat nonstandard
choice in section 8.4. Specifically, we argue that if C is a linear circuit, then ψ1 can be picked to
be an F2-linear transformation, and we point out that ψ0 is an F2-linear transformation. For more
details see section 8.4.

28An alternative approach (which we do not follow) to combine ψ0 and ψ1 into a single polynomial
ψ was suggested to us by Sergey Yekhanin and Jaikumar Radhakrishnan. Let p(x) be a monic,
quadratic, irreducible polynomial over the field F. Let Q(x, y) = y2 · p(x, y). Now Q satisfies the
property that Q(a, b) = 0 iff a = b = 0. (Proof: Q is homogeneous and so Q(0, 0) = 0; if b = 0,
Q(a, 0) = a2 (since p is monic) and so is zero only if a = 0. If b 	= 0, then Q(a, b) = 0 only if
p(a/b) = 0, but p has no roots in F.) Now define ψ(x) = Q(ψ0(x), ψ1(x)). For instance, over fields
of odd characteristic, ψ(x) = ψ2

0(x) − α · ψ2
1(x), where α is a nonsquare in F will work. ψ can be

thought of as an “algebraic AND” of ψ0 and ψ1, since ψ′ satisfies the property that ψ(x) = 0 iff
ψ0(x) = 0 and ψ1(x) = 0.

29
AS-CktSAT is actually a promise problem.

938 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

d = m · |H|, and |F| = cF ·md. The field F is specified by an irreducible polynomial
p(x) of degree f over F2, H is taken to be spanned by the first h = log |H| canonical
basis elements, and each of the polynomials T̃i is specified by a list of coefficients as
follows:

• 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CktSAT
YES if there exists a sequence

of degree d polynomials Ãi : F
m → F, i = 0, . . . , l − 1, such that for all

i = 0, . . . , l − 1 and all x ∈ Hm,

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
= (0, 0).

• 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 ∈ AS-CktSAT
NO if for all functions Ãi : F

m →
F, i = 0, . . . , l − 1, there exists an i ∈ {0, . . . , l − 1} and x ∈ Hm such that

ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
�= (0, 0),

where the Γ̃i,j’s and ψ′ are as defined earlier. (Recall that the Γ̃’s are linear functions
while ψ′ represents a pair of polynomials of degree at most κ.)

From the above discussion we have the following reduction from Structured-

CktSAT to AS-CktSAT.
Proposition 6.10. There exists a polynomial-time computable function R map-

ping any instance I = 〈GN,l, {T0, T1, . . . , Tl−1}〉 of Structured-CktSAT and pa-
rameter m ≤ log n/ log log n (where n = |I|) to an instance R(I, 1m) of AS-CktSAT

such that

I ∈ Structured-CktSAT =⇒ R(I, 1m) ∈ AS-CktSAT
YES,

I /∈ Structured-CktSAT =⇒ R(I, 1m) ∈ AS-CktSAT
NO.

Moreover, if R(I, 1m) = 〈1n′
, 1m

′
,F, H, {T̃0, . . . , T̃l′−1}〉, then n′ = 2N (the number

of nodes in each layer of the de Bruijn graph GN,l), m
′ = m, and l′ = l (the number

of layers in the de Bruijn graph).
Combining Propositions 6.5 and 6.10, we have the following.
Proposition 6.11. There exists a polynomial-time computable function R map-

ping any circuit C and parameter m ≤ log n/ log log n (where n = |C|) to an instance
R(C, 1m) of AS-CktSAT such that C ∈ CktSAT ⇐⇒ R(C, 1m) ∈ AS-CktSAT.

Moreover, if C is a circuit of size n, then R(C, 1m) = 〈1n′
, 1m

′
,F, H, {T̃0, . . . , T̃l′−1}〉

where n′ = Θ(n), m′ = m, and l′ ≤ 5 log n′. Thus, |R(C, 1m)| = O((cFm
2)m log n) ·

|C|.
Remark 6.12. Following Remark 6.7, if C is a satisfiable circuit, then any set of

polynomials Ã0, . . . , Ãl−1 proving that the reduced instance R(C, 1m) = 〈1n, 1m,F, H,
{T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CktSAT contains within it a satisfying as-
signment to the circuit C. Specifically, the set I (of layer 0 nodes with INPUT
functionality in GN,l) from Remark 6.7 can now be viewed as a subset I ⊆ Hm. Then

the polynomial Ã0 : F
m → F restricted to the set I (i.e., Ã0|I) contains a satisfying

assignment (again as a concatenation of third-bits). Conversely, every satisfying as-
signment w to C can be extended to a set of polynomials Ã0, . . . , Ãl−1 such that Ã0|I
contains w. This is done by taking low-degree extensions of the functions A0, . . . , Al−1

from Remark 6.7.
Remark 6.13. Following Remark 6.8, if C is a linear circuit, then the mapping

of satisfying assignments w of C to polynomials Ã0, . . . , Ãl−1 satisfying R(C) is F2-
linear. This is due to Remark 6.8, the association of {0, 1}4 with the linear space

ROBUST PCPS OF PROXIMITY 939

spanned by {e0, e1, e2, e3} in F, and from the fact that the interpolation from Ai to
Ãi is F-linear and hence F2-linear. For more information see section 8.4.

Comment. Recall that the arithmetization was obtained by considering low-
degree extensions over F

m of functions from Hm to H. If H were a subfield of the field
F, this step would have caused a quadratic blow-up, and we avoid this problem by not
insisting that H be a field. In [PS94, Spi95], H is a field and F = H2 is an extension
of it, but the PCP system refers only to an O(|H|)-sized subset of F. We cannot take
this approach because we will be using a total low-degree test, which needs to refer
to the entire vector space F

m. In contrast, in [PS94, Spi95] an individual low-degree
test is used, which can work with a subset of F

m.

6.3. The PCP verifier. We design a PCP verifier for CktSAT via the reduc-
tion to AS-CktSAT based on the randomness-efficient low-degree tests of Ben-Sasson
et al. [BSVW03]. Given a circuit C, the verifier reduces it to an instance of the prob-
lem AS-CktSAT (Proposition 6.11). The proof consists of a sequence of oracles
Ãi : F

m → F for i = 0, . . . , l − 1 and an auxiliary sequence of oracles Pi,j : F
m → F

2

for i = 0, . . . , l − 1 and j = 0, . . . ,m. For each i and j, we view the auxiliary ora-

cle Pi,j : F
m → F

2 as a pair of functions P
(0)
i,j : F

m → F and P
(1)
i,j : F

m → F (i.e.,

Pi,j(x) = (P
(0)
i,j (x), P

(1)
i,j (x))). This auxiliary sequence of oracles helps the verifier to

check that the functions Ãi satisfy condition ψ′ (see Definition 6.9).
The verifier expects the first subsequence of auxiliary oracles Pi,0(·) for i =

0, . . . , l − 1, to satisfy the following relation:

Pi,0(x) = ψ′
(
T̃i(x), Ãi(x), Ãi+1

(
Γ̃i,0(x)

)
, Ãi+1

(
Γ̃i,1(x)

))
∀x ∈ F

m.(6.2)

Furthermore, it expects Pi,0(x) = 0 for every x ∈ Hm. Indeed, by Definition 6.9, we
have the following.

Lemma 6.14.

1. If 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 is a YES instance of AS-CktSAT, satisfied
by polynomials Ã0, . . . , Ãl−1, and P0,0, . . . , Pl−1,0 are defined according to (6.2), then
Pi,0(x) = (0, 0) for all x ∈ Hm.

2. If 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 is a NO instance of AS-CktSAT, then for
any sequences of functions Ã0, . . . , Ãl−1, P0,0, . . . , Pl−1,0, either (6.2) fails to hold for
some i or Pi,0(x) �= (0, 0) for some i and some x ∈ Hm.

Recalling that the degree of the constraint ψ′ (see Definition 6.9) is at most κ
and that the Ãi’s are of degree at most d = m · |H|, we observe that the Pi,0’s can be
taken to be of degree at most κd in item 1 above.

As mentioned above, the verifier now needs to check that the functions Pi,0 vanish
on the set Hm. For this we use a “zero-propagation test” based on the sum-check
protocol of Lund et al. [LFKN92]. Specifically, the verifier expects the remaining set

of auxiliary oracles Pi,j = (P
(0)
i,j , P

(1)
i,j) (i = 0, . . . , l − 1 and j = 1, . . . ,m) to satisfy

the following relations: Let H = {h0, . . . , h|H|−1} be some fixed enumeration of the
elements in H. For all b ∈ {0, 1},

P
(b)
i,j

(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)
=

|H|−1∑
k=0

P
(b)
i,j−1

(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk
j

∀(x1, . . . , xm) ∈ F
m.

(6.3)

940 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

These relations ensure that for all i and j ≥ 1, Pi,j(·) vanishes on F
j ×Hm−j iff the

function Pi,j−1(·) vanishes on F
j−1 ×Hm−j+1. For future reference, we (re)state this

fact as a lemma.
Lemma 6.15. P

(b)
i,j |Fj×Hm−j ≡ 0 ⇐⇒ P

(b)
i,j−1|Fj−1×Hm−j+1 ≡ 0.

Thus, for all i, Pi,m vanishes on the entire space F
m iff Pi,0 vanishes on Hm. Also,

as P
(b)
i,0 has degree at most κd in each variable, so does P

(b)
i,j for each i and j. Hence,

the degree of P
(b)
i,j is at most κd.

Thus, the verifier needs to make the following checks:
• Low-Degree Test.

For i = 0, . . . , l − 1 and j = 0, . . . ,m, the functions Ãi are polynomials of
degree at most d = m · |H| and the functions Pi,j are pairs of polynomials of
degree at most κd.

• Edge-Consistency Test.
For i = 0, . . . , l − 1, the functions Pi,0 obey (6.2).

• Zero-Propagation Test.
For i = 0, . . . , l − 1 and j = 1, . . . ,m, the functions Pi,j satisfy (6.3).

• Identity Test.
For i = 0, . . . , l − 1, the functions Pi,m are identically zero on the entire
domain F

m.
The low-degree test in most earlier construction of PCP verifiers is performed

using the “line-point” test. The “line-point” low degree test first chooses a random
line, a random point on this line, and checks if the restriction of the function to the line
(given by a univariate polynomial) agrees with the value of the function at the point. A
random line l is typically chosen by choosing two random points x, y ∈ F

m and setting
l = lx,y = {x+ ty|t ∈ F}. However, this requires 2m log |F| bits of randomness, which
is too expensive for our purposes. We save on randomness by using the low-degree
test of Ben-Sasson et al. [BSVW03] based on small-biased spaces (see Appendix B
for more details). The low-degree test of [BSVW03] uses pseudorandom lines instead
of totally random lines in the following sense: The pseudorandom line l = lx,y is
chosen by choosing the first point x at random from F

m, while the second point y is
chosen from a λ-biased subset Sλ of F

m. This needs only log |Sλ| + log |F|m bits of
randomness. We further save on randomness by the use of canonical lines.30 Consider
any pseudorandom line l = lx,y, where x ∈ F

m and y ∈ Sλ. We observe that for every
x′ ∈ l, we have lx′,y = lx,y. In other words, |F| different choices of random bits
lead to the same line lx,y. We prevent this redundancy by representing each line in
a canonical manner. A canonical line is chosen by first choosing a random point y
from the λ-biased set Sλ. We view this y as specifying the direction (i.e., slope) of
the line. This direction partitions the space F

m into |F|m−1 parallel lines (each with
direction y). We enumerate these lines arbitrarily and select one of them uniformly at
random. Thus, choosing a random canonical line costs only log |Sλ| + log |F|m−1 bits
of randomness. A further point to be noted is that we perform a “line” test instead
of the regular line-point test: The test queries the function for all points along the
canonical line lx,y and verifies that the restriction of the function to this line is a
low-degree polynomial.

Having performed the low-degree test (i.e., verified that the polynomials Ãi’s
and Pij ’s are close to low-degree polynomials), the verifier then performs the Node-

30It is to be noted that the canonical representation of lines has been used either implicitly or
explicitly in the soundness analysis of all earlier uses of the low-degree test. However, this is the first
time that the canonical representation is used to save on the number of random bits.

ROBUST PCPS OF PROXIMITY 941

Consistency Test, Zero-Propagation Test, and Identity Test by choosing
a suitable small-sized sample in the entire space and checking if the corresponding
condition is satisfied on that sample. For the Zero-Propagation Test indeed
the natural sample is an axis-parallel line. For the Edge-Consistency Test and
Identity Test, the sample we use is any set of |F| points selected from a partition
of F

m into |F|m−1 equal sets.

We are now ready to formally describe the PCP verifier for CktSAT. We param-
eterize the PCP verifier in terms of m, the number of dimensions in our intermediate
problem AS-CktSAT, and λ, the parameter of the λ-biased sets of F

m required
for the low-degree tests of Ben-Sasson et al. [BSVW03]. We rely on the fact that
λ-biased subsets of F

m of size at most poly(log |F|m, 1/λ) can be constructed effi-
ciently [NN93, AGHP92].

PCP Verifier
Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ (C).

1. Use Proposition 6.11 to reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
Notation. We let Sλ ⊂ F

m be a λ-biased set of size at most (log |F|m
λ)2

[AGHP92]. Let F
m =

⊎|F|m−1

η=1 Uη and F
m =

⊎|F|m−1

η=1 Vη be two arbitrary
partitions of the space F

m into |F|-sized sets each.
2. Choose a random string R of length log(|Sλ| · |F|m−1). (Note: We reuse

R in all tests, but only the Low-Degree Test utilizes the full length
of R.)

3. Low-Degree Test.
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ.
For i = 0, . . . , l − 1,

query oracle Ãi on all points along the line L and reject if the re-
striction Ãi to L is not a (univariate) polynomial of degree at most
d.

For i = 0, . . . , l − 1, j = 0, . . . ,m, and b ∈ {0, 1},
query oracle P

(b)
i,j on all points along the line L and reject if the

restriction of P
(b)
i,j to L is not a (univariate) polynomial of degree at

most κd.
4. Edge-Consistency Test.

Use the random string R to determine a random set Uη of the partition

F
m =

⊎|F|m−1

η=1 Uη.
For i = 0, . . . , l − 1,

for all x ∈ Uη, query Pi,0(x), Ãi(x), Ãi+1(Γ̃i,0(x)), and Ãi+1(Γ̃i,1(x))
and reject if (6.2) is not satisfied.

5. Zero-Propagation Test.
For i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1},

use random string R to determine a random jth axis-parallel line
in F

m of the form L = {(a1, . . . , aj−1, X, aj+1, . . . , am) : X ∈ F}.
Query P

(b)
i,j−1 and P

(b)
i,j along all the points in L. Reject if either the

restriction of P
(b)
i,j−1 or P

(b)
i,j to L is not a univariate polynomial of

degree at most κd or if any of the points on the line L violate (6.3).
6. Identity Test.

Use the random string R to determine a random set Vη of the partition

942 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

F
m =

⊎|F|m−1

η=1 Vη. For i = 0, . . . , l − 1,
for all x ∈ Vη, query Pi,m(x). Reject if any of these Pi,m(x) are not
(0, 0).

Accept if none of the above tests reject.

Remark 6.16.

1. The Low-Degree Test requires log(|Sλ| · |F|m−1) random bits to generate
a canonical line in F

m using the λ-biased set, while each of the other tests requires
at most log(|F|m−1) bits of randomness. Hence, the string R suffices for each of the
tests. For the settings of parameters we use, log(|Sλ| · |F|m−1) is typically significantly
smaller than log(|F|m), which we would not be able to afford.

2. The Edge-Consistency Test and Identity Test in the “standard” sense
are usually performed by selecting a random point in the space F

m and checking
whether the corresponding condition is satisfied. However, we state these tests in a
“nonstandard” manner using partitions of the space F

m into |F|-sized tests so that
these tests can be easily adapted when we construct the robust PCP verifier (see
section 8). The nonstandard tests are performed in the following manner: Choose a
random set in the partition and perform the standard test for each point in the set.
At present, we can work with any partition of F

m; however, we will later need specific
partitions to get “robustness.”

6.4. Analysis of the PCP Verifier. We now analyze the PCP Verifier

above. The analysis below assumes that the parameters satisfy m ≤ log n/ log log n
and λ ≤ 1/c log n for a sufficiently large constant c. Theorem 6.1 can be deduced by
setting λ = 1/c log n.

Complexity. The PCP Verifier makes O(lm|F|) = O(m3n1/m log n) queries,
each of which expects as an answer an element of F or F

2 (i.e., a string of length
O(log |F|)). Hence, the total (bit) query complexity is O(lm|F| log |F|) = O(lm ·
cFm

2n1/m log(cFm
2n1/m)). Recalling that l = 5 log n, this quantity is at most

O(m2n1/m log2 n) for m ≤ log n. For the decision complexity, we note that the main
computations required are (a) testing whether a function is a low-degree univari-
ate polynomial over F (for Low-Degree Test and Zero-Propagation Test),
(b) evaluating ψ′ on |F| quadruples of points (for Edge-Consistency Test), and
(c) univariate polynomial interpolation and evaluation (for testing (6.3) in Zero-

Propagation Test). We now argue that each of these can be done with a nearly

linear (Õ(|F|)) number of operations over F, yielding a nearly linear (Õ(q)) decision
complexity overall. Each evaluation of ψ′ can be done with a constant number of
F-operations because ψ′ is of constant degree. Polynomial interpolation and evalua-
tion can be done with a nearly linear number of F-operations by [SS71, Sch77], and
testing whether a function is of low degree reduces to polynomial interpolation (this
is achieved by interpolating the function to represent it as a polynomial of degree
|F| − 1 and checking that the high-degree coefficients are zero). Each F-operation can

be done with Õ(log |F|) bit operations, using the polynomial multiplication algorithm
of [SS71, Sch77] (over F2).

The number of random bits used by the verifier is exactly log(|Sλ| · |F|m−1). Let

n′ = |F|m. Then log(|Sλ|·|F|m−1) =
(
1 − 1

m

)
log n′+log(poly(log n′

λ)) =
(
1 − 1

m

)
log n′+

O(log log n′)+O
(
log
(

1
λ

))
. Now, n′ = (cFm

2)mn. Hence, log n′ = log n+2m logm+
O(m) and log logn′ = log logn + O(logm). Thus, the total randomness is at most(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O

(
log
(

1
λ

))
.

We summarize the above observations in the following proposition for future ref-

ROBUST PCPS OF PROXIMITY 943

erence.
Proposition 6.17. The randomness, query, and decision complexities of PCP

Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O

(
log
(

1
λ

))
, q =

O(m2n1/m log2 n) and d = Õ(q), respectively.
Completeness. If C is satisfiable, then the reduction reduces it to a YES instance

of AS-CktSAT. Then by definition there exist polynomials Ãi that satisfy constraint
ψ′. Setting Pi,j according to (6.2) and (6.3), we notice that the verifier accepts with
probability one.

Soundness. To prove the soundness, we need to prove that if C is not satisfiable
then the verifier accepts with probability bounded away from 1. We will prove a
stronger statement. Recall from Remark 6.12 that the function Ã0 : F

m → F sup-
posedly has the satisfying assignment embedded within it. Let I ⊂ F

m be the set of
locations in F

m that contains the assignment (i.e., Ã0|I is supposedly the assignment).
Lemma 6.18. There exists a constant c and a constant 0 < ε0 < 1 such that for

all ε,m, λ satisfying ε ≤ ε0, m ≤ log n/ log log n, and λ ≤ 1/c log n, the following

holds. If Ã0 is 4ε-far from every polynomial Â0 of degree md such that C(Â0|I) = 1,
then for all proof oracles {Ãi} and {Pi,j}, the verifier accepts with probability at most
1 − ε.

Proof. Let α be the universal constant from Theorem B.4. Set ε0 = min{α, 1
22}.

Let d = m2h, and choose cF to be a large enough constant such that κmd/|F| =
κ/cF ≤ ε0. Suppose each of the functions Ãi are 4ε-close to some polynomial of

degree md and each of the functions P
(b)
i,j is 4ε-close to some polynomial of κmd.

If this were not the case, then by Theorem B.4, Low-Degree Test accepts with
probability at most 1− ε for the polynomial that is 4ε-far. It can be verified that the
parameters satisfy the requirements of Theorem B.4 for sufficiently large choices of
the constants cF and c and sufficiently small ε.

For each i = 0, . . . , l−1, let Âi : F
m → F be the polynomial of degree at most md

that is 4ε-close to Ãi. Similarly, for each i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1},
let P̂

(b)
i,j be the polynomial of degree at most κmd that is 4ε-close to P

(b)
i,j . Such

polynomials are uniquely defined since every two polynomials of degree κmd disagree
in at least a 1− κmd

|F| ≥ 1− ε0 > 8ε fraction of points. As in the case of the Pi,j ’s, let

P̂i,j : F
m → F

2 be the function given by P̂i,j(x) = (P̂
(0)
i,j (x), P̂

(1)
i,j (x)).

By hypothesis, Â0|I does not satisfy C. Then, by Lemmas 6.14 and 6.15, at least
one of the following must hold.

(a) There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1} such that P̂
(b)
i,m �≡ 0.

Then for this i, Identity Test fails unless a random set Vη is chosen such

that for all x ∈ Vη, P
(b)
i,m(x) = 0. Hence, it must be the case that for all x ∈ Vη,

either P
(b)
i,m(x) �= P̂

(b)
i,m(x) or P̂

(b)
i,m(x) = 0. Since the V ′

ηs form a partition of
F
m, the probability of this occurring is upper-bounded by the probability

that a random x ∈ F
m satisfies either P

(b)
i,m(x) �= P̂

(b
i,m(x) or P̂

(b)
i,m(x) = 0.

This probability is at most 4ε+ κmd
|F| = 4ε+ κ

cF
≤ 5ε0, where we use the fact

that P̂
(b)
i,m is 4ε-close to P

(b)
i,m and that a nonzero polynomial of degree κmd

vanishes on at most a κmd/|F| fraction of points.

(b) There exists i ∈ {0, . . . , l− 1} such that P̂i,0, Âi, and Âi+1 do not obey (6.2).

In other words, P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).
Then for this i, Edge-Consistency Test fails unless a random partition
Uη is chosen such that for all x ∈ Uη, Pi,0(x) = ψ′(T̃i(x), Ãi(x), Ãi+1(Γ̃i,0(x)),

944 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Ãi+1(Γ̃i,1(x))). Hence, it must be the case that for every x ∈ Uη, one of the
following (six) holds:

P
(0)
i,0 (x) �= P̂

(0)
i,0 (x); P

(1)
i,0 (x) �= P̂

(1)
i,0 (x); Ãi(x) �= Âi(x);

Ãi+1(Γ̃i,0(x)) �= Âi+1(Γ̃i,0(x)); Ãi+1(Γ̃i,1(x)) �= Âi+1(Γ̃i,1(x));

P̂i,0(x) = ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

The probability of this happening is at most the probability that a random
x ∈ F

m satisfies these conditions, which is at most 5 · 4ε + κmd
|F| ≤ 21ε0.

(c) For some i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1}, P̂
(b)
i,j does not obey

(6.3).

In other words, P̂
(b)
i,j (. . . , xj , . . .) �≡

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hj , . . .)x

k
j . Then, for

this i, j, Zero-Propagation Test rejects unless a random axis-parallel line

L is chosen such that both P
(b)
i,j |L and P

(b)
i,j−1|L are polynomials of degree at

most κd and for every x ∈ L, P
(b)
i,j (. . . , x, . . .) =

∑|H|−1
k=0 P

(b)
i,j−1(. . . , hk, . . .)x

k.

Suppose we have that for all x ∈ L, P
(b)
i,j (x) = P̂

(b)
i,j (x) and P

(b)
i,j−1(x) =

P̂
(b)
i,j−1(x). Then, it must be the case that for all x ∈ L, P̂

(b)
i,j (. . . , x, . . .) =∑|H|−1

k=0 P̂
(b)
i,j−1(. . . , hk, . . .)x

k. Since the axis-parallel lines cover F
m uniformly,

the probability of this occurring is at most the probability of a random x ∈ F
m

satisfying this condition, which is at most κmd
cF

≤ ε. The probability that both

P
(b)
i,j |L and P

(b)
i,j−1|L are polynomials of degree κd and either P

(b)
i,j |L �= P̂

(b)
i,j |L

or P
(b)
i,j−1|L �= P

(b)
i,j−1|L is at most 2 · 4ε/(1 − ε0) ≤ 9ε0, since P

(b)
i,j and P

(b)
i,j−1

are 4ε-close to P̂
(b)
i,j and P̂

(b)
i,j−1, respectively, and any two distinct polynomials

of degree κmd disagree on at least a 1− κmd/|F| ≥ 1− ε0 fraction of points.
Hence, Zero-Propagation Test accepts with probability at most 10ε0.

We thus have that the verifier accepts with probability at most max {1 − ε, 5ε0,
21ε0, 10ε0} = 1 − ε.

Proof of Theorem 6.1. Theorem 6.1 is proved using PCP Verifier defined
in this section setting λ = 1/c log n. Step 1 of the verifier reduces the instance C
of CktSAT to an instance 〈1n′

, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT. We have
from Proposition 6.11 that n′ = Θ(n) and l = O(log n), where n is the size of the
input circuit C. Setting n = n′ in Proposition 6.17, we have that the randomness,
query and decision complexity of the verifier are as claimed in Theorem 6.1. The
soundness of the verifier follows from Lemma 6.18.

7. A randomness-efficient PCPP. In this section, we modify the PCP for
CktSAT and construct a PCPP for CktVal while maintaining all the complexities.
(Recall that, by Proposition 2.4, the latter implies the former.) We do so by adding
a proximity test to PCP Verifier defined in section 6.3. This new proximity test,
as the name suggests, checks the closeness of the input to the satisfying assignment
that is assumed to be encoded in the proof oracle (see Remark 6.12). This check is
done by locally decoding a bit (or several bits) of the input from its encoding and
comparing it with the actual input oracle.

Theorem 7.1. There exists universal constants c and 0 < ε < 1 such that the
following holds for all n,m ∈ Z

+, and 0 < δ < 1 satisfying n1/m ≥ mcm/δ3. There
exists a PCPP for CktVal (for circuits of size n) with the following parameters:

• randomness
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O(log(1/δ)),

ROBUST PCPS OF PROXIMITY 945

• query complexity q = O(m2n1/m log2 n) and decision complexity d = Õ(q),
• perfect completeness,
• soundness error 1 − ε for proximity parameter δ.

Note that the condition n1/m ≥ mcm/δ3 (made in Theorem 7.1) implies the con-
dition m ≤ log n/ log log n stated in Theorem 6.1. Thus, the PCPP of Theorem 7.1
works only when n, the size of the circuit, is not too small (more, precisely, when

n ≥ mcm2

/δ3m). As explained in section 3, when applying multiple proof composi-
tions, we need (at the last compositions) PCPPs that work for even smaller values of
n. For this purpose, we construct the following PCPP that works for small values of
n. This PCPP, however, performs relatively poorly with respect to randomness (i.e.,
it has randomness complexity O(log n) rather than (1 − o(1)) log2 n). This will not
be a concern for us since this verifier (or rather the robust version of this verifier) is
used only in the inner levels of composition.

Theorem 7.2. For all n ∈ Z
+ and δ ∈ (0, 1), CktVal has a PCPP (for circuits

of size n) with the following parameters:

• randomness O(log n);
• decision complexity poly logn, which also upper-bounds the query complexity;
• perfect completeness; and
• soundness error 1 − Ω(δ) for proximity parameter δ.

Preliminaries. Recall that a PCPP verifier is supposed to work as follows: The
verifier is given explicit access to a circuit C with n gates on k input bits and oracle
access to the input w in the form of an input oracle W : [k] → {0, 1}. The verifier
should accept W with probability 1 if it is a satisfying assignment and accept it with
probability at most 1 − ε if it δ-far from any satisfying assignment.

For starters, we assume that k ≥ n/5. In other words, the size of the input w
is linear in the size of the circuit C. The reason we need this assumption is that we
wish to verify the proximity of w to a satisfying assignment, but our proofs encode
the assignment to all n gates of the circuit, and thus it better be the case that w is
a nonnegligible fraction of the circuit. This assumption is not a major restriction,
because if this is not the case then we work with the modified circuit C ′ and input w′

that are defined as follows: For t = �n/k, the circuit C ′ has n′ = n + 3tk gates and
k′ = tk input bits such that C ′(w′) = 1 iff w′ = wt for some w such that C(w) = 1;
that is, C ′ checks if its input consists of t copies of some satisfying assignment of C.
(It can be verified that C ′ can indeed be implemented on a circuit of size n + 3tk.)
We choose t such that k′ ≥ n′/10. However, note that the input oracle W cannot
be altered. So the verifier emulates the input w′ using the original input oracle
W : [k] → {0, 1} in a straightforward manner; that is, it defines W ′ : [tk] → {0, 1}
such that W ′(i) � W (((i−1) mod k)+1). Indeed, in view of the way W ′ is emulated
based on W , testing that W ′ is a repetition of some k-bit string makes no sense. This
test is incorporated into C ′ in order to maintain the distance features of C; that is, if
w is δ-far from satisfying C, then w′ = wt is δ-far from satisfying C ′ (without having
C ′ explicitly run C on all t copies of w, because that would make its size larger than
nt and defeat our goal of increasing the length of the input relative to the circuit size).
We state this fact as a proposition for future reference.

Proposition 7.3. There exists a generic transformation from CktVal to CktVal

that maps the instance (C,w), where C is a circuit with n gates and k input bits, to
the instance (C ′, w′), where C ′ is a circuit on n′ = n+3tk gates and k′ = kt input bits
(where t = �n/k) defined as follows: C ′(w′) = 1 iff w′ = wt for some w such that
C(w) = 1 and w′ = wt. This transformation increases the length of the input oracle

946 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

compared to the proof oracle (here, the values of all gates in C). The transformation
preserves the relative distance to the set of satisfying assignments; that is, if w is δ-far
from the set of satisfying assignments of C, then w′ = wt is δ-far from the satisfying
assignments of C ′.

We first describe PCPP Verifier which proves Theorem 7.1 and later describe
ALMSS PCPP Verifier which proves Theorem 7.2.

7.1. The construction of PCPP Verifier (Theorem 7.1). As in the case of
PCP Verifier described in section 6.3, PCPP Verifier is constructed by reducing
the input circuit C, an instance of CktSAT, using parameter m, to an instance
〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT. The proof oracle for PCPP Verifier

is the same as that of the PCP Verifier (i.e., the proof oracle consists of a sequence
of functions Ãi : F

m → F, i = 0, . . . , l − 1, and Pi,j : F
m → F

2, i = 0, . . . , l − 1, j =
0, . . . ,m, where l = 5 log n).

Recall that the function Ã0 : F
m → F is assumed to contain within it an as-

signment (see Remarks 6.7 and 6.12). Let I ⊆ Hm ⊂ F
m be the set of locations in

F
m that contain the assignment. PCPP Verifier, in addition to the tests of PCP

Verifier, performs the following Proximity Test to check if the assignment given
by Ã0|I matches the input oracle W . Specifically, we have the following.

PCPP Verifier
W ; Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
m,λ,δ (C).

1. Run PCP Verifier
W ; Ãi,Pi,j

m,λ (C) and reject if it rejects.
Let R be the random string generated during the execution of this step.

2. Proximity Test.
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ. Query oracle Ã0 on all points along the line L
and reject if the restriction Ã0 to L is not a polynomial of degree at most
d = m · |H|. Query the input oracle W on all locations corresponding to
those in I ∩L and reject if W disagrees with Ã0 on any of the locations
in I ∩ L.

By inspection, the proximity test increases the query and decision complexities by
(even less than) a constant factor. For the randomness complexity, the randomness
is used only to generate a random canonical line (as in PCP Verifier), so the
randomness complexity is log(|F|m−1 · |Sλ|) as before. However, in order to prove
soundness, we need to assume not only that λ ≤ 1/c log n for some constant c (as
before), but also that λ ≤ δ3/mcm.31 Thus, setting λ = min{1/c log n, δ3/mcm}, the
randomness complexity increases by at most O(m logm)+O(log(1/δ)), as claimed in
Theorem 7.1. Summarizing the above observations for future reference, we have the
following proposition.

Proposition 7.4. The randomness, query, and decision complexities of PCPP

Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n) + O (log (1/δ)), q =

O(m2n1/m log2 n), and d = Õ(q), respectively.
It is straightforward to check perfect completeness of this verifier. To prove sound-

ness, we observe that if the input W is δ-far from satisfying the circuit, then one of the
following must happen: (1) The verifier detects an inconsistency in the proof oracle
or (2) the input oracle does not match the encoding of the input in the proof ora-
cle. In the case of the former, we prove soundness by invoking Lemma 6.18, while in
the latter case, we prove soundness by analyzing the proximity test. These ideas are

31Actually, for the proximity test we need only λ ≤ δ/mcm; however, to prove robustness of the
proximity test (see section 8.1) we require λ ≤ δ3/mcm.

ROBUST PCPS OF PROXIMITY 947

explained in detail in the following lemma which proves the soundness of the verifier.
Lemma 7.5. There exists a constant c and a constant ε > 0 such that for all

m,λ, δ satisfying n ≥ 8000|F|m−1/δ3, λ ≤ 1/c log n, and λ ≤ δ/mcm, the following
holds. If the input w given by the input oracle W : [k] → {0, 1} is δ-far from satisfying
the circuit, then for any proof oracle the verifier rejects W with probability at least ε.

Proof. Set ε to be the constant ε0 in Lemma 6.18.
Case (i). Ã0 is not 4ε-close to any polynomial Â0 of degree md such that

C(Â0|I) = 1. Then by Lemma 6.18, we conclude that the verifier rejects with proba-
bility at least ε.

Case (ii). Ã0 is 4ε-close to some polynomial Â0 of degree md such that C(Â0|I) =

1. Since w is δ-far from any satisfying assignment, the assignment given by Â0|I must
be at least δ-far from w. Let B ⊂ F

m denote the set of locations in I where the assign-
ment given by Â0 disagrees with w (i.e., B = {x ∈ I|Â0(x) disagrees with w at x}).
Hence, |B|/|I| ≥ δ. Since |I| = k ≥ n/5, we have |B| ≥ δn/5. Consider the following
two events.

Event I. Ã0|L is 5ε-far from Â0|L.
By the sampling lemma (Lemma B.3) with μ = 4ε and ζ = ε, this event
occurs with probability at most

(
1
|F| + λ

)
· 4ε
ε2 ≤ 1

4 since |F|, 1
λ ≥ 32/ε.

Event II. B ∩ L = ∅.
Again by the sampling lemma (Lemma B.3) with μ = ζ = |B|

|Fm| , this

event occurs with probability at most
(

1
|F| + λ

)
· |Fm|

|B| =
(

1
|F| + λ

)
·

5|Fm|
δn ≤ 1

4 , where the last inequality follows because n ≥ 8000|F|m−1/δ3

≥ 40|F|m−1/δ and λ ≤ δ/(40(cFm
2)m).

Suppose Event I does not occur. Then, if Â0|L �= Ã0|L, Proximity Test rejects
since then Ã0|L cannot be a polynomial of degree at most d, as it is 5ε-close to

the polynomial Â0 and hence cannot be closer to any other polynomial (as 5ε ≤
1
2 (1 − d

|F|) = 1
2 (1 − 1

cF
)). Now if Â0|L = Ã0|L and Event II does not occur, then

Proximity Test detects a mismatch between the input oracle W and Ã0|L. Hence,
if both Event I and Event II do not occur, then the test rejects.

Thus, the probability of the test accepting in this case is at most the probability
of either Event I or Event II occurring, which is at most 1/2. Thus, the probability
that the verifier accepts is at most max

{
1 − ε, 1

2

}
= 1 − ε. This completes the proof

of the lemma.
Proof of Theorem 7.1. Theorem 7.1 is proved using PCPP Verifier defined

in this section, setting λ = min{1/c log n, δ3/mcm}. The randomness and decision
(resp., query) complexities follow from Proposition 7.4. The only fact to be verified is
the soundness of the verifier. By the hypothesis of Theorem 7.1, n1/m ≥ mcm/δ3 for
a suitably large constant c. This implies that n1/m ≥ 8000(cFm

2)m−1/δ3 or, equiva-
lently, n ≥ 8000|F|m−1/δ3. Hence, Lemma 7.5 applies and we have that the verifier
has soundness error 1− ε for proximity parameter δ. This proves Theorem 7.1.

7.2. The ALMSS-type PCPP (Theorem 7.2). We now turn to designing
a PCPP that proves Theorem 7.2. We call this ALMSS PCPP Verifier as it
has parameters similar to the “parallelized” PCPs of [ALM+98]. ALMSS PCPP

Verifier is identical to PCPP Verifier of Theorem 7.1 except for the fact that it
has a slightly different proximity test. All other details remain the same.

ALMSS PCPP Verifier
W ; Ãi,Pi,j ;i=0,...,l−1;j=0,...,m
δ (C).

1. Set m = log n/ log log n and λ = 1/c log n.

948 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

2. Run PCP Verifier
W ; Ãi,Pi,j

m,λ (C) and reject if it rejects.
3. ALMSS Proximity Test.

Choose a random position i
R← {1, . . . , k} in the input and a random

direction y ∈ F
m. Let x ∈ I be the point corresponding to i in Hm. Let

L be the line through x in the direction y. Query oracle Ã0 on all points
along the line L and reject if the restriction Ã0 to L is not a polynomial
of degree at most d = m · |H|. Query the input oracle W at location i
and reject if W [i] �= Ã0(x).

Unlike PCPP Verifier, we will not calculate the randomness used by this verifier
exactly. An upper bound within a constant factor suffices for our purposes. The
extra randomness used by ALMSS Proximity Test is log k + m log |F| (i.e., the
randomness required to choose a random index in {1, . . . , k} and a random direction
in F

m). For our choice of m and δ, the randomness of PCP Verifier is at most
O(log n) (see the analysis preceding Proposition 6.17). Hence, the total randomness
of ALMSS PCPP Verifier is at most O(log n). The query and decision complexities
are at most a constant times that of PCP Verifier which is turn is upper-bounded
by poly logn. Summarizing the above observations for future reference, we have the
following proposition.

Proposition 7.6. The randomness and decision complexities of ALMSS PCPP

Verifier are O(log n) and poly logn, respectively.
The soundness of the verifier is given by the following lemma.
Lemma 7.7. For all δ ∈ (0, 1), the following holds. If the input w given by the

input oracle W : [k] → {0, 1} is δ-far from satisfying the circuit, then for any proof
oracle the verifier rejects W with probability Ω(δ).

Proof. Let ε0 be the constant that appears in Lemma 6.18.
Case (i). Ã0 is not 4ε0-close to any polynomial Â0 of degree md such that

C(Â0|I) = 1. Then by Lemma 6.18, we conclude that the verifier rejects with proba-
bility at least ε0.

Case (ii). Ã0 is 4ε0-close to some polynomial Â0 of degree md such that C(Â0|I) =

1. Since w is δ-far from any satisfying assignment, the assignment given by Â0|I must
be δ-far from w. With probability greater than δ over the choice of i ∈ {1, . . . , k}
(and the corresponding point x ∈ I in Hm), we have W [i] �= Â0(x). If this occurs,
the only way the verifier can accept is if Ã0|L is a degree md polynomial other than

Â0|L. We will show that for any fixed point x in F
m, with probability at least 1−16ε0

over the choice of random line L through x, Ã0|L cannot be a degree md polynomial

different from Â0|L. We can then conclude that the verifier rejects with probability
at least δ · (1 − 16ε0) = Ω(δ). Since L is a random line through x, every point on L
other than x is a uniformly random point in F

m. Recall that Ã0 and Â0 are 4ε0-close.
By a Markov argument it follows that for every fixed value of x and a random line
L through x, with probability at least 1 − 16ε0, Ã|L\{x} and Â|L\{x} are at least

1/4-close. This implies that Ã|L cannot be a polynomial of degree md other than Â|L
(since two distinct polynomials agree in at most md points, and (md− 1)/|F| < 1/4).

In either case, ALMSS PCPP Verifier rejects with probability at least
min{ε0,Ω(δ)} = Ω(δ).

Conclusion. Theorem 7.2 follows from Proposition 7.6 and Lemma 7.7.

8. A randomness-efficient robust PCPP. In this section, we modify the
PCPP for CktVal constructed in section 7 to design a robust PCPP, while essentially
maintaining all complexities. Recall the definition of robustness: If the input oracle

ROBUST PCPS OF PROXIMITY 949

W is δ-far from a satisfying assignment, then a “regular” PCPP verifier rejects the
input for most choices of its random coins; that is, it observes an inconsistency in the
(input and) proof. In contrast, for most choices of its random coins, a robust PCPP
verifier not only notices an inconsistency in the (input and) proof but also observes
that a considerable portion of the (input and) proof read by it has to be modified to
remove this inconsistency.

We construct two robust PCPPs which are robust analogues of the two PCPPs
presented in section 7. The first robust PCPP is the main construct (claimed in
Theorem 3.1), which is the robust analogue of PCPP Verifier. The second robust
PCPP is an ALMSS-type robust PCPP (claimed in Theorem 3.2), which is the robust
analogue of ALMSS PCPP Verifier. Thus, we prove Theorems 3.1 and 3.2.

Overview of the proofs of Theorem 3.1 and 3.2. We “robustify” the PCPP ver-
ifier in three steps. Recall that a single execution of the verifier actually involves
several tests (in fact lm+2l Low-Degree Tests, l Edge-Consistency Tests, lm
Zero-Propagation Tests, l Identity Tests, and a single proximity test (either
Proximity Test or ALMSS Proximity Test, as the case may be)). In the first
step (section 8.1), we observe that each of these tests is robust individually. In the
second step (section 8.2), we perform a “bundling” of the queries so that a certain
set of queries can always be asked together. Indeed, bundling is analogous to “paral-
lelization” except that it does not involve any increase in the randomness complexity
(unlike parallelization, which introduces such an increase, which although small is
too big for our purposes). We stress that bundling is tailored to the specific tests,
in contrast to parallelization which is generic. The aforementioned bundling achieves
robustness, albeit over a much a larger alphabet. In the final step (section 8.3), we
use a good error-correcting code to transform the “bundles” into regular bit-queries
such that robustness over the binary alphabet is achieved.

8.1. Robustness of individual tests. For each possible random string R,
PCPP Verifier (resp., ALMSS PCPP Verifier) performs several tests. More
precisely, it performs l(m + 2) Low-Degree Tests, l Edge-Consistency Tests,
lm Zero-Propagation Tests, l Identity Tests, and a single Proximity Test

(resp., ALMSS Proximity Test). In this section, we prove that each of these tests
is robust individually. In other words, we show that when one of these tests fails, it
fails in a “robust” manner; that is, a considerable portion of the input read by the
test has to be modified for the test to pass.

First, we introduce some notation. We view functions g, g′ : F
m → F as strings of

length |F|m over the alphabet F, so their relative Hamming distance Δ(g, g′) is simply
Prx[g(x) �= g′(x)]. As before, let I ⊆ Hm ⊂ F

m be the set of locations in F
m that

contains the assignment.

Let 0 < ε < 1 be a small constant to be specified later. As before, for i =

0, . . . , l−1, j = 0, . . . ,m and b ∈ {0, 1}, let Âi (resp., P̂
(b)
i,j) be the closest polynomials

of degree md (resp., κmd) to Ãi and Pi,j , respectively. (If there is more than one
polynomial, choose one arbitrarily.) The proof of the soundness of the PCPP verifiers,
PCPP Verifier and ALMSS PCPP Verifier (see section 6 and 7), was along the
following lines: If the input oracle W : [k] → {0, 1} is δ-far from satisfying the circuit,
then one of the following must happen (changing ε by a factor of 2):

1. There exists i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,

950 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Low-Degree Test detects the error with probability at least 2ε.

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1}, such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Identity Test detects the error with probability
at least 1 − 10ε.

3. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m}, and b ∈ {0, 1} such that

Δ(P
(b)
i,j , P̂

(b)
i,j) ≤ 8ε,Δ(P

(b)
i,j−1, P̂

(b)
i,j−1) ≤ 8ε,

and P̂
(b)
i,j (. . . , xj , . . .) �≡

|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . .)x

k
j .

In this case, Zero-Propagation Test detects the error with probability at
least 1 − 20ε.

4. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case, Edge-Consistency Test detects the error with probability at
least 1 − 42ε.

5. Δ(Ã0, Â0) ≤ 8ε, but W and Â0|I disagree on at least δ fraction of the points.
In this case, Proximity Test (or ALMSS Proximity Test, as the case
may be) detects the error with probability at least 2ε (or Ω(δ) in the case of
ALMSS Proximity Test).

Claims 8.1–8.6 below strengthen the above analysis and show that one of the tests
not only detects the error, but a significant portion of the input read by that test needs
to be modified in order to make the test accept. More formally, recall that each of our
tests T (randomly) generates a pair (I,D), where I is a set of queries to make to its
oracle and D is the predicate to apply to the answers. For such a pair (I,D) ← T and
an oracle π, we define the distance of π|I to T to be the relative Hamming distance
between π|I and the nearest satisfying assignment of D. Similarly, we say that π has
expected distance ρ from satisfying T if the expectation of the distance of π|I to T

over (I,D)
R← T equals ρ.

We then have the following claims about the robustness of the individual tests.
The robustness of Low-Degree Test can be easily inferred from the analysis

of the λ-biased low-degree test due to Ben-Sasson et al. [BSVW03] as shown below.
Claim 8.1. The following holds for all sufficiently small ε > 0. If A : F

m → F

(resp., P : F
m → F) is 8ε-far from every polynomial of degree md (resp., degree κmd),

then the expected distance of A (resp., P) from satisfying Low-Degree Test with
degree parameter d (resp., κd) is at least 2ε.

Proof. Recall that Low-Degree Test chooses a random canonical line L and
checks if A|L is a univariate polynomial of degree d. For each canonical line L, define
Alines(L) to be the degree d univariate polynomial mapping L → F having maximum
agreement with A on L, breaking ties arbitrarily. The distance of A|L to satisfying
Low-Degree Test is precisely Δ(A|L, Alines(L)).

The low-degree test LDT of Ben-Sasson et al. [BSVW03] works as follows (see
Appendix B for more details): The test LDT has oracle access to a points-oracle
f : F

m → F and a lines-oracle g. It chooses a random canonical line L using the
λ-biased set, queries the lines-oracle g on the line L, and queries the points-oracle f
on a random point x on L. It accepts iff g(L) agrees with f at x.

ROBUST PCPS OF PROXIMITY 951

By inspection, the probability that LDTA,Alines rejects the points-oracle A and
lines-oracle Alines as defined above equals EL[Δ(A|L, Alines(L))]. By Theorem B.4, if
A is 8ε-far from every degree md polynomial, then LDTA,Alines rejects with probability
at least 2ε (for sufficiently small ε). (Recall that our parameters satisfy the conditions
of Theorem B.4 for sufficiently large choices of the constants c and cF .) Thus, A has
expected distance 2ε from satisfying our Low-Degree Test, as desired.

The intuition behind the proofs of robustness of Identity Test, Zero-
Propagation Test, and Edge-Consistency Test is as follows. The key point to
be noted is that the checks made by each of these tests are in the form of polyno-
mial identities. Hence, if the functions read by these tests are close to being poly-
nomials, then it follows from the Schwartz–Zippel lemma that the inputs read by
these tests either satisfy these polynomial identities or are in fact far from satisfy-
ing them. We formalize this intuition and prove the robustness of Identity Test,
Edge-Consistency Test, and Zero-Propagation Test in Claims 8.2, 8.3, and
8.4, respectively.

Claim 8.2. The following holds for all sufficiently small ε > 0. If for some

i = 0, . . . , l − 1 and b ∈ {0, 1}, Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε and P̂

(b)
i,m(·) �≡ 0, then Pi,m has

expected distance at least 1 − 9ε from satisfying Identity Test.
Proof. The expected distance of Pi,m from satisfying Identity Test equals

EVη [Δ(Pi,m|Vη
, 0)] = Δ(Pi,m, 0) [since {Vη} is a partition]

≥ Δ(P̂i,m, 0) − Δ(Pi,m, P̂i,m)

≥
(
1 − κmd

|F|

)
− 8ε [by the Schwartz–Zippel lemma

and hypothesis]
≥ 1 − 9ε.

Claim 8.3. The following holds for all sufficiently small ε > 0. Suppose for some

i = 0, . . . , l − 1, we have Δ(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε, Δ(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε, Δ(Ãi, Âi) ≤ 8ε,

Δ(Ãi+1, Âi+1) ≤ 8ε, and P̂i,0(·) �≡ ψ′(T̃i(·), Âi(·), Âi+1(Γ̃i,0(·)), Âi+1(Γ̃i,1(·))). Then{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance at least (1 − 41ε)/5

from satisfying Edge-Consistency Test.
Proof. Note that the distance of

{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
|Uη

from satisfying Edge-Consistency Test is at least 1/5 times the distance of Pi,0(·)|Uη

to the function ψ′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη (since for each point
x ∈ Uη, where the latter two functions disagree, at least one of Pi,0, Ai, Ai+1 ◦
Γ̃i,0, Ai+1 ◦ Γ̃i,1 needs to be changed at x to make the test accept). As in the proof of
Claim 8.2, we have

EUη [Δ(Pi,0(·)|Uη , ψ
′(T̃i(·), Ai(·), Ai+1(Γ̃i,0(·)), Ai+1(Γ̃i,1(·)))|Uη)]

≥
(

1 − κmd

|F|

)
− 5 · 8ε ≥ 1 − 41ε,

where the (1−κmd/|F|) term corresponds to the distance if we replace all five functions

with their corrected polynomials (e.g., P̂i,0, Âi, Âi+1 ◦ Γ̃i,0, Âi+1 ◦ Γ̃i,1) and the
−5 ·8ε accounts for the distance between each of the five functions and their corrected
polynomials. Thus, the overall expected distance to satisfying Edge-Consistency

Test is at least (1 − 41ε)/5.
Claim 8.4. The following holds for all sufficiently small ε > 0. Suppose for

some i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1}, we have Δ(P
(b)
i,j , P̂

(b)
i,j) ≤

952 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

8ε, Δ(P
(b)
i,j−1, P̂

(b)
i,j−1) ≤ 8ε, and P̂

(b)
i,j (. . . , xj , . . .) �≡

∑|H|−1
k=0 P̂

(b)
i,j−1(. . . , hk, . . .)x

k
j .

Then (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from satisfying Zero-

Propagation Test.
Proof. Suppose that L is a jth axis-parallel line such that

P̂
(b)
i,j (. . . , xj , . . .)|L �≡

|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . .)x

k
j |L.

Then in order for Zero-Propagation Test to accept, either P
(b)
i,j |L must be modi-

fied to equal a degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . .)|L, or P

(b)
i,j−1|L must

be modified to equal a degree κd polynomial other than P̂
(b)
i,j−1(. . . , xj , . . .)|L. (Recall

that Zero-Propagation Test checks that the said restrictions are in fact polyno-

mials of degree κd.) This would require modifying P
(b)
i,j |L (resp., P

(b)
i,j−1|L) in at least

a 1 − κd/|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) fraction (resp., a 1 − κd/|F| − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

fraction) of points. This implies that the pair (P
(b)
i,j |L, P

(b)
i,j−1|L) would have to be

modified in at least a

1

2
·
(

1 − κd

|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

)

fraction of points.

Thus the expected distance of (P
(b)
i,j , P

(b)
i,j−1) from satisfying Zero-Propagation

Test is at least

1

2
· EL

[
1 − κd

|F| − Δ(P
(b)
i,j |L, P̂

(b)
i,j |L) − Δ(P

(b)
i,j−1|L, P̂

(b)
i,j−1|L)

]

−Pr
L

⎡
⎣P̂ (b)

i,j (. . . , xj , . . .)|L ≡
|H|−1∑
k=0

P̂
(b)
i,j−1(. . . , hk, . . .)x

k
j |L

⎤
⎦

≥ 1

2
(1 − ε− 8ε− 8ε) − κd

|F|

≥ 1

2
(1 − 19ε) .

We are now left with analyzing the robustness of the proximity tests (Proximity

Test and ALMSS Proximity Test). Note that the input for either of these proxim-
ity tests comes in two parts: (a) the restriction of A0 to the line L and (b) the input W
restricted to the line L (or to a point on L). Thus, the robustness of these tests refers
to both parts (i.e., parts of each of the two oracles), and it is beneficial to decouple
the corresponding robustness properties. We note that the robustness of Proximity

Test is proved by repeated applications of the sampling lemma (Lemma B.3), while
the robustness of ALMSS Proximity Test follows by a simple Markov argument.

Let B ⊂ F
m denote the set of locations in I, where the assignment given by

Â0 disagrees with W (i.e., B = {x ∈ I|Â0(x) disagrees with W at x}). Recall that
|I| = k ≥ n/5.

Claim 8.5. There exists a constant c and a constant ε > 0 such that for all
m,λ, δ, δ′ satisfying n ≥ 8000|F|m−1/δ3, λ ≤ 1/c log n, λ ≤ δ3/mcm, δ′ > δ, the

following holds. Suppose Δ(Ã0, Â0) ≤ 1/4 and the input oracle W is δ′-far from

ROBUST PCPS OF PROXIMITY 953

Â0|I (i.e., |B|/|L| ≥ δ′); then with probability at least 1 − δ/4 (over the choice of the
canonical line L) either at least an ε-fraction of A0|L or at least a (δ′ − δ/4)-fraction
of W |L needs to be changed to make Proximity Test accept.

This claim is the robust analogue of Lemma 7.5. Observe that the robustness of
the verifier is expressed separately for the proof and input oracles. As expected, the
robustness of the input oracle depends on the proximity parameter δ′, while that of
the proof oracle is independent of δ′.

Proof. Consider the following three events.
Event 1. Δ(Ã0|L, Â0|L) ≥ 1/3.

By the sampling lemma (Lemma B.3) with μ = 1/4 and ζ = 1/12, this event oc-
curs with probability at most ((1/|F|) + λ) · (1/4)/(1/12)2 ≤ (δ/12) since |F| ≥
(8000|F|m)/(δ3n) > (123/2)/δ and λ < 2δ/123.

Event 2. |I∩L|
|L| >

(
1 + δ

8

)
· |I|
|Fm| .

Again by the sampling lemma (Lemma B.3) with μ = |I|/|Fm| ≥ n
5|F|m and ζ = δμ

8 ,

this event occurs with probability at most(
1

|F| + λ

)
· 82

δ2μ
=

(
1

|F| + λ

)
· 320|F|m

δ2n
≤ δ

12
,

where the last inequality follows from the fact that n ≥ 24 · 320 · |F|m−1/δ3 and
λ ≤ δ3/(24 · 320(cFm

2)m).

Event 3. |B∩L|
|L| < |B|

|Fm| −
δ
8 · |I|

|Fm| .

Again by the sampling lemma (Lemma B.3) with μ = |B|/|Fm| = δ′n
5|F|m and ζ =

δn
40|F|m , this event occurs with probability at most

(
1

|F| + λ

)
· μ

ζ2
≤
(

1

|F| + λ

)
· 320|F|m

δ2n
≤ δ

12
.

Hence, the probability that at least one of the three events occurs is at most δ/4.
Now, suppose none of the three events occur. We then get that

|B ∩ L|
|I ∩ L| ≥ |B| − δ|I|/8

(1 + δ/8)|I| =
δ′ − δ/8

1 + δ/8
≥ δ′ − δ

4
.

Now for Proximity Test to accept the pair (Ã0|L,W ∩ L), either we must change

Ã0|L to a polynomial other than Â0|L or correct the input for all x ∈ B ∩ L. The
former requires us to change at least a (1− (d/|F|)−1/3) ≥ 1/2-fraction of the points
of A0|L while the latter requires us to change at least a δ′ − δ/4-fraction of the input
read (i.e., the input oracle W restricted to the line L). This proves the claim.

We now analyze the robustness of ALMSS Proximity Test.
Claim 8.6. There exists a constant ε0 > 0 such that for all δ ∈ (0, 1), the

following holds. Suppose Δ(Ã0, Â0) ≤ 4ε0 and the input oracle W is δ-far from Â0|I
(i.e., |B|/|L| ≥ δ); then with probability at least Ω(δ) (over the choice of index i and
direction y), either at least a 1/2-fraction of A0|L or W [i] (i.e., the single symbol of
the input oracle read by the verifier) needs to be changed to make ALMSS Proximity

Test accept.
This claim is the robust analogue of Lemma 7.7. As before, the robustness of the

verifier is expressed separately for the proof and input oracles.
Proof. Since w is δ-far from any satisfying assignment, the assignment given by

Â0|I must be δ-far from w. Thus, with probability greater than δ over the choice of

954 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

i ∈ {1, . . . , k} (and the corresponding point x ∈ I), we have W [i] �= Â0(x). If this
occurs, the only way to make the verifier accept is to either change W [i] or change

Ã0|L to a degree md polynomial other than Â0|L. As in the proof of Lemma 7.7,
for any fixed x, with probability at least 1 − 16ε0 (over the choice of the random

direction y), Ã0|L\{x} and Â0|L\{x} have distance at most 1/4, and hence Ã0|L would
have to be changed in at least 1 − ((md − 1)/|F|) − 1/4 ≥ 1/2 points to be a degree

md polynomial other than Â0|L. Thus, with probability at least δ(1 − 16ε0) = Ω(δ),
either W [i] would have to change or at least half of Ã0|L would have to change to
make the verifier accept.

8.2. Bundling. In section 8.1, we showed that each of the tests performed by the
PCPP verifier is individually robust. However, we need to show that the conjunction
of all these tests is also robust. This is not true for the PCPP verifier in its present
form for the following reason: Suppose the input oracle W is δ-far from satisfying
the circuit. We then know that one of the tests detects this fact with nonnegligible
probability. Moreover, as seen in section 8.1, this test is robust. However, since
this test is only one of the O(lm) tests being performed by the verifier, the oracle
bits read by this test comprise a small fraction of the total query complexity of the
verifier. For instance, the number of bits read by a single Low-Degree Test is
about 1/lm times the query complexity. This causes the robustness of the verifier
to drop by a factor of at least lm. Note that the issue here is not the fact that the
verifier performs different types of tests (i.e., Low-Degree Test, Identity Test,
Zero-Propagation Test, etc.) but rather that it performs many instances of each
test and that the soundness analysis guarantees only that one of these test instances
rejects (robustly). This is not sufficient to make the verifier robust.

For this purpose, we bundle the various functions in the proof oracle so that the
inputs required for the several test instances can be read together. This maintains the
robustness of the individual tests, albeit over a larger alphabet. To understand this
bundling, let us assume for the present that the only type of tests that the verifier
performs is Low-Degree Test. There exists a natural bundling in this case. Instead
of l(m + 2) different oracles {Ãi} and {Pi,j}, we have one oracle Π which bundles
together the data of all these oracles. The oracle Π : F

m → F
l·(2m+3) is assumed to

satisfy Π(x) = (Ã0(x), . . . , Ãl−1(x), P0,0(x), . . . , Pl−1,m(x)) for all x ∈ F
m. It can now

be easily checked that over this proof oracle, the conjunction of all Low-Degree

Tests is robust (over alphabet F
l·(2m+3)) with the same soundness and robustness

parameters as a single Low-Degree Test (over alphabet F). However, this natural
bundling does not lend itself to the other tests performed by the PCPP verifier—
namely, Zero-Propagation Test, and Edge-Consistency Test—because the l
executions of these tests each have different query patterns (i.e., we cannot execute all
of these tests by querying the same set of points of Π). Next, we provide an alternate
bundling and massage our verifier slightly to work with this bundling.

To find a suitable bundling, we examine the query patterns of Zero-Propagation

Test and Edge-Consistency Test more closely. The (i, j)th Zero-Propagation

Test queries Pi,j−1 and Pi,j on a random jth axis-parallel line. Also the ith Edge-

Consistency Test queries Pi,0, Ãi for all points x ∈ Uη, and Ãi+1 for all points

x ∈ Γ̃i,0(Uη)∪ Γ̃i,1(Uη) for Uη being a random subset of an arbitrary partition of Fm.

The key observation is that the neighborhood functions Γ̃i,0 and Γ̃i,1 take any ith
axis-parallel line to itself. Thus, if we choose the partition Uη to consist of ith axis-
parallel lines, then the ith Edge-Consistency Test is also making queries entirely
along axis-parallel lines. However, for the bundling to work, we need all the tests to

ROBUST PCPS OF PROXIMITY 955

be making queries along the same axis-parallel line. We accomplish this by shifting
our functions according to appropriate cyclic permutations of the coordinates so that
the query patterns of the tests “line up” (at least into a constant number of groups).

To implement this idea, we first need some notation. As mentioned earlier, we
will be able to prove robustness of the verifier via bundling; however, over a larger
alphabet. This large alphabet will be Σ = F

l+2l·(m+1). Unlike before, the proof oracle
for the robust PCPP verifier will consist of only one function Π : F

m → Σ. The robust
PCPP verifier simulates the PCPP verifier as follows: To answer the queries of the
PCPP verifier, the robust verifier bundles several queries together, queries the new
proof oracle Π, and then unbundles the answer to obtain the answers to the queries of
the original PCPP verifier. For convenience, we index the l + 2l · (m+ 1) coordinates
of Σ = F

l+2l·(m+1) as follows: The first l coordinates are indexed by a single index i
ranging from 0 to l − 1, while the remaining 2l · (m + 1) are indexed by a triplet of
indices (i, j, b), where i ranges over 0, . . . , l− 1, j ranges over 0, . . . ,m, and b ∈ {0, 1}.
Let S : F

m → F
m denote the (linear) transformation that performs one cyclic-shift

to the right; that is, S(x0, . . . , xm−1) = (xm−1, x0, . . . , xm−2). The bundling of the
proof oracles Ãi and Pi,j by the modified proof oracle Π is as follows:

(8.1)

∀x ∈ F
m,

⎧⎨
⎩

Π(x)i = Ãi

(
S	 i

h
(x)
)

i = 0, . . . , l − 1,

Π(x)(i,j,b) = P
(b)
i,j

(
Sj+	 i

h
(x)
)

i = 0, . . . , l − 1; j = 0, . . . ,m; b ∈ {0, 1},

where h = log |H| = log n/m. Note that the size of the new proof oracle Π is exactly
equal to the sum of the size of the oracles Ãi and Pi,j .

We now state how the robust verifier performs the unbundling and the individual
tests. We consider each step of the PCPP verifier and present its robust counterpart.

The first steps of PCPP Verifier (and ALMSS PCPP Verifier) are indepen-
dent of the proof oracle and are performed as before. That is, the robust verifier, as
before, reduces the CktSAT instance to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉
of AS-CktSAT, sets d = m · |H|, and generates a random string R of length
log(|Sλ| · |F|m−1). The remaining steps are proof oracle dependent and we will discuss
each of them in detail.

Proximity test. For the proximity test, the only portion of the proof oracle that we
require is the portion containing Ã0. For this, we observe that Π(x)0 is Ã0◦S	 0

h
(x) =
Ã0(x). The two different proximity tests (Robust Proximity Test and Robust

ALMSS Proximity Test) can easily be describes as follows:
Robust Proximity Test

W ; Π(R).
Use random string R to determine a random canonical line L in F

m

using the λ-biased set Sλ. Query oracle Π on all points along the line
L. Unbundle Π(L) to obtain the values of Ã0 on all points along the
line L and reject if the restriction Ã0 to L is not a polynomial of degree
at most d. Query the input oracle W on all locations corresponding to
those in I ∩L and reject if W disagrees with Ã0 on any of the locations
in I ∩ L.

Robust ALMSS Proximity Test
W ; Π.

Choose a random position i
R← {1, . . . , k} in the input and a direction

y ← F
m. Let x ∈ I be the point corresponding to i in Hm, and let L be

the line through x in direction y. Query oracle Π on all points along the
line L. Unbundle Π(L) to obtain the values of Ã0 on all points along

956 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

the line L and reject if the restriction Ã0 to L is not a polynomial of
degree at most d. Query the input oracle W at location i and reject if
W [i] �= Ã0(x).

Low-degree test. We note that the distance of the polynomial Ãi : F
m → F to

being degree k (for any k ∈ Z
+) is exactly the same as that of Ãi ◦ S	 i

h
 : F
m → F

since S	 i
h
 is an invertible linear transformation. Hence, it is sufficient if we check

that Ãi ◦ S	 i
h
 is low degree. The case with the P

(b)
i,j ’s is similar. Thus, the new

Robust Low-Degree Test can be described as follows:

Robust Low-Degree Test
Π(R).

Use random string R to determine a random canonical line L in F
m

using the λ-biased set Sλ.
Query the oracle Π on all points along the line L.
For i = 0, . . . , l − 1,

unbundle Π(L) to obtain the values of Ãi ◦S	 i
h
 on all points along

the line L and reject if the restriction Ãi ◦ S	 i
h
 to L is not a poly-

nomial of degree at most d.
For i = 0, . . . , l − 1, j = 0, . . . ,m and b ∈ {0, 1},

unbundle Π(L) to obtain the values of P
(b)
i,j ◦ Sj+	 i

h
 on all points

along the line L and reject if the restriction of P
(b)
i,j ◦ Sj+	 i

h
 to L is
not a polynomial of degree at most κd.

Thus, effectively we are testing Ãi (respectively, Pi,j) using the line space S	 i
h
◦Sλ

(respectively, Sj+	 i
h
 ◦ Sλ).

Identity test. In the case of Identity Test, we observe that P
(b)
i,m vanishes on

F
m iff P

(b)
i,m ◦ Sm+	 i

h
 vanishes on F
m. Recall that we were allowed to use arbitrary

partitions of the space F
m. The set of random 1st axis-parallel lines is one such

partition and we use this partition.

• Robust Identity Test
Π(R).

– Use random string R to determine a random 1st axis-parallel line in F
m

of the form L = (X, a1, . . . , am−1). Query the oracle Π on all points
along the line L.
For i = 0, . . . , l − 1 and b ∈ {0, 1},
∗ unbundle Π(L) to obtain the values of P

(b)
i,m ◦ Sm+	 i

h
 on all points
along the line L and reject if any of these are nonzero.

Edge-consistency test. For any x ∈ F
m, we say that Pi,0 is well formed at x if

(6.2) is satisfied for this x. Edge-Consistency Test verifies that Pi,0 is well formed
for all x ∈ Uη and i = 0, . . . , l − 1. This was done earlier by reading the values of

Pi,0, Ãi, Ãi+1 ◦ Γ̃i,0 = Ãi+1 and Ãi+1 ◦ Γ̃i,1 for all x ∈ Uη.

Let L be a random 1st axis-parallel line. The robust version of this test checks that
Pi,0 is well formed for all points on S	 i

h
(L). Consider any x = (x0, . . . , xm−1) ∈ L. To

verify that Pi,0 is well formed at S	 i
h
(x), the verifier needs the values Pi,0(S

	 i
h
(x)),

Ãi(S
	 i
h
(x)), Ãi+1(S

	 i
h
(x)), and Ãi+1 ◦ Γ̃i,1(S

	 i
h
(x)). We will show that all these

values can be obtained from unbundling the value of Π on L and S−1(L). Clearly, the

values Pi,0(S
	 i
h
(x)) and Ãi(S

	 i
h
(x)) can be obtained from unbundling the value of Π

at x. The other two values that we require are Ãi+1(S
	 i
h
(x)) and Ãi+1◦Γ̃i,1(S

	 i
h
(x)).

We first show that Γ̃i,1(S
	 i
h
(x)) = S	 i

h
(x′) for x′ = (x0+e(imodh), x1, . . . , xm−1) ∈ L
(recall that {e0, . . . , ef−1} are a basis for F over F2 and {e0, . . . , eh−1} span H ⊂
F). For this purpose, we first recall the definition of Γ̃i,1: Γ̃i,1(z0, . . . , zm−1) =

ROBUST PCPS OF PROXIMITY 957

(z0, . . . , zt−1, zt + eu, zt+1, . . . , zm−1), where t = �i/h� mod m and u = i mod h. Fur-

thermore, since Sm is the identity map, we have that S	 i
h
modm = S	 i

h
. With these
observations, we have the following:

Γ̃i,1

(
S	 i

h
(x)
)

= Γ̃i,1

(
S	i/h
modm(x)

)

= Γ̃i,1

(
S	i/h
modm(x0, . . . , xm−1)

)

= S	i/h
modm
(
x0 + e(imodh), x1, . . . , xm−1

)
= S	 i

h
(x′).

Now, S	 i+1
h
 is either S	 i

h
 or S	 i
h
+1 depending on the value of i. Suppose S	 i+1

h
 =
S	 i

h
. We then have that Ãi+1(S
	 i
h
(x)) = Ai+1(S

	 i+1
h
(x)) and Ãi+1◦Γ̃i,1(S

	 i
h
(x)) =

Ãi+1(S
	 i
h
(x′)) = Ãi+1(S

	 i+1
h
(x′)). Both these values can be obtained by unbundling

the value of Π on L (since both x and x′ lie on L). In the other case, where S	 i+1
h
 =

S	 i
h
+1, we have Ai+1(S

	 i
h
(x)) = Ai+1(S

	 i+1
h
(S−1x)) and Ai+1 ◦ Γ̃i,1(S

	 i
h
(x)) =

Ai+1(S
	 i
h
(x′)) = Ai+1(S

	 i+1
h
(S−1x′)). These values can be obtained by unbundling

the value of Π on S−1(L). Thus, to check that Pi,0 is well formed for all points on

S	 i
h
(L), it suffices if the verifier queries Π on all points on L and S−1(L).

Robust Edge-Consistency Test
Π(R).

Use the random string R to determine a random 1st axis-parallel line in
F
m of the form L = (X, a2, . . . , am). Query the oracle Π along all points

in the lines L and S−1(L).
For i = 0, . . . , l − 1,

for all x ∈ S	 i
h
(L), reject if Pi,0 is not well formed at x. (Note

that all the values required for this verification can be obtained by
unbundling Π(L) and Π(S−1(L)).)

Zero-propagation test. For each i = 0, . . . , l−1 and b ∈ {0, 1}, Zero-Propagation

Test checks that P
(b)
i,0 vanishes on Hm by verifying that (6.3) is satisfied for all

j = 1, . . . ,m − 1 (we also need to check that P
(b)
i,m ≡ 0; however, this is taken care

of by Identity Test). Since S(Hm) = Hm, checking if P
(b)
i,0 vanishes on Hm is

equivalent to checking if P
(b)
i,0 ◦S	 i

h
 vanishes on Hm. Hence, we can perform the zero

propagation on the polynomials P
(b)
i,0 ◦ S	 i

h
; i = 0, . . . , l− 1, b ∈ {0, 1}, instead of the

polynomials P
(b)
i,0 ; i = 0, . . . , l − 1, b ∈ {0, 1}. In other words, we need to verify the

following equation instead (6.3):

P
(b)
i,j ◦ S	 i

h

(
x1, . . . , xj−1︸ ︷︷ ︸, xj , xj+1, . . . , xm︸ ︷︷ ︸

)

=

|H|−1∑
k=0

P
(b)
i,j−1 ◦ S	 i

h

(
x1, . . . , xj−1︸ ︷︷ ︸, hk, xj+1, . . . , xm︸ ︷︷ ︸

)
xk
j ∀(x1, . . . , xm) ∈ F

m.

(8.2)

958 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

This equation can be further rewritten in terms of the cyclic-shift S as follows:

P
(b)
i,j

(
S	 i

h
+j−1(x1, x2, . . . , xm)
)

=

|H|−1∑
k=0

P
(b)
i,j−1

(
S	 i

h
+j−1(hk, x2, . . . , xm)
)
xk

1

∀(x1, . . . , xm) ∈ F
m.

(8.3)

This helps us to rewrite Zero-Propagation Test with bundling as follows:
Robust Zero-Propagation Test

Π(R).
Use random string R to determine a random 1st axis-parallel line in F

m

of the form L = (X, a2, . . . , am). Query the oracle Π along all points in
the lines L and S−1(L).
For i = 0, . . . , l − 1, j = 1, . . . ,m, and b ∈ {0, 1},

unbundle Π(L) to obtain the value of P
(b)
i,j−1 ◦S	 i

h
+j−1 on all points

along the line L. Similarly, unbundle Π(S−1(L)) to obtain the value

of P
(b)
i,j ◦ S	 i

h
+j on all points along the line S−1(L) (equivalently,

this is the value of P
(b)
i,j ◦ S	 i

h
+j−1 on all points along the line L).

Reject either if the restriction of P
(b)
i,j−1◦S	 i

h
+j−1 or P
(b)
i,j ◦S	 i

h
+j−1

to L is not a polynomial of degree at most κd or if any of the points
on the line L violate (8.3).

The integrated robust verifiers. Having presented the robust version of each of
the tests, the integrated robust verifiers are as follows: Robust PCPP Verifier is
the robust analogue of PCPP Verifier, while ALMSS Robust PCPP Verifier

is that of ALMSS PCPP Verifier. Following are full descriptions of these verifiers
as well as their analyses.

8.2.1. Robust PCPP Verifier. Using the robust tests presented above, we
present a robust analogue of the PCPP of section 7.1.

Robust PCPP Verifier
W ; Π
m,λ,δ(C).

1. Using Proposition 6.11, reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
We let Sλ ⊂ F

m be a λ-biased set of size at most (log |F|m
λ)2 [AGHP92].

2. Choose a random string R of length log(|Sλ| · |F|m−1). (Note: We reuse
R in all tests, but only Low-Degree Test utilizes the full length of
R.)

3. Run Robust Low-Degree Test
Π(R).

4. Run Robust Edge-Consistency Test
Π(R).

5. Run Robust Zero-Propagation Test
Π(R).

6. Run Robust Identity Test
Π(R).

7. Run Robust Proximity Test
W ;Π(R).

Reject if any of the above tests reject.
The randomness of Robust PCPP Verifier is exactly the same as before, whereas
the query complexity and decision complexity increase by a constant factor.32

32Though the new proof oracle returns elements of Σ and not bits, we express the query complexity
as the number of bits read by the verifier rather than as the number of symbols (i.e., elements of
|Σ|) to maintain consistency throughout calculation of the query complexity into the proof and input
oracles.

ROBUST PCPS OF PROXIMITY 959

Proposition 8.7. The randomness, query, and decision complexities of Robust

PCPP Verifier are r =
(
1 − 1

m

)
log n + O(m logm) + O(log log n)+

O
(
log
(

1
δ

))
, q = O(m2n1/m log2 n) and d = Õ(q), respectively.

It is straightforward to check perfect completeness of this verifier.

Robustness analysis of the integrated verifier. For future use, it is beneficial (but,
alas, more cumbersome) to state the robustness of the integrated verifier in a way that
decouples the robustness with respect to the input oracle from the robustness with
respect to the proof oracle. Let W : [k] → {0, 1} be the input oracle and Π the proof
oracle. For every sequence of coin tosses R (and a given setting of parameters), let

ΔW,Π
inp (R) (resp., ΔW,Π

pf (R)) denote the fraction of the bits read from W (resp., Π) that
would need to be changed to make Robust PCPP Verifier accept on coin tosses
R. The following lemma states the (expected) robustness property of our verifier.

Lemma 8.8. There are constants c ∈ Z
+ and ρ > 0 such the following holds

for every n,m ∈ Z
+, δ′, δ > 0 satisfying m ≤ log n/ log log n, n1/m ≥ mcm/δ′

3
,

λ ≤ min{1/c log n, δ′
3
/mcm}, δ > δ′. If W is δ-far from satisfying the circuit, then

for any proof oracle Π : F
m → Σ, either ER[ΔW,Π

pf (R)] ≥ ρ or ER[ΔW,Π
inp (R)] ≥ δ−δ′/2.

That is, the expected robustness with respect to the input is δ−δ′/2 (which should
be compared against the proximity parameter δ), whereas the expected robustness
with respect to the proof is a universal constant. Note that combining the two bounds
into a single expected robustness parameter depends on the relative number of queries
made to the input and proof oracles. To obtain Theorem 3.1, we will later modify
Robust PCPP Verifier such that the relative number of queries is optimized to
yield the best result.

Proof. Unbundle the proof oracle Π to obtain the functions Ãi and Pi,j using
(8.2). Consider the action of PCPP Verifier (i.e., the nonrobust verifier) on the
proof oracles Ãi, Pi,j and input oracle W .

Let ε be a sufficiently small constant such that the Claims 8.1–8.5 hold. Suppose
W is δ-far from satisfying the circuit. We then know that one of the following holds
and that the corresponding test instance of PCPP Verifier rejects its input robustly
(see Claims 8.1–8.5).

1. There exists a i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,the

expected distance of Ãi (or resp., P
(b)
i,j) from satisfying Low-Degree Test

with degree parameter d (resp., κd) is at least 2ε (Claim 8.1).

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1}, such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Pi,m has expected distance at least 1 − 9ε from
satisfying Identity Test (Claim 8.2).

3. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case,
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance

at least (1 − 41ε)/5 from satisfying Edge-Consistency Test (Claim 8.3).

960 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

4. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m} and b ∈ {0, 1} such that

Δ(Pi,j , P̂i,j) ≤ 8ε,Δ(Pi,j−1, P̂i,j−1) ≤ 8ε,

and P̂i,j(. . . , xj , . . .) �≡
|H|−1∑
k=0

P̂i,j−1(. . . , hk, . . .)x
k
j .

In this case, (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from

satisfying Zero-Propagation Test (Claim 8.4).

5. Δ(Ã0, Â0) ≤ 8ε, but W and Â0|I disagree on at least δ′ fraction of the points.
In this case, with probability at least 1−δ′/4 (over the choice of the canonical
line L) either at least an ε-fraction of A0|L or at least a (δ− δ′/4)-fraction of
W |L needs to be changed to make Proximity Test accept (Claim 8.5).
This implies that either A0 has expected distance (1− δ′/4)ε ≥ ε/2 or W has
expected distance (1−δ′/4)(δ−δ′/4) ≥ (δ−δ′/2) from satisfying Proximity

Test.
For instance, lets us assume Ã0 is 8ε-far from being low degree so Low-Degree

Test rejects it robustly; that is, for a random canonical line L, the expected distance
of Ã0|L from satisfying Low-Degree Test is at least 2ε. Recall from (8.2) that Ã0(x)
is one of the coordinates in the bundled Π(x). Hence, if Ã0|L is ρ-far from satisfying
Low-Degree Test, so is ΠL from satisfying Robust Low-Degree Test. Thus,
Π has expected distance at least 2ε from satisfying Robust Low-Degree Test.
Now, the oracle positions read by Robust Low-Degree Test constitute a constant
fraction of the oracle positions read by Robust PCPP Verifier, so Π has expected
distance Ω(ε) from satisfying Robust PCPP Verifier. Thus, the robustness of
the individual test instance is transferred to the combined Robust Low-Degree

Test by bundling. The case with the other test types is similar. We thus have that
ER[ΔW,Π

pf (R)] ≥ Ω(ε) or ER[ΔW,Π
inp (R)] ≥ δ− δ′/2. The lemma then follows by setting

ρ = Ω(ε).

8.2.2. ALMSS Robust PCPP Verifier. We now describe ALMSS Robust

PCPP Verifier(which is a robust analogue of the PCPP of section 7.2) and analyze
its complexity. ALMSS Robust PCPP Verifier verifier is identical to Robust

PCPP Verifier except that Robust Proximity Test is replaced by Robust

ALMSS Proximity Test.
ALMSS Robust PCPP Verifier

W ; Π
δ (C).

1. Set parameters m = log n/ log log n and λ = 1/c log n.
Using Proposition 6.11, reduce the instance C of CktSAT, using pa-
rameter m, to an instance 〈1n, 1m,F, H, {T̃0, . . . , T̃l−1}〉 of AS-CktSAT,
and set d = m · |H|.
We let Sλ ⊂ F

m be a λ-biased set of size at most (log |F|m
λ)2 [AGHP92].

2. Choose a random string R of length log(|Sλ| · |F|m−1).
3. Run Robust Low-Degree Test

Π(R).
4. Run Robust Edge-Consistency Test

Π(R).
5. Run Robust Zero-Propagation Test

Π(R).
6. Run Robust Identity Test

Π(R).
7. Run Robust ALMSS Proximity Test

W ;Π.
Reject if any of the above tests reject.

The randomness of the ALMSS Robust PCPP Verifier is exactly the same as
before, whereas the query complexity and decision complexity increase by a constant

ROBUST PCPS OF PROXIMITY 961

factor. Furthermore, it can easily be verified that ALMSS Robust PCPP Verifier

has perfect completeness.

Proposition 8.9. The randomness, and decision complexities of ALMSS

Robust PCPP Verifier are O(log n) and poly logn, respectively.

Robustness analysis of the integrated verifier. As in the case of Robust PCPP

Verifier, it is beneficial to state the robustness of ALMSS Robust PCPP
Verifier by decoupling the robustness with respect to the input oracle from the
robustness with respect to the proof oracle. Here, however, we refer to the robustness
and soundness parameters (rather than to expected robustness).

Lemma 8.10. If W is δ-far from satisfying the circuit, then for any proof oracle
Π : F

m → Σ, with probability at least Ω(δ), either a constant fraction of the portion of
the proof oracle Π read by the verifier or the single symbol of the input oracle W read
by the verifier (i.e., W [i]) needs to be changed in order to make ALMSS Robust

PCPP Verifier accept.

Proof. This proof proceeds in the same way as the proof of Lemma 8.8. For the
sake of completeness, we present the entire proof.

Let ε be a sufficiently small constant such that Claims 8.1–8.4 hold and ε ≤ ε0/8,
where ε0 is the constant that appears in Claim 8.6. Suppose W is δ′-far from satisfying
the circuit. We then know that one of the following holds and that the corresponding
test instance of ALMSS PCPP Verifier rejects its input robustly (see Claims 8.1–
8.6).

1. There exists i ∈ {0, . . . , l − 1} such that Ãi is 8ε-far from every degree md
polynomial or there exists i ∈ {0, . . . , l − 1}, j ∈ {0, . . . ,m}, and b ∈ {0, 1}
such that P

(b)
i,j is 8ε-far from every degree κmd polynomial. In this case,

the expected distance of Ãi (resp., P
(b)
i,j) from satisfying Low-Degree Test

with degree parameter d (resp., κd) is at least 2ε (Claim 8.1).
Translating to the bundled alphabet, we have that the expected distance of
Π from satisfying Robust Low-Degree Test is at least 2ε. Since the
number of oracle positions read by ALMSS Robust PCPP Verifier is at
least a constant fraction of the number of oracle positions read by ALMSS

Robust PCPP Verifier, the expected distance of Π from satisfying ALMSS

Robust PCPP Verifier in this case is at least Ω(ε). Hence, with probabil-
ity at least Ω(ε) (= constant), at least Ω(ε) (= constant)-fraction of the proof
oracle Π needs to be modified to make ALMSS Robust PCPP Verifier

accept.

2. There exists i ∈ {0, . . . , l − 1} and b ∈ {0, 1} such that Δ(P
(b)
i,m, P̂

(b)
i,m) ≤ 8ε

and P̂i,m �≡ 0. In this case, Pi,m has expected distance at least 1 − 9ε from
satisfying Identity Test (Claim 8.2).
Arguing as in the earlier case, we have that with probability at least Ω(1−9ε),
at least Ω(1 − 9ε)-fraction of the proof oracle Π needs to be modified in this
case to make ALMSS Robust PCPP Verifier accept.

3. There exists i ∈ {0, . . . , l − 1} such that

Δ(P
(0)
i,0 , P̂

(0)
i,0) ≤ 8ε,Δ(P

(1)
i,0 , P̂

(1)
i,0) ≤ 8ε,Δ(Ãi, Âi) ≤ 8ε,Δ(Ãi+1, Âi+1) ≤ 8ε,

and P̂i,0(x) �≡ ψ′(T̃i(x), Âi(x), Âi+1(Γ̃i,0(x)), Âi+1(Γ̃i,1(x))).

In this case,
{
Pi,0(·), Ai(·), Ai+1(Γ̃i,0(·))Ai+1(Γ̃i,1(·))

}
has expected distance

at least (1 − 41ε)/5 from satisfying Edge-Consistency Test (Claim 8.3).

962 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Again, we have that with probability at least Ω(1− 41ε), at least Ω(1− 41ε)-
fraction of the proof oracle Π needs to be modified in this case to make
ALMSS Robust PCPP Verifier accept.

4. There exists i ∈ {0, . . . , l − 1}, j ∈ {1, . . . ,m}, and b ∈ {0, 1} such that

Δ(Pi,j , P̂i,j) ≤ 8ε,Δ(Pi,j−1, P̂i,j−1) ≤ 8ε,

and P̂i,j(. . . , xj , . . .) �≡
|H|−1∑
k=0

P̂i,j−1(. . . , hk, . . .)x
k
j .

In this case, (P
(b)
i,j , P

(b)
i,j−1) has expected distance at least (1 − 19ε)/2 from

satisfying Zero-Propagation Test (Claim 8.4).
We have that with probability at least Ω(1−19ε), at least Ω(1−19ε)-fraction
of the proof oracle Π needs to be modified in this case to make ALMSS

Robust PCPP Verifier accept.
5. Δ(Ã0, Â0) ≤ 8ε ≤ ε0, but W and Â0|I disagree on at least δ-fraction of the

points. In this case, with probability at least Ω(δ) (over the choice of index i
and direction y), either at least a 1/2-fraction of A0|L or W [i] (i.e., the entire
portion of the input oracle read by the verifier) needs to be changed to make
ALMSS Proximity Test accept.
This implies that with probability at least δ, either a constant fraction of the
proof oracle Π or W [i] (i.e., the entire portion of the input oracle read by the
verifier) needs to be modified to make the verifier accept.

Since we do not know which of the five cases occur, we can guarantee only the
weakest of the five claims. Hence, with probability at least Ω(δ), either a constant
fraction of the portion of the proof oracle Π read by the verifier or W [i] (i.e., the
entire portion of the input oracle W read by the verifier) needs to be changed in order
to make ALMSS Robust PCPP Verifier accept.

8.3. Robustness over the binary alphabet. The transformation from a ro-
bust verifier over the alphabet Σ to one over the binary alphabet is analogous to
converting non-Boolean error-correcting codes to Boolean ones via “code concatena-
tion.” This transformation is exactly the same transformation as the one in the proof
of Lemma 2.13. However, we cannot directly use Lemma 2.13 because we may apply
the code concatenation process only to the proof oracle Π and not to the input or-
acle W . However, this is not a problem because the input oracle is already binary.
Recall that applying the aforementioned transformation maintains the robustness of
the proof oracle up to a constant factor, whereas the robustness of the input oracle
remains unchanged (like the input oracle itself). Actually, in order to avoid decoding
(by the modified decision circuit), we maintain the original proof oracle along with
its encoded form. Thus, the complexity of this circuit will depend on the minimum
between the complexity of encoding and decoding (rather than on the complexity of
decoding). Details follow.

Let ECC : {0, 1}log |Σ| → {0, 1}b for b = O(log |Σ|) be a binary error-correcting
code of constant relative minimum distance, which can be computed by an explicit
circuit of size O(log |Σ|) [Spi96]. We augment the original proof oracle Π, viewed
now as having log |Σ|-bit long entries (i.e., elements of Σ) with an additional oracle
Υ having b-bit long entries, where Υ(x) is assumed to be ECC(Π(x)).

The actual transformation. We describe the transformation to the binary alpha-
bet in the case of Robust PCPP Verifier. ALMSS Robust PCPP Verifier

ROBUST PCPS OF PROXIMITY 963

can be transformed similarly. Our new verifier V , on oracle access to the input W
and proof Π ◦ Υ, will simulate Robust PCPP Verifier. The queries to the in-
put oracle are performed just as before. However, for each query x ∈ F

m in the
proof oracle Π made by Robust PCPP Verifier, V will query the correspond-
ing log |Σ| bits in Π(x) and the b bits in Υ(x). Thus, the query complexity of
V is at most log |Σ| + b times the number of queries issued by the earlier verifier.
Since b = O(log |Σ|), the query complexity of the new verifier V is a constant times
that of the previous one,33 and the decision complexity will increase by at most the
encoding time (which can even be linear). The randomness is exactly the same.
The action of the new verifier V is as follows: Suppose Robust PCPP Verifier

issues queries x1, . . . , xq1 to the proof oracle Π, and queries i1, . . . , iq2 to the in-
put oracle; then V issues queries x1, . . . , xq1 to the proof oracle Π, a similar set
of queries x1, . . . , xq1 to the proof oracle Υ, and i1, . . . , iq2 to the input oracle. V
accepts (Π(x1), . . . ,Π(xq1),Υ(x1), . . . ,Υ(xq1),W (i1), . . . ,W (iq2)) iff Robust PCPP

Verifier accepts (Π(x1), . . . ,Π(xq1),W (i1), . . . ,W (iq2)) and Υ(xi) = ECC(Π(xi))
for all i = 1, . . . , q1. It is straightforward to check that V has perfect completeness
if Robust PCPP Verifier has perfect completeness. For the robust soundness,
we define ΔW,Π◦Υ

inp (R) and ΔW,Π◦Υ
pf (R) with respect to V analogously as in the state-

ment immediately preceding Lemma 8.8, but referring to distance over {0, 1} (rather
than Σ) for the proof oracle. The proof of the following claim regarding the robust
soundness of V mimics the proof of Lemma 2.13.

Lemma 8.11. There are constants c ∈ Z
+ and ρ′ > 0 such that the following

holds for every n,m ∈ Z
+, δ, δ′ > 0 satisfying m ≤ log n/ log log n, n1/m ≥ mcm/δ′

3
,

λ ≤ min{1/c log n, δ′
3
/mcm}, δ > δ′. If W is δ-far from satisfying the circuit, then for

any proof oracles Π : F
m → {0, 1}log |Σ|,Υ : F

m → {0, 1}b, either ER[ΔW,Π◦Υ
pf (R)] ≥ ρ′

or ER[ΔW,Π◦Υ
inp (R)] ≥ δ − δ′/2.

A similar transformation for ALMSS Robust PCPP Verifier yields a verifier,
the robustness of which is stated in Lemma 8.12 following. It is to be noted that the
robustness of the proof oracle (i.e., ρ′ in Lemma 8.11 and Ω(1) in Lemma 8.12) is a
constant factor smaller than the corresponding parameter in the nonbinary verifier
(i.e., the constant ρ in Lemma 8.8 and a different Ω(1) in Lemma 8.10). (Indeed, this
constant factor appears also in Lemma 2.13.)

Lemma 8.12. If W is δ-far from satisfying the circuit, then for any proof oracles
Π : F

m → {0, 1}log |Σ|,Υ : F
m → {0, 1}b, with probability at least Ω(δ), either a

constant (i.e., Ω(1)) fraction of the portion of the proof oracle Π◦Υ read by the verifier
or W [i] (i.e., the entire portion of the input oracle W read by the verifier) needs to be
changed in order to make the transformed ALMSS Robust PCPP Verifier accept.

We finally turn to deriving Theorem 3.1 (and Theorem 3.2).
Proof of Theorem 3.1. Theorem 3.1 is proved using Robust PCPP Verifier

defined in this section, setting λ = min{1/c log n, δ3/mcm}. The randomness, query,
and decision complexity of Robust PCPP Verifier (i.e., before the transformation
to the binary alphabet) are as mentioned in Proposition 8.7. As mentioned earlier in
this section, the transformation from the alphabet Σ to the binary alphabet maintains
the randomness complexity, while the query (and decision) complexity increases by
at most a constant factor.

The manner in which the robustness of the verifier is expressed in Lemma 8.11

33Recall that the query complexity of the old verifier was measured in terms of “bits of informa-
tion” rather than in terms of queries. That is, each query, answered by an element of Σ, contributes
log2 |Σ| to the query complexity.

964 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

differs from that in Theorem 3.1 in two aspects. First, Lemma 8.11 expresses the ro-
bustness for the proof and input oracles separately, while Theorem 3.1 expresses them
together. Second, Lemma 8.11 expresses robustness in terms of expected robustness,
while Theorem 3.1 does it in terms of standard robustness. We obtain robustness as
claimed in Theorem 3.1 in two steps, first by combining the proof and input oracles
and then by moving from expected robustness to standard robustness.

First, we combine the robustness of the proof and input oracles, which were
expressed separately in Lemma 8.11. This is done by giving adequate weights to the
two oracle portions in the decision circuits (i.e., repeating queries; see Proposition 7.3).
Let n,m, δ, and γ be as specified in Theorem 3.1. We give weight (1−γ/3) to the input
oracle and γ/3 to the proof oracle. Recall that these weights mean that each query to
the input oracle is repeated several times such that the relative length of the input-
part in the decision circuit is 1− γ/3. These repeated queries may increase the query
(and decision) complexity by a factor of at most O(1/γ). Note that weighting does
not affect the randomness complexity (or any other parameter, such as the proximity
parameter δ).

Since n1/m ≥ mcm/δ3, we have n1/m ≥ 8000(cFm
2)m−1/δ3, or equivalently

n ≥ 8000|F|m−1/δ3. Hence, Lemma 8.11 can be applied. Setting δ′ = 2δγ/3 in

Lemma 8.11, we have that either ER[ΔW,Π◦Υ
pf (R)] ≥ ρ′ or ER[ΔW,Π◦Υ

inp (R)] ≥ δ−δ′/2 =
δ(1 − γ/3). Note that the first expression refers to the “expected robustness” of the
proof-part, whereas the second expression refers to the input-part. The overall ex-
pected robustness is obtained by a weighted average of these two expressions, where
the weights are with respect to the aforementioned weighting (which assigns weight
γ/3 to the input-part). Hence, the expected robustness with respect to the said
weighting is

γ

3
· ER[ΔW,Π◦Υ

pf (R)] +
(
1 − γ

3

)
· ER[ΔW,Π◦Υ

inp (R)] ≥ min

{
γ

3
· ρ′,
(
1 − γ

3

)2

· δ
}

.

This quantity is lower-bounded by ρ � (1 − γ/3)2δ since δ ≤ γ/c for a suitably large
c (and ρ′ > 0 is a constant). We have thus obtained a robust PCPP for CktVal

with randomness and decision complexities as claimed in Proposition 8.7, perfect
completeness, and ρ = (1 − γ/3)2δ expected robustness for proximity parameter δ.

We now move from expected robustness to standard robustness, by using Lemma
2.11. Applying Lemma 2.11 with a slackness parameter of γ′ � γρ/3 and s = γ/3
yields a robust-soundness error of γ/3 ≤ γ with robustness parameter of ρ − γ′ =
(1−γ/3)3 · δ ≥ (1−γ)δ for proximity parameter δ. Using γ ≤ 1/2, note that the ran-
domness increases by an additive term of O(log(1/γ′)) + O(log(1/γ)) = O(log(1/δ)),
and the decision complexity increases by a multiplicative factor of O

(
1/(γ · (γρ)2)

)
=

poly(1/δ). Hence, the randomness, query, and decision complexities of the verifier are
as claimed in Theorem 3.1

Proof of Theorem 3.2. For this purpose we use ALMSS Robust PCPP
Verifier described in this section. This verifier is then transformed to one over
the binary alphabet as indicated earlier in this section. We combine the robustness
of the proof and input oracles by giving equal weights to both oracles. This weight-
ing may increase the query (and decision) complexity by at most a factor of 2 and
has no affect on any other parameter. Proposition 8.9 and Lemma 8.12 then imply
Theorem 3.2.

8.4. Linearity of encoding. In this section we point out that, for linear circuits
(to be defined below), the mapping from an assignment to the corresponding PCPP

ROBUST PCPS OF PROXIMITY 965

is linear. Throughout this section, “linear” means F2-linear (yet, we will sometimes
refer to F-linearity, for an extension field F of F2). The main motivation of the current
study is to derive linear codes satisfying local-testability and relaxed local-decodability
(i.e., Theorems 1.4 and 1.5, respectively). Specifically, the constructions presented in
section 4 yield linear codes provided that the corresponding PCPP is linear in the
aforementioned sense.

We call a circuit linear if it is a conjunction of linear constraints. However, instead
of representing this conjunction via AND gates, it is more convenient for us to work
with circuits that have multiple output gates, i.e., one for each linear constraint. See
the following definition.

Definition 8.13. A multi-output circuit is linear if all its internal gates are
parity gates and an input is accepted by it iff all output gates evaluate to zero.

Proposition 8.14. If C is a linear circuit, then there is a linear transformation
T mapping satisfying assignments w of C to proof oracles T (w) such that the PCPP
verifier of Theorem 3.1 will, on input C, accept oracle (w, T (w)) with probability 1.
Moreover, all the decision circuits produced by the verifier, on input C, can be made
linear (while maintaining the claimed decision complexity). A similar result is true
for the PCPP verifier of Theorem 3.2.

In the rest of this section, we provide a proof of Proposition 8.14, starting with
an assignment w that satisfies the linear circuit. We prove that the mapping from w
to a proof oracle is linear by reviewing our construction of this mapping and ensuring
that all steps in this construction are linear transformations.

Phase I: Structured-CktSAT. In this phase (described in section 6.1) we
write down the values to all gates of the circuit and route them along the wrapped
de Bruijn graph. Actually, we make a few minor and straightforward modifications
to Definition 6.3: we allow multiple output gates (rather than a single output gate)
and require that each such gate evaluates to zero (rather than to 1).34 Also, here we
deal with gate types that are linear (e.g., XOR) rather than arbitrary (e.g., AND and
OR).

Since all the circuit gates are linear functions of the input, the values on the wires
leaving the zeroth layer of the well-structured circuit (i.e., the last two bits of the
mapping A0 : {0, 1}N → {0, 1}4 in section 6.1) are linear in the input (i.e., in w). As
to Ai, i > 0, (and the first two bits of A0) notice that it is obtained by permuting
the values of the previous layer Ai−1 and setting some wires to zero (if they are not
needed in the routing (e.g., gates 3 and 4 in Figure 3)). These operations are linear,
and so all assignment functions are linear in the input.

Phase II: Arithmetization. In this phase (described in section 6.2) we extend the
values given by Ai to an evaluation of a low-degree multivariate polynomial over a
finite field F that is an extension field of F2 of degree �. Each value of Ai is four
bits long (say, b0, b1, b2, b3) and identified with the element b0e0 + b1e1 + b2e2 + b3e3,
where e0, . . . , e�−1 is a basis for F viewed as a vector space over F2. We view Ai as
a function Ai : Hm → F and construct a low-degree extension Ãi : F

m → F of Ai by
interpolation on all inputs in Hm and use these values to interpolate and evaluate Ãi

on all points in F
m. Notice that interpolation is F-linear, and hence also F2-linear.

We conclude that the values of Ãi on all points in F
m are a linear transformation of

the values of Ai. Since Ai is linear in the input assignment, so is Ãi.
Clarification. Many parts of our encoding (starting with Ãi) consist of evaluations

of multivariate polynomials P (x) over F
m. The linearity we claim is not linearity in

34Recall that an input is accepted by the linear circuit iff all output gates evaluate to zero.

966 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

x (the free variables of the polynomial). Rather, we claim that the table of values
{P (a) : a ∈ F

m} is linear in the initial assignment w, which may be viewed as the
information encoded in this table. In contrast, throughout this section, x is merely an
index to this table. For example, in Phase II we showed that the table {Ãi(a) : a ∈
F
m} is obtained by a linear transformation applied to the table {Ai(a

′) : a′ ∈ Hm}
(but we certainly do not claim that Ãi(a) is linear in a). That is, each Ãi(a) is a
linear combination of the Ai(a

′)’s.

Phase III: The constraint polynomials. We now discuss the polynomials P
(0)
i,0 and

P
(1)
i,1 defined in (6.2) and show that their values are a linear transformation of the

values of Ãi. The first polynomial (i.e., P
(0)
i,0) is obtained by applying the univariate

polynomial ψ0 defined in (6.1) to each value of Ãi (i.e., P
(0)
i,0 (x) = ψ0(Ãi(x))). By

definition, ψ0 evaluates to zero iff its input, when represented as a vector in F
�
2 ,

belongs to the linear space spanned by {e0, e1, e2, e3}. This polynomial defines a
linear transformation, as claimed by the following lemma.

Lemma 8.15. Let L be an F2-linear subspace of F = F
�
2 and ψL(t) =

∏
α∈L(t−α).

Then the mapping ψL : F → F is linear.
Proof. We use the fact that for any integer i, the transformation t → t2

i

is linear;

that is, (t + t′)2
i

= t2
i

+ t′
2i

. Our main claim is that the polynomial ψL(t) can be

written as
∑

i cit
2i

and hence is linear (being a sum of linear transformations). We
prove this claim by induction on the dimension of L ⊆ F

�
2 . Indeed, for dim(L) = 0

(i.e., L = {0�}), it holds that ψL(t) = t, and our claim follows. In the induction
step, write L as L = L′ ∪ {α+L′}, where L′ is a linear space of dimension k − 1 and
α ∈ L \L′. Clearly, ψL(t) = ψL′(t) ·ψL′(t+α). Using the inductive hypothesis for L′

(and the linearity of t → t2
j

), we get

ψL(t) =

(∑
i

ci · t2
i

)
·

⎛
⎝∑

j

cj · (t + α)2
j

⎞
⎠

=

(∑
i

ci · t2
i

)
·

⎛
⎝∑

j

cj ·
(
t2

j

+ α2j
)⎞⎠

=
∑
i,j

cicjt
2i

t2
j

+
∑
i,j

cicjt
2i

α2j

=
∑
i

c2i t
2i+1

+
∑
i

c′it
2i

,

where c′i =
∑

j cicjα
2j

and
∑

i �=j cicjt
2i

t2
j

= 2
∑

i<j cicjt
2i

t2
j

= 0 (because F has
characteristic 2). This completes the proof of the inductive claim.

We now turn to the second polynomial, P
(1)
i,0 . Recall that P

(1)
i,0 (x) = ψ1(s, a, a0, a1),

where s = T̃i(x), a = Ãi(x), and aj = Ãi+1(Γ̃i,j(x)). It can be verified that T̃i(x)
(which represents the gate type) is independent of the input w to the circuit, and by
our previous discussion a, a0, a1 are linear in the input w (to the circuit). Thus, it will
suffice to show that ψ′ is linear in its last three inputs. When discussing (6.2) we did
not go into the specific construction of the polynomial ψ′ because only its function-
ality mattered, and we showed that there exists a constant-degree polynomial that
does the job. But for our current purposes (of showing linearity) we need to present
a specific polynomial ψ′ that is linear (as an operator over F

�
2) and has the desired

ROBUST PCPS OF PROXIMITY 967

properties needed by the verification process. To do this, we recall that C is the set of
allowable gates in the well-structured circuit, define δs0(z) to be the (minimal degree)
univariate polynomial of degree |C| that is 1 if z = s0 and 0 if z ∈ C \ {s0}, and write
ψ′ as

ψ′(s, a, a0, a1) =
∑
s0∈C

δs0(s) · ψ′
s0(a, a0, a1).(8.4)

Claim 8.16. For any s0 ∈ C that can occur as a gate in a well-structured circuit
constructed from a linear circuit C, the polynomial ψ′

s0(a, a0, a1) of (8.4) can be written
as a linear transformation (of (a, a0, a1)).

Proof. Recall that the value of ψ′
s0(a, a0, a1) is assumed to represent whether or

not the four least significant bits of the three inputs (denoted a′, a′0, and a′1) satisfy
some specified condition. By inspecting Definition 6.3, it can be verified that (in our
case) this condition is linear. That is, ψ′

s0(a, a0, a1) = 0 iff the triplet (a′, a′0, a
′
1),

viewed as a 12-bit vector over F2, belongs to a specific linear space Ls0 ⊆ F
12
2 .

Recall that we may assume that a = 0f−4a′ (and similarly for a0 and a1) because

this condition is imposed by the constraint polynomial P
(0)
i,0 . Thus, we seek a polyno-

mial (over F
3) such that if each of its three inputs belongs to Span(e0, . . . , e3), then

it will output 0 iff the inputs reside in the linear space that is analogous to Ls0 ; that
is, the input (a, a0, a1) should evaluate to 0 iff a′ ◦ a′0 ◦ a′1 ∈ Ls0 . To obtain this, we
assume the existence of α ∈ F such that multiplying an element by α corresponds to a
left cyclic-shift by four positions (e.g., α · σ0 · · ·σf−1 = σ4 · · ·σf−1σ0 · · ·σ3). Such an
element exists for the standard representation of F. Using this element we can write
ψ′
s0 : F

3 → F as

ψ′
s0(a, a0, a1) = ψLs0

(α2a + αa0 + a1),

where ψLs0
is the univariate polynomial that is zero iff its input is in Ls0 . Note that,

for inputs in Span(e0, . . . , e3), indeed ψ′
s0(a, a0, a1) = 0 iff a′ ◦ a′0 ◦ a′1 ∈ Ls0 . By

Lemma 8.15, ψLs0
is linear. It follows that ψ′

s0 is linear because multiplication by a
fixed element of F (i.e., α) is a linear operation.

Recall δs0(s) depends only on the circuit and not on its input (i.e., w). Thus,
each summand of (8.4) is linear in w, and hence the sum is itself linear in w. We
conclude that the table of evaluations of the polynomials given by (6.2) is obtained
by linear transformations applied to the input to the circuit.

Phase IV: The sum-check polynomials. In this phase (described by (6.3)) we apply

a sequence of interpolations to previously constructed polynomials P
(b)
i,j . Each such

interpolation is an F-linear transformation and hence also an F2-linear one. Thus, the

sequence of polynomials P
(b)
i,j is obtained by a linear transformation applied to the

input.
Phase V: Bundling and encoding. In this phase (described in sections 8.2 and 8.3)

we apply some cyclic-shifts to the (values of the) sequence of l+2l(m+1) polynomials
obtained in the previous phases. Then we bundle the polynomials together, obtaining
an alphabet of size |F|l+2l(m+1). This bundling does not change the encoding (only
the partitioning of the proof into symbols) and hence is also a linear transformation.
Finally, we apply an error-correcting code to each symbol in order to reduce the
alphabet size (from |F|l+2l(m+1)) to binary, and this is also a linear transformation as
long as the error-correcting code is itself linear.

The result of this shifting, bundling, and encoding is the actual proof given to
the (outer) verifier of Theorem 3.1 (the verifier of Theorem 3.2 is dealt with in a

968 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

similar fashion). Notice that this transformation from l+2l(m+1) polynomials (each
evaluated in F) to one proof (over the binary alphabet) is linear because all three
parts of it are linear.

Now we argue that all tests performed by the verifier are linear and the decision
complexity claimed in Theorems 3.1 and 3.2 can be achieved by using small linear
circuits. This can be seen by inspecting the various tests described in section 6.3,
noticing that they all check either linear or F-linear conditions, and applying the
general result of Strassen [Str73], showing that any algebraic circuit that computes a
linear function (as a formal polynomial) can be converted into a linear circuit with
only a constant-factor increase in size. This completes the proof of Proposition 8.14.

Part III. Appendices.

Appendix A. Hadamard code–based PCPP. In this section we note that the
Hadamard code–based inner verifier from Arora et al. [ALM+98] can be converted
into a PCPP. Recall that the inner verifier of [ALM+98] accesses O(1) input oracles,
where the ith oracle is assumed to provide the Hadamard encoding of some string wi,
and verifies that their concatenation satisfies some given circuit C.

Here we simplify this verifier to work with a single string w, and the verifier
accesses a single input oracle that represents this string itself (not some encoding of
it) and verifies that w is close to an assignment acceptable by the circuit C given as
explicit input.

Theorem A.1. There exists a constant δ0 > 0 such that there exists a PCPP for
CktVal (for circuits of size n) with randomness complexity O(n2), query complexity
O(1), perfect completeness, soundness error 1 − δ, and proximity parameter 5δ for
any δ ≤ δ0. That is, inputs that are δ-far from satisfying the circuit are rejected with
probability at least min(δ, δ0)/5.

Notice that we do not claim robustness of this PCPP. This is because we don’t
intend to use this verifier (or any verifier derived from it) as the outer verifier during
composition. However, this verifier is robust (in a trivial sense). Indeed, any PCPP
with O(1) query complexity is trivially ρ-robust for some constant ρ > 0 (since the rel-
ative distance between two query patterns is lower-bounded by the inverse of number
of bits queried).

Proof. Let V denote the claimed verifier. We first list the oracles used by V , then
we describe the tests that V performs, and finally we verify that V ’s complexities are
as claimed and analyze its performance (most notably its soundness and proximity).

Oracles. Let C be a circuit with n gates on m input bits. The verifier accesses an
input oracle W : [m] → {0, 1} (representing a string w ∈ {0, 1}m) and a proof oracle
Π = (A,B), with A : {0, 1}n → {0, 1} and B : {0, 1}n×n → {0, 1}.

To motivate the verifier’s tests, we describe what is expected from the oracles in
the “completeness” case, i.e., when C(w) = 1. The input oracle, by definition, gives
the string w, i.e., W [i] = wi. Now let z ∈ {0, 1}n be the string of values of all the
gates of the circuit C (including the input, the internal gates, and the output gate(s)).
Without loss of generality, assume z = w ◦ y, where y represents the values assumed
for internal gates. The oracle A is expected to give the values of all linear functions at
z (over F2), and the oracle B is supposed to give the value of all quadratic functions
at z. More precisely, A = A[x]x∈{0,1}n is expected to be A[x] =

∑n
i=1 xizi = xT z

(where x and z are thought of as column vectors). Similarly, B = B[M]M∈{0,1}n×n

is expected to be B[M] =
∑

i,j Mijzizj = zTMz (where M is an n × n matrix). In
order to verify that w satisfies C, the verifier will verify that A and B have indeed
been constructed according to some string z as above, that z represents an accepting

ROBUST PCPS OF PROXIMITY 969

computation of the circuit, and finally that A is the encoding of some string w′ ◦ y,
where w′ is close to the string w given by the input oracle W .

Tests. Given the circuit C, the verifier first constructs polynomials P1(z), . . . ,
Pn(z) as follows. Viewing the variables {zi} as representing the values at the indi-
vidual gates of the circuit C (with z1, . . . , zm being the input gates), the polynomial
Pi(z) is the quadratic polynomial (over F2) expressing the constraint imposed by the
ith gate of the circuit on an accepting computation. For example,

Pi(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi − zjzk if the ith gate is an AND gate with inputs from

gates j and k.

zi − zj − zk + zjzk if the ith gate is an OR gate with inputs from

gates j and k.

zi − (1 − zj) if the ith gate is a NOT gate with input from

gate j.

zi − (zj + zk) if the ith gate is a PARITY gate with inputs from

gates j and k.

1 − zj if the ith gate is an output gate with input from

gate j.

0 if the ith gate is an input gate (i.e., i ≤ m).

Note that z = w ◦ y reflects the computation of C on an acceptable input w iff
Pi(z) = 0 for every i ∈ [n]. The verifier conducts the following tests.

Codeword tests. These tests refer to (A,B) being a valid encoding of some string
z ∈ {0, 1}n. That is, these tests check that both A and B are linear functions, and
that B is consistent with A. In the latter check, the verifier employs a self-correction
procedure (cf. [BLR93]) to the oracle B. (There is no need to employ self-correction
to A because it is queried at random locations.)

Linearity of A. Pick x1, x2 uniformly at random from {0, 1}n and verify that
A[x1 + x2] = A[x1] + A[x2].
Linearity of B. Pick M1, M2 uniformly at random from {0, 1}n×n and verify
that B[M1 + M2] = B[M1] + B[M2].
Consistency of A and B. Pick x1, x2 uniformly at random from {0, 1}n and M
uniformly from {0, 1}n×n and verify that B[M +x1x

T
2]−B[M] = A[x1]A[x2].

Circuit test. This test checks that the string z encoded in (A,B) represents an
accepting computation of C; that is, that Pi(z) = 0 for every i ∈ [n]. The test
checks that a random linear combination of the Pi’s evaluates to 0, while employing
self-correction to A and B.

Pick α1, . . . , αn ∈ {0, 1} uniformly and independently and let
∑n

k=1 αkPk(z) =
c0+
∑

i �izi+
∑

i,j Qi,jzizj . Pick x ∈ {0, 1}n and M ∈ {0, 1}n×n uniformly at random.
Verify that c0 + (A[x + �] −A[x]) + (B[M + Q] −B[M]) = 0.

Proximity test. This test checks that the m-bit long prefix of the string z, encoded
in A, matches (or is close to) the input oracle W , while employing self-correction to
A.

Pick j ∈ [m] and x ∈ {0, 1}n uniformly. Let ej ∈ {0, 1}n denote the vector that
is 1 in the jth coordinate and 0 everywhere else. Verify that W [j] = A[x+ ej]−A[x].

The verifier accepts if all the tests above accept; otherwise it rejects.

Resources. The verifier uses O(n2) random bits and makes O(1) binary queries.

970 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

Completeness. It is straightforward to see that if w, the string given by W , satis-
fies C, then letting z be the set of values of the gates of C and letting A[x] = xT z and
B[M] = zTMz will satisfy all tests above. Thus the verifier has perfect completeness.

Soundness (with proximity). It follows directly from the analysis of [ALM+98]
that there exists a δ0 > 0 such that for every δ ≤ δ0, if Codeword tests and Circuit
test above accept with probability at least 1 − δ, then the oracle A is 2δ-close to
the Hadamard encoding of some string z = w′ ◦ y such that C(w′) accepts. Now we
augment this soundness with a proximity condition. Suppose the verifier also accepts
Proximity test with probability at least 1−δ. Then we have that wj �= A[x+ej]−A[x]
with probability at most δ. Furthermore, the events A[x + ej] �= (x + ej)

T z and
A[x] �= xT z happen with probability at most 2δ each. Thus, with probability at
least 1 − 5δ (over the possible choices of j and x), both wj = A[x + ej] − A[x] and
A[x + ej] −A[x] = (x + ej)

T z − xT z hold. Since (x + ej)
T z − xT z = eTj z = zj = w′

j ,
it follows that, with probability at least 1 − 5δ (over the choices of j), wj = w′

j . In
other words, the string w represented by the oracle W is at distance at most 5δ away
from some string w′ that is accepted by the circuit C.

Appendix B. Randomness-efficient low-degree tests and the sampling
lemma. Following [BSVW03], our construction makes heavy use of small-biased
spaces [NN93] to save on randomness when choosing random lines. For a field F and
parameters m ∈ Z

+ and λ > 0, we require a set S ⊆ F
m that is λ-biased (with respect

to the additive group of F
m). Rather than define small-biased spaces here, we simply

state the properties we need. (See, e.g., [BSVW03] for definitions and background on
small-biased spaces.)

Lemma B.1. For every F of characteristic 2, m ∈ Z
+, and λ > 0, there is an ex-

plicit construction of a λ-biased set S ⊆ F
m of size at most (log |Fm|)/λ2 [AGHP92].

We now discuss the properties of such sets that we will use.

Expanding Cayley graphs. λ-biased sets are very useful pseudorandom sets in
algebraic applications, and this is due in part to the expansion properties of the
Cayley graphs they generate. See the following lemma.

Lemma B.2. If S ⊆ F
m is λ-biased and we let GS be the graph with vertex set

F
m and edge set {(x, x + s) : x ∈ F

m, s ∈ S}, then all the nontrivial eigenvalues of
GS have absolute value at most λ|S|.

Randomness-efficient line samplers. In [BSVW03], Lemma B.2 was used to prove
the following sampling lemma. This lemma says that if one wants to estimate the
density of a set B ⊆ F

m using lines in F
m as the sample sets, one does not need to

pick a random line in F
m which costs 2 log |Fm| random bits. A pseudorandom line

whose slope comes from a λ-biased set will do nearly as well, and the randomness is
only (1 + o(1)) · log |Fm|. In what follows, lx,y is the line passing through point x in
direction y, formally; lx,y = {x + ty : t ∈ F}

Lemma B.3 ([BSVW03, Sampling Lemma 4.3]). Suppose S ⊆ F
m is λ-biased.

Then, for any B ⊆ F
m of density μ = |B|/|Fm|, and any ζ > 0,

Prx∈Fm,y∈S

[∣∣∣∣ |lx,y ∩B|
|lx,y|

− μ

∣∣∣∣ > ζ

]
≤
(

1

|F| + λ

)
· μ

ζ2
.

Randomness-efficient low-degree tests. Ben-Sasson et al. [BSVW03] use the ran-
domness-efficient sampling lemma, Lemma B.3, to obtain randomness-efficient low-
degree tests by performing a “line versus point” test only for pseudorandom lines with
a direction y coming from a small λ-biased set. That is, for a set S ⊆ F

m, we consider

ROBUST PCPS OF PROXIMITY 971

lines of the form lx,y(t) = x + ty for x ∈ F
m and y ∈ S, and let L be the set of all

such lines, where each line is parameterized in a canonical way.
Then for functions f : F

m → F and g : L → Pd, where Pd is the set of univariate
polynomials of degree at most d over F, we let LDTf,g

S,d be the test that uniformly

selects l
R←L � {lx,y : x ∈ F

m, y ∈ S} and t ∈ F and accepts iff g(l)(t) = f(l(t)). That
is, the value of the degree d univariate polynomial g(l) at point t equals the value of f
at l(t). We quote the main theorem of [BSVW03] and will use it in our constructions.

Theorem B.4 ([BSVW03, Theorem 4.1]). There exists a universal constant
α > 0 such that the following holds. Let d ≤ |F|/3,m ≤ α|F|/ log |F|, S ⊆ F

m be a
λ-biased set for λ ≤ α/(m log |F|), and δ ≤ α. Then, for every f : F

m → F and
g : L → Pd such that f is at least 4δ-far from any polynomial of degree at most md,
we have the following:

Pr[LDTf,g
S,d = rej] > δ.

Acknowledgments. We are grateful to Avi Wigderson for collaborating with us
at early stages of this research and to Irit Dinur for inspiring discussions at late stages
of this research. We thank Sergey Yekhanin and Jaikumar Radhakrishnan for bringing
to our attention the “algebraic AND” mentioned in footnote 28. We thank the two
anonymous referees for their careful reading and many comments which improved the
presentation.

REFERENCES

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, Simple constructions of al-
most k-wise independent random variables, Random Structures Algorithms, 3
(1992), pp. 289–304.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification
and the hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.
(Preliminary version in Proceedings of the 33rd IEEE Symposium on Foundations
of Computer Science, 1992, pp. 14–23.)

[AS98] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization
of NP, J. ACM, 45 (1998), pp. 70–122. (Preliminary version in Proceedings of the
33rd IEEE Symposium on Foundations of Computer Science, 1992, pp. 2–13.)

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, Checking computations in
polylogarithmic time, in Proceedings of the 23rd ACM Symposium on Theory of
Computing, New Orleans, LA, 1991, pp. 21–31.

[Bar01] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the
42nd IEEE Symposium on Foundations of Computer Science, Las Vegas, NV,
2001, pp. 106–115.

[BIKR02] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond, Breaking the
O(n1/(2k−1)) barrier for information-theoretic private information retrieval, in
Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science,
Vancouver, BC, Canada, 2002, pp. 261–270.

[BGS95] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs, and
nonapproximability—towards tight results, SIAM J. Comput., 27 (1998), pp. 804–
915. (Preliminary version in Proceedings of the 36th IEEE Symposium on Foun-
dations of Computer Science, 1995, pp. 422–431.)

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically
checkable proofs and applications to approximation, in Proceedings of the 25th
ACM Symposium on Theory of Computing, San Diego, CA, 1993, pp. 294–304.

[BGH+04a] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust
PCPs of proximity, shorter PCPs and applications to coding, in Proceedings of
the 36th ACM Symposium on Theory of Computing, Chicago, IL, 2004, pp. 1–10.

[BGH+04b] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust
PCPs of Proximity, Shorter PCPs and Applications to Coding, Tech. report

972 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

TR04-021, Electronic Colloquium on Computational Complexity, 2004. Available
online at http://eccc.hpi-web.de/eccc-reports/2004/TR04-021/index.html

[BGH+05] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Short PCPs
verifiable in polylogarithmic time, in Proceedings of the 20th IEEE Conference
on Computational Complexity, San Jose, CA, 2005, pp. 120–134.

[BHR05] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3CNF properties are
hard to test, SIAM J. Comput., 35 (2005), pp. 1–21. (Preliminary version in
Proceedings of the 35th ACM Symposium on Theory of Computing, 2003, pp.
345–354.)

[BS05] E. Ben-Sasson and M. Sudan, Simple PCPs with poly-log rate and query complexity,
in Proceedings of the 37th ACM Symposium on Theory of Computing, Baltimore,
MD, 2005, pp. 266–275.

[BSVW03] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson, Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets, in Proceedings of the 35th
ACM Symposium on Theory of Computing, San Diego, CA, 2003, pp. 612–621.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to
numerical problems, J. Comput. System Sci., 47 (1993), pp. 549–595. (Preliminary
version in Proceedings of the 22nd ACM Symposium on Theory of Computing,
1990, pp. 73–83.)

[BOT02] A. Bogdanov, K. Obata, and L. Trevisan, A lower bound for testing 3-colorability
in bounded-degree graphs, in Proceedings of the 43rd IEEE Symposium on Foun-
dations of Computer Science, Vancouver, Canada, 2002, pp. 93–102.

[BT04] A. Bogdanov and L. Trevisan, Lower bounds for testing bipartiteness in dense
graphs, in Proceedings of the 19th IEEE Conference on Computational Complex-
ity, Amherst, MA, 2004, pp. 75–81.

[BdW04] H. Buhrman and R. de Wolf, On Relaxed Locally Decodable Codes, manuscript,
2004.

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revis-
ited, J. ACM, 51 (2004), pp. 557–594. (Preliminary version in Proceedings of the
30th ACM Symposium on Theory of Computing, 1998, pp. 209–218.)

[Coo88] S. A. Cook, Short propositional formulas represent nondeterministic computations,
Inform. Process. Lett., 26 (1988), pp. 269–270.

[DJK+02] A. Deshpande, R. Jain, T. Kavitha, S. V. Lokam, and J. Radhakrishnan, Lower
bounds for adaptive locally decodable codes, Random Structures Algorithms, 27
(2005), pp. 358–378. (Preliminary version in Proceedings of the 17th IEEE Con-
ference on Computational Complexity, 2002, pp. 152–161.)

[Din06] I. Dinur, The PCP theorem by gap amplification, in Proceedings of the 38th ACM
Symposium on Theory of Computing, Seattle, WA, 2006, pp. 241–250.

[DR04] I. Dinur and O. Reingold, Assignment-testers: Towards a combinatorial proof of
the PCP-theorem, in Proceedings of the 45th IEEE Symposium on Foundations
of Computer Science, Rome, Italy, 2004, pp. 155–164.

[EKR04] F. Ergün, R. Kumar, and R. Rubinfeld, Fast approximate probabilistically check-
able proofs, Inform. Comput., 189 (2004), pp. 135–159. (Preliminary version in
Proceedings of the 31st ACM Symposium on Theory of Computing, 1999, pp.
41–50.)

[FGL+96] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Interactive proofs
and the hardness of approximating cliques, J. ACM, 43 (1996), pp. 268–292.
(Preliminary version in Proceedings of the 32nd IEEE Symposium on Foundations
of Computer Science, 1991, pp. 2–12.)

[FRS94] L. Fortnow, J. Rompel, and M. Sipser, On the power of multi-prover interactive
protocols, Theoret. Comput. Sci., 134 (1994), pp. 545–557. (Preliminary version
in Proceedings of the 3rd IEEE Symposium on Structure in Complexity Theory,
1988, pp. 156–161)

[Gol97] O. Goldreich, A Sample of Samplers—A Computational Perspective on Sampling,
Tech. report TR97-020, Electronic Colloquium on Computational Complexity,
1997. Available online at http://www.eccc.uni-trier.de/eccc-reports/1997/TR97-
020.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection
to learning and approximation, J. ACM, 45 (1998), pp. 653–750. (Preliminary
version in Proceedings of the 37th IEEE Symposium on Foundations of Computer
Science, 1996, pp. 339–348.)

[GR02] O. Goldreich and D. Ron, Property testing in bounded degree graphs, Algorithmica,
32 (2002), pp. 302–343. (Preliminary version in Proceedings of the 29th ACM

ROBUST PCPS OF PROXIMITY 973

Symposium on Theory of Computing, 1997, pp. 416–415.)
[GS00] O. Goldreich and S. Safra, A combinatorial consistency lemma with application to

proving the PCP theorem, SIAM J. Comput., 29 (2000), pp. 1132–1154. (Prelimi-
nary version in RANDOM, Lecture Notes in Comput. Sci. 1269, Springer, Berlin,
1997, pp. 67–84.)

[GS02] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost-
linear length, in Proceedings of the 43rd IEEE Symposium on Foundations of
Computer Science, Vancouver, Canada, 2002, pp. 13–22. Available online at
http://www.wisdom.weizmann.ac.il/∼oded/p ltc.html.

[GW97] O. Goldreich and A. Wigderson, Tiny families of functions with random prop-
erties: A quality-size trade-off for hashing, Random Structures Algorithms, 11
(1997), pp. 315–343. (Preliminary version in Proceedings of the 26th ACM Sym-
posium on Theory of Computing, 1994, pp. 574–584.)

[GLST98] V. Guruswami, D. Lewin, M. Sudan, and L. Trevisan, A tight characterization of
NP with 3-query PCPs, in Proceedings of the 39th IEEE Symposium on Founda-
tions of Computer Science, Palo Alto, CA, 1998, pp. 18–27.

[HS00] P. Harsha and M. Sudan, Small PCPs with low query complexity, Comput. Com-
plex., 9 (2000), pp. 157–201. (Preliminary version in 18th STACS, Lecture Notes
in Comput. Sci. 2010, Springer, Berlin, 2001, pp. 327–338.)

[H̊as01] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
(Preliminary version in Proceedings of the 29th ACM Symposium on Theory of
Computing, 1997, pp. 1–10.)

[HS66] F. C. Hennie and R. E. Stearns, Two-tape simulation of multitape Turing machines,
J. ACM, 13 (1966), pp. 533–546.

[KT00] J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-
correcting codes, in Proceedings of the 32nd ACM Symposium on Theory of Com-
puting, Portland, OR, 2000, pp. 80–86.

[KdW04] I. Kerenidis and R. de Wolf, Exponential lower bound for 2-query locally decodable
codes via a quantum argument, J. Comput. System Sci., 69 (2004), pp. 395–420.
(Preliminary version in Proceedings of the 35th ACM Symposium on Theory of
Computing, 2003, pp. 106–115.)

[Kil92] J. Kilian, A note on efficient zero-knowledge proofs and arguments (extended ab-
stract), in Proceedings of the 24th ACM Symposium on Theory of Computing,
Victoria, BC, Canada, 1992, pp. 723–732.

[LS97] D. Lapidot and A. Shamir, Fully parallelized multi prover protocols for NEXP-
time, J. Comput. System Sci., 54 (1997), pp. 215–220. (Preliminary version in
Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science,
1991, pp. 13–18.)

[Lei92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
mann Publishers, Inc., San Mateo, CA, 1992.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for inter-
active proof systems, J. ACM, 39 (1992), pp. 859–868. (Preliminary version in
Proceedings of the 31st IEEE Symposium on Foundations of Computer Science,
1990, pp. 2–10.)

[Mic00] S. Micali, Computationally sound proofs, SIAM J. Comput., 30 (2000), pp. 1253–
1298. (Preliminary version in Proceedings of the 35th IEEE Symposium on Foun-
dations of Computer Science, 1994, pp. 436–453.)

[MR06] D. Moshkovitz and R. Raz, Sub-constant error low degree test of almost linear size,
in Proceedings of the 38th ACM Symposium on Theory of Computing, Seattle,
WA, 2006, pp. 21–30.

[NN93] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and
applications, SIAM J. Comput., 22 (1993), pp. 838–856. (Preliminary version in
Proceedings of the 22nd ACM Symposium on Theory of Computing, 1999, pp.
213–233.)

[PF79] N. Pippenger and M. J. Fischer, Relations among complexity measures, J. ACM,
26 (1979), pp. 361–381.

[PS94] A. Polishchuk and D. A. Spielman, Nearly-linear size holographic proofs, in Pro-
ceedings of the 26th ACM Symposium on Theory of Computing, Montréal,
Québec, Canada, 1994, pp. 194–203.

[Raz98] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
(Preliminary version in Proceedings of the 27th ACM Symposium on Theory of
Computing, 1995, pp. 447–556.)

974 BEN-SASSON, GOLDREICH, HARSHA, SUDAN, AND VADHAN

[RS96] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applica-
tions to program testing, SIAM J. Comput., 25 (1996), pp. 252–271. (Preliminary
versions in Proceedings of the 23rd ACM Symposium on Theory of Computing,
1991, pp. 33–42 and Proceedings of the 3rd ACM–SIAM Symposium on Discrete
Algorithms, 1992, pp. 23–43.)

[ST00] A. Samorodnitsky and L. Trevisan, A PCP characterization of NP with optimal
amortized query complexity, in Proceedings of the 32nd ACM Symposium on
Theory of Computing, Portland, OR, 2000, pp. 191–199.

[Sch77] A. Schönhage, Schnelle multiplikation von polynomen über Körpern der charakter-
istik 2 [Fast multiplication of polynomials over characteristic 2], Acta Inform., 4
(1977), pp. 395–398.

[SS71] A. Schönhage and V. Strassen, Schnelle multiplikation großer zahlen [Fast multi-
plication of large numbers], Computing, 7 (1971), pp. 281–292.

[Spi96] D. A. Spielman, Linear-time encodable and decodable error-correcting codes, IEEE
Trans. Inform. Theory, 42 (1996), pp. 1723–1732. (Preliminary version in Proceed-
ings of the 27th ACM Symposium on Theory of Computing, 1995, pp. 388–397.)

[Spi95] D. A. Spielman, Computationally Efficient Error-Correcting Codes and Holographic
Proofs, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA,
June 1995.

[Str73] V. Srassen, Vermeidung von Divisionen [Avoiding divisions], J. Reine Angew. Math.,
264 (1973), pp. 184–202.

[Sze99] M. Szegedy, Many-valued logics and holographic proofs, in Proceedings of the 26th
International Colloquium of Automata, Languages, and Programming (ICALP
’99), J. Wiedermann, P. van Emde Boas, and M. Nielsen, eds., Lecture Notes in
Comput. Sci. 1644, Springer-Verlag, Berlin, pp. 676–686.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 975–1024

ASSIGNMENT TESTERS: TOWARDS A COMBINATORIAL
PROOF OF THE PCP THEOREM∗

IRIT DINUR† AND OMER REINGOLD‡

Abstract. In this work we look back into the proof of the PCP (probabilistically checkable
proofs) theorem, with the goal of finding new proofs that are “more combinatorial” and arguably
simpler. For that we introduce the notion of an assignment tester, which is a strengthening of the
standard PCP verifier, in the following sense. Given a statement and an alleged proof for it, while
the PCP verifier checks correctness of the statement, the assignment tester checks correctness of
the statement and the proof. This notion enables composition that is truly modular; i.e., one can
compose two assignment testers without any assumptions on how they are constructed. A related
notion called PCPs of proximity was independently introduced in [E. Ben-Sasson et al., Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, 2004, ACM, New York,
2004, pp. 1–10]. We provide a toolkit of (nontrivial) generic transformations on assignment testers.
These transformations may be interesting in their own right, and allow us to present the following
two main results: 1. A new proof of the PCP theorem. This proof relies on a rather weak assignment
tester given as a “black box.” From this, we construct combinatorially the full PCP. An important
component of this proof is a new combinatorial aggregation technique (i.e., a new transformation that
allows the verifier to read fewer, though possibly longer, “pieces” of the proof). An implementation
of the black-box tester can be obtained from the algebraic proof techniques that already appear in [L.
Babai et al., Proceedings of the 23rd ACM Symposium on Theory of Computing, New Orleans, LA,
1991, ACM, New York, 1991, pp. 21–31; U. Feige et al., J. ACM, 43 (1996), pp. 268–292]. 2. Our
second construction is a “standalone” combinatorial construction showing NP ⊆ PCP [polylog, 1].
This implies, for example, that approximating max-SAT is quasi-NP-hard. This construction relies
on a transformation that makes an assignment tester “oblivious,” so that the proof locations read are
independent of the statement that is being proven. This eliminates, in a rather surprising manner,
the need for aggregation in a crucial point in the proof.

Key words. PCP theorem, assignment tester, combinatorial proof

AMS subject classifications. 68Q15, 68Q17, 68R05

DOI. 10.1137/S0097539705446962

1. Introduction. The PCP theorem is a characterization of the class NP which
was discovered in the early 90s [2, 1] following an exhilarating sequence of results,
including [20, 3, 7, 15, 22, 27, 5, 4, 13], to list just a few. It has had tremendous
impact; most notably it lies at the heart of virtually all inapproximability results,
starting with the seminal work of [13].

Recall that a language L is in NP if there is a polynomial-time algorithm (verifier)
that can verify whether an input is in the language, with the assistance of a proof,
called the NP witness. The PCP theorem says that every NP witness can be rewritten

∗Received by the editors January 7, 2005; accepted for publication (in revised form) April 1,
2006; published electronically December 15, 2006. A preliminary version of this work appeared in
Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS ’04), Rome, 2004,
pp. 155–164.

http://www.siam.org/journals/sicomp/36-4/44696.html
†Computer Science Department, Hebrew University, Jerusalem, Israel (dinuri@cs.huji.ac.il). Part

of this research was performed while the author was at NEC Research, Princeton, NJ.
‡Incumbent of the Walter and Elise Haas Career Development Chair, Department of Com-

puter Science and Applied Mathematics, Weizmann Institute, Rehovot, 76100 Israel (omer.reingold
@weizmann.ac.il). Part of this research was performed while the author was at AT&T Labs—
Research, Florham Park, NJ, and while visiting the Institute for Advanced Study, Princeton, NJ.
This author’s research was supported in part by US-Israel Binational Science Foundation grant
2002246.

975

976 IRIT DINUR AND OMER REINGOLD

in a “PCP” format that allows ultraefficient (probabilistic) checking. Hence the name,
Probabilistically Checkable Proofs.

More concretely, the PCP verifier is an algorithm that is given direct access to a
proof, and also a logarithmic number of random coins. The verifier reads the input,
tosses the random coins, and then decides which (constant number of) bits to read
from the proof. Based on the content of these bits, the verifier decides whether to
accept or reject. The PCP theorem asserts the existence of a polynomial-time verifier
for any L ∈ NP such that

• (completeness) for every x ∈ L there is a proof that causes the verifier to
always accept;

• (soundness) for every x �∈ L, every alleged proof causes the verifier to reject
with probability 99% over its coin tosses.

Let us fix the NP-language L in our discussion to be (circuit) satisfiability (SAT). For
every fixed outcome of the random coin tosses of the verifier, the verifier’s action can be
described by specifying which (constant number of) bits are read from the proof, along
with the acceptance predicate over these bits. Enumerating over all possible random
coin tosses, one gets a list of R = 2O(log n) = nO(1) constant-size predicates (described,
say, via circuits) over Boolean variables representing the bits in the proof. Thus, the
verifier can be thought of as a deterministic polynomial-time reduction whose input is
a Boolean circuit ϕ of size n (denoted |ϕ| = n), and whose output is a list of R = nO(1)

circuits ψ1, . . . , ψR over a new set of variables such that the following holds:
• (completeness) if ϕ is satisfiable, then there is an assignment that simultane-

ously satisfies all of ψ1, . . . , ψR;
• (soundness) if ϕ is unsatisfiable, then every assignment simultaneously satis-

fies at most 1% of ψ1, . . . , ψR.
This result is already nontrivial for |ψi| = o(n), but in fact holds for |ψi| = O(1).

Indeed, the discovery of this theorem was extremely surprising. The proof is not an
easy one and combines many beautiful and influential ideas.

1.1. Overall goals. Acknowledging the importance of the PCP theorem, we
look back into its proof, with the goal of finding proofs that are substantially different
and desirably also simpler. We note that while the statement of the PCP theorem is
purely “combinatorial,” the original proof of [2, 1] is heavily based on algebra: low
degree polynomials play a crucial role. Therefore, of particular interest is coming up
with proofs of “combinatorial” nature; see also [19]. In that we were also influenced
by the view that such combinatorial proofs, albeit more messy, are sometimes more
intuitive (or at least may shed new intuition). We also note that such new proofs
and constructions have the potential to imply new results, unknown with previous
techniques. A recent example is the combinatorial construction of expander graphs
and the subsequent construction of the so-called lossless expanders [25, 9].

Composition and recursion. We first tackle a major ingredient in the original
proof, namely the use of composition. Composition is indeed natural in this setting.
A given verifier reduction may possibly be improved by applying another (inner)
verifier reduction to each one of ψ1, . . . , ψR, replacing each ψi with a system Υi of
even smaller circuits.

Unfortunately, this simplistic composition has a “consistency flaw.” It is likely
that the resulting system of circuits

⋃
i Υi will be completely satisfiable, even if the

original circuit ϕ is unsatisfiable. Indeed each one of the ψi’s could be individually
satisfiable, as it is only impossible to satisfy more than 1% of them by the same
assignment. Since Υ1, . . . ,ΥR are outcomes of independent runs of the second verifier

ASSIGNMENT TESTERS AND THE PCP THEOREM 977

reduction, they are defined over syntactically disjoint sets of variables. This makes it
easy to combine inconsistent assignments (each satisfying one ψi) into an assignment
that satisfies all of ∪Υi.

In the proof of [2, 1], this difficulty was overcome by having the second verifier
utilize the concrete structural details of the circuits ψ1, . . . , ψR output by the first
verifier, and relying on ingenious consistency mechanisms of algebraic nature.

In search of a simpler and more modular approach to composition, we introduce
a natural strengthening of the PCP verifier, which we call an assignment tester. In-
tuitively, an assignment tester verifies not only satisfiability, but satisfiability by a
specified assignment (given as oracle). This will provide an alternative and simple
way of ensuring consistency in the context of PCP composition.

Assignment testers. An assignment tester is a polynomial-time reduction, whose
input is a circuit ϕ over a set of variables X, and whose output is a list of polynomially
many significantly smaller circuits Ψ = {ψ1, . . . , ψR} over both X and auxiliary vari-
ables Y . The guarantee of the reduction (for a complete definition, see Definition 3.1)
is that for every possible assignment a : X → {0, 1},

• (completeness) if a satisfies ϕ, then there is an extension of a, namely an
assignment b for Y , such that all of ψ1, . . . , ψR are satisfied by a ∪ b;

• (soundness) if a is “far” from any satisfying assignment for ϕ, then every
extension of a to Y can satisfy at most 1% of ψ1, . . . , ψR.

Thus, even if ϕ is satisfiable, but not by anything close to a, then 99% of ψ1, . . . , ψR

must reject any extension of a. An intuitive way to understand the difference between
a standard PCP verifier and an assignment tester is the following. Given a statement
(a predicate ϕ claimed to be satisfiable) and an alleged proof for it (an assignment
for X), the verifier checks that the statement is correct. In contrast, the assignment
tester checks that the proof is correct. A related notion was independently introduced
by Ben-Sasson et al. [8]; see further discussion below.

With this notion, we proceed to prove a composition theorem that is truly mod-
ular. The main idea is the following. Previously, relations between ψi and ψj (for
i �= j) were lost upon reduction to Υi and Υj . Now, all of the R reductions (each
reducing ψi to the system Υi) are correlated through having to refer to the same
assignment for X. To carry out this intuition, we give a generic transformation of any
assignment tester into a “robust” one (we discuss this notion below). Once the first
(outer) assignment tester is robust, the naive composition is trivially sound.

1.2. Our contributions. To be able to discuss our results, let us first briefly
state the parameters of assignment testers. Let R be the number of circuits output
by the assignment tester, and let s upper bound their size. There are three additional
parameters: the query complexity q (how many variables are read by each output
circuit), the error-probability ε (what fraction of the output circuits may erroneously
accept on a “no” input; ε = 0.01 in the above discussion), and the distance parameter
δ (what distance of the input assignment from a satisfying assignment should make
the tester reject). For simplicity, we will ignore these last three parameters in most
of the following discussion, with the implicit understanding that any mention of an
assignment tester means constant q, ε, and δ.

New proofs of versions of the PCP theorem. As we discuss below, this
paper provides a variety of transformations on assignment testers, complementing the
generic composition theorem already mentioned above. Armed with this “toolkit” of
transformations, we consider various ways of composing assignment testers with the
goal of reproving the PCP theorem. We now elaborate on two results that we obtain

978 IRIT DINUR AND OMER REINGOLD

in this manner.
An assignment tester with s = n (recall that s is the size of the circuits produced

by the assignment tester reduction) is completely trivial (letting the output equal the
input). Nevertheless, we prove that, given an assignment tester with s = n0.99, we
can get s all the way down to a constant.

Theorem 1.1 (informal statement). Given an assignment tester with R = nO(1)

and s = n0.99, we construct an assignment tester with R = nO(1) and s = O(1).
The idea of the construction is to use the given assignment tester as a building

block and to compose it with itself. The output circuits will have size n0.99, n(0.99)2 ,
n(0.99)3 , and so on, n(0.99)t after t compositions. So taking t = log logn results in
a polynomially long list of constant size circuits. However, since the composition
step roughly sums up the error probabilities of the two components, going beyond a
constant number of composition steps requires an additional ingredient. This is where
we incorporate several of the assignment tester transformations mentioned above, to
achieve error reduction. Particularly, we employ a new combinatorial aggregation
technique (namely, introducing new “aggregate” variables that represent �-tuples of
old variables).

Our building block assignment tester (i.e., the one with s = n0.99) can be con-
structed using algebraic techniques (for example, such an assignment tester can be
constructed via techniques already present in [4, 13]1). Coming up with a combinato-
rial construction for such an assignment tester would yield a completely combinatorial
proof of the PCP theorem. Subsequent to our work, Dinur [11] directly (i.e., not go-
ing through this building block) gave a completely combinatorial proof of the PCP
theorem.

Next, we present a combinatorial construction of an assignment tester, which
is quasi-polynomial. It gives a combinatorial proof for NP ⊆ PCP [polylog, 1] and
implies, for example, that approximating Max-3-SAT is quasi-NP-hard.

Theorem 1.2 (informal statement). There exists an explicit combinatorial con-
struction of an assignment tester with R = npolylogn and s = O(1).

This construction does not rely on any algebraic techniques; rather, it is based
on recursive applications of our combinatorial transformations. In particular the
construction relies on a transformation that makes an assignment tester “oblivious,”
so that the proof locations read are independent of the statement that is being proven.
This eliminates, in a rather surprising manner, the need for aggregation in a crucial
point in the proof.

The starting point is the previous construction, again relying on log logn steps
of composition and recursion. However, to compensate for the lack of a powerful
building block, the main idea is to construct it ourselves, recursively. Thus the main
step involves constructing an assignment tester with s = nα (for some constant α < 1)
relying on recursion.

The resulting construction of an assignment tester is analogous to the following
recursive construction of error-correcting codes based on tensor products. First, put
your n-bit input in a

√
n×

√
n matrix. Now, recursively apply an error-correcting code

to each row. Then, making additional recursive calls, apply an error-correcting code
to each column (of the new matrix). Finally, as the relative distance has slightly dete-
riorated by this process, one can use simple transformations to amplify it back. Our
related construction, in the context of assignment testers, is naturally more delicate
and requires new ideas. However, the overall structure is very similar.

1Taking a low degree extension with a constant dimension, as in [23].

ASSIGNMENT TESTERS AND THE PCP THEOREM 979

We note that this construction makes use of a constant-size assignment tester, to
facilitate the composition. That is, the construction relies on an assignment tester
that is required to work only on inputs of size ≤ n0 for some large enough constant n0.
(The only requirement from this assignment tester is that it produces small enough
circuits. Say, circuits smaller than s0 = (n0)

0.99.) As in a similar situation in [25], such
an object can be obtained via an exhaustive search over a constant range. However,
the only proofs for its existence that we know of rely on previous constructions of PCP
verifiers. Nevertheless, we can take the constant-size assignment tester needed by the
construction to be an instantiation (for constant-size inputs) of extremely inefficient
constructions, e.g., a Long-code-based assignment tester [6].

Combinatorial transformations on assignment testers. As the above de-
scription of our constructions indicates, our main technique is perhaps the most basic
technique in computer science, namely recursion. This is implemented through the
basic composition of a relatively weak assignment tester with a (strong) assignment
tester of smaller size that is inductively constructed. In particular, the composition
theorem mentioned above gives a way for reducing the circuit size (s) of an assignment
tester (from s1 or s2 to s1 ◦ s2).

We study several generic transformations on assignment testers that serve to im-
prove various other parameters. We describe combinatorial methods to reduce the
error probability, the query complexity, and the distance parameter. While these
transformations are required for our constructions to work, we believe they are inter-
esting in their own right. In particular, they provide tradeoffs that allow us to focus
our attention on the important parameters of an assignment tester (e.g., it allows us
to focus on constructing assignment testers with constant error and constant distance
parameter).

Robustness. We mentioned above that for our generic composition theorem to
work, the first (outer) assignment tester needs to be converted into a “robust” one.
This means that in the “no” case, not only does a 1 − ε fraction of the circuits
ψ1, . . . , ψR reject, but moreover they “strongly” reject in that their input is at least
δ-far from any satisfying input. More formally, recall that each circuit reads some
q variables. These are both X-variables (the original input variables of the input
circuit), which are bits, and also auxiliary Y -variables that may come from a larger
alphabet. We interpret here the Y -variables as bit strings (i.e., chunks of bits that
are always read as a whole), and therefore the input of each ψi can be viewed as a
longer bit string which is the concatenation of all the variables it reads. It is now well
defined to say that an assignment to the input variables of ψi is δ-far (in Hamming
distance) from any satisfying input.

We show a simple generic transformation taking every assignment tester into a
robust one, where the robustness parameter is inversely related to the number of vari-
ables read, q. Loosely, the transformation goes as follows: given the output ψ1, . . . , ψR

of the tester, construct a revised output ψ′
1, . . . , ψ

′
R over new variables that are sup-

posed to be the error-corrected version of the old variables. (Here too the Y -variables
are interpreted as bit strings, and each X-variable is simply encoded by repetition.)
Each ψ′

i now decodes its input variables and applies ψi on the decoded variables.
Our transformation uses an off-the-shelf error-correcting code, and its efficiency de-
pends on standard parameters of the code (essentially on its distance, its rate, and
the complexity of decoding codewords).

With this generic transformation, we can completely ignore the notion of robust-
ness in all other transformations and refer to it only in the composition theorem. We

980 IRIT DINUR AND OMER REINGOLD

note in passing that [8] has the same notion of robustness. However, in that context,
even the modest cost of our generic transformation is impermissible. Therefore, [8]
works with assignment testers that are already robust (and indeed, they name these
objects “robust PCP of proximity”). This difference between our definitions is further
discussed in section 7.

Distance reduction. The only new parameter of assignment testers not already
used by PCP verifiers is their distance parameter δ (what distance of the input as-
signment from a satisfying assignment should make the tester reject). We provide
a generic method for strengthening assignment testers so that they identify smaller
deviations from satisfying assignments. This transformation comes at a fair cost in
other parameters. The main idea is the following: On input circuit ϕ, over Boolean
variables X, encode X with “amplified” distance (so that two assignments for X that
are δ′ far from each other will be encoded by assignments that are δ > δ′ apart), and
let ϕ′ be the corresponding circuit (that first decodes its input and then applies ϕ).
Now, apply the original assignment tester on ϕ′ (instead of ϕ).

Error reduction with aggregation. It is easy to reduce the error probability of an
assignment tester by repetition: replace Ψ = {ψ1, . . . , ψR} by ANDs of all possible
�-tuples of circuits in Ψ. This reduces the error-probability from ε to ε� but causes an
�-fold increase in the number of queried variables. We cannot afford such an increase,
as it hurts the effective “robustness” of the assignment tester, a crucial property for
composition. We avoid this increase through aggregation (or alternatively, paralleliza-
tion). That is, the introduction of new variables to represent �-tuples of previous ones.
Our new method of aggregation is purely combinatorial.

The original proof of the PCP theorem also contains an aggregation method,
based on sophisticated algebraic techniques. One disadvantage of that method is that
it causes a blow-up in the size of the domain of the variables, by a factor that is
roughly log |X| (more precisely, it is the degree of the low degree representation of
the assignment for X), which cannot be afforded in our context. In contrast, our
combinatorial aggregation increases the variables by a factor independent of |X|. On

the other hand, our combinatorial aggregation introduces |X|� new variables, even
if we are interested in the values of only some t possible �-tuples. This is much
worse than the poly(�, |X| , t) new variables and tests introduced by the algebraic
aggregation. Nevertheless, this blow-up is tolerable in our context as we care only
about � = O(1) (since we only plan on reducing error from one constant to another).

The main idea of our aggregation is the following. When reading �-tuples of vari-
ables, to simulate the AND of � circuits we are faced with the difficulty that the
assignment to the �-tuples may not be consistent with any assignment to the original
variables. This problem is exactly what makes the proof of Raz’s parallel repetition
theorem [24] so challenging. Nevertheless, in our context, we can tolerate a more
modest drop in the error probability than in [24], and can afford adding a constant
(independent of �) number of queries. So our main idea is the following: simply add a
few queries directly aimed at testing the consistency of the �-tuples of variables. This
simple idea results in a significantly simpler analysis. In particular, a sufficiently good
consistency test was already provided by Goldreich and Safra [19]. We give direct and
simple analysis of essentially the same test.

This is somewhat similar to the situation analyzed in the parallel repetition the-
orem of [24]. There too, all possible �-tuples are considered, and an exponential
decrease in the error-probability occurs. Our situation is different in several respects.
Most importantly, for the outcome system to remain an assignment tester, some sort

ASSIGNMENT TESTERS AND THE PCP THEOREM 981

of “decoding” of the �-tuple variables is necessary. Fortunately, we can tolerate a
more modest drop in the error probability and can afford more than two (but still
a constant independent of �) queries, as in the case of [24]. This makes our analysis
significantly simpler, as follows.

Assuming that the �-tuples are assigned consistently (i.e., a variable x is assigned
consistently in all �-tuples containing it), the AND circuits described above can be
simulated with just a few accesses to the new �-tuple variables. Separately, we ensure
the consistency of the �-tuples through a consistency test. The consistency test that we
use (see Figure 3 in section 4) simply compares two random �-tuples that intersect on
some 3

√
� elements and rejects if there is any disagreement. This test was suggested by

Goldreich and Safra [19], who were interested in derandomized versions of the test and
analyzed the nonderandomized version only indirectly. We provide a direct analysis
by appealing to the expansion of the underlying graph. We prove that if F : X� → Σ�

passes the test with high probability, then there is some f : X → Σ, defined simply
by plurality, such that F is close to (f)�.

Related work. We have already mentioned that Ben-Sasson et al. [8] indepen-
dently introduced an object called “PCP of proximity,” which is essentially the same
as our assignment tester, presented in a somewhat different language. The work of [8]
shows connections of these objects to locally testable codes, and therefore the results
of this paper seem relevant in this context as well. We further discuss this in section 7.

The notion of assignment testers is very related to the area of property testing.
In fact, both assignment testers and PCPs of proximity can be viewed as special
cases of more general definitions given by Ergün, Kumar, and Rubinfeld [12], in the
context of proof-assisted testing. To the best of our knowledge, the connection to the
construction of PCPs has not been explored in the past. The connection of assignment
testers to property testing is elaborated upon in section 7.

As we discussed above, the motivation for defining assignment testers lies in the
desire to obtain simple and modular composition of PCPs. This goal was already
explored in the past. In particular, Szegedy [30] derived a syntactic composition
theorem for abstractions of PCPs based on many valued logics.

Subsequent to our work, Dinur [11] described a combinatorial proof of the PCP
theorem which also uses composition of assignment testers (and, in particular, compo-
sition with an assignment tester of constant size, just as in our second construction).

Organization. We formally define assignment testers in section 3, and then
proceed to prove the composition theorem. In section 4 we provide generic trans-
formations on assignment testers. Our two main constructions (Theorems 1.1 and
1.2) are proven in sections 5 and 6, respectively. The proof of the consistency test
(required for the aggregation) can be found in Appendix A.

2. Preliminaries. In this section we define some standard combinatorial objects
that our constructions rely upon. These are error-correcting codes and hitting sets.
Both have a trivial random construction and can also be constructed explicitly.

2.1. Error-correcting codes. As in the original proof of the PCP theorem
[2, 1], error-correcting codes are a very useful tool for our proof. However, unlike the
original proof, we do not rely on algebraic properties of the codes, nor do we require
the codes to be locally testable. The relevant parameters of the code in our case are
rather generic: these are its rate, its distance, and the circuit complexity of verifying
and decoding legitimate codewords. We call the last task “codeword decoding.” In
the next lemma we give the parameters of the codes that will imply the most elegant

982 IRIT DINUR AND OMER REINGOLD

version of our results. As we discuss below, such codes are easy to come by. We also
note that much weaker codes still imply our main results.

Lemma 2.1. There exists a polynomial-time computable family of codes e = {ew :
{0, 1}w → {0, 1}O(w)}w∈N such that ew(·) is a code with minimum distance w that
satisfies the following:

Linear circuit size for codeword decoding. For every w there exists a circuit Cw

of size O(w) that takes as input a string z ∈ {0, 1}O(w) and outputs y such that
z = ew(y) if such a string y exists and ⊥ otherwise. Furthermore, the circuit Cw can
be uniformly constructed in time poly(w).

Lemma 2.1 asks for codes with constant rate and constant relative distance, which
is quite standard. In addition, it requires linear circuit size for “codeword decoding,”
that is, for the task of verifying that a word is a legitimate codeword and then decoding
it. This second part of decoding a legitimate codeword is trivial when ew(y) contains y
as a substring (such codes are sometimes called systematic).2 Linear error-correcting
codes can be assumed without loss of generality to be systematic. (By changing the
basis of the generating matrix of the code, one can obtain a generating matrix for
the same code that contains the identity matrix as a submatrix. Note that changing
the basis doesn’t change the code, so the parity check matrix is the same.) In addition,
whenever a linear code is defined by a sparse parity check matrix (that contains only
a linear number of nonzero entries), verifying that a word is a legitimate codeword
can be performed by a circuit of linear size. In particular, Lemma 2.1 holds for the
linear codes that are obtained by selecting a sparse parity check matrix, uniformly
at random. In addition, it holds for the explicit codes best known under the name
LDPC (low density parity check) codes. Note that the expander LDPC codes of
[16, 31, 28, 29] have explicit combinatorial constructions based on the combinatorial
construction of expander graphs in [25].

Notation 2.2. We denote by e−1
w the “maximum likelihood” decoding transfor-

mation that corresponds to the code ew. That is, e−1
w (z′) = y if z = ew(y) is the

codeword of minimal Hamming distance to z′ (where ties can be broken arbitrarily).
In particular, e−1

w (ew(y)) = y (assuming w > 0). We do not assume anything on the
computability of this mapping (in particular, we do not assume that it is polynomial-
time computable). It is important to note that this maximum likelihood notion of
decoding has little to do with “codeword decoding” as defined in Lemma 2.1.

2.2. Hitting sets. We specify parameters of two families of sets with standard
hitting properties. We then spell out in Corollary 2.5 the precise (standard) use of
them for “error reduction.” Both of these hitters can be constructed in an elementary
way based on expander graphs. The hitters we give here rely on optimal expanders
known as Ramanujan graphs [21]. We note that our main results can be proven using
significantly weaker hitters (such as those implied by the expander graphs of [25]).

Lemma 2.3. Let N be an integer and 0 ≤ μ ≤ α ≤ 1/2 two real values. Then
there exists a family F = {F1, . . . , FN} such that the following hold:

2A natural approach for obtaining efficient codeword decoding is the following. First, slightly
revise the error-correcting code such that it will be systematic (simply append y to ew(y)). Now
codeword decoding is as easy as encoding: First, we can extract y from the alleged codeword, then
re-encode y, and finally compare the result with the original alleged codeword. Unfortunately, error-
correcting codes with linear size circuits for encoding are not known (and may very well not exist).
Instead, one may use error-correcting codes with quasi-linear size circuits for encoding (these are not
hard to come by). This natural approach can therefore give codes that are only slightly less efficient
than those promised by Lemma 2.1 and are still good enough for obtaining the main results of this
paper.

ASSIGNMENT TESTERS AND THE PCP THEOREM 983

1. Each Fi is a k-tuple of integers in [N] = {1, . . . , N}, with k = O(α/μ).
2. Every subset T ⊂ [N] of size at least μN intersects at least αN of the Fi’s

(i.e., |{i : Fi ∩ T �= φ}| ≥ αN).
3. Given N, i, α, and μ, each Fi can be constructed uniformly in polynomial time

(in the input and output lengths).
The set F in Lemma 2.3 can be constructed from a k-regular expander graph GN

on the set of vertices [N]. Each Fi is simply the neighbor list of vertex i. Requirement
2 asks for sets of size μN to expand by a factor α/μ, which for the expanders of [21]
can be obtained with degree k = O(α/μ). (For the expanders of [25] it requires
k = poly(α/μ).)

Next, we consider a more traditional setting of the hitting problem. For that we
use the so-called combined hitter from Corollary C.5 in [17], as follows.

Lemma 2.4. Let N be an integer and β and μ be two positive real values. Then
there exists a set F = {F1, . . . , FM} of size M = N ·poly(1/β) such that the following
hold:

1. Each Fi is a k-tuple of integers in [N], with k = O(log(1/β)/μ).
2. Every subset T ⊂ [N] of size at least μN intersects at least (1 − β)M of the

Fi’s (i.e., |{i : Fi ∩ T �= φ}| ≥ (1 − β)N).
3. Given N, i, β, and μ, each Fi can be constructed uniformly in polynomial time

(in the input and output lengths).
The usefulness of Lemma 2.4 for this paper is in the standard application of hitters

to error reduction. Particularly, we will use the following immediate corollary.
Corollary 2.5. Let ψ1, . . . , ψN be a sequence of N circuits over a set of variables

Y . Let β and μ be two positive real values. Then there exists a sequence of M =
N · poly(1/β) new circuits ψ′

1, . . . , ψ
′
M such that we have the following:

1. Each new circuit ψ′
i is the AND of k old circuits ψi with k = O(log(1/β)/μ).

In particular, every assignment to the variables Y that satisfies all of the old
circuits also satisfies all of the new circuits.

2. Every assignment to the variables Y that causes μN of the old circuits to
reject also causes (1 − β)M of the new circuit to reject.

3. On input ψ1, . . . , ψN , β, and μ, the new sequence can be constructed uniformly
in polynomial time (in the input and output lengths).

3. Assignment testers and their composition. In this section we formally
introduce the notion of an assignment tester, which is an enhancement of the PCP
verifier. As discussed in the introduction, the motivation for assignment testers lies in
the rather simple and natural way two assignment testers compose. This property is
very appealing, as composition is a major ingredient in the proof of the PCP theorem.

Like the PCP verifier, an assignment tester reduces an input circuit ϕ over vari-
ables X into a list of output circuits ψ1, . . . , ψR over the variables (X and) Y . The
main difference is that the output circuits of the PCP verifier might not depend on
X at all, while the output circuits of the assignment tester certainly do. Moreover,
the completeness and soundness conditions of an assignment tester are with respect
to a specific assignment for X, rather than with respect to the general satisfiability of
ϕ. Loosely, an assignment tester doesn’t just check that the input is satisfiable, but
rather that the input is satisfied by a specified assignment.

This simplifies composition by eliminating consistency issues altogether. Recall
that the main idea of composition is to improve a given verifier reduction by applying
another (inner) verifier reduction to each one of ψ1, . . . , ψR, replacing each ψi with a
system Υi of even smaller circuits. By feeding the same assignment to each of the

984 IRIT DINUR AND OMER REINGOLD

parallel runs of the inner reduction, all of the systems Υi directly refer to satisfiability
by the same single assignment.

An important parameter, inherent to an assignment tester, is its distance pa-
rameter. In the soundness condition, it is unreasonable to require that in case the
assignment for X is not satisfying, a sizeable fraction of ψ1, . . . , ψR reject. If we wish
each ψi to read only a constant number of bits, most ψi’s won’t be sensitive to a
single bit flip in X, turning a satisfying assignment into an unsatisfying one. Thus,
we require only that if the assignment is δ-far (i.e., is at relative Hamming distance
δ) from every satisfying assignment, then an 1 − ε fraction of ψ1, . . . , ψR must reject.
The parameter δ > 0 is the distance parameter of the assignment tester, and it should
be at least inversely proportional to the number of variables (unless we are willing to
compromise on the detection probability 1 − ε being subconstant).

In subsection 3.1 we give the formal definition of an assignment tester. In subsec-
tion 3.3 we define “robust” assignment testers and prove an immediate composition
theorem for this object. We show a generic way to transform every assignment tester
into a robust one (“robustization”) in section 3.4. Finally, in subsection 3.5 we com-
bine the above and deduce a composition theorem of assignment testers. We consider
additional transformations on assignment testers in section 4. In section 7, we briefly
discuss the relation between PCP testers and property testers.

3.1. Defining assignment testers. We denote Boolean circuits by ϕ,ψ, etc.,
and refer to the predicate computed by the circuit by the same name. We say that an
assignment is δ-far from satisfying a circuit ϕ, if its relative Hamming distance from
every satisfying assignment for ϕ is at least δ.

Definition 3.1 (assignment tester). An assignment tester with parameters
(R, s, q, δ, ε) is a reduction whose input is a Boolean circuit ϕ of size n over Boolean
variables X. The reduction outputs a system of R(n) Boolean circuits Ψ = {ψ1, . . . , ψR},
each of size at most s(n) over X, and auxiliary variables Y such that the following
conditions hold:

• The running time of the algorithm is polynomial in n and R(n).
• Each ψi depends on q(n) variables from X∪Y . The variables in Y take values

in an alphabet Σ and are accessible to ψi as a tuple of w(n) = �log |Σ|� bits.3

• For every assignment a : X → {0, 1},
1. [completeness] if a satisfies ϕ, then there exists an assignment b : Y → Σ

such that a ∪ b satisfies all of ψ1, . . . , ψR;
2. [soundness] if a is δ-far from every satisfying assignment for ϕ, then for

every assignment b : Y → Σ, at least 1 − ε of ψ1, . . . , ψR reject a ∪ b.
Figure 1 gives a summary of the parameters.
This definition should be compared to the standard notion of a PCP verifier.

The PCP verifier can also be defined as a reduction4 precisely as above, but there
are two differences. One is superficial in that the PCP verifier produces circuits that
depend only on the (new) Y variables. The main difference is in the completeness
and soundness conditions, which in the case of the PCP verifier reduction are defined

3Thus accessing all w(n) bits of a single variable in Y counts as a single “query.”
4The PCP verifier is usually described as a probabilistic polynomial-time algorithm that verifies

a (PCP) proof by tossing r random coins and then probing the proof in some q locations. By
considering the action of the verifier in parallel over all possible outcomes of the random coins, the
verifier corresponds to a list of 2r circuits (each over q input variables). Thus, the verifier can also
be viewed as a (deterministic) reduction that outputs a list of circuits. We call this a PCP verifier
reduction.

ASSIGNMENT TESTERS AND THE PCP THEOREM 985

• R(n) - Number of output circuits. Reminiscent of the amount of Randomness
of the verifier.

• s(n) - Size of output circuits.
• q(n) - Maximal number of variables read (or queried) in one circuit.
• δ(n) - Distance to a satisfying assignment.
• ε(n) - Error probability: the fraction of circuits that erroneously accept a

far-from-satisfying assignment. (Sometimes we consider the detection prob-
ability γ = 1 − ε, i.e., the remaining fraction of circuits that reject.)

• w(n) - “Width” of Y variables, i.e., log of alphabet size. This parameter plays
a minor role in our discussion, and so we usually omit it. We note that w is
smaller than s.

Fig. 1. The parameters (R, s, q, δ, ε) of an assignment tester.

as follows:
1. [completeness] if ϕ is satisfiable, then there exists an assignment b : Y → Σ

that satisfies all of ψ1, . . . , ψR;
2. [soundness] if ϕ is unsatisfiable, then for every assignment b : Y → Σ, at

least 1 − ε of ψ1, . . . , ψR reject.
Every assignment tester is also a PCP verifier reduction. To see, for example,

that the soundness condition carries over, observe that if the input ϕ is unsatisfiable,
then any a : X → {0, 1} is (δ = 1)-far from all (nonexistent) satisfying assignments.
Thus it cannot be extended with b so as to satisfy more than ε of ψ1, . . . , ψR.

The converse is not necessarily true since in an arbitrary PCP verifier reduction
we have no control over the dependence of ψ1, . . . , ψR on X. In particular, the output
circuits may not even depend on the variables in X. Interestingly, the original proof
of the PCP theorem implicitly constructs assignment testers rather than just PCP
verifiers.

Theorem 3.2 (the PCP theorem [2, 1]). There is a polynomial-time PCP verifier
algorithm (alternatively, assignment tester) with R(n) = nO(1) and q(n)·w(n) ≤ s(n) =
O(1) and constant 0 < ε, δ < 1.

3.2. On the width of variables. An assignment tester produces circuits ψi

that are defined over two different kinds of variables. The X variables are Boolean,
whereas the auxiliary Y variables take value from a possibly larger alphabet Σ. We
would like to think of the assignment to a Y variable as a w-long bit string. (Recall
that w(n) = �log |Σ|� is the width of the Y -variables.) This allows us to view each ψi

as a Boolean circuit (just as ϕ is), which is particularly important for the composition
theorem (where we apply the inner assignment tester to the circuits ψi produced by
the outer assignment tester). In particular, if ψi reads the assignment to qx variables
from X and to qy variables from Y , then we view its input as a (qx + qy · w)-long
bit string that is the concatenation of the assignment to all of the variables it reads.
Note that, since the size of each ψi is larger than the length of its input, we have that
s > qx + qy ·w. We can now define the restriction of a global assignment to the input
variables of a particular ψi. This definition will allow repetitions of variables.

Definition 3.3. Each output circuit in {ψ1, . . . , ψR} is defined to be a pair 〈C, τ〉,
where C is a circuit over local inputs v1, v2, . . . , vq and τ = (xi1 , . . . , xiqx

, yiqx+1 , . . . , yiq)
is a tuple of variables from X ∪Y specifying which variables are mapped to the inputs

986 IRIT DINUR AND OMER REINGOLD

of the circuit. We emphasize that τ is allowed to have repetition of variables.5

Given an assignment σ for X ∪ Y , its restriction to ψi is denoted σ|ψi and is
defined as the appropriate string of qx + (q − qx) · w bits (that possibly reflects the
repetitions in τ).

It turns out that, almost everywhere, the width parameter w plays only a very
minor role. The two related parameters that will be much more crucial to our dis-
cussion are the size of the circuits s and the query complexity q. We will therefore
almost always omit the reference w and be satisfied with the bound on w implied by
s (as discussed above).

3.3. Robust assignment testers and their composition. A robust assign-
ment tester is an assignment tester such that in the soundness case, not only do 1− ε
of the output circuits reject, but in fact they see an assignment that is ρ-far from a
satisfying one (i.e., at least a ρ-fraction of the bits read by each of these circuits need
to be changed in order for the circuits to be satisfied). This variant is natural in the
context of composition, as will be seen below.

Notation. For a circuit ϕ, denote by SAT (ϕ) the set of all satisfying assignments
for ϕ. Let SATδ(ϕ) be the set of assignments that are δ-close to some assignment in
SAT (ϕ) (namely, assignments that are at relative Hamming distance at most δ from
some assignment in SAT (ϕ)).

Definition 3.4. An assignment tester is called ρ-robust if in the soundness case
in Definition 3.1 above, for every assignment b : Y → Σ, the assignment (a ∪ b)|ψi

is
ρ-far from SAT (ψi) for at least 1 − ε fraction of ψ1, . . . , ψR.

It is very easy to compose robust assignment testers.
Lemma 3.5. Let A1,A2 be two assignment testers with parameters (R1, s1, q1, δ1, ε1)

and (R2, s2, q2, δ2, ε2), respectively. If A1 is ρ-robust with ρ = δ2, then one can con-
struct an assignment tester A3 with parameters (R3, s3, q3, δ3, ε3) such that

R3(n) = R1(n) · R2(s1(n)), s3(n) = s2(s1(n)), q3(n) = q2(s1(n)),

and

ε3(n) = ε1(n) + ε2(s1(n)) − ε1(n)ε2(s1(n)), δ3(n) = δ1(n).

Moreover, if A2 is ρ2-robust, then so is A3.
Proof. Given an input ϕ, the tester A3 will simply run A1 on it, outputting

ψ1, . . . , ψR, and then run A2 on each ψi. The completeness and the parameters of
A3 follow from the definition. The soundness of A3 draws on the robustness of A1 in
the following way. Let {ψi,j} be the list of circuits output by A2 on input ψi. The
soundness of A2 asserts that a 1 − ε2 of the {ψi,j} reject if the assignment for ψi’s
variables is far from a satisfying one. The robustness of A1 guarantees that this is
indeed the case for 1 − ε1 of the ψi’s, provided that the assignment for ϕ’s variables
is far from a satisfying one.

3.4. Robustization. We next show a generic way to transform an arbitrary
assignment tester into a robust one. The idea is to replace each variable in Y with a
collection of bits that are supposed to be an encoding via some error-correcting code
e of the value of the variable. In addition, we repeat the X variables for balance and
modify the output circuits accordingly.

5Such repetition will be quite useful below: It implicitly affects the distance between the re-
strictions of assignments to ψi, turning it into a weighted Hamming distance (more weight to the
repeated variable).

ASSIGNMENT TESTERS AND THE PCP THEOREM 987

Lemma 3.6. There exists some c1 > 0 such that, given an assignment tester A
with parameters (R, s, q, δ, ε), we can construct a ρ-robust assignment tester A′ with
parameters R′ = R, s′ = c1 · s, ρ = Ω(1

q), ε′ = ε, δ′ = δ.
This transformation allows us to replace the condition in Lemma 3.5 about A1

being ρ-robust with a condition about its query complexity; see Theorem 3.7 below.
Throughout the rest of the paper Lemma 3.6 is used only in the proof of Theorem 3.7.
In fact there is no further mention of robustness, as the lemma allows us to restrict
our attention to the query complexity parameter.

We also mention that this transformation is useless for the setting of [8], as they
cannot afford the (superlinear) increase in the number of variables that is incurred
here.

Proof. A′ will run A on input ϕ and obtain output circuits ψ1, . . . , ψR over
variables X and Y . Each ψi will be replaced by a “robust” circuit ψ′

i, whose inputs
are encodings (via some error-correcting code e) of the inputs to ψi.

Let Σ be the alphabet of the Y variables, and let w = �log |Σ|� be the number

of bits needed to represent a value in Σ. Let ew : Σ → {0, 1}� be an error-correcting
code as in Lemma 2.1 (with � = c ·w and c a small absolute constant). For each y ∈ Y
introduce new Boolean variables v̄(y) = v1(y), . . . , v�(y) supposedly representing y’s
encoding ew(y). Denote these new sets of bits by

Y ′ =
⋃
y∈Y

v̄(y).

Suppose the tuple of variables accessed by ψi is (x1, . . . , xqx
, y1, . . . , yqy

), with
q = qx + qy. Define a new circuit ψ′

i whose input consists of � · q variables: the
first �qx variables are � copies of each variable of x1, . . . , xqx

. The next �qy variables
are v̄(y1), . . . , v̄(yqy

). The circuit ψ′
i accepts an input if and only if it is a correct

encoding of an input that would have satisfied ψi. More explicitly, ψ′ accepts input
z1, . . . , z�q ∈ {0, 1}�q if and only if (a) zi = (ziq+1, . . . , z(i+1)q) is the all-0 or all-1
string for 1 ≤ i ≤ qx, (b) zi is a legal codeword of e for i > qx, and (c) the values
encoded by the zi’s satisfy ψi.

This completes the description of A′, and we now prove its properties. Complete-
ness is clear: A satisfying assignment a : X → {0, 1} for ϕ can easily be extended by
b : Y ′ → {0, 1} so that a ∪ b satisfies all of {ψ′

i}.
What is the size of ψ′

i? Since for the code ew there exists a linear size circuit for
codeword decoding (see Lemma 2.1), then there exists some c1 such that the size of
each ψ′

i is bounded by s(n) + O(�q) ≤ c1 · s(n).
Next, the soundness of A′. Assume an assignment a : X → {0, 1} that is δ-far

from satisfying ϕ. The soundness of A guarantees that every b : Y → Σ extending
a will be rejected by at least 1 − ε of the ψi’s. What does this mean for the robust
version ψ′

i? Consider an arbitrary assignment b′ : Y ′ → {0, 1}. Such an assignment
defines a “decoded” assignment b′′ : Y → Σ by relying on the “maximum likelihood”
decoding mapping e−1

w of the code ew (see Notation 2.2) as follows:

b′′(y) : Y → Σ, b′′(y)
def
= e−1

w (b′(v1(y)), . . . , b
′(v�(y))).

The soundness of A implies that at least 1 − ε of ψ1, . . . , ψR will reject a ∪ b′′,
regardless of the assignment b′′ to Y . For each rejecting ψi, at least one of the
q variables it queries must be reassigned in order for it to accept. Consider now
the corresponding ψ′

i and its assignment σ = (a ∪ b′)|ψ′
i
. Recall that by definition

988 IRIT DINUR AND OMER REINGOLD

(see also Definition 3.3), σ is an �q-bit string. Clearly, σ will not satisfy ψ′
i. More

importantly, there must be at least one of the q (�-bit) blocks that need to be changed
into a different legal �-bit block in order to turn σ into a satisfying input: If this �-
bit block consists of Y ′-variables, then it must be changed in more than half the
code distance (i.e., w

2) locations. If it consists of (repetitions of) an X-variable, then
it must be changed in all � bits. In any case, this means that A′ is ρ-robust with

ρ = min(w/2,�)
q·cw = 1

2cq .
It is important to note that the error-correcting code e we use to obtain the

robustness property is not part of the definition of an assignment tester but rather part
of the robustization transformation. Furthermore, a feature of this transformation is
that e, defined in Lemma 2.1, is quite a generic error-correcting code. We do not rely
on algebraic properties of e nor require it to be locally testable.

3.5. Generic composition of assignment testers. Combining Lemmas 3.6
and 3.5, we get the following convenient composition theorem.

Theorem 3.7 (composition). There exist some constants c1, c2 such that A1,A2

are two assignment testers with parameters (R1, s1, q1, δ1, ε1) and (R2, s2, q2, δ2,
ε2), respectively. If δ2 ≤ 1

c2·q1
, then one can construct an assignment tester A3 with

parameters (R3, s3, q3, δ3, ε3) such that, for n′
def
= c1 · s1(n),

R3(n) = R1(n) · R2(n
′), s3(n) = s2(n

′), q3(n) = q2(n
′),

and

ε3(n) = ε1(n) + ε2(n
′) − ε1(n)ε2(n

′), δ3(n) = δ1(n).

Comparing this composition theorem with the robust composition of Lemma 3.5,
we see that the condition about A1 being robust has been removed, and the condition
δ2 ≤ ρ has been replaced by the condition δ2 ≤ 1

c2·q2
. The parameters are almost

the same, except here n′ = c1 · s1(n) rather than n′ = s1(n) (and this slightly affects
R3, s3, q3, and ε3).

We mention that the parameters of A3 in Theorem 3.7 are very similar to those
that would follow from a naive composition of two PCP verifiers, when in the sound-
ness argument one ignores consistency issues altogether (imagining a prover that is
“honest” with respect to consistency). In that sense, these parameters are essentially
the best one could hope for in this type of composition.

Proof. We first turn A1 into a robust assignment tester A′
1, using the transforma-

tion of Lemma 3.6. Thus, n′ = c1 · s1(n) is the size of the output circuits of A′
1. Next,

we compose A′
1 with A2 according to Lemma 3.5, obtaining A3. See also Figure 2 for

an illustration of the two transformations combined.

4. Transformations on assignment testers. The composition of assignment
testers is mainly used as a tool for reducing the size, s, of the circuits that an as-
signment tester outputs. In this section we give general transformations for reducing
(and thus improving) three additional parameters: (i) the tested distance, δ, from
a satisfying assignment; (ii) the error probability, ε, in case of a far-from-satisfying
assignment; and (iii) the number, q, of variables read by each output circuit.

Our motivation is threefold. First, these transformations will come in handy in
our constructions of assignment testers. Second, given these transformations, it is
fair to concentrate on the construction of testers for some constant values of δ and ε.

ASSIGNMENT TESTERS AND THE PCP THEOREM 989

Fig. 2. Composing A1 and A2.

These parameters can be then reduced to the desired values using the general trans-
formations. Finally, as we believe that the concept of assignment tester is interesting
in its own right, it is natural to study the behavior of its various parameters.

To illustrate the need, in our context, for transformations that improve these
(ε, q, δ) parameters, note that composition may indeed reduce s, but it incurs costs
in other parameters. In particular, it causes the error-probability, ε, to increase,
as it is the sum of the error-probabilities of the two composed component. This is
easily fixable since it is easy to reduce ε by increasing q. However, if we increase q,
then we will require a smaller value of δ during composition in the next phase. The
transformations of this section will help us essentially enhance the basic composition
theorem such that it reduces s without harming other parameters.

4.1. Reducing the distance: δ → δ′. In this subsection we describe how
the distance parameter δ of a generic assignment tester can be improved (with fair
cost in terms of the other parameters). The goal here is to improve the “sensitivity”
of the assignment tester, so that the behavior of its output-circuits on mildly bad
assignments (i.e., whose distance from satisfying is at least δ′) imitates their behavior
on very bad assignments (i.e., whose distance from satisfying is at least δ > δ′).

Our transformation is of “black-box” nature: We are given an assignment tester
A, whose inner workings we do not wish to manipulate, yet we want to reduce its
distance parameter. A natural approach would be to manipulate the input variables
X, creating a new set of variables X ′ (which would be part of the auxiliary variables)
that encode X with amplified distance. This encoding would guarantee that two
assignments for X that are δ′-apart are encoded by two assignments for X ′ that are
δ-apart. Naturally, manipulating the input variables is not enough, and we also need
to manipulate ϕ such that it “recognizes” the X ′ variables. Specifically, instead of
applying A to ϕ, we apply it to ϕ′ that is defined over X ′ (rather than over X),
where ϕ′ is defined to decode the assignment to X ′ and to apply ϕ to the decoded
assignment (viewed as an assignment to X). But we are not done, as the circuits that
A produces on ϕ′ do not even depend on the X variables (as ϕ′ does not depend on
these variables either). We therefore augment these circuits by a verification that the
assignment to X ′ correctly encodes the assignment to X. We will need to carefully
define the encoding of the X variables so that verifying consistency between the X
and X ′ variables will be sufficiently efficient.

990 IRIT DINUR AND OMER REINGOLD

Lemma 4.1 (distance reduction). There exists a positive constant δ̄ such that for
every 0 < δ′ ≤ δ ≤ δ̄, given an assignment tester A with parameters (R, s, q, δ, ε),
we can construct an assignment tester A′ with parameters (R′, s′, q′, δ′, ε), where for
Q = O(1

δ′ log 1
ε) and M = O(δ

δ′ n),

R′(n) = poly(1/ε) · R(M), s′ = s(M) + Q, q′(n) = q(M) + Q.

Remark 4.2. Note that both the size of the new circuits s′ and the number
of queries q′ contain an additive term of O(1

δ′ log 1
ε). This seems acceptable, as it

is not hard to show that both s′ and q′ must be Ω(1
δ′ log 1

ε) by the definition of
assignment testers and lower bounds on the query complexity of hitters [17]. Consider,
for example, an input circuit ϕ that is only satisfied by the all-zero assignment. For
each of the circuits produced by the assignment tester consider the set of variables
in X that it reads. For every subset T of variable of density δ′, at least a γ = 1 − ε
fraction of the sets must hit T .

Proof. We follow the basic sketch outlined above. Let the input for our tester
be a circuit ϕ over Boolean variables X. We fix an encoding E whose properties will
be formally defined below. We let X ′ be new variables whose assignment supposedly
represents the encoding via E of some assignment for X. We define the circuit ϕ′

over X ′ to be a circuit that accepts only assignments for X ′ that encode (via E) an
assignment for X that would have caused ϕ to accept. In other words, SAT (ϕ′) =
E(SAT (ϕ)). We choose E so that if an assignment a : X → {0, 1} is δ′-far from the
set SAT (ϕ), then its encoding b : X ′ → {0, 1} is δ-far (recall δ > δ′) from the set
SAT (ϕ′).

Now, we run A on ϕ′ and obtain a list of output circuits ψ′
1, . . . , ψ

′
R(|ϕ′|) over the

variables X ′ and new variables Y . By the soundness of A, starting with an assignment
b �∈ SATδ(ϕ

′) for X ′, no matter how one assigns the remaining Y variables, at most
ε fraction of the ψ′

is accept.
It remains to add tests comparing the assignment b for X ′ to the assignment a

for X. In order to be able to do this via circuits that make only few queries, X ′

must encode X in a “locally checkable” manner. Thus, the heart of our proof is the
encoding E, whose properties are formalized next.

Lemma 4.3. Let δ̄ be a universal constant. For every δ1 < δ2 < δ̄, there exists
a constant c = O(δ2δ1) ≥ 1 and an encoding E : {0, 1}n → {0, 1}cn that is polynomial-
time computable, such that

1. if a1, a2 ∈ {0, 1}n, dist(a1, a2) > δ1, then dist(E(a1), E(a2)) > δ2;
2. there is a linear-time circuit that computes E−1(b) if b is in the image of E,

and otherwise rejects;
3. there is a polynomial-time constructible collection of n circuits each of size

O(c) = O(δ2δ1) such that, given a ∈ {0, 1}n and b ∈ {0, 1}cn, the following
hold:

• If b = E(a), all of the circuits accept.
• At least a dist(b, E(a)) fraction of the circuits reject.

Before proving Lemma 4.3, let us complete the description of A′ and prove its
properties. Let E be as in the lemma, choosing δ1 = δ′ and δ2 = 2δ. As a first step,
A′ will compute ϕ′ from ϕ and generate ψ′

1, . . . , ψ
′
R(|ϕ′|), which are the outcome of

running A on ϕ′. Recall that ϕ′ is a circuit over variables X ′ that satisfies SAT (ϕ′) =
E(SAT (ϕ)). Due to the second item in Lemma 4.3, the size of ϕ′, denoted M , is larger
than the size of ϕ by a multiplicative factor O(δ

δ′). The number of circuits output by
A is R(M), their size is s(M), and they read q(M) variables.

ASSIGNMENT TESTERS AND THE PCP THEOREM 991

In addition, let {comparer}r be the collection of at most n circuits guaranteed by
the third item of Lemma 4.3. We amplify the rejection probability of {comparer}r by
derandomized serial error-reduction. We define a set of tests by applying Corollary 2.5
on the sequence {comparer} with parameters μ = δ and β = ε. Denote the new
tests by

{
compare′1, . . . , compare′M1

}
. By Corollary 2.5, M1 = poly(1/ε)n, and each

compare′i is the AND of d = O(1
δ log 1

ε) compare tests. Therefore the size, denoted by
Q, of each compare′i satisfies Q = O(c · d) = O(1

δ′ log 1
ε) (which also upper bounds the

number of X and X ′ variables these circuits read).
The final output circuits of A′ will be {(ψi ∧ compare′i)}i, where by repetition we

may assume an equal number of at most poly(1/ε) · R(M) circuits of each type.
It is easy to check that A′ has the claimed parameters, and it remains to prove

the completeness and soundness of A′.
Completeness is immediate: Given some a ∈ SAT (ϕ), extend it to X ′-variables

by letting b : X ′ → {0, 1} be defined by b
def
= E(a). The rest follows from the

completeness of A.
For soundness, one needs to show that, given any assignment for X that is δ′-

far from a satisfying assignment, no assignment for the remaining variables (X ′ ∪ Y)
can cause more than ε of the output circuits to accept. So let a �∈ SATδ′(ϕ). Let
b : X ′ → {0, 1} and c : Y → Σ be arbitrary. There are two cases:

• If dist(E(a), b) ≥ δ, then by Lemma 4.3 at least δ fraction of the circuits
{comparer}r reject, so by construction and according to Corollary 2.5, at
most ε of the circuits in {compare′i} accept.

• Otherwise, dist(E(a), b) < δ. Then, using dist(a, SAT (ϕ)) > δ′, the first item
in Lemma 4.3 implies dist(E(a), SAT (ϕ′)) > 2δ. So by the triangle inequality,
dist(b, SAT (ϕ′)) > δ. The soundness of A implies that no matter what the
assignment for Y , at most ε of the circuits ψ′

i accept.
This completes the proof of soundness, since in both cases, a �∈ SATδ′(ϕ) allows at
most an ε fraction of the final circuits to accept. Thus, assuming Lemma 4.3, we have
proved Lemma 4.1.

Proof of Lemma 4.3. Clearly, item 1 can be obtained using any error-correcting
code. However, this would fail to give item 3, as given strings a and b, it is not clear
how to check that dist(E(a), b) is small with few queries.6 Instead, we will use an
encoding that is not an error-correcting code in the standard sense but does have the
desired amplification property.

Let k = O(δ2δ1). We first describe an encoding over nonbinary alphabet Σ =

{0, 1}k, denoted E0 : {0, 1}n → ΣN . To encode a string a ∈ {0, 1}n, simply write
its restriction on all possible k-bit substrings (so there are N = nk possible such
restrictions). It is easy to see that this encoding achieves distance amplification.
Indeed, two strings a1, a2 ∈ {0, 1}n with dist(a1, a2) > δ1, will differ on a 1−(1−δ1)

k ≈
kδ1 > δ2 fraction of the symbols.

Moreover, it is unnecessary to take all N = nk restrictions. With judicious choice
of k-tuples, distance amplification will hold even with N = n restrictions. Let Xk be
an efficiently constructible hitting set of k-tuples of [n] such that every subset of X
of size ≥ δ1n intersects at least a c1δ2 fraction of the k-tuples in Xk (the constant
c1 > 1 will be chosen below). Lemma 2.3 guarantees such a set Xk with |Xk| = n.

6The question of testing whether a given word is the encoding of another word slightly resembles
questions regarding the local testability or local decodability of the code. However, in this context
we avoid the issue altogether.

992 IRIT DINUR AND OMER REINGOLD

This gives an encoding E1 : {0, 1}n → Σ|Xk|. The choice of Xk guarantees that if
dist(a, a′) > δ1, then dist(E1(a), E1(a

′)) > c1δ2, because at least c1δ2 fraction of the
tuples in Xk “hit” the set { i | ai �= a′i}. Note that we are assuming (when applying
Lemma 2.3) c1δ2 < 1/2, which can be ensured by setting δ̄ to be a small enough
constant.

The encoding E1 is almost what we want, except that it is not binary. Thus,
we concatenate E1 (in the coding-theoretical sense) with the error-correcting code

ek : {0, 1}k → {0, 1}c2·k, given by Lemma 2.1. We now fix c1 > 0 to be a constant
such that ek has relative distance ≥ 1/c1. Recall that ek also has constant rate (i.e.,
c2 is a constant) and linear size “codeword decoding” as defined in Lemma 2.1. Let

E
def
= E1 ◦ ek encode a string a ∈ {0, 1}n by first computing E1(a) and then encoding

each symbol of E1(a) using ek. The distance of ek being at least 1/c1 guarantees that

dist(a, a′) > δ1 ⇒ dist(E1(a), E1(a
′)) > c1δ2 ⇒ dist(E(a), E(a′)) > δ2,

which establishes item 1 of the lemma. For item 2, we use the fact that codeword
decoding ek needs circuits of size O(k), and the fact that verifying that a string is an
output of E1 and then inverting E1 on it is easy to do by a linear size circuit.

For item 3, we consider the following randomized test (which translates in the

natural way to the required n circuits). The input is a ∈ {0, 1}n and b ∈ {0, 1}c2kn,
and we wish to verify that b = E(a).

• Select a random k-tuple in Xk, and denote it by (i1, . . . , ik). Read ai1 , . . . , aik .
• Let j1, . . . jc2k be the indices such that b|j1,...,jc1k

supposedly equals ek(a|i1,...,ik).
Read bj1 , . . . , bjc1k

.
• Accept iff ek(ai1 , . . . , aik) = bj1 , . . . , bjc1k

(this is performed by first applying
the circuit for codeword decoding of ek on bj1 , . . . , bjc1k

and then comparing
the result with ai1 , . . . , aik).

The test requires log |Xk| = log n random bits and reads k + c1k = O(δ1δ2)
bits. If b = E(a), the test clearly accepts. Otherwise, denote β = dist(b, E(a)).
By construction of E1, for at least a β fraction of the tuples (i1, . . . , ik) ∈ Xk:
ek(ai1 , . . . , aik) �= (bj1 , . . . , bjc1k

), so the test rejects with probability at least β. The
test for any particular fixing of the logn random bits can be implemented by a circuit
of size O(k) = O(δ1δ2).

Remark 4.4. In the construction provided in Lemma 4.1 of the new distance-
reduced assignment tester A′ for inputs of size n, we require only that A be well
defined on inputs of size at most M = O(δ

δ′n). This will be important for our
inductive constructions, where A has been defined only for inputs of up to a certain
size.

Remark 4.5. Lemma 4.1 will be used in this work only for constant δ. However,
we will ignore, for the simplicity of presentation, the requirement that δ be smaller
than some fixed constant δ̄. It is not hard to ensure that the lemma is applied only
with sufficiently small δ.

4.2. Serial error-reduction: ε → ε′. Let ε be the error-probability of an
assignment tester A, i.e., the fraction of output circuits that erroneously accept a far-
from-satisfying assignment. The naive way of reducing ε is by serial repetition, namely,
taking ANDs of k uniformly selected output circuits of A (as the output circuits of the
new assignment tester A′). The set of variables for A′ is exactly the same as for A.
(Therefore the width of variables does not change by this transformation.) However,
the number of variables read by each circuit increases by a factor k. This implies the
following reduction.

ASSIGNMENT TESTERS AND THE PCP THEOREM 993

Lemma 4.6 (serial error-reduction). For any integer �, given an assignment tester
A with parameters (R, s, q, δ, ε), we can construct a new assignment tester A′ whose
error probability is ε�. The other parameters of A′ are R′(n) = (R(n))�, s′ = O(�s(n)),
q′ = O(�q), δ′ = δ.

The number of circuits R′ that A′ outputs can be decreased by standard deran-
domization techniques. Particularly, based on Corollary 2.5, we obtain the following
reduction.

Lemma 4.7 (derandomized serial error-reduction). Given an assignment tester
A with parameters (R, s, q, δ, ε), we can construct a new assignment tester A′ whose
error probability is ε′. The other parameters of A′ are R′(n) = O(poly(1/ε′)R(n)),
s′ = O(�s(n)), q′ = O(�q), δ′ = δ, where � = log(1/ε′)/(1 − ε).

The main disadvantage of the serial error reduction (in both versions) is that it
reduces ε at the expense of increasing the number of variables q that the circuits
read. When error reduction will be used in our constructions, increasing q will not
be acceptable. Therefore, we next give a new method for decreasing q back, by
aggregation (i.e., by “consistently” reading some � variables at once “in parallel”).

4.3. Error-reduction via parallelization/aggregation. A central ingredient
in the proof of the PCP theorem is the notion of aggregation (alternatively referred to
as parallelization). Namely, starting with an assignment tester that reads q variables,
we want to construct a new assignment tester that reads fewer q′ < q variables and
is otherwise comparable to the old assignment tester (though typically the width
of the new variables will be larger to compensate for the smaller number that are
being read). One motivation for aggregation in our context is error-reduction, as
discussed above. (Indeed, Theorem 4.8 below reduces both q and ε.) The original
proof of the PCP theorem [2, 1] gives a very powerful aggregation method based on
low-degree curves. The proofs in this paper will also require an aggregation theorem.
However, our setting is significantly simpler, as we only need to reduce the number
of variables read by the assignment tester from one constant q to a smaller constant
q′. A “combinatorial” aggregation method for this setting can possibly be based on
parallel repetition theorems. In particular, we could rely on the work of Feige and
Kilian [14], as we do not require the full exponential decrease provided by [24]. We
remark that since we require the result to be an assignment tester (rather than a
verifier), some more details may be involved when applying [14, 24] in this context.

In this section, we present a simple alternative to both solutions. An advantage
of our aggregation compared with the one based on curves is that it can produce
variables of constant width (rather than logarithmic width). This feature is vital for
our proofs. Compared to parallel repetition theorems, our setting is easier since we
can afford more than two queries (but shall make a constant number of queries).

Note that the aggregation method of Theorem 4.8 below increases the distance
parameter δ. This is the reason that the constructions of this paper require a method
for reducing δ, as indeed given by the transformation of Lemma 4.1.

Theorem 4.8 (aggregation). Let A be an assignment tester with parameters
(R, s, q, δ, ε). For every ε′ > 0, one can construct a new assignment tester with
parameters (poly(1/ε′)·R�, �·s·Q,Q, 2δ, ε′), for Q = O(1

δ log(1
ε′)), and � = poly(q

1−ε).
Before turning to the actual proof, let us sketch the idea. First, it is easy to

reduce q to a constant (q = 3 in our case), at the price of increasing the error. This
is done by adding auxiliary variables which encode the entire input of a circuit, and
then replacing that circuit by q circuits that compare the new “big” variable to one
of the q original variables. (In fact, it will be convenient for us to compare to one

994 IRIT DINUR AND OMER REINGOLD

X-variable and also to one Y -variable, implying query complexity three rather than
two.) This (standard) transformation will be described in detail later.

Next, the error probability can easily be reduced again by serial repetition, i.e., by
taking ANDs of multiple circuits. However, the resulting circuits access more variables
than before (i.e., by these two steps, q just got larger). To avoid this, it is natural to
use parallel repetition. Namely, we introduce new variables X ≡ X� that are supposed
to be �-tuples of the original variables X. Now, the effect of serial repetition can be
emulated with only few accesses to the new (wider) variables. The main obstacle this
approach must overcome is that of consistency. Suppose that x ∈ X occurs in two
tuples, x̄ and x̄′. Given an assignment F : X → Σ�, it is quite possible that the value
that x receives in F (x̄) differs from that in F (x̄′). If we were assured that there were
no (or few) inconsistencies of this sort, then the analysis of parallel repetition would
be as easy as that of serial repetition. We therefore address this issue by a consistency
test (described in Figure 3) such that passing it with high probability guarantees that
most tuples are “mostly” consistent with the plurality function of F , defined shortly
(after specifying some notation and conventions).

For the sake of generality, and in order to simplify our analyses, we will define
both the plurality function and the consistency test with respect to an arbitrary
distribution D on X. Also for simplicity, we assume that we will always encounter
assignments F : X → Σ� that are rotation consistent. Namely, if x̄′ is obtained from
x̄ using some cyclic shift of its � components, then F (x̄′) can be obtained from F (x̄)
in the same way. This assumption slightly simplifies the consistency test and is easy
to achieve in our setting using a trivial folding argument (simply let F be specified
by the assignment for the various subsets of X of at most � elements rather than by
assignments to ordered �-tuples of elements). Finally, for any � tuple x̄, let x̄i denote
its ith component.

Definition 4.9 (plurality). Let X and Σ be finite sets, let � ≥ 1 be an integer,
and set X ≡ X�. Let D be an arbitrary probability distribution over X. Let F : X →
Σ�. Define the plurality function of F with respect to D, denoted fF,D : X → Σ as
follows. For every x ∈ X, let fF,D(x) be the value that is assigned to x most frequently
by F (with respect to the distribution D� on X). Formally,

∀x ∈ X, fF,D(x)
def
= max arg

a∈Σ

{
Pr

x̄∈D�,i∈[�]
[F (x̄)i = a | x̄i = x]

}
.

In case D is the uniform distribution over X, we denote the plurality function as fF
(i.e., we omit D from the notation).

In Figure 3 we describe the consistency test. Essentially the same test was first
studied by Goldreich and Safra [19], who proved that (for uniform D) the test es-
tablishes consistency with some f . Their proof used a different “two-stage” plurality
function f and was established via reduction to another (derandomized) test. In
Appendix A we give a direct proof for the same test, summarized by the following
theorem.

Theorem 4.10 (consistency). Let F : X → Σ� and D be an arbitrary probability
distribution over X. Let f = fF,D : X → Σ be the plurality function of F . Let T be
the test described in Figure 3. Then the following hold:

• If for all x̄ = (x1, . . . , x�) ∈ X it holds that F (x1, . . . , x�) = (f(x1), . . . , f(x�)),
then T always accepts.

• Call x̄ = (x1, . . . , x�) ∈ X bad if F (x̄) disagrees with (f(x1), . . . , f(x�)) on

ASSIGNMENT TESTERS AND THE PCP THEOREM 995

1. Select a random x̄ = (x1, . . . , x�) ∈ D�.
2. Select a random x̄′ = (x′

1, . . . , x
′
�) ∈ X as follows: for each j ∈ [�], x′

j = xj

with probability α
def
= �−1/3; otherwise x′

j is selected independently
according to D.

3. Accept only if F (x̄) agrees with F (x̄′) on all common variables; otherwise
reject.

Fig. 3. Consistency test for F : X → Σ�, any |X| , |Σ| < ∞, and any probability distribution D
over X. In case F is not guaranteed to be rotation consistent, then the test is revised slightly: The
query x̄′ is also rotated cyclicly by a random shift in [�].

more than 3
√
� entries. There exists a constant c such that for every γ > 0,

Pr
x̄∈D�

[x̄ bad] > γ ⇒ T rejects with probability at least γ/c.

Proof of Theorem 4.8. Our approach will be as follows. We first transform the
circuits generated by A to circuits that each depend on three variables. This is a
simple (almost standard) transformation that replaces every circuit reading q variables
by several circuits each reading three variables (over a larger domain). This causes
the error-probability to increase. Next, we perform �-parallel repetition: Instead of
reading 3� variables, as in the serial repetition, we introduce new variables that are
�-tuples of the previous ones and read only three of these. We ensure soundness of
this step by adding a separate consistency test. The number of circuits produced by
the assignment tester will be bounded by RO(� log �). By redefining � to be a slightly
larger polynomial in q

1−ε , the dependence on � becomes as claimed.
Let A be an assignment tester with parameters (R, s, q, δ, ε). Let γ = 1−ε be the

detection probability of A. We first fix γ′ = δ/24c, where c is the absolute constant
from Theorem 4.10, and prove that one can construct a new assignment tester with
parameters (RO(� log �), O(� · s), O(1), 2δ, γ′), for ε′ = 1 − γ′ and � = O((q

γ)3/2). The

theorem will then follow for an arbitrarily small ε′ as a simple corollary of Lemma 4.7
(i.e., by serial error reduction). The proof will follow the two steps mentioned above.

Step 1: Getting to three queries. Let ϕ be a circuit over variables X. Run
A on input ϕ, generating output circuits ψ1, . . . , ψR over X,Y . Define new variables
Z = {z1, . . . , zR}, one zi per ψi. The variable zi will assume values that are supposedly
the complete input to ψi. Notation: we denote by ΣX = {0, 1},ΣY ,ΣZ the set of
values assumed by the variables in X,Y, Z, respectively. Thus, ΣZ ⊆ (ΣX ∪ ΣY)q.
We also denote by X(zi) (resp., Y (zi)) the set of X- (resp., Y -) variables accessed by
the corresponding circuit, ψi. Assume w.l.o.g. (without loss of generality) that these
sets are nonempty for all i. Clearly, |X(z) ∪ Y (z)| ≤ q for all z.

By introducing the Z variables, we can get a system of circuits each reading three
(rather than q) variables, but with a lower detection probability. This is a variant
on a standard “transformation to two-provers” [15], and can be done, for example,

as follows. Replace each ψi with circuits ψ
(1)
i , . . . , ψ

(q)
i that each read zi, and also

one x ∈ X(zi) and one y ∈ Y (zi), and then check that the value of zi would have
satisfied ψi, and that it is consistent with the values of x and y. (Each one of the

x ∈ X(zi) and y ∈ Y (zi) is read by at least one of these circuits ψ
(q)
i .) We remark

that each new circuit ψ
(j)
i could have read two variables (as is more standard) rather

than three: Instead of reading both an X-variable and a Y -variable (in addition to

996 IRIT DINUR AND OMER REINGOLD

the Z-variable), it could have read either an X- or a Y -variable. However, looking
ahead, making three queries (each into a different set of variables) will be convenient
for repetition. It will allow us, more naturally, to use three separate tables for �-tuples
of Z-, Y -, and X-variables. This way we will avoid having to deal with tuples mixing
both X- and Y -variables.

Clearly if σ|X∪Y satisfies all ψi, it can be extended to Z such that all of the ψ
(j)
i

accept. Also, we find the following result.
Proposition 4.11. Let σ : X ∪ Y ∪ Z → ΣX ∪ ΣY ∪ ΣZ . If σ|X is δ-far from

satisfying ϕ, then

Pr
i,j

[
ψ

(j)
i rejects

]
≥ γ/q.

Proof. By the soundness of A, at least a γ fraction of the ψi’s reject the assignment
σ|X∪Y . No matter how one assigns the Z-variables, on these ψi’s either σ(zi) �∈
SAT (ψi) or there is an inconsistency between the value of zi and at least one of
the q variables accessed by ψi. We detect this inconsistency with probability at
least 1

q .

Step 2: Parallelization. We now define new variables that are tuples of the
variables X,Y, Z above. Let � = O((q

γ)3/2). For every possible �-tuple of X-variables,

we have a new variable x̄ = (x1, . . . , x�) ∈ X, so that X ≡ X�. Similarly we define
Y ≡ Y � and Z ≡ Z�.7

We now define three types of building-block circuits. The first will perform �-

parallel repetition of the circuits {ψ(j)
i } in order to reduce their error. The second

will facilitate the analysis of the parallel repetition by performing a consistency test
of the assignment to the �-tuples (as in Figure 3). The first two types test only the
new variables that supposedly represent �-tuples of original variables. We therefore
still need to compare the assignment for the �-tuples to the assignment for the original
X-variables.

Parallel-repetition circuits. For every choice of an �-tuple of circuits ψ
(j1)
i1

, . . . ,

ψ
(j�)
i�

in {ψ(j)
i }i∈[R],j∈[q] we will have one circuit simulating their �-wise AND. For every

1 ≤ t ≤ � let xt (resp., yt, zt) be the single x- (resp., y-, z-) variable accessed by ψ
(jt)
it

.

The circuit will access z̄ = (z1, . . . , z�) ∈ Z, x̄ = (x1, . . . , x�), and ȳ = (y1, . . . , y�) and
accept if on every coordinate 1 ≤ t ≤ �, zt satisfies ψit and is consistent with xt and
yt. (Recall that the assignment for each zt is interpreted as an assignment for all of
the variables of ψit , and in particular it specifies values for xt and yt.) Denote these
circuits by C1

1 , . . . , C
1
R1

with R1 = (qR)� ≤ RO(� log �) (in this bound the log � could
have been dropped, assuming q < R, but this makes no difference later so we leave it
as is). Let C1 =

{
C1

1 , . . . , C
1
R1

}
.

Consistency circuits. Let Dx be the distribution on X defined by having Prx∈Dx [x]

equal the probability that a uniformly random ψ
(j)
i circuit reads x. Define Dy,Dz sim-

ilarly. For all possible random choices of x̄, x̄′ as described in the consistency test in
Figure 3, with D = Dx, we have a consistency circuit for the corresponding test.
Likewise for all choices of ȳ, ȳ′ and of z̄, z̄′. Let C2 = {C2

1 , . . . , C
2
R2

} be the sequence
of these circuits. The number of random choices is bounded by the number of pairs

7As discussed above, we ensure that the assignment to these �-tuples is rotation consistent, by
a simple folding argument. Instead of requiring an assignment to �-tuples we ask for an assignment
to subsets of cardinality at most �. This naturally defines a rotation consistent assignment to the
�-tuples.

ASSIGNMENT TESTERS AND THE PCP THEOREM 997

of circuit ψ
(j)
i and variable x (or y) which is ≤ qR, raised to the power �, and then at

most squared. So, R2 ≤ 3 (qR)
2� ≤ RO(� log �). (Note that we have exactly the same

number of circuits testing the X-variables, the Y -variables, and the Z-variables.)
Comparison circuits. These ensure consistency between X and X. For each x ∈

X and x̄ ∈ X that contains it, we have a comparison circuit, comparing the value
of x, with the value given to it in the tuple x̄. Denote the resulting circuits C3 =
{C3

1 , . . . , C
3
R3

}, then R3 = �R� = RO(�) such circuits.

Final circuits. For simplicity, we assume R1 = R2 = R3 = RO(� log �) (otherwise,
equality can be obtained by duplication). The final circuits output by our assignment
tester will be the AND of the ith C1 circuit with the ith C2 circuit and with the ith
C3 circuit. That is, the ith output circuit is C1

i ∧C2
i ∧C3

i . This guarantees that if ε′

of the final circuits accept, then ε′ of the C1 circuits accept, as do ε′ of the C2 circuits
and ε′ of the C3 circuits. Observe that these circuits are over variables X ∪X ∪Y ∪Z.

This completes the description of the new assignment tester. Before we prove
completeness and soundness, let us examine its parameters. The number of output
circuits is indeed RO(� log �). Each output circuit queries O(1) variables. The maximum
size of an output circuit is ≤ O(� · s).

Completeness is immediate: Given an assignment to X that satisfies ϕ, it can be
extended (due to the completeness of A) to the Y variables so that all ψi are satisfied.
This naturally extends to an assignment for Z, and then for X,Y , Z.

Lemma 4.12 (soundness). Given an assignment σ for X ∪X ∪ Y ∪ Z, if σ|X is
2δ-far from satisfying ϕ, then at least γ′ of the output circuits reject.

Proof. Let Fx
def
= σ|X : X → ΣX be the restriction of σ to X, and similarly, Fy

def
=

σ|Y and Fz
def
= σ|Z . Recall that Dx (resp., Dy,Dz) was the distribution according

to which the consistency test of X (resp., Y ,Z) was performed. Let fx = fFx,Dx ,
fy = fFy,Dy

, fz = fFz,Dz
be the plurality functions of Fx, Fy, Fz, respectively, as

in Definition 4.9. In the following proof the reader may wish to regard Dx,Dy,Dz

as being uniform, although in general this need not be the case. We will, however,
require that Dx be uniform, so let us explain why this can be assumed with no loss of

generality. The distribution Dx would be uniform if the sequence of ψ
(j)
i circuits access

each X-variable the same number of times. To enforce this condition, we slightly
modify the ψi circuits. We introduce a new set of variables X ′ that is supposed to be
the exact copy of X, and apply the ψi circuits on the assignment to X ′ (instead of the
assignment to X). In addition, we add consistency checks to test that the assignments
to X and to X ′ are δ-close, by checking equality between a random variable in X and
its copy in X ′. It is easy to argue that the new circuits still define an assignment tester
(with a small increase in the distance parameter, but otherwise parameters almost
identical to the original one, A). In addition, since the consistency checks between
X and X ′ access each X-variable the same number of times, we get the additional
desired property.

Recall that σ|X is 2δ-far from satisfying ϕ. We prove that either γ′ of the circuits
in C3 reject, or γ′ of the circuits in C2 reject, or γ′ of the circuits in C1 reject.

Proposition 4.13. If distX(fx, SAT (ϕ)) ≤ δ, then γ′ of the circuits in C3

reject.
Proof. If distX(fx, SAT (ϕ)) ≤ δ, then since distX(σ|X , SAT (ϕ)) > 2δ, the tri-

angle inequality implies distX(fx, σ|X) > δ. Let x ∈ X be such that σ(x) �= fx(x).
By definition of plurality (and since Dx is the uniform distribution!), fx = fFx(x) is
defined to be the value that is assigned most often to x, among all tuples that contain

998 IRIT DINUR AND OMER REINGOLD

x. Thus, assuming fx �= σ(x), the value of σ(x) must occur in no more than half of
the tuples containing x. Thus, at least half of the comparison circuits (in C3) that
access x reject; altogether, δ

2 > γ′ of all of the comparison circuits reject.

Recall that an �-tuple x̄ ∈ X is bad with respect to Fx if Fx(x̄) disagrees with
(fx(x1), . . . , fx(x�)) on more than 3

√
� locations. A similar definition applies to bad

tuples in Y and in Z.
Proposition 4.14. If more than 1

8 fraction of the tuples (in each of X,Y , or Z)
are bad, then at least γ′ of the circuits in C2 reject.

Proof. Assume there are more than 1
8 bad tuples with respect to Fx, Fy, or Fz;

then Theorem 4.10 guarantees that for some absolute constant c the consistency test
for the particular table will reject with probability ≥ 1

8c . Thus, at least 1
24c ≥ γ′ of

the circuits in C2 will reject.
Now, assume that the conditions in both Propositions 4.13 and 4.14 fail to hold.

This will enable us to argue that the circuits in C1 are emulating the serial repetition

of {ψ(j)
i }, and to deduce that many of them reject. Failure of the condition of Propo-

sition 4.13 means that distX(fx, SAT (ϕ)) > δ. Together with Proposition 4.11, this

implies that at least γ/q of the {ψ(j)
i } circuits reject the assignment fx∪fy∪fz. Failure

of the condition of Proposition 4.14 means that the variables X,Y , Z are consistent
with the plurality assignments fx, fy, fz. So, for example, reading the assignment for
a tuple (x1, . . . , x�) ∈ X “emulates” reading the assignment fx in locations x1, . . . , x�.

We now combine the above to deduce that at least a γ′ fraction of C1 reject.

Indeed, choose � random circuits ψ
(j1)
i1

, . . . , ψ
(j�)
i�

∈ {ψ(j)
i }, and let ψ = (ψ

(j1)
i1

, . . . ,

ψ
(j�)
i�

). Under assignment fx∪fy∪fz, we expect to see at least � · γq of ψ’s components
reject. Moreover, � is chosen exactly so that this expectation is sufficiently above
3 3
√
�, so most tuples ψ see more than 3 3

√
� rejecting components. Indeed the following

proposition follows from a standard tail inequality.
Proposition 4.15. Assume the failure of the condition of Proposition 4.13. For

some � = O((q
γ)3/2),

Pr
ψ

[
ψ contains ≤ 3 3

√
� circuits that reject fx ∪ fy ∪ fz

]
≤ 1/8.

We now examine which circuits in C1 can possibly accept. A circuit C ∈ C1

corresponding to some ψ = (ψ
(j1)
i1

, . . . , ψ
(j�)
i�

) reads three variables x̄, ȳ, z̄ and rejects
unless the following hold:

1. At least one of x̄, ȳ, or z̄ is bad, or
2. ψ has at most 3 3

√
� components that reject fx ∪ fy ∪ fz.

Indeed, otherwise there must be at least one coordinate 1 ≤ t ≤ � for which ψ
(jt)
it

rejects, and also the tth coordinate of Fx(x̄) equals the plurality function fx(xt), and
similarly for Fy(ȳ) and Fz(z̄); thus, by definition, C rejects.

Proposition 4.15 bounds the probability of the second item by 1
8 . The probability

of the first item is bounded by the probability of hitting a bad tuple in any of the
tables Fx, Fy, or Fz. Each of x̄, ȳ, or z̄ is a random (according to the corresponding
distribution Dx,Dy,Dz) entry in the corresponding table. Therefore, by the bound
on the number of bad tuples (Proposition 4.14), the probability of the first item does
not exceed 3 · 1

8 . Altogether, the probability that ψ doesn’t reject is bounded by
1
8 + 3

8 = 1
2 , which means that ψ rejects with probability at least 1/2 > γ′.

In conclusion, at least γ′ of the final output circuits reject, completing the proof
of Lemma 4.12 (soundness).

ASSIGNMENT TESTERS AND THE PCP THEOREM 999

Now that we have established the soundness of the assignment tester, Theorem 4.8
follows.

5. The PCP theorem—An alternate proof. In this section we give a new
proof for the PCP theorem [2, 1]. Our proof involves composition, and a combination
of the combinatorial transformations described in section 4, applied on a “weak”
assignment tester, that is assumed to be given.

Theorem 5.1 (weak tester). For some constants β > 0, c1, and qβ there exists
an assignment tester Aβ with the following parameters:

• number of output circuits, R(n) = nc1 ,
• size of output circuits, s(n) = O(n1−β),
• number of queries, q(n) = qβ,
• error probability, ε(n) = 0.1,
• distance, δ(n) = 0.1.

Such an assignment tester (and even stronger) can be constructed, for example,
by relying on algebraic techniques already present in [13], particularly by taking a
low-degree extension with a constant number of dimensions (as opposed to the way it
is usually invoked, with a logarithmic number of dimensions) and then performing the
[22] “sum-check” procedure (while relying on a weak low-degree test). It is interesting
to note that although an assignment tester seems stronger than just a PCP verifier,
all known constructions give the stronger object.

Our main theorem in this section is the following.
Theorem 1.1 (formal statement). Assuming Aβ as in Theorem 5.1, there exists

an assignment tester A with the following parameters:
• number of output circuits, R(n) = poly(n),
• size of output circuits, s(n) = O(1),
• number of queries, q(n) = O(1),
• error probability, ε(n) = 0.1,
• distance, δ(n) = 0.1.

The PCP theorem now follows as an immediate corollary, as given next.
Corollary 5.2 (PCP theorem). Given a set of Boolean constraints ψ1, . . . , ψR

over Boolean variables Z, such that each read a constant number of variables, it is
NP-hard to distinguish between the following two cases:

1. [completeness] there is an assignment to Z satisfying all of ψ1, . . . , ψR.
2. [soundness] every assignment to Z satisfies at most 10% of ψ1, . . . , ψR.

Proof. We reduce from SAT. On input of a SAT formula ϕ over variables X,
feed it to the assignment tester algorithm A given by Theorem 1.1. The output is a
list of R(|ϕ|) circuits ψ1, . . . ψR such that each reads a constant number of bits from
Z = X ∪ Y .

If ϕ is satisfiable, say by an assignment a : X → {0, 1}, then there is some b such
that together a ∪ b satisfy all of ψ1, . . . , ψR. If ϕ is not satisfiable, at most an ε = 0.1
fraction of {ψ1, . . . , ψR} can accept. Otherwise, the soundness condition of A implies
that a is δ-close to a satisfying assignment for ϕ, and in particular it means that ϕ is
satisfiable.

The naive approach for proving Theorem 1.1, the main theorem of this section,
is to compose Aβ with itself log logn times. Starting with an input circuit of size n,

the output circuits have size n1−β , (n1−β)1−β = n(1−β)2 , and so on to n(1−β)i at step i.
Therefore, the circuit size of the output circuits is constant for i = O(log log n). While
already achieving nontrivial parameters, this construction does not quite give the PCP
theorem. The reason has to do with the error probability, or its complement, the

1000 IRIT DINUR AND OMER REINGOLD

Fig. 4. The inductive step. Error reduction encapsulates the additional parameter-fixing steps,
which compensate for the error-increase of the composition step.

detection probability (γ = 1− ε), which will be more convenient to work with in this
section. The detection probability becomes γ1γ2, . . . , γi = (γβ)log log n = O(1/ log n),
rather than constant as we would like. Our proof of Theorem 1.1 will have the same
general structure as in the naive approach but with a more elaborate recursive step,
as follows.

It may seem at first that there is an additional more inherent problem with
the naive approach. After all, to compose an assignment tester with itself we need
δ < 1/q, which seems impossible. However, recall that the number of queries q of an
assignment tester can be easily made a small fixed constant (e.g., 3) without harming
the distance parameter δ (see Proposition 4.11).

Inductive step—Quick overview (see also Figure 4). Our construction is bottom-
up. We assume having constructed an assignment tester with the desired parameters
that works for inputs of size smaller than n, and show how to extend it for inputs of
size n. Therefore, by induction, we obtain the desired assignment tester for all input
sizes up to and including n.

Our inductive step begins with composition of the black-box assignment tester (or
rather, a variant of it denoted Aα) with the one assumed by induction. This composi-
tion, as discussed above, increases the error of the assignment tester. To correct this
we next perform error-reduction by “parallelization” (as in Theorem 4.8), which will
take care of the error but will have two undesirable side effects: The distance param-
eter δ will increase, and the size of the output circuits will increase as well. The next
step will be to perform a distance reduction (as in Lemma 4.1). Finally, the last step
will be to reduce back the size of the output circuits, to achieve the inductive hypothe-
sis. This is done by composition (again) but this time with a constant size assignment
tester. (The inputs to this assignment tester will always be of some bounded constant
size.) We note that this second assignment tester (called A0 below) can be obtained,
e.g., by instantiation of the black-box tester (of Theorem 5.1) for a fixed input size.

Before proceeding to the formal proof, it will be convenient to strengthen some-
what the parameters of Aβ given in Theorem 5.1.

Corollary 5.3. Assuming Aβ as in Theorem 5.1, there exists a constant q̄ such
that for every α > 0 there exists c1 and an assignment tester Aα with the following
parameters: R(n) = nc1 , s(n) = O(nα), q(n) = q̄, δ(n) = 0.1, ε(n) = 0.1.

This strengthening follows by an appropriate sequence of transformations similar
to those below. We defer the proof to Appendix B.

The rest of this section is devoted to proving Theorem 1.1 by following the outline

ASSIGNMENT TESTERS AND THE PCP THEOREM 1001

above. We first describe the building blocks used to construct the recursive algorithm
A, and then formally describe A; see also the procedure in section 5.2.

5.1. Building-block testers and their parameters. As discussed above, we
consider three testers in this construction. A itself, which is constructed recursively;
Aα, which is essentially the assignment tester that we assume as a black box; and
finally A0, the constant size assignment tester. It is important to note that there are
various interdependencies between the parameters of these three testers, for example,
to allow their composition (as Theorem 3.7 makes some restriction on parameters of
the composed testers). The main purpose of the following definitions and discussion is
to make explicit the dependencies between the various parameters, so as to make sure
that we do not run into circular definitions. The reader may choose to ignore reading
these subtleties initially and skip to the construction of A (provided in section 5.2).

First, Aα (guaranteed by Corollary 5.3) has the parameters (R(n) = nc1 , s(n) =
O(nα), q(n) = q̄, δ(n) = 0.1, ε(n) = 0.1). We will select α later and remember that
c1 is a constant and is the only parameter that depends on α. We stress that q̄ is an
absolute constant. Since Aα will be applied only on input circuits of size larger than
some n0 (that can be made large enough), we can assume that s(n) = nα. Denote
the error probability and distance parameter by εα = δα = 0.1, and the detection
probability by γα = 1 − εα = 0.9.

Regarding the two additional testers A and A0, we first set their distance param-
eters in a way that will allow the composition needed by the construction. Set the
distance parameter of A to be δ= min(0.1, 1

c2q̄
), where c2 is the constant from Theo-

rem 3.7. Recall that composition of two assignment testers is allowed (Theorem 3.7)
if the distance parameter δ of the second (inner) is related to the query parameter q̄ of
the first, by δ≤ 1

c2q̄
. We remark that although in Theorem 1.1 the claimed distance pa-

rameter of A is 0.1, we constrain it here further, so that A can be invoked recursively.
In foresight, set q1 =O(1

δ log 1
εα

) (the constant in the “O” notation is an absolute con-

stant that will be determined by the analysis below). Set δ0 = 1
c2q1

. As we can set q1 ≥
q̄, we obtain δ0 ≤ δ. We can now state the parameters of A0 (and prove its existence).

Proposition 5.4. For any α0 > 0 and any n0 which is large enough (as a
function of α0 and δ0), there exist R0, s0, and q0 with s0 < (n0)

α0 , and there exists
an assignment tester A0 such that for input circuits of size ≤ n0, A0 has parameters
(R0, s0, q0, δ0, εα). (By definition, q0 ≤ s0.)

Proof. Set α′
0 = α0/3, and let Aα′

0
be the assignment tester guaranteed by

Corollary 5.3. A0 will be the result of applying the distance-reduction transformation
(given by Lemma 4.1) to Aα′

0
, reducing its distance parameter to δ0. All we need

to verify is the condition on s0. By Corollary 5.3 and Lemma 4.1 we have that
the size of the output circuits of A0 for input circuits of size ≤ n0 is at most s0 =
O(n0/δ0)

α′
0 + O(1

δ0
log 1

εα
). By setting n0 to be large enough, we get that indeed

s0 < (n0)
α0 .

In the proof we will need to set α0 to be a small enough constant; this in turn
will set n0 and also R0 to be large enough constants.

5.2. The recursive construction. The following lemma restates Theorem 1.1,
giving explicit parameters for A that will be obtained by induction. The constants s0
and q0 are as in Proposition 5.4, and recall we set δ = min(0.1, 1

c2q̄
) and γα = 0.9.

Lemma 5.5. There exists C > 0 and an assignment tester A with the following
parameters: R(n) ≤ nC , s(n) = s0, q(n) = q0, δ(n) = δ, ε(n) = 1 − (γα)2.

1002 IRIT DINUR AND OMER REINGOLD

Table 1

Evolution of parameters during one inductive step. Recall that q1 = O(1
δ

log 1
εα

). In addi-

tion, q′
1 = O(1

δα
log 1

εα
) and � = poly(q0

γα
). The main composition step (step I), reduces the

circuit size to s0 at the price of reducing the detection probability from (γα)2 to (γα)3. The
error-reduction step (step II(a)), increases the detection probability back (even above its final
intended value). It is also crucial that the number of queries is also reduced, i.e., q′

1 < q0.
However, both s and δ increase. This is corrected in steps II(b) and II(c).

Name Description System-size (R) Circuit-size (s) q Distance (δ) Detection (γ)

Aα Black-box nc1 nα q̄ δα γα
A Induction nC s0 q0 δ (γα)2

A0 Const. size R0 s0 q0 δ0 γα

AI Reduce s nc1 ·O(nα)C s0 q0 δα (γα)3

AIIa &
raise γ
reduce q

(nc1+αC)O(�) � · s0 · q′1 q′1 2δα γα

AIIb Reduce δ (nc1+αC)O(�) � · s0 · q1 q1 δ γα
AIIc Reduce s (nc1+αC)O(�) s0 q0 δ (γα)2

Proof. We give a full description of A and prove (using induction) that A is well
defined and has the desired final parameters. A brief outline of A is given next.

Algorithm 1. The Assignment Tester A.

Let the input ϕ of A be a circuit of size n. If |ϕ| ≤ n0, then A just runs A0.
Otherwise, we describe the algorithm A via several “intermediate” transformations
(AI ⇒ AIIa ⇒ AIIb ⇒ AIIc = A):

I. Initial composition (major size reduction): Let AI = Aα ◦ A be the result of
composing Aα with a recursive invocation of A using Theorem 3.7. That is,
the recursive invocation refers to circuits of size at most s(n) = O(nα).

II. Error-reduction:
(a) (error and query reduction) Let AIIa be the outcome of reducing the

error parameter of AI to εα using Theorem 4.8.
(b) (distance reduction) Let AIIb be the outcome of reducing the distance

parameter of AIIa to δ using Lemma 4.1.
(c) (auxiliary size reduction) Let AIIc = AIIb ◦ A0 be the composition of

AIIb with A0, again using Theorem 3.7, obtaining circuits of size s0. A
will run AIIc on ϕ.

Let the input ϕ of A be a circuit of size n. If |ϕ| ≤ n0, then A just runs A0. In
this case, the base of the induction is established by Proposition 5.4. As long as the
constant C is chosen to be large enough so that R(n0) = nC0 ≥ R0, we have that the
parameters of A0 (on input size at most n0) are only better than required.

Assume by induction that Lemma 5.5 holds for all circuits of size smaller than
n. (In fact, we will only use that it holds for circuits of size s(O(n)) = O(nα).) We
verify that each of the following steps (I, II(a), II(b), II(c) below) is well defined, and
that we get the claimed parameters. Table 1 may assist the reader in following the
evolving parameters.

I. AI is the composition of Aα with the recursive invocation of A, using Theorem
3.7. This is well defined because A uses distance parameter δ ≤ 1

c2q̄
and since

A is defined (inductively) for all inputs of size smaller than s(n) < n. Based
on Theorem 3.7, we have that AI = Aα ◦ A produces nc1 · (O(nα))C circuits
and has detection probability γα · (γα)2. As for the additional parameters,
we have circuit size s0, number of queries q0, and error parameter δα.

ASSIGNMENT TESTERS AND THE PCP THEOREM 1003

II(a). We now apply error-reduction to AI to increase the detection probability from
(γα)3 to γα, using Theorem 4.8. For q′1 = O(1

δα
log 1

εα
) and � = poly(q0

γα
), we

have that the resulting assignment tester AIIa produces poly(1/εα) ·
(nc1+αC)O(�) = (nc1+αC)O(�) circuits. Its circuit size is � · s0 · q′1, the number
of queries is q′1, the distance parameter is 2δα, and the detection probability
is γα, as desired.

II(b). Next, we get AIIb by reducing the distance parameter of AIIa from 2δα to
δ according to Lemma 4.1. As discussed in Remark 4.4, this will require
applying AIIa on circuits of size M = O(2δα

δ n) = O(n) (recall that δ =
Ω(1/q̄) is a constant). We note that as long as α is small enough, this will
require invoking A recursively only on circuits of size smaller than s(M) < n.
The number of circuits that AIIb produces is poly(1/εα)(M c1+αC)O(�) =
(nc1+αC)O(�). The number of queries is q1 = q′1 + O(1

δ log 1
εα

) = O(1
δ log 1

εα
).

Note that this is consistent with our previous definition of q1. The circuit size
is � · s0 · q′1 + O(1

δ log 1
εα

) < � · s0 · q1 (by setting q1 = O(1
δ log 1

εα
) to be large

enough). The detection probability remains γα, and the distance parameter
is δ, as desired.

II(c). Finally, for the composition AIIc = AIIb ◦ A0 to be well defined we need to
have n0 ≥ O(� · s0 · q1). Note that � · s0 · q1 = poly(s0). (There are hidden
constants here which depend on δα, εα, and q̄.) Since s0 < (n0)

α0 the con-
dition that n0 ≥ O(� · s0 · q1) is satisfied, provided that α0 is small enough
(which translates to n0 and R0 being large enough). In addition, we have
that δ0 satisfies the condition of Theorem 3.7 and allows the composition of
AIIb with A0. The parameters obtained by AIIc are the number of circuits
R0 · (nc1+αC)O(�) = (nc1+αC)O(�), the circuit size s0, the number of queries q0,
the detection probability (γα)2, and the distance parameter δ.

It remains to verify that the parameters of AIIc are as good as those required of A
(and so A will simply simulate AIIc on inputs with |ϕ| > n0, and this will complete
the proof by induction). This already holds directly for all parameters apart from
the number of circuits, which is supposed to be nC . Therefore, the condition that is
imposed is (nc1+αC)c

′·� ≤ nC , for some constant c′ derived from the analysis above.
For that we set α < 1/(2c′ · �) (which causes the constant c1 that controls the number
of circuits output by Aα to increase but still remain constant). The required condition
now holds as long as C > 2c1 · c′ · �.

6. A combinatorial construction. In this section we describe a fully combina-
torial construction of assignment testers with parameters R = npolylogn and s = O(1).
This implies a combinatorial proof for NP ⊆ PCP [polylog, 1]. Although not as strong
as the PCP theorem, such a result still has quite powerful implications, for example
that approximating Max-3-SAT is quasi-NP-hard.

In the construction of the assignment tester A, we follow the recursion style of
section 5. Namely, we compose an assignment tester Aα that produces circuits of
size O(nα), with a recursive call to A itself on circuits of this size. We then reduce
the error of the resulting tester to maintain the induction hypothesis (as described in
step II of Assignment Tester A). The main difference is that here we can no longer
assume the existence of Aα as a black box that is given to the construction. We will
therefore have to construct Aα ourselves.

The first observation we make is the following: When defining A on input circuits
of size n, we are allowed to assume that A is already well defined for inputs of size
smaller than n. (In fact, we are already making this assumption in the construction of

1004 IRIT DINUR AND OMER REINGOLD

section 5.) For this reason, we do not really have to build Aα from scratch. Instead,
in the definition of Aα on inputs of size n′ = O(n) we are allowed to invoke A itself, as
long as we invoke it only on inputs that are smaller than n. In the presentation below
we will concentrate on this task of constructing Aα given A which is only defined on
smaller inputs (formally stated in Lemma 6.2). This will include all of the new ideas
not already described in section 5.

We note that, for the basis of the induction, we rely on a given constant-size tester,
say like the one in Proposition 5.4. While in section 5 we obtained such a constant-
size tester using the given black-box tester, this is no longer available. Instead we can
choose any known PCP construction, even the extremely inefficient constructions of
PCPs like that based on the long-code [6]. (As mentioned earlier, the constant-size
assignment tester can also be found via exhaustive search, but for such an approach
to work we need a proof of the existence of assignment testers, which is currently only
known via explicit constructions.)

6.1. Overview–Constructing Aα and oblivious testers. We now provide
an overview of the construction of Aα. This will also allow us to introduce a new
desired property of assignment testers that lies at the heart of our new construction;
namely, we will discuss the notion of oblivious assignment testers.

Recall the task at hand: We would like to construct a tester Aα that on input
circuits of size n produces circuits of size O(nα). Furthermore, we need Aα to have
constant query complexity. Namely, each of the circuits produced by Aα should only
read a constant number of variables. On the other hand, we have at our disposal a
tester A that produces circuits of constant size (and in this respect is much better
than what we need of Aα), albeit it is defined only on input circuits of size smaller
than n.

Our approach is to decompose the input for Aα into smaller pieces and apply A
on each piece separately. If the decomposition has some nice properties, then we will
be able to combine the outcomes of the different runs of A to obtain the desired Aα.

Ignoring various important issues (which we will soon address), the construction
goes as follows: On an input circuit ϕ of size n, the first step will be to decompose ϕ
into the disjunction of s1 smaller circuits

∧
i ϕi, each of size s2. This decomposition

is not necessarily syntactic, and in particular, s1s2 � n. The important property of
this decomposition is that there is a partition of ϕ’s variables into blocks of size at
most s2, such that each ϕi accesses variables from at most O(1) blocks.

Now we apply the assignment tester A on each one of the ϕi’s to obtain ψi,1, . . . ,
ψi,R(s2), where each ψi,k has constant size. It may be useful to think of ψi,1, . . . , ψi,R(s2)

as the ith row of a matrix (with s1 rows and R(s2) columns). At this point, we will
turn each column of this matrix into a new test. For the kth column we define the
test ψk =

∧
i ψi,k. These new circuits have size O(s1), as they are composed of s1

circuits of size O(1). The transformation ϕ ⇒ {ψk} defines the desired Aα. (In other
words, on input ϕ, the tester Aα outputs {ψk}.)

In the informal description above, we have ignored two major issues, to which we
now draw attention.

6.1.1. Lack of robustness. This issue comes up when trying to argue soundness
for Aα, say as a PCP verifier: In the case that ϕ is not satisfiable, then any assignment
will fail to satisfy at least one of the ϕi’s. We now want to argue that this implies that
for this i many of the ψi,k’s will not be satisfied, which will finally imply that many
of the ψk’s will not be satisfied. Our problem is that, while the given assignment will
not satisfy one of the ϕi’s, it may be close to satisfying each and every one of them. In

ASSIGNMENT TESTERS AND THE PCP THEOREM 1005

that case, applying A does not guarantee anything regarding the ψi,k’s. Similarly to
the proof for the composition theorem for assignment testers, we solve this difficulty
by applying A on a “robust version” of the ϕi’s rather than on the ϕi’s themselves.
It is possible to construct such a robust version, due to the special property of the
decomposition (i.e., that each ϕi depends on a constant number of blocks of variables
of ϕ). The robust circuits ϕ′

i will be defined such that when ϕ is not satisfiable then
any assignment will be far from satisfying at least one of the ϕ′

i’s. (In fact, we will
need a bit more of the ϕ′

i’s in order to argue soundness as an assignment tester rather
than as a PCP verifier.)

We omit from this overview more specific details of how the ϕi and ϕ′
i circuits are

defined and instead turn our attention to the second and potentially more devastating
difficulty of our construction.

6.1.2. Huge query complexity. It is indeed true that the tester Aα outlined
above produces circuits ψk of size O(s1) as desired. However, in the general case, the
query complexity of Aα is also O(s1) rather than O(1) as required. If we were able
to partition the variables of Aα into blocks of size O(s1), and ensure that the queries
made by each ψk are contained in O(1) “blocks” of variables, then this problem would
be resolved by simply clustering these blocks into new larger variables (details below).

We obtain such a behavior from Aα if the assignment tester A is oblivious. An
oblivious assignment tester produces output circuits that have the property that the
names of the variables queried by each circuit are a function only of |ϕ| and not of ϕ.
(Looking ahead, when such an A is applied on ϕi to yield {ϕi,k}k, the names of the
variables queried by ϕi,k are the same for every i.8) Formally, we have the following.

Definition 6.1. Let A be an assignment tester that, on input circuit ϕ over the
variables x1, . . . , xn1 , produces circuits ψ1, . . . , ψR(n) over the variables x1, . . . , xn1 ,
xn1+1, . . . , xn1+n2

. A is called oblivious if for every n there exist q = q(n) functions

ν1, . . . , νq : {1, . . . ,R(n)} → {1, . . . , n1 + n2}

such that for every k ∈ [R] the circuit ψk depends on the q variables indexed by
ν1(k), . . . , νq(k).

In other words, the identity of the variables read by ψk depends on |ϕ| but not
on ϕ. Note that the predicate evaluated by each ψk may certainly depend on ϕ and
not only on |ϕ|. Also note that we do not make any requirement on the efficiency of
computing the νi’s. (We point out, however, that their efficiency does follow from the
efficiency of A.)

Intuitively, the reason that obliviousness of A is useful in reducing the query
complexity of Aα is that it implies a very regular structure of the variables read by
the ψi,k’s that compose the final circuit ψk. This implies a partition of the variables
into blocks, as mentioned above, and allows us to cluster the variables read by the
output circuits ψk into larger, O(s1)-bit long, “column” variables, such that each ψk

depends only on a constant number of those larger variables.
Finally it remains to address the typical case where A is not oblivious. Luckily,

we show that it is not hard to turn every assignment tester into an oblivious one.

6.2. Constructing Aα. We now formalize the construction of Aα for inputs
of size Nα based on A which is only defined for input circuits whose size is smaller
than N .

8Assuming for simplicity that |ϕi| is the same for all i.

1006 IRIT DINUR AND OMER REINGOLD

Lemma 6.2. For every α < 1
3 , given an assignment tester A defined for inputs of

size n such that n < N , with parameters R(n), s(n) = O(1), q(n) = O(1), δ(n) = O(1),
and ε(n) = O(1), we can construct Aα defined for inputs of size at most Nα, where
Nα is such that (Nα)1−αpolylogNα < N , with circuit size sα(n) = O(n3α), and other
parameters

Rα(n) = R(n1−αpolylogn) · n · poly(1/ε),

qα(n) = O

(
1

δ
log

1

ε

)
,

δα(n) = 24δ,

εα(n) = ε.

Note that the main advantage of Aα over A is that it is defined for significantly
larger inputs (i.e., we may have Nα � N). In the application of Lemma 6.2, we will
need it to be defined only for inputs of length at most Nα = N · polylogN . Also note
that the assignment tester Aα outputs circuits whose size is O(n3α). In order to be
perfectly consistent with the notation of section 5 we should have called it A3α, but
in order to simplify notation we call it Aα.

Proof. Let ϕ, |ϕ| = n ≤ Nα, be the input circuit over a set of variables X. First,
we decompose it as the disjunction of smaller circuits ϕi.

Decomposing ϕ. We begin with a standard transformation, taking our input cir-
cuit ϕ into a 3SAT formula C1∧· · ·∧Cm, where each variable appears only a constant
number of times: For each internal gate of ϕ add a new variable. In addition, add
new variables for multiple copies of X variables without degree larger than one (in the
circuit ϕ). Some of the clauses Ci of the new 3SAT formula will correspond to gates
in ϕ. These clauses verify that the assignment for any particular gate variable is con-
sistent with the assignment for its input-variables (that may either be X-variables or
other gate variables). In addition, for variables yi1 , yi2 , yi3 , . . . , that are supposed to
be copies of a variable xi, we have clauses verifying that xi = yi1 and that yij = yij+1

.
Let Y denote the set of all new variables that were added. Clearly, |X ∪ Y | ≤ n = |ϕ|.
The transformation also guarantees that an assignment to X could be extended to an
assignment to X ∪ Y that satisfies C1 ∧ · · · ∧ Cm if and only if the assignment to X
satisfies ϕ.

Assume that n1 = n1−α is an integer. Arrange the variables in an nα-by-n1

matrix V such that the X-variables fill the first |X|
n1

rows. (For simplicity, assume
that n1 divides |X|.) Each row of V consists of n1 variables. Denote the rows by Vi,
i = 1, . . . , nα. See also Figure 5.

For every i = (i1, i2, i3) ∈ [nα]3, define ϕi to be the AND of all of the clauses
Ci whose three variables are contained in Vi1 ∪ Vi2 ∪ Vi3 . Let us see that this is a
decomposition of ϕ with the property mentioned in the overview. First note that

C1 ∧ · · · ∧ Cm =
∧

i=(i1,i2,i3)

ϕi.

The number of circuits ϕi is n3α. Each ϕi depends on (at most) three blocks (rows)
of variables (i.e., the blocks Vi1 , Vi2 , and Vi3), and the size of each block is at most
n1 = n1−α. Finally, the size of each ϕi is at most O(n1) (since it depends on 3n1

variables and each variable appears in a constant number of clauses Ci of the 3SAT
formula). Going back to the overview, we have decomposed ϕ into s1 = n3α circuits,

ASSIGNMENT TESTERS AND THE PCP THEOREM 1007

Fig. 5. The variables V = X ∪Y and W . The left half of W corresponds to encoding according
to e1, and the right half corresponds to encoding according to e2.

each of size at most s2 = O(n1−α), such that each circuit ϕi depends on three blocks
of variables (and the size of each block is at most s2).

Making the ϕi’s robust. Next, we prepare the ϕi’s for composition by making
them robust (similarly to the proof of Lemma 3.6). Define new circuits ϕ′

i over new
“encoding” variables Wi in a natural way as follows. Let e : {0, 1}n1 → {0, 1}cn1 be
an error-correcting code, defined below. For every i = 1, . . . , nα, let Wi be a set of
cn1 new Boolean variables, supposedly representing the encoding via e of Vi. Let

∀i = (i1, i2, i3) ∈ [nα]3, ϕ′
i be a circuit over variables Wi1 ∪Wi2 ∪Wi3(1)

that accepts only those assignments that are correct encodings (via e) of assignments
that would have made ϕi accept.

With foresight, we choose an encoding e that, in addition to having good rate and
distance, also has the following “local-checkability” property. Given an assignment
a for the original X variables, and an assignment b for the encoding variables, it is
easy to verify (with two queries) that either b is close to e(a) or it is far from any
codeword. This property will allow us to test consistency of the assignment for the
new variables with the assignment to the original X-variables (which is used in the
proof of Lemma 6.7 to argue that Aα is an assignment tester, rather than just a
PCP verifier). Note that this property is needed only when encoding the rows of V
that are composed of X-variables, whereas for the rows containing Y -variables a more
standard error-correcting code would have sufficed (for simplicity, however, we use the
same code for encoding all rows of V).

We obtain the aforementioned local-checkability property by choosing e to be the
string-concatenation of two error-correcting codes e1 and e2, where e1 : {0, 1}n1 →
{0, 1}

c
2 n1 is an error-correcting-code as defined in Lemma 2.1, and e2 : {0, 1}n1 →

{0, 1}
c
2 n1 is the trivial “repetition” encoding; i.e., it outputs c/2 repetitions of each

bit in the input. (The choice of c/2 as the number of repetitions, though convenient, is
somewhat arbitrary; even a single repetition would have worked, though with worse
parameter.) The distance of e is at least the distance of e1, i.e., at least n1. By
Lemma 2.1, the size of ϕ′

i is linear in that of ϕi; i.e., it is O(n1).
Let W be an nα × cn1 matrix of variables whose rows are Wi. The first c

2n1

columns (the “left” half) of W correspond to encoding according to e1, and the last
c
2n1 columns (the “right” half) of W correspond to c

2 copies of V (recall that V is
the matrix that contains the X-variables in its first rows). The following proposition

1008 IRIT DINUR AND OMER REINGOLD

uses only the properties of the left-side code.
Proposition 6.3. Let b : W → {0, 1}, and define ab : X → {0, 1} to be the

maximum-likelihood decoding9 of b. If ab doesn’t satisfy ϕ, then there exists some i
such that ϕ′

i is 1
6c -far from being satisfied by b.

Proof. If ab doesn’t satisfy ϕ, then there is some ϕi, i = (i1, i2, i3), that falsifies
ab. This means that at least one of Wi1 ,Wi2 ,Wi3 needs to be changed in more than
half of the code’s distance, n1 number of bits, so that together they encode a value
that satisfies ϕ′

i. The number of bits that need to be changed is at least n1/2, which
is at least a 1

6c fraction of the 3 · cn1 input bits of ϕ′
i.

Applying A. As discussed in the overview, before applying A on the ϕ′
i circuits

we need to turn A into an oblivious tester. Fortunately this is can be done by the
following lemma, whose proof we defer to section 6.4.

Lemma 6.4. There exists some constant c1 > 0 such that any assignment tester
A can be made into an oblivious assignment tester A′, and the parameters of A′ are
equal to A’s parameters computed on input size n′ = n · (log n)c1 . Furthermore, on an
n-bit input, A′ needs to invoke A only on one n′-bit input.

Let A′ be the oblivious version of A guaranteed by Lemma 6.4. Next, apply
A′ on each ϕ′

i obtained in (1), denoting the output by ψi,1, . . . , ψi,R1
. Note that

this application of A′ requires applying A only on inputs of size n1polylogn1 < N
(by Lemma 6.4 and the definition of Nα and n1), so R1 = R(|ϕ′

i|polylog |ϕ′
i|) =

R(n1polylogn1). The circuits ψi,1, . . . , ψi,R1
are over variables from at most three rows

in W and over new variables Zi. Each circuit has size O(1).
Circuit and variable aggregation. The next step is to think of ψi,1, . . . , ψi,R1

as a
row in a matrix, and to define a new test (i.e., circuit) for each column:

∀k = 1, . . . ,R1, ψk =
∧
i

ψi,k.

There are m = n3α rows, and since the size of each ψi,k is O(1), these new circuits
have size m · O(1) = O(n3α). Moreover, as long as the distance parameter of A is
δ ≤ 1

6c , the next result follows immediately.
Proposition 6.5. Let b, ab be as in Proposition 6.3 above. Let b1 be any assign-

ment for
⋃

i Zi. If ab doesn’t satisfy ϕ, then at most ε of ψ1, . . . , ψR are satisfied by
b ∪ b1.

The circuits ψ1, . . . , ψR are therefore close to being the desired output of Aα. They
do, however, each depend on many (i.e., Θ(m)) Boolean variables, rather than on a
constant number of possibly larger-range variables. This is where the obliviousness of
A′ comes into play. We can simply cluster the variables into “columns” so that each
ψk will depend on a constant number of clusters (and the clusters are not too large).

For any i = (i1, i2, i3), the circuits ψi,1, . . . , ψi,R1
are defined over variables in

three rows of the matrix W (having nα rows), namely Wi1 ∪Wi2 ∪Wi3 , and also over
Zi, the auxiliary variables generated by running A′ on ϕ′

i. Let Z be the matrix whose
rows are Zi (i.e., Z has n3α rows). Now, for each k, the circuit ψ′

i,k depends on some
constant q locations in the string Wi1 ∪ Wi2 ∪ Wi3 , and Zi. Since A′ is oblivious,
the positions queried in these four strings are a function only of the index k (and are
independent of i). The punchline is therefore the following.

Fact 6.6. For each circuit ψk, all of the variables read by ψk are contained in q
columns of W and Z, where q = O(1) is the query complexity of A.

9As in Notation 2.2, the decoding of a word σ is e−1(σ̂), where σ̂ is the codeword with minimal
Hamming distance to σ (where ties can be broken arbitrarily).

ASSIGNMENT TESTERS AND THE PCP THEOREM 1009

The next step is now clear. We replace each column of variables (in both matrices
W and Z) by a new (non-Boolean) variable that has width nα or n3α, respectively.
Let w1, . . . , wm1 be new variables representing the columns of W , m1 = cn1. Similarly
let z1, . . . , zm2 be new variables representing the columns of Z, m2 ≤ R1. The tests
simulate the previous ones as follows. For every k ∈ [R1], recall that ψk was the
conjunction of ψi,k for all i. We define ψ̄k to be the test that verifies the predicate ψk

by reading the appropriate ≤ q column variables that, by Fact 6.6, contain all of the
variables read by ψk.

The main point is that every variable in W ∪Z appears in exactly one new column
variable. Therefore, consistency is not an issue, as there is a one-to-one correspondence
between assignments to the old variables and assignments to the new ones.

Consistency with the assignment to X. Finally, we must add tests that compare
the values of

{
wi

}
i
∪
{
zi
}
i
to the assignment for the original X-variables. Recall that

each variable x belongs to some row Vi, and that c
2 entries in the right half of Wi are

supposed copies of x. For every x ∈ X and every one of the c
2 columns in W that are

supposed to contain a copy of x, we introduce a basic compare test that reads x and
the column variable, and compare the value of x against its supposed copy.

We now amplify the detection probability of the compare tests. Let d = O(1
δ log 1

ε);
we then define a set of tests by applying Corollary 2.5 on the sequence of the above
compare tests, with parameters μ= 6δ and β = ε. The number of compare tests is
c
2 |X| = O(n), and the size of each one is O(nα) (because it reads one bit of X, one
variable wi of width nα, and later only compares two of its input bits). Denote the
new tests by

{
compare′1, . . . , compare′M1

}
. By Corollary 2.5, M1 = poly(1/ε)n, and

each compare′i is the AND of d compare tests. Therefore it accesses O(d) variables,
and its size is O(n3α).

Final circuits and their soundness. By appropriate replication, we can assume
that the number (M1) of tests in {compare′i} is equal to the number of tests in

{
ψ̄i

}
,

and both are equal to poly(1/ε)nR1. Let the ith final output circuit of Aα be the AND
of ψ̄i and compare′i. We next prove the soundness condition of Aα (completeness of
Aα, its claimed parameters, and the input sizes for which it is defined are easy to
verify).

Lemma 6.7 (soundness). Let δ1 = 24δ, and let a : X → {0, 1}. If a is δ1-far
from satisfying ϕ, then for every assignment b for

{
w1, . . . , wm1

}
∪
{
z1, . . . , zm2

}
, at

most ε of the final circuits can be satisfied.
Proof. The assignment b can be read as an assignment for W ∪Z, since wi and zi

are variables that represent columns of W and Z, respectively. Define ab : X → {0, 1}
to be the maximum-likelihood decoding according to e of b|W :

∀Vi ⊂ X, ab(Vi) = e−1(b(Wi)).

• If ab does not satisfy ϕ, then we proceed just like in Proposition 6.5: There
must be some ϕi falsified by ab, so let us consider ϕ′

i. The restriction of b
to the input of ϕ′

i needs to be changed in at least n1/2 number of bits, in
order to satisfy ϕ′

i. By the definition of A this implies that regardless of what
b assigns to the ith row in Z, at most ε of the circuits {ψi,k}k will accept.
Therefore, at most ε of the circuits in

{
ψ̄i

}
will accept.

• Otherwise, ab is δ1-far from a. We must consider also the following “majority”
assignment, which can be defined according to b. Recall that the right half of
W is supposedly the repetition encoding of V . Let ab,maj : X → {0, 1} be the
majority decoding (understood to be defined on the appropriate coordinates)

1010 IRIT DINUR AND OMER REINGOLD

of b restricted to the right half of W (denoted W r with rows W r
i):

∀Vi ⊂ X, ab,maj(Vi) = majority(b(W r
i)).

We have three assignments for X: a, ab,maj , and ab. If the first two are δ1/2-
far from each other, then by definition an ε-fraction of the compare tests will
reject, and we are done. We know that a and ab are δ1-far from each other,
so the only other possibility is that the last two are δ1/2-far from each other.
In this case, there must be some Vi for which ab(Vi) disagrees with ab,maj(Vi)
on at least δ1

2 ·n1 entries. This, by definition of ab, ab,maj , and e, implies that

Wi is at least δ1
8 -far from a legal codeword. Thus every circuit that reads Wi

(say, for example, ϕ′
i with i = (i, i2, i3)) sees an input that is at least δ1

24 -far

from a satisfying input. Since δ = δ1
24 is the distance parameter of A, this

means that at most ε of ψi,1, . . . , ψi,R1 are satisfied by b, which implies the
same for ψ1, . . . , ψR1 .

This completes the proof of Lemma 6.2.

6.3. Proof of Theorem 1.2. As discussed above, given the construction of Aα,
completing the proof of Theorem 1.2 goes along the same lines as the construction of
section 5. In the following, we formalize this idea.

Theorem 1.2 (formal statement). There exist constants s0, q0 > 0 and ε, δ < 1
and an explicit combinatorial construction of an assignment tester A with parameters
R(n) = npolylogn, s(n) = s0, q(n) = q0, δ(n) = δ, ε(n) = ε.

Proof. The proof follows by induction on the input size. As discussed above,
for the base of the induction, we rely on a given constant-size tester, say the one in
Proposition 5.4 of section 5. Denote this tester by A0, and let its parameters for input
circuits of size at most n0 be (R0, s0, q0, δ0, ε0).

10

Now we assume by induction that A has already been constructed for inputs
of length smaller than N . Its parameters are (R(n), s(n) = s0, q(n) = q0, δ(n) =
δ, ε(n) = ε), with s0, q0, ε, and δ being fixed constants (δ will be set by the proof
to a small enough constant). Applying Lemma 6.2 for some fixed α < 1

3 , we get
an assignment tester Aα that is defined for inputs of size up to Nα (for Nα such
that (Nα)1−αpolylogNα ≤ n), and such that Aα’s output circuit size is s(n) =
O(n3α). The rest of Aα’s parameters are Rα(n) = R(n1−αpolylogn) · n · poly(1/ε) =
O(R(n1−αpolylogn) · n); qα(n) = O(1

δ log 1
ε), εα(n) = ε; δα(n) = 24δ.

For simplicity, let us assume that the circuits output by Aα each make three
queries. This can be guaranteed11 as described in the proof of Theorem 4.8; see, in
particular, Proposition 4.11.

We can now use Aα to extend A to n-bit inputs in exactly the same way followed
in section 5. That is, we apply steps I, II(a), II(b), II(c) described in Assignment
Tester A. The analysis is as in the proof of Lemma 5.5, but a bit less delicate since
we are already allowing ourselves quasi-polynomial R (and thus are less constrained
in setting the relations between the various parameters). We therefore quickly go
through the details.

I. AI is the composition of Aα with the recursive invocation of A, using Theo-
rem 3.7. This is well defined as long as we set δ (the distance parameter of

10Such an A0 can be derived from an even less efficient tester A′
0, which produces circuits of size

smaller than (n0)1−β0 for some constant β0 rather than circuits that are smaller than (n0)α0 for
arbitrarily small α0. The desired A0 can now be obtained as in the proof of Corollary 5.3.

11This replacement causes the error probability to go up, but this will be compensated for in the
next steps.

ASSIGNMENT TESTERS AND THE PCP THEOREM 1011

A) to be a small enough constant. AI is defined for inputs of length O(N).
The number of circuits produced by AI is RI(n) = O(R(n1−αpolylogn) · n ·
R(O(n3α))). AI has a (small) constant detection probability γI , circuit size
s0, number of queries q0, and distance parameter δα = 24δ.

II(a). We now apply error-reduction to AI to increase the detection probability
from γI to

√
γ, using Theorem 4.8, where γ = 1 − ε.

Since both γI and γ are constants we have that the resulting assignment
tester AIIa produces RI(n)O(1) circuits. Its circuit size is O(s0), the number of
queries is O(1), the distance parameter has doubled to 2δα, and the detection
probability is

√
γ, as desired.

II(b). Next, we get AIIb by reducing the distance parameter of AIIa from 2δα to
δ according to Lemma 4.1. As discussed in Remark 4.4, this will require
applying AIIa on circuits of size M = O(2δα

δ n) = O(n). This is fine, as AI is
defined for such input lengths.
The number of circuits that AIIb produces is RI(M)O(1) = RI(O(n))O(1). The
number of queries is O(1), the circuit size is O(s0), the detection probability
remains

√
γ, and the distance parameter is δ, as desired.

II(c). Finally, we define AIIc as the composition AIIc = AIIb ◦ A0. This is well
defined as long as n0 is a large enough constant with respect to s0 (a more
delicate analysis shows that here too it is enough to have n0 = poly(s0)) and
δ0 is a small enough constant that satisfies the condition of Theorem 3.7.
The parameters obtained by AIIc are number of circuits R0 · RI(O(n))O(1) =
RI(O(n))O(1); circuit size s0; number of queries q0; detection probability

√
γ ·

(1−ε0), which is larger than γ in case ε0 is small enough; distance parameter δ.
Finally, A is simply defined to run AIIc on circuits of length n ≤ N . It remains to
verify that the parameters obtained by AIIc for such circuits are as good as those
required of A. Note that this holds trivially for all parameters apart from the number
of circuits. The number of circuits are RI(O(n))O(1), which opens to the follow-
ing recursion formula: R(N) = (O(R(n1−αpolylogn) · n · R(O(n3α))))O(1). Letting
a ≥ 1 be such that (1 − α)a+1 + (3α)a+1 < 1, R(n) =O(n(log n)a) solves this recursive
formula.

6.4. Making testers oblivious. We now return to proving Lemma 6.4, which
shows how every tester can be turned oblivious.

Proof of Lemma 6.4. We start by showing the existence of the following “universal
circuit”: CU takes as input some encoding of a Boolean circuit ϕ, an assignment a to
the input variables X of ϕ, and an assignment b to some additional “help variables.”
The following hold: (a) The encoding of ϕ can be computed in polynomial time;
(b) if a satisfies ϕ, then there exists an assignment b (computed from ϕ and a in
polynomial time) such that CU (ϕ, a, b) = 1; (c) if a does not satisfy ϕ, then for any
b, CU (ϕ, a, b) = 0; (d) for input circuits ϕ of size n, the size of CU is bounded by
n · polylogn (and this, in particular, bounds the size of the encoding of ϕ).

Let us first see how such a CU can produce an oblivious tester A′. We will then
describe how to construct CU using standard ideas.

Instead of applying A to ϕ we would like to apply it to the universal circuit
CU of the appropriate length. This will ensure obliviousness since, as A does not
even “know” ϕ, the variables read by the circuits it produces cannot depend on ϕ.
As a sanity check, we note that the input to CU includes the description of ϕ, and
therefore the circuits produced by A will read part of this description and will evaluate
a predicate that does depend on ϕ. One (rather minor) difficulty in this approach is

1012 IRIT DINUR AND OMER REINGOLD

that the tester A guarantees only that the assignment to the input of CU is close to
satisfying CU . Unfortunately, this does not translate to saying that the assignment to
the X-variables is close to satisfying ϕ. Instead, it is quite possible that the assignment
to the X-variables will pass the test since it satisfies a circuit whose description is
close to that of ϕ. To make sure that ϕ cannot be altered in our analysis, we revise
CU a bit as follows.

As a first step, A is applied to C ′
U that takes the following inputs: an encoding

of ϕ with the error-correcting code of Lemma 2.1, and a repetition encoding of the
assignment to the X-variables, and a repetition encoding of the assignment to the Y -
variables. In both cases, the number of repetitions is set so that the encoding of ϕ and
the two assignments are of equal length. C ′

U verifies that all of the encodings are legal.
It then decodes the values it got and applies CU . Now A′ will run as follows. A′ first
applies A on C ′

U . Then A′ evaluates the description ϕ that CU expects, and hardwires
the encoding of this description to the circuits produced by A (i.e., whenever these
circuits query a value in the encoded description of ϕ, this value is assigned by A′ and
the circuit is possibly simplified). Now the circuits that are obtained are just over
the assignment to the X- and Y -variables. More accurately, the circuits are over the
repetition encoding of these variables. However, whenever an assignment to a copy of
one of the variables is required, we use the original assignment. (The purpose of the
repetition encoding—here and elsewhere—is to balance the three kinds of variables
on which C ′

U was defined, so that A “notices” distance in each of the three types of
input. Therefore in the output circuits we can safely replace all of the repeated copies
with the original variable.)

The correctness of A′ follows from the correctness of A and the properties of
CU . It essentially has the parameters of A (when applied to inputs of quasi-linear
size). Finally, it is oblivious, as the locations accessed by the circuits produced do
not depend on ϕ at all (as these circuits were first produced by applying A to the
universal circuit).

We now describe how to construct the universal circuit CU . The only subtlety
comes from the requirement that |CU | be quasi-linear in its input size. This can be
achieved relying on well-known ideas. Since we have not been able to find a proper
reference, we include a sketch of the construction.

The circuit CU will operate over a preprocessed ϕ, transformed into a 3SAT
formula C1 ∧ · · · ∧ Cm, over variables X and Y (with |X ∪ Y | ≤ n), where each
variable appears only a constant number of times. This is achieved as in the proof of
Lemma 6.2.

There is a very efficient (essentially linear) universal machine for such a 3SAT
formula, if the machine is allowed random access to its input. Simply, read the
description of the clauses Ci one-by-one and then read the three variables contained
in the clause to evaluate it. When translating this universal machine naively to the
setting of circuits, the universal circuit obtained is of size O(n2) (as “fetching” each
variable costs O(n)). To reduce the size to be quasi-linear, we use the following
standard trick.

The evaluation of the formula by the smaller universal circuit will be done in three
phases. First we order the m clauses by the order of their variable of smallest index
(i.e., first the clauses that contain x1 (or its negation), then those that contain x2 and
do not contain x1, and so on). Together with the clauses we order the variable names
and their assignments. Now that both are jointly ordered, we can assign values to
one variable from each clause. At this point, the location of each clause in the joint

ASSIGNMENT TESTERS AND THE PCP THEOREM 1013

order is a constant distance away from the location of an assignment to one of its
variables. Therefore, evaluating a variable from each clause can be done by a circuit
of polylogarithmic size (as the input for the circuit has a logarithmic number of bits—
the descriptions of a constant number of clauses and variables). Continue in the same
manner to assign values to the two additional variables in each clause. Once all
variable values are assigned, the value of each clause is determined by a constant size
circuit which easily implies the value of the entire formula (by evaluating the AND of
all clause values). It remains to argue that there are circuits of quasi-linear size for
sorting. This, however, follows immediately from the existence of quasi-linear sorting
networks (where any one of a number of simple sorting networks will do; see, e.g., [10,
section 55]).

7. Discussion and further research. We have introduced the notion of as-
signment testers and provided a simple and truly modular composition theorem for
testers. We feel that it is beneficial to state even the original proof of the PCP theorem
via assignment testers, as their composition seems to us simpler and more natural.
In addition, we provided various generic transformations for assignment testers: (a)
making assignment testers “robust” (section 3.4), (b) reducing the distance parame-
ter (section 4.1), (c) error reduction via a new method of combinatorial aggregation
(section 4.3).

Our first construction of assignment testers (given in section 5) provides a new
proof of the PCP theorem. It relies on the existence of a relatively weak assignment
tester, which is provided as a black box. One advantage of this construction over the
original proof of the PCP theorem is that the algebraic building block requires only
the algebraic techniques that are already present in [4, 13] (in particular, it only needs
a weak form of the low-degree test, and it does not use aggregation via low-degree
curves). More importantly, the algebraic techniques are confined to the construction
of the black box. The way the black box was constructed can then be forgotten, and
we care only about its parameters. Finally, we use a building-block PCP of only one
particular kind (as opposed to the original proof, which also used Hadamard-based
PCP). This is made possible through using a nonconstant number of composition steps
(to which our composition theorem readily yields itself). On the other hand, one may
also consider the superconstant number of recursive steps to be a disadvantage. It is
indeed harder to know “what’s going on” by such a construction and particularly to
track how the final variables relate to the original ones.

Our second construction is fully combinatorial, and it relies only on standard ob-
jects such as error-correcting codes and hitting sets (which both follow from expander
graphs). It also relies on a constant-size tester, which is easy to construct due to its
allowed inefficiency. In this respect the construction is even simpler (even though the
combinatorial part of the construction is somewhat more complicated). The major
disadvantage is of course the quasi-polynomial size. We note, however, that such
a result has applications similar to those of the PCP theorem (basing hardness of
approximation on the still highly conservative assumption that NP is not contained
in quasi-polynomial time).

On the robustness property. We mentioned above that a notion very related
to assignment testers was independently introduced by Ben-Sasson et al. [8], where
it was named “robust PCPs of proximity.” Interestingly, their motivation was com-
pletely different, namely constructing length-efficient PCPs and locally testable codes,
yet they came up with essentially the same object.

Just as in [8], robustness is an essential part of our composition. However, our

1014 IRIT DINUR AND OMER REINGOLD

composition theorem (Theorem 3.7) applies directly to assignment testers that are
not necessarily robust. For that we use in the proof of the composition theorem a
generic transformation that turns any assignment tester into a robust one, with the
robustness inversely related to the query complexity. Most of our work can therefore
ignore this additional parameter of robustness. Emphasizing assignment testers rather
than robust assignment testers has the advantage of staying closer to the original
definition of a PCP verifier. In addition, the importance of the query complexity as
the effective measure of robustness is emphasized. In particular, it seems more natural
to state and prove the aggregation theorem, a central ingredient of our work, in terms
of query complexity.

We note that the cost of a generic robustization transformation is too high in the
context of [8]; hence they work only with assignment testers that are, by definition,
robust (indeed they call these objects robust PCPs of proximity). Since [8] demon-
strates the usefulness of having the robustness property as an explicit parameter, it
could be interesting to study how our transformations on assignment testers behave
in terms of this parameter.

On PCP testers and property testing. The notion of assignment testers is
very related to the area of property testing [26, 18], and we were most likely inspired
by property testing in coming up with this notion. An assignment tester can easily be
converted into a test that checks whether an assignment is close to being a satisfying
assignment of a circuit ϕ. The object being tested is the assignment (hence the name
“assignment tester”), and the circuit ϕ is a description of the tested property. (Usually
in property testing this is a fixed property such as graph connectivity.) Of course, the
main difference between this and standard property testing is that assignment testers
also rely on a proof (the assignment of the new variables) in order to perform the
testing. This is a special case of the notion of proof-assisted testing of Ergün, Kumar,
and Rubinfeld [12].

Adding proofs to property testing allows extremely efficient testing of any prop-
erty computable in polynomial time. (As observed in [8], this easily extends to prop-
erties in NP.) Every such property can be tested by reading only O(1) bits of an object
X and a proof Y . This can loosely be interpreted as saying that every property has a
highly testable representation. While being a very powerful statement, it is also a flat
one, as it does not distinguish between different properties. In some sense, it reem-
phasizes that the richness of property testing is as a study of specific representations.
(This was already well understood, as some properties behave very differently with
respect to different representations.)

Locally testable codes. An interesting aspect of our construction, especially
of the fully combinatorial one, is that we do not make any real use of locally testable
codes (apart from the constant-size tester). Nevertheless, as was shown in [8], assign-
ment testers easily imply locally testable codes (and also a relaxed form of locally
decodable codes). The focus of [8] was to get short locally testable codes. Our The-
orem 1.2 implies the first combinatorial construction of locally testable codes with
subexponential (in fact, even quasi-polynomial) rate.

Further research. The most obvious problem that was left open by this work
is coming up with a combinatorial proof of the PCP theorem. This has been recently
obtained by Dinur [11]. Still, one may also hope to give an elementary construc-
tion for the constant-size testers used by the combinatorial constructions (constant-
sized testers are used also in [11]). Nevertheless, the known constructions based on

ASSIGNMENT TESTERS AND THE PCP THEOREM 1015

Hadamard or Long codes are already rather simple (especially compared to other
parts of the proof of the PCP theorem).

A task of a different nature is related to Raz’s parallel repetition theorem [24].
Recall that our aggregation method bypasses the complexity of this theorem by adding
a few additional “consistency queries.” Nevertheless, we use this method only to
reduce errors up to some constant probability. It seems possible that this approach
could be extended to a simple, combinatorial way of reducing errors in an exponential
rate. Though this will not provide a full substitute for the parallel repetition theorem,
we still find it an interesting line for further research.

Appendix A. Analysis of the consistency test. As discussed in section 4,
the heart of our aggregation/parallelization theorem (Theorem 4.8) is a test T for
the consistency of a table F : X → Σ� that is supposed to contain the values of
some function f : X → Σ on all �-tuples of inputs. In other words, F (x1, . . . , x�)
is supposed to equal (f(x1), . . . , f(x�)), for some underlying function f . Such a
“combinatorial” consistency test was given by Goldreich and Safra [19]. We de-
scribed our test in Figure 3 and stated its properties in Theorem 4.10. This test
is in fact a (somewhat stronger) version of Lemma 1.1 from [19], which was de-
rived as a simple special case of a more elaborate test which is their main objec-
tive. The more sophisticated test is for tables containing a small “derandomized”
subset of �-tuples. Interestingly, in the context of our paper, the simple and “in-
efficient” version of the Goldreich–Safra test is sufficiently good. We now give a
direct proof of Theorem 4.10. Our theorem proves that if the test accepts with high
enough probability, then the table F is in fact consistent with the plurality func-
tion of F (as in Definition 4.9), which is the function f that maximizes individual
agreements between F and f . This seems more natural than the two-stage plural-
ity function obtained by the proof of [19]. We view the main contribution of this
section to be the new and direct proof of the consistency test, which relies on a
rather natural Markov-chain approach. Possibly, this proof can be generalized to
work for a wider range of parameters (as mentioned in the open problems in sec-
tion 7).

Proof of Theorem 4.10. Clearly, the completeness condition holds. We prove
soundness (that is, we analyze the rejection probability when the table is sufficiently
inconsistent with the plurality function).

We will concentrate on the test with respect to the uniform distribution on X (i.e.,
D in the statement of the theorem is uniform). The proof for general D is obtained
by simple reduction to the uniform case, as follows.

Proposition A.1. Assuming a restricted version of Theorem 4.10, where D is
the uniform distribution, the theorem holds for an arbitrary D.

Proof. We can translate any D over X into the uniform distribution over Z, where
Z is obtained from X by duplicating elements in X according to their probability
under D. Elements that are not in support of D are simply dropped. It is clear that
the projection of the uniform distribution on Z to the original set of variables X can
be made arbitrarily close to D (and from now on we will simply assume that the two
distributions are identical).

Let Z ≡ Z�. The duplication of variables naturally defines F̂ : Z → Σ�, where for
each z̄ ∈ Z we let x̄ be the corresponding �-tuple in X and define F̂ (z̄) = F (x̄). The
soundness of the test of Figure 3 when applied to F with respect to D immediately
reduces to the soundness of the same test applied to F̂ with respect to the uniform
distribution. (Note that, by definition, the plurality function of F̂ agrees on any two

1016 IRIT DINUR AND OMER REINGOLD

copies z̄ and z̄′ in Z that correspond to the same x̄ ∈ X.)
Another simplifying convention is our assumption that F is rotation consistent.

Recall that F is rotation consistent if, whenever x̄′ is obtained from x̄ using some
cyclic shift of its � components, F is consistent on these two entries (i.e., F (x̄′) can
be obtained from F (x̄) by a similar shift). As discussed in section 4, in our setting
we can indeed assume that F is rotation consistent. Moreover, it is easy to see that
the general case can be reduced to the rotation consistent case.

Proposition A.2. Assuming that Theorem 4.10 holds for every F that is rotation
consistent, the theorem holds for an arbitrary F , with the slightly revised test described
in Figure 3.

Proof. The original test makes two queries into the table F for the values F (x̄)
and F (x̄′). The revised test will select x̄ and x̄′ in the same manner, but instead of
querying for F (x̄′), it will query for the value of F on a random cyclic rotation of
x̄′. It is not hard to see that this is equivalent to performing the original test on a
related distribution F ′ over rotation consistent tables. More specifically, for every set
of � entries x̄1, . . . , x̄� that are cyclic shifts of each other, the value of F ′ on all these
tuples is defined as F (x̄i) for a random i. This implies that if F violates the soundness
of the revised test, then at least one of those rotation consistent tables violates the
soundness of the original test.

Let us now recall the test T that we are analyzing and introduce some notations.
Let x̄ = (x1, . . . , x�) and suppose F (x̄) = (a1, . . . , a�); we write x̄i to mean xi and
F (x̄)i to mean ai.

1. Select x̄ ∈ X uniformly at random.
2. Select a set of indices JT such that each j ∈ [�] is placed into JT with proba-

bility α = 1/ 3
√
�, independent of other choices.

3. Select x̄′ ∈ X as follows: for each j ∈ JT , we let x̄′
j = x̄j ; otherwise x̄′

j is
selected uniformly in X, independent of other choices.

4. Accept only if F (x̄)j = F (x̄′)j for every j ∈ JT ; otherwise reject.
Let f = fF : X → Σ be the plurality function of F . For every x̄ ∈ X define the set
of indices on which F (x̄) differs from f ,

wrong(x̄)
def
= { i ∈ [�] |F (x̄)i �= f(x̄i)} .

Call a tuple x̄ ∈ X bad if |wrong(x̄)| > 1
α = 3

√
�. Let γ be the fraction of bad tuples.

We will prove that the test T rejects with probability at least γ/c, where c is some
absolute constant.

The general idea for our proof is the following: With probability γ a bad x̄ is
selected by T . Fix some bad x̄; since wrong(x̄) > 1

α and each index is placed into JT
with probability α, we have that there exists some i in wrong(x̄) ∩ JT with constant
probability. Recall that for every i ∈ JT the test T sets x̄′

i = x̄i. Let ai = F (x̄)i,
by the definition of f , for a uniformly distributed ȳ ∈ X such that ȳi = x̄i; we have
that Pr[F (ȳ)i = ai | ȳi = x̄i] ≤ 1/2. Ideally, if x̄′ was distributed exactly like ȳ,
the test would reject with constant probability. Our argument is based on the fact
that even though x̄′ has some dependency on x̄, it is still “sufficiently random,” and
therefore F (x̄′)i �= ai (so the test rejects) with some constant probability. What do
we mean by x̄′ being sufficiently random? Consider the stochastic process Gx,i of
selecting x̄′ given x̄ and conditioned on i ∈ JT and x̄i = x for some fixed i and
x. We will show that this process has good expansion properties. We will later
argue that these expansion properties are indeed sufficient to carry out the above
intuition.

ASSIGNMENT TESTERS AND THE PCP THEOREM 1017

Definition A.3. For any i∈ [�] and x∈X define the set Vx,i
def
=

{
x̄ ∈ X

∣∣ x̄i =x
}
.

Note that |Vx,i| = |X|�−1
. Define Gx,i to be the Markov process over Vx,i where, start-

ing at x̄ ∈ Vx,i, we move to x̄′ selected as follows: x̄′
i = x, and for each j ∈ [�] \ {i}

with probability α we let x̄′
j = x̄j; otherwise x̄′

j is selected uniformly in X, inde-
pendent of other choices. Let Ax,i be the transition probability matrix corresponding
to Gx,i.

Proposition A.4. For every i ∈ [�] and x ∈ X, the second eigenvalue of Ax,i is
λ = λ(Ax,i) = α.

Proof. Since in the space state of Gx,i the value in the ith coordinate is fixed (to
x), we can simply ignore this coordinate. On the other hand, Gx,i acts on each one of
the �−1 other coordinates independently (in an identical way). Consider the transition
probability matrix A0 corresponding to the action of Gx,i on each one of the � − 1
coordinates in [�]\{i}. This matrix equals the convex sum (1−α)K|X| +αI|X|, where
K|X| corresponds to moving to a uniformly distributed element (i.e., every entry in

K|X| is 1/|X|), and I|X| is the identity matrix. Consider any vector P ∈ R|X| which
is perpendicular to the all one vector (i.e., the sum of the entries in P is zero); then
A0 · P = ((1 − α)K|X| + αI|X|)P = α · P (since K|X| · P = 0). This implies that the
second eigenvalue of A0 is α. To conclude, Gx,i acts on �−1 coordinates independently
according to a transition probability matrix A0 that has second eigenvalue α. It is
well known and not hard to show that in such a case the second eigenvalue of Ax,i is
also α.12

Consider now the foregoing intuition. We know that a bad x̄ is selected by T
with probability γ. Furthermore, we know that, with constant probability, some
i ∈ wrong(x̄) is selected into JT , meaning that x̄′

i = x̄i. We hope to argue that, with
constant probability, this location i will reveal to T that the table F is inconsistent.
Let x̄i = x and ai = F (x̄)i; then we have that x̄ ∈ Vx,i (as in Definition A.3), and
since i ∈ wrong(x̄), for most ȳ ∈ Vx,i we have that F (ȳ)i �= ai. Therefore, if x̄′ was a
random element of Vx,i, the test T would reject with constant probability (conditioned
on x̄ being selected and i ∈ JT). However, the distribution of x̄′ is obtained by taking
a random step from x̄ according to the process Gx,i (again, conditioned on x̄ being
selected and i ∈ JT). With this choice of x̄′, we can no longer argue that, for any
fixed choice of a bad x̄, with constant probability the test rejects. (It may very well
be that for all the “neighboring” x̄′’s the value F (x̄′) is consistent with F (x̄).) We
will therefore make an average argument that will exploit the expansion of Gx,i. We
consider not one possible value of x̄ but rather a set Sx,i,a that contains all the values
of x̄ such that x̄i = x and F (x̄)i = a (with f(x) �= a). Conditioned on x̄ ∈ Sx,i,a and
i ∈ JT we do have that with constant probability x̄′ �∈ Sx,i,a (since Sx,i,a contains
at most half the tuples in Vx,i and due to the expansion of Gx,i). Therefore, with
this conditioning, the test will reject with constant probability (as with constant
probability F (x̄′)i �= a). Details follow.

Consider the process G that corresponds to T selecting x̄′ given x̄ (without fur-
ther conditioning). The same transition (x̄, x̄′) is also an edge in various Gx,i. To
complete the proof, we want to lower bound the weight of rejecting edges in each
Gx,i separately (as outlined above) and deduce a similar lower bound for G (which
reflects the rejecting probability of T). However, this may not be sound, as the Gx,i’s

12Each eigenvector of Ax,i corresponds to an (�−1)-tuple of eigenvectors of A0; the corresponding
eigenvalue of Ax,i is the product of the �− 1 corresponding eigenvalues of A0. Therefore, the second
eigenvalue of Ax,i is α, and it is obtained as the product of � − 2 times the eigenvalue one and the
eigenvalue α once.

1018 IRIT DINUR AND OMER REINGOLD

may not be a “uniform enough cover” of G. More specifically, consider a transition
(x̄, x̄′), where x̄ is bad. For every i ∈ wrong(x̄) ∩ JT , this corresponds to a transition
in Gx̄i,i from some Sx̄i,i,a of density at most half in Vx̄i,i. However, the cardinality of
wrong(x̄)∩JT may vary quite a lot. Potentially, this could mean that by counting sep-
arately for each Gx̄i,i, rejecting edges are counted many times, while accepting edges
are counted only a few times. Indeed, if we were assured that the size of wrong(x̄)
would be either zero (for all of the good x̄’s) or some fixed value (for all of the bad
x̄’s), then the cardinality of wrong(x̄) ∩ JT would not vary too much and the proof
would become easier. Intuitively, the larger |wrong(x̄)| is the better, since the test has
“more opportunity” to detect an inconsistency and reject. However, the argument
is much more subtle, due to the fact that we are not arguing for every value of x̄
separately but rather averaging over sets of values Sx,i,a.

To help us manipulate the conditional probabilities more elegantly, it is convenient
to consider as a “mental experiment” the following revised test T ′:

1. Choose x̄ ∈ X uniformly at random.
2. Set k(x̄) = max{16/α, |wrong(x̄)|}.13 Select an index i ∈ [�] ∪ {0} such that

each i ∈ wrong(x̄) is selected with probability 1/k(x̄) and with the remaining
probability i = 0. If i = 0, then T ′ accepts and halts.

3. Let x = x̄i. Take a random step from x̄ to x̄′ according to Gx,i.
4. If F (x̄′)i �= F (x̄)i, reject; otherwise accept.

We note that T ′ is not efficiently implementable, and is not meant to be. T ′ is
merely a tool of the analysis, used to bound the probability that T rejects. The main
convenience of T ′ is that it concentrates on a single possible inconsistency between
F (x̄) and F (x̄′), namely inconsistency on the ith coordinate. This way we rather
naturally avoid overcounting the rejection probability associated with a particular
choice of x̄ and x̄′. Such overcounting may arise by counting the same pair (x̄, x̄′)
separately for every inconsistent coordinate. Note that if wrong(x̄) is small, then
JT ∩wrong(x̄) is likely to be empty, and thus T will accept. Therefore, if wrong(x̄) is
small, we let T ′ accept too with some probability (ignoring F (x̄′) altogether). We do
that by allowing i to be set to zero with some probability that depends on the size
of wrong(x̄). We remark that if i is different than zero, it is uniformly distributed in
wrong(x̄).

To bound the rejection probability of T through the rejection probability of T ′

we would have liked to show that (a) Pr[T ′ rejects] = O(Pr[T rejects]), and (b)
Pr[T ′ rejects] = Ω(γ). However, as we do not know how to argue that (a) holds,
we first factor out a possible (but rare) bad event B, on which T ′ may reject with
significantly higher probability than T . Taking B into account, we prove Lemmas
A.8 and A.9, which are small variations on (a) and (b) above. These two lemmas
immediately imply the soundness of T and therefore also Theorem 4.10.

For the definition of the bad event B, we will need a definition of a random
variable JT ′ in analogy to the random variable JT .

Definition A.5. Recall the definition of the index i selected by T ′. We define
the random variable JT ′ as follows: JT ′ is set to be empty if i = 0. Otherwise JT ′ is
the set of indices j ∈ [�] for which T ′ sets x̄′

j = x̄j (in particular i ∈ JT ′).
We would like to compare the behavior of T and T ′, and it would be convenient

to do so conditioned on the value of x̄ and on a particular value J of both JT and JT ′ .
However, for sets J such that J ∩wrong(x̄) is large, we have that the probability that
JT ′ = J may be significantly larger than the probability that JT = J . The reason is

13The purpose of the constant 16 is for the proof of Proposition A.11.

ASSIGNMENT TESTERS AND THE PCP THEOREM 1019

that as long as i ∈ J ∩ wrong(x̄), it is possible that JT ′ = J . Therefore, the larger
|J ∩ wrong(x̄)| is, the more ways there are to obtain JT ′ = J . For this reason, we
define the “bad event” B, where |JT ′ ∩ wrong(x̄)| is too large. The exact threshold is
meant to facilitate the proof of Lemma A.8 and is less important for now.

Definition A.6. Define the event B to be |JT ′ ∩ wrong(x̄)| /k(x̄) > 9α.
Recall that, by definition, k(x̄) is always positive, and hence B is well defined.

We would now like to argue that B is indeed a rare event.
Proposition A.7. Conditioned on any particular value of x̄ and of i, the prob-

ability that B occurs is smaller than 2/9.
Proof. If i = 0, then JT ′ is empty, and the proposition follows trivially. Otherwise,

each index in wrong(x̄)\{i} is placed into JT ′ with probability α (and i is placed into
JT ′ with probability one). Therefore, the expected size of JT ′∩wrong(x̄) is at most 1+
α |wrong(x̄)| ≤ 1+α·k(x̄) < 2α·k(x̄). (The last inequality follows from k(x̄) ≥ 16/α >
1/α.) Now, by Markov’s inequality, the event B ≡ (|JT ′ ∩ wrong(x̄)| > 9α · k(x̄)) has
probability at most 2/9.

We can now relate T ′ to T .
Lemma A.8. Pr[T ′ rejects ∧ (¬B)] = O(Pr[T rejects]).
Proof. Both T and T ′ select x̄ uniformly at random. We prove the inequality

separately for every value of x̄ (that is, conditioned on x̄ taking some arbitrary value).
Therefore, fix the value of x̄ in an arbitrary way. We first argue that, for any value
J ⊆ [�],

Pr[T ′ rejects | JT ′ = J] ≤ Pr[T rejects | JT = J].(2)

First note that the distribution of x̄′ is identical in both cases (i.e., x̄′
j = x̄j for j ∈ J ,

and x̄′
j is uniform outside J). If J ∩ wrong(x̄) = φ, then Pr[T ′ rejects | JT ′ = J] = 0,

and we are done. Otherwise, T will reject if for some j ∈ J we have that F (x̄′)j �=
F (x̄)j , whereas T ′ will reject only if F (x̄′)i �= F (x̄)i (recall that in this case i �= 0, as
otherwise JT ′ is empty). This implies inequality (2).

We now want to show that Pr[(JT ′ = J)] = O(Pr[JT = J]). However, this
may not be true in two cases, which fortunately enough we can ignore. The two
cases to ignore are (a) J ∩ wrong(x̄) = φ, in which case T ′ always accepts, and (b)
|J ∩ wrong(x̄)| /k(x̄) > 9α, in which case the event B occurs. Let the collection of
sets J satisfying either (a) or (b) be denoted Jignore. For all other values of J , the
event B does not occur and therefore,

Pr[T ′ rejects ∧ (¬B)] =
∑

J �∈Jignore

Pr[T ′ rejects | JT ′ = J] · Pr[JT ′ = J].

In addition, for J �∈ Jignore we have that

Pr[JT ′ = J] =
∑

j∈J∩wrong(x̄)

Pr[i = j] · α|J|−1 · (1 − α)�−|J|

=
∑

j∈J∩wrong(x̄)

(1/k(x̄)) · α|J|−1 · (1 − α)�−|J|

= (|J ∩ wrong(x̄)| /k(x̄)) · α|J|−1 · (1 − α)�−|J|

≤ 9α · α|J|−1 · (1 − α)�−|J|

= 9 · Pr[JT = J].

1020 IRIT DINUR AND OMER REINGOLD

By inequality (2), we can now conclude that

Pr[T ′ rejects ∧ (¬B)] =
∑

J �∈Jignore

Pr[T ′ rejects | JT ′ = J] · Pr[JT ′ = J]

≤
∑

J �∈Jignore

Pr[T rejects | JT = J] · 9 Pr[JT = J]

≤ 9 Pr[T rejects].

It remains to bound the probability that T ′ rejects (again, factoring out the bad
event B), as follows.

Lemma A.9. Pr[T ′ rejects ∧ (¬B)] = Ω(γ).
Proof. Throughout this proof, x̄ will always denote the tuple selected by T ′ at

step 1, and i the index selected at step 2. If, say, we consider the probability of this
tuple being equal to a specific tuple z̄, we write Pr[x̄ = z̄], etc.

If T ′ rejects, then in particular it selects i �= 0. Recall that Pr[x̄ is bad] = γ by
definition. By inspecting step 2 in the definition of T ′, and recalling that x̄ is bad
means |wrong(x̄)| > 1

α , we have

Pr[i �= 0 | x̄ is bad] =
|wrong(x̄)|

k(x̄)
=

|wrong(x̄)|
max(|wrong(x̄)| , 16/α)

≥ 1/16.

So we can conclude that Pr[i �= 0] = Pr[x̄ is bad] · Pr[i �= 0 | x̄ is bad] ≥ γ/16. To
complete the proof we will show that

Pr[T ′ rejects ∧ (¬B) | i �= 0] = Ω(1).(3)

We will do this by showing that for every fixed i0 �= 0 and x0 ∈ X, conditioned
on T ′ selecting x̄ and i such that i = i0 and x̄i = x0, the test rejects (and B does not
hold) with constant probability. Summing over all values of i0 �= 0 and x0 ∈ X, this
will complete the proof.

So let us fix an arbitrary i = i0 �= 0 and x0 ∈ X. Denote V0 = Vx0,i0 , the set
of tuples z̄ for which z̄i0 = x0 (as defined in Definition A.3). We will rely on the

expansion of the Markov process G0
def
= Gx0,i0 to show that the probability mass

placed on tuples z̄ ∈ V0, for which F (z̄)i0 �= f(x0), “spreads” after one step of G0.
Thus, starting from such an x̄, with high probability we arrive at an x̄′ for which
F (x̄)i0 �= F (x̄′)i0 . To do this, we will partition the tuples z̄ ∈ V0 according to the
value of F (z̄)i0 = a, and show that each part in the partition has many outgoing
transitions, each causing T ′ to reject.

For every a ∈ Σ, let us define

Sa = { z̄ ∈ V0 |F (z̄)i0 = a} .

The set Sa also depends on the specific choice of x0 and i0, but this is omitted from
the notation.

Let Ex0,i0,a denote the event that T ′ selects i = i0, and x̄ for which x̄i = x0

and F (x̄)i0 = a. Observe that, conditioned on a specific value i = i0 selected at
step 2 of T ′, not all tuples in V0 have positive probability of being chosen at step 1
of T ′. Indeed, a tuple x̄ ∈ V0 for which F (x̄)i0 = f(x0) cannot be chosen, because
the conditioning requires in particular that i0 ∈ wrong(x̄), which is equivalent to

ASSIGNMENT TESTERS AND THE PCP THEOREM 1021

F (x̄)i0 �= f(x0). So PrT ′ [Ex0,i0,a] > 0 implies a �= f(x0). In that case let Pa denote
the probability distribution over V0, defined by

∀z̄ ∈ V0, Pa(z̄) = Pr
T ′

[x̄ = z̄ |Ex0,i0,a].

Fix some value a ∈ Σ such that Pr[Ex0,i0,a] > 0. Note that Pr[T ′ rejects ∧
(¬B) | Ex0,i0,a] ≥ Pr[T ′ rejects | Ex0,i0,a] − Pr[B | Ex0,i0,a]. By Proposition A.7, the
probability of the bad event B is bounded by 2/9 even if conditioned on any specific
x̄ and i, so in particular: Pr[B | Ex0,i0,a] < 2/9. It is therefore sufficient to show that

Pr[T ′ rejects | Ex0,i0,a] ≥ 1/4(4)

(as the probability in (3) will be lower bounded by 1/4 − 2/9 > 0).
By the definition of T ′, we take a random step from x̄ according to the process G0

and arrive at x̄′. The probability distribution over x̄′ is given by A0Pa, where A0 is
the transition matrix of G0 and Pa ∈ R

V0 is a vector of probabilities that corresponds
to the initial choice of x̄ conditioned on Ex0,i0,a. Finally, T ′ rejects if F (x̄′)i0 �= a, or
in other words, if x̄′ �∈ Sa. In conclusion,

Pr [T ′ rejects |Ex0,i0,a] = Pr[A0Pa �∈ Sa].(5)

Following is a brief outline of how we lower bound (5). We have already established
that a �= f(x). This implies that Sa cannot contain more than half of the elements
in V0 (because f is the plurality; this is formally shown in Proposition A.10). Next,
observe that if x̄ had been distributed uniformly in Sa, then by expansion, one step
according to G0 leaves this set with good probability. Our situation is slightly more
complicated because x̄ is not distributed uniformly over Sa but rather according to
Pa. Proposition A.11 proves that Pa is “uniform enough” (or rather, that it has
“enough entropy”). We deduce our bound from a (known) variant of the expander
mixing lemma (Proposition A.12) that can handle slightly skewed distributions.

Proposition A.10. |Sa| / |V0| ≤ 1/2.
Proof. Recall the definition of the plurality function (Definition 4.9). Since

f(x0) �= a, we have that for less than half of { (z̄, j) | j ∈ [�], z̄ ∈ Vx0,j} it holds that
F (z̄)j = a. Since F is rotation consistent (namely, if z̄′ is obtained from z̄ using some
cyclic shift of its � components, then F (z̄′) can be obtained from F (z̄) in the same
way), it is easy to verify that, for any particular value of j, less than half of Vx0,j have
F (z̄)j = a. Fixing j = i0, for less than half of V0 = Vx0,i0 , it holds that F (z̄)i0 = a.
The proposition follows.

We first show that the distribution Pa is not too far from being uniform over Sa.
Proposition A.11. Let λ(A0) be the second largest eigenvalue of A0. Then

max
z̄

{Pa(z̄)} ≤ 1

16 |Sa|λ(A0)2
.

Proof. Recall from Proposition A.4 that λ(A0) = λ(Ax0,i0) = α, and that α3 =
1/�. By definition of Pa, we may rewrite what we are trying to prove as

∀z̄, Pr[x̄ = z̄ | Ex0,i0,a] ≤
α�

16

1

|Sa|
.

Clearly this probability is zero for all z̄ �∈ Sa. The point is to show that even though
we have fixed i0 and x0 and a, this does not give too much information about x̄. We

1022 IRIT DINUR AND OMER REINGOLD

will use Bayes’ rule,

Pr[x̄ = z̄ |Ex0,i0,a] = Pr[Ex0,i0,a | x̄ = z̄] · Pr[x̄ = z̄]

Pr[Ex0,i0,a]
.(6)

We now estimate each of the three factors on the right-hand side. Surely, with no
conditioning, Pr[x̄ = z̄] = 1/

∣∣X∣∣. To estimate Pr[Ex0,i0,a | x̄ = z̄] observe that,
conditioned on x̄ = z̄, the random choice of the index i (at step 2 of T ′) determines
whether the event Ex0,i0,a occurs or not (because z̄ and F (z̄) and therefore z̄i and
F (z̄)i are already fixed). The probability, for a given x̄ = z̄, of selecting i = i0 at step
2 of T ′ is exactly 1/k(z̄). If i0 was selected, the event occurs iff z̄ ∈ Sa (which means
that z̄i0 = x0 and F (z̄)i0 = a). Thus, Pr[Ex0,i0,a | x̄ = z̄] = 1/k(z̄) ≤ α/16 if z̄ ∈ Sa

and equals zero otherwise.
Finally, we estimate Pr[Ex0,i0,a]. We write

Pr[Ex0,i0,a] =
∑
z̄∈X

Pr[Ex0,i0,a | x̄ = z̄] · Pr[z̄].

Just as before, Pr[Ex0,i0,a | x̄ = z̄] = 1/k(z̄) if z̄ ∈ Sa and 0 otherwise. Plugging this
into the above equation gives Pr[Ex0,i0,a] =

∑
z̄∈Sa

1
k(z̄) · Pr[z̄] =

∑
z̄∈Sa

1
k(z̄) ·

1

|X| ≥
|Sa|
|X| ·

1
� , because always k(z̄) ≤ �. Plugging everything into (6), we find

Pr[x̄ = z̄ |Ex0,i0,a] ≤
α

16
·

1

|X|
|Sa|
|X| ·

1
�

=
α�

16
· 1

|Sa|
.

It remains to observe that, for every vector �p = (p1, . . . , pn), if
∑

i pi = 1, then

‖�p‖2
2 =

∑
i

p2
i ≤

∑
i

pi · max
i

pi = max
i

pi = ‖�p‖∞.

So, in particular, the previous proposition gives ‖Pa‖2
2 ≤ maxz̄ Pa(z̄) ≤ 1/(16 |Sa|

λ(A0)
2).

We can now conclude the proof of Lemma A.9 and of the theorem by the following
proposition, which is a slight generalization of the standard expander mixing lemma
(for the case that the initial distribution is not uniform over some subset of the sample
space).

Proposition A.12. Pr[A0Pa ∈ Sa] ≤ |Sa| / |V0| + λ(A0)
√
|Sa| · ‖Pa‖2

2.
Proof. Let χa ∈ {0, 1}|V0| be the characteristic vector of Sa in V0 (i.e., for every

z̄ ∈ V0 we set χa(z̄) = 1 iff z̄ ∈ Sa). Let U ∈ {0, 1}|V0| be the vector corresponding to
the uniform distribution, where all the entries in U equal 1/ |V0|. As usual, we break
Pa into two components, parallel to U and perpendicular to U . Let P⊥

a = Pa − U .
Note that P⊥

a is perpendicular to U because

〈
P⊥
a , U

〉
= 〈Pa, U〉 − 〈U,U〉 =

∑
x̄∈V0

Pa(x̄) · 1

|V0|
−

∑
x̄∈V0

1

|V0|
· 1

|V0|
=

1

|V0|
(1 − 1) = 0,

where 〈·, ·〉 denotes the inner product. Now we have that

Pr[A0Pa ∈ Sa] = 〈χa, A0Pa〉
= 〈χa, A0U〉 +

〈
χa, A0P

⊥
a

〉
.

Since A0U = U , the first summand becomes |Sa| / |V0|. To bound the second sum-
mand, we use Cauchy–Schwarz inequality, and get that

〈
χa, A0P

⊥
a

〉
≤ ‖χa‖2·‖A0P

⊥
a ‖2

ASSIGNMENT TESTERS AND THE PCP THEOREM 1023

≤
√
|Sa| · ‖A0P

⊥
a ‖2. The proposition follows since λ(A0) is the second largest eigen-

value of A0,

‖A0P
⊥
a ‖2 ≤ ‖λ(A0)P

⊥
a ‖2 ≤ λ(A0)‖Pa‖2.

Using |Sa| / |V0| ≤ 1
2 and λ(A0)

√
|Sa| · ‖Pa‖2

2 ≤ λ(A0)
√

(1/16) · λ(A0)2 ≤ 1
4 (as

established in Propositions A.10 and A.11), we lower bound (5) by 1 − (1
2 + 1

4) = 1
4

as needed. This concludes the proof of (4) and therefore of Lemma A.9, showing that
Pr[T ′ rejects ∧ (¬B)] = Ω(γ).

Combining Lemma A.9 with Lemma A.8, we obtain Pr[T rejects] = Ω(Pr[T ′ rejects
∧ (¬B)]) = Ω(γ), and the theorem follows.

Appendix B. Strengthening the black-box assignment tester from sec-
tion 5.

Proof of Corollary 5.3. We would like to compose Aβ with itself a constant num-
ber of times to reduce the size of the output circuits from O(n1−β) to O(nα). For the
composition of Aβ with itself to be well defined we need the distance parameter to
be small enough with respect to the number of queries. To do that we first apply to
Aβ the distance-reduction transformation given by Lemma 4.1, reducing its distance
parameter to another constant δ′ < 1/(3c2), where c2 is the constant from the com-
position theorem, Theorem 3.7. We then reduce the number of queries to three, as
was done in Proposition 4.11. The result of these two steps is an assignment tester
A′

β with parameters (R(n) = nO(1), s(n) = O(n1−β), q(n) = 3, δ(n) = δ′, ε(n) = ε̄),
with ε̄ being some fixed constant.

It is now possible to compose A′
β with itself, and doing it a constant number of

times (which depend on α, of course) will reduce the output circuit size to O(nα).
This almost gives us the assignment tester we are after, with the only problem being
that the new error is some small constant that depends on α. Reducing the error
parameter to εα = 0.1 using Theorem 4.8, will complete our proof, as we now have
that the circuit size is indeed O(nα), and the only parameter that depends on α is
the number of circuits produced (which is polynomial for every fixed α).

Acknowledgments. We sincerely thank the authors of [8]—Eli Ben-Sasson,
Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan—for sharing
with us preliminary stages of their own work, and for making excellent suggestions
for ours. We thank Sanjeev Arora, Amir Shpilka, Luca Trevisan, and Avi Wigderson
for many useful discussions and comments. We would like to thank William Hesse
and Ilan Newman for very helpful discussions regarding the circuit size of universal
circuits. Special thanks too to Oded Goldreich for his valuable contribution to the
presentation of this paper.

REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[2] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[3] L. Babai, Trading group theory for randomness, in Proceedings of the 17th ACM Symposium
on Theory of Computing, Providence, RI, 1985, ACM, New York, 1985, pp. 421–429.

[4] L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations in polylogarithmic
time, in Proceedings of the 23rd ACM Symposium on Theory of Computing, New Orleans,
LA, 1991, ACM, New York, 1991, pp. 21–31.

[5] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover
interactive protocols, Comput. Complexity, 1 (1991), pp. 3–40.

1024 IRIT DINUR AND OMER REINGOLD

[6] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs, and nonapproximability—
Towards tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[7] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson, Multi prover interactive proofs:
How to remove intractability assumptions, in Proceedings of the 20th ACM Symposium
on Theory of Computing, Chicago, IL, 1988, ACM, New York, 1988, pp. 113–121.

[8] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust PCPs of
proximity, shorter pcps and applications to coding, in Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, Chicago, IL, 2004, ACM, New York, 2004,
pp. 1–10.

[9] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, Randomness conductors and
constant-degree lossless expanders, in Proceedings of the 34th Annual ACM Symposium
on Theory of Computing, Montréal, QC, 2002, ACM, New York, 2002, pp. 659–668.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT
Press/McGraw-Hill, New York, 1990.

[11] I. Dinur, The PCP theorem by gap amplification, in Proceedings of the 38th ACM Symposium
on Theory of Computing, 2006, ACM, New York, pp. 241–250.

[12] F. Ergün, R. Kumar, and R. Rubinfeld, Fast approximate PCPs, in Proceedings of the 31st
ACM Symposium on Theory of Computing, Atlanta, GA, 1999, ACM, New York, 1999,
pp. 41–50.

[13] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is
almost NP-complete, J. ACM, 43 (1996), pp. 268–292.

[14] U. Feige and J. Kilian, Two prover protocols—Low error at affordable rates, in Proceedings
of the 26th ACM Symposium on Theory of Computing, Montréal, QC, 1994, ACM, New
York, 1994, pp. 172–183.

[15] L. Fortnow, J. Rompel, and M. Sipser, On the power of multi-prover interactive protocols,
Theoret. Comput. Sci., 134 (1994), pp. 545–557.

[16] R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, MA, 1963.
[17] O. Goldreich, A sample of samplers—A computational perspective on sampling (survey),

Electronic Colloquium on Computational Complexity (ECCC), 4 (1997); available online
at http://eccc.hpi-web.de/eccc-reports/1997/TR97-020/index.html.

[18] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning
and approximation, J. ACM, 45 (1998), pp. 653–750.

[19] O. Goldreich and S. Safra, A combinatorial consistency lemma with application to proving
the PCP theorem, SIAM J. Comput., 29 (2000), pp. 1132–1154.

[20] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proofs,
SIAM J. Comput., 18 (1989), pp. 186–208.

[21] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988),
pp. 261–277.

[22] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. ACM, 39 (1992), pp. 859–868.

[23] A. Polishchuk and D. Spielman, Nearly linear size holographic proofs, in Proceedings of the
26th ACM Symposium on Theory of Computing, Montréal, QC, 1994, ACM, New York,
1994, pp. 194–203.

[24] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
[25] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag graph product,

and new constant-degree expanders and extractors, in Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, Redondo Beach, CA, 2000, IEEE Press,
Piscataway, NJ, 2000, pp. 3–13.

[26] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[27] A. Shamir, IP = PSPACE, J. ACM, 39 (1992), pp. 869–877.
[28] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inform. Theory, 42 (1996),

pp. 1710–1722.
[29] D. A. Spielman, Linear-time encodable and decodable error-correcting codes, IEEE Trans.

Inform. Theory, 42 (1996), pp. 1723–1731.
[30] M. Szegedy, Many-valued logics and holographic proofs, in Proceedings of ICALP’99, Prague,

Czech Republic, 1999, Lecture Notes in Comput. Sci. 1644, Springer, New York, 1999,
pp. 676–686.

[31] R. M. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inform. Theory,
IT-27 (1981), pp. 533–547.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1025–1071

RULING OUT PTAS FOR GRAPH MIN-BISECTION, DENSE
k-SUBGRAPH, AND BIPARTITE CLIQUE∗

SUBHASH KHOT†

Abstract. Assuming that NP �⊆ ∩ε>0 BPTIME(2n
ε
), we show that graph min-bisection, dense

k-subgraph, and bipartite clique have no polynomial time approximation scheme (PTAS). We give a
reduction from the minimum distance of code (MDC) problem. Starting with an instance of MDC,
we build a quasi-random probabilistically checkable proof (PCP) that suffices to prove the desired
inapproximability results. In a quasi-random PCP, the query pattern of the verifier looks random in
a certain precise sense. Among the several new techniques we introduce, the most interesting one
gives a way of certifying that a given polynomial belongs to a given linear subspace of polynomials.
As is important for our purpose, the certificate itself happens to be another polynomial, and it can
be checked probabilistically by reading a constant number of its values.

Key words. probabilistically checkable proofs (PCPs), hardness of approximation, approxima-
tion algorithms

AMS subject classifications. 68Q17, 68Q25

DOI. 10.1137/S0097539705447037

1. Introduction. Several optimization problems of theoretical and practical im-
portance are NP-hard, meaning there is no efficient (i.e., polynomial time) algorithm
to obtain exact solutions to these problems unless P = NP. However, for many of
these problems, it is possible to obtain approximate solutions efficiently. An approx-
imation algorithm with ratio C computes a solution that is guaranteed to be within
a factor of C of the optimal solution (the approximation ratio for minimization and
maximization problems is defined appropriately so that C > 1). In the best scenario,
a problem may have an approximation algorithm with ratio 1+ ε for arbitrarily small
constant ε > 0. Many packing and scheduling problems have this property (e.g.,
the knapsack problem), and they are said to have a polynomial time approximation
scheme (PTAS). For an excellent treatment of approximation algorithms, please refer
to Vazirani’s book [37].

Existence of a PTAS is difficult to prove in general. For example, it wasn’t known
till the early 1990s whether MAX-3SAT had a PTAS. The celebrated probabilistically
checkable proof (PCP) theorem [4], [7] settled this question in the negative. Such re-
sults that rule out the possibility of an approximation algorithm within a certain
factor (assuming of course a hypothesis like P �= NP) are known as inapproximability
results or hardness results. After the discovery of the PCP theorem, there was tremen-
dous progress in proving hardness results for various problems. A very incomplete list
includes [6], [8], [16] [25], [26], [18], [15], [23], [13], [14], [28]. For some problems like
MAX-3SAT [26], clique [25], and set-cover [16], optimal hardness results have been
proved. A recent survey of Trevisan [36] gives a nice exposition for this area (see
also [3]).

∗Received by the editors February 15, 2005; accepted for publication (in revised form) January 2,
2006; published electronically December 15, 2006. This material is based upon work supported by the
National Science Foundation under agreement DMS-0111298. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

http://www.siam.org/journals/sicomp/36-4/44703.html
†Georgia Institute of Technology, Atlanta, GA 30332 (khot@cc.gatech.edu). This work was done

while the author was at the Institute for Advanced Study.

1025

1026 SUBHASH KHOT

The PCP theorem has an equivalent formulation in terms of probabilistic checking
of proofs. The theorem states that every NP-statement has a short proof that can be
checked very efficiently by a probabilistic verifier. The verifier reads only a constant
number of bits from the proof and has the following completeness and soundness prop-
erties: every correct statement has a proof that the verifier accepts with probability 1,
and every proof of an incorrect statement is rejected with high probability. The con-
nection between the notion of probabilistic proof checking and inapproximability re-
sults for optimization problems has been one of the most exciting developments in
theoretical computer science.

In spite of great success of PCP tools towards proving inapproximability results,
there are some notorious problems which so far have resisted all attempts to prove good
inapproximability results. Examples include vertex cover, traveling salesman, and
graph coloring. In this paper, we make progress on one set of notorious problems,
namely, the graph min-bisection, dense k-subgraph, and bipartite clique problems.
The best-known algorithms for these problems have approximation ratios O(log2 n)
(see [20]), O(n1/3) (see [21]), and n/(log n)O(1) (folklore), respectively, whereas no
inapproximability results were known. Ruling out a PTAS for these problems has
been considered a major open question in inapproximability theory.

Recently, Feige [17] showed that these problems have no PTAS, assuming a certain
hypothesis about average-case hardness of random 3SAT (see section 1.7). The main
result in this paper rules out a PTAS for these problems assuming only a (fairly) stan-
dard assumption that NP �⊆ ∩ε>0 BPTIME(2n

ε

) (i.e., NP does not have randomized
algorithms that run in subexponential time).

Typically, inapproximability results are proved by reducing a known NP-hard
problem to the target problem. The PCP theorem itself can be viewed as a (rather
sophisticated) NP-hardness reduction. We too obtain our result via a reduction. We
use a reduction from the minimum distance of linear code (MDC) problem. The in-
approximability result for MDC has been obtained by Dumer, Micciancio, and Sudan
[15] (see section 1.2).

1.1. Problem definitions and results.
Graph min-bisection. Given a graph G(V,E) with |V | even, partition V into two

equal parts V ′ and V ′′ so as to minimize the number of crossing edges, i.e., edges with
one endpoint each in V ′ and V ′′.

Dense k-subgraph. Given a graph G(V,E) and a parameter k, find a subset
V ′ ⊆ V of size k so as to maximize the number of edges whose both endpoints are in V ′.

Bipartite clique. Given a bipartite graph G(V,W,E), maximize k such that there
exist V ′ ⊆ V and W ′ ⊆ W , each of size k, and the subgraph of G induced on the set
of vertices V ′ ∪W ′ is a complete bipartite graph.

Graph min-bisection is used as a subroutine by many graph algorithms based on
divide-and-conquer strategy. Such algorithms partition the given graph into two equal
parts, solve the desired optimization problem recursively on the two parts, and then
merge the two solutions to obtain an overall solution (it usually suffices to partition
the graph into two pieces of comparable size instead of exactly equal size). Dense
k-subgraph and bipartite clique are natural graph theoretic problems which may also
have algorithmic applications (e.g., the bipartite clique problem is the same as finding
large monochromatic 1-squares in a 0-1 array; this may have applications to vision in
processing arrays of pixels).

The main result in this paper is an inapproximability result for the above three
problems. A formal statement of the result follows.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1027

Theorem 1.1. Let ε > 0 be an arbitrarily small constant. Assume that SAT
does not have a probabilistic algorithm that runs in time 2n

ε

on an instance of size
n. Then there is no polynomial time (possibly randomized) algorithm for graph min-
bisection, dense k-subgraph, or bipartite clique that achieves an approximation ratio
of 1 + 1

2O(1/ε log(1/ε)) . In particular, assuming NP �⊆ ∩ε>0 BPTIME (2n
ε

), these three
problems have no PTAS.

Note that the inapproximability factor 1 + 1
2O(1/ε log(1/ε)) approaches 1 as ε tends

to 0. Thus we have a (strange) trade-off between the quality of the inapproximability
result and the complexity assumption that SAT has no 2n

ε

time algorithm. The
inapproximability factor for bipartite clique can be boosted via randomized graph
products (this is done as in [10], [11]; a proof appears in Appendix D). This gives the
following theorem.1

Theorem 1.2. Let ε > 0 be an arbitrarily small constant. Assume that SAT does
not have a probabilistic algorithm that runs in time 2n

ε

on an instance of size n. Then
there is no polynomial time (possibly randomized) algorithm for bipartite clique that
achieves an approximation ratio of N ε′ on graphs of size N where ε′ = 1

2O(1/ε log(1/ε)) .
We would like to mention that, independent of our work, Feige and Kogan [19]

obtained the following (weaker) results for the bipartite clique problem.
Theorem 1.3 (see [19]). The bipartite clique problem is hard to approximate

within factor 2(log n)δ for some δ > 0 assuming that 3-SAT �∈ DTIME(2n
3/4+ε

) for
some ε > 0. Also, the problem is NP-hard to approximate within some constant

factor if the clique problem is NP-hard to approximate within factor n/2c
√

logn for
some c > 0.

1.2. Minimum distance of code problem. As mentioned earlier, our hard-
ness results are proved via a reduction from the minimum distance of (linear) code
problem that we state next.

Minimum distance of code (MDC). Given a N × n′ matrix A over a field F, find
a nonzero vector z ∈ F

n′
that minimizes the fraction of nonzero coordinates in the

vector Az. If one interprets the columns of A as the basis for a linear code, the
problem is to find the (relative) minimum distance of the code. Let OPT (A) denote
the optimum value.

Remark 1.4. All instances of MDC in this paper are assumed to have the following
properties: (1) The columns of A are linearly independent and N ≥ n′; otherwise
the problem becomes trivial. (2) The field F has characteristic 2. This enables us to
concatenate the code with a binary code. (3) N ≤ |F| ≤ N2.

A result of Dumer, Micciancio, and Sudan [15] says that MDC is NP-hard to
approximate within any constant factor on binary asymptotically good codes. The
following result can be obtained from Dumer et al.’s result (a proof appears in Ap-
pendix B). It is the starting point for our reduction.

Theorem 1.5. There exists an absolute constant C such that the following holds.
For every integer K, there is a reduction from SAT to MDC satisfying the following
(think of K as a large constant):

1. The MDC instance is over a field F of characteristic 2 and has N rows, and
N ≤ |F| ≤ N2.

2. (Completeness.) YES instance of SAT is mapped to an MDC instance A with
OPT (A) ≤ 1

2K .

1The FOCS 2004 version of this paper contains a bug. We erroneously claimed that ε′ could be
made independent of ε in Theorem 1.2.

1028 SUBHASH KHOT

3. (Soundness.) NO instance of SAT is mapped to an MDC instance A with
OPT (A) ≥ 1 − 1

22K
.

4. The reduction runs in time nCK and, in particular, N ≤ nCK .
We would like to note that Dumer et al.’s reduction and therefore reduction in

Theorem 1.5 is randomized (the completeness and soundness properties hold with
high probability). The PCPs in this paper are constructed from Theorem 1.5 and
their construction is randomized too, though we do not explicitly state so.

1.3. PCPs. We state the PCP theorem for future reference. The theorem was
proved by Arora and Safra [4] and Arora et al. [7]. See Arora’s Ph.D. thesis [2] for a
comprehensive introduction to the subject. The PCP theorem states that languages
in NP have short membership proofs that can be efficiently checked by a probabilistic
constant-query verifier.

Theorem 1.6 (PCP theorem). For every language L ∈ NP, there is a poly-
nomial time probabilistic verifier V that has access to input x and a supposed proof
Π. The size of proof Π is polynomial in the size of the input |x| = n. The verifier
uses O(log n) random bits, reads d = O(1) queries from Π (choice of query locations
depends on verifier’s random bits), performs a predetermined test on the query bits,
and then accepts or rejects. The verifier has the following completeness and soundness
properties:

• (Completeness/YES case.) x ∈ L =⇒ ∃ Π s.t. Pr[V (Π) = accept] = 1.
• (Soundness/NO case.) x �∈ L =⇒ ∀ Π s.t. Pr[V (Π) = accept] ≤ 1

10 .
Here is an equivalent formulation of the PCP theorem as an inapproximability

result.
Theorem 1.7 (PCP theorem). There exists an absolute constant c < 1 and a

polynomial time reduction from 3SAT to MAX-3SAT mapping instance φ of 3SAT to
instance ψ of MAX-3SAT with these properties:

• (YES case.) If φ is satisfiable, then so is ψ, i.e., OPT (ψ) = 1.
• (NO case.) If φ is unsatisfiable, then OPT (ψ) ≤ c, i.e., no assignment to ψ

satisfies more than a fraction c of its clauses.
In particular, MAX-3SAT is hard to approximate within a factor better than 1/c unless
P = NP.

1.4. Quasi-random PCPs. In this section, we introduce the notion of quasi-
random PCPs. The main contribution of the paper is a construction of a quasi-
random PCP that immediately implies the inapproximability results for problems in
Theorem 1.1. In section 1.5, we explain why the known PCPs are not quasi-random,
and in section 1.6, we explain our new ideas for building quasi-random PCPs.

Quasi-random PCPs focus on the distribution of queries made by the verifier. We
require that the distribution depends on whether the input to the PCP verifier is a
YES input or a NO input. In the NO case, the queries are required to be distributed
randomly over the proof, and in the YES case, the distribution is required to be far
from being random. This is quite counterintuitive and mystical at first sight. The
verifier does not know whether the input is YES or NO; then how can he make his
query pattern depend on the YES/NO case? However, looking at some known PCPs
makes this less mysterious. For example, let us look at Holmerin’s [27] 4-query PCP,
which has the following properties: (i) In the YES case, there exists a set of half the
bits in the proof such that no PCP test accesses all 4 queries from this set. (ii) In the
NO case, for any set of half the bits in the proof, at least 1

16 − ε fraction of the tests
access all 4 queries from this set.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1029

Thus it is conceivable (and necessary for proving inapproximability results) that
the query pattern depends on the YES/NO case, without the verifier knowing which
case it is. The quasi-random PCPs deal with one specific random-like property of
query pattern. Here is the definition.

Definition 1.8 (quasi-random PCP). A PCP with d nonadaptive Boolean queries
is called quasi-random if 2

• in the YES case there exists a set of half the bits Π0 in the proof Π such that
at least (1 − o(1)) 1

2d−1 fraction of tests accesses all d queries from Π0;
• in the NO case for any set Π∗ of half the bits in the proof Π, the fraction of

tests that accesses all d queries from Π∗ is (1 ± o(1)) 1
2d .

Thus the query pattern has random-like property in the NO case, and in the YES case
the property is violated.

Note that the definition of quasi-random PCPs includes conditions in both the
YES and NO cases. However, by abuse of terminology, we will often refer only to the
condition in the NO case. The following theorem states the main PCP construction
in the paper.

Theorem 1.9. For every ε > 0, there exists an integer d = O(1/ε log(1/ε)) such
that there is a PCP verifier for SAT instance of size n satisfying the following:

1. The proof Π for the verifier is of size 2n
ε

.
2. The verifier queries d bits from the proof. Let Q denote the set of query bits.
3. Every query is uniformly distributed over Π (two different queries are of

course correlated).
4. (YES case/completeness.) Suppose the SAT instance is a YES instance and

Π is a correct proof. Let Π0 be the set of 0-bits in the proof (it contains half
the bits from the proof). Then

PrQ[Q ⊆ Π0] ≥ (1 −O(1/d))
1

2d−1
.

The probability is taken over the random test of the verifier.
5. (NO case/soundness.) Suppose the SAT instance is a NO instance, and let

Π∗ be any set of half the bits from Π. Then

1

2d
− 1

220d
≤ PrQ[Q ⊆ Π∗] ≤ 1

2d
+

1

220d
.

Note that Theorem 1.9 says nothing about the test the verifier performs on the
query bits or the acceptance probability in completeness/soundness case. When we
actually construct the PCP, we will use a homogeneous linear test on query bits.

The inapproximability results for graph min-bisection, dense k-subgraph, and
bipartite clique follow easily from the PCP in Theorem 1.9 (see Appendix C). The
reductions follow the same outline as Feige’s reductions [17].

In the next two sections, we explain why the known PCPs are not quasi-random
and give our new ideas for building quasi-random PCPs.

1.5. Why known PCPs are not quasi-random. Consider H̊astad’s 3-query
PCP [26] as an illustration. The PCP can be abstracted out in the following manner:

2This definition is specific to the PCP that we construct in this paper. Using PCPs over alphabet
Fp (rather than F2), the techniques in this paper can be extended to construct PCPs where the gap
in the YES and NO cases is ≈ p. To be precise, in the YES case, there is a set of 1/p fraction of
positions in the proof such that ≈ 1/pd−1 fraction of tests falls into this set. In the NO case, for any
set of 1/p fraction of positions in the proof, the fraction of tests that falls into this set is ≈ 1/pd.

1030 SUBHASH KHOT

The proof Π is partitioned into blocks:

Π = (A1, A2, . . . , AM ;B1, B2, . . . , BM ′).

Every block Ai, Bj is of constant length and is supposed to be a long code. This is,
however, irrelevant for the present discussion. The blocks Bj ’s are bigger than the
blocks Ai’s. The verifier picks a pair of blocks (Ai, Bj) and reads three bits from the
proof: one from block Ai and two from block Bj .

It is easy to see why H̊astad’s PCP fails to be quasi-random (to be precise, it
fails the NO case of Definition 1.8). Construct a set Π∗ containing half the bits from
proof Π as follows: for every block Ai or Bj , we include the entire block in Π∗ with
probability 1

2 and exclude it from Π∗ with probability 1
2 . Clearly, the probability

that all three queries access bits from Π∗ equals 1
4 , whereas the quasi-randomness

condition requires this probability to be close to 1
8 .

Why does H̊astad’s verifier access two bits from the bigger block Bj? When one
analyzes the PCP using Fourier analysis, it is necessary that the Fourier coefficient of
the block Bj appears in squared form. Reading two bits from block Bj is a way to

introduce redundancy and ensure that we have the Fourier coefficient B̂2
j . However,

as we observed, this form of redundancy leads to loss of quasi-randomness.
Though the above discussion applies only to one specific PCP (namely, H̊astad’s

PCP) and only one specific analysis technique (namely, Fourier analysis), it turns
out that all known PCPs and known techniques suffer from the same problem. On
the high level, the proof is partitioned into blocks, the verifier reads q queries, and
reads more than one query from at least one block. This typically happens when the
verifier, instead of reading a desired bit, reads two or more related bits and infers the
value of the desired bit via error correction. (PCPs, almost by definition, must use
error correction in some form. See, for example, Hadamard code testing [12] and long
code testing [8].) In particular, the verifier accesses less than q blocks and therefore
fails to be quasi-random. Let us formulate this as an observation.

Fact 1.10. Any q-query PCP where the proof is partitioned into blocks and the
verifier accesses less than q blocks is not quasi-random.

Thus we do need redundant bits and some form of error correction; but at the
same time, we do not want to store all these bits at the same physical location (e.g.,
the same block Bj as in H̊astad’s PCP).

1.6. Basic idea behind our PCPs. Now we explain how we achieve the seem-
ingly impossible task of constructing a quasi-random PCP. Here we present only the
basic idea that has to fit in a much bigger context.

We look at the low degree test, which is an important building block of the PCP
theorem (see [35], [4]). Given a function f : F

m → F, the test verifies that f is a
degree d− 1 polynomial (think of d as a constant). The verifier has access to a table
of values of f , call it a points table. In addition, the verifier has access to a lines table
which contains, for every line � in F

m, a degree d− 1 univariate polynomial f |�. The
polynomial f |� is supposed to be the restriction of f to the line �. The verifier works
as follows: Pick a random line � and a random point v on the line. Read f(v) from
the points table and read the polynomial f |� from the lines table. Accept if and only
if f(v) and f |� are consistent, i.e., if and only if the value produced by f |� at point v
is the same as the value f(v).

In our PCP construction, however, the verifier has no access to the additional
lines table (this feature is also used independently in a recent paper of Ben-Sasson
et al. [9]). Instead, the verifier proceeds as follows:

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1031

• Pick a random line � and d + 1 random points v1, v2, . . . , vd+1 on the line.
Read the values f(v1), f(v2), . . . , f(vd+1).

• Let f |� be the unique degree d − 1 univariate polynomial that takes values
f(v2), f(v3), . . . , f(vd+1) at points v2, v3, . . . , vd+1, respectively.

• Accept if and only if f(v1) and f |� are consistent.
Thus the verifier reads f(v1) and then reads additional d random points on the line
and reconstructs the line polynomial. This is the so-called outer verifier.

Now let us see why this PCP is quasi-random (the queries are nonboolean though).
Let Π∗ be any set of half the points from F

m. What is the probability that all d + 1
queries of the verifier fall in Π∗? It is easy to show that lines in F

m have excellent
mixing property. For almost all lines �, the fraction of points on � that are in Π∗ is
very close to 1

2 . Once the line is chosen, the verifier picks d+ 1 random points on the
line. Therefore, the probability that all the queries fall in Π∗ is very close to 1

2d+1 and
the PCP is quasi-random!

However, the queries are elements of F, whereas we want to have boolean queries.
We assume that F has characteristic 2 and therefore the field elements can be repre-
sented as bit strings of length log |F|. We use a standard technique for constructing
a PCP with boolean queries. The verifier expects the proof to contain, instead of a
value f(v), the Hadamard code of the bit string f(v). We can build an appropriate
inner verifier that reads one bit from the (supposed) Hadamard code of f(vi) for
i = 1, 2, . . . , d + 1. The test of the outer verifier is replaced by a meaningful test on
the d + 1 bits read.

The inner verifier is analyzed using Fourier analysis. Recall that in H̊astad’s PCP,
one needs to have the squared Fourier coefficient B̂2

j , and this is achieved by reading
two bits from block Bj . Our Fourier analysis also needs something similar. However,
we cannot read more than one bit from any block (= Hadamard code); otherwise we
lose the quasi-randomness property. We get around this problem by a clever trick. We
modify the verifier as follows: As before, the verifier picks a random line � and d + 1
points on it v1, v2, . . . , vd+1 and performs the test described. In addition, the verifier
picks another set of d + 1 random points on the line, say u1, u2, . . . , ud+1. He verifies
that the degree d polynomial reconstructed from values f(u1), f(u2), . . . , f(ud+1) is
identical to the polynomial reconstructed from f(v1), f(v2), . . . , f(vd+1) (this polyno-
mial actually happens to be of degree d− 1). This is exactly the analogue of reading
two bits from block Bj in H̊astad’s PCP. The additional queries look wasteful, but
this is precisely how we introduce redundancy (= error correction) without losing
quasi-randomness. Unfortunately, the exact significance of this trick will not be clear
unless one looks at the actual Fourier analysis.

Remark 1.11. Definition 1.8 requires that the query pattern of the PCP verifier is
different in the YES and NO cases. We would like to stress that the query pattern in
the YES and NO cases is the same at the level of the (modified) outer verifier since in
both the YES and NO cases, the verifier picks random points on a randomly selected
line. However, quite magically, the difference in the query pattern in the YES and
NO cases manifests itself at the inner verifier level.

1.7. Comparison with Feige’s hypothesis. Feige [17] makes the following
hypothesis about average-case hardness of 3SAT.

Feige’s hypothesis. Let φ be a 3SAT formula with n variables and Cn clauses
where every clause is picked at random from the set of all possible clauses. Then for an
arbitrarily large constant C, there is no polynomial time algorithm that (1) says YES
if φ is satisfiable and (2) says NO at least 50% of the times for a random formula φ.

1032 SUBHASH KHOT

Assuming this hypothesis, Feige shows that graph min-bisection, dense k-subgraph,
and bipartite clique have no PTAS (Alekhnovich [1] later shows these results assuming
random instances of 3-linear-equations are hard).

Let us see how we are able to bypass Feige’s hypothesis and still prove these
inapproximability results. Consider the following PCP constructed from an instance
φ of Gap-3SAT. The proof supposedly consists of a satisfying assignment to the 3SAT
formula φ. The verifier picks one clause at random, queries the three variables in the
clause, and checks if the clause is satisfied. Now what if the formula φ was a random
instance of 3SAT? Then the query pattern of the verifier would be truly random. Thus
Feige’s hypothesis, in some sense, says that there exists a PCP whose query pattern
is truly random.

On the other hand, quasi-randomness is only one specific property which is sat-
isfied by a truly random query pattern. Applied to 3SAT, the quasi-randomness
property says that for any set of half the variables, (1± o(1)) 1

8 fraction of the clauses
have all their three variables from this set. We make the following observation: In or-
der to prove inapproximability results for graph theoretic problems, it suffices to have
hard instances of 3SAT (or any constraint satisfaction problem (CSP) with constraints
on a bounded number of variables) with a quasi-randomness property. One does not
really need the 3SAT instances to be truly random, as in Feige’s paper. We are able to
construct such quasi-random PCPs, thereby obtaining the desired inapproximability
results.

1.8. Overview of the paper. The main result in this paper is Theorem 1.9.
The proof of this result is quite lengthy, involving a sequence of reductions (see Fig-
ure 1).

We introduce a new problem called the homogeneous algebraic CSP (HomAlg-
CSP). (Algebraic CSPs have been used before; see [24], for example. Our CSPs have
the additional property that all constraints are homogeneous linear and we do not
allow a trivial solution that is identically zero.) Our proof can be divided into two
parts: First we reduce MDC to HomAlgCSP. This reduction appears in sections 3, 4,
5, and 6. This is perhaps the most interesting part of the paper. The modules used in
this reduction, namely, the generalized sum-check protocol, the splitability certificate,
and the subspace membership certificate, could be of independent interest.

Then we construct a PCP verifier from the HomAlgCSP instance. The verifier
consists of an outer verifier (section 7 and 8) and an inner verifier (section 10). We
actually need to modify the outer verifier before constructing the inner verifier. This
modified outer verifier appears in section 9.

We recommend that in the first reading, the paper be read in the following way:
(i) Browse through section 2, which gives an overview of techniques and the high
level view of the reduction. Also take a look at Appendix A, which gives some
of the facts/tools used. (ii) Read the beginning of section 3 and the statement of
Theorem 3.4. Skip the rest of section 3 as well as sections 4, 5, and 6, which are
devoted to proving Theorem 3.4. Though this is where the meat of the paper lies, it
is rather lengthy and one might feel lost in the first reading. (iii) Read section 7 and
Theorem 7.6. Skip section 8. (iv) Read sections 9 and 10.

2. Techniques and high level view of the reduction. In this section, we
give an overview of techniques in the paper. This is a general overview that hides
many subtleties involved in our reduction.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1033

Minimum Distance of Code

Homogeneous Algebraic CSP

PCP Outer Verifier

Subspace Membership Certificate
Encoding MDC with Polynomials

 Generalized Sum−Check Protocol

Splitability Certificate

Low Degree Test

Checking Constraints using Curves

 Modified Outer Verifier

Hadamard Codes

 via Hadamard Codes

PCP Inner Verifier

 Incorporating Homogeneous Constraints

 Fourier Analysis

 Mixing Property of Curves/Lines

Fig. 1. Overview of full reduction.

2.1. MDC to homogeneous algebraic CSP. HomAlgCSP is the following
problem (see Definition 3.1): Given space F

m, the goal is to find a nonzero low degree
m-variate polynomial f that satisfies a maximum number of constraints. Every con-
straint is a homogeneous linear constraint on O(1) values of f at specific points in F

m.
As explained in Remark 3.2, HomAlgCSP is a very similar problem to MDC. A reduc-
tion from MDC to HomAlgCSP transforms (see Theorem 3.4) the global constraints
of MDC to local constraints of HomAlgCSP that depend only on O(1) values of f at
specific points. This global-to-local transformation is a major step in our reduction
(as must be the case with any PCP).

The reduction from MDC to HomAlgCSP works as follows: It is easy to encode
MDC as an instance of the following problem: Given a subspace of low degree poly-
nomials B and a set of points P ⊆ F

m, find a nonzero polynomial f ∈ B that vanishes
at a maximum number of points in P. Note that we now have local constraints, one
for every point p ∈ P, saying that f vanishes at p. However, the main trouble is, how
do we enforce the condition that f ∈ B?

We do this by constructing what we call a subspace membership certificate. It is
a low degree polynomial g that supposedly certifies that f ∈ B. The polynomial g
needs to be of a certain type and this is certified by constructing another polynomial
h which we call the splitability certificate. We add a collection of local constraints on
values of f, g, and h that enforce the consistency between the three polynomials. The
polynomials g and h are constructed as follows.

We observe that f ∈ B if and only if the value of f at any point q ∈ F
m is a

weighted sum of its values at some well-chosen points. Thus we can check whether
this sum-check holds for a random point q. We employ a generalization of the sum-
check protocol in order to carry out the sum-check. The usual sum-check protocol
sums over values of f over the boolean cube {0, 1}m, whereas our protocol sums over

1034 SUBHASH KHOT

an arbitrary subset of the boolean cube. We choose the subset to consist of only
low Hamming-weight points of the boolean cube so that the sum-check polynomials
remain of low degree.

The polynomial g (i.e., the subspace membership certificate) is a linear combi-
nation of all the sum-check polynomials. For the sum-check protocol to work, the
sum-check polynomials need to be independent in some sense. The polynomial h (i.e.,
the splitability certificate) certifies that this is indeed so. The polynomials g and h
together form a certificate that f ∈ B. Finally, we club together the three polynomials
f, g, and h into a single polynomial φ that serves as an instance of HomAlgCSP. The
constraints are all homogeneous linear on O(1) values of φ at specific points.

Let us illustrate the power of subspace membership certificate construction by an
example. Let us say we have a low degree m-variate polynomial f that is given as a
table of values. We want to verify that f is multilinear (i.e., f has no monomial that
looks like x2

1x2x3). How many queries do we need to the table of values of f (and
possibly to an additional proof)?

The straightforward way is to pick a random point in F
m and check that on every

axis-parallel line passing through this point, f behaves as a linear function (this is
precisely what [22] does). However, this needs O(m) queries. On the other hand,
our construction gives a query-efficient way of certifying that f is multilinear. The
certificate consists of a pair of new low degree polynomials (g, h), and we need only
O(1) queries to tables of values of f, g, and h! Moreover, the test is homogeneous
linear. The fact that the certificate itself is a polynomial is crucial for our purpose.

2.2. HomAlgCSP to outer verifier. We construct a PCP outer verifier from
the HomAlgCSP instance. Let f be the polynomial required in the HomAlgCSP
instance. The outer verifier expects as a proof a table of values of f . The verifier
needs to verify the following: (1) f is indeed a nonzero low degree polynomial, and
(2) values of f satisfy constraints of HomAlgCSP.

It is well known how to handle the first task, namely, verifying that f is a degree
d polynomial. The so-called low degree test (LDT) expects an additional proof: a
table that gives for every line in F

m a univariate polynomial that is supposedly the
restriction of f to the line. The verifier picks a random line and a point on the
line, and checks consistency between the table of points and table of lines. For our
purposes, however, the verifier has no access to the lines table. The verifier, instead,
reads d + 1 values of f on a line � and reconstructs by himself the restriction of f
to line �. In this paper, the degree d of polynomials is a constant, and therefore the
verifier still makes only a constant number of queries. We need the strong analysis of
the LDT by Arora and Sudan [5].

The next task of the verifier is to verify that f satisfies certain constraints. The
verifier picks one constraint at random that depends on k values of f at specific points,
say {pi}ki=1 ∈ F

m. In principle, the verifier could just read off these values and verify
the constraint. However, it is well known in PCP literature that one needs to have
some form of error correction and infer the values of f at points {pi}ki=1 from the
global behavior of f . We use another well-known primitive to handle this. We pick
a random curve L that passes through the points {pi}ki=1. Restriction of f to the
curve L is again a low degree univariate polynomial that we reconstruct by reading
sufficiently many values of f on the curve. After reconstructing this curve polynomial,
we get values of f at points {pi}ki=1 and verify that they indeed satisfy the constraint.

We in fact combine the two tasks of the verifier. We pick a random pair of a curve
and a line that intersect at a point. The verification procedures described above are

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1035

carried out for both the line and the curve. We in addition check that the line and
the curve are consistent at the intersection point. This completes the description of
the outer verifier.

Now let us see what exactly the outer verifier achieves. Let us restrict ourselves
to the first task (i.e., the variant of line-point LDT where the line polynomial is
reconstructed by reading several values on the line). Recall that our eventual goal is
to build a quasi-random PCP. The definition of the quasi-random PCP requires that
if Π∗ is any subset of the proof of half the size, and the number of queries is q, then
the probability that all queries fall in Π∗ is essentially 1

2q .
Let us illustrate that the outer verifier achieves the quasi-randomness property.

Let Π∗ be any set of half the points from F
m. It is easy to show that lines in F

m

have excellent mixing property, i.e., for any such set Π∗, for almost every line �, the
fraction of points on � belonging to Π∗ is very close to 1

2 . Now recall that the outer
verifier picks a random line and q random points on the line. Thus the probability
that all his queries fall into Π∗ is essentially 1

2q . A similar mixing property holds for
curves as well (see Appendix A.4), and therefore the outer verifier is quasi-random.

2.3. Outer verifier to modified outer verifier. The purpose of the modified
outer verifier is exactly as explained in sections 1.5 and 1.6. It is the analogue of
reading two bits from block Bj in H̊astad’s 3-query PCP. The modified outer verifier
introduces redundancy (= error correction), and this enables us to bound the Fourier
terms in the analysis of the inner verifier. This works in exactly the same way that
the squared Fourier coefficient B̂2

j enables the analysis of H̊astad’s PCP.
Recall that the outer verifier reads values of f on d + 1 points from a line and a

curve and reconstructs the line and curve polynomials. The modified outer verifier
reads values of f on additional d+1 points from the line and the curve and checks that
he again gets the same line and curve polynomials. Thus one introduces redundancy,
but without losing quasi-randomness.

2.4. Modified outer verifier to inner verifier. The final step is to build the
inner verifier and prove the quasi-randomness property. Note that the proof for the
modified outer verifier is a table of values of a polynomial f : F

m → F. We work only
with fields of characteristic 2. Therefore denoting |F| = 2l, we can think of elements
of F as l-bit strings. The inner verifier expects as a proof the Hadamard codes of these
l-bit strings. Let us say the modified outer verifier makes q queries. Then the inner
verifier also makes q queries, reading one bit each from the corresponding Hadamard
code. As pointed out earlier, it is crucial that one reads only one bit from each
code/block; otherwise the quasi-randomness property fails.

The quasi-randomness of the inner verifier is proved using Fourier analysis. We
prove the desired two properties: (1) In the completeness case, let Π0 be the set of
0-bits in the proof. This consists of half the bits in the proof. The probability that all
q queries fall in Π0 is essentially 1

2q−1 . (2) In the soundness case, we assume on the
contrary that there is a set Π∗ of half the bits in the proof such that with probability
1
2q ±δ, all queries fall in Π∗. Then we show that one can decode the proof and construct

a table f : F
m → F that the outer verifier accepts with probability δO(1). This is a

contradiction if the outer verifier is chosen to have sufficiently small soundness. This
is ensured by choosing the MDC instance (and therefore the HomAlgCSP instance)
with small soundness. The decoding is the standard probabilistic decoding in PCP
literature. A supposed Hadamard code is decoded to α with probability Â2

α, i.e.,
proportional to the square of the corresponding Fourier coefficient. We use several

1036 SUBHASH KHOT

nice properties of Hadamard codes that we list below (the popular long codes do not
work; the Hadamard code–based inner verifier was used earlier in [29]):

1. The modified outer verifier reads q values of f and performs homogeneous
linear tests. There is a natural way of accessing Hadamard codes so that only
those Fourier coefficients survive which satisfy all the homogeneous linear
constraints (this is where we need homogeneity). Thus, as far as the inner
verifier is concerned, this testing comes for free.

2. If we have access to Hadamard codes of x and y, then we essentially have
access to the Hadamard code of the concatenated string x◦ y. The process of
accessing a bit from the Hadamard code of x ◦ y can be simulated by reading
one bit each from codes of x and y.

3. The zero Fourier coefficient of a supposed Hadamard code equals the fraction
of 1’s in the supposed code.

There is a nice interpretation of the Fourier coefficients in the analysis. The zero
coefficient corresponds to the term 1

2q in the soundness probability. The nonzero
coefficients are used to decode the proof and define a strategy for the outer verifier.
This in turn gives a solution to the HomAlgCSP (and therefore the MDC) instance.
Recall that the HomAlgCSP instance demands a nonzero polynomial f .

As mentioned in Remark 1.11, the difference in the query pattern of the verifier
in the YES and NO cases is created at the inner verifier level. At the outer verifier
level, the query pattern is the same, irrespective of the YES or NO case (in both
cases, random points are chosen on a randomly selected line/curve).

Remark 2.1. Our reduction was discovered by way of reverse engineering. We
want to use the combination of interpolation and Hadamard codes to get a boolean
PCP that does not make two queries in one block (as explained in sections 1.5 and 1.6).
For this, it turns out that the outer PCP test must be linear and homogeneous. This
is why we start with MDC, which involves a set of homogeneous constraints, and we
transform them into local homogeneous constraints.

Another remark on the size of the construction: we want to have a constant
query PCP, and hence the polynomials must have constant degree (when restricted
to a line). This forces us to work with huge numbers of dimensions (i.e., nε) and the
size of the construction becomes subexponential.

3. MDC to HomAlgCSP: Encoding MDC with polynomials. Now we
begin our construction of the quasi-random PCP. The first step is defining the Hom-
AlgCSP problem.

Definition 3.1. Let the HomAlgCSP A(f, k, d,m,F, C) be the following problem
(think of k as a fixed integer like 21, and d as a large constant integer):

1. f is (supposed to be) an m-variate degree d polynomial over field F.
2. C is a system of constraints where every constraint is on k values of the poly-

nomial f at certain points. This constraint is a conjunction of homogeneous
linear constraints. Thus a typical constraint looks like

k∑
i=1

γijf(pi) = 0 for j = 1, 2, . . . , where pi ∈ F
m and γij ∈ F.

A constraint C ∈ C will be denoted by C({pi}ki=1), thus indicating only the
points on which the constraint is defined. The actual homogeneous constraints
will be implicit.

3. C has |F|O(m) constraints.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1037

The goal is to find a polynomial f , not identically zero, so as to maximize the fraction
of constraints satisfied. Let OPT (A) denote the optimum.

Remark 3.2. HomAlgCSP and MDC are similar problems. In MDC, we want to
find a nonzero assignment to unknown variables that minimizes the number of unsat-
isfied homogeneous linear constraints. HomAlgCSP is essentially the same problem if
we view the coefficients of the polynomial f as unknown variables (one minor differ-
ence is that HomAlgCSP is a maximization problem and we allow a constraint to be
an arbitrary conjunction of homogeneous linear constraints).

However, the main difference is the following: for MDC, every constraint could
depend on an arbitrary number of variables, whereas for HomAlgCSP, every constraint
has a compact/local representation in terms of values of f at a constant number of
points. Thus a reduction from MDC to HomAlgCSP transforms global constraints to
local ones. This is what PCPs are all about!

Remark 3.3. It may help to look at the HomAlgCSP problem from a PCP
viewpoint. A PCP would be the table of values of the (unknown) polynomial f . The
verifier would pick a random constraint C({pi}ki=1) ∈ C, read the values {f(pi)}ki=1,
and check whether the constraint is satisfied. Thus, the HomAlgCSP problem is
equivalent to finding a proof that maximizes the acceptance probability of the verifier.

The following theorem states the main result in this and the next three sections.
It gives a gap-preserving reduction from MDC to HomAlgCSP.

Theorem 3.4. Let A be an instance of MDC with size N × n′ over field F.
Assume that N ≤ |F| ≤ N2. Let ε > 0 be an arbitrarily small constant, m = N ε, and
let d = 100

ε be an integer. There is a reduction from A to an instance of HomAlgCSP
A(f, k = 21, d,m,F, C) such that

1 −OPT (A) ≤ OPT (A) ≤ max

{
1 −OPT (A), O

(
d

|F|

)}
.(1)

We begin the proof of Theorem 3.4. The first step is to encode MDC as the
following problem: Given a set of points P in F

m, find a nonzero degree d polynomial
f that is nonzero at minimum number of points from P. In addition, f is required to
be in a certain subspace of polynomials.

The next step is to define two more polynomials g and h that are supposed to serve
as a certificate that f indeed belongs to the required subspace of polynomials. Then
we define a collection of constraints all of which are homogeneous linear constraints
on k′ values of f, g, and h. These constraints enforce the consistency between f, g,
and h as well as the condition that f takes nonzero values at a minimum number of
points from P. In the end, we will club together the three polynomials f, g, and h
into a single polynomial φ and all the constraints are homogeneous constraints on k
values of φ. This would prove Theorem 3.4.

Remark 3.5. Actually Theorem 3.4 holds for a more general setting of parameters.
For any choice of integers m and d such that

(
m
d

)
≥ N , the reduction produces an

instance of HomAlgCSP A(f, k = 21, d′ = 10d,m′ = O(m3d),F, C) such that (1)
holds. However, we will stick to the setting of the parameters in Theorem 3.4 used in
this paper.

3.1. Encoding MDC with polynomials. Let A = {aji} be an N×n′ instance
of MDC. We assume without loss of generality (w.l.o.g.) that the first n′ rows of A
form an identity matrix, i.e., aji = 0 if 1 ≤ i �= j ≤ n′ and aii = 1 for 1 ≤ i ≤
n′. This can be achieved by rearranging rows so that the first n′ rows are linearly

1038 SUBHASH KHOT

independent and then multiplying A by a suitable n′×n′ matrix. This transformation
doesn’t change OPT (A).

Remark 3.6. In the following, the polynomial f and the parameters ε,m, d are
related to but not the same as those in Theorem 3.4. They keep changing somewhat
over the course of the reduction.

Fix an arbitrarily small constant ε > 0 and let m = N ε. Choose an integer d such
that N ≤

(
m
d

)
. Thus d = 2

ε suffices. Let F0 be a family of subsets of [m] of size d
such that |F0| = N . Let F ⊆ F0 be a subfamily with |F| = n′. The columns of the
matrix A are indexed by I ∈ F and the rows are indexed by J ∈ F0, where the first
n′ rows are indexed by I ∈ F .

For J ∈ F0, let pJ ∈ F
m be the point with {0, 1}-coordinates that is the

characteristic vector of set J . Let xJ be the degree d monomial
∏

j∈J xj . Let
x = (x1, x2, . . . , xm) denote a vector of formal variables. The important property
is that the monomial xJ evaluates to 1 at point pJ and evaluates to 0 at any point
pJ′ for J ′ �= J, |J ′| = d.

We will encode the columns of matrix A by polynomials in F[x]. For column I,
define a degree d polynomial fI ∈ F[x] as

fI :=
∑
J∈F0

aJIxJ (aJI = aji).

It is clear that fI(pJ) = aJI for J ∈ F0, I ∈ F . In other words, the coordinates of the
column indexed by I are given by fI(pJ) ∀ J ∈ F0.

Let span{fI |I ∈ F} denote the linear span of polynomials fI ’s. Thus the MDC
problem can be reformulated as follows.

MDC (reformulation). Find a nonzero polynomial f ∈ span{fI |I ∈ F} so as to
minimize the fraction of nonzero entries in the vector

{ f(pJ) |J ∈ F0 }.

How do we ensure that f belongs to the span of polynomials {fI |I ∈ F}? The
next few sections are devoted to the construction of two polynomials g and h that
serve as a certificate that f indeed belongs to the span.

Overview of the construction of certificate polynomials. We make a sim-
ple but important observation (Lemma 3.7): f belongs to the span of {fI |I ∈ F}
if and only if for all points q ∈ F

m, the value f(q) is a weighted sum of the values
{f(pI)|I ∈ F}. So we check whether this property holds for a randomly selected
point q. The checking procedure could be carried out by reading the values f(q)
and {f(pI)|I ∈ F}. This, however, would take too many queries, whereas we can
afford only a constant number of queries. The idea is to use the sum-check protocol
used in the proof of the PCP theorem. It turns out that the protocol needs values
of linear combinations of sum-check polynomials. The first certificate polynomial g
is the Hadamard code over the sum-check polynomials. However, for the sum-check
protocol to work, the sum-check polynomials need to be independent of each other in
some sense. The second certificate polynomial h serves as a proof of this independence.
We define the notion of a splitable polynomial, and h is actually a certificate that the
polynomial g is splitable. We call g and h the subspace membership certificate and
splitability certificate, respectively.

3.2. Basic observation for constructing the subspace membership cer-
tificate. Let f(x) ∈ F[x] be the desired polynomial. Let q be a vector of formal

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1039

variables. Consider the polynomial

ψ(q,x) :=
∑
I∈F

fI(q)xI .(2)

Note that fI ’s are of degree d; therefore ψ is of degree 2d. We make the following
important observation.

Lemma 3.7. f ∈ span{fI |I ∈ F} if and only if this formal identity holds:

f(q) =
∑
I∈F

ψ(q, pI)f(pI).(3)

Proof. Assume that f =
∑

I′∈F λI′fI′ , where λI′ ∈ F. Then

∑
I∈F

ψ(q, pI)f(pI) =
∑
I∈F

ψ(q, pI)
∑
I′∈F

λI′fI′(pI)

=
∑
I∈F

ψ(q, pI)λI fI′(pI) = aII′ = 0 if I �= I ′ and 1 otherwise

=
∑
I∈F

λI

∑
I′′∈F

fI′′(q) · xI′′(pI)

=
∑
I∈F

λIfI(q)

= f(q),

as desired. For the other direction, note that if f(q) =
∑

I∈F ψ(q, pI)f(pI), then we
have

f(q) =
∑
I∈F

f(pI)
∑
I′∈F

fI′(q)xI′(pI)

=
∑
I∈F

f(pI)fI(q),

as desired.
Thus, one can probabilistically check whether f belongs to span{fI |I ∈ F} by

checking whether (3) holds for a random q ∈ F
m. Note that verifying (3) would

require accessing all the values f(pI). However, we want to read only a constant
number of values of f . The idea is to use the sum-check protocol used in the proof of
the PCP theorem. This protocol lets us verify that the sum of values of a function over
{0, 1}m equals some target value. We need a generalization of this protocol where the
sum is taken over the restricted set of points {pI |I ∈ F}. An important feature of this
generalized protocol is that the points {pI |I ∈ F} are low Hamming-weight points
(i.e., only d nonzero coordinates). This ensures that all the sum-check polynomials
are of degree O(d).

Before we get into the sum-check protocol, let us introduce the notion of splitability
of polynomials and how to construct a certificate for splitability. This construction
will be a useful primitive later and will introduce some of the new ideas. Admittedly,
the reader would have no clue at this point how/why it is useful, but we think the
construction is also of independent interest.

1040 SUBHASH KHOT

4. Splitability certificate. For 1 ≤ j ≤ M , let x(j) denote a vector of mj

formal variables where the sets of variables for different j are disjoint. Let x =
∪M
j=1x

(j).
Definition 4.1. A degree d polynomial g ∈ F[x] is called splitable if it can be

written as

g(x) :=

M∑
j=1

gj(x
(j)),(4)

where gj ∈ F[x(j)] are degree d polynomials.
In other words, splitability means that the variables in different sets x(j) do

not interfere with each other. In this section, we show how to certify that a given
polynomial g is splitable. The certificate consists of another polynomial h. The
certificate can be verified w.h.p. with a constant number of accesses given tables of
values of g and h.

Theorem 4.2. Let x = ∪M
j=1x

(j) be a partition of variables and let g ∈ F[x] be a
polynomial of degree d. Assume that every x(j) has at most m variables. Let h ∈ F[z]
be a degree 2d polynomial that is supposed to be a certificate that g is splitable. The
number of variables in z is bounded by O(m2M + dM). There is a verifier with the
following properties:

1. The verifier accesses one value of g and four values of h.
2. If g is splitable, then there exists a unique polynomial h such that the veri-

fier accepts with probability 1, and for any other h, the verifier accepts with
probability at most O(d

|F|). If g ≡ 0, then the corresponding h ≡ 0.

3. If g is not splitable, then no matter what h is (of degree 2d), the verifier
accepts with probability at most O(d

|F|).

4.1. Basic idea. Let us explain the basic idea behind our construction with a
small example. Let us say we have a polynomial g(x1, x2, . . . , xm;w1, w2, . . . , wm)
and we want to certify that g is splitable, i.e., g can be written as the sum of two
polynomials, one in x1, . . . , xm and the other in w1, . . . , wm. Assume for the moment
that g is guaranteed to be multilinear.

Here is our first attempt. We check for every pair (i0, j0) that g has no monomial
involving the product xi0wj0 . This can be done as follows. Substitute random values
for all variables except xi0 , wj0 and check that the resulting (restricted) function is
linear in xi0 and wj0 . More precisely, pick random values for variables xi, wj , i �=
i0, j �= j0. Pick two sets of random values xi0 , wj0 and x′

i0
, w′

j0
. Pick a random value

ζ and check that

ζ · g(. . . , xi0 , . . . ; . . . , wj0 , . . .) + (1 − ζ) · g(. . . , x′
i0 , . . . ; . . . , w′

j0 , . . .)

= g(. . . , ζxi0 + (1 − ζ)x′
i0 , . . . ; . . . , ζwj0 + (1 − ζ)w′

j0 , . . .),

where the dots indicate the same set of values for xi, yj , i �= i0, j �= j0. Note that
we read only 3 values of g and do not need any additional certificate. Clearly, if g is
multilinear and splitable, the test always accepts. If g has a monomial involving the
product xi0wj0 , the test accepts with probability at most O(d

|F|).

Now the trouble is that we have to do this for every pair i0, j0, which we cannot
afford to do (we want to keep the number of queries constant). To overcome this

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1041

trouble, we use the following trick. Make the following substitution:

⎡
⎢⎢⎢⎣

x1

x2

...
xm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 . . . a1m

. . .

...
am1 . . . amm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦ ;

(5) ⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b11 . . . b1m
. . .
...

bm1 . . . bmm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v1

v2

...
vm

⎤
⎥⎥⎥⎦ .

Here aij , bij , ui, vj are new formal variables. After substituting values for xi, yj in the
polynomial g, we get a new polynomial h in aij , bij , ui, vj . Here is a simple observation:
g is splitable if and only if h has no monomial involving the product u1v1.

The polynomial h will be the certificate. Using the checking procedure described
earlier, we can check that h has no monomial involving u1v1. Also, we can verify that
g and h are consistent by checking that they agree on points which are related via the
transformation (5).

This is the basic idea behind the splitability certificate. An additional twist is
that g is not necessarily multilinear, but this possibility is handled easily as well.

4.2. Defining the splitability certificate. Now we prove Theorem 4.2. For
1 ≤ j ≤ M , let mj be the number of variables in x(j). Let y(j) denote a vector of
mj − 1 variables and let Yj denote a single special variable. Let T(j) denote a matrix
of m2

j variables. The intended meaning is that x(j) = T(j)(y(j) ◦ Yj). To be precise,
we intend that

x
(j)
i =

mj−1∑
s=1

T
(j)
is y(j)

s + T
(j)
imj

Yj for 1 ≤ i ≤ mj .(6)

Let T = ∪M
j=1T

(j), y = ∪M
j=1y

(j), and Y = ∪M
j=1{Yj}. Substituting the values of x(j)

into (4), we get

g =
M∑
j=1

hj(T
(j),y(j), Yj),

where each hj has degree 2d. We write hj in increasing powers of Yj so that

hj := hj0(T
(j),y(j)) +

2d∑
l=1

hjl(T
(j),y(j))Y l

j .

Therefore

g =
M∑
j=1

hj0(T
(j),y(j)) +

M∑
j=1

2d∑
l=1

hjl(T
(j),y(j))Y l

j .

The splitability certificate is obtained by replacing powers of Yj by new variables. To
be precise, for every 1 ≤ j ≤ M , 1 ≤ l ≤ 2d, let Ujl be a single formal variable and

1042 SUBHASH KHOT

let U denote the vector of all such variables. The certificate is the polynomial

h(T,y,U) :=

M∑
j=1

hj0(T
(j),y(j)) +

M∑
j=1

2d∑
l=1

hjl(T
(j),y(j))Ujl.

4.3. Checking the splitability certificate. The checking procedure consists
of two parts: first we check that the polynomial h is a linear function of variables U.
Then we check that g and h are consistent (this automatically checks that g is indeed
splitable).

Checking linearity. Pick values for T(j),y(j) at random. Let U, U′ be two sets
of values for variables in U picked at random. Pick a scaler/field value ζ at random.
Accept if and only if

h(T,y, ζU + (1 − ζ)U′) = ζ · h(T,y,U) + (1 − ζ) · h(T,y,U′).

Clearly, the test reads 3 values of h. It accepts with probability 1 if h is indeed linear
in U and accepts with negligible probability (i.e., at most O(d

|F|)) otherwise.

Checking consistency. Pick values for T(j),y(j) and variables Yj at random.
Define x(j) = T(j)(y(j) ◦ Yj). Let Ujl = Y l

j . Accept if and only if

g(x) = h(T,y,U).

It is clear that if g is splitable, and h is defined appropriately, then this test
accepts with probability 1. So the main task is proving soundness. Assume that g is
not splitable. We want to show that the test accepts with negligible probability, no
matter what certificate h the adversary gives. Let h̃ be the polynomial given by the
adversary. We can assume that it is linear in U and thus looks like

h̃(T,y,U) = h̃0(T,y) +

M∑
j=1

2d∑
l=1

h̃jl(T,y)Ujl.

For the given polynomial g[x], let g̃(T,y,Y) be the polynomial obtained by sub-
stituting x(j) = T(j)(y(j) ◦Yj). The test accepts with negligible probability unless we
have a formal identity

g̃(T,y,Y) = h̃0(T,y) +

M∑
j=1

2d∑
l=1

h̃jl(T,y)Y l
j .

Now the crucial point is that on the right-hand side (RHS), the powers Y l
j do not

interfere with each other. In other words, there is no monomial that involves the
product YjYj′ where j �= j′. On the other hand, if g[x] is not splitable, then it will

have a monomial that involves the product x
(j)
i x

(j′)
i′ for j �= j′. This will give a

monomial involving the product YjYj′ on the left-hand side (LHS), a contradiction!

5. Generalized sum-check protocol. In this section, we describe the gen-
eralized sum-check (GSC) protocol. This protocol along with the construction of
the splitability certificate (in the previous section) is used to construct the subspace
membership certificate in the next section.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1043

The protocol is much more complicated than the usual sum-check protocol that
allows us to verify that the sum of values of a polynomial f over the cube {0, 1}m
equals a target value. We provide the description of the usual sum-check protocol in
Appendix E. We recommend reading it before reading the generalized protocol.

Our protocol needs to work for a sum over an arbitrary set of weight-d inputs
(inputs in {0, 1}m with exactly d coordinates equal to 1). The protocol could be of
independent interest.

GSC(a,F, f̃ ,m,D, d,F , {gb,r|b ∈ {0, 1}, 0 ≤ r ≤ m−1}) consists of the following:
1. F is a field and a ∈ F is a target value.
2. f̃ ∈ F[x] is a degree D polynomial where x = (x1, x2, . . . , xm) is a vector of

m formal variables. We are given f̃ as a table of values.
3. F ⊆

(
m
d

)
, i.e., F is a family of size d subsets of [m].

4. Every gb,r is a polynomial in F[α,θ, X] where α = (α1, . . . , αm), θ = (θ1, . . . ,
θm) are vectors of formal variables and X is a single formal variable. The
degree of gb,r is D + d and gb,r is guaranteed to depend only on α1, α2, . . . , αr,
θ1, . . . , θr, X. The polynomials gb,r are given as table of values.

The goal is to verify that

a =
∑
I∈F

f̃(pI)(7)

by reading a constant number of values of f̃ and of each of the polynomials gb,r. The
sum-check polynomials gb,r are supposed to assist us in verifying that the summation
is true. We have the following theorem.

Theorem 5.1. There is a protocol (verifier) for

GSC(a,F, f̃ ,m,D, d,F , {gb,r|b ∈ {0, 1}, 0 ≤ r ≤ m− 1})

satisfying these properties:
1. The protocol picks α ∈ F

m, θ ∈ F
m at random.

2. The protocol reads one value of f̃ , namely, f̃(θ). For every b ∈ {0, 1}, 0 ≤
r ≤ m − 1, the protocol reads two values of gb,r, namely, gb,r(α,θ, X = b)
and gb,r(α,θ, X = θr+1).

3. The protocol performs a single homogeneous linear test on the target value a
and the values read.

4. (Completeness.) If a =
∑

I∈F f̃(pI), then there exists a choice of sum-check
polynomials {gb,r} such that the protocol accepts with probability 1.

5. If a �=
∑

I∈F f̃(pI), then no matter what the sum-check polynomials {gb,r}
are, the protocol accepts with probability at most O(D+d

|F|).

Before we describe the protocol, let us see what the intended meaning of gb,r is.
For a set I ∈ F , let Ii denote the ith coordinate of its characteristic vector.

For α ∈ F
m, I ∈ F , 0 ≤ s ≤ m, let

w(I,α, s) :=
∏

1≤i≤s, Ii=1

αi.

Note that in particular, for s = 0, w(I,α, 0) = 1. Also, since |I| = d, each w(·, ·, ·) is
a monomial of degree at most d.

For θ ∈ F
m, I ∈ F , 0 ≤ s ≤ m, let p(I,θ, s) ∈ F

m be a point whose ith coordinate
equals θi for 1 ≤ i ≤ s and equals Ii for s < i ≤ m. In particular, p(I,θ, 0) = pI and
p(I,θ,m) = θ.

1044 SUBHASH KHOT

Consider the following partial sum for 0 ≤ r ≤ m:

Sr :=
∑
I∈F

w(I,α, r)f̃(p(I,θ, r)).

In particular,

S0 =
∑
I∈F

w(I,α, 0)f̃(p(I,θ, 0))

=
∑
I∈F

f̃(pI).

Thus the goal of the GSC protocol is to verify that S0 = a, where a is the target
value. Note that

Sm =

(∑
I∈F

w(I,α,m)

)
f̃(θ).

Here, the verifier can evaluate the quantity in the summation by himself and the value
f̃(θ) can be read from the table of values of f̃ . Thus the verifier knows the values
S0 and Sm and thus has to verify that the values S1, S2, . . . , Sm−1 give a correct
interpolation between S0 and Sm.

For b ∈ {0, 1} and 1 ≤ s ≤ m, let

Fb
s := {I | I ∈ F , Is = b}.

Thus F0
s is the subfamily of F consisting of all sets that do not contain s ∈ [m] and

F1
s consists of those sets that do contain s.

For θ ∈ F
m, I ∈ F , 1 ≤ s ≤ m, let P (I,θ, s,X) ∈ F

m be a point whose ith
coordinate equals θi for 1 ≤ i < s and equals Ii for s < i ≤ m, and the sth coordinate
is a formal variable X. Note that if Is+1 = b, then P (I,θ, s+ 1, b) = p(I,θ, s), where
P (I,θ, s+1, b) denotes the point obtained from P (I,θ, s+1, X) by substituting X = b.
Also, when one substitutes X = θs+1, we get P (I,θ, s + 1, θs+1) = p(I,θ, s + 1).

With so much notation, we are ready to see what gb,r are. Fix b ∈ {0, 1} and
0 ≤ r ≤ m− 1. Consider the sum

gb,r(α,θ, X) :=
∑

I∈Fb
r+1

w(I,α, r)f̃(P (I,θ, r + 1, X)).(8)

Note that gb,r is a polynomial in α,θ, and X. The degree in α is at most d and the
degree in θ, X is at most D. Also, gb,r depends only on α1, α2, . . . , αr, θ1, θ2, . . . , θr,
and X.

Here is the link between the partial sums Sr and the polynomials gb,r.
Lemma 5.2.

Sr = g0,r(α,θ, 0) + g1,r(α,θ, 1),

g0,r(α,θ, θr+1) + αr+1g1,r(α,θ, θr+1) = Sr+1.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1045

Proof.

Sr =
∑
I∈F

w(I,α, r)f̃(p(I,θ, r))

=
∑

I∈F0
r+1

w(I,α, r)f̃(p(I,θ, r)) +
∑

I∈F1
r+1

w(I,α, r)f̃(p(I,θ, r))

=
∑

I∈F0
r+1

w(I,α, r)f̃(P (I,θ, r + 1, 0)) +
∑

I∈F1
r+1

w(I,α, r)f̃(P (I,θ, r + 1, 1))

= g0,r(α,θ, 0) + g1,r(α,θ, 1).

On the other hand,

g0,r(α,θ, θr+1) + αr+1g1,r(α,θ, θr+1)

=
∑

I∈F0
r+1

w(I,α, r)f̃(P (I,θ, r + 1, θr+1)) +
∑

I∈F1
r+1

(αr+1w(I,α, r)) f̃(P (I,θ, r + 1, θr+1))

=
∑

I∈F0
r+1

w(I,α, r + 1)f̃(p(I,θ, r + 1)) +
∑

I∈F1
r+1

w(I,α, r + 1)f̃(p(I,θ, r + 1))

=
∑
I∈F

w(I,α, r + 1)f̃(p(I,θ, r + 1))

= Sr+1.

Corollary 5.3.

g0,r(α,θ, θr+1) + αr+1g1,r(α,θ, θr+1) = g0,r+1(α,θ, 0) + g1,r+1(α,θ, 1).

5.1. The GSC protocol. The protocol works as follows. The protocol accepts
if and only if all of the following checks are satisfied (we later combine these checks
into a single homogeneous linear test):

• Pick α,θ ∈ F
m at random.

• (Stage 0:) Check if

a = g0,0(α,θ, 0) + g1,0(α,θ, 1).(9)

• (Stage r + 1 for r = 0, 1, . . . ,m− 2:) Check if

g0,r(α,θ, θr+1) + αr+1g1,r(α,θ, θr+1) = g0,r+1(α,θ, 0) + g1,r+1(α,θ, 1).
(10)

• (Stage m:) Check if

g0,m−1(α,θ, θm) + αmg1,m−1(α,θ, θm) =

(∑
I∈F

w(I,α,m)

)
f̃(θ).(11)

Note that the values on lines (9), (10), (11) are (supposed to be) S0, Sr+1, Sm, respec-
tively.

5.2. Completeness.
Lemma 5.4. If the polynomial f̃ satisfies (7), then it is possible to define polyno-

mials gb,r(α,θ, X) so that the protocol accepts with probability 1.
Proof. The proof is obvious. Just define gb,r as they are supposed to be as in

(8).

1046 SUBHASH KHOT

5.3. Soundness.
Lemma 5.5. If the polynomial f̃ does not satisfy (7), then no matter what poly-

nomials gb,r one takes, the protocol accepts with negligible probability, i.e., with prob-
ability at most O(D+d

|F|). It is assumed that the polynomials gb,r have degree at most

D + d and gb,r depends only on α1, . . . , αr, θ1, . . . , θr, and X.

Proof. Let g̃b,r be polynomials obtained from f̃ using rule (8). We will argue in
reverse order (i.e., r = m−1,m−2, . . . , 0) that unless gb,r ≡ g̃b,r, the protocol succeeds
with negligible probability. The only fact we use is that two polynomials agree with
nonnegligible probability if and only if they are identical as formal polynomials.

(Case r = m− 1.) Look at Stage m, equation (11). The RHS is just Sm, which,
using Lemma 5.2, can be written in terms of g̃0,m−1 and g̃1,m−1. Thus we get

g0,m−1(α,θ, θm) + αmg1,m−1(α,θ, θm) = g̃0,m−1(α,θ, θm) + αmg̃1,m−1(α,θ, θm).

Note that g0,m−1, g1,m−1, g̃0,m−1, g̃1,m−1 do not depend on αm, θm. Therefore, if this
is a formal identity, then we must have g0,m−1 = g̃0,m−1 and g1,m−1 = g̃1,m−1.

(Case 0 ≤ r ≤ m− 2.) Assume that we have already proved that g0,r+1 = g̃0,r+1

and g1,r+1 = g̃1,r+1. Therefore, the RHS of (10) is

g0,r+1(α,θ, 0) + g1,r+1(α,θ, 1) = g̃0,r+1(α,θ, 0) + g̃1,r+1(α,θ, 1)

= g̃0,r(α,θ, θr+1) + αr+1g̃1,r(α,θ, θr+1),

where we used Corollary 5.3. Now we equate this with the LHS of (10) and note that
g0,r, g1,r, g̃0,r, g̃1,r do not depend on αr+1, θr+1. Hence we conclude that g0,r = g̃0,r

and g1,r = g̃1,r

Now we show that the test fails at Stage 0. This is because, g0,0 = g̃0,0, g1,0 = g̃1,0

and

a �=
∑
I∈F

f̃(pI)

= g̃0,0(α,θ, 0) + g̃1,0(α,θ, 1)

= g0,0(α,θ, 0) + g1,0(α,θ, 1).

5.4. Combining all tests into a single homogeneous test. Instead of ver-
ifying (9), (10), and (11) separately, the protocol can multiply these equations with
random values in F, add them up, and verify that the single combined equation is
satisfied. It is easily seen that the completeness and soundness properties are still
satisfied.

6. Constructing subspace membership certificate. Now we return to the
task we started with. We want polynomials g and h that certify that the polyno-
mial f in section 3.1 satisfies (3). The equation says that f(q) equals a sum of
values of ψ(q, ·)f(·). We verify this by running the generalized sum-check protocol on
ψ(q, ·)f(·). The polynomial g will be obtained by clubbing together all the sum-check
polynomials. The polynomial h will certify that g is splitable, a property that makes
sure that the sum-check protocol works (as explained below).

We want to verify (3) for a random q. Let f̃ [q,x] = ψ(q,x)f(x) and a = f(q).
Thus we can run the protocol

GSC(a = f(q),F, f̃ ,m,D = 3d, d,F , {gb,r|b ∈ {0, 1}, 0 ≤ r ≤ m− 1}).

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1047

Here, f̃ is a polynomial in q,x, but the sum-check protocol is run on the x part
only. Usually, the sum-check polynomials gb,r are polynomials in α,θ, X. But now,
examining rule (8), they are polynomials also in q. Since gb,r is polynomial of degree
D + d, we can write it in increasing powers of X as

gb,r(q,α,θ, X) :=

D+d∑
t=0

gb,r,t(q,α,θ)Xt,

where gb,r,t are polynomials in q, α1, . . . , αr, θ1, . . . , θr.

The GSC protocol (section 5.1) needs values a = f(q) and f̃(q,θ). The proto-
col reads values f(q) and f(θ) from the table of values of f . The value f̃(q,θ) =
ψ(q,θ)f(θ) is computed from the value f(θ) and by using (2). In addition, the
protocol needs the value of some homogeneous linear form on the values:

gb,r,t(q,α,θ) b ∈ {0, 1}, 0 ≤ r ≤ m− 1, 0 ≤ t ≤ D + d.

However, we can afford only a constant number of queries. So reading all these
values separately is ruled out. We do the following trick: we just read off the value of
the linear form as a single query. This can be done if we have access to the Hadamard
code over the polynomials gb,r,t. This is exactly what the certificate polynomial g
will do. As a first attempt (which does not work), we expect to have the following
polynomial g∗ as a certificate that enables us to read off the linear form. Let Rb,r,t be
formal variables and let R denote the vector of all these variables. The polynomial
g∗ is intended to be

g∗(q,α,θ,R) :=
∑
b,r,t

gb,r,t(q,α,θ)Rb,r,t.(12)

We are not quite done yet. How do we ensure that the supposed polynomial g∗

given by an adversary is of the form (12)? First of all, note that g∗ is intended to be a
linear function when treated as a function of R. This can be checked by substituting
random values of q,α,θ and then using a linearity test. Assuming now that g∗ is
indeed a linear function of R, let g∗b,r,t denote the coefficient of Rb,r,t.

The problem is the following: how do we ensure that g∗b,r,t depends only on
q, α1, . . . , αr, θ1, . . . , θr and is independent of αr+1, . . . , αm, θr+1, . . . , θm? This prop-
erty is necessary for the GSC protocol to work.

In order to fix this problem, we need to redefine the polynomial g∗. We give a
fresh copy of variables to every polynomial gb,r,t. To be precise, for any (b, r, t), let
q(b,r,t) denote a vector of m variables which is supposed to be a copy of q. Also, let
α(b,r,t) denote a copy of α1, . . . , αr and let θ(b,r,t) denote a copy of θ1, . . . , θr.

Let

q′ = ∪b,r,tq
(b,r,t), α′ = ∪b,r,tα

(b,r,t), θ′ = ∪b,r,tθ
(b,r,t), R = ∪b,r,t{Rb,r,t}.(13)

Define

g(q′,α′,θ′,R) :=
∑
b,r,t

gb,r,t(q
(b,r,t),α(b,r,t),θ(b,r,t))Rb,r,t.(14)

Note that g is splitable. The sets of variables on which gb,r,t’s depend are disjoint
for different (b, r, t)’s. Now we can attach a splitability certificate h to make sure that
an adversary is forced to give a g that is splitable!

1048 SUBHASH KHOT

6.1. Proving Theorem 3.4. Now we prove Theorem 3.4. First we prove a ver-
sion of the theorem where instead of a single polynomial f in the HomAlgCSP instance
we have three polynomials f, g, h and the constraints are homogeneous constraints on
O(1) values of these polynomials.

Given tables of values of polynomials f(q) and g(q′,α′,θ′,R) and a splitability
certificate h, we run the following verification procedure.

Checking that g is linear in R. Pick random values for q′,α′,θ′ and two sets
of random values for R and R′. Pick two random scalar/field values ζ, ζ ′ and check if

g(q′,α′,θ′, ζR + ζ ′R′) = ζ · g(q′,α′,θ′,R) + ζ ′ · g(q′,α′,θ′,R′).

Checking that h is a splitability certificate. This can be done as in sec-
tion 4.3 by reading one value of g and four values of h.

Running the GSC protocol. Pick random values for q,α,θ. The values
f(q), f(θ) needed by the protocol are read from the table of values for f . The protocol
also needs a value of a linear form of type

∑
b,r,t

ζb,r,t gb,r,t(q,α,θ), ζb,r,t ∈ F.(15)

For all (b, r, t), we set q(b,r,t) = q, α(b,r,t) = (α1, α2, . . . , αr), θ
(b,r,t) = (θ1, θ2, . . . , θr)

(this makes sense because q(b,r,t),α(b,r,t),θ(b,r,t) are supposed to be copies of the same
q,α,θ, respectively). Set Rb,r,t = ζb,rt. Define q′,α′,θ′,R as in (13).

Finally, take the value of the linear form in (15) needed by the protocol to be the
value g(q′,α′,θ′,R).

Checking that f is a solution to the MDC instance. Pick a random point
from set {pJ | J ∈ F0} and check whether f(pJ) = 0.

Number of queries. Note that the verification procedure reads three values of
f (namely, f(pJ), f(q), f(θ)). It reads five values of g (three for checking linearity in
R, one for checking splitability, one for reading linear form needed in sum-check). It
reads four values of h (as in splitability check). Thus we have a total of 12 queries.

Relating the optimum of MDC with the maximum acceptance prob-
ability. It is clear that if the MDC instance A has a solution with value OPT (A),
then we can take this solution, encode it as a nonzero polynomial f , and construct
g, h as they should be. The verification procedure accepts whenever f(pJ) = 0, which
happens with probability 1 −OPT (A).

On the other hand, note that the verification process accepts with negligible
probability unless f ∈ span{fI |I ∈ F}. If f ≡ 0, then the corresponding polynomials
g, h must also be identically zero (otherwise probability of acceptance is negligible).
Now if f is a nonzero polynomial in the span, we can have f(pJ) = 0 only for
1 − OPT (A) fraction of J ∈ F0. Hence the verification procedure can accept with
probability at most max{1 −OPT (A), O(d

|F|)}.

6.2. Clubbing together f, g, h. Now we show how to combine f, g, h into a
single polynomial φ and thus prove Theorem 3.4. Assume that f ∈ F[x], g ∈ F[y],
h ∈ F[z], where x,y, z are disjoint sets of variables. Let X,Y, Z be formal variables
and let φ (as intended to) be

φ(x,y, z, X, Y, Z) := Xf(x) + Y g(y) + Zh(z).

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1049

Again the trouble is that the adversary might give an arbitrary polynomial φ and
not necessarily of this form. We give the following verification procedure.

Checking linearity in X,Y, Z. Pick random values for x,y, z and random
values X,X ′, Y, Y ′, Z, Z ′. Pick random values ζ, ζ ′. Check if

φ(x,y, z, ζX+ζ ′X ′, ζY +ζ ′Y ′, ζZ+ζ ′Z ′) = ζ·φ(x,y, z, X, Y, Z)+ζ ′·φ(x,y, z, X ′, Y ′, Z ′).

Checking splitability. Thus we can assume that φ is linear and hence of the
form Xf̃ + Y g̃ + Zh̃. We need to ensure that f̃ depends only on x and not on y, z,
and also that g̃ depends only on y and h̃ depends only on z. This can be done by
brute force as follows. Note that setting X = 1, Y = 0, Z = 0 gives us access to f̃ and
similarly for g̃, h̃.

• Pick random values x,y, z. Pick another set of random values x′,y′, z′.
• Check that

φ(x,y, z, 1, 0, 0) = φ(x,y′, z′, 1, 0, 0),

φ(x,y, z, 0, 1, 0) = φ(x′,y, z′, 0, 1, 0),

φ(x,y, z, 0, 0, 1) = φ(x′,y′, z, 0, 0, 1).

Simulating the previous verification procedure. Now we can assume that
φ is of the form Xf(x)+Y g(y)+Zh(z). We run the verification procedure described
in section 6.1. Values for f [x], g[y], h[z] can be accessed by reading φ(x,0,0, 1, 0, 0),
φ(0,y,0, 0, 1, 0), and φ(0,0, z, 0, 0, 1), respectively.

Note that the new protocol reads 3 + 6 + 12 = 21 queries from table of values
of φ. The maximum probability of acceptance (for any nonzero polynomial φ) equals
1 −OPT (A), where A is the MDC instance one starts with. The constraints are all
homogeneous linear. This proves Theorem 3.4.

7. The LDT and outer verifier. In this section, we describe our outer verifier.
Later we modify the outer verifier and build a Hadamard code–based inner verifier.
This gives a quasi-random PCP.

The starting point for the outer verifier is the gap-instance of HomAlgCSP ob-
tained by combining Theorems 1.5 and 3.4. Let A(f, k, d∗,m,F, C) denote this Hom-
AlgCSP instance. We have either

OPT (A) ≥ 1 − 1/2K or OPT (A) ≤ 1/22K

.

Remark 7.1. It is helpful to keep in mind the quantitative parameters. If the
size of the SAT instance is n, then the size of the MDC instance is N ≤ nCK , and
N ≤ |F| ≤ N2, m = N ε, d∗ = 100/ε. In particular, the degree d∗ is constant. The
size of the HomAlgCSP instance is |F|O(m) ≤ 2O(Nε).

The outer verifier is given the polynomial f as a table of values. He wants to
pick a random constraint C({pi}ki=1) ∈ C and check that it is satisfied. However, an
adversary could cheat by giving a table which is not a low degree polynomial. The
LDT allows the verifier to guard against such cheating. The LDT was first proposed
by Rubinfeld and Sudan [35] and has been a crucial ingredient in the proof of the
PCP theorem (see [4], [7]).

7.1. Outer verifier.
Definition 7.2. A line � in F

m is a linear function � : F → F
m. In other words,

for some a, b ∈ F
m,

�(t) = a + bt.

1050 SUBHASH KHOT

Definition 7.3. A curve L in F
m is a function L : F → F

m. In other words

L(t) = a(t) = (a1(t), a2(t), . . . , am(t)).

It is a degree d curve if each of the coordinate functions ai(t) is a degree d (univariate)
polynomial.

We fix a constraint C({pi}ki=1) ∈ C for this section and the next.
Let t1, t2, . . . , tk+3 be fixed distinct field elements in F. For a, b, c ∈ F

m, let
L = La,b,c be the unique degree k+2 curve that passes through points {pi}ki=1, a, b, c.
More precisely,

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(tk+3) = c.(16)

If f is a degree d∗ polynomial, then its restriction to the curve L = La,b,c is a

degree d− 1 := (k + 2)d∗ univariate polynomial. Call this polynomial f |L. In partic-
ular, f |L can be reconstructed from any d values of f on the curve. The outer verifier
does precisely this. He picks d+1 random points from the curve, say v1, v2, . . . , vd, v.
He reconstructs f |L using values of f at first d points, and verifies that the value of
f |L at point v is the same as the value f(v). In addition, knowing f |L, the verifier
calculates the values of f at points {pi}ki=1 and verifies that these values indeed satisfy
the constraint C.

However, we need to combine the above task with the line-point LDT. We will
use the strong analysis of LDT by Arora and Safra [4]. The outer verifier becomes
somewhat complicated. Note that restriction of f to a line is a degree d∗ univariate
polynomial. We will be generous and allow the degree to be d− 2.

The verifier picks a random pair of a line � and a curve L intersecting at a point
v. The univariate polynomials f |L and f |� are reconstructed by reading values of f
at d random points on L and d−1 random points on �, respectively. Then the verifier
checks that f |L and f |� both have the value f(v) at point v. In addition, the verifier
checks that values of f |L at points {pi}ki=1 satisfy the constraint C.

To prove the correctness of the outer verifier, we need to be careful about how the
intersecting line-curve pair is chosen. Formally, the action of the verifier is as follows
(see Figure 2).

Outer verifier.

1. Pick a random line � and pick random points v1, . . . , vd−1, vd on the line
(assume that these points are all distinct; this happens w.h.p.). Let v = vd.

2. Pick t ∈ F \ {t1, . . . , tk+3} at random, pick points a, b at random, and let L
be the unique degree k + 2 curve L = La,b,c such that

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = v

(and c = L(tk+3) gets defined automatically).
3. Pick random points vd+1, . . . , v2d on curve L (we assume that these points

are distinct; this happens w.h.p.).
4. Read the values f(vi) for 1 ≤ i ≤ 2d.
5. Let f |� be the unique degree d − 2 polynomial interpolated using the values

{f(vi)}d−1
i=1 .

6. Let f |L be the unique degree d − 1 polynomial interpolated using the values
{f(vi)}2d

i=d+1.
7. Check if

f |L(v) = f(v) = f |�(v).

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1051

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��

��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

p
1

p
2

p
k

v1

v
2

v
d−1

v = v
d

v
d+1

v
d+2

v
2d

Curve L

Line l

a b

Fig. 2. Outer verifier.

8. Check if the values of f |L at points {pi}ki=1 satisfy the constraint C.
9. Check that not all the values read are zero, i.e., Not-All-Zero(f(vi), 1 ≤ i ≤

2d).
Remark 7.4. Note that the polynomials f |� and f |L depend on the specific

choice of points {vi}d−1
i=1 and {vi}2d

i=d+1, respectively (i.e., these are the interpolated
polynomials). We hide this fact for notational convenience. Also, a main step in the
proof of Theorem 7.6 is to get rid of this dependence.

Remark 7.5. The verifier’s action is straightforward except for the last step,
where he checks that not all values read are zero. This is needed to make sure that
the adversary does not cheat by giving a function f that is identically zero.

Given a table f : F
m → F and an m-variate polynomial P , the agreement between

f and P is defined to be the fraction of points u ∈ F
m such that f(u) = P (u). Now

we state the main theorem in this section. Its proof appears in the next section.
Theorem 7.6. There are constants c2, c3 such that the following holds: Let

P1, P2, . . . , Pt be all degree d polynomials that have agreement at least (δ/2)c2/c3 with
f . Then if the outer verifier accepts with probability δ, then for some 1 ≤ j ≤ t,
the polynomial Pj is a nonzero polynomial and its values at points {pi}ki=1 satisfy the
constraint C. Also, t ≤ 2c3/(δ/2)c2 .

A crucial ingredient in the proof of Theorem 7.6 is the strong analysis of the LDT
as in Arora and Sudan’s paper [5] (analysis of Raz and Safra [34] could be applied as
well). Let flines be a table which gives, for every line �, a univariate polynomial of
degree d, denoted by flines(�).

The following theorem states the result of Arora and Sudan [5] (Theorem 3 and
Proposition 2 therein). In our application, d is constant and |F| is a large polynomial
in m (recall that N ≤ |F| and m = N ε, where N is the size of the MDC instance used
by our reduction).

Theorem 7.7. There are constants c0, c1, c2, c3 such that the following holds:
Let δ, d,m be parameters and let F be a field satisfying |F| ≥ c0(dm/δ)c1 . Fix tables
f : F

m → F and flines. Let {P1, P2, . . . , Pt} be all degree d polynomials that have

1052 SUBHASH KHOT

agreement at least δc2/c3 with f . Let a point v ∈ F
m and a line � passing through v

be picked at random. Then

Prv,� [f(v) �∈ {P1(v), . . . , Pt(v)} and flines(�)(v) = f(v)] ≤ δ.

8. Proof of Theorem 7.6. In this section, we prove Theorem 7.6. Before
applying Theorem 7.7, we need to go through a rather long sequence of arguments.

We first observe that there are two equivalent ways in which the outer verifier
can make his probabilistic choices. The first way is as in steps (1)–(3). An alternate
way is as follows:

• Pick a, b, c at random and let L = La,b,c be the curve as in (16). Pick random
points vd+1, . . . , v2d on L.

• Pick a random point v = L(t), t ∈ F\{t1, . . . , tk+3}, on the curve. Let vd = v.
• Pick a random line � through v and pick random points v1, . . . , vd−1 on line �.

Let NZ be the event that not all values read by the verifier are zero. Let SATC be
the event that the values of the polynomial f |L at points {pi}ki=1 satisfy the constraint
C. The probability of acceptance of the outer verifier is

Pr
[
f |L(v) = f(v) = f |�(v), NZ, SATC

]
.(17)

We will construct two new verifiers V and Ṽ whose acceptance probability is at
least equal to the acceptance probability of the outer verifier. We finish the proof by
analyzing the verifier Ṽ.

8.1. Constructing verifiers V and Ṽ. We construct a table flines that gives a
single univariate polynomial of degree d−2 (call it flines(�)) for every line �. Then we
show that the probability of acceptance of the following verifier (call it V) is at least
equal to the probability of acceptance of the outer verifier: the verifier V, instead of
reconstructing f |� from the values {f(vi)}d−1

i=1 , directly uses the polynomial flines(�).
Also, instead of checking for the event NZ, it checks that not all of these are zero: the
polynomial flines(�) and the values f(v), {f(vi)}2d

i=d+1. Let NZ ′ denote this event.
It is easy to construct flines. Think of the verifier’s probabilistic choices in this

order: �, {vi}d−1
i=1 , v, L, {vi}2d

i=d+1. For any line �, fix a choice of {vi}d−1
i=1 so as to

maximize the probability in (17). Define flines(�) to be the polynomial obtained by
interpolating from this optimal choice of {vi}d−1

i=1 . Thus probability of acceptance of
V is

Pr
[
f |L(v) = f(v) = flines(�)(v), NZ ′, SATC

]
.(18)

Now we do a similar trick again. We construct a table fcurves that gives a single
univariate polynomial of degree d− 1 (call it fcurves(L)) for every curve L. Then we
show that the probability of acceptance of the following verifier (call it Ṽ) is at least
equal to the probability of acceptance of V: this verifier Ṽ, instead of reconstructing
f |L from the values {f(vi)}2d

i=d+1, directly uses the polynomial fcurves(L). Also,
instead of checking for the event NZ ′, it checks that not all of these are zero: the
polynomial flines(�), the value f(v), and the polynomial fcurves(L). Let NZ ′′ denote
this event.

It is again easy to construct fcurves. Think of the verifier’s probabilistic choices
in the alternative (but equivalent) order: L, {vi}2d

i=d+1, v, �, {vi}d−1
i=1 . For any curve L,

fix a choice of {vi}2d
i=d+1 so as to maximize the probability in (18). Define fcurves(L)

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1053

to be the polynomial obtained by interpolating from this optimal choice of {vi}2d
i=d+1.

Thus probability of acceptance of Ṽ is

Pr
[
fcurves(L)(v) = f(v) = flines(�)(v), NZ ′′, SATC

]
.

If the outer verifier accepts with probability δ, then we have

Pr
[
fcurves(L)(v) = f(v) = flines(�)(v), NZ ′′, SATC

]
≥ δ.(19)

We observe that unless fcurves(L) �= 0, the above probability is negligible. This
is because if fcurves(L) = 0, one would have 0 = f(v) = flines(�)(v) and NZ ′′ =⇒
flines(�) �= 0. Since v is a random point on line �, this can happen only with negligible
probability.

Thus we can replace the condition NZ ′′ by the (more stringent) condition fcurves(L)
�= 0 without decreasing the above probability much. To be precise,

Pr
[
fcurves(L)(v) = f(v) = flines(�)(v), fcurves(L) �= 0, SATC

]
≥ 3δ/4.(20)

8.2. Analyzing verifier Ṽ. Let P1, P2, . . . , Pt be all degree d polynomials that
agree with f at (δ/2)c2/c3 fraction of points. Let GOOD be the event that f(v) ∈
{P1(v), . . . , Pt(v)}. Using Theorem 7.7, we see that

Prv,� [¬GOOD, flines(�)(v) = f(v)] ≤ δ/2.(21)

From (20) and (21), we get

Pr
[
fcurves(L)(v) = f(v) = flines(�)(v), GOOD, fcurves(L) �= 0, SATC

]
≥ δ/4.

(22)

Now, let GOODcurves be the event that

fcurves(L) ∈ {P1(L), . . . , Pt(L)},

where Pj(L) denotes the univariate polynomial that is the restriction of the polynomial
Pj to L.

We observe that unless the event GOODcurves happens, the probability of ac-
ceptance in (22) is negligible. This is because v is a random point on the curve
L. If it happens that fcurves(L)(v) = f(v) ∈ {P1(v), . . . , Pt(v)} with nonnegligible
probability, then it must be the case that fcurves(L) is identically equal to one of
P1(L), . . . , Pt(L). Hence, we conclude

Pr
[
fcurves(L)(v) = f(v) = flines(�)(v), GOOD, GOODcurves,

fcurves(L) �= 0, SATC
]

≥ δ/8.

Whenever the above event occurs, fcurves(L) ∈ {P1(L), . . . , Pt(L)}, fcurves(L) �=
0, and the values of fcurves(L) satisfy the constraint C. This completes the proof of
Theorem 7.6.

1054 SUBHASH KHOT

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

p
1

p
2

p
k

v1

v
2

v
d−1

v = v
d

v
d+1

v
d+2

v
2d

Curve L

Line l

a b

u
1

u
2

u
d

u
d+1

u d+2

u
2d

Fig. 3. Modified outer verifier.

9. Modified outer verifier. We use a modification of the outer verifier. This
modification is necessary for the analysis of the inner verifier to go through.

Remark 9.1. Note that the outer verifier reads 2d values. The verifier’s checks
are all homogeneous linear. This is because all operations including interpolation,
evaluating a polynomial at a specific value, and the constraint C are homogeneous
linear.

We modify the outer verifier as follows (see Figure 3).
Modified outer verifier.

1. Follow steps (1)–(9) as in the outer verifier.
2. Pick additional random points u1, . . . , ud on line � and random points ud+1, . . . ,

u2d on curve L.
3. Check that the degree d − 1 univariate polynomial interpolated from values

{f(vi)}di=1 equals the polynomial interpolated from values {f(ui)}di=1 (this
actually happens to be a degree d− 2 polynomial because of earlier steps).

4. Check that the degree d − 1 univariate polynomial interpolated from values
{f(vi)}2d

i=d+1 equals the polynomial interpolated from values {f(ui)}2d
i=d+1.

Remark 9.2. Note that the modified outer verifier reads 4d values. The verifier’s
checks are all homogeneous linear.

Remark 9.3. The purpose of this modification is exactly as explained in sec-
tions 1.5, 1.6, and 2.3. This modification adds redundancy to the outer verifier. It
ensures that we get a squared Fourier coefficient when we do the Fourier analysis of
the inner verifier. This is exactly the analogue of H̊astad’s 3-query PCP that reads 2
queries from the larger table so that the Fourier coefficient for the larger table appears
in squared form.

10. Inner verifier.
Notation. We will let F = 2l so that the field elements are represented by bit

strings of length l. Note that addition over F and multiplication by a constant α ∈ F

are homogeneous linear operations on these l-bit strings. To keep the description of

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1055

the inner verifier conceptually simpler, we abstract out the modified outer verifier as
follows (change of notation: redenote 2d by d).

Abstract view of modified outer verifier.

1. Pick an intersecting line-curve pair. Pick points {vi}di=1 (d/2 of them from
the line and d/2 from the curve, counting the intersection point as a point on
the line; this is not of much relevance at the inner verifier’s level).

2. Pick another set of points {ui}di=1 (again, d/2 from the line and d/2 from the
curve).

3. Let Tld×ld be an invertible matrix over F2 chosen appropriately and let H be
a subspace of F

ld
2 chosen appropriately (see the remark below on how T,H

are chosen).
4. Read the values f(v1), . . . , f(vd) and values f(u1), . . . , f(ud). Let

x = f(v1) ◦ f(v2) ◦ · · · ◦ f(vd),

y = f(u1) ◦ f(u2) ◦ · · · ◦ f(ud)(23)

(◦ denotes concatenation of strings).
5. Accept if and only if

x �= 0, x = Ty, and h · x = 0 ∀ h ∈ H (i.e., x⊥H).(24)
Remark 10.1.

1. The condition x = Ty abstracts out the modified outer verifier’s check that

the two polynomials interpolated from values {f(vi)}d/2i=1 and {f(vi)}di=d/2+1

are equal to the polynomials interpolated from values {f(ui)}d/2i=1 and
{f(ui)}di=d/2+1, respectively. This can be checked by multiplying one set
of values by an appropriate invertible matrix and equating the result with
the second set of values.

2. The condition h · x = 0 ∀ h ∈ H abstracts out the check that the set of
values {f(vi)}di=1 satisfy all the homogeneous constraints of the (modified)
outer verifier.

3. The condition x �= 0 says that Not-All-Zero(f(vi), 1 ≤ i ≤ d), as in the
(modified) outer verifier.

Now we are ready to describe the inner verifier. The inner verifier expects, for
every point v ∈ F

m, the Hadamard code of the string f(v) ∈ {0, 1}l (see Appendix A.3
for an overview of Hadamard codes). The action of the inner verifier is as follows
(remember that the following action is carried out after randomly picking a constraint
C({pi}ki=1) of the HomAlgCSP instance):

Inner verifier.

1. Pick an intersecting line-curve pair, points {vi}di=1, and points {ui}di=1, ex-
actly as in the modified outer verifier.

2. Let Tld×ld be an invertible matrix over F2 chosen appropriately and let H be
a subspace of F

ld
2 chosen appropriately.

3. Let A1, A2, . . . , Ad be the (supposed) Hadamard codes of f(v1), . . . , f(vd),
respectively. Let B1, . . . , Bd be the (supposed) Hadamard codes of f(u1), . . . ,
f(ud), respectively.

4. Pick a random string z ∈ F
ld
2 and a random h ∈ H. Write

z = z1 ◦ z2 ◦ · · · ◦ zd,
h = h1 ◦ h2 ◦ · · · ◦ hd,

zT = w1 ◦ w2 ◦ · · · ◦ wd.

1056 SUBHASH KHOT

5. Accept if and only if

⊕d
i=1Ai(zi ⊕ hi) = ⊕d

j=1Bj(wj).

10.1. Sanity check. Let us see why the test makes sense. Suppose each Ai is
indeed a Hadamard code of f(vi) and each Bj is indeed a Hadamard code of f(uj).
Therefore

Ai(zi ⊕ hi) = (zi ⊕ hi) · f(vi) and Bj(wj) = wj · f(uj).

Moreover assume that x and y are as in (23), and that they satisfy x = Ty and
h · x = 0 ∀ h ∈ H. Now we will show that the inner verifier’s test accepts. Indeed,

⊕d
i=1Ai(zi ⊕ hi) = ⊕d

i=1(zi ⊕ hi) · f(vi)

= (z ⊕ h) · (f(v1) ◦ f(v2) ◦ · · · ◦ f(vd))

= (z ⊕ h) · x
= z · x⊕ h · x
= z · Ty ⊕ 0

= (zT) · y
= (w1 ◦ w2 ◦ · · · ◦ wd) · (f(u1) ◦ f(u2) ◦ · · · ◦ f(ud))

= ⊕d
j=1wj · f(uj)

= ⊕d
j=1Bj(wj).

10.2. Proof of Theorem 1.9. Note that the inner verifier’s test reads 2d bits
in total. Let Π be the proof given to the inner verifier. Let us first prove that every
query of the inner verifier is uniform over Π.

Uniformity of queries. Note that any particular query has the following distri-
bution: pick a point v ∈ F

m at random and then pick a random bit from the supposed
Hadamard code of f(v). Thus the query is uniformly distributed over proof Π.

Now the following two lemmas are sufficient to prove Theorem 1.9. These are the
completeness and the soundness lemmas, respectively.

Lemma 10.2. Suppose that the instance A of HomAlgCSP has optimum OPT (A).
Let f be the polynomial that achieves this optimum and let a proof Π be constructed
by taking the Hadamard code for every value of f . Let Π0 be the set of 0-bits in the
proof (this constitutes half of the bits in the whole proof). Let Q be the set of 2d query
bits by the inner verifier. Then

PrQ[Q ⊆ Π0] ≥ OPT (A) · 1

22d−1
.

The probability is taken over the random test of the inner verifier.
Lemma 10.3. If Π∗ is any set of half the bits from Π, and∣∣∣∣PrQ[Q ⊆ Π∗] −

1

22d

∣∣∣∣ ≥ δ,

then the instance A of HomAlgCSP has OPT (A) ≥ δC
′′
, where C ′′ is an absolute

constant.
Let us see how these lemmas prove Theorem 1.9. Let N = nCK be the instance

of the MDC given by Theorem 1.5. Theorem 3.4 gives an instance A of HomAlgCSP
with parameters ε∗, the degree d∗ = 100/ε∗, m = N ε∗ = N100/d∗

, and k = 21. We
have

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1057

• |F|m ≤ (N2)N
100/d∗ ≤ 2N

200/d∗
;

• OPT (A) ≥ 1 − 1/2K in the completeness case and OPT (A) ≤ 1/22K

in the
soundness case.

• the inner verifier makes 2d queries, where d = 2((k + 2)d∗ + 1) ≤ 50d∗.

Soundness/quasi-randomness. We show that if Π∗ is any set of half the bits
from proof Π, then

∣∣∣∣PrQ[Q ⊆ Π∗] −
1

22d

∣∣∣∣ ≤ 1

240d
.

If on the contrary this is not true, then Lemma 10.3 implies that

OPT (A) ≥ 1/240C′′d ≥ 1/22000C′′d∗
> 1/22K

,

where we choose d∗ = 2K/(3000C ′′). This is a contradiction.
Now note that the size of proof Π is essentially |F|m and is at most

|F|m ≤ 2N
200/d∗ ≤ 2n

200CK·3000C′′/2K ≤ 2n
ε

.

We can make ε arbitrarily small by choosing K large enough. Note that ε = Ω(K/2K),
whereas d = O(2K). Hence d = O(1/ε log(1/ε)).

Completeness. Completeness follows directly from Lemma 10.2 by noting that
OPT (A) ≥ 1 − 1/2K = 1 −O(1/d).

Remark 10.4. We view the parameters K, 1/ε, and d as constants, but “growing.”
The constants in the Ω() and O() notation are absolute constants.

10.3. Proofs of Lemmas 10.2 and 10.3. We will prove both Lemmas 10.2
and 10.3 simultaneously. Let Π be a proof and let Π∗ be a set of half the bits in
the proof. Imagine setting bits in Π∗ to 1 and the rest to 0. This defines the tables
Ai, Bj in the proof. Let us estimate the probability that for a random test of the
inner verifier, all the queries fall in Π∗, i.e.,

PrQ[Q ⊆ Π∗].

This probability can be arithmetized as

EC,�,L,v1,...,vd,

u1,...,ud,z,h

⎡
⎣ d∏
i=1

Ai(zi ⊕ hi)

d∏
j=1

Bj(wj)

⎤
⎦ .

Here C is the choice of a random constraint of the HomAlgCSP instance. The rest
of the choices are as in the inner verifier’s action. Note that the bits Ai(zi ⊕ hi) and
Bj(wj) are exactly the query bits. Thus we count a test only if each of the query bits
falls in Π∗. We analyze this expression.

Fix everything else and consider only expectation over z, h. We drop the ex-
pectation sign for convenience. Plugging in Fourier expansions of Ai’s and Bj ’s we
get

∑
α1,...,αd,β1,...,βd

⎡
⎣ d∏
i=1

Âi,αi

d∏
j=1

B̂j,βj
·

d∏
i=1

χαi
(zi ⊕ hi) ·

d∏
j=1

χβj
(wj)

⎤
⎦ ,

1058 SUBHASH KHOT

which simplifies to

∑
α=α1◦α2...◦αd,

β=β1◦β2...◦βd

⎡
⎣ d∏
i=1

Âi,αi

d∏
j=1

B̂j,βj · (−1)α·z⊕β·w · (−1)α·h

⎤
⎦ .

Now note that h is chosen randomly from the linear subspace H and thus the expec-
tation over h is zero unless α⊥H (reason: a vector α is either orthogonal to all the
vectors in H or orthogonal to exactly half the vectors in H). Moreover,

z · α⊕ w · β = z · α⊕ zT · β
= z · (α⊕ Tβ).

Therefore, the expectation over z is zero unless α = Tβ. Thus we get

∑
α=α1◦α2...◦αd,

α⊥H, β=T−1α

⎡
⎣ d∏
i=1

Âi,αi

d∏
j=1

B̂j,βj

⎤
⎦ .(25)

10.4. Proof of Lemma 10.2. Let f be the solution for the HomAlgCSP in-
stance with optimum OPT (A). Thus for any v ∈ F

m, the corresponding Hadamard
code Av is precisely (see Fact A.7)

1

2
− 1

2
χf(v).

Thus the table Av has exactly two nonzero Fourier coefficients, Âv,0 = 1
2 and Âv,f(v) =

− 1
2 .

Let us prove that

PrQ[Q ⊆ Π0] ≥ OPT (A) · 1

22d−1
.

Set Π∗ = Π0. As before, we imagine the bits in Π∗ as set to 1 and the rest of the bits
as set to 0. This corresponds to flipping the bits in the Hadamard codes. Hence the
resulting tables Ai, Bj have Fourier representation (see Fact A.7)

Ai =
1

2
+

1

2
χf(vi), Bj =

1

2
+

1

2
χf(uj).

Note that f satisfies OPT (A) fraction of the constraints of the HomAlgCSP. For any
satisfied constraint, we get a contribution of 1

22d in term (25) in each of these cases:

α1 = α2 = · · · = αd = β1 = · · · = βd = 0,

αi = f(vi), βj = f(uj) for i, j = 1, 2, . . . , d.(26)

All other terms are nonnegative. Thus

PrQ[Q ⊆ Π0] ≥ OPT (A) ·
(

1

22d
+

1

22d

)
= OPT (A) · 1

22d−1
.

10.5. Proof of Lemma 10.3. Assume that the quantity in (25) is δ away from
1

22d . First, we show that the contribution of the term with α = 0 is essentially 1
22d .

This implies that the contribution of terms with nonzero α is δ. Using this, we define
a strategy for the outer verifier with success probability δ2, which in turn gives a
solution to the HomAlgCSP instance with value δO(1).

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1059

Contribution of the term with α = 0. This contribution is

E �,L,v1,...,vd,

u1,...,ud

[
d∏

i=1

Âi,0B̂i,0

]
,

where the expectation is taken over all line-curve pairs and choice of d random points
each on the line and the curve.

Note that the zero Fourier coefficient equals the fraction of 1’s in the table. Overall
the proof contains half 1’s.

We use the mixing property of curves and lines (see Appendix A.4). Therefore for
a random choice of intersecting curve L and line �, except with probability O(1/|F|1/3),
we have

Ev∈L[Âv,0] ≈
1

2
, Ev∈�[Âv,0] ≈

1

2
,

where the error in the approximation is bounded by O(1/|F|1/3). Once the curve and
the line are chosen, v1, . . . , vd, u1, . . . , ud are 2d random points on the curve and the
line. Thus,

E v1,...,vd,

u1,...,ud

[
d∏

i=1

Âi,0B̂i,0

]
=
(
Ev∈L[Âv,0]

)d
·
(
Ev∈�[Âv,0]

)d
≈ 1

22d

up to error O(1/|F|1/3). This proves that the contribution of the term with α = 0 is
essentially 1

22d .

Contribution of the terms with nonzero α. Using Cauchy–Schwarz, contri-
bution of the terms with nonzero α in (25) is at most

√√√√√E

⎡
⎣ ∑
α�=0,α⊥H

d∏
i=1

Â2
i,αi

⎤
⎦
√√√√√E

⎡
⎣ ∑
α�=0,α⊥H,β=T−1α

d∏
j=1

B̂2
j,βj

⎤
⎦,

which is at most √√√√√E

⎡
⎣ ∑
α�=0,α⊥H

d∏
i=1

Â2
i,αi

⎤
⎦.

Observe that the expectation naturally gives a strategy for the outer verifier! For
any point v ∈ F

m, define f(v) = αi with probability Â2
v,αi

. This gives a (probabilistic)
construction of a table of values f : F

m → F. The condition α �= 0 ensures that not
all values read by the outer verifier are zero. The condition α⊥H ensures that the
homogeneous linear constraint checked by the outer verifier is satisfied. These are
exactly the two conditions when the outer verifier accepts. Note how the redundancy
introduced by the modified outer verifier enabled us to apply Cauchy–Schwarz.

Thus, if the contribution of the terms with nonzero α is δ, then we can construct a
table f : F

m → F which the outer verifier accepts with probability δ2. This probability
is the average of the outer verifier’s success probability over the choice of the HomAlg-
CSP constraint. Thus for at least δ2/2 fraction of the HomAlgCSP constraints, the
outer verifier’s success probability is δ2/4. Apply Theorem 7.6 with δ2/4 in place of δ.

1060 SUBHASH KHOT

Let P1, P2, . . . , Pt be the nonzero polynomials as in Theorem 7.6. It follows that for
at least δ2/4 fraction of the HomAlgCSP constraints, at least one of the polynomials
Pj satisfies this constraint. Thus there is one nonzero polynomial Pj0 that satisfies

(δ2/4)/t ≥ δC
′′

fraction of the HomAlgCSP constraints. Note that t ≤ 2c3/(δ
2/8)c2 .

This proves Lemma 10.3.

11. Conclusion. We have ruled out PTAS for three notorious problems: graph
min-bisection, dense k-subgraph, and bipartite clique. Our results hold under the as-
sumption that NP does not have subexponential time algorithms. This could be a new
avenue for showing inapproximability results instead of the more common assumption
that NP does not have polynomial time or quasi-polynomial time algorithms.

We have made several new contributions in terms of conceptual ideas and tech-
niques. We introduced the notion of quasi-random PCPs that should be very useful
for proving inapproximability results for graph theoretic problems, e.g., graph expan-
sion. Some of the ideas in this paper have roots in [30]. To the best of our knowledge,
it was the first paper that employed a combination of the algebraic techniques (those
used to prove the PCP theorem) and more recent Fourier analysis methods. All re-
cent results, on the other hand, use the PCP theorem as a black-box and then use
parallel repetition [33] and Fourier analysis. In this paper, we make even heavier use
of algebraic techniques, using generalizations and variants of the polynomial encoding
method, LDT, and the sum-check protocol. This new direction in inapproximability
theory looks very promising.

The connection between MDC and the graph theoretic problems is very surprising.
It could be possible to prove inapproximability results assuming sufficiently strong
hardness results for the shortest vector problem, the analogue of MDC for integer
lattices.

Appendix A. Useful facts and tools.

A.1. Schwartz lemma. We use the following fact (called the Schwartz lemma)
again and again.

Fact A.1. Let f(x1, . . . , xm) be a degree d polynomial in m variables over field
F. Assume that x1, . . . , xm are chosen at random from F. If

Pr[f(x1, . . . , xm) = 0] ≥ 2d

|F| ,

then f must identically be zero. Consequently, for two degree d polynomials f and g
in m variables, if f(x1, . . . , xm) = g(x1, . . . , xm) with probability 2d

|F| , then they must

be identical polynomials.

A.2. Addition and multiplication over fields of characteristic 2. Here
we summarize simple facts about addition and multiplication over the field F = F2l .
Elements of F can be viewed as l-bit strings, i.e., as vectors in F

l
2. For x ∈ F, let x∗

denote the corresponding vector in F
l
2.

Fact A.2.

(x + y)∗ = x∗ ⊕ y∗ ∀ x, y ∈ F,

where on the LHS we have addition in the field and on the RHS we have addition in
F
l
2.

Fact A.3. If γ ∈ F, then there exists an l× l matrix Aγ with entries in F2 such
that

(γx)∗ = Aγx
∗ ∀ x ∈ F,

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1061

where on the LHS we have multiplication in the field and on the RHS we have multi-
plication of a matrix and a vector.

A.3. Hadamard codes and Fourier analysis.
Definition A.4. Let x ∈ F

l
2 be an l-bit string. Its Hadamard code Ax is a 2l-bit

string whose coordinates are indexed by s ∈ F
l
2 and

Ax(s) = s · x ∀s ∈ F
l
2,

where s · x denotes the inner product over F
l
2.

Definition A.5. For α ∈ F
l
2, let χα : F

l
2 → {−1, 1} be a real-valued function

defined as

χα(x) = (−1)α·x.

Fact A.6. Any real-valued function A : F
l
2 → R can be uniquely written as

A =
∑
α∈Fl

2

Âα χα,

where Âα are real numbers called Fourier coefficients. We have Parseval’s identity:

∑
α∈Fl

2

Â2
α = ‖A‖2

2 =
1

2l

∑
s∈Fl

2

A(s)2.

Fact A.7. Let Ax be Hadamard code of x. It can be regarded as a real-valued
function Ax : F

l
2 → {0, 1}. Then its Fourier representation is

Ax =
1

2
− 1

2
χx.

The first term is 1
2χ0, where χ0 ≡ 1. If A′

x is a function obtained by flipping values
of Ax (i.e., 0 flipped to 1, and vice versa), then the Fourier representation of A′

x is

A′
x =

1

2
+

1

2
χx.

A.4. Mixing property of lines and curves.
Lemma A.8. Let ψ : F

m → [0, 1] be any function with E u∈Fm [ψ(u)] = 1
2 . Let

� be a line chosen at random. Then w.h.p. the average of ψ-values of points on � is
very close to 1

2 . To be precise,

Pr�

[∣∣∣∣Eu∈�[ψ(u)] − 1

2

∣∣∣∣ ≥ 1

|F|1/3

]
≤ 1

|F|1/3 .

Proof. A random line � is chosen by picking two random points a, b ∈ F
m and

letting

� := {a + tb | t ∈ F}.

Note that for any t ∈ F, the point a + tb is uniformly distributed over F
m and,

moreover, for t1 �= t2 ∈ F, the points a + t1b and a + t2b are pairwise independent.
Hence, the random variables {ψ(a + tb)| t ∈ F} each have expectation 1

2 and are

1062 SUBHASH KHOT

pairwise independent. Applying Chebyshev’s inequality (see below), we see that the
random variable Et[ψ(a+tb)] (which is the same as Eu∈�[ψ(u)]) is sharply concentrated
around 1

2 .
Lemma A.9 (Chebyshev’s inequality). Let X1, X2, . . . , Xn be pairwise indepen-

dent random variables with range [0, 1], each with expectation p. Let X = 1
n

∑n
i=1 Xi.

Then

Pr[|X − p| ≥ t] ≤ var(X)

t2
=

1
n2

∑n
i=1 var(Xi)

t2
≤ 1

nt2
.

A similar result holds for curves (the proof is similar and omitted). Let {pi}ki=1

and v be points in F
m. Let {t1, . . . , tk+3, t} be distinct field elements. A random

curve L passing through v is obtained as follows:
• Pick random points a, b ∈ F

m.
• Let L be the unique degree k + 2 curve such that

L(ti) = pi, 1 ≤ i ≤ k, L(tk+1) = a, L(tk+2) = b, L(t) = v.

Lemma A.10. Let ψ : F
m → [0, 1] be any function with E u∈Fm [ψ(u)] = 1

2 . Let L
be a curve chosen at random as above. Then w.h.p. the average of ψ-values of points
on L is very close to 1

2 . To be precise,

PrL

[∣∣∣∣Eu∈L[ψ(u)] − 1

2

∣∣∣∣ ≥ 1

|F|1/3

]
≤ 1

|F|1/3 .

Appendix B. Proof of Theorem 1.5. We start with a result of Dumer,
Micciancio, and Sudan [15] that it is NP-hard to approximate the MDC within any
constant factor (say 5), and the result holds on binary asymptotically good codes.
Formally, we have the following.

Theorem B.1 (see [15]). There is an absolute constant ζ > 0 and a reduction
from SAT to MDC where the following hold:

1. The MDC instance is over F2, i.e., the code is binary.
2. (Completeness.) The YES instance of SAT is mapped to an MDC instance

A with OPT (A) ≤ ζ.
3. (Soundness.) The NO instance of SAT is mapped to an MDC instance A

with OPT (A) ≥ 5ζ.
4. The reduction runs in time nC , where n is the size of the SAT instance and

C is an absolute constant.
The hardness of MDC can be boosted via the tensor product, giving the following

theorem.
Theorem B.2 (see [15]). There is an absolute constant ζ > 0 such that for every

integer K, there is a reduction from SAT to MDC satisfying the following:
1. The MDC instance is over F2, i.e., the code is binary. It has N rows and n′

columns.
2. (Completeness.) The YES instance of SAT is mapped to an MDC instance

A with OPT (A) ≤ ζK .
3. (Soundness.) The NO instance of SAT is mapped to an MDC instance A

with OPT (A) ≥ 5KζK .
4. The reduction runs in time nCK , where n is the size of SAT instance and C

is an absolute constant. In particular, N ≤ nCK .

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1063

Let A = {aij} be an instance of MDC and let n, n′, N,K,C, ζ be parameters as
in Theorem B.2. We interpret the rows of A as linear forms:

Li =

n′∑
j=1

aijzj , 1 ≤ i ≤ N.

Thus the goal of the MDC problem is to find a nonzero solution z = (z1, z2, . . . , zn′)
so as to minimize the number of nonzero linear forms. By taking an extension field of
F2, we can assume that Theorem B.2 holds for codes over a field F of characteristic 2
with size ≈ N .

Now the idea is the following. Create a new instance A′ of MDC whose linear
forms are linear combinations of the linear forms {Li}Ni=1. Thus a typical linear form
looks like this:

t∑
s=1

αsLis , where αs ∈ F, is ∈ [N].

There are |F|tN t such linear forms. However, we want to take only O(N) of them,
and we achieve this using walks on expanders. Choose t = 1/(ζK2K).

Let G be a degree D expander on N vertices with second largest eigenvalue λ. It
is possible to explicitly (and efficiently) construct such expanders with λ ≤ D9/10 (in
fact one can get λ ≈ 2

√
D using the Ramanujan graphs [31]). Choose D = (4

5KζK)10

so that λ/D ≤ 5KζK/4. Let S ⊆ F with |S| = 22·2K

.
Let the new instance A′ of MDC consist of these linear forms:

t∑
s=1

αsLis , where αs ∈ S, and [i1, i2, . . . , it] is a walk on graph G.(27)

The number of such linear forms is |S|tN ·Dt−1, which is O(N) since ζ,K are con-
stants. Now we prove the completeness and soundness properties.

Completeness. If the SAT instance is a YES instance, we know that OPT (A) ≤
ζK . Thus there is a nonzero solution z such that at most ζK fraction of the linear
forms {Li}Ni=1 are nonzero.

For a random walk [i1, i2, . . . , it] on G, the probability that there exists Lis �= 0
is at most tζK . This implies that the fraction of linear forms in (27) that are nonzero
is at most tζK . Thus OPT (A′) ≤ tζK = 1

2K .

Soundness. If the SAT instance is a NO instance, we know that OPT (A) ≥
5KζK . Fix any nonzero z. We know that at least 5KζK fraction of linear forms
{Li}Ni=1 are nonzero. Let

W := {i |i ∈ [N], Li �= 0}
so that μ(W) = |W |/N ≥ 5KζK . Using [32, section 15], we can bound the probability
that all vertices of the random walk [i1, i2, . . . , it] fall outside W .

Pr[i1 ∈ W ∧ i2 ∈ W . . . ∧ it ∈ W] ≤
(√

μ(W) +
λ

D

)t

≤
(√

1 − 5KζK + 5KζK/4
)t

≤
(
1 − 5KζK/4

)1/(ζK2K)

≤ e−(5/2)K/4 ≤ 2−2·2K

.

1064 SUBHASH KHOT

Therefore at least a fraction 1 − 2−2·2K

of the linear forms in (27) contain a linear
form Lis∗ �= 0. For any fixed tuple (Li1 , . . . , Lit) that contains at least one Lis∗ �= 0,
after choosing the coefficients α1, . . . , αt ∈ S at random, the probability that (27) is
nonzero is at least 1− 1

|S| . Therefore, the fraction of nonzero linear forms among (27)

is at least

(1 − 2−2·2K

) ·
(

1 − 1

|S|

)
≥ (1 − 2−2·2K

) · (1 − 1/22·2K

) ≥ 1 − 1/22K

.

Thus OPT (A′) ≥ 1 − 1

22K
. This proves Theorem 1.5.

Appendix C. Reductions from quasi-random PCP to graph min-bisec-
tion, dense k-subgraph, and bipartite clique. In this section, we prove that the
PCP construction given by Theorem 1.9 implies inapproximability results for graph
min-bisection, dense k-subgraph, and bipartite clique. This proves Theorem 1.1. The
reductions given here are similar to the reductions given by Feige [17] (correctness of
his reduction, however, relies on his hypothesis about hardness of random 3SAT).

C.1. Graph min-bisection. Let N be the proof size and M the total number
of tests of the PCP verifier in Theorem 1.9. Both N and M are bounded by 2O(nε).
Let d be the integer as in that theorem.

Construct a graph G as follows: it is disjoint union of a bipartite graph and a
clique. The clique has size (1 − 3

2
1

2d−1)dM2 − N
2 . The bipartite graph is constructed

as follows: The LHS has N vertices corresponding to the N bits in the PCP proof.
The RHS has M clusters, one for every test of the PCP verifier. Every cluster is a
clique of size dM . One vertex in every cluster is designated as a connection vertex.
The bipartite edges are only between the LHS vertices and the connection vertices
on RHS. There is an edge between a vertex (= bit) on the LHS and a connection
vertex (= PCP test) on the RHS if and only if the bit is accessed by the PCP test.
This completes the description of the graph G. Note that every connection vertex has
d neighbors on the LHS since this is a d-query PCP. Since every query is uniformly
distributed, every bit in the proof appears in the same number of tests. Therefore,
the LHS vertices all have the same degree, say Δ, so that ΔN = dM .

Completeness. We claim that the graph G can be partitioned into two equal
parts so that the number of crossing edges is at most (1

2 − 3
4

1
2d−1)dM .

Theorem 1.9 gives a set Π0 of half the bits from the proof such that at least (1−
O(1/d)) 1

2d−1 ≥ 3
4

1
2d−1 fraction of the tests access all the d queries from Π0. Partition

the graph G into two equal parts as follows: One part consists of the following:
1. N

2 vertices from the LHS corresponding to bits in Π0. Abusing notation,
denote the set of these vertices also by Π0.

2. 3
4

1
2d−1M clusters from the RHS corresponding to the tests that access all d

queries from Π0. Call the set of these tests (or connection vertices) T0.
3. The clique of size (1 − 3

2
1

2d−1)dM2 − N
2 .

The second part consists of all the remaining (1 − 3
4

1
2d−1)M clusters on the RHS

corresponding to the tests in T 0. The only crossing edges are between Π0 and T 0.
The total number of edges incident on Π0 is Δ|Π0| = ΔN

2 . The number of edges
between Π0 and T0 is d|T0| = d(3

4
1

2d−1M) since every connection vertex in T0 has
degree d and all its neighbors (queries) are in Π0. Therefore, the number of crossing
edges is at most

Δ
N

2
− 3

4

1

2d−1
dM =

dM

2
− 3

4

1

2d−1
dM =

(
1

2
− 3

4

1

2d−1

)
dM.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1065

Soundness. We show that for any bisection of G, the number of crossing edges
is at least the expression (28). Note that the clusters and the clique have size at
least dM , so any bisection that cuts either a cluster or the clique has at least dM − 1
crossing edges. Hence we need to consider only those partitions for which every cluster
and the clique are completely contained inside one of the parts.

This implies that one of the parts consists of the following:
1. N

2 vertices from the LHS. Denote the set of these vertices and the set of
corresponding bits in the PCP proof by Π∗.

2. 3
4

1
2d−1M clusters from the RHS. Denote the set of corresponding connection

vertices and the set of corresponding PCP tests by T∗.
3. The clique of size (1 − 3

2
1

2d−1)dM2 − N
2 .

By Theorem 1.9, at most 1
2d + 1

220d fraction of the tests have all their queries in
Π∗. Hence, the number of edges between Π∗ and T∗ is at most

d ·
(

1

2d
+

1

220d

)
M + (d− 1) ·

(
3

4

1

2d−1
−
(

1

2d
+

1

220d

))
M

= dM

(
3

4

1

2d−1
− 1

d

(
1

2d+1
− 1

220d

))
.

The number of crossing edges is at least equal to the number of edges between Π∗
and T ∗. This is equal to the number of edges incident on Π∗ (which is ΔN

2 = dM
2)

minus the number of edges between Π∗ and T∗. Thus the number of crossing edges is
at least

dM

(
1

2
− 3

4

1

2d−1
+

1

d

(
1

2d+1
− 1

220d

))
.(28)

Inapproximability factor. Clearly, the inapproximability factor is

1
2 − 3

4
1

2d−1 + 1
d (1

2d+1 − 1
220d)

1
2 − 3

4
1

2d−1

.

This is ≈ 1 + 2
d2d+1 = 1 + 1

2O(1/ε log(1/ε)) since d = O(1/ε log(1/ε)). Recall that the

reduction runs in time 2O(nε) on a SAT instance of size n.

C.2. Dense k-subgraph. Construct a bipartite graph G as follows: The LHS
consists of N vertices corresponding to the bits in the PCP proof. The RHS consists
of M vertices corresponding to the tests of the PCP. Connect an LHS vertex (= bit)
to an RHS vertex (= PCP test) if and only if the bit is accessed by the test. Assume
that N = M

25d (this can be achieved by duplicating vertices, since the dense subgraph
must take either all copies of a vertex or none). Set the size of the subgraph to
k =
(

1
25d+1 + 3

4
1

2d−1

)
M .

Completeness. By Theorem 1.9, there is a set Π0 of N
2 bits such that at least

(1 − O(1/d)) 1
2d−1 ≥ 3

4
1

2d−1 fraction of the tests have all their d queries in Π0. This
gives an induced subgraph of G on

N

2
+

3

4

1

2d−1
M =

(
1

25d+1
+

3

4

1

2d−1

)
M

vertices that has at least (3
4

1
2d−1)dM edges.

1066 SUBHASH KHOT

Soundness. Take any induced subgraph of G on (1
25d+1 + 3

4
1

2d−1)M vertices.

Case (i). If the number of LHS vertices is ≥ (1
2 + 1

25d)N , then the number of RHS
vertices is at most

(
1

25d+1
+

3

4

1

2d−1

)
M −

(
1

2
+

1

25d

)
N =

(
3

4

1

2d−1
− 1

210d

)
M.

Hence, the number of edges in the induced subgraph is at most (3
4

1
2d−1 − 1

210d)dM .

Case (ii). So assume that the number of LHS vertices is ≤ (1
2 + 1

25d)N (assume
w.l.o.g. that the number is exactly this). Call these vertices Π′

∗. The number of RHS
vertices is at most (1

25d+1 + 3
4

1
2d−1)M .

Now we bound the fraction of tests all of whose queries are in Π′
∗. Let Π∗ be any

subset of Π′
∗ of size N

2 . By Theorem 1.9, the fraction of tests with all queries in Π∗
is bounded by 1

2d + 1
220d . The fraction of tests with at least one query in Π′

∗ \ Π∗ is

bounded by d
25d since the queries are uniformly distributed and the probability that

any single query is in Π′
∗ \ Π∗ equals the fractional size of this set which is at most

1
25d .

Therefore, the number of tests all of whose queries are in Π′
∗ is at most (1

2d +
1

220d + d
25d)M . Hence the number of edges in the induced subgraph is at most

d

(
1

2d
+

1

220d
+

d

25d

)
M + (d− 1)

((
1

25d+1
+

3

4

1

2d−1

)
−
(

1

2d
+

1

220d
+

d

25d

))
M

= dM

((
3

4

1

2d−1
+

1

25d+1

)
− 1

d

(
1

25d+1
+

3

4

1

2d−1

)
+

1

d

(
1

2d
+

1

220d
+

d

25d

))

= dM

(
3

4

1

2d−1
− 1

d · 2d+1
+ (low order terms)

)
.

In either case, the number of edges in the induced subgraph is at most (3
4

1
2d−1 −

1
210d)dM .

Inapproximability factor. Clearly, the inapproximability factor is

3
4

1
2d−1

3
4

1
2d−1 − 1

210d

,

which is ≈ 1 + 4·2d−1

3·210d = 1 + 1
2O(1/ε log(1/ε)) since d = O(1/ε log(1/ε)).

C.3. Bipartite clique. Construct a bipartite graph G as follows: The LHS
consists of N vertices corresponding to the bits in the PCP proof. The RHS consists
of M vertices corresponding to the tests of the PCP. Connect an LHS vertex (= bit)
to an RHS vertex (= PCP test) if and only if the bit is not accessed by the test.
Assume that N

2 = (3
4

1
2d−1)M . (This can be achieved by duplicating vertices. Any

maximal bipartite clique must take either all copies of a vertex or none.)

Completeness. We will show that there is a bipartite clique of size N
2 . The-

orem 1.9 shows that the set of 1-bits Π1 in the proof is such that a fraction (1 −
O(1/d)) 1

2d−1 ≥ 3
4

1
2d−1 of tests does not access any query from Π1. Let T1 denote the

set of all such tests with |T1| = (3
4

1
2d−1)M = N

2 . Clearly, Π1 and T1 give an N
2 -sized

bipartite clique.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1067

Soundness. We will show that there is no bipartite clique of size (1 − 1
25d)N2 .

Assume on the contrary that there is such a clique and let Π∗ be the LHS and let T∗
be the RHS of this clique. By hypothesis,

|Π∗| =

(
1 − 1

25d

)
N

2
and |T∗| =

(
1 − 1

25d

)
N

2
=

(
1 − 1

25d

)
3

4

1

2d−1
M.

Clearly, |Π∗| = (1 + 1
25d)N2 and T∗ is a set of tests all of whose queries fall in Π∗.

But this is a contradiction, since by Theorem 1.9 the number of such tests is bounded
by (1

2d + 1
220d + d

25d)M . The calculation is exactly the same as in Case (ii) of the
soundness analysis for the dense k-subgraph problem.

Inapproximability factor. Clearly, the inapproximability factor is

1

1 − 1
25d

≈ 1 +
1

25d
= 1 +

1

2O(1/ε log(1/ε))
.

Appendix D. Boosting the hardness factor for bipartite clique. In this
section, we prove Theorem 1.2 showing that bipartite clique is hard to approximate
within a polynomial factor. We mimic the proof of Berman and Schnitger [10], who
prove a similar boosting result for the clique problem. The boosting consists of taking
a random induced subgraph of a product graph.

Definition D.1. For a bipartite graph G(V,W,E) with |V | = |W | = n, let
OPTBC(G) denote a maximum integer t such that the complete bipartite graph Kt,t

is a subgraph of G.
Definition D.2. For a bipartite graph G(V,W,E) with |V | = |W | = n, and an

integer k, let Gk(V ′,W ′, E′) denote the product graph defined as follows:
• V ′ = V k,W ′ = W k. Thus |V ′| = |W ′| = nk.
• ((v1, v2 . . . , vk), (w1, w2, . . . , wk)) ∈ E′ ⇐⇒ ∀i, j, 1 ≤ i, j ≤ k, (vi, wj) ∈ E.

Lemma D.3. Let G(V,W,E) be a bipartite graph with |V | = |W | = n such that
OPTBC(G) ≥ αn. Let H(V∗,W∗, E∗) be a random induced subgraph of Gk(V ′,W ′, E′),
where |V∗| = |W∗| = O(n2/αk). Then w.h.p. we have OPTBC(H) ≥ 1

2α
k|V∗|.

Proof. Let V1 ⊆ V, W1 ⊆ W be such that |V1| = |W1| = αn and the subgraph
of G induced on V1,W1 is a complete bipartite graph. Clearly, the subgraph of Gk

induced on V k
1 ,W k

1 is a complete bipartite graph.
Now V∗ is a random subset of V k of size O(n2/αk) and |V k| = nk, |V k

1 | = αknk.
We will show that w.h.p. |V∗∩V k

1 | ≥ 1
2α

k|V∗|. We may assume that vertices in V∗ are
picked randomly and independently from V k. For every vertex in V∗, the probability
that it belongs to V k

1 is αk. Thus the expected size of |V∗ ∩ V k
1 | is αk|V∗|. Using

Chernoff bounds,

Pr

[
|V∗ ∩ V k

1 | ≤ 1

2
αk|V∗|

]
≤ 2−Ω(αk|V∗|) ≤ 2−Ω(n2).

Similarly w.h.p., |W∗ ∩ W k
1 | ≥ 1

2α
k|W∗|. Clearly, the induced subgraph of H on

V∗ ∩ V k
1 ,W∗ ∩W k

1 is a complete bipartite graph and this proves the lemma.
Lemma D.4. Let G(V,W,E) be a bipartite graph with |V | = |W | = n such that

OPTBC(G) ≤ βn. Let H(V∗,W∗, E∗) be a random induced subgraph of Gk(V ′,W ′, E′),
where |V∗| = |W∗| = O(n2/βk). Then w.h.p. we have OPTBC(H) ≤ 2βk|V∗|.

Proof. It suffices to prove that w.h.p., for every complete bipartite subgraph
(Ṽ , W̃) of Gk, we have either |V∗ ∩ Ṽ | ≤ 2βk|V∗| or |W∗ ∩ W̃ | ≤ 2βk|W∗|.

1068 SUBHASH KHOT

In fact, it suffices to show this statement for every maximal complete bipartite
subgraph of Gk. It is easily seen that a maximal complete bipartite subgraph of Gk

must be of the form (V k
1 ,W k

1), where (V1,W1) is a complete bipartite subgraph of G.
In particular, the number of maximal complete bipartite subgraphs of Gk is bounded
by 22n, and for any such subgraph (V k

1 ,W k
1), either |V k

1 | ≤ βknk or |W k
1 | ≤ βknk.

Fix any maximal complete bipartite subgraph of Gk, induced on (V k
1 ,W k

1), and
assume w.l.o.g. that |V k

1 | ≤ βknk. We may assume that vertices in V∗ are picked
randomly and independently from V ′. For every vertex in V∗, the probability that it
belongs to V k

1 is at most βk. Thus the expected size of |V∗ ∩ V k
1 | is at most βk|V∗|.

Using Chernoff bounds,

Pr
[
|V∗ ∩ V k

1 | ≥ 2βk|V∗|
]

≤ 2−Ω(βk|V∗|) ≤ 2−Ω(n2).

Taking union bound over all possible (at most 22n many) maximal complete bipartite
subgraphs of Gk proves the lemma.

D.1. Proof of Theorem 1.2. Now we prove Theorem 1.2. Fix ε > 0 to be
an arbitrarily small constant. Let G(V,W,E) be the bipartite graph given by the
reduction in Appendix C.3. By adding dummy vertices to the LHS, we may assume
that |V | = |W | = M . If the size of the original SAT instance is n, then note that
M = 2n

ε

, and for an integer d = O(1/ε log(1/ε)), the graph G satisfies the following:
1. If the SAT instance is a YES instance, then OPTBC(G) ≥ αM , where α =

3
4

1
2d−1

2. If the SAT instance is a NO instance, then OPTBC(G) ≤ βM , where β =
(1 − 1

25d)α.

Let k = 25d logM and let H be a random induced subgraph of Gk of size S =
O(M2/βk). Applying Lemmas D.3 and D.4, we see that w.h.p.,

1. if the SAT instance is a YES instance, then OPTBC(H) ≥ 1
2α

kS;
2. if the SAT instance is a NO instance, then OPTBC(H) ≤ 2βkS.

Thus the hardness factor is

1

4
(α/β)k ≥ 1

4

(
1 +

1

25d

)25d logM

≥ 2logM = M.

On the other hand,

S = O(M2/βk) ≤ M22dk = M2+d25d

= 2(2+d25d)nε

.

Thus the hardness factor can be expressed as S
1

2+d25d . Hence, assuming that SAT
�∈ BPTIME(2n

ε

), we conclude that it is hard to approximate bipartite clique on graph
of size S within factor Sε′ for ε′ = 1

2O(1/ε log(1/ε)) .

Appendix E. The sum-check protocol. In this section, we describe the
(usual) sum-check protocol. It should familiarize the reader with the ideas and tech-
niques involved in constructing the GSC protocol.

Given a table of values of a degree D polynomial f̃ : F
m → F, the goal of the

protocol is to verify that the sum of values of f̃ over {0, 1}m equals the given target
value. A trivial protocol would read the values of f̃ on all points in {0, 1}m, whereas
the sum-check protocol needs to read only O(m) values. The verifier of the sum-check
protocol needs access to additional auxiliary information. Specifically, he has access
to polynomials {gr : | 1 ≤ r ≤ m − 1}, also given as table of values (the intended

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1069

role of these polynomials is explained below). Here is the formal description of the
protocol.

SC(a,F, f̃ ,m,D, {gr|1 ≤ r ≤ m− 1}) consists of the following:
1. F is a field and a ∈ F is a target value.
2. f̃ ∈ F[x] is a degree D polynomial, where x = (x1, x2, . . . , xm) is a vector of

m formal variables. We are given f̃ as a table of values.
3. Every gr is a polynomial in F[θ], where θ = (θ1, . . . , θm) is a vector of formal

variables. The degree of gr is D and gr is guaranteed to depend only on
θ1, . . . , θr. The polynomials gr are given as a table of values.

The goal is to (probabilistically) verify that

a =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xm∈{0,1}
f̃(x1, x2, . . . , xm)(29)

by reading a constant number of values of f̃ and of each of the polynomials gr.
The values of the polynomial gr are supposed to give sums of values of the poly-

nomial f̃ over cubes of dimension m− r. To be precise, gr is intended to be

gr(θ1, θ2, . . . , θr) =
∑

xr+1∈{0,1}

∑
xr+2∈{0,1}

. . .
∑

xm∈{0,1}
f̃(θ1, θ2, . . . , θr, xr+1, xr+2, . . . , xm).

(30)

Here is the basic idea behind the protocol: the task of verifying a summation
over the m-dimensional cube {0, 1}m is successively reduced to the task of verifying
a summation over cubes of lower dimension. In the last stage, the sum over a 0-
dimensional cube, i.e., value of f̃ at a single point, can be read off from the table of
values of f̃ . The key observation is that

gr(θ1, θ2, . . . , θr) = gr+1(θ1, θ2, . . . , θr, 0) + gr+1(θ1, θ2, . . . , θr, 1).

One can design a protocol in a natural way: just verify the above equation for
0 ≤ r ≤ m − 1. Here, g0 would denote the sum

∑
x1,x2,...,xm∈{0,1} f̃(x1, x2, . . . , xm),

which is supposed to equal the target value a. Also, gm(θ1, . . . , θm) would denote the
value f̃(θ1, θ2, . . . , θm), which can be read from the table of values of f̃ .

The sum-check protocol. The protocol accepts if and only if all of the following
checks are satisfied:

• Pick θ1, θ2, . . . , θm ∈ F at random.
• (Stage 0:) Check if

a = g1(0) + g1(1).(31)

• (Stage r for r = 1, . . . ,m− 2:) Check if

gr(θ1, . . . , θr) = gr+1(θ1, . . . , θr, 0) + gr+1(θ1, . . . , θr, 1).(32)

• (Stage m− 1:) Check if

gm−1(θ1, . . . , θm−1) = f̃(θ1, . . . , θm−1, 0) + f̃(θ1, . . . , θm−1, 1).(33)

E.1. Completeness.
Lemma E.1. If the polynomial f̃ satisfies (29), then it is possible to define poly-

nomials gr(θ) so that the protocol accepts with probability 1.
Proof. The proof is obvious. Just define gr as they are supposed to be, as in

(30).

1070 SUBHASH KHOT

E.2. Soundness.
Lemma E.2. If the polynomial f̃ does not satisfy (29), then no matter what

polynomials gr one takes, the protocol accepts with negligible probability, i.e., with
probability at most O(Dm

|F|). It is assumed that the polynomials gr have degree at most

D and gr depends only on θ1, . . . , θr.
Proof. Let g̃r be polynomials obtained from f̃ using rule (30). We will argue in

reverse order (i.e., r = m− 1,m− 2, . . . , 1) that unless gr ≡ g̃r, the protocol succeeds
with negligible probability. The only fact we use is that two polynomials agree with
nonnegligible probability if and only if they are identical as formal polynomials.

(Case r = m − 1.) Look at Stage m − 1, equation (33). The RHS is equal to
g̃m−1(θ1, . . . , θm−1). Hence, we must have gm−1 = g̃m−1 if the verifier is to accept
with nonnegligible probability.

(Case 1 ≤ r ≤ m − 2.) Assume that we have already proved that gr+1 = g̃r+1.
The RHS of (32) is g̃r(θ1, . . . , θr). Hence, we must have gr = g̃r if the verifier is to
accept with nonnegligible probability.

Now we show that the test fails in Stage 0. This is because

a �=
∑

x1,x2,...,xm∈{0,1}
f̃(x1, x2, . . . , xm)

= g̃1(0) + g̃1(1)

= g1(0) + g1(1).

Acknowledgments. I would like to thank Guy Kindler, Muli Safra, Misha
Alekhnovich, Venkatesan Guruswami, Noga Alon, Sanjeev Arora, Madhu Sudan, Avi
Wigderson, Moses Charikar, and Howard Karloff for many helpful discussions. Thanks
to anonymous referees for pointing out a bug in the FOCS 2004 version of Theorem 1.2.

REFERENCES

[1] M. Alekhnovich, More on average case vs. approximation complexity, in Proceedings of the
44th IEEE Symposium on Foundations of Computer Science, 2003, pp. 298–307.

[2] S. Arora, Probabilistic Checking of Proofs and the Hardness of Approximation Problems,
Ph.D. thesis, University of California at Berkeley, 1994.

[3] S. Arora and C. Lund, The approximability of NP-hard problems, in Approximation Algo-
rithms for NP-hard Problems, D. Hochbaum, ed., PWS Publishing, Boston, 1996.

[4] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[5] S. Arora and M. Sudan, Improved low-degree testing and its applications, Combinatorica, 23
(2003), pp. 365–426.

[6] S. Arora, L. Babai, J. Stern, and E. Z. Sweedyk, The hardness of approximate optima
in lattices, codes and systems of linear equations, J. Comput. Systems Sci., 54 (1997),
pp. 317–331.

[7] S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[8] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs, and nonapproximability—
towards tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[9] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan, Robust PCPs of
proximity, shorter PCPs and applications to coding, in Proceedings of the 36th ACM
Symposium on Theory of Computing, 2004, pp. 1–10.

[10] P. Berman and G. Schnitger, On the complexity of approximating the independent set prob-
lem, Inform. and Comput., 96 (1992), pp. 77–94.

[11] A. Blum, Algorithms for Approximate Graph Coloring, Ph.D. thesis, MIT/LCS/TR-506, MIT,
Cambridge, MA, 1991.

[12] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. Systems Sci., 47 (1993), pp. 549–595.

RULING OUT PTAS FOR GRAPH MIN-BISECTION 1071

[13] I. Dinur and S. Safra, On the importance of being biased, in Proceedings of the 34th ACM
Symposium on Theory of Computing, 2002, pp. 33–42.

[14] I. Dinur, V. Guruswami, S. Khot, and O. Regev, A new multilayered PCP and the hardness
of hypergraph vertex cover, in Proceedings of the 35th ACM Symposium on Theory of
Computing, 2003, pp. 595-601.

[15] I. Dumer, D. Micciancio, and M. Sudan, Hardness of approximating the minimum distance
of a linear code, IEEE Trans. Inform. Theory, 49 (2003), pp. 22–37.

[16] U. Feige, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[17] U. Feige, Relations between average case complexity and approximation complexity, in Pro-

ceedings of the 34th ACM Symposium on Theory of Computing, 2002, pp. 534–543.
[18] U. Feige and J. Kilian, Zero knowledge and the chromatic number, J. Comput. Systems Sci.,

57 (1998), pp. 187–199.
[19] U. Feige and S. Kogan, Hardness of Approximation of the Balanced Complete Bipartite

Subgraph Problem, Tech. Report MCS04-04, Department of Computer Science and Applied
Math., Weizmann Institute of Science, Rehovot, Israel, 2004.

[20] U. Feige and R. Krauthgamer, A polylogarithmic approximation of the minimum bisection,
SIAM J. Comput., 31 (2002), pp. 1090–1118.

[21] U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algorithmica, 29
(2001), pp. 410–421.

[22] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Interactive proofs and the
hardness of approximating cliques, J. ACM, 43 (1996), pp. 268–292.

[23] V. Guruswami, J. Håstad, and M. Sudan, Hardness of approximate hypergraph coloring,
in Proceedings of the 41st IEEE Symposium on Foundations of Computer Science, 2000,
pp. 149–158.

[24] P. Harsha and M. Sudan, Small PCPs with low query complexity, Comput. Complexity, 9
(2000), pp. 157–201.

[25] J. Håstad, Clique is hard to approximate within n1−ε, Acta Math., 182 (1999), pp. 105–142.
[26] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[27] J. Holmerin, Vertex cover on 4-regular hyper-graphs is hard to approximate within 2-epsilon,

in Proceedings of the 34th ACM Symposium on Theory of Computing, 2002, pp. 544–552.
[28] S. Khot, Hardness of approximating the shortest vector problem in lattices, in Proceedings of

the 45th IEEE Symposium on Foundations of Computer Science, 2004, pp. 126–135.
[29] S. Khot, Improved inapproximability results for maxclique, chromatic number and approximate

graph coloring, in Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, 2001, pp. 600–609.

[30] S. Khot and J. Holmerin, A new PCP outer verifier with applications to homogeneous linear
equations and Max-Bisection, in Proceedings of the 36th ACM Symposium on Theory of
Computing, 2004, pp. 11–20.

[31] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988),
pp. 261–277.

[32] M. Luby and A. Wigderson, Pairwise Independence and Derandomization, Tech. Report
TR-95-035, International Computer Science Institute, Berkeley, CA, 1995.

[33] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.
[34] R. Raz and S. Safra, A sub-constant error-probability low-degree test, and a sub-constant

error-probability PCP characterization of NP, in Proceedings of the 29th ACM Symposium
on Theory of Computing, 1997, pp. 475–484.

[35] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[36] L. Trevisan, Inapproximability of Combinatorial Optimization Problems, survey paper, 2004;
French version appeared in Optimisation Combinatoire 2, V. Paschos, ed., Hermes, Paris,
2005.

[37] V. Vazirani. Approximation Algorithms, Springer-Verlag, Berlin, 2001.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1072–1094

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES BY
OBTAINING AN INDEPENDENT SEED∗

ARIEL GABIZON† , RAN RAZ† , AND RONEN SHALTIEL‡

Abstract. An (n, k)-bit-fixing source is a distribution X over {0, 1}n such that there is a subset
of k variables in X1, . . . , Xn which are uniformly distributed and independent of each other, and
the remaining n− k variables are fixed. A deterministic bit-fixing source extractor is a function E :
{0, 1}n → {0, 1}m which on an arbitrary (n, k)-bit-fixing source outputs m bits that are statistically
close to uniform. Recently, Kamp and Zuckerman [Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, 2003, pp. 92–101] gave a construction of a deterministic bit-
fixing source extractor that extracts Ω(k2/n) bits and requires k >

√
n.

In this paper we give constructions of deterministic bit-fixing source extractors that extract
(1 − o(1))k bits whenever k > (logn)c for some universal constant c > 0. Thus, our constructions
extract almost all the randomness from bit-fixing sources and work even when k is small. For k �

√
n

the extracted bits have statistical distance 2−nΩ(1)
from uniform, and for k ≤

√
n the extracted bits

have statistical distance k−Ω(1) from uniform.
Our technique gives a general method to transform deterministic bit-fixing source extractors that

extract few bits into extractors which extract almost all the bits.

Key words. bit-fixing sources, deterministic extractors, derandomization, seeded extractors,
seed obtainers

AMS subject classifications. 68Q99, 68R05

DOI. 10.1137/S0097539705447049

1. Introduction.

1.1. Deterministic randomness extractors. A “deterministic randomness
extractor” is a function that “extracts” bits that are (statistically close to) uniform
from “weak sources of randomness” which may be very far from uniform.

Definition 1.1 (deterministic extractor). Let C be a class of distributions on
{0, 1}n. A function E : {0, 1}n → {0, 1}m is a deterministic ε-extractor for C if for
every distribution X in C the distribution E(X) (obtained by sampling x from X and
computing E(x)) is ε-close to the uniform distribution on m-bit strings.1

The distributions X in C are often referred to as “weak random sources,” that
is, distributions that “contain” some randomness. Given a class C, the goal of this
field is to design explicit (that is, efficiently computable) deterministic extractors that
extract as many random bits as possible.

1.2. Some related work on randomness extraction. Various classes C of
distributions were studied in the literature. The first construction of deterministic
extractors can be traced back to von Neumann [37], who showed how to use many

∗Received by the editors February 6, 2005; accepted for publication (in revised form) August 18,
2005; published electronically December 15, 2006. A preliminary version of this paper appeared in
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004.

http://www.siam.org/journals/sicomp/36-4/44704.html
†Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, P.O. Box

26, Rehovot 76100, Israel (ariel.gabizon@weizmann.ac.il, ran.raz@weizmann.ac.il). The research of
the first and second authors was supported by an Israel Science Foundation (ISF) grant.

‡ Department of Computer Science, Faculty of Social Sciences, University of Haifa, Haifa 31905,
Israel (ronen@cs.haifa.ac.il). The research of this author was supported by the Koshland scholarship.

1Two distributions P and Q over {0, 1}m are ε-close (denoted by P
ε
∼ Q) if for every event

A ⊆ {0, 1}m, |P (A) −Q(A)| ≤ ε.

1072

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1073

independent tosses of a biased coin (with unknown bias) to obtain an unbiased coin.
Blum [6] considered sources that are generated by a finite Markov chain. Santha
and Vazirani [29], Vazirani [34, 35], Chor and Goldreich [10], Barak, Impagliazzo,
and Wigderson [2], Barak et al. [3], and Raz [25] studied sources that are composed
of several independent samples from various classes of distributions. Trevisan and
Vadhan [31] studied sources which are “samplable” by small circuits.

A negative result was given by Santha and Vazirani that exhibits a very natural
class of high-entropy sources that do not have deterministic extractors. This led to
the development of a different notion of extractors called “seeded extractors.” Such
extractors are allowed to use a short seed of few truly random bits when extracting
randomness from a source. (The notion of “seeded extractors” emerged from attempts
to simulate probabilistic algorithms using weak random sources [36, 10, 12, 38, 39] and
was explicitly defined by Nisan and Zuckerman [23].) Unlike deterministic extractors,
seeded extractors can extract randomness from the most general class of sources:
sources with high (min)-entropy. The reader is referred to [21, 22, 30, 32] for various
surveys on randomness extractors.

1.3. Bit-fixing sources. In this paper we concentrate on the family of “bit-
fixing sources” introduced by Chor et al. [11]. A distribution X over {0, 1}n is a
bit-fixing source if there is a subset S ⊆ {1, . . . , n} of “good indices” such that the
bits Xi for i ∈ S are independent fair coins and the rest of the bits are fixed.2

Definition 1.2 (bit-fixing sources and extractors). A distribution X over {0, 1}n
is an (n, k)-bit-fixing source if there exists a subset S = {i1, . . . , ik} ⊆ {1, . . . , n} such
that Xi1 , Xi2 , . . . , Xik is uniformly distributed over {0, 1}k and for every i �∈ S, Xi is
constant.

A function E : {0, 1}n → {0, 1}m is a deterministic (k, ε)-bit-fixing source extrac-
tor if it is a deterministic ε-extractor for all (n, k)-bit-fixing sources.

One of the motivations given in the literature for studying deterministic bit-
fixing source extractors is that they are helpful in cryptographic scenarios in which
an adversary learns (or alters) n − k bits of an n-bit-long secret key [11]. Loosely
speaking, one wants cryptographic protocols to remain secure even in the presence
of such adversaries. Various models for such “exposure resilient cryptography” were
studied [28, 7, 8, 14]. The reader is referred to [13] for a comprehensive treatment of
“exposure resilient cryptography” and its relation to deterministic bit-fixing source
extractors.

Every (n, k)-bit-fixing source “contains” k “bits of randomness.” It follows that
any deterministic (k, ε)-bit-fixing source extractor with ε < 1/2 can extract at most
k bits. The function E(x) = ⊕1≤i≤nxi is a deterministic (k, 0)-bit-fixing source
extractor which extracts one bit for any k ≥ 1. Chor et al. [11] concentrated on
deterministic “errorless” extractors (that is, deterministic extractors in which ε = 0).
They show that such extractors cannot extract even two bits when k < n/3. They
also give some constructions of deterministic errorless extractors for large k.

Our focus is on extractors with error ε > 0 (which allows extracting many bits
for many choices of k). A probabilistic argument shows the existence of a determin-
istic (k, ε)-bit-fixing source extractor that extracts m = k − O(log(n/ε)) bits for any
choice of k and ε. Thus, it is natural to try to achieve such parameters by explicit
constructions.

2We remark that such sources are often referred to as “oblivious bit-fixing sources” to differentiate
them from other types of “nonoblivious” bit-fixing sources in which the bits outside of S may depend
on the bits in S (cf. [5]). In this paper we are concerned only with the “oblivious case.”

1074 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

In a recent paper Kamp and Zuckerman [17] constructed explicit deterministic
(k, ε)-bit-fixing source extractors that extract m = ηk2/n bits for some constant

0 < η < 1 with ε = 2−Ω(k2/n). They pose the open problem to extract more bits
from such sources. Note that the extractor of Kamp and Zuckerman is inferior to the
nonexplicit extractor in two respects:

• It works only when k >
√
n.

• Even when k >
√
n the extractor may extract only a small fraction of the

randomness. For example, if k = n1/2+α for some 0 < α < 1/2, the extractor
extracts only m = ηn2α bits.

1.4. Our results. In this paper, we give two constructions of deterministic bit-
fixing source extractors that extract m = (1−o(1))k bits from (n, k)-bit-fixing sources.
Our first construction is for the case of k 	

√
n.

Theorem 1.3. For every constant 0 < γ < 1/2 there exists an integer n′ (de-
pending on γ) such that for any n > n′ and any k, there is an explicit deterministic
(k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m, where m = k − n1/2+γ and
ε = 2−Ω(nγ).

Consider k = n1/2+α for some constant 0 < α < 1/2. We can choose any
γ < α and extract m = n1/2+α−n1/2+γ bits whereas the construction of [17] extracts
only m = O(n2α) bits. For this choice of parameters we achieve error ε = 2−Ω(nγ)

whereas [17] achieves a slightly smaller error ε = 2−Ω(n2α). We remark that this comes
close to the parameters achieved by the nonexplicit construction which can extract

m = n1/2+α − n1/2+γ with error ε = 2−Ω(n1/2+γ).
Our second construction works for any k > (log n)c, for some universal constant

c. However, the error in this construction is larger.
Theorem 1.4. There exist constants c > 0 and 0 < μ, ν < 1 such that for any

large enough n and any k ≥ logc n, there is an explicit deterministic (k, ε)-bit-fixing
source extractor E : {0, 1}n → {0, 1}m, where m = k −O(kν) and ε = O(k−μ).

We remark that using the technique of [17] one can achieve a much smaller error

(ε = 2−
√
k) at the cost of extracting very few bits (m = Ω(log k)). The precise details

are given in Theorem 4.1.

1.5. Overview of techniques. We develop a general technique that transforms
any deterministic bit-fixing source extractor that extracts only very few bits into one
that extracts almost all of the randomness in the source. This transformation makes
use of “seeded extractors.”

1.5.1. Seeded randomness extractors. A seeded randomness extractor is a
function which receives two inputs: In addition to a sample from a source X, a seeded
extractor also receives a short “seed” Y of few uniformly distributed bits. Loosely
speaking, the extractor is required to output many more random bits than the number
of bits “invested” as a seed.

Definition 1.5 (seeded extractors). Let C be a class of distributions on {0, 1}n.
A function E : {0, 1}n × {0, 1}d → {0, 1}m is a seeded ε-extractor for C if for every
source X in C the distribution E(X,Y) (obtained by sampling x from X and a uniform
y ∈ {0, 1}d and computing E(x, y)) is ε-close to the uniform distribution on m-bit
strings.

A long line of research focuses on constructing such seeded extractors with as
short as possible seed length that extract as many bits as possible from the most
general family of sources that allow randomness extraction: the class of sources with
high min-entropy.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1075

Definition 1.6 (seeded extractors for high min-entropy sources). The min-
entropy of a distribution X over {0, 1}n is H∞(X) = minx∈{0,1}n log2(1/Pr(x)). A

function E : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor if it is a seeded ε-extractor
for the class of all sources X with H∞(X) ≥ k.

There are explicit constructions of (k, ε)-extractors that use a seed of length
polylog(n/ε) to extract k random bits. The reader is referred to [30] for a detailed
survey on various constructions of seeded extractors.

Our goal is to construct deterministic bit-fixing source extractors. Nevertheless,
in the next definition we introduce the concept of a seeded bit-fixing source extractor.
We use such extractors as a component in our construction of deterministic bit-fixing
source extractors.

Definition 1.7 (seeded extractors for bit-fixing sources). A function E : {0, 1}n×
{0, 1}d → {0, 1}m is a seeded (k, ε)-bit-fixing source extractor if it is a seeded ε-
extractor for the class of all (n, k)-bit-fixing sources.

1.5.2. Seed obtainers. There is a very natural way to try to transform a deter-
ministic bit-fixing source extractor that extracts few (say polylogn) bits into one that
extracts many bits: First run the deterministic bit-fixing source extractor to extract
few bits from the source, and then use these bits as a seed to a seeded extractor that
extracts all the bits from the source. The obvious difficulty with this approach is that
typically the output of the first extractor is correlated with the imperfect random
source. Seeded extractors are only guaranteed to work when their seed is independent
from the random source. To overcome this difficulty we introduce a new object which
we call a “seed obtainer.”

Loosely speaking, a seed obtainer is a function F that, given an (n, k)-bit-fixing
source X, outputs two strings X ′ and Y with the following properties:

• X ′ is an (n, k′)-bit-fixing source with k′ ≈ k good bits.
• Y is a short string that is almost uniformly distributed.
• X ′ and Y are almost independent.

The precise definition is slightly more technical and is given in Definition 3.1.
Note that a seed obtainer reduces the task of constructing deterministic extractors
into that of constructing seeded extractors: Given a bit-fixing source X, one first runs
the seed obtainer to obtain X ′ and a short Y and then uses Y as a seed to a seeded
extractor that extracts all the randomness from X ′. (In fact, it is even sufficient to
construct seeded extractors for bit-fixing sources.)

1.5.3. Constructing seed obtainers. Note that every seed obtainer F (X) =
(X ′, Y) “contains” a deterministic bit-fixing source extractor by setting E(X) = Y .
We show how to transform any deterministic bit-fixing source extractor into a seed
obtainer. In this transformation the length of the “generated seed” Y is roughly the
length of the output of the original extractor.

It is helpful to explain the intuition behind this transformation when applied
to a specific deterministic bit-fixing source extractor. Consider the “xor-extractor”
E(x) = ⊕1≤i≤nxi. Let X be some (n, k)-bit-fixing source, and let Z = E(X). Note
that the output bit Z is indeed very correlated with the input X. Nevertheless,
suppose that we somehow obtain a random small subset of the indices of X. It
is expected that the set contains a small fraction of the good bits. Let X ′ be the
string that remains after “removing” the indices in the sampled set. The important
observation is that X ′ is a bit-fixing source that is independent from the output Z.
It turns out that the same phenomenon happens for every deterministic bit-fixing
source extractor E(X). However, it is not clear how to use this idea as we don’t have

1076 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

additional random bits to perform the aforementioned sampling of a random set.
Surprisingly, we show how to use the bits extracted by the extractor E to perform
this sampling.

Following this intuition, given an extractor E(X) which extracts an m-bit string
Z, we partition Z into two parts Y and W . We then use W as a seed to a randomness-
efficient method of “sampling” a small subset T of {1, . . . , n}. The first output of the
seed obtainer X ′ is given by “removing” the sampled indices from X. More formally,
X ′ is the string X restricted to the indices outside of T . The second output is Y (the
other part of the output of the extractor E).

The intuition is that if T is a size n/r uniformly distributed subset of {1, . . . , n},
then it is expected to hit approximately k/r good bits from the source. Thus, k−k/r
good bits remain in X ′. We will require that the extractor E extracts randomness
from (n, k/r)-bit-fixing sources. Loosely speaking, we can hope that E will extract
its output from XT (the string obtained by restricting X to the indices of T). Thus,
its output will be independent from X ′ (the string obtained by removing XT).

Note that the intuition above is far from being precise. The set T is sampled
using random bits W that are extracted from the source X, and thus T depends on
X. Whereas, the intuition corresponds to the case where T is independent from X.
The precise argument appears in section 3. We remark that the analysis requires that
the extractor E has error ε that is smaller than 2−|W | (where |W | is the number of
bits used by the sampling method).

1.5.4. A deterministic extractor for large k (i.e., k � √
n). Our first

construction builds on the deterministic bit-fixing source extractor of Kamp and Zuck-
erman [17] that works for k >

√
n and extracts at least Ω(k2/n) bits from the source.

We first transform this extractor into a seed obtainer F . Next, we run the seed ob-
tainer F on the input source to generate a bit-fixing source X ′ and a seed Y . Finally,
we extract all the randomness in X ′ by running a seeded extractor on X ′ using Y as
seed.

1.5.5. A deterministic extractor for small k (i.e., k <
√
n). In order to

use our technique for k <
√
n we need to start with some deterministic bit-fixing

source extractor that works when k <
√
n and extracts a small number of bits. Our

first observation is that methods similar to the ones of Kamp and Zuckerman [17] can
be applied when k <

√
n but only give deterministic bit-fixing source extractors that

extract very few bits (i.e., Ω(log k) bits).3

Deterministic extractors that extract Ω(log k) bits. Kamp and Zuckerman [17]
consider the distribution obtained by using a bit-fixing source X = (X1, . . . , Xn) to
perform a random walk on a d-regular graph. (They consider a more general model
of bit-fixing sources in which every symbol Xi ranges over an alphabet of size d.) The
walk starts from some fixed vertex in the graph and at step i, one uses Xi to select
a neighbor of the current vertex. They show that the distribution over the vertices
converges to the uniform distribution at a rate which depends on k and the “spectral
gap” of the graph. It is known that 2-regular graphs cannot have small “spectral gap.”
Indeed, this is why Kamp and Zuckerman consider alphabet size d > 2 which allows
using d-regular expander graphs that have a small spectral gap. Nevertheless, using
their technique while choosing the graph to be a short cycle of length k1/4 produces
an extractor construction which extracts log(k1/4) = Ω(log k) bits.4

3This was observed independently by Lipton and Vishnoi [18].
4In fact, a similar idea is used in [17] in order to reduce the case of large d to the case of d = 2.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1077

A seeded extractor for bit-fixing sources with seed length O(log log n). Converting
the deterministic bit-fixing source extractor above into a seed obtainer, we “obtain”
an Ω(log k)-bit seed. This allows us to use a seeded extractor with seed length d =
Ω(log k). However, d < log n and by a lower bound of [23, 24] the class of high
min-entropy sources does not have seeded extractors with seed d < log n. To bypass
this problem we construct a seeded extractor for bit-fixing sources with seed length
O(log log n). Note that the aforementioned deterministic extractor extracts this many
bits as long as k > logc n for some constant c (when Ω(log k) ≥ O(log log n)).

The seeded extractor uses its seed to randomly partition the indices {1, . . . , n}
into r sets T1, . . . , Tr (for r equals, say, log4 n), with the property that with high
probability each one of these sets contains at least one good bit. We elaborate on
this partitioning method later. We then output r bits, where the ith bit is given by
⊕j∈Tixj .

By combining the seed obtainer with the seeded bit-fixing source extractor we
obtain a deterministic bit-fixing source extractor which extracts r = log4 n bits. To
extract more bits, we convert this deterministic extractor into a seed obtainer. At
this point we obtain a seed of length log4 n and can afford to use a seeded extractor
which extracts all the remaining randomness.

Sampling and partitioning with only O(log log n) random bits. We now explain
how to use O(log log n) random bits to partition the indices {1, . . . , n} into r =
polylogn sets T1, . . . , Tr such that for any set S ⊆ {1, . . . , n} of size k, with high
probability (probability at least 1 − O(1/ log n)) all sets T1, . . . , Tr contain approxi-
mately k/r indices from S.

Suppose we could afford using many random bits. A natural solution is to choose
n random variables V1, . . . , Vn ∈ {1, . . . , r} and have Tj be the set of indices i such
that Vi = j. We expect k/r bits to fall in each Tj , and by a union bound one can
show that with high probability all sets T1, . . . , Tr have a number of indices from S
that is close to the expected value.

To reduce the number of random bits we derandomize the construction above
and use random variables Vi which are ε-close to being pairwise independent (for
ε = 1/ loga n for some sufficiently large constant a). Such variables can be constructed
using only O(log log n) random bits [20, 1, 15] and suffice to guarantee the required
properties.

The same technique also gives us a method for sampling a set T of indices in
{1, . . . , n} (which we require in our construction of seed obtainers). We simply take
the first set T1. This sampling method uses only O(log log n) random bits, and thus
we can afford it when transforming our deterministic extractor into a seed obtainer.
(Recall that our transformation uses part of the output of the deterministic extractor
for sampling a subset of the indices.) We remark that this sampling technique was used
previously by Reingold, Shaltiel, and Wigderson [27] as a component in a construction
of seeded extractors.

1.6. Outline. In section 2 we define the notations used in this paper. In section
3 we introduce the concept of seed obtainers and show how to construct them from
deterministic bit-fixing source extractors and “averaging samplers.” In section 4 we
observe that the technique of [17] can be used to extract few bits even when k is
small. In section 5 we give constructions for averaging samplers. In section 6 we give
a construction of a seeded bit-fixing source extractor that makes use of the sampling
techniques of section 5. In section 7 we plug all the components together and prove
our main theorems. Finally, in section 8 we give some open problems.

1078 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

2. Preliminaries.

Notation. We use [n] to denote the set {1, . . . , n}. We use P (S) to denote the set
of subsets of a given set S. We use Un to denote the uniform distribution over n bits.
Given a distribution A we use w ← A to denote the experiment in which w is chosen
randomly according to A. Given a string x ∈ {0, 1}n and a set S ⊆ [n], we use xS to
denote the string obtained by restricting x to the indices in S. We denote the length
of a string x by |x|. Logarithms will always be taken with base 2.

Asymptotic notation. As this paper has many parameters we now explain exactly
what we mean when using O(·) and Ω(·) in a statement involving many parameters.
We use the Ω and O signs only to denote absolute constants (i.e., not depending on any
parameters even if these parameters are considered constants). Furthermore, when
writing, for example, f(n) = O(g(n)), we always explicitly mention the conditions on
n (and maybe other parameters) for which the statement holds.

2.1. Averaging samplers. A sampler is a procedure which, given a short seed,
generates a subset T ⊆ [n] such that for every set S ⊆ [n], |S ∩ T | is with high
probability “close to the expected size.”

Definition 2.1. An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]) is a
function such that for any S ⊆ [n] such that |S| = k,

Pr
w←Ut

(kmin ≤ |Samp(w) ∩ S| ≤ kmax) ≥ 1 − δ.

The definition above is nonstandard in several respects. In the more common
definition (cf. [16]), a sampler is required to work for sets of arbitrary size. In the
definition above (which is similar in spirit to the one in [33]), the sampler is only
required to work against sets of size k and the bounds kmin, kmax are allowed to
depend on k. Furthermore, we require that the sampler has “distinct samples” as we
do not allow T to be a multiset.5

We will use samplers to “partition” bit-fixing sources. Note that in the case of
an (n, k)-bit-fixing source, Samp returns a subset of indices such that, with high
probability, the number of good bits in the subset is between kmin and kmax.

2.2. Probability distributions. Some of the proofs in this paper require care-
ful manipulations of probability distributions. We use the following notation. We use
Um to denote the uniform distribution on m-bit strings. We denote the probability of
an event B under a probability distribution P by PrP [B] . A random variable R that
takes values in U is a function R : Ω → U (where Ω is a probability space). We some-
times refer to R as a probability distribution over U (the distribution of the output of
R). For example, given a random variable R and a distribution P , we sometimes write
“R = P” and this means that the distribution of the output of R is equal to P . Given
two random variables R1, R2 over the same probability space Ω, we use (R1, R2) to
denote the random variable induced by the function (R1, R2)(ω) = (R1(ω), R2(ω)).
Given two probability distributions P1, P2 over domains Ω1,Ω2, we define P1 ⊗ P2 to
be the product distribution of P1 and P1 which is defined over the domain Ω1 × Ω2.

5We remark that some of the “standard techniques” for constructing averaging samplers (such as
taking a walk on an expander graph or using a randomness extractor) perform poorly in this setup
and do not work when k <

√
n (even if T is allowed to be a multiset). This happens because in

order to even hit a set S of size k these techniques require sampling a (multi)set T of size larger than
(n/k)2 which is larger than n for k <

√
n. In contrast, note that a completely random set of size

roughly n/k will hit a fixed set S of small size with good probability.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1079

Definition 2.2 (conditioning distributions and random variables). Given a prob-
ability distribution P over some domain U and an event A ⊆ U such that PrP [A] > 0,
we define a distribution (P |A) over U as follows: Given an event B ⊆ U , Pr(P |A)(B) =

PrP [B|A] = PrP [A∩B]
PrP [A] .

We extend this definition to random variables R : Ω → U . Given an event
A ⊆ Ω, we define (R|A) to be the probability distribution over U given by Pr(R|A)[B] =
PrR[R ∈ B|A].

We also need the notion of convex combination of distributions.
Definition 2.3 (convex combination of distributions). Given distributions P1, . . . , Pt

over U and coefficients α1, . . . , αt ≥ 0 such that
∑

1≤i≤t αi = 1, we define the distribu-

tion P =
∑

1≤i≤t αiPi as follows: Given an event B ⊆ U , PrP [B] =
∑

1≤i≤t αi PrPi [B].
We also need the following technical lemmas.
Lemma 2.4. Let X,Y, and V be distributions over {0, 1}n such that X is ε-close

to Un and Y = δ · V + (1 − δ) ·X. Then Y is (2δ + ε)-close to Un.
Proof. Let B ⊆ {0, 1}n be some event such that

|Pr
Y

(B) − Pr
Un

(B)| = |δ Pr
V

(B) + (1 − δ) Pr
X

(B) − Pr
Un

(B)|

≤ 2δ + |Pr
X

(B) − Pr
Un

(B)| ≤ 2δ + ε.

Lemma 2.5. Let (A,B) be a random variable that takes values in {0, 1}u×{0, 1}v
and suppose that there exists some distribution P over {0, 1}v such that for every
a ∈ {0, 1}u with Pr[A = a] > 0 the distribution (B|A = a) is ε-close to P . Then
(A,B) is ε-close to (A⊗ P).

Proof.

1

2
·
∑
a,b

|Pr[(A,B) = (a, b)] − Pr
A⊗P

[a, b]|

=
1

2
·
∑
a,b

|Pr[A = a] Pr[B = b|A = a] − Pr[A = a] Pr
P

[b]|

≤ 1

2
·
∑
a

Pr[A = a]
∑
b

|Pr[B = b|A = a] − Pr
P

[b]| ≤ ε/2.

Lemma 2.6. Let (A,B) be a random variable that takes values in {0, 1}u×{0, 1}v
which is ε-close to (A′ ⊗ Uv); then for every b ∈ {0, 1}v the distribution (A|B = b) is
(ε · 2v+1)-close to A′.

Proof. Assume for the purpose of contradiction that there exists some b∗ ∈ {0, 1}v
such that the distribution (A|B = b∗) is not α-close to A′ for α = ε ·2v+1. Then there
is an event D such that

| Pr
(A|B=b∗)

[D] − Pr
A′

[D]| > α.

By complementing D if necessary we can without loss of generality (w.l.o.g.) remove
the absolute value from the inequality above. We define an event D′ over {0, 1}u ×
{0, 1}v. The event D′ = {(a, b)|b = b∗, a ∈ D}. We have that

Pr
(A′,Uv)

[D′] = Pr
A′

[D] · 2−v.

1080 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

And similarly,

Pr
(A,B)

[D′] = Pr
(A|B=b∗)

[D] Pr
B

[B = b∗].

We know that B is ε-close to Uv and therefore PrB [B = b∗] ≥ 2−v − ε. Thus,

Pr
(A,B)

[D′] − Pr
(A′,Uv)

[D′] = Pr
(A|B=b∗)

[D] Pr
B

[B = b∗] − Pr
A′

[D] · 2−v

≥ Pr
(A|B=b∗)

[D](2−v − ε) − Pr
A′

[D] · 2−v ≥ 2−v[Pr
(A|B=b∗)

[D] − Pr
A′

[D]] − ε.

By our assumption the expression in square brackets is at least α and thus

> 2−vα− ε = ε.

Thus, we get a contradiction.

3. Obtaining an independent seed.

3.1. Seed obtainers and their application. One of the natural ways to try
and extract many bits from imperfect random sources is to first run a “weak extractor”
which extracts few bits from the input distribution and then use these few bits as a
seed to a second extractor which extracts more bits. The obvious difficulty with
this approach is that typically the output of the first extractor is correlated with the
imperfect random source and it is not clear how to use it. (Seeded extractors are
only guaranteed to work when the seed is independent from the random source.) In
the next definition we introduce the concept of a “seed obtainer” that overcomes this
difficulty. Loosely speaking, a seed obtainer is a deterministic function which, given
a bit-fixing source X, outputs a new bit-fixing source X ′ (with roughly the same
randomness) together with a short random seed Y which is independent from X ′.
Thus, the seed Y can later be used to extract randomness from X ′ using a seeded
extractor.

Definition 3.1 (seed obtainer). A function F : {0, 1}n → {0, 1}n × {0, 1}d is
a (k, k′, ρ)-seed obtainer if for every (n, k)-bit-fixing source X, the distribution R =
F (X) can be expressed as a convex combination of distributions R = ηQ +

∑
a αaRa

(here the coefficients η and αa are nonnegative and η +
∑

a αa = 1) such that η ≤ ρ
and for every a there exists an (n, k′)-bit-fixing source Za such that Ra is ρ-close to
Za ⊗ Ud.

It follows that given a seed obtainer one can use a seeded extractor for bit-fixing
sources to construct a deterministic (i.e., seedless) extractor for bit-fixing sources.

Theorem 3.2. Let F : {0, 1}n → {0, 1}n × {0, 1}d be a (k, k′, ρ)-seed obtainer.
Let E1 : {0, 1}n×{0, 1}d → {0, 1}m be a seeded (k′, ε)-bit-fixing source extractor. Then
E : {0, 1}n → {0, 1}m defined by E(x) = E1(F (x)) is a deterministic (k, ε + 3ρ)-bit-
fixing source extractor

Proof. By the definition of a seed obtainer we have that E(X) = ηE1(Q) +∑
a αaE1(Ra) for some η ≤ ρ. For each a we have that E1(Ra) is (ε+ ρ)-close to Um.

It follows that E(X) is (ε+ ρ)-close to ηE1(Q) + (1− η)Um and therefore by Lemma
2.4 we have that E(X) is (2η + ε + ρ)-close to uniform. The lemma follows because
2η + ε + ρ ≤ ε + 3ρ.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1081

3.2. Constructing seed obtainers. Note that every seed obtainer “contains”
a deterministic extractor for bit-fixing sources. More precisely, given a seed obtainer
F (x) = (x′, y), the function E(x) = y is a deterministic extractor for bit-fixing sources.
We now show how to convert any deterministic bit-fixing source extractor with suffi-
ciently small error into a seed obtainer.

Ingredients:
• An (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]).
• A deterministic (kmin, ε)-bit-fixing source extractor E : {0, 1}n →
{0, 1}m with m > t.

Result: A (k, k′, ρ)-seed obtainer F : {0, 1}n → {0, 1}n × {0, 1}m−t with k′ =
k − kmax and ρ = max(ε + δ, ε · 2t+1).

The construction of F :
• Given x ∈ {0, 1}n compute E(x) and let E1(x) denote the first t

bits of E(x) and E2(x) denote the remaining m− t bits.
• Let T = Samp(E1(x)).
• Let x′ = x[n]\T . If |x′| < n, we pad it with zeros to get an n-bit

long string.
• Let y = E2(x), Output x′, y.

Fig. 1. A seed obtainer for (n, k)-bit-fixing sources.

Our construction appears in Figure 1. In words, given x, the seed obtainer first
computes E(x). It uses a part of E(x) as the second output y and another part to
sample a substring of x. It obtains the first output x′ by erasing the sampled substring
from x. We now state the main theorem of this section.

Theorem 3.3 (construction of seed obtainers). For every n and k < n, let Samp
and E be as in Figure 1 (that is, Samp : {0, 1}t → P ([n]) is an (n, k, kmin, kmax, δ)-
sampler and E : {0, 1}n → {0, 1}m is a deterministic (kmin, ε)-bit-fixing source ex-
tractor). Then, F : {0, 1}n → {0, 1}n × {0, 1}d defined in Figure 1 is a (k, k′, ρ)-seed
obtainer for d = m− t, k′ = k − kmax and ρ = max(ε + δ, ε · 2t+1).

Proof of Theorem 3.3. In this section we prove Theorem 3.3. Let E be a
bit-fixing source extractor and Samp be a sampler which satisfy the requirements
in Theorem 3.3. Let X be some (n, k)-bit-fixing source and let S ⊆ [n] be the set
of k good indices for X. We will use capital letters to denote the random variables
which come up in the construction. We split E(X) into two parts (E1(X), E2(X)) ∈
{0, 1}t × {0, 1}m−t. For a string a ∈ {0, 1}t we use Ta to denote Samp(a) and T ′

a to
denote [n] \ Samp(a). Given a string x ∈ {0, 1}n, we use xa to denote xTa and x′

a

to denote the n-bit string obtained by padding xT ′
a

to length n. Let X ′ = X ′
E1(X)

and Y = E2(X). Our goal is to show that the pair (X ′, Y) is close to a convex
combination of pairs of distributions where the first component is a bit-fixing source
and the second is independent and uniformly distributed.

Definition 3.4. We say that a string a ∈ {0, 1}t correctly splits X if kmin ≤
|S ∩ Ta| ≤ kmax.

Note that by the properties of the sampler, almost all strings a correctly split
X. We start by showing that for every fixed a which correctly splits X the variables
X ′

a and E(X) are essentially independent. Loosely speaking, this happens because
we can argue that there are enough good bits in Xa and therefore the extractor can

1082 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

extract randomness from Xa which is independent of the randomness in X ′
a.

Lemma 3.5. For every fixed a ∈ {0, 1}t which correctly splits X the pair of
random variables (X ′

a, E(X)) is ε-close to the pair (X ′
a ⊗ Um).

Proof. Let
 = |Samp(a)|. Given a string σ ∈ {0, 1}� and a string σ′ ∈ {0, 1}n−�,
we define [σ;σ′] to be the n-bit string obtained by placing σ in the indices of Ta and σ′

in the indices of T ′
a. More formally, we denote the
 indices of Ta by i1 < i2 < · · · < i�

and the n −
 indices of T ′
a by i′1 < i′2 < · · · < i′n−�. Given an i ∈ Ta, we define

index(i) to be the index j such that ij = i, and equivalently, given i ∈ T ′
a, we define

index′(i) to be the index j such that i′j = i. The string [σ;σ′] ∈ {0, 1}n is defined as
follows:

[σ;σ′]i =

{
σindex(i) i ∈ Ta

σ′
index′(i) i ∈ T ′

a

Note that in this notation X = [Xa;X
′
a]. We are interested in the distribution of

the random variable (X ′
a, E(X)) = (X ′

a, E([Xa;X
′
a])). For every b ∈ {0, 1}n−� we

consider the event {X ′
a = b}. Fix some b ∈ {0, 1}n−� such that Pr[X ′

a = b] > 0. The
distribution

(E(X)|X ′
a = b) = (E([Xa;X

′
a])|X ′

a = b) = E([Xa; b]),

where the last equality follows because Xa and X ′
a are independent and therefore Xa

is not affected by fixing X ′
a. Note that as a correctly splits X, the distribution [Xa; b]

is a bit-fixing source with at least kmin “good” bits. We conclude that for every
b ∈ {0, 1}n−� such that Pr[X ′

a = b] > 0 the distribution (E(X)|X ′
a = b) is ε-close to

uniform. We now apply Lemma 2.5 with A = X ′
a and B = E(X) and conclude that

the pair (X ′
a, E(X)) is ε-close to (X ′

a ⊗ Um).
We now argue that if ε is small enough, then the pair (X ′

a, E2(X)) is essentially
independent even when conditioning the probability space on the event {E1(X) = a}.

Lemma 3.6. For every fixed a ∈ {0, 1}t that correctly splits X, the distribution
((X ′

a, E2(X))|E1(X) = a) is ε · 2t+1-close to (X ′
a ⊗ Um−t).

Proof. First noting that the statement is meaningless unless ε < 2−t, we will
assume w.l.o.g. that this is the case and then for every fixed a ∈ {0, 1}t the event
{E1(X) = a} occurs with nonzero probability as E1(X) is ε-close to uniform over
{0, 1}t. The lemma will follow as a straightforward application of Lemma 2.6. We set
A = (X ′

a, E2(X)), B = E1(X), and A′ = (X ′
a, Um−t). We indeed have that (A,B) is

ε-close to (A′, Ut) and the lemma follows.
We are now ready to prove Theorem 3.3.
Proof of Theorem 3.3. By the properties of the extractor we have that E1(X) is

ε-close to uniform. It follows (by the properties of the sampler) that the probability
that E1(X) correctly splits X is 1 − η for some η which satisfies η ≤ ε + δ. We
now consider the output random variable R = (X ′, E2(X)). We need to express this
random variable as a convex combination of independent distributions and a small
error term. We set Q to be the distribution (R|“E1(X) doesn’t correctly split X”).
For every correctly splitting a we set Ra to be the distribution (R|E1(X) = a) and
αa = Pr[E1(X) = a]. By our definition we have that indeed R = ηQ +

∑
a αaRa.

For every a that correctly splits X we have that Ra = ((X ′, E2(X))|E1(X) = a) =
((X ′

E1(X), E2(X))|E1(X) = a) = ((X ′
a, E2(X))|E1(X) = a). By Lemma 3.6 we have

that Ra is ε ·2t+1-close to (X ′
a⊗Um−t). As a correctly splits X, we have that X ′

a is an
(n, k−kmax)-bit-fixing source as required. Thus, we have shown that the distribution
Ra is close to a convex combination of pairs of essentially independent distributions
where the first is a bit-fixing source and the second is uniform.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1083

4. Extracting few bits for any k. The deterministic bit-fixing source extractor
of Kamp and Zuckerman [17] works only for k >

√
n. However, their technique easily

gives a deterministic bit-fixing source extractor that extracts very few bits (Ω(log k)
bits) from a bit-fixing source with arbitrarily small k. We will later use this extractor
to construct a seed obtainer that will enable us to extract many more bits.

Theorem 4.1. For every n > k ≥ 100 there is an explicit deterministic (k, 2−
√
k)-

bit-fixing source extractor E : {0, 1}n → {0, 1}(log k)/4.
For the proof, we need the following result, which is a very special case of Lemma

3.3 in [17].
Lemma 4.2 (see [17, Lemma 3.3] for ε = 0 and d = 2). Let the graph G be an odd

cycle with M vertices and second eigenvalue λ. Suppose we take a walk on G for n
steps, starting from some fixed vertex v with the steps taken according to the symbols
from an (n, k)-bit-fixing source X. Let Z be the distribution on the vertices at the end
of the walk; then Z is

(
1
2λ

k
√
M

)
-close to the uniform distribution on [M].

To extract few bits from a bit-fixing source X, we will use the bits of X to conduct
a random walk on a small cycle.

Proof of Theorem 4.1. We use the source string to take a walk on a cycle of size
4
√
k from a fixed vertex. The second eigenvalue of a d-cycle is cos(πd) [19, Ex. 11.1].

Using Lemma 4.2, we reach distance
(
cos

(
π
4√
k

))k
k1/8 from uniform. By the Taylor

expansion of cos, for 0 < x < 1

cos(x) < 1 − x2

2
+

x4

24
< 1 − x2

4
.

Therefore

(
cos

(
π
4
√
k

))k

<

(
1 − π2

4
√
k

)k

<
(
e−

π2

4

)√
k

< 4−
√
k,

where the second-to-last inequality holds because (1 − x) < e−x for 0 < x < 1.

Therefore, we reach distance 4−
√
kk1/8 ≤ 2−

√
k. By outputting the final vertex’s

name we get log(k)
4 bits with the same distance from uniform.

5. Sampling and partitioning with a short seed. Let S ⊆ [n] be some
subset of size k. In this section we show how to use few random bits in order perform
two related tasks.
Sampling: Generate a subset T ⊆ [n] such that |S ∩ T | is in a prespecified interval

[kmin, kmax] (see Definition 2.1).
Partitioning: Partition [n] into r distinct subsets T1, . . . , Tr such that for every

1 ≤ i ≤ r, |S ∩Ti| is in a prespecified interval [kmin, kmax]. Needless to say, a
partitioning scheme immediately implies a sampling scheme by concentrating
on a single Ti.

In this section we present two constructions of such schemes. The first construc-
tion is used in our deterministic bit-fixing source extractor for k >

√
n. In this setup

we can allow the sampler to use many random bits (say nΩ(1) bits) and can have error

2−nΩ(1)

.

1084 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

Lemma 5.1 (sampling with low error). Fix any constants 0 < γ ≤ 1/2 and α > 0.
There exists a constant n′ depending on α and γ, such that for any integers n, k satis-
fying n > n′ and n1/2+γ ≤ k ≤ n, there exists an (n, k, (n1/2+γ)/6, n1/2+γ , 2−Ω(α·nγ))-
sampler Samp : {0, 1}t → P ([n]), where t = α · n2γ .

The second construction is used in our deterministic bit-fixing source extractor for
small k. For that construction we require schemes that use only α log k bits for some
small constant α > 0. The construction of Lemma 5.1 requires at least log n > log k
bits, which is too much. Instead, we use a different construction which has much
larger error (e.g., k−Ω(1)).

Lemma 5.2 (sampling with O(log k) bits). Fix any constant 0 < α < 1. There
exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on α) such that for
any n ≥ 16 and k ≥ logc n, we obtain an explicit (n, k, ke/2, 3 · ke, O(k−b))-sampler
Samp : {0, 1}t → P ([n]), where t = α · log k.

Lemma 5.3 (partitioning with O(log k) bits). Fix any constant 0 < α < 1. There
exist constants c > 0, 0 < b < 1 and 1/2 < e < 1 (all depending on α) such that for
any n ≥ 16 and k ≥ logc n, we can use α · log k random bits to explicitly partition [n]
into m = Ω(kb) sets T1, . . . , Tm such that for any S ⊆ [n], where |S| = k,

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1 −O(k−b).

The first construction is based on “
-wise independence,” and the second is based
on “almost 2-wise dependence” [20, 1, 15]. Sampling techniques based on
-wise
independence were first suggested by Bellare and Rompel [4]. However, this technique
is not good enough in our setting and we use a different approach (which was also used
in [27] with slightly different parameters). In Appendix A we explain the approach in
detail, compare it to the approach of [4], and give full proofs of the lemmas above.

6. A seeded bit-fixing source extractor with a short seed. In this section
we give a construction of a seeded bit-fixing source extractor that uses seed length
O(log k) to extract kΩ(1) bits as long as k is not too small. This seeded extractor
is used as a component in our construction of deterministic extractors for bit-fixing
sources.

Theorem 6.1. Fix any constant 0 < α < 1. There exist constants c > 0 and
0 < b < 1 (both depending on α) such that for any n ≥ 16 and k ≥ logc n, there exists
an explicit seeded (k, ε)-bit-fixing source extractor E : {0, 1}n×{0, 1}d → {0, 1}m with
d = α · log k, m = Ω(kb), and ε = O(k−b).

Proof. Let X be an (n, k)-bit-fixing source. Let x = x1, . . . , xn be a string sampled
by X. The extractor E works as follows: We use the extractor seed y to construct
a partition of the bits of x into m sets. Then we output the xor of the bits in each
set. With high probability, each set will contain a good bit and therefore, with high
probability, the output will be uniformly distributed.

More formally, let b and c be the constants from Lemma 5.3 when using the lemma
with the parameter α.
E(x,y):

• We use the seed y to obtain a partition of [n] into m = Ω(kb) sets T1, . . . , Tm

using Lemma 5.3 with the parameter α.
• For 1 ≤ i ≤ m, compute zi = ⊕j∈Ti

xj .
• Output z = z1, . . . , zm.

We give the following detailed correctness proof although it is very straightforward.
Let S ⊆ [n] be the set of good indices and let Z be the distribution of the

output string z. We need to prove that Z is close to uniform. Let A be the event

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1085

{∀i Ti∩S �= ∅}. That is, A is the “good” event in which all sets contain a random bit
(and therefore in this case the output is uniform). Let Ac be the complement event;
i.e., Ac is the event {∃i Ti ∩ S = ∅}. We decompose Z according to A and Ac:

Z = Pr(Ac) · (Z|Ac) + Pr(A) · (Z|A).

(Z|A) is uniformly distributed. From Lemma 5.3, when k ≥ logc n, Pr(A) ≥ 1 −
O(k−b). Therefore, by Lemma 2.4

Z
O(k−b)

∼ Um.

7. Deterministic extractors for bit-fixing sources. In this section, we com-
pose the ingredients from previous sections to prove Theorems 1.3 and 1.4. Namely,
given choices for a deterministic bit-fixing source extractor, sampler, and seeded bit-
fixing source extractor, we use Theorems 3.2 and 3.3 to get a new deterministic
bit-fixing source extractor. This works as follows: We “plug in” a deterministic ex-
tractor that extracts little randomness and a sampler into Theorem 3.3 to get a seed
obtainer. We then “plug in” this seed obtainer and a seeded extractor into Theorem
3.2 to get a new deterministic extractor which extracts almost all of the randomness.
It is convenient to express this composition as in the following theorem.

Theorem 7.1. Assume we have the following ingredients:
• an (n, k, kmin, kmax, δ)-sampler Samp : {0, 1}t → P ([n]);
• a deterministic (kmin, ε

∗)-bit-fixing source extractor E∗ : {0, 1}n → {0, 1}m′
;

• a seeded (k − kmax, ε1)-bit-fixing source extractor E1 : {0, 1}n × {0, 1}d →
{0, 1}m,

where m′ ≥ d+ t. Then we construct a deterministic (k, ε)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m, where ε = ε1 + 3 · max(ε∗ + δ, ε∗ · 2t+1).

Proof. We use Samp and E∗ in Theorem 3.3 to get a (k, k−kmax,max(ε∗ + δ, ε∗ ·
2t+1))-seed obtainer F : {0, 1}n → {0, 1}n × {0, 1}m′−t. Since m′ − t ≥ d, we can use
F and E1 in Theorem 3.2 to obtain a deterministic (k, ε)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m, where ε = ε1 + 3 · max(ε∗ + δ, ε∗ · 2t+1).

We also require the following construction of a seeded extractor (which is in
particular a seeded bit-fixing source extractor).

Theorem 7.2 (see [26]). For any n, k and ε > 0, there exists a (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where m = k and d = O(log2 n · log(1/ε) · log k).

7.1. An extractor for large k (proof of Theorem 1.3). To prove Theorem
1.3, we first state results about the required ingredients and then use the ingredients
in Theorem 7.1.

We use the deterministic bit-fixing source extractor of Kamp and Zuckerman [17].
Loosely speaking, the following theorem states that when k 	

√
n, we can determin-

istically extract a polynomial fraction of the randomness with an exponentially small
error.

Theorem 7.3 (see [17]). Fix any integers n, k such that k = b · n1/2+γ for some
b > 0 and 0 < γ ≤ 1/2. There exists a constant c > 0 (not depending on any of
the parameters) such that there exists an explicit deterministic (k, ε∗)-bit-fixing source
extractor E∗ : {0, 1}n → {0, 1}m, where m = cb2 · n2γ and ε∗ = 2−m.

Using the theorem above we can obtain a seed of length O(n2γ). This means that
we can afford this many bits for our sampler and seeded bit-fixing source extractor.
We use the sampler based on
-wise independence from Lemma 5.1. We use the seeded
extractor of [26] (Theorem 7.2) which we now restate in the following form.

1086 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

Corollary 7.4. Fix any constants 0 < γ ≤ 1/2 and α > 0. There exists
a constant n′ depending on γ such that for any integers n, k satisfying n > n′ and
k ≤ n there exists a (k, ε1)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m, where m = k,
d = α · n2γ , and ε1 = 2−Ω(α·nγ).

Proof. We use the extractor of Theorem 7.2. We need d = c1 · (log3 n · log(1/ε1))
random bits for some constant c1 > 0. We want to use at most α · n2γ random bits.

We get the inequality α ·n2γ ≥ c1 · log3 n · log(1/ε1). Equivalently, ε1 ≥ 2
− α·n2γ

c1·log3 n . So

for a large enough n (depending on γ), we can take ε1 = 2−
α·nγ

c1 = 2−Ω(α·nγ).
We now compose the ingredients from Theorem 7.3, Lemma 5.1, and Corollary 7.4

to prove Theorem 1.3. The composition is a bit cumbersome in terms of the different
parameters. The main issue is that when k = n1/2+γ , the deterministic extractor of
Kamp and Zuckerman extracts Ω(n2γ) random bits; and this is enough to use as a
seed for a sampler and seeded extractor (that extracts all the randomness) with error
2−Ω(nγ).

Proof of Theorem 1.3. Let c be the constant in Theorem 7.3. We use Theorem
7.1 with the following ingredients:

• the (n, k, (n1/2+γ)/6, n1/2+γ , δ = 2−Ω(nγ))-sampler Samp : {0, 1}t → P ([n])
from Lemma 5.1, where t = (c/72)n2γ ;

• the deterministic ((n1/2+γ)/6, ε∗ = 2−m′
)-bit-fixing source extractor E∗ :

{0, 1}n → {0, 1}m′
from Theorem 7.3, where m′ = (c/36)n2γ ;

• the (k−n1/2+γ , ε1 = 2−Ω(nγ))-extractor E1 : {0, 1}n×{0, 1}d → {0, 1}m from
Corollary 7.4 with d ≤ (c/72)n2γ and m = k − n1/2+γ .

Note that all three objects exist for a large enough n depending only on γ (c is a
universal constant). Note that m′ ≥ t + d. Therefore, applying Theorem 7.1, we
get a deterministic (k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m, where
m = k − n1/2+γ and

ε = ε1 + 3 · max(ε∗ + δ, ε∗ · 2t+1)

= 2−Ω(nγ) + 3 · max
(
2−(c/36)n2γ

+ 2−Ω(nγ), 2−(c/36)n2γ · 2(c/72)n2γ+1
)

= 2−Ω(nγ) + 3 · max
(
2−Ω(nγ), 2−(c/72)n2γ+1

)
= 2−Ω(nγ)

(for a large enough n depending on γ).

7.2. An extractor for small k (proof of Theorem 1.4). To prove Theorem
1.4 we need a deterministic bit-fixing source extractor for k <

√
n. We use the

extractor of Theorem 4.1. We prove the theorem in two steps. First, we use Theorem
7.1 to convert the initial extractor into a deterministic bit-fixing source extractor
that extracts more bits. We then apply Theorem 7.1 again to obtain a deterministic
bit-fixing source extractor which extracts almost all bits.

The following lemma implements the first step and shows how to extract a polyno-
mial fraction of the randomness with a polynomially small error, whenever k ≥ logc n
for some constant c.

Lemma 7.5. There exist constants c, b > 0 such that for any k ≥ logc n and
large enough n, there exists an explicit deterministic (k, k−b)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m, where m = kΩ(1).

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1087

Proof. Roughly speaking, the main issue is that we can get Ω(log k) random bits
using the deterministic extractor of Theorem 4.1. We will need c1 · log log n random
bits to use the sampler of Lemma 5.2 and the seeded extractor of Theorem 6.1 (for
some constant c1). Thus, when k ≥ logc n for large enough c, we will have enough
bits.

Formally, we use Theorem 7.1 with the following ingredients:
• the (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n]) from

Lemma 5.2, where t = log k/32 and e > 1/2 is the constant from that lemma;

• the deterministic (ke/2, ε∗ = 2−
√

ke/2)-bit-fixing source extractor E∗ : {0, 1}n →
{0, 1}m′

from Theorem 4.1, where m′ = log(ke/2)/4;
• the seeded (k − 3 · ke, ε1 = (k − 3 · ke)−Ω(1))-bit-fixing source extractor E1 :

{0, 1}n × {0, 1}d → {0, 1}m from Theorem 6.1 with d = log k/32 and m =
(k − 3 · ke)Ω(1).

Note that all three objects exist for k ≥ logc n for some constant c and large enough
n. Assume that n is large enough so that k ≥ logc n ≥ 2. To use Theorem 7.1 we
need to check that m′ ≥ t+d: Indeed, m′ = log(ke/2)/4 ≥ log k/16 = t+d (where we
used e > 1/2, as stated in Lemma 5.2). Applying Theorem 7.1, we get a deterministic
(k, ε)-bit-fixing source extractor E : {0, 1}n → {0, 1}m. Notice that for large enough
n: ε1 = k−Ω(1), therefore

ε = ε1 + 3 · max(ε∗ + δ, ε∗ · 2t+1)

= k−Ω(1) + 3 · max
(
2−

√
ke/2 + k−Ω(1), 2−

√
ke/2 · 2log k/32+1

)
= k−Ω(1)

(for a large enough n). Also, m = (k − 3 · ke)Ω(1) = kΩ(1) (for a large enough n) and
thus we get the required parameters.

We now compose the ingredients from Lemmas 5.2 and 7.5 and Theorem 7.2 to
prove Theorem 1.4. The composition is a bit cumbersome in terms of the different
parameters. The main issue is that we can extract kΩ(1) random bits using the
deterministic extractor of Lemma 7.5. We want log5 n random bits to use the seeded
extractor of Theorem 7.2. Thus, when k ≥ logc n for large enough c, we will have
enough bits.

Proof of Theorem 1.4. Let b be the constant in Lemma 7.5. We use Theorem 7.1
with the following ingredients:

• the (n, k, ke/2, 3 · ke, δ = k−Ω(1))-sampler Samp : {0, 1}t → P ([n]) from
Lemma 5.2, where t = (b/2) log k and e > 1/2 is the constant from that
lemma;

• the deterministic (ke/2, ε∗ = (ke/2)−b)-bit-fixing source extractor E∗ : {0, 1}n →
{0, 1}m′

from Lemma 7.5, where m′ = (ke/2)Ω(1);
• the (k − 3 · ke, ε1 = 1/n)-extractor E1 : {0, 1}n × {0, 1}d → {0, 1}m from

Theorem 7.2 with d ≤ log5 n and m = (k − 3 · ke).
Note that all three objects exist for k ≥ logc n for some constant c and for large enough
n. To use Theorem 7.1 we need to check that m′ ≥ t + d: Note that m′ = kΩ(1). We
take c large enough so that for large enough n, m′/2 > log5 n and m′/2 > (b/2)/ log k.
So for such n

m′ ≥ log5 n + (b/2) log k ≥ d + t.

Applying Theorem 7.1, we get a deterministic (k, ε)-bit-fixing source extractor
E : {0, 1}n → {0, 1}m, where

ε = ε1 + 3 · max(ε∗ + δ, ε∗ · 2t+1)

1088 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

= 1/n + 3 · max
(
(ke/2)−b + k−Ω(1), 2 · (ke/2)−b · kb/2

)
= k−Ω(1)

(for large enough n). Since m = k −O(ke), where 1/2 < e < 1, we are done.

8. Discussion and open problems. We give explicit constructions of deter-
ministic bit-fixing source extractors that extract almost all the randomness. However,
we achieve the rather large error ε = k−Ω(1) in the case that k <

√
n. We now explain

why this happens and suggest how to reduce the error. Recall that in this case our
final extractor is based on an initial extractor that extracts only m = O(log k) bits.
When transforming the initial extractor into the final extractor we use the output
bits of the initial extractor as a seed for an averaging sampler. The error parameter δ
of an averaging sampler has to be larger than 2−m and as this error is “inherited” by
the final extractor we can only get an error of about 1/k. A natural way to improve
our result is to find a better construction for the initial extractor.

Some applications of deterministic bit-fixing source extractors in adaptive settings
of exposure-resilient cryptography require extractors with ε � 2−m. We do not
achieve this goal (even in our first construction that has relatively small error), unless
we artificially shorten the output. Suppose one wants to extract m = k − u bits
(for some parameter u). It is interesting to investigate how small the error can be
as a function of u. We point out that the existential nonexplicit result achieves
error ε ≥ 2−u and thus cannot achieve ε < 2−m when m ≥ k/2. We remark that
for bit-fixing sources we have examples of settings where the nonexplicit result is not
optimal. For example when m = 1, the xor-extractor is errorless (see also [11]). Given
the discussion above, we find it interesting to achieve m = Ω(k) with ε = 2−Ω(k) for
every choice of k.

Appendix A. Sampling and partitioning. In this section we give construc-
tions of samplers and prove Lemmas 5.1, 5.2, and 5.3.

A.1. Sampling using �-wise independence. Bellare and Rompel [4] gave a
sampler construction based on
-wise independent variables. We use a twist on their
method: Suppose we are aiming to hit k/r bits when given a subset S of size k. We
generate
-wise independent variables Z1, . . . , Zn ∈ [r] and define T = {i|Zi = 1}. It
follows that with high probability S ∩ T is of size approximately k/r. This is stated
formally in the following lemma. (We explain the difference between this method and
that of [4] in Remark A.3.)

Lemma A.1. For every integer n, k, r, t such that r ≤ k ≤ n and 6 log n ≤ t ≤
k logn
20r there is an explicit (n, k, 1

2 · k
r , 3 ·

k
r , 2

−Ω(t/ logn))-sampler which uses a seed of t
random bits.

Before proving this lemma we show that Lemma 5.1 is a special case.
Proof of Lemma 5.1. We use Lemma A.1 with the parameters n, k, and r = 3k

n1/2+γ ,

t = α · n2γ . We need to check that 6 log n ≤ t ≤ k log n
20r . Clearly, t ≥ 6 log n (for a

large enough n depending on α and γ). On the other hand,

k log n

20r
=

n1/2+γ log n

60
≥ α · n2γ = t

(for a large enough n depending on α and γ). Thus, applying Lemma A.1, we get an
(n, k, k/2r, 3k/r, δ)-sampler Samp : {0, 1}t → P ([n]), where

δ = 2−Ω(t/ logn) = 2−Ω(α·n2γ/ logn) = 2−Ω(α·nγ)

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1089

(for a large enough n depending on α and γ).
We need the following tail-inequality for
-wise independent variables due to Bel-

lare and Rompel [4].
Theorem A.2 (see [4]). Let
 ≥ 6 be an even integer. Suppose that X1, . . . , Xn

are
-wise independent random variables taking values in [0, 1]. Let X =
∑

1≤i≤n Xi

and μ = E(X), and let A > 0. Then

Pr[|X − μ| ≥ A] ≤ 8

(

μ +
2

A2

)�/2

.

We now prove Lemma A.1.
Proof of Lemma A.1. Let
 be the largest even integer such that
 log n ≤ t, and

let q = �log r� ≤ log n. There are constructions which use
 log n ≤ t random bits to
generate n random variables Z1 . . . , Zn ∈ {0, 1}q that are
-wise independent [9]. The
sampler generates such random variables. Let a ∈ {0, 1}q be some fixed value. We
define a random variable T = {i|Zi = a}. Let S ⊆ [n] be some subset of size k. For
1 ≤ i ≤ n we define a boolean random variable Xi such that Xi = 1 if Zi = a. Let
X = |S ∩ T | =

∑
i∈S Xi. Note that μ = E(X) = k/2q and that the random variables

X1, . . . , Xn are
-wise independent. Applying Theorem A.2 with A = k/2r we get
that

Pr[|X − μ| ≥ A] ≤ 8

(

k/2q +
2

A2

)�/2

.

Note that

{|X − μ| < A} ⊆
{

k

2q
−A < X <

k

2q
+ A

}
⊆

{
k

r
−A < X <

2k

r
+ A

}

⊆ {kmin ≤ X ≤ kmax}

for kmin = k/2r and kmax = 3k/r. Note that
 ≤ t
logn ≤ k

20r . We conclude that

Pr[kmin ≤ |S ∩ T | ≤ kmax] ≥ 1 − 8

(

 k
2q +
2

(k
2r)2

)�/2

≥ 1 − 8

(
4r2(2�k

r + �k
20r)

k2

)�/2

≥ 1 − 8

(
10
r

k

)�/2

≥ 1 − 2−(�/2+3) ≥ 1 − 2−Ω(t/ log n).

Remark A.3. We remark that this construction is different from the common
way of using
-wise independence for sampling [4]. The more common way is to take
n/r random variables V1, . . . , Vn/r ∈ [n] which are
-wise independent and sample the

multiset T =
{
V1, . . . , Vn/r

}
. The expected size of the multiset |S∩T | is k/r, and one

gets the same probability of success δ = 2−Ω(�) by the tail-inequality of [4]. The two
methods require roughly the same number of random bits. Nevertheless, the method
of Lemma A.1 has the following advantages:

• It can also be used for partitioning.
• The method used in Lemma A.1 guarantees that T is a set whereas the

standard method may produce a multiset.

1090 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

• The method used in Lemma A.1 can be derandomized and use many fewer
bits (at least for small r and large δ). More precisely, suppose that r ≤ log n
and say
 = 2. In this range of parameters, one can use O(log log n) random
bits to generate n variables Z1, . . . , Zn ∈ {0, 1}log r which are (1/ log n)-close
to being pairwise independent. Thus, the same technique can be used to
construct more randomness-efficient samplers (at the cost of having larger
error parameter δ). We use this idea in section A.2. We remark that in the
case of the standard method no savings can be made as it requires variables
Zi over {0, 1}logn and even sampling one such variable requires logn random
bits.

A.2. Sampling and partitioning using fewer bits. We now derandomize
the construction of Lemma A.1 to give schemes which use only O(log k) bits and
prove Lemmas 5.2 and 5.3. These two lemmas follow from the following more general
lemma.

Lemma A.4. Fix any integer n ≥ 16. Let k be an integer such that k ≤ n. Let r
satisfy r ≤ k. Let r′ be the power of 2 that satisfies (1/2)r < r′ ≤ r. Let ε > 0 satisfy
1/kr ≤ ε ≤ 1/8r. We can use 7 log r+3(log logn+ log(1/ε)) random bits to explicitly
partition [n] into r′ sets T1, . . . , Tr′ such that for any S ⊆ [n] where |S| = k

Pr(∀i, k/2r ≤ |Ti ∩ S| ≤ 3k/r) ≥ 1 −O(ε · r3).

We prove Lemma A.4 in the next section. We now explain how the two lemmas
follow from Lemma A.4.

Proof of Lemma 5.3. Set b = α/38. Use Lemma A.4 with the parameters r = kb

and ε = k−4b to obtain a partition T1, . . . , Tr′ of [n], where (1/2)r < r′ ≤ r is a power
of 2.

To use Lemma A.4 with these parameters we need 7 log r+3(log logn+log(1/ε)) =
7 log kb + 3(log logn + log k4b) random bits.

We want to use at most α · log k bits.
Set c = 6/α. Since we assume that k ≥ logc n,

(α/2) log k ≥ (α/2)(6/α) log log n = 3 log logn.

So now we need

(α/2) log k ≥ 7 log kb + 3 log k4b = b(7 + 12) log k

or, equivalently,

b ≤ α/38.

Set e = 1 − b. So k/2r = ke/2 and 3k/r = 3 · ke. Note that e > 1/2 as required.
Using Lemma A.4,

Pr(∀i, ke/2 ≤ |Ti ∩ S| ≤ 3 · ke) ≥ 1 −O(ε · r3) = 1 −O(k−b).

Lemma 5.2 easily follows from Lemma 5.3.
Proof of Lemma 5.2. Use Lemma 5.3 with the parameters n, k, and α to obtain

a partition of [n] T1, . . . , Tm and take T1 as the sample. It is immediate that the
required parameters are achieved.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1091

Proof of Lemma A.4. The sampler construction in Lemma A.1 relied on random
variables Z1, . . . , Zn ∈ [r] which are
-wise independent. We now show that we can
derandomize this construction and get a (weaker) sampler by using Z1, . . . , Zn which
are only pairwise ε-dependent. Naor and Naor [20] (and later Alon et al. [1]) gave
constructions of such variables using very few random bits. This allows us to reduce
the number of random bits required for sampling and partitioning.

The following definition formalizes a notion of limited independence, slightly more
general than the one discussed above.

Definition A.5 (
-wise ε-dependent variables). Let D be a distribution. We
say that the random variables Z1, . . . , Zn are
-wise ε-dependent according to D if for
every M ⊆ [n] such that |M | ≤
 the distribution ZM (that is, the joint distribution
of the Zi’s such that i ∈ M) is ε-close to the distribution D⊗|M |, i.e., the distribution
of |M | independent random variables chosen according to D. We sometimes omit D
when it is the uniform distribution.

Random bit variables B1, . . . , Bn are
-wise ε-dependent with mean p if they are

-wise ε-dependent according to the distribution D = (1 − p, p) on {0, 1}.

We need two properties about
-wise ε-dependent variables: that they can be
generated using very few random bits and that their sum is concentrated around the
expectation. The first property is proved in Lemma A.7 and the second in Lemma
A.8.

The following theorem states that
-wise ε-dependent bit variables can be gener-
ated by very few random bits.

Theorem A.6 (see [1]).6 For any n ≥ 16,
 ≥ 1, and 0 < ε < 1/2,
-wise
ε-dependent bits B1, . . . , Bn can be generated using 3(
 + log logn + log(1/ε)) truly
random bits.

We can generate pairwise ε-dependent variables in larger domains using
-wise
ε-dependent bit variables.7

Lemma A.7. Let r < n be a power of 2. For any n ≥ 16 and 0 < ε < 1/2, we can
generate pairwise ε-dependent variables Z1, . . . , Zn ∈ [r] using 7 log r + 3(log logn +
log(1/ε)) truly random bits.

Proof. Using Theorem A.6, we generate 2 log r-wise ε-dependent bit variables
B1, . . . , Bn log r using 3(2 log r + log log(n log r) + log(1/ε)) ≤ 7 log r + 3(log logn +
log(1/ε)) bits. We partition the Bi’s into n blocks of size log r and interpret the ith
block as a value Zi ∈ [r].

The joint distribution of the bits in any block or two blocks is ε-close to uniform.
Therefore, the Zi’s are pairwise ε-dependent.

In the following lemma, we use Chebyshev’s inequality to show that the sum of
pairwise ε-dependent bit variables is close to its expectation with high probability.

Lemma A.8. Let p satisfy 0 < p < 1. Let ε > 0 satisfy p/k ≤ ε ≤ p/4. Let

B1, . . . , Bk be pairwise ε-dependent bit variables with mean p. Let B =
∑k

i=1 Bi.

Then

Pr(|B − pk| > pk/2) = O(ε/p2).

Proof. Using linearity of expectation we get |E(B) − pk| ≤ εk.

6The theorem is stated a bit differently and only for odd � in [1], but this form is easily deduced
from Theorem 3 in that paper, observing that (�+1)-wise ε-dependence implies �-wise ε-dependence.

7Actually, a construction of such (and more general types of) variables already appears in [15].

1092 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

Therefore

Pr(|B − pk| > pk/2) ≤ Pr(|B − E(B)| > pk/2 − εk).

Thus it is enough to bound

Pr(|B − E(B)| > pk/2 − εk).

Fix any i, j ∈ [k] where i �= j. The covariance of Bi and Bj will be small since
they are almost independent:

cov(Bi, Bj) = E(Bi ·Bj) − E(Bi)E(Bj)

= Pr(Bi = 1;Bj = 1) − Pr(Bi = 1) Pr(Bj = 1)

≤ (p2 + ε) − (p− ε)2 = (1 + 2p− ε)ε ≤ 3ε

(where the second equality is because Bi and Bj are bit variables).
Therefore, the variance of B won’t be too large:

Var(B) =
∑
i

Var(Bi) +
∑
i �=j

cov(Bi, Bj) ≤ (p + ε)k + 3εk2 ≤ pk + 4εk2.

Therefore, by Chebyshev’s inequality

Pr(|B − E(B)| > pk/2 − εk) <
pk + 4εk2

(pk/2 − εk)2

we required that ε ≤ p/4 and therefore

≤ pk + 4εk2

(pk/4)2
= O(1/pk) + O(ε/p2) = O(ε/p2)

(where the last equality follows by the requirement that ε ≥ p/k).
Now we can easily prove Lemma A.4.
Proof of Lemma A.4. Let r′ be the power of 2 in the statement of the lemma.

Using Lemma A.7, we generate pairwise ε-dependent Z1, . . . , Zn ∈ [r′]. For 1 ≤ i ≤ r′,
we define Ti = {j|Zj = i}.

Assume, w.l.o.g., that S = {1, . . . , k}.
Given i ∈ [r′], define the bit variables B1, . . . , Bk by Bj = 1 ⇔ Zj = i.
It is easy to see that the Bj ’s are pairwise 2ε-dependent with mean 1/r′.

Define Ci =
∑k

j=1 Bj . Note that Ci = |Ti ∩ S|.
Notice that 1/r′ and 2ε satisfy the requirements in Lemma A.8.
Using Lemma A.8,

Pr(|Ci − k/r′| > k/2r′) = O(ε · (r′)2) = O(ε · r2).

Using the union bound,

Pr(∃i s.t. |Ci − k/r′| > k/2r′) = O(ε · r3).

Thus, we can obtain a partition T1, . . . , Tr′ of [n] such that, with probability at least
1 −O(ε · r3),

∀i, k/2r′ ≤ |Ti ∩ S| ≤ 3k/2r′,

which implies that with at least the same probability,

∀i, k/2r ≤ |Ti ∩ S| ≤ 3k/r.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1093

Acknowledgments. The third author is grateful to David Zuckerman for very
helpful discussions. We are grateful to Oded Goldreich and to the anonymous referees
for helpful comments.

REFERENCES

[1] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple constructions of almost k-wise
independent random variables, Random Structures Algorithms, 3 (1992), pp. 289–304.

[2] B. Barak, R. Impagliazzo, and A. Wigderson, Extracting randomness from few independent
sources, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, 2004, pp. 384–393.

[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson, Simulating inde-
pendence: New constructions of condensers, Ramsey graphs, dispersers, and extractors, in
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 2005, pp. 1–10.

[4] M. Bellare and J. Rompel, Randomness-efficient oblivious sampling, in Proceedings of the
35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp. 276–287.

[5] M. Ben-Or and N. Linial, Collective coin flipping, in Advances in Computing Research 5,
JAI Press, Greenwich, CT, 1989, pp. 91–116.

[6] M. Blum, Independent unbiased coin flips from a correlated biased source: A finite state
Markov chain, in Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, 1984, pp. 425–433.

[7] V. Boyko, On the security properties of OAEP as an all-or-nothing transform, in Proceed-
ings of the 19th International Advances in Cryptology Conference (CRYPTO ’99), 1999,
pp. 503–518.

[8] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai, Exposure-resilient functions
and all-or-nothing transforms, in Advances in Cryptology—EUROCRYPT 2000, Lecture
Notes in Comput. Sci. 1807, Springer-Verlag, Berlin, 2000, pp. 453–469.

[9] I. L. Carter and M. N. Wegman, Universal classes of hash functions, in Proceedings of the
9th Annual ACM Symposium on Theory of Computing, 1977, pp. 106–112.

[10] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic
communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[11] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky, The
bit extraction problem or t-resilient functions, in Proceedings of the 26th Annual IEEE
Symposium on Foundations of Computer Science, 1985, pp. 396–407.

[12] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, 1989, pp. 14–25.

[13] Y. Dodis, Exposure-Resilient Cryptography, Ph.D. thesis, Department of Electrical Engineering
and Computer Science, MIT, Cambridge, MA, 2000.

[14] Y. Dodis, A. Sahai, and A. Smith, On perfect and adaptive security in exposure-resilient
cryptography, in Advances in Cryptyology—EUROCRYPT 2001, Lecture Notes in Comput.
Sci. 2045, Springer-Verlag, Berlin, 2001, pp. 299–322.

[15] S. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic, Efficient approximation of
product distributions, Random Structures Algorithms, 13 (1998), pp. 1–16.

[16] O. Goldreich, A Sample of Samplers—A Computational Perspective on Sampling, Electronic
Colloquium on Computational Complexity (ECCC), 1997.

[17] J. Kamp and D. Zuckerman, Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography, in Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003, pp. 92–101.

[18] R. Lipton and N. Vishnoi, manuscript, 2004.
[19] L. Lovasz, Combinatorial Problems and Exercises, North–Holland, Amsterdam, 1979.
[20] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,

SIAM J. Comput., 22 (1993), pp. 838–856.
[21] N. Nisan, Extracting randomness: How and why—A survey, in Proceedings of the 11th Annual

IEEE Conference on Computational Complexity, 1996, pp. 44–58.
[22] N. Nisan and A. Ta-Shma, Extracting randomness: A survey and new constructions, J. Com-

put. System Sci., 58 (1999), pp. 148–173.
[23] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52

(1996), pp. 43–52.
[24] J. Radhakrishnan and A. Ta-Shma, Bounds for dispersers, extractors, and depth-two super-

concentrators, SIAM J. Discrete Math., 13 (2000), pp. 2–24.

1094 ARIEL GABIZON, RAN RAZ, AND RONEN SHALTIEL

[25] R. Raz, Extractors with weak random seeds, in Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, 2005, pp. 11–20.

[26] R. Raz, O. Reingold, and S. Vadhan, Extracting all the randomness and reducing the error
in Trevisan’s extractors, in Proceedings of the 31st Annual ACM Symposium on Theory
of Computing, 1999, pp. 149–158.

[27] O. Reingold, R. Shaltiel, and A. Wigderson, Extracting randomness via repeated condens-
ing, in Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, 2000, pp. 149–158.

[28] R. Rivest, All-or-nothing encryption and the package transform, in Fast Software Encryption,
4th International Workshop, FSE’97, Lecture Notes in Comput. Sci. 1267, Springer-Verlag,
Berlin, 1997, pp. 210–218.

[29] M. Santha and U. V. Vazirani, Generating quasi-random sequences from semi-random
sources, J. Comput. System Sci., 33 (1986), pp. 75–87.

[30] R. Shaltiel, Recent developments in explicit constructions of extractors, Bull. Eur. Assoc.
Theor. Comput. Sci. 77 (2002), pp. 67–95.

[31] L. Trevisan and S. Vadhan, Extracting randomness from samplable distributions, in Pro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000,
pp. 32–42.

[32] S. Vadhan, Randomness extractors and their many guises, in Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002, pp. 9–12.

[33] S. Vadhan, Constructing locally computable extractors and cryptosystems in the bounded-
storage model, J. Cryptology, 17 (2004), pp. 43–77.

[34] U. Vazirani, Efficient considerations in using semi-random sources, in Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, 1987, pp. 160–168.

[35] U. Vazirani, Strong communication complexity or generating quasi-random sequences from
two communicating semi-random sources, Combinatorica, 7 (1987), pp. 375–392.

[36] U. V. Vazirani and V. V. Vazirani, Random polynomial time is equal to semi-random poly-
nomial time, in Proceedings of the 26th Annual IEEE Symposium on Foundations of
Computer Science, 1985, pp. 417–428.

[37] J. von Neumann, Various techniques used in connection with random digits, NBS Appl. Math
Ser., 12 (1951), pp. 36–38.

[38] D. Zuckerman, General weak random sources, in Proceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Science, 1990, pp. 534–543.

[39] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica, 16 (1996),
pp. 367–391.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1095–1118

EXTRACTING RANDOMNESS USING FEW INDEPENDENT
SOURCES∗

BOAZ BARAK† , RUSSELL IMPAGLIAZZO‡ , AND AVI WIGDERSON§

Abstract. In this work we give the first deterministic extractors from a constant number of
weak sources whose entropy rate is less than 1/2. Specifically, for every δ > 0 we give an explicit
construction for extracting randomness from a constant (depending polynomially on 1/δ) number
of distributions over {0, 1}n, each having min-entropy δn. These extractors output n bits that are
2−n close to uniform. This construction uses several results from additive number theory, and in
particular a recent result of Bourgain et al. We also consider the related problem of constructing
randomness dispersers. For any constant output length m, our dispersers use a constant number of
identical distributions, each with min-entropy Ω(log n), and outputs every possible m-bit string with
positive probability. The main tool we use is a variant of the “stepping-up lemma” of Erdős and
Hajnal used in establishing a lower bound on the Ramsey number for hypergraphs.

Key words. randomness extractors, Ramsey graphs, sum-product theorem

AMS subject classifications. 68Q10, 05B20, 11T23

DOI. 10.1137/S0097539705447141

1. Introduction.

1.1. Background. Randomness is prevalent in computer science and is widely
used in algorithms, distributed computing, and cryptography. Perhaps the main mo-
tivation and justification for the use of randomness in computation is that randomness
exists in nature, and thus it is possible to sample natural phenomena (such as the
tossing of coins) in order to make random choices in computation. However, there
is a discrepancy between the type of random input that we expect when designing
randomized algorithms and protocols, and the type of random data that can be found
in nature. While randomized algorithms and protocols expect a stream of indepen-
dent uniformly distributed random bits, this is too much to hope for from samples of
natural phenomena.

Thus, a natural and widely studied problem has been that of constructing ran-
domness extractors.1 Loosely speaking, a randomness extractor is a (deterministic
polynomial-time computable) function Ext : {0, 1}n → {0, 1}m such that whenever X
is a “good” random variable (where the definition of “good” will be discussed shortly),
then Ext(X) is statistically close to the uniform distribution. The random variable X

∗Received by the editors March 16, 2005; accepted for publication (in revised form) April 4, 2006;
published electronically December 15, 2006.

http://www.siam.org/journals/sicomp/36-4/44714.html
†Department of Computer Science, Princeton University, Princeton, NJ 08540 (boaz@cs.

princeton.edu). The work of this author was done while he was a postdoctoral member at the
Institute for Advanced in Princeton, NJ and was supported by NSF grants DMS-0111298 and CCR-
0324906.

‡Department of Computer Science and Engineering, University of California, San Diego, La Jolla,
CA 92093 (russell@cs.ucsd.edu). Much of this author’s research was performed at the Institute for
Advanced Study in Princeton, NJ and was supported by the State of New Jersey. This research was
also partially supported by NSF Award CCR-0098197.

§Institute for Advanced Study, Princeton, NJ 08540 (avi@ias.edu). The research of this author
was partially supported by NSF grant CCR-0324906.

1We note that while this has been the original motivation for studying randomness extractors,
such constructs have found numerous other applications in computer science and are fundamental
and interesting objects in their own right.

1095

1096 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

is intended to model the natural data, while the output of the extractor will be used
to make random choices in a probabilistic algorithm or protocol.

Intuitively, the “good” distributions should be the distributions that contain more
than m bits of entropy. Otherwise, information-theoretic considerations show that
such an extractor cannot exist, even if it is only required to extract randomness from
a fixed source that is known to the designer. Actually, past works have converged
to the measure of min-entropy [10, 49], which is a stronger notion than standard
(Shannon) entropy. (The min-entropy of a random variable X , denoted by H∞(X),
is equal to minx∈Supp(X)(− log Pr[X = x]).) It can be easily seen that the min-entropy
of a random variable X is always smaller than the (Shannon) entropy of X and that
if Ext(X) is statistically close to being uniform over {0, 1}m, then the distribution X
must be statistically close to having min-entropy at least m. Thus, possessing high
min-entropy is indeed a minimal requirement of the input distribution.

We note that it is known that if a random variable X has min-entropy k, then it
is a convex combination of random variables X1, . . . ,Xt, where each Xi is the uniform
distribution over some subset of size 2k. Such random variables are called flat. Because
of this fact, when constructing randomness extractors typically we can assume without
loss of generality that the input distribution is flat. This is convenient for several
reasons, one of which is that the min-entropy of flat distributions is equal to their
Shannon entropy.

1.2. Seeded and seedless extractors. An unfortunate and easily seen fact is
that there is no single function Ext that will produce a (close to) uniform output on
every input distribution having high min-entropy. Previous works have dealt with
this problem in two ways: The first way is to add a short, truly random seed as a
secondary input to the extractor, and the second way is to use no seed, but make
further assumptions on the structure of the weak sources (in addition to the minimal
assumption of it containing sufficient min-entropy).

Seeded extractors. As mentioned above, one approach to tackle the above prob-
lem has been to allow the extractor to be probabilistic. That is, in addition to its
input X , one allows the function Ext to have an additional input Y that is uniformly
distributed. The goal is to have the input Y be (much) shorter than the output length
m. We call the additional input Y the seed of the extractor, and thus we call such
constructions seeded extractors.2 Seeded extractors have been studied extensively
in the past two decades (see the survey [42] and references therein) with a series of
exciting results, techniques, and applications. The current state of the art is a con-
struction of extractors that are nearly optimal in the sense that they use a seed Y
of length O(log n) bits, extracting essentially all the min-entropy of the source [27].
This in particular means that by using such extractors, together with enumeration
over all possible seed values, it is possible to simulate any probabilistic algorithm with
polynomial overhead, using only a high min-entropy source.

Seedless extractors. There are many reasons to try constructing seedless extrac-
tors. One is that the polynomial overhead implied by the seed enumeration above
may sometimes be too expensive. Another is that certain applications in computer
science, such as in cryptography and distributed computing, intrinsically prohibit
such enumeration. For example, when using a weak source of randomness to choose
an encryption key via a seeded extractor, it will certainly be insecure to enumerate all

2We remark that in most of the literature, the name randomness extractor (without any quali-
fiers) refers to what we call here a seeded randomness extractor.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1097

secret keys produced using all seeds and then send the encryptions of a secret message
using each of these keys. More generally, it seems that typically we cannot directly use
seeded extractors in cryptography (see [28, 15, 5] for different cryptographic models
under weak sources of randomness).

There have been many constructions of such seedless extractors that work for
specific families of high min-entropy sources. The first to consider this problem was
von Neumann, who gave a seedless extractor from a stream of biased but independent
bits [47] (see also [32]). Other works, such as [6, 41, 10, 12, 11, 29, 25, 44], constructed
seedless extractors for more general families of sources.3

1.3. Seedless extractors from few independent sources. When seedless
extraction from one source is impossible, it is natural to consider doing so from several
independent sources of the same quality. After all, assuming we have one such source
in nature does not seem much weaker than assuming we have several.

The first to consider this problem were Santha and Vazirani [41], who showed
how to use O(log n) independent “semirandom”4 sources of length n and min-entropy
δn for every constant δ > 0.

Chor and Goldreich [10] were the first to consider general min-entropy sources,
and they proved that if δ > n/2, then two sources suffice: indeed the Hadamard–
Sylvester matrix H : {0, 1}n × {0, 1}n → {0, 1} defined by H(x, y) = 〈x, y〉 (with the
inner product in GF(2)) is such an extractor. (We note that for this construction the
n/2 entropy bound is tight—there are two sources of entropy exactly n/2 on which H
is constant.) Vazirani [45] extended this to show that one can use a similar function
to output from two independent sources of entropy (1

2 + ε)n a linear number of bits
that are exponentially close to the uniform distribution.5

Improving [10] seems hard. Even its disperser version, namely having a non-
constant output for any two sources of entropy rate below 1/2, is the notorious “bi-
partite Ramsey” problem, which is still open. A slight improvement for this problem
was made recently by Pudlak and Rödl [35], who lowered the min-entropy requirement
for such a disperser to n/2 −

√
n, but getting a constant δ < 1/2 remains a barrier

for two sources. (Very recently, significant progress was made on this problem that
builds on the results of the current work; see section 5.)

An alternative 2-source function is the Paley matrix, P : GF (p)×GF (p) → {±1},
defined by P (x, y) = χ2(x + y) (where p is an n-bit prime and χ2 : GF(p) → {±1}
is the quadratic character). P too is an extractor with exponentially small error for
entropy > n/2 and is conjectured to have the same property for entropy δn for all
δ > 0. While this conjecture is generally believed, proving it seems beyond current
techniques.6 Assuming even more, Zuckerman [48] showed that if this conjecture holds
for all multiplicative characters (not just χ2), then a constant (actually poly(1/δ))
number of sources suffices for extraction of linearly many bits with exponential error.

3The results of Trevisan and Vadhan [44] differ from the literature, as well as from our work,
in that they work in the computational setting; i.e., the restriction on the family of sources is
computational, the sources are efficiently sampleable, and the extractors work while assuming an
unproven computational assumption.

4We will not formally define these semirandom sources (also known as Santha–Vazirani sources)
but will only note that they are weaker than high min-entropy sources. Nevertheless one cannot
extract seedlessly from only one such source.

5Vazirani [45] states his result for the semirandom sources of [41] but it extends to general
min-entropy sources.

6We note that it is known (using Weil’s estimate of character sums) that P is an extractor for
two sources, where one of them has entropy > n/2 and the other only entropy > logn.

1098 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

The extractor we use here is exactly the same as Zuckerman’s (but our analysis uses
no unproven assumptions).

1.4. Our results.

1.4.1. Multiple-sample extractors. In this work we will be interested in ex-
tracting randomness from a constant (larger than 2) number of samples from a high
min-entropy source.7 Loosely speaking, our main result is an efficient construction
for extracting (almost) uniformly distributed bits from a constant number of samples
from independent distributions over {0, 1}n, each sample having min-entropy at least
δn, for an arbitrarily small constant δ > 0. The statistical distance of our output
from the uniform distribution is exponentially low (i.e., 2−Ω(n)).8 More formally, our
main theorem is the following.

Theorem 1.1 (multiple-sample extractor). For every constant δ > 0 there exists
a constant � = (1/δ)O(1) and a polynomial-time computable function Ext : {0, 1}n·� →
{0, 1}n such that for every independent random variable X1, . . . ,X� over {0, 1}n sat-
isfying H∞(Xi) ≥ δn for i = 1, . . . , �, it holds that

dist
(
Ext(X1, . . . ,X�), Un

)
< 2−n,

where Un denotes the uniform distribution over the set {0, 1}n and dist(X ,Y) denotes
the statistical distance of two distributions X and Y. That is,

dist(X ,Y)
def
= 1

2

∑
i∈Supp(X)∪Supp(Y)

∣∣∣Pr[X = i] − Pr[Y = i]
∣∣∣.

As mentioned in the introduction, we denote by H∞(X) the min-entropy of the
random variable X (i.e., H∞(X) = minx∈Supp(X)(− log Pr[X = x])).

Remark 1.2. As is noted in section 3.5, we can actually reduce the statistical
distance of our extractor by using more independent samples. In particular, for every
c > 1, we can ensure that the output of our extractor will be (2−cn)-close to the
uniform distribution by multiplying the number of samples we use by a factor of O(c).
Note that if a distribution Y over {0, 1}n is (2−cn)-close to the uniform distribution,
then in particular for every y ∈ {0, 1}n, Pr[Y = y] ∈ (2−n − 2−cn, 2−n + 2−cn) (i.e., Y
is even close to the uniform distribution in the L∞ norm).

1.4.2. Dispersers. We also present a construction of dispersers that works for
much lower entropy samples of the same source. A disperser is a relaxed variant
of an extractor, which does not need to output a distribution statistically close to
uniform, but rather only a distribution with large support. Thus, when talking about
dispersers, it is natural to consider only the support of their input, and so refer to the
inputs as sets rather than random variables (where a set of size 2k corresponds to a
random variable of min-entropy k). The formal definition of dispersers is in section 2.
Our main result regarding dispersers is the following theorem.

Theorem 1.3 (multiple-sample same-source disperser). There exist constants �
and d such that for every m, there is a polynomial-time computable function Disp :

7We note that our results can be generalized to the case of extracting from a larger (i.e., super-
constant) number of samples having sublinear entropy. However, we do not consider such extensions
in this paper.

8Note that we get statistical distance that is much better than what is possible to obtain
with seeded extractors, which cannot do better than a polynomially small distance when using a
logarithmic-length seed. This low statistical distance is important for cryptographic applications.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1099

{0, 1}n·� → {0, 1}m satisfying that for every subset X ⊆ {0, 1}n with |X | ≥ nd2m

,

Disp(X , . . . ,X) = {0, 1}m.

That is, if |X | ≥ nd2m

, then for every y ∈ {0, 1}m, there exist x1, . . . , x� ∈ X such
that Disp(x1, . . . , x�) = y.

This is a better disperser than the multiple-source extractor of Theorem 1.1 in the
sense that it works for very low min-entropy (indeed, note that if we let m be a con-
stant, then sets of size nO(1) correspond to distributions of min-entropy of O(log n)).
However, it still has two drawbacks: one is that its output is much smaller than the
input entropy (although it can still be much larger than the number of samples); an-
other is that it requires all its input samples to come from the same distribution X
(rather than from different distributions, as in our extractor). We consider the second
drawback to be the more serious one. The construction of this disperser closely follows
the “stepping-up” technique of Erdős and Hajnal (see Graham, Rothschild, Spencer
[22, sect. 4.7]) it that it gives an (explicit) lower bound on the Ramsey number of
hypergraphs. We remark that we work for worse entropy than this lower-bound9 be-
cause we want to output a superconstant number of bits (that does not depend on
the number of samples).

1.5. Techniques.
An Erdős–Szemerédi theorem for finite fields. Our main tools for Theorem 1.1 are

several results from additive number theory, and in particular, a relatively recent result
by Bourgain, Katz, and Tao [9]. They proved an analogue of the Erdős–Szemerédi
[17] theorem for finite prime fields. Let A be a subset of some field F. We define the
set A+A to equal {a+ b | a, b ∈ A} and the set A ·A to equal {a · b | a, b ∈ A}. Note
that |A| ≤ |A + A| ≤ |A|2 (and similarly |A| ≤ |A · A| ≤ |A|2). An example for a set
A, where A+A is small (of size about 2|A|), is an arithmetic progression. An example
for a set A, where A · A is small, is a geometric progression. The Erdős–Szemerédi
theorem is that for every set A ⊆ N, either A + A or A · A is of size at least |A|1+ε0

for some universal constant ε0. In some sense, one can view this theorem as saying
that a set of integers can’t be simultaneously close to both an arithmetic progression
and a geometric progression.

A natural question, which has many diverse applications in geometry and analysis,
is whether this theorem also holds in finite fields. A first observation is that this
theorem is false in a field F that contains a nontrivial subfield F

′. This is because if
we let A = F

′, then A + A = A · A = A. However, [9] showed that a variant of this
theorem does hold in a finite field with no nontrivial subfields.10 In particular it holds
in the fields GF(p) and GF(2p) for every prime p. That is, [9] proved the following.

Theorem 1.4 (see [9]). Let δ > 0 be some constant and let F be a field with no
subfield of size between |F|δ/2 and |F| − 1. Let A ⊆ F be a set such that |F|δ < |A| <
|F|1−δ. Then there exists some constant ε (depending on δ) such that

max{|A + A|, |A · A|} > |A|1+ε.

In [9], the dependence of the constant ε on δ was not specified (and examining
the proof shows that it is probably of the form ε = 2−Ω(1/δ)). In the appendix we give

9Using c samples, this lower bound yields a 1-bit-output disperser for log(Θ(c)) n entropy, where
log(i) n denotes the result of iterating log i times on n.

10By a trivial subfield in this context we mean a subfield that is either equal to the entire field or
very small (e.g., of constant size).

1100 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

a proof of Theorem 1.4 (using some of the lemmas of [9]) with ε = Θ(δ).11 Konyagin
[26] gave a stronger result for prime fields and showed that, as long as |A| < |F|0.99,
the value ε can be made a constant independent of the size of A. That is, he proved
the following theorem.

Theorem 1.5 (see [26]). There exists some constant ε0 such that for every F

that is a field of prime order, and every A ⊆ F with |A| < |F|0.99,

max{|A + A|, |A · A|} > |A|1+ε0 .

1.6. How is this related to extractors?
Using Theorem 1.5 to obtain dispersers. Theorem 1.5 actually already implies

some kind of multiple-sample disperser that was not previously known. This is because
it implies the following corollary.

Corollary 1.6. There exists some constant ε0 such that for every F a field of
prime order, and every A ⊆ F with |A| < |F|0.99,

|A · A + A| > |A|1+ε0 .

Indeed, by Theorem 1.5, for every set A either |A·A| or |A+A| is at least |A|1+ε′

for some absolute constant ε′. If the former holds, then since |A · A + A| ≥ |A · A|
we’re done. In the latter case we can use previously known number-theoretic results
(see also Lemma 3.7) that imply that if |A + A| ≥ |A|1+ε′ , then |A + B| ≥ |A|1+ε′/2

for every set B with |B| = |A|. This means that if we let s be any member of A and
consider B = s−1A, then we get that |A+B| ≥ |A|1+ε′/2 (since multiplying by a fixed
element is a permutation that does not change the size of a set). For the same reason,
|A + B| = |A + s−1A| = |sA + A|, but the set sA + A is a subset of A · A + A.

In other words, Corollary 1.6 states that there is an efficiently computable f(·)
such that |f(A,A,A)| ≥ |A|1+ε0 (i.e., f(a, b, c) = a · b + c). Yet this implies that for
every set A with |A| ≥ |F|δ, if we compose f with itself O(log(1/δ)) times, we get
a function g : F

� → F (for � = 2O(log(1/δ)) = (1/δ)O(1)) such that g(A, . . . ,A) = F

(where g(A, . . . ,A) denotes the image of g on A�) .12 If we identify the field F with the
strings {0, 1}n, then we see that this function g (which is obviously polynomial-time
computable) is already some kind of a disperser.

Obtaining extractors. To obtain an extractor rather than a disperser, we would
like to obtain a statistical analogue of Theorem 1.5. Consider the following notation.
If X is a random variable, then we define X + X to be the distribution obtained by
choosing a, b independently at random from X and outputting a + b, and we define
X ·X in a similar way. Then, a statistical analogue of Theorem 1.5 would be that there
exists some ε > 0 such that for every random variable X with min-entropy at most
0.99 log |F|, either the distribution X + X or the distribution X · X has min-entropy
at least (1+ ε)H∞(X). Unfortunately, this is false: For every prime field F, there is a
random variable X that is uniform over some set of size 2k (for k
 0.99 log |F|) and
such that for both X + X and X · X , a constant fraction of the probability mass is
concentrated in a set of size O(2k). Indeed, an example for such a random variable X

11The proof of in our appendix also has the advantage of proving the theorem for all fields F

simultaneously. The authors of [9] prove Theorem 1.4 for prime fields and then only mention how it
can be generalized to other fields.

12This is because each time we apply f we grow in the set size from m to m1+ε0 . We note that
one needs to analyze separately the case that |A| > |F|0.99, but this can be done. This function g is
described in more detail in the beginning of section 3.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1101

is a random variable that is with probability half an arithmetic progression and with
probability half a geometric progression.

Even though the statistical analogue for Theorem 1.5 does not hold, we show
that a statistical analogue for Corollary 1.6 does hold. That is, we prove (in Lemma
3.1) that there exists some constant ε0 > 0 such that for every random variable X
over a prime field F, the distribution X · X +X has (up to some negligible statistical
distance) min-entropy at least (1 + ε0)H

∞(X). (In fact, we need to (and do) prove a
more general statement regarding distributions of the form X · Y + Z.) The proof of
this lemma is the main technical step in our extractor. The proof uses Theorem 1.5,
along with some other additive number-theoretic results of Ruzsa [40] and Gowers
[21].

We use this lemma to show that the function g sketched above is actually not
just a disperser but an extractor. That is, we show that for every random variable X
of min-entropy at least δ log |F|, the random variable g(X , . . . ,X) (where g is applied
to � independent copies of X) not only has large support but is also in fact very close
to the uniform distribution. (In fact, we need to (and do) prove a stronger version of
this statement, namely, that g(X1, . . . ,X�) is close to uniform for every independent
random variable, X1, . . . ,X� with H∞(Xi) ≥ δ log |F| for i = 1, . . . , �.)

2. Preliminaries. In this section we establish our definitions for multiple-sample
extractors and dispersers. Unfortunately, such definitions tend to have a large number
of parameters.

Definition 2.1 (multiple-sample extractor). A function Ext : {0, 1}n·� →
{0, 1}m is called an �-sample (k,m, ε)-extractor if for every independent random vari-
able X1, . . . ,X� satisfying H∞(Xi) ≥ k for i = 1, . . . , � it holds that

dist
(
Ext(X1, . . . ,X�), Um

)
< ε.

Parameters and qualifiers:
• The parameter � is called the number of samples of the extractor. In all

our constructions we will use �, which is a constant independent of the input
length.

• The parameter m is called the output length of the extractor. Usually, we’ll
use m = n.

• The parameter k is called the min-entropy requirement by the extractor.
• The parameter ε is called the statistical distance of the extractor.
• One can also make a weaker definition in which the extractor is required to

output a close-to-uniform value only if the variables X1, . . . ,X� are identically
distributed. We call such an extractor a same-source extractor. Thus, we
will sometimes say that a standard (as per Definition 2.1) multiple-sample
extractor is a different-source extractor.

We now define the weaker notion of a disperser.
Definition 2.2 (multiple-sample disperser). A function Disp : {0, 1}n·� →

{0, 1}m is called an �-sample (k,m)-disperser if for all sets X1, . . . ,X� satisfying
|Xi| ≥ 2k for i = 1, . . . , �, it holds that

Disp(X1, . . . ,X�) = {0, 1}m.

Notes:
• We will use the same names for the parameters and qualifiers of dispersers as

we used for extractors (e.g., number of samples, output length, same-source,
different-source).

1102 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

• In previous literature, dispersers are usually defined with a parameter ε anal-
ogous to the statistical distance of extractors, requiring |Disp(X1, . . . ,X�)| ≥
(1 − ε)2m instead of the requirement we make. Thus, one can think of our
definition as setting ε = 0. However, in our particular setting of independent
samples, this is essentially without loss of generality, as we can convert a
disperser satisfying the weaker definition with any constant ε < 1/2 into a
disperser satisfying the stronger definition with only a constant factor increase
in the number of samples.13

Basic facts and observations. The following facts regarding multiple-sample ex-
tractors and dispersers are either known or easy to verify:

• There does not exist a 1-sample disperser (and hence an extractor) even with
only one bit of output and even if the source is assumed to have n− 1 bits of
min-entropy.

• There is a simple construction for a 2-sample same-source 1-bit-output ex-
tractor whenever the source min-entropy is larger than O(log 1

ε) (where ε is
the statistical distance). This is the extractor that on input x, y outputs 1 if
x > y.

• In contrast, by Ramsey-type arguments, a 2-sample same-source disperser
(and hence an extractor) with more than one bit of output requires the input
min-entropy to be at least logn. The same holds for a different-source 1-bit-
output disperser.
The best known previous explicit constructions for both cases require the min-
entropy to be more than n/2 [10, 46]. Indeed, the function H : {0, 1}2n →
{0, 1} defined as H(x, y) =

∑
xiyi (mod 2) (i.e., the adjacency function of

the Hadamard graph) is known to be a 1-bit-output extractor for sources
with more than n/2 entropy [10]. This is essentially the best known previous
construction in terms of the minimum entropy requirement. There has been
some improvement in obtaining variants of this extractor that have a larger
output size [46, 16, 14], although these still require at least n/2 entropy.
(Also, as mentioned above, it is known that the adjacency function of the
Paley graph is a 1-bit-output extractor that works as long as one of its inputs
has more than n/2 entropy, while the other input needs only to have more
than logn entropy [23, 2]. However, in this paper we restrict ourselves to the
symmetric case, where all sources have the same entropy requirement.)

• Using enumeration over all possible seeds, one can use a seeded extractor to
obtain a polynomial-samples same-source extractor with the same require-
ment over the min-entropy. It is also possible to generalize this to work for
different sources [38].

Explicit constructions. In the definition of extractors and dispersers we did not
require these functions to be efficiently computable. However, naturally we will be
interested in obtaining extractors and dispersers that are computable in polynomial
time. We call such constructions explicit.

3. Constructing a multiple-sample extractor. In this section we prove The-
orem 1.1. That is, we construct an extractor Ext (where Ext : {0, 1}�·n → {0, 1}n)

13This can be done, for example, by identifying the set {0, 1}n with elements of a prime field
F (as we do in what follows) and using the Cauchy–Davenport theorem. This theorem says that
if A and B are subsets of a prime field F, then the set A + B = {a + b|a ∈ A, b ∈ B} is of size
at least min{|F|, |A| + |B| − 1}. Hence, if A1, . . . ,Ak are sets of size > ε|F| with k > 2/ε, then
A1 + · · · + Ak = F.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1103

such that Ext(X1, . . . ,X�) is statistically close to the uniform distribution for every
independent random variables X1, . . . ,X� over {0, 1}n with high enough min-entropy
(i.e., at least δn, where � = poly(1/δ)). Our extractor will be very simple, involving
only a recursive composition of the operation (a, b, c) �→ a · b + c. As noted in the
introduction, this is the same construction used by Zuckerman [48].

Formally, we fix a suitable field F (see below) and define the functions Exti for all
i ∈ N recursively as follows:

• For every i, the function Exti will be a mapping from F
3i

to F.
• Ext0 : F

30

= F → F is the identity function Ext0(x) = x.

• Assume Exti is already defined. We define Exti+1 : F
3i+1

= (F3i

)3 → F as

follows: For every x1, x2, x3 ∈ F
3i

,

Exti+1(x1, x2, x3)
def
= Exti(x1) · Exti(x2) + Exti(x3).

Our extractor will be equal to Exti for a suitably chosen constant i. When ex-
tracting from a string in {0, 1}n, we will choose the field F to be of the form GF(N) for
some prime N ∈ [2n, 2n+1) (and hence we can identify any string in {0, 1}n with an
element in the field F). We postpone the issue of finding such a prime to section 3.4.

Theorem 1.1 will follow from the following two lemmas.
Lemma 3.1. There exists some constant ε > 0 such that for every distribution

A,B, C over a prime field F, each with min-entropy at least m, the distribution A·B+C
is (2−εm)-close to having min-entropy at least min{(1 + ε)m, 0.9 log |F|}.

Lemma 3.2. Let A1, . . . ,A9 be 9 independent distributions over a prime field F

each with min-entropy at least 0.9 log |F|. Then, Ext2(A1, . . . ,A9) is of distance at
most |F|−0.01 from the uniform distribution over F.

Lemmas 3.1 and 3.2 imply Theorem 1.1. Indeed, Lemma 3.1 implies that for
every constant δ > 0, if we let i = log(1+ε)(1/δ), then the output of Exti is close to

having min-entropy 0.9 log |F|. Note that the number of samples required by Exti is 3i,
which is polynomial in 1/δ. We use Lemma 3.2 to get from min-entropy 0.9 log |F| to
a close-to-uniform output. Using the union bound, we see that the statistical distance
of the extractors output from the uniform distribution on F will be at most N−Ω(1).
We defer the proof of Lemma 3.2 to section 3.6 and now turn to proving Lemma 3.1.14

3.1. Basic facts and notation. Before proving Lemma 3.1, we introduce some
notation and some tools that will be used in the course of the proof. We identify a
set A with the uniform distribution on elements of A. If D is a distribution, then we
denote by cp(D) the collision probability of D, that is, cp(D) = Prx,y←RD[x = y]. Note
that for a set A, cp(A) = 1

|A| . If A and B are distributions over subsets of the field F,

then we denote by A + B the distribution obtained by picking a at random from A,
picking b at random from B, and outputting a+ b. Note that this distribution may be
far from the uniform distribution with the same support. We define the distribution
A · B in a similar way. For k ∈ Z and A a set or a distribution, we define kA and Ak

in the natural way.15

14Note that we could prove Theorem 1.1 without using Lemma 3.2 by applying the previously

known 2-sample extractors, which work for entropy larger than
log |F|

2
. In addition, Vadhan observed

that by using the fact that the function family {hb,c} (where hb,c(a) = a·b+c) is pairwise independent
and the leftover hash lemma of [24], one can prove that under the conditions of Lemma 3.2 the first
0.8 log |F | bits of A1 · A2 + A3 are within statistical distance |F |−0.01 to the uniform distribution.
This is also sufficient to prove Theorem 1.1.

15E.g., for k > 0, kA = A + · · · + A
︸ ︷︷ ︸

k times

and for k < 0, kA = −A− · · · − A
︸ ︷︷ ︸

|k| times

.

1104 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

We say that a distribution X is a convex combination of distributions X1, . . . ,Xm

if there exist numbers p1, . . . , pm ∈ [0, 1] such that
∑

i pi = 1 and the random variable
X (when looked at as a vector of probabilities) is equal to

∑
i piXi.

The following lemmas would be useful.
Lemma 3.3. Let X and Y be distributions; then Pr[X = Y] ≤

√
cp(X)cp(Y) ≤

max{cp(X), cp(Y)}.
Proof. For every i in the union of the supports of X and Y, let xi denote the

probability that X = i and let yi denote the probability that Y = i. Then

Pr[X = Y] =
∑
i

xiyi ≤
√∑

i

x2
i

∑
j

y2
j

by the Cauchy-Schwarz inequality; however this is the geometric mean of cp(X) and
cp(Y) (which is less than the maximum of these quantities).

Corollary 3.4. Let A, C be distributions over F. Then cp(A + C) ≤√
cp(A−A)cp(C − C).

Proof. Let A′ and C′ be two new, independent random variables distributed
identically to A and C, respectively. Then,

cp(A + C) = Pr[A + C = A′ + C′] = Pr[A−A′ = C − C′],

which is smaller than
√

cp(A−A)cp(C − C) by Lemma 3.3.
Lemma 3.5. Suppose that X is a convex combination of distributions X1, . . . ,Xm.

Then cp(X) ≤ max{cp(X1), . . . , cp(Xm)}.
Proof. Using induction on m, this reduces to the case that m = 2 (since we can

treat the combination of X1, . . . ,Xm−1 as one distribution whose collision probability
is bounded using induction). However, in this case X = αX1 + (1 − α)X2, and then

cp(X) = α2cp(X1) + 2α(1 − α) Pr[X1 = X2] + (1 − α)2cp(X2).

However, Pr[X1 = X2] ≤ max{cp(X1), cp(X2)} by Lemma 3.3 and so we are
done.

Lemma 3.6. Let X be a distribution such that cp(X) ≤ 1
KL . Then X is of

statistical distance 1√
L

from having min-entropy at least logK.

Proof. We can split X into a convex combination X = αX ′ + (1 − α)X ′′, where
X ′ contains the “heavy” elements of X that are obtained with probability at least 1

K ,

and X ′′ contains the rest of X . We see that cp(X) ≥ α2cp(X ′), and so 1
KL ≥ α2

K and
thus α ≤ 1√

L
. However, H∞(X ′′) ≥ logK and so we are done.

Note that if H∞(X) ≥ k, then clearly cp(X) ≤ 2−k. Together with Lemma 3.6
this implies that, up to an arbitrarily close-to-1 multiplicative factor and an exponen-
tially small (in the min-entropy) statistical distance, H∞(X) is approximately equal
to log(1/cp(X)). (The quantity log(1/cp(X)) is sometimes called the 2-entropy or the
Renyi entropy of X .)

3.2. Additive number-theoretic results. The following two lemmas hold for
any Abelian group, and so their “+” operators may be replaced with “·” operators.
Note that we do not state these lemmas with the most optimal choice of constants.

Lemma 3.7 (see [40]; see also [31, 39]). Let A,B, C be subsets of some Abelian
group G. Then |A + C||B| ≤ |A + B||B + C|.

In particular, |A| = |B| = M and ρ > 0 is such that |A + B| ≤ M1+ρ. Then

|A + A| ≤ |A+B|2
M ≤ M1+2ρ.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1105

In other words, if A + B is “small” for some B, then A + A is small. Note that
Lemma 3.7 implies that we can replace A + A and A · A in Theorem 1.4 with A + B
and A · B for every B satisfying |B| = |A|. Note that Lemma 3.7 also implies that if
|A| = M , |B| ≥ M1−ε, and |A + B| ≤ M1+ρ, then |A + A| ≤ M1+2ρ+ε.

We will use the following lemma of Gowers (which is a quantitative improvement
of a result by Balog and Szemerédi). We state it here using different sets A,B (similarly
to the way it is quoted in [9], although in [21] it is stated with A = B). See also Lemma
A.5 for a generalization of this lemma obtained in [43].16

Lemma 3.8 (see Proposition 12 in [21]). Let A,B be subsets of some group G
with |A| = |B| = M and let ρ > 0 be such that cp(A + B) ≥ 1

M1+ρ . Then there exists
A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| ≥ M1−10ρ and |A′ + B′| ≤ M1+10ρ.

We remark that it can be shown that if A = B in the conditions of this lemma,
then A′ = B′ in its conclusion. We also note that we can apply the lemma even if A
and B are of different sizes, as long as they are close enough. Indeed, if |A| = M and
|B| = M1−ρ/10, then we can partition A to subsets A1, . . . ,Ak of size |B|, and since
A+B is a convex combination of Ai +B, one of these subsets has collision probability
as least as large as cp(A + B), and we can apply the lemma to it.

3.3. Proof of Lemma 3.1.
Fixing ε. We fix ε small enough such that for every M < |F|0.99, Theorem 1.5

ensures us that if X is a set of size at least M1−104ε, then max{|X · X |, |X +X|} is at

least M1+104ε (e.g., we can take ε = ε0/109). Note that this is the only place in the
proof in which we use the fact that F is a prime field. In particular, using Theorem
1.4 instead of Theorem 1.5, our proof yields also a variant of Lemma 3.1 for nonprime
fields (see Lemma 3.14).

Statistical analogue of Theorem 1.5. Roughly speaking, Theorem 1.5 says that if
|A · A| is “small,” then |A + A| is “large.” By combining Theorem 1.4 with Lemma
3.7, it is possible get a “different sets” analogue of this statement and show that for
every set A of size M , if |A · B| is small (i.e. ≤ M1+ε) for some set B of size M , then
|A + C| is large (≥ M1+ε) for every set C of size M .

At this point we would have liked to obtain a collision probability analogue of this
statement. That is, we would like to prove that if A,B, C are uniform distributions
over sets of size M , and cp(A · B) ≥ 1

M1+ε , then cp(A + C) ≤ 1
M1+ε . Unfortunately,

this is false, as can be witnessed by considering the following counterexample. Let
M = N0.1, and let A = B = C be a distribution that is an arithmetic progression of
size M with probability 1

2 and a geometric progression of size M with probability 1
2 .

For such a distribution, both cp(A + A) and cp(A · A) are at least Ω(1/M).17

However, we are able to prove a slightly weaker statement. That is, we show that
if A · B is small in set size, then A + C shrinks significantly in collision probability.
This is stated in the following lemma.

16 We note that in some sources the lemma is stated with the condition that the distribution
A + B is of statistical distance at least M−Cρ from having min-entropy (1 + ρ) logM (a condition
that up to constant factor in the distance is equivalent to the condition that there is a subset C
such that |C| ≤ M1+ρ/(2C) but Pr[A + B ∈ C] ≥ M−Cρ). However, this is equivalent to our
statement of Lemma 3.8 by the observations above on the relation between min-entropy and collision
probability. In particular, if there is such a set C, then the collision probability of A + B is at least
Pr[A + B ∈ C]|C|−1.

17Let Aarith denote the arithmetic progression. A random element from A + A is in the set
Aarith + Aarith with probability at least 1

4
. However, because the set Aarith + Aarith is of size at most

O(M), we get that cp(A + A) ≥ 1
16

Ω(1/M) = Ω(1/M). The symmetrical reasoning shows that
cp(A · A) ≥ Ω(1/M).

1106 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

Lemma 3.9. Let M and ε be as above and let A ⊆ F be a set such that |A| ≥
M1−20ε, but also such that |A · B| ≤ M1+20ε, for some B with |B| ≥ M1−20ε. Then
cp(A + C) is smaller than 1

M1+20ε for all sets C of size M .
Proof. If cp(A + C) ≥ 1

M1+20ε , then by applying Lemma 3.8 (with ρ = 60ε, and
assuming ε < 1/10) it holds that there exists subsets A′, C′ of A and C, respectively,
such that |A′|, |C′| ≥ M1−600ε, but also such that |A′ +C′| ≤ M1+600ε. This means by

Lemma 3.7 that |A′ +A′| ≤ M1+2000ε. However, this means that |A′ · A′| ≥ M1+104ε

by Theorem 1.5, which implies that |A′ · B| ≥ M1+103ε by Lemma 3.7. However,

since A′ ⊆ A this implies that |A · B| ≥ M1+103ε, contradicting our initial assum-
ption.

We call a set A that satisfies the conclusion of Lemma 3.9 (M, 20ε) plus friendly.
That is, A is said to be (M, ε′) plus friendly if cp(A + C) ≤ M−1−ε′ for every C with
|C| = M . Since M and ε are fixed for this proof, we will sometimes drop the prefix
and simply call (M, ε)-plus-friendly sets plus friendly. Reversing the roles of addition
and multiplication, we obtain the following lemma.

Lemma 3.10. Let M and ε be as above and let A ⊆ F be a set such that |A| ≥
M1−20ε, but also such that |A + B| ≤ M1+20ε, for some B with |B| ≥ M1−20ε. Then
cp(A · C) is smaller than 1

M1+20ε for all sets C of size M .
Again, we call a set A that satisfies the conclusion of Lemma 3.10 an (M, 20ε)-

times-friendly set, and again in the following we will sometimes simply call such sets
times friendly. The main step in our proof will be the following lemma.

Lemma 3.11. Let A ⊆ F with |A| = M . Then there exist two disjoint subsets
A+ and A× such that

• A+ is either empty or (M, ε) plus friendly.
• A× is either empty or (M, ε) times friendly.
• |A \ (A+ ∪ A×)| < M1−ε (i.e., A+ ∪ A× capture almost all of A.)

Note that this lemma implies that the counterexample described above (of a
distribution that is an arithmetic progression with probability 1

2 and a geometric
progression with probability 1

2) captures in some sense the worst case for the theorem.
Proof of Lemma 3.11. We prove the lemma by repeatedly applying Lemma 3.8

to construct the sets A+,A×. We start with A+ = ∅ and A× = A. At each point,
we remove some elements from A× and add them to A+. We always maintain the
invariant that A+ is either empty or plus friendly.

If |A×| < M1−ε, then we are done (since we can then let A× = ∅ and have
|A×∪A+| ≥ M−M1−ε). If A× is (M, ε) times friendly, then we are done. Otherwise,
there exists B′′ of size M such that cp(A× · B′′) ≥ 1

M1+ε , and so we can apply Lemma
3.8 to obtain subsets A′ of A× and B′ of B′′ such that |A′|, |B′| ≥ M1−5ε (but also
such that |A′ ·B′| ≤ M1+5ε). By Lemma 3.9, A′ will be (M, 10ε) (and so in particular
(M, ε)) plus friendly, and so we can remove it from A× and add it to A1 (i.e., let
A+ = A+ ∪ A′, A× = A× \ A′). Note that the union of disjoint-plus-friendly sets is
plus friendly with the same parameters (since a convex combination of low collision-
probability distributions has low collision probability by Lemma 3.5). We continue in
this way until either A× is (M, ε) times friendly or until |A×| ≤ M1−ε.

Using Lemma 3.11, we can obtain a collision-probability analogue of Corollary
1.6.

Lemma 3.12. Let A,B, C ⊆ F with |A| = |B| = |C| = M . Then A · B + C is
(M−ε)-close to having collision probability at most 1

M1+ε .
Proof. We split A into A+ and A× as per Lemma 3.11. The distribution A·B+C

is within M−ε statistical distance to a convex combination of the distribution X+ =

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1107

A+ · B + C and the distribution X× = A× · B + C. (Unless A+ or A× is empty, in
which case A · B + C is within M−ε statistical distance to one of these distributions.)
We will finish the proof by showing that for both distributions X+ and X×, if the
corresponding set is not empty, then the collision probability is at most 1

M1+ε .
Showing that cp(A+ · B + C) ≤ 1

M1+ε . Using Lemma 3.5, cp(A+ · B + C) ≤
maxb∈F cp(A+b + C). However, cp(A+b + C) = cp(A+ + Cb−1) since the latter
distribution is a permutation of the former distribution (obtained by multiplying
each element by b−1). Yet the fact that A+ is (M, ε) plus friendly implies that
cp(A+ + Cb−1) ≤ 1

M1+ε .
Showing that cp(A× ·B+C) ≤ 1

M1+ε . This follows immediately from the fact that
cp(A× · B) ≤ 1

M1+ε and since cp(A× · B + C) ≤ cp(A× · B) (as A× · B + C is a convex
combination of distributions of the form A× · B + c for some fixed c ∈ C).

3.3.1. Finishing up. Lemma 3.12 almost directly implies Lemma 3.1. First, we
use the known fact that if the distributions A,B, C have min-entropy at least m, then
the joint distribution A,B, C is a convex combination on independent distributions of
the form A′,B′, C′, where each of these is a uniform distribution on a set of size at least
M = 2m. Thus, it is sufficient to prove Lemma 3.12 for such distributions. By Lemma
3.12, for such distributions the distribution A′ ·B′+C′ is within M−ε distance of having
collision probability at most 1

M1+ε for some constant ε > 0. Now, by applying Lemma

3.6 (with K = M1+ε/2, L = M ε/2) we obtain that A′ · B′ + C′ is within statistical
distance M−ε +M−ε/4 from having min-entropy at least log(M (1+ε/2)) = (1+ ε/2)m.

3.4. Constructing the field F. Recall that our extractor obtains inputs in
{0, 1}n and needs to treat these inputs as elements of a field F of prime order. Un-
fortunately, there is no known deterministic polynomial-time algorithm that on input
1n outputs an n-bit prime (without assuming a strong number-theoretic assumption
about the distance between consecutive primes). Fortunately, in our setting we can
still find such a prime. The reason is that we can use some of our samples from the
high-entropy distribution to obtain such a prime. To do so, we will use the following
result on seeded dispersers (which we state here with the parameters suitable for our
purposes).

Theorem 3.13 (see [49]). For every δ > 0, there exists a constant d > 1 and
a polynomial-time computable function D : {0, 1}(10/δ)n × {0, 1}d logn → {0, 1}n such
that for every set A ⊆ {0, 1}(10/δ)n with |A| ≥ 22n, it holds that∣∣D(A, {0, 1}d logn) ∩ {0, 1}n

∣∣ ≥ (1 − 1
n2) · 2n.

Let D be the function obtained from Theorem 3.13 and identify its output with
a number in [2n]. We say that x ∈ {0, 1}(10/δ)n is “bad” if 2n + D(x, y) is not
a prime number for every y ∈ {0, 1}d logn. Because the set of primes has more
than 1/n2 density in the interval [2n, 2 · 2n], the set of all bad x ∈ {0, 1}(10/δ)n is
of size at most 22n. This means that if we take 10/δ samples x1, . . . , x10/δ from
10/δ independent distributions over {0, 1}n, each of min-entropy at least δn, then
the probability that the concatenation x of x1, . . . , x10/δ is bad is exponentially low

(at most 22n/2(10/δ)·δn = 2−8n). This means that with 1 − 2Ω(n) probability if we
enumerate over all seeds y ∈ {0, 1}d logn (which can be done in polynomial time),
then we will find some y such that 2n + D(x, y) is prime. Note that we can check
primality in deterministic polynomial time [1].18 Thus, we can construct the field F

18It is possible to use the same idea to run also a probabilistic primality testing algorithm using
some additional samples from the high-entropy sources.

1108 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

with very high probability by using the first (10/δ)n samples and the function D to
obtain a prime P ∈ [2n, 2n+1]. We then embed the set {0, 1}n in the field F = GF(P).
Note that since n ≥ logP − 1, there is no significant loss in relative entropy by this
embedding.

Using nonprime fields. A different approach to solving the problem of obtaining
the field F is to use a nonprime field such as GF(2p) (where p now is a small prime and
hence can be easily found) and then use Theorem 1.4 (the version proved in the ap-
pendix) instead of Theorem 1.5. This would yield the following variant of Lemma 3.1.

Lemma 3.14. There exists an absolute constant c > 0 such that for every prime p,
every δ > 0, and every distribution A,B, C over GF(2p) with H∞(A), H∞(B), H∞(C) >
δp, the distribution A · B + C is (2−εm)-close to having min-entropy at least min{(1 +
ε)m, 0.9 log |F|}, where ε = cδ.

3.5. Decreasing the statistical distance. We now show how we can decrease
the statistical distance by repetition. We use the following variant of an XOR-lemma.

Lemma 3.15. Let Y1, . . . ,Yt be independent distributions over F such that
dist(Yi, UF) < ε for every i = 1, . . . , t. Then

dist (Y1 + · · · + Yt, UF) ≤ εt.

Proof. We can represent each distribution Yi as a convex combination of the fol-
lowing form: With probability (1−ε) we get Ui (where each Ui is an independent copy
of the uniform distribution) and with probability ε an element of some distribution
Ỹi. Thus, one can think of the distribution Y1 + · · · + Yt as a convex combination,
where with probability εt we get an element of the form Ỹ1 + · · ·+ Ỹt and with prob-
ability 1 − εt get a distribution of the form Ỹ + UF for some distribution Ỹ , which
is independent of UF. In other words, with probability 1 − εt we get the uniform
distribution.

3.6. Proof of Lemma 3.2. Before proving Lemma 3.2, we prove the following
related lemma.

Lemma 3.16. Let F be any field of size N , and let A,B, C,D be four independent
random variables over F, where each variable has collision probability at most 1/M
for some M > N3/4. Then,

dist ((A− C) · (B −D), UF) < O(N3/2/M2),

where UF denotes the uniform distribution over F.
We will start with a variant, where we divide rather than multiply, and where

A = C and B = D. (Throughout this section, we will always use N to denote the
size of the field F.)

Lemma 3.17. Let A1,A2 be identical independent random variables over F with
collision probability at most 1/M for some M > N1/2, and let B1,B2 be likewise.
Then

dist
(
(A1 −A2) · (B1 − B2)

−1, UF

)
≤ O(N/M2).

(We can ignore the event that B1 = B2, and we need to divide by zero since it
happens with probability at most 1/M . Thus, no matter how the value of x/0 is
defined, it will not contribute more than 1/M to the statistical distance.)

Proof. Let s be an arbitrary nonzero element of F. The distribution A1 + sB1 is
a random variable over F and hence has collision probability at least 1

N . Hence, we

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1109

see that

Pr[(A1 + sB1) = A2 + sB2)] ≥ 1
N .

There are two ways that this equality can occur. If B1 = B2, then this equation can
hold only if A1 = A2. Otherwise, it holds only if s = (A1 − A2) · (B1 − B2)

−1, and
hence we get that

Pr[s = (A1 −A2) · (B1 − B2)
−1] + Pr[A(1) = A(2) ∧ B(1) = B(2)] ≥ 1

N .

Thus, Pr[s = (A1 − A2) · (B1 − B2)
−1] ≥ 1/N − 1/M2 for all s �= 0, so almost all

field elements are at least close to the uniform probability. The distance between two
distributions D1 and D2 can be expressed as 2

∑
s|D1(s)≥D2(s)

(D1(s)−D2(s)). Taking
D1 as the uniform distribution on F, and D2 as the above distribution, every s except
0 contributes at most 1/M2, and 0 contributes at most 1/N to this sum. Hence, the
statistical distance is at most 2N/M2 + 2/N = O(N/M2).

Lemma 3.18. Let X and Y be independent random variables on a set S of size
N . Then cp(X) + cp(Y) + 2 Pr[X = Y] ≥ 4/N .

Proof. Let X be distributed according to D0 and Y according to D1. Then let
D1/2 = 1/2D0 + 1/2D1. Then D1/2 is a probability distribution on S, so cp(D1/2) ≥
1/N . On the other hand, cp(D1/2) =

∑
s∈S(1/2D0(s)+1/2D1(s))

2 = 1/4(
∑

s∈S D0(s)
2+

2
∑

s∈S D0(s)D1(s) +
∑

s∈S D1(s)
2) = 1/4(cp(X) + 2 Pr[X = Y] + cp(Y)).

Lemma 3.19. Let A,B, C,D be four independent variables over F, each with
collision probability at most 1/M , where M > N1/2. Let A1,A2 be two independent
variables distributed in the same way as A, and let B1,B2, C1, C2,D1,D2 be distributed
likewise. Then for any s ∈ F, s �= 0, Pr[s = (A1 − A2)(B2 − B1)

−1] + Pr[s =
(C1 − C2)(D2 −D1)

−1] + 2 Pr[s = (A− C)(D − B)−1] ≥ 4/N −O(1/M2).
Proof. Let X be A + sB and Y be C + sD. Note that, by a similar case analysis

of the proof of Lemma 3.17, cp(X) ≤ Pr[s = (A1 −A2)(B2 −B1)
−1]+ 1/M2, cp(Y) ≤

Pr[s = (C1 − C2)(D2 −D1)
−1] + 1/M2 and Pr[X = Y] ≤ Pr[s = (A− C)(D −B)−1] +

1/M2 (using Lemma 3.3 to bound the probabilities that A = C and B = D). The
claim then follows from Lemma 3.18.

Lemma 3.20. Let A,B, C,D be four independent random variables over F, each
with collision probability at most 1/M , where M > N1/2. Then

dist
(
(A− C) · (B −D)−1, UF

)
< O(N/M2),

where UF denotes the uniform distribution over F.
Proof. The statistical distance between (A−C)(D−B)−1 and UF can be computed

as the sum of Pr[UF = s]−Pr[(A−C)(D−B)−1 = s] for all s ∈ F, where this difference
is positive. Since Pr[UF = s] = 1/N , using Lemma 3.19, we see that for all such s �= 0
(the case s = 0 can add at most 1/M to the distance) it is the case that

1

N
− Pr[s = (A− C)(D − B)−1]

≤ 1

2
Pr[s = (A1−A2)(B2−B1)

−1]− 1

N
− 1

2
Pr[s = (C1−C2)(D2−D1)

−1]+O

(
1

M2

)

≤ 1

2

∣∣∣Pr[s = (A1−A2)(B2−B1)
−1]− 1

N

∣∣∣+1

2

∣∣∣1
2

Pr[s = (C1−C2)(D2−D1)
−1]

∣∣∣+O

(
1

M2

)
.

1110 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

Summing this over all such s, we get that

dist
(
(A− C) · (B −D)−1, UF

)

≤ 1

2
dist

(
(A1 −A2) · (B2 − B1)

−1, UF

)
+

1

2
dist

(
(C1 − C2) · (D2 −D1)

−1, UF

)
+O

(
N

M2

)

which is at most O(N/M2) by Lemma 3.17.
To finish the proof we also use the following simple observation about the relation

between the L2 and L1 norms, or in our notation, between the statistical distance of
a random variable from uniform and the difference between the collision probability
of this random variable and 1/N .

Lemma 3.21. Let Z be a random variable over F. Let δ = dist(Z, UF). Then
1/N + δ2/N ≤ cp(Z) ≤ 1/N + δ2.

Proof. Let δs = |Pr[Z = s] − 1/N |. Then
∑

s∈F
δs = δ, and

∑
s∈F

δ2
s =∑

s(Pr[Z = s])2 − 2/N
∑

s[Pr[Z = s] + N/N2 = cp(Z) − 1/N . By convexity,∑
δ2
s is minimized when all δs = δ/N and maximized when one δs = δ. Thus,

δ2/N ≤ cp(Z) − 1/N ≤ δ2.
To obtain Lemma 3.16, we note that for every two distributions X ,Y over F\{0},

cp(X · Y) = cp(XY). Indeed, x · y = x′ · y′ if and only if x
y′ = x′

y . By Lemma

3.20, dist((A − C)(D − B)−1, UF) = O(N/M2). Thus, from the previous lemma,
cp((A − C)(D − B)) = cp((A − C)(D − B)−1) ≤ 1/N + O(N2/M4). Then it follows
from the lemma above that dist((A − C)(D − B),U)2/N ≤ O(N2/M4), so dist((A −
C)(D − B),U) ≤ O(N3/2/M2).

Proving Lemma 3.2. We can now prove Lemma 3.2. Indeed, for every nine dis-
tributions X1, . . . , sX9, cp(Ext2(X1, . . . ,X9)) ≤ cp(Ext1(X1,X2,X3) ·Ext1(X4,X5,X6)),
since adding the additional independent distribution Ext1(X7,X8,X9) cannot increase
the collision probability. Hence, it is enough to prove that for X1, . . . ,X6 of min-
entropy 0.9 logN , the distribution (X1 · X2 + X3) · (X4 · X5 + X6) is N−0.1 close to
the uniform distribution over F. Yet this distribution is a convex combination of
distributions of the form (X1 · x2 + X3) · (X4 · x5 + X6) for fixed (and with very high
probability nonzero) x2, x5 ∈ F. Any such distribution is of the form (A−B)(C −D)
(for A = X1 · x2, B = −X3, C = X4 · x5, D = −X6), and hence the result is implied by
Lemma 3.16.

4. A constant-samples same-source disperser for low min-entropy. In
this section we prove Theorem 1.3. That is, we construct a constant-samples same-
source disperser for subsets of {0, 1}n of size nO(1). A central tool we will use is
the deterministic coin tossing technique. This technique was used in several contexts
in computer science (e.g., the parallel algorithm of [13]), and it was also used, in a
context very similar to ours, by Erdős and Hajnal (where it was called the “stepping-
up lemma”; see section 4.7 of Graham, Rothschild, and Spencer [22]) and by Fiat and
Naor [18]. By “deterministic coin tossing” we mean the function ct : {0, 1}2n → [n]
defined as follows: For every x, y ∈ {0, 1}n, ct(x, y) is equal to the first position i
such that xi �= yi (if x = y, then we let ct(x, y) = n). The following property of this
function will be useful to us.

Lemma 4.1. For every A ⊆ {0, 1}n, |ct(A,A)| ≥ log |A|.
Proof. Let S ⊆ [n] denote ct(A,A), and suppose for the sake of contradiction

that |A| > 2|S|. Then, by the pigeonhole principle, there exist two distinct strings
x, y ∈ A such that x agrees with y on all the coordinates of S. However, for such x
and y, clearly ct(x, y) �∈ S.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1111

The main idea behind our construction of a disperser is to apply the function ct
in order to map our initial domain {0, 1}n to the much smaller domain [n] and then
to use brute force to find an optimal disperser (or even extractor) on this smaller
domain. In fact, we will need to apply the function twice to reduce our domain to the
domain [logn] so we can apply brute force and obtain an optimal disperser for the
smaller domain. That is, we use the following simple lemma.

Lemma 4.2. For every constant m and every n, it is possible to construct in
2O(n) time the table for a function Eopt : [n] × [n] → [m] such that for every A ⊆ [n]
with |A| > log n + 10m, it holds that |Eopt(A,A)| ≥ m

2 .
Proof. One way to do this construction is to go over all possible functions until

we find a function satisfying this condition (there will exist such a function because a
random function satisfies it with high probability). However, enumerating all possible

functions will take mn2

-time. Note that testing this condition only requires going over
all such subsets A, which are at most min{2n, n10m+logn} many.

Thus, if we reduce the number of functions to test to something smaller than
this number, then we can reduce the overall time to 2O(n). This can be done by
considering functions from a sample space over [m]n

2

which is (2−n)-close to being
(log n + 10m)2-wise independent. There are explicit constructions for such sample
spaces with 2O(n) many points [30].

Proof of Theorem 1.3. To prove Theorem 1.3, we consider the following disperser
Disp:

Disp(x1, . . . , x8) = Eopt

(
ct
(
ct(x1, x2), ct(x3, x4)

)
, ct

(
ct(x5, x6), ct(x7, x8)

))
.

It clearly runs in polynomial time. We will prove that for every set A of size at least
nd2m

, |Disp(A, . . . , A)| ≥ m
2 . Thus, Disp is a disperser with “statistical distance”

equal to 1
2 . Such a disperser can be modified to obtain a disperser according to

our standard definition. For example, this can be done by embedding [m] in some
prime field [p] (with m ≤ p ≤ 2m) and letting Disp′(x1, . . . , x32) = Disp(x1, . . . , x8) +
Disp(x9, . . . , x16) + Disp(x1, . . . , x24) + Disp(x25, . . . , x32). By the Cauchy–Davenport
inequalities it will hold that for every set A as above, Disp′(A, . . . , A) = [p].

To prove the bound on A, we note that by Lemma 4.1, if |A| ≥ nd2m

, then
ct(ct(A,A), ct(A,A)) ≥ log log n + m + log d. Since we apply Eopt on a domain of
size log n, by Lemma 4.2, this means that for d large enough, |Eopt(A,A)| ≥ m

2 , thus
finishing our proof.

5. Subsequent and future work. In this work we have given the first extrac-
tors for a constant number of independent sources, each of linear entropy. Unfor-
tunately the number of sources needed is a function of the (constant) entropy rate,
and the most obvious subsequent challenge was to remove this dependency. Following
this work, there has been a sequence of works which, using similar additive number-
theoretic techniques and additional tools, obtained significant improvements on this
and other fronts.

Barak et al. [3] gave the first construction of an extractor with a fixed number of
sources that works for every linear entropy. Specifically, they give explicit determinis-
tic extractors from three independent sources of any linear entropy. This was further
improved by Raz [37], whose work needs only one of the sources to have linear entropy,
while the others can have only a logarithmic amount of entropy. Building on both
these works, Zuckerman [50] managed to obtain a new seeded extractor with shorter
seed length for linear entropy and used this to obtain some improved inapproximabil-
ity results for the clique and chromatic number problems. Rao [36] obtained multiple

1112 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

source extractors that require only O(log k
logn) sources of k entropy, thus achieving a

constant number of sources even for polynomially small entropy.
On the 2-source front, the work of Barak et al. [3] gave a 2-source disperser

for sources of entropy δn for arbitrarily small δ (and in particular δ < 1/2), thus
improving on the previous explicit constructions for bipartite Ramsey graphs. Pudlak
[34] gave a very simple construction of such a disperser for the case δ = 1

2 − ε for some
small ε > 0, and Bourgain [7] gave a two source extractor for this case. Barak
et al. [4] gave a 2-source disperser for sources of entropy nδ for arbitrarily small δ
(and in particular δ < 1/2), thus beating the Frankl–Wilson [19] construction for a
(nonbipartite) Ramsey graph.

In addition, Barak et al. [3] also gave a 1-source disperser for affine sources (a
uniform distribution of an affine subspace) of linear entropy. Bourgain [8] gave an
extractor with the same parameters, and Gabizon and Raz [20] gave different affine
extractors with incomparable parameters.

To summarize, after nearly 20 years of no progress, there seem to be new and
exciting ideas, tools, and results on deterministic extraction from independent sources,
and we expect more to soon follow.

Appendix. Proof of Theorem 1.4. In this section, we prove Theorem 1.4
with a better explicit dependence between the constants ε and δ (namely, ε = Θ(δ)).
That is, we prove the following theorem.

Theorem A.1. There exists an absolute constant c0 > 0 such that for every field
F and δ > 0 such that |F|1/k is not an integer for every integer 2 ≤ k ≤ (2/δ), and
every set A ⊆ F with |F|δ < |A| < |F|1−δ, it holds that

max{|A + A|, |A · A|} ≥ |A|1+c0δ.

Note that Theorem A.1 indeed implies Theorem 1.4 since a finite field F has a
subfield of size M if and only if M = |F|1/k for some integer k.

We prove Theorem A.1 by proving the following two claims.
Claim A.2. There exists a fixed-size uniform rational expression r(·) such that

for every δ, every field F satisfying the conditions of Theorem A.1, and every set
B ⊆ F with |B| ≥ |F|δ,

|r(B, . . . ,B)| ≥ min{|B|1+δ, |F|}.

By a rational expression we mean an expression involving only the operations
+,−, ·, /, and variable names, but no coefficients (for example, (x1 − x2)/(x2 · x3 +
x4)).

19 By fixed-size we mean that the number of operations and variables in the
expression does not depend on δ, F, or A. A rational function is obviously a division
of two polynomials. We say that a polynomial is uniform if all its monomials have
the same degree. We say that a rational function is uniform if it is a division of two
uniform polynomials. In fact, the expression r obtained from the proof of Claim A.2
will be very simple: it will be a uniform 16-variable rational expression with both the
nominator and the denominator of degree 2.

Claim A.3. For every uniform rational expression r(·) there is a constant c
(depending on r(·)) such that if A ⊆ F satisfies |A+A|, |A·A| ≤ |A|1+ρ (for sufficiently
small ρ > 0), then there exists a set B ⊆ A with |B| ≥ |A|1−cρ, but |r(B, . . . ,B)| ≤
|A|1+cρ.

19Throughout this section we define x/0 as 0 (it will not matter much since we will always have
that the event that the denominator is zero in the expression has negligible probability).

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1113

We note that this actually holds for nonuniform rational expressions as well, but
the proof is slightly easier for uniform expressions.

Proof of Theorem A.1 using Claims A.2 and A.3. Claims A.2 and A.3 together
imply Theorem A.1. Indeed, let r(·) be the rational expression obtained from Claim
A.2 and let c be the constant (depending on r) obtained from Claim A.3. If for δ,F
and A, as in the conditions of the theorem, both |A + A| and |A · A| are less than
|A|1+δ/(10c), then there is a subset B of size at least |A|1−cδ/(10c) ≥ |F|δ/2 such that
|r(B, . . . ,B)| ≤ |A|1+δ/10 < |B|1+δ/2, and thus we obtain a contradiction.

We note that Claim A.3 follows almost immediately from Lemmas 2.4 and 3.1 in
[9]. Nevertheless, for the sake of completeness, we do provide a proof of Claim A.3
(following lines similar to the proofs of [9]) in section A.2. We now move to the proof
of Claim A.2.

A.1. Proof of Claim A.2. To prove Claim A.2 we will prove the following even
simpler claim.

Claim A.4. Let F be any field and let B ⊆ F and k ∈ N (with k ≥ 2) be such
that |F|1/k < |B| ≤ |F|1/(k−1). Then |B−B

B−B | ≥ |F|1/(k−1).

Proof. Suppose otherwise that |B−B
B−B | < |F|1/(k−1). Thus, we can find s1 �∈ B−B

B−B .

Similarly, if k > 2, then we can find s2 �∈ B−B
B−B + s1

B−B
B−B (since this set is of size

at most |B−B
B−B |2 < |F|). In this way we define inductively s1, . . . , sk−1 such that for

1 < i ≤ k − 1,

si �∈ B−B
B−B + s1

B−B
B−B + · · · + si−1

B−B
B−B .

Consider the function f(x0, . . . , xk−1) = x0 + s1x1 + · · · + sk−1xk−1. This is a
function from Bk to F, where |B|k > |F|, and hence it has a collision. That is, there
are two vectors �x = (x0, . . . , xk−1) and �x ′ = (x′

0, . . . , x
′
k−1) such that �x �= �x ′, but

f(�x) = f(�x ′). If we let i be the maximum index such that xi �= x′
i, we see that

(x0 − x′
0) + s1(x1 − x′

1) + . . . + si−1(xi−1 − x′
i−1) = si(x

′
i − xi).

Dividing by (x′
i − xi), we get that si = y0 + s1y1 + · · · + si−1yi−1, where all the yi’s

are members of B−B
B−B , contradicting our choice of si.

To prove Claim A.2 we let F,δ, B be as stated in the theorem and choose k such
that |F|1/k < |B| ≤ |F|1/(k−1). By one invocation of B−B

B−B , we get to a set of size

at least |F|1/(k−1), but since that is not an integer, this set is of size larger than
|F|1/(k−1) (this is for k > 2; for k = 2 we get to the entire field F). Thus, if we

compose this expression two times (i.e., let r(x1, . . . , x16) = r′(x1,...,x4)−r′(x5,...,x8)
r′(x9,...,x12)−r′(x13,...,x16)

,

where r′(a, b, c, d) = a−b
c−d), then we get that for k > 2,

|r(B, . . . ,B)| ≥ |F|
1

k−2 = |F|
1

k−1 (1+
1

k−2) ≥ |B|1+δ,

where for k = 2, r(B, . . . ,B) = F.

A.2. Proof of Claim A.3. We now prove Claim A.3. Before turning to the
actual proof, we state two number-theoretic lemmas which we will use. These lemmas
are variants of the lemmas presented in section 3.2.

A.2.1. More number-theoretic lemmas.
Stronger form of Gowers’s lemma. We will use the following generalized and

stronger form of Lemma 3.8 (see [21, 9] and [43, Claim 4.4]). Because it is such a useful

1114 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

lemma, we state it below in the most general (and, unfortunately, also cumbersome)
form.

Lemma A.5. Let A1, . . . ,Ak be subsets of some group G with |Ai| = M for all

i ∈ [k]. Then there exists C = C(k) such that for every ρ > 0, if cp(
∑k

i=1 Ai) ≥ 1
M1+ρ ,

then there are k subsets A′
1, . . . ,A′

k with A′
i ⊆ Ai and |A′

i| ≥ M1−Cρ for every i ∈ [k]
satisfying

(A.1)

∣∣∣∣∣
k∑

i=1

A′
i

∣∣∣∣∣ ≤ M1+Cρ.

Moreover, (A.1) is demonstrated by the fact that every element z ∈
∑k

i=1 A′
i can

be represented in M �−1−C′ρ different ways as a sum z = y1 + · · ·+ y� (for C ′ = C ′(k)
and � = 2k2 − k), where each of the yj’s is a member of Ai or −Ai for some i = i(j)
(with the choice of a sign also being a function of j).

Furthermore, if for all i ∈ [k], Ai = A or Ai = −A for some set A, then all the
subsets A′

i are of the form A′
i = A′ or A′

i = −A′ for some subset A′ ⊆ A.
It is easy to see that by applying Lemma A.5 for k = 2 we get Lemma 3.8

(perhaps with 10 replaced by a different constant). Lemma A.5 can be proven by a
generalization of the proof of Lemma 3.8; see [43].20 When using Lemma A.5, we will

always be in the case that we have an upper bound on the set size of
∑k

i=1 Ai (i.e.,

|
∑k

i=1 Ai| ≤ M1+ρ) and not just a lower bound on its collision probability.
We note that in the proofs below we will use several times this technique of

showing that some set B is not much larger than M by showing that every b ∈ B can
be represented in roughly M �−1 ways as a sum of � elements, each from some set D
of size M .

Sumset estimates. We will also use the following lemma, which is a variant of
Lemma 3.7.

Lemma A.6 (see [33, 40]). Let A,B be subsets of some Abelian group G with
|A| = |B| = M and let ρ > 0 be some number. If |A + B| ≤ M1+ρ, then

|A ± B ± · · · ± B︸ ︷︷ ︸
h times

| ≤ M1+2hρ.

We note that this lemma immediately implies a similar result for sets that are
of slightly different sizes. That is, if |A| = M and |B| = M1−ε, then we can break
up A to A1, . . . ,AMε that are of the same size as B. We then have that |Ai + B| ≤
|A + B| ≤ M1+ρ. and hence the lemma implies that for every i,

Ai ± B ± · · · ± B︸ ︷︷ ︸
h times

| ≤ M1+2hρ.

However, A±B± · · · ± B is just the union of Ai ±B± · · · ± B for all i, and hence we
get that

|A ± B ± · · · ± B︸ ︷︷ ︸
h times

| ≤ M1+2hρ+ε.

20We note that this lemma is not stated exactly in this form in [43]. Rather, Claim 4.4 there
states that under these conditions every such z can be represented in roughly M2k−2 ways as a
sum of 2k − 1 elements wl, where each of these elements can be represented in roughly Mk−1 ways
as a sum of k elements in the Ai’s. It is also stated in [43] in terms of distance from having high
min-entropy rather than high collision probability; see footnote 16.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1115

Similarly if |B| = M and |A| = M1−ε, then

|A ± B ± · · · ± B︸ ︷︷ ︸
h times

| ≤ M1+2hρ+hε

since if we split sB into B1, . . . ,BMε , then we have that A±B ± · · · ± B is the union
of sets of the form A± Bi1 ± · · · ± Bih for all i1, . . . , ih ∈ [M ε].

A.2.2. The actual proof. In fact, to prove Claim A.3 it is enough to prove the
following claim.

Claim A.7. For every integer k > 0, there exists a constant C = C(k) > 0 such
that for every ρ > 0, if A ⊆ F satisfies |A + A|, |A · A| ≤ |A|1+ρ, then there is a set
B ⊆ A such that |B| ≥ |A|1−Cρ, but |Bk − Bk| ≤ |A|1+Cρ.

Obtaining Claim A.3 from Claim A.7. Claim A.7 implies Claim A.3 by applying
Lemma A.6. Indeed, suppose that r is a rational expression, where both the numerator
and denominator have at most k′ monomials, each of degree k′ (if one of them has
monomials of smaller degree than k′, we can multiply with a uniform polynomial to
make the degree k′). Let k = 4k′2 and let B be the subset of A obtained from Claim
A.7 such that |Bk −Bk| is at most |A|1+Cρ for some constant C = C(k). Since |B| ≥
|A|1−Cρ, this means that |Bk − Bk| ≤ |B|1+C′ρ for some different constant C ′. This

implies by Lemma A.6 that |kBk| ≤ |B|1+2C′kρ. Now, kBk ⊇ C def
= (k′Bk′

)(k′Bk′
),

and hence the size of C is also at most |B|1+2C′kρ. Applying Lemma A.6 again we get

that
∣∣∣k′Bk′

k′Bk′

∣∣∣ ≤ |A|1+4C′kρ. However, r(B, . . . ,B) ⊆ k′Bk′

k′Bk′ and hence we are done.

Proof of Claim A.7. We now turn to proving Claim A.7. Let A be a set satisfying
the conditions of the claim, and denote M = |A|. We will prove that for some constant
C = C(k) > 0, there is a subset B ⊆ A of size at least M1−Cρ such that any member
of the set Bk − Bk can be represented in at least M �−1−Cρ different ways as a sum
d1 + · · ·+ d�, where all the elements di come from a set D of size at most M1+Cρ for
some � = �(k). This clearly implies that |Bk − Bk| ≤ M1+C′ρ for some constant C ′,
thus proving the claim.

Proof idea: The case k = 2. To illustrate the proof idea, we now sketch the proof
for the case k = 2. The proof for general k follows in exactly the same way, although
with more cumbersome notation. Under the conditions of the claim, |A+A| ≤ |A|1+ρ,
and hence cp(A − A) = cp(A + A) ≥ |A|1−ρ. Hence, by Lemma A.5, there exists a
set A′ ⊆ A with |A′| ≥ M1−Cρ (where C is some absolute constant independent of ρ)
such that not only |A′ −A′| ≤ M1+Cρ but actually this fact can be demonstrated by
the fact that every element of A′ −A′ can be represented in at least M5−Cρ different
ways in the form a1 − a2 + a3 − a4 + a5 − a6, where for i = 1, . . . , 6, ai ∈ A.21

We know that every member of A′−A′ can be represented in roughly M5 different
ways as a1 − a2 + a3 − a4 + a5 − a6 with the ai’s in A. Now, if we multiply this by an
arbitrary element of A, we get that every member of (A′−A′)A can be represented in
roughly M5 different ways as b1−b2+b3−b4+b5−b6 with the bi’s in A·A. Since by the
conditions of the claim, A·A is also of roughly size M , we get that the set (A′−A′)A
is also “not large” (i.e., of size M1+C′ρ for some absolute constant C ′). Now consider

an element y − z of the set A′2 − A′2. For the sake of simplicity, we assume for a
moment (with loss of generality) that any y in A′ · A′ can be represented in roughly

21For simplicity of exposition we assumed that the pattern of + and − signs that is obtained from
Lemma A.5 is as written above. The proof clearly follows through regardless of the fixed pattern we
use.

1116 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

M different ways as y = y1y2 with y1, y2 ∈ A′.22 Since z ∈ A′ · A′, it is equal to
z1z2 for some z1, z2 ∈ A′. Every representation y1y2 of y induces a representation of
y − z = y1y2 − z1z2 as (y1 − z1)y2 + z1(y2 − z2), and so we get that every element of

A′2 − A′2 can be represented as d1 − d2, with d1, d2 ∈ D def
= (A′ − A′)A in roughly

M different ways. However, since we already showed that the size of D is roughly M ,
this proves that A′2 −A′2 is also of size roughly M , and hence we are done (for the
case k = 2).

Proving for general k. We now turn to proving the claim rigorously and for any
k. Recall that our goal is to find a not-too-small subset B of A such that Bk −Bk can
be represented in roughly M �−1 ways as a sum of � elements from a set D that is not
too large. We will start by defining the set D.

Let � be some number, and let a, b ∈ A′ (where A′ is obtained from Lemma A.5 as
above) and c ∈ A′�. By the same reasoning as above, we get that the element (a− b)c
can be represented in at least M5−Cρ different ways as a1c−a2c+a3c−a4c+a5c−a6c,
or in other words, it can be represented in at least M5−C′ρ different ways as b1 − b2 +
b3−b4 +b5−b6 for bi ∈ A�+1 for i = 1, . . . , 6. By the multiplicative version of Lemma
A.6, |A�+1| ≤ M1+3�ρ, and hence the set (A′ −A′)A′� is “small” (i.e., of size at most
M6(1+3�ρ)M−(5−C′ρ) ≤ M1+20C′�ρ). Using again the multiplicative version of Lemma

A.6 (setting A = (A′ − A′)A′�−1, B = A′), we get that the set (A′ − A′)A′�A′−�′
is

also “small” (i.e., of size at most M1+C′′ρ for some constant C ′′ = C ′′(�, �′)).23 Using

the fact that (A′−1 −A′−1
) ⊆ (A′−A′)A′−2

, we get that for any �1, �2, the set D�1,�2

defined as

D�1,�2 = (A′−1 −A′−1
)A′�1A′−�2 ∪ (A′ −A′)A′�1A′−�2

is of size at most M1+C′′′ρ for some constant C ′′′ depending on �1, �2. We define

D def
= ∪�1+�2=�sD�1,�2 for � as obtained by Lemma A.5 (i.e., � = 2k2 − k). As desired,

we have that |D| ≤ M1+Cρ, where C is a constant depending on �.
Defining the set B. We now turn to defining the required set B. Utilizing Lemma

A.5 again, we obtain that for some absolute constant D = D(k), there is a set B ⊆
A′ with |B| ≥ M1−Dρ, and every element in Bk can be represented in M �−1−Dρ

ways as a1 · · · a�, where ai is in A′ or in A′−1 for i = 1, . . . , � (for � = 2k2 − k).
Let y − z be a member of Bk − Bk. Fix one representation z = z1 · · · z� of z as a
multiplication of elements of A′ or A′−1. The element y can be represented M �−1−Dρ

times as y = y1 · · · y� with yi ∈ A′ for i = 1, . . . , �. For each such representation
we define di = y1 · . . . · yi−1(yi − zi)zi+1 · · · z�. Note that

∑�
i=1 di =

∏�
i=1 yi −∏�

i=1 zj = y − z. Also note that for every i, di ∈ D, where D is the set defined
above. The map (y1, . . . , y�) �→ (d1, . . . , d�) is one-to-one (indeed, given z1, . . . , z� we
can recover y1, . . . , y� from d1, . . . , d�). Hence, we get that each member of Bk − Bk

can be represented in M �−1−Dρ different ways as
∑�

i=1 di with di ∈ D, implying that

|Bk − Bk| ≤ M1+D′ρ for D′ = D′(k).

Acknowledgments. We thank Amir Shpilka for many valuable discussions dur-
ing the early stages of this research. We also thank the anonymous referee for many
useful comments and corrections on an earlier version of this manuscript.

22We will not be able to get to that situation in the actual proof that follows, but we will
approximate it using the multiplicative version of Lemma A.5.

23Again, the case of division by zero does not matter, but for simplicity, we can just remove 0
from the set A′ if it is there.

EXTRACTING RANDOMNESS USING FEW INDEPENDENT SOURCES 1117

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena, PRIMES Is in P, Technical report, Department of
Computer Science and Engineering, Indian Institute of Technology Kanpur, India, 2002.

[2] N. Alon, Tools from higher algebra, in Handbook of Combinatorics, Vol. 1, 2, Elsevier, Ams-
terdam, 1995, pp. 1749–1783.

[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson, Simulating indepen-
dence: New constructions of condensers, Ramsey graphs, dispersers, and extractors, in
Proceedings of the 46th STOC 05, pp. 1–10, 2005.

[4] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson, 2-source dispersers for subpolynomial
entropy and Ramsey graphs beating the Frankl-Wilson construction, in Proceedings of the
38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 671–
680.

[5] B. Barak, R. Shaltiel, and E. Tromer, True random number generators secure in a changing
environment, in Proceedings of the Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2003, pp. 166–180. Lecture Notes in Comput. Sci 2779, Springer, Berlin.

[6] M. Blum, Independent unbiased coin flips from a correlated biased source: A finite state
Markov chain, in Proceedings of the 25th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, Los Alamitos, CA, 1984, pp. 425–433.

[7] J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, In-
ternat. J. Number Theory, 1 (2005), pp. 1–32.

[8] J. Bourgain, On the Construction of Affine Extractors, Geometric and Functional Analysis,
to appear.

[9] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications,
Geom. Funct. Anal., 14 (2004), pp. 27–57.

[10] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and probabilis-
tic communication complexity, in Proceedings of the 26th Annual IEEE Symposium on
Foundations of Computer Science, IEEE, Los Alamitos, CA, 1985, pp. 429–442.

[11] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky, The bit
extraction problem of t-resilient functions (preliminary version), in Proceedings of the 26th
Annual IEEE Symposium on Foundations of Computer Science, IEEE, Los Alamitos, CA,
1985, pp. 396–407.

[12] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, IEEE, Los Alamitos, CA, 1989, pp. 14–19.

[13] R. Cole and U. Vishkin, Deterministic coin tossing and accelerating cascades: Micro and
macro techniques for designing parallel algorithms, in Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1986, pp. 206–219.

[14] Y. Dodis and R. Oliveira, On extracting private randomness over a public channel, in
Approximation, Randomness, and Combinatorial Optimization, Springer, Berlin, 2003,
pp. 252–263.

[15] Y. Dodis and J. Spencer, On the (non)universality of the one-time pad, in Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, IEEE, Los Alamitos,
CA, 2002, pp. 376–388.

[16] A. Elbaz, Improved Constructions for Extracting Quasi-Random Bits from Sources of Weak
Randomness, Master’s thesis, Weizmann Institute of Science, Rehovot, Israel, 2003.

[17] P. Erdős and E. Szemerédi, On sums and products of integers, in Studies in Pure Mathe-
matics, Birkhäuser, Basel, 1983, pp. 213–218.

[18] A. Fiat and M. Naor, Implicit O(1) probe search, SIAM J. Comput., 22 (1993), pp. 1–10.
[19] P. Frankl and R. M. Wilson, Intersection theorems with geometric consequences, Combina-

torica, 1 (1981), pp. 357–368.
[20] A. Gabizon and R. Raz, Deterministic extractors for affine sources over large fields, in Pro-

ceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, IEEE,
Los Alamitos, CA, 2005, pp.407–416.

[21] W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four,
Geom. Funct. Anal., 8 (1998), pp. 529–551.

[22] R. L. Graham, B. L. Rothschild, and J. L. Spencer, Ramsey Theory, John Wiley & Sons,
New York, 1980.

[23] R. L. Graham and J. H. Spencer, A constructive solution to a tournament problem, Canad.
Math. Bull., 14 (1971), pp. 45–48.

[24] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

1118 BOAZ BARAK, RUSSELL IMPAGLIAZZO, AND AVI WIGDERSON

[25] J. Kamp and D. Zuckerman, Deterministic extractors for bit-fixing sources and exposure-
resilient cryptography, in Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, IEEE, Los Alamitos, CA, 2003, pp. 92–101.

[26] S.V. Konyagin, A Sum-Product Estimate in Fields of Prime Order, Arxiv technical report,
http://arxiv.org/abs/math.NT/0304217 (2003).

[27] C. J. Lu, O. Reingold, S. Vadhan, and A. Wigderson, Extractors: Optimal up to constant
factors, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2003, pp. 602–611.

[28] J. L. McInnes and B. Pinkas, On the impossibility of private key cryptography with weakly
random keys, in Crypto ’90, Lecture Notes in Comput. Sci. 537, Springer, Berlin, 1990,
pp. 421–436.

[29] E. Mossel and C. Umans, On the complexity of approximating the VC dimension, J. Comput.
System Sci., 65 (2002), pp. 660–671.

[30] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,
SIAM J. Comput., 22 (1993), pp. 838–856.

[31] M. B. Nathanson, Additive Number Theory. Inverse Problems and the Geometry of Sumsets,
Graduate Texts in Math. 165, Springer-Verlag, New York, 1996.

[32] Y. Peres, Iterating von Neumann’s procedure for extracting random bits, Ann. Statist., 20
(1992), pp. 590–597.

[33] H. Plünnecke, Eine zahlentheoretische Anwendung der Graphentheorie, J. Reine Angew.
Math., 243 (1970), pp. 171–183.

[34] P. Pudlak, On Explicit Ramsey Graphs and Estimates of the Number of Sums and Products,
Topics in Discrete Mathematics, Klazar, Kratochvil, Loebl, Matousek, Thomas, and Valtar,
Springer, 2006, pp. 169–175.

[35] P. Pudlak and V. Rodl, Pseudorandom sets and explicit constructions of Ramsey graphs,
Quaderni di Matematica, Vol. 13, J. Krajicek, ed., Dipartimanto di Matematica, Seconda
Universita di Napoli, Caserta, 2004, pp. 327–346.

[36] A. Rao, Extractors for a constant number of polynomially small min-entropy independent
sources, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2006, pp. 497–506.

[37] R. Raz, Extractors with weak random seeds, in Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, ACM, New York, 2005, pp. 11–20.

[38] O. Reingold, M. Saks, and A. Wigderson, personal communication, 2003.
[39] I. Ruzsa, An application of graph theory to additive number theory, Sci. Ser. A: Math. Sci., 3

(1989), pp. 97–109.
[40] I. Ruzsa, Sums of finite sets, in Number Theory (New York, 1991–1995), Springer, New York,

1996, pp. 281–293.
[41] M. Santha and U. V. Vazirani, Generating quasi-random sequences from slightly-random

sources, in Proceedings of the 25th Annual IEEE Symposium on Foundations of Computer
Science, IEEE, Los Alamitos, CA, 1984, pp. 434–440.

[42] R. Shaltiel, Recent developments in extractors, Bull. Eur. Assoc. Theoret. Comput. Sci.
EATCS No. 77, (2002), pp. 67–95.

[43] B. Sudakov, E. Szemerédi, and V. H. Vu, On a question of Erdös and Moser, Duke Math.
J., 129 (2005), pp. 129–155.

[44] L. Trevisan and S. Vadhan, Extracting randomness from samplable distributions, in Proceed-
ings of the 41st Annual IEEE Symposium on Foundations of Computer Science, IEEE, Los
Alamitos, CA, 2000, pp. 32–42.

[45] U. Vazirani, Strong communication complexity or generating quasirandom sequences from two
communicating semirandom sources, Combinatorica, 7 (1987), pp. 375–392.

[46] U. Vazirani, Efficiency considerations in using semi-random sources, in Proceedings of the
19th Annual ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 160–
168.

[47] J. von Neumann, Various techniques used in connection with random digits, Appl. Math. Ser.
12 (1951), pp. 36–38.

[48] D. Zuckerman, General weak random sources, in Proceedings of the 31st Annual IEEE Sym-
posium on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1990, pp. 534–543.

[49] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica, 16 (1996),
pp. 367–391.

[50] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic
number, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
ACM, New York, 2006, pp. 681–690.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1119–1159

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP
PROBLEMS∗

ANDREJ BOGDANOV† AND LUCA TREVISAN‡

Abstract. We show that if an NP-complete problem has a nonadaptive self-corrector with re-
spect to any samplable distribution, then coNP is contained in NP/poly and the polynomial hierarchy
collapses to the third level. Feigenbaum and Fortnow [SIAM J. Comput., 22 (1993), pp. 994–1005]
show the same conclusion under the stronger assumption that an NP-complete problem has a non-
adaptive random self-reduction. A self-corrector for a language L with respect to a distribution D is a
worst-case to average-case reduction that transforms any given algorithm that correctly decides L on
most inputs (with respect to D) into an algorithm of comparable efficiency that decides L correctly
on every input. A random self-reduction is a special case of a self-corrector, where the reduction,
given an input x, is restricted to only making oracle queries that are distributed according to D. The
result of Feigenbaum and Fortnow depends essentially on the property that the distribution of each
query in a random self-reduction is independent of the input of the reduction. Our result implies
that the average-case hardness of a problem in NP or the security of a one-way function cannot be
based on the worst-case complexity of an NP-complete problem via nonadaptive reductions (unless
the polynomial hierarchy collapses).

Key words. average-case complexity, worst-case to average-case reduction, one-way function

AMS subject classification. 68Q17

DOI. 10.1137/S0097539705446974

1. Introduction. The fundamental question in the study of average-case com-
plexity is whether there exist distributional problems in NP that are intractable on
average. A distributional problem in NP is a pair (L,D), where L is a decision prob-
lem in NP, and D is a samplable distribution on instances. We will say that such a
problem is tractable on average if for every polynomial p there exists a polynomial-
time algorithm A such that for all sufficiently large n, when given a random instance
of length n from distribution D, algorithm A determines membership in L correctly
with probability at least 1 − 1/p(n).

This notion of average-case tractability is essentially equivalent to Impagliazzo’s
definition of heuristic polynomial-time algorithms [28]. Impagliazzo observes that if
every problem in distributional NP is tractable on average, then there are no one-way
functions, and thus cryptography is impossible. It is therefore generally believed that
distributional NP does contain problems that are intractable on average.

The question we consider in this paper concerns the minimal complexity assump-
tion one needs to make in order to guarantee that distributional NP does indeed
contain a problem that is intractable on average. Ideally, one would like to base
the existence of hard on average problems (and one-way functions) on a worst-case
assumption, namely NP �⊆ BPP. Equivalently, the question can be formulated as

∗Received by the editors January 28, 2005; accepted for publication (in revised form) December
28, 2005; published electronically December 15, 2006. A preliminary version of this paper appeared
in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2003, pp. 308–317.

http://www.siam.org/journals/sicomp/36-4/44697.html
†School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540

(adib@ias.edu). This work was done while the author was at the University of California at Berkeley.
‡Computer Science Division, University of California at Berkeley, Berkeley, CA 94720 (luca@

cs.berkeley.edu). This author’s research was supported by a Sloan Research Fellowship, an Okawa
Foundation grant, and NSF grants CCR-9984703 and CCR-0406156.

1119

1120 ANDREJ BOGDANOV AND LUCA TREVISAN

follows: Is the existence of worst-case hard problems in NP sufficient to show the
existence of problems in NP that are hard on average?

In the cryptographic setting, the question of whether there are cryptosystems
that are NP-hard to break, that is, whose security can be based on the assumption
that NP �⊆ BPP, is as old as modern cryptography itself, and it was asked by Diffie
and Hellman [14, section 6]. As we review below, there is conflicting evidence about
whether the answer to this question exists.

Previous work.
Worst-case versus average-case in NP. Impagliazzo [28] observes that we know

oracles relative to which NP �⊆ P/poly, but there is no intractable problem in dis-
tributional NP (and consequently, one-way functions do not exist). Therefore, any
proof that NP �⊆ BPP implies the existence of an intractable problem in distribu-
tional NP must use a nonrelativizing argument. However, nonrelativizing arguments
are commonly used in lattice-based cryptography to establish connections between
the worst-case and average-case hardness of certain NP problems that are believed to
be intractable (but not NP-complete).

Feigenbaum and Fortnow [17] consider the notion of a random self-reduction,
which is a natural, and possibly nonrelativizing, way to prove that the average-case
complexity of a given problem relates to its worst-case complexity. We begin by
discussing the slightly more general notion of locally random reduction, introduced in
[6] (see also the earlier works [1, 5, 18]). A locally random reduction from a language L
to a distributional problem (L′,D) is a polynomial-time oracle procedure R such that
RL′

solves L and, furthermore, each oracle query of RL′
(x) is distributed according

to D.1 Clearly, such a reduction converts a heuristic polynomial-time algorithm for
(L′,D) (with sufficiently small error probability) into a BPP algorithm for L. Observe
that the reduction may depend on the choice of distributional problem (L′,D), so in
general this approach does not relativize. If we had a locally random reduction from,
say, satisfiability to some problem (L′,D) in distributional NP, then we would have
proved that if NP �⊆ BPP, then distributional NP contains intractable problems. A
locally random reduction from L to (L′,D) is called a random self-reduction if L = L′.

Feigenbaum and Fortnow show that if for an NP-complete language L and a
samplable ensemble D there is a nonadaptive random self-reduction from L to (L,D),
then NP ⊆ coNP/poly and the polynomial hierarchy collapses to the third level. Their
proof also establishes the slightly more general result that if there is a nonadaptive
locally random reduction from a problem L to a problem (L′,D) in distributional NP,
then L is in coNP/poly.

Random self-reductions and locally random reductions are natural notions, and
they have been used to establish the worst-case to average-case equivalence of certain
PSPACE-complete and EXP-complete problems [39]. Therefore, the result of Feigen-
baum and Fortnow rules out a natural and general approach to proving a statement
of the following form: “If NP �⊆ BPP, then distributional NP contains intractable
problems.”

Cryptography versus NP-hardness. The seminal work of Diffie and Hellman [14]
introducing public key cryptography asked if there exists a public key encryption
scheme whose hardness can be based on an NP-complete problem. This question was
seemingly answered in the affirmative by Even and Yacobi [16], who devised a public

1More precisely, according to the restriction of D to inputs of length polynomially related to x
(see section 2).

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1121

key cryptosystem that is “NP-hard to break.” Namely, they showed a reduction
that transforms any adversary that “breaks” the cryptosystem into an algorithm that
solves SAT. However, the notion of “breaking the cryptosystem” in [16] is a worst-case
one: Specifically, it is assumed that the adversary can break the encryption for every
key. Lempel [31] later showed that the same cryptosystem can in fact be broken on
most keys. Therefore, the NP-hardness of breaking a cryptosystem in the worst case
does not in general have any implications for cryptographic security.

The gap between worst-case and average-case hardness is even more transparent
in the case of symmetric key cryptography, or one-way functions. It is well known
that there exist “one-way functions” that are NP-hard to invert in the worst case, but
easy to invert on average. (For instance, consider the function that maps a formula
φ and an assignment a to (1, φ) if a satisfies φ and to (0, φ) otherwise.)

As these examples show, the notion of hardness in breaking a public key cryptosys-
tem, or inverting a one-way function that one needs in cryptography, is fundamentally
an average-case notion.

Brassard [12] addresses the question of the existence of public key cryptosystems
that are hard to break from a different perspective. He argues that, under some as-
sumptions on the key-generation algorithm and the encryption procedure, the problem
of breaking the encryption is in NP ∩ coNP. Specifically, he shows that if there is a
reduction that transforms an oracle that breaks encryptions into an algorithm for a
language L, then the reduction can be used to provide NP certificates for membership
in both L and L, proving that L ∈ NP ∩ coNP. More recent work by Goldreich and
Goldwasser [23] reaches the same conclusion under weaker assumptions.

In the setting of symmetric key cryptography, a similar conclusion can be reached
about the hardness of inverting a one-way function if one makes additional assump-
tions about the function in question. For instance, if the function f is a permutation,
then the existence of a reduction from any language L to an inverter for f establishes
that L ∈ NP ∩ coNP. A proof for membership in L or L consists of the transcript of
all the queries made by the reduction, together with unique preimages of the queries
under f . The fact that f is a permutation guarantees that this transcript perfectly
simulates the reduction when given access to an inverting oracle for f .

These arguments explain why the hardness of breaking a large class of cryp-
tosystems cannot be based on the worst-case complexity of an NP complete problem
(assuming NP �= coNP). However, neither of them uses the fact that the reduction
that transforms the adversary into an algorithm for L is correct even if the adversary
only performs its task well on average. In fact, the arguments merely assume that the
reduction behaves correctly when given oracle access to an adversary that violates a
worst-case assumption. Given the existence of public key cryptosystems and one-way
functions that are hard to break in the worst case, one cannot expect these arguments
to explain why breaking a general one-way function or a general public key encryption
scheme should be an NP ∩ coNP problem, as experience seems to indicate, if this is
indeed the case.

If we were to ever hope for such an explanation, we need a stronger notion of “NP
hard to break” which allows for the fact that the adversary may err on some fraction
of inputs. Again, what we mean by a cryptosystem being “NP-hard to break” is that
there exists a reduction that transforms an adversary for the cryptosystem into an
algorithm for SAT, but now the reduction is required to solve SAT correctly even if
the adversary sometimes outputs an incorrect answer.

This motivates the following definition of a reduction from an NP-complete prob-
lem to the problem of inverting well on average a one-way function f : A reduction is

1122 ANDREJ BOGDANOV AND LUCA TREVISAN

an oracle probabilistic polynomial-time procedure R such that for some polynomial
p and for every oracle A that inverts f on a 1 − 1/p(n) fraction of inputs of length
n, it holds that RA is a BPP algorithm for SAT. The techniques of Feigenbaum and
Fortnow imply that if R is nonadaptive, and if all of its oracle queries are done ac-
cording to the same distribution (that depends only on the length of the input), then
the existence of such a reduction implies that the polynomial hierarchy collapses to
the third level.

As we explain below, we reach the same conclusion (see Theorem 4.1 in section 4)
without any assumption on the distribution of the queries made by RA, but also
assuming as in [17] that the queries are made nonadaptively.

Worst-case to average-case reductions within NP. The most compelling evidence
that the average-case hardness of certain problems in NP can be based on worst-case
intractability assumptions comes from lattice-based cryptography.

Ajtai [3] shows that an algorithm that solves well on average the shortest vector
problem (which is in NP) under a certain samplable distribution of instances implies
an algorithm that solves, in the worst case, an approximate version of the shortest vec-
tor problem. The latter can be seen as an NP promise problem. If the latter problem
were NP-complete, then we would have a reduction relating the average-case hardness
of a distributional problem in NP to the worst-case hardness of an NP-complete prob-
lem. Unfortunately, the latter problem is known to be in NP∩ coNP, and therefore it
is unlikely to be NP-hard. However, it is conceivable that improved versions of Ajtai’s
argument could show the equivalence between the average-case complexity of a dis-
tributional NP problem and the worst-case complexity of an NP problem. Micciancio
[34] and Micciancio and Regev [35] improve Ajtai’s reduction by showing that a good-
on-average algorithm for the generalized subset sum problem implies better worst-case
approximation algorithms for a variety of problems on lattices. Such approximations,
however, still correspond to promise problems known to be in NP ∩ coNP.

Average-case complexity in NP. The theory of average-case complexity was pio-
neered by Levin [32], who defined the notion of “efficient-on-average” algorithms and
gave a distributional problem that is complete for a large subclass of distributional
NP. Levin’s notion of efficient-on-average algorithms is stronger than Impagliazzo’s
notion of polynomial-time heuristic algorithms that we consider here. Namely, ev-
ery problem in distributional NP that admits an efficient-on-average algorithm also
admits an efficient heuristic algorithm.

The subclass of distributional NP problems considered by Levin imposes a severe
restriction on the distribution according to which instances of the problem are sam-
pled. In particular, it does not include the problem of inverting arbitrary one-way
functions. In the case of a one-way function f , the notion of “inverting f well on
average” amounts to solving the search problem “Given u, find x s.t. f(x) = u,”
where u is chosen according to the distribution obtained by applying f to the uni-
form distribution. In general, f may be an arbitrary polynomial-time algorithm, so it
makes sense to relax the definition so as to allow instances of L to be generated by ar-
bitrary polynomial-time samplers. This yields the class distributional NP (introduced
by Ben-David and others [7]) of all pairs (L,D), where L is an NP language and D is
an arbitrary samplable distribution according to which inputs for L are generated.

The class distributional NP turns out to be surprisingly robust for (randomized)
heuristic algorithms. In particular, there exists an NP language L such that if L is
tractable on average with respect to the uniform distribution, then every problem in
NP is tractable on average with respect to any samplable distribution. Moreover, the
average-case algorithms for distributional NP are “search algorithms” in the sense

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1123

that they provide witnesses of membership for most of the “yes” instances. In par-
ticular, average-case tractability of L implies the ability to efficiently invert one-way
functions on most inputs f(x), where x is chosen uniformly at random. These results
on distributional NP were established by Ben-David and others [7] and Impagliazzo
and Levin [29].

For an overview of these and other notions in average-case complexity, their in-
terrelations, and explanations of the various choices made in definitions, the reader
is referred to the expository papers by Impagliazzo [28], Goldreich [20], and the au-
thors [11].

Our result. A worst-case to average-case reduction with parameter δ from a
language L to a distributional problem (L′,D) is a probabilistic polynomial-time oracle
procedure R such that, for every oracle A that agrees with L′ on inputs of probability
mass 1 − δ according to D on each input length, RA solves L on every input.

If L and L′ are the same language, then the reduction is called a self-corrector, a
notion independently introduced by Blum, Luby, and Rubinfeld [10], and by Lipton
[33] in the context of program checking [8, 9]. As argued below, a locally random
reduction is also a worst-case to average-case reduction and a random self-reduction
is also a self-corrector, but the reverse need not be true.

In this paper we show that if there is a worst-case to average-case reduction with
parameter 1/poly(n) from an NP-complete problem L to a distributional NP problem
(L,D), then NP ⊆ coNP/poly and the polynomial hierarchy collapses to the third
level. In particular, if an NP-complete problem has a self-corrector with respect to a
samplable distribution, then the polynomial hierarchy collapses to the third level.

We first prove the result for the special case in which the distribution D is uniform
(Theorem 4.1). Then, using reductions by Impagliazzo and Levin [29] and by Ben-
David and others [7], we show that the same is true even if the reduction assumes a
good-on-average algorithm for the search version of L′, even if we measure average-case
complexity for L′ with respect to an arbitrary samplable distribution D (Theorem 5.3).

The generalization to arbitrary samplable distributions and to search problems
also implies that there cannot be any nonadaptive reduction from an NP-complete
problem to the problem of inverting a one-way function.

Our result also rules out nonadaptive reductions from an NP-complete problem to
the problem of breaking a public key cryptosystem. The constraint of nonadaptivity
of the reduction is incomparable to the constraints in the results of Goldreich and
Goldwasser [23].

It should be noted that some of the worst-case to average-case reductions of Ajtai
[3], Ajtai and Dwork [4], Micciancio [34], Regev [38], and Micciancio and Regev [35]
are adaptive. Micciancio and Regev [35] observe that their reductions can be made
nonadaptive with a slight loss in worst-case approximation factors.

Comparison with Feigenbaum and Fortnow [17]. It is easy to see that a locally
random reduction R from L to L′ that makes q queries, each of which is generated
by the reduction according to a distribution D, is also a worst-case to average-case
reduction with parameter Ω(1/q) from L to (L′,D). Indeed, if A is an oracle that has
agreement, say, 1 − 1/4q with L′ (as measured by D), and we access the oracle via q
queries, each distributed according to D, queries made to A and queries made to L′

are answered in the same way with probability at least 3/4.
For the result of Feigenbaum and Fortnow, it is not necessary that the distribution

of each query made by the reduction be exactly D, but it is essential that the marginal
distribution of queries made by the reduction be independent of the reduction’s input.

1124 ANDREJ BOGDANOV AND LUCA TREVISAN

This restriction is quite strong, and in this sense, the result of [17] is extremely
sensitive: If one modifies the distribution of queries even by an exponentially small
amount that depends on the input, all statistical properties of the reduction are
preserved, but one can no longer draw the conclusion of [17]. Our result reaches
the same conclusion as [17], yet allows the queries made by the reduction to depend
arbitrarily on the input.

One natural setting, where the queries made by the reduction seem to essentially
depend on the input, is Levin’s theory of average-case complexity. One tool for
relating the average-case hardness of two distributional problems is the “average-case
to average-case reduction.” Such a reduction from (L,D) and (L′,D′) uses an oracle
that solves L′ on most inputs chosen from D′ to solve L on most inputs according to
D. Some important reductions, most notably those in [7, 29], choose their queries to
the oracle from a distribution that depends on the input in an essential way, making
the results of [17] useless for their study.

The relation between locally random reductions and our notion of worst-case to
average-case reduction is similar to the relation between one-round private informa-
tion retrieval and locally decodable codes [13, 40]. In one-round private information
retrieval, a “decoder” is given oracle access to the encoding of a certain string, and
wants to retrieve one bit of the string by making a bounded number of queries; the
restriction is that the ith query must have a distribution independent of the bit that
the decoder is interested in. In a locally decodable code, a decoder is given oracle
access to the encoding of a certain string, and the encoding has been corrupted in a
δ fraction of places; the decoder wants to retrieve a bit of the original string by mak-
ing a bounded number of queries (with no restriction on the distribution on queries).
An intermediate notion that is useful in the study of the relation between private
information retrieval and locally decodable codes is that of a smooth decoder: Such a
decoder satisfies the additional requirement that the distribution of each query should
be dominated by the uniform distribution. Similarly, in the setting of worst-case to
average-case reductions one can restrict attention to smooth reductions, where the
distribution of queries made by the reduction is dominated by the uniform distribu-
tion.

For computationally unbounded decoders, it has been shown (see [30, 24]) that
uniform, smooth, and general decoders are equivalent, but the same methods do not
work in the computationally bounded setting studied in this paper. One step in our
proof is, however, inspired by the techniques used to show this equivalence.

Our proof. As in the work of Feigenbaum and Fortnow, we use the fact that
problems in coNP/poly cannot be NP-complete unless the polynomial hierarchy col-
lapses to the third level. Our goal is to show that if L has a 1/poly(n) worst-case
to average-case reduction to a language (L′,D) in distributional NP, then L is in
NP/poly ∩ coNP/poly. In particular, if L were NP-complete, then NP would be con-
tained inside coNP/poly, which in particular implies the collapse of the polynomial
hierarchy to the third level. (However, the conclusion NP ⊆ coNP/poly appears
weaker than the more standard statement NP = coNP.)

Feigenbaum and Fortnow observe that NP/poly is exactly the class of languages
which admit AM protocols with polynomial length advice. Then they show L ∈
NP/poly∩ coNP/poly by giving AM protocols with advice for both L and its comple-
ment. The protocols for L and its complement are completely analogous, so we focus
on describing the protocol for L.

We begin by discussing the case of a reduction from L to (L′,D) when D is the

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1125

uniform distribution.
The Feigenbaum–Fortnow protocol. Let us first briefly review the proof of Feigen-

baum and Fortnow [17]. Given x, a prover wants to prove that RL′
(x) accepts with

high probability (implying x ∈ L), where R makes q nonadaptive queries, each uni-
formly distributed. The (nonuniform) verifier generates k independent computations
of RL′

(x) and sends to the prover all the kq queries generated in all the k runs. The
prover has to provide all the answers, and certificates for all the “yes” answers. The
verifier, nonuniformly, knows the overall fraction p of queries of RL′

(x) whose answer
is “yes” (recall that we assumed that the queries of R, and thus p, are independent
of x). If k is large enough, the verifier expects the number of “yes” answers from
the prover to be concentrated around kqp, and in fact this is within kqp ± O(q

√
k)

with high probability. If the prover gives fewer than kqp − O(q
√
k) “yes” answers,

this provides strong evidence of cheating, and the verifier rejects. Since a cheating
prover must provide certificates for all its “yes” claims, such a prover can cheat only
by saying “no” on a “yes” query, and cannot do so on more than O(q

√
k) instances.

If k is sufficiently larger than q, then with high probability either the verifier rejects,
or a majority of the k computations of RL′

(x) yields the correct answer, making the
reduction output “yes” and the verifier accept.

Handling smooth reductions: The hiding protocol. The Feigenbaum–Fortnow pro-
tocol can be used with every oracle procedure R, provided that given x we can get a
good estimate of the average fraction px of oracle queries made by R on input x that
are answered “yes” by an oracle for L′. In general, this fraction will depend on x, so
it cannot be provided as advice to the AM circuit certifying membership in L.

For starters, let us allow the distribution of R’s queries to depend on x, but
restrict it to being “α-smooth”: We assume that every query y of R is generated
with probability at most α2−|y|. (It is useful to think of α as constant, or at most
polynomial in |y|, so that a query made by R is not much more likely to hit any
specific string than in the uniform distribution.) We devise an AM protocol with
advice in which the verifier either rejects or gets a good estimate of px. This estimate
is then fed into the Feigenbaum–Fortnow protocol to obtain an AM circuit for L.

Suppose that, given a random query y made by R(x), we could force the prover
to reveal whether or not y ∈ L′. Then by sampling enough such queries y, we can
estimate px as the fraction of “yes” queries made by the reduction. But how do we
force the prover to reveal if y ∈ L′? The idea is to hide the query y among a sequence
of queries z1, . . . , zk, for which we do know whether zi ∈ L′, in such a way that the
prover cannot tell where in the sequence we hid our query y. In such a case, the
prover is forced to give a correct answer for y, for if he were to cheat he wouldn’t
know where in the sequence to cheat, and thus would likely be caught.

The problem is that we do not know a specific set of queries zi with the desired
property. We do, however, know that if we choose zi independently from the uniform
distribution on {0, 1}|y|, then with high probability pk ±O(

√
k) of these queries will

end up in L′, where p is the probability that a uniformly random query in {0, 1}|y| is
in L′. Since p depends only on the length of x but not on x itself, it can be given to
the verifier nonuniformly.

This suggests the following verifier strategy: Set k = ω(α2), generate k uniformly
random queries z1, . . . , zk of length n, hide y among z1, . . . , zk by inserting it at a
random position in the sequence, send all the queries to the prover, and ask for
membership in L′, together with NP-witnesses that at least pk−O(

√
k) queries belong

to L′.
We claim that, with high probability, either the verifier rejects or the answer about

1126 ANDREJ BOGDANOV AND LUCA TREVISAN

membership of y in L′ must be correct. Intuitively, a cheating prover can give at most
O(

√
k) wrong answers. The prover wants to use this power wisely and assign one of

these wrong answers to the query y. However, smoothness ensures that no matter
how the prover chooses the set of O(

√
k) queries to cheat on, it is very unlikely that

the query y falls into that set.
For ease of analysis, the actual proof presented in section 3.2 combines into a

single step the step of sampling enough ys to estimate px with the step of hiding y
among a sequence of uniform queries.

This argument already provides an interesting generalization to [17]. Notice that
we have not yet used the fact that the reduction is allowed access to any oracle that
computes L′ well on average.

Handling general reductions. We now consider the case of general reductions,
allowing the distribution of a random query on input x to depend arbitrarily on x.
Observe that the hiding protocol will, in general, fail to estimate px for this type
of reduction. If a particular query y made by the reduction is very likely (that is,
it occurs with probability much greater than α2−|y|), then it cannot be hidden in a
reasonably long sequence of uniform queries.

However, suppose that the verifier had the ability to identify queries y that occur
with probability ≥ α2−|y|; let us call such queries “heavy” and the other ones “light.”
The fraction of heavy queries in the uniform distribution is at most 1/α. Suppose
also that the prover answers all light queries correctly. We can then use R to certify
membership in L as follows: If the query made by R is heavy, pretend that the oracle
for R answered “no”; otherwise use the answer provided by the prover. This process
simulates exactly a run of the reduction RA, where A is an oracle that agrees with
L′ on all the light queries, and answers “no” on all the heavy queries. In particular,
A agrees with L′ on a 1 − 1/α fraction of inputs, so the reduction is guaranteed to
return the correct answer.

In general, the verifier cannot identify which queries made by the reduction are
heavy and which are light. However, suppose the verifier knew the probability qx that
a random query, on input x, is heavy. Then, among any set of k independent queries,
the verifier expects to see, with high probability, qxk±O(

√
k) heavy queries. Using a

protocol of Goldwasser and Sipser [26], the verifier can now obtain approximate AM
certificates of heaviness for at least qxk−O(

√
k) queries from the prover. This leaves

at most O(
√
k) queries about whose heaviness the verifier may be misinformed.

A verifier with access to qx can run a variant of the hiding protocol to calculate
the fraction px of “yes” instances of L′ among the light queries (treating the O(

√
k)

heavy queries that “slip in the sample” as a statistical error to this estimate), followed
by a variant of the Feigenbaum–Fortnow protocol, simulating “no” answers on all the
heavy queries.

Finally, we need a protocol that helps the verifier estimate the probability qx
of heavy queries. The verifier can obtain an approximate lower bound on qx by
sampling random queries and asking for proof that each query is heavy. To obtain
an approximate upper bound on qx, the verifier uses an “upper bound” protocol for
the size of certain NP sets due to Fortnow [19]. The explanation of the exact roles of
these protocols in estimating qx is deferred to section 3.1.

We observe that the generalization of the Feigenbaum–Fortnow result about lo-
cally random reductions to smooth, and then arbitrary, nonadaptive reductions par-
allels an analogous sequence of steps establishing the equivalence of uniform, smooth,
and arbitrary decoders for locally decodable codes.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1127

General distributions, search problems, and one-way functions. So far we have
described our results for the case in which the distribution on inputs D is the uniform
distribution. We now consider the case where D is an arbitrary samplable distribution.
Impagliazzo and Levin [29] show that for every distributional NP problem (L,D)
and bound δ = n−O(1) there is a nonadaptive probabilistic polynomial-time oracle
algorithm R, an NP language L′, and a bound δ′ = δO(1) such that for every oracle A
that agrees with L′ on a 1 − δ′ fraction of inputs, RA solves L on a subset of inputs
of density 1 − δ under the distribution D.

This means that if there were a nonadaptive worst-case to average-case reduction
with parameter 1/poly(n) from a problem L to a distributional problem (L′,D), there
would also be such a reduction from L to (L′′,U), where U is the uniform distribution
and L′′ is in NP. By the previously described results, this would imply the collapse
of the polynomial hierarchy.

A reduction by Ben-David and others [7] implies that for every distributional
NP problem (L,U) there is a problem L′ in NP such that an algorithm that solves
the decision version of (L′,U) on a 1 − δ fraction of inputs can be modified (via a
nonadaptive reduction) into an algorithm that solves the search version of (L,U) on
a 1 − δ · poly(n) fraction of input. This implies that even if we modify the definition
of worst-case to average-case reduction so that the oracle A is supposed to solve
the search version of the problem, our results still apply. In particular, for every
polynomial-time computable function f , the problem of inverting f well on average is
precisely the problem of solving well on average a distributional NP search problem.
Therefore our results also rule out the possibility of basing one-way functions on
NP-hardness using nonadaptive reductions.

Organization. Section 2 provides the relevant definitions of notions in average-case
complexity and interactive proof systems. In section 3 we present the protocols for es-
timating the fraction of heavy queries of a reduction, the fraction of light “yes” queries
of a reduction, and for simulating the reduction, respectively. Section 4 contains the
proof of our main result (Theorem 4.1) concerning the average-case complexity of
languages with respect to the uniform distribution. In section 5 we prove our result
for the average-case complexity of distributional search problems (Theorem 5.3).

2. Preliminaries. In this section we formalize the notions from average-case
complexity and interactive proof systems needed to state and prove our result on the
impossibility of worst-case to average-case reductions in NP.

For a distribution D, we use x ∼ D to denote a sample x chosen according to D.
For a finite set S, we use x ∼ S to denote a sample x chosen uniformly at random
from S. For a sample x, we use D(x) to denote the probability of x in the distribution
D. For a set S, we use D(S) to denote the probability that a random sample chosen
according to D falls inside the set S.

2.1. Distributional problems and heuristic algorithms. Intuitively, we
think of an algorithm A as a “good heuristic algorithm” for distributional problem
(L,D) if the set of “yes” instances of A (which we also denote by A) and the set L
are close according to D. Formalizing this definition requires one to make choices
regarding how D measures closeness and what the threshold for closeness is.

Roughly, Levin [32] considers two sets A and L to be close according to D if on a
random input length n, the measure of the symmetric difference A � L according to
the restriction of D on {0, 1}n is small. We will make the stronger requirement that
this quantity be small for all n. Notice that every heuristic algorithm satisfying the
stronger requirement also satisfies the weaker requirement (and therefore reductions

1128 ANDREJ BOGDANOV AND LUCA TREVISAN

that work for algorithms satisfying the weaker requirement also work for algorithms
satisfying the stronger requirement), so the stronger requirement makes our impossi-
bility result more general. This requirement simplifies some of the definitions, as we
can now restrict our attention to ensembles of distributions over various input lengths
rather than a single distribution over {0, 1}∗.

We now turn to the actual definitions.
Definition 2.1 (samplable ensemble). An efficiently samplable ensemble of dis-

tributions is a collection D = {D1,D2, . . . }, where Dn is a distribution on {0, 1}n for
which there exists a probabilistic polynomial-time sampling algorithm S that, on input
1n, outputs a sample from Dn.2

The uniform ensemble is the ensemble U = {U1,U2, . . . }, where Un is the uniform
distribution on {0, 1}n.

A distributional problem is a pair (L,D), where L is a language and D is an
ensemble of distributions. A distributional problem (L,D) is in the class distributional
NP, denoted DistNP, if L is in NP and D is efficiently samplable.

In this paper we study hypothetical reductions that might be used to establish
average-case intractability of distributional NP problems based on a worst-case as-
sumption, such as NP �⊆ BPP. The notion of average-case intractability that we have
in mind is the absence of good-on-average algorithms of the following type. (The
definition is in the spirit of the treatment by Impagliazzo [28].)

Definition 2.2 (heuristic polynomial time). We say that a probabilistic poly-
nomial-time algorithm A is a heuristic algorithm with success probability s(n) for a
distributional problem (L,D) if, for every n, Prx∼Dn [A(x) = L(x)] ≥ s(n), where the
probability is taken over the sampling of x from Dn and over the internal coin tosses
of A. The class of distributional problems for which such algorithms exist is denoted
by Heurs(n)BPP.

We consider a distributional problem (L,D) to be “hard on average” if there is
a polynomial p such that (L,D) �∈ Heur1−1/p(n)BPP. This is a fairly robust notion
with respect to the choice of p: Trevisan [40] proves that there is a constant c > 0
such that for every polynomial p,

DistNP �⊆ Heur1−1/p(n)BPP iff DistNP �⊆ Heur1/2+(log n)−cBPP.

Stronger collapses are known for nonuniform heuristic classes [37, 27].
Levin’s alternative notion of an “efficient-on-average” algorithm [32] imposes the

additional requirement that the average-case algorithm A be errorless: For every x for
which A(x) �= L(x), A(x) must output “fail” (with high probability over its internal
coin tosses).3 Hence every efficient-on-average algorithm for (L,D) is also a heuristic
algorithm for (L,D), so the class of problems (in distributional NP) that are “hard for
efficient-on-average algorithms” is possibly larger than the class of problems that are
“hard for heuristic algorithms.” Therefore opting for “hard for heuristic algorithms”
as our notion of average-case hardness makes our impossibility result weaker, but in
fact our result holds even with respect to the notion of “hard for efficient-on-average
algorithms” (as explained in section 4).

2This definition restricts the strings in the support of Dn to having length exactly n. It is possible
to use a more relaxed definition in which the length of strings in the support of Dn is variable, as
long as S is nonshrinking: Namely, the length of every string in the support of Dn must be at least
nε for some constant ε > 0.

3Levin’s original definition [32] is formulated differently from the one we give here, but Impagli-
azzo [28] shows that the two are essentially equivalent.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1129

For a function δ(n), two languages L and L′, and an ensemble of distributions D
on inputs, we say that L and L′ are δ-close with respect to D if for sufficiently large
n, the measure of the set Ln � L′

n according to Dn is at most δ(n). The definition of
“heuristic polynomial time with success probability s(n)” requires that A and L be
(1 − s(n))-close.

2.2. Worst-case to average-case reductions. A worst-case to average-case
reduction is a procedure that transforms any average-case algorithm for one problem
into an algorithm that works on all inputs for another problem. The reduction is
called nonadaptive if the reduction decides on all its queries before it makes any of
them. The following definition formalizes this notion.

Definition 2.3. A nonadaptive worst-case to average-case randomized reduction
from L to (L′,D) with average hardness δ (in short, a δ worst-to-average reduction)
is a family of polynomial size circuits R = {Rn} such that on input x ∈ {0, 1}n
and randomness r, Rn(x; r) outputs strings y1, . . . , yk (called queries) and a circuit C
(called a decider) such that for any L∗ that is δ-close to L′ with respect to D, it holds
that

Prr[C(L∗(y1), . . . , L
∗(yk)) = L(x)] ≥ 2/3.

We can also think of R as a nonadaptive oracle procedure that, when provided any
L∗ that is δ-close to L′ as an oracle, agrees with L on every input (with probability
at least 2/3 over its internal coin tosses).

Notice that if there is a δ worst-to-average reduction from L to (L′,D), and
L �∈ BPP, then (L′,D) �∈ Heur1−δBPP. When the distribution D is uniform, we may
denote the distributional problem (L′,D) just by L′.

Remarks on the definition.
(i) The choice of constant 2/3 for the success probability of the reduction in the

definition is rather arbitrary. If there exists a worst-to-average reduction Rn from L
to (L′,D) that succeeds with probability 1/2+n−c, there also exists one that succeeds

with probability 1 − 2−nc′
for arbitrary constants c, c′.

(ii) Without loss of generality, we may also assume that the strings y1, . . . , yk are
identically distributed. Suppose R is an arbitrary reduction R that makes k queries.
We define a new reduction R′ that randomly permutes the queries of R. Then each
query of R′ is distributed as a random query of R.

(iii) Without loss of generality, we can fix two polynomials k(n) and m(n) such
that for every n, when given an input x of length n, the reduction makes exactly
k(n)/m(n) queries of length i for every i between 1 and m(n) (so that the total
number of queries made is k(n)). This condition guarantees that for every i between
1 and m(n), and every string y of length i, the probability that a random query made
by the reduction equals y is exactly 1/m(n) times the probability that a random query
made by the reduction equals y, with the condition that the length of this query is i.
When working with distributions over queries, it is convenient to fix the query length;
this restriction will allow us to relate statistics over queries of fixed length to statistics
over queries of arbitrary length produced by the reduction.

(iv) We used a nonuniform definition of reductions, as it gives us a more general
impossibility result. In particular, our result holds for uniform reductions.

2.3. Constant-round interactive protocols. We now discuss the types of
protocols used in our proof, as well as certain extensions that will be used as building
blocks.

1130 ANDREJ BOGDANOV AND LUCA TREVISAN

Constant-round interactive protocols with advice. All the protocols in this paper
are constant-round interactive protocols with polynomially long advice. An interactive
protocol with advice consists of a pair of interactive machines (P, V), where P is a
computationally unbounded prover and V is a randomized polynomial-time verifier
which receive a common input x and advice string a. Feigenbaum and Fortnow [17]
define the class AMpoly as the class of languages L for which there exists a constant
c, a polynomial p, and an interactive protocol (P, V) with advice such that for every
n, there exists an advice string a of length p(n) such that for every x of length n, on
input x and advice a, (P, V) produces an output after c rounds of interaction and

(i) if x ∈ L, then Pr[(P, V) accepts x with advice a] ≥ 2/3;
(ii) if x �∈ L, then for every prover P ∗, Pr[(P ∗, V) accepts x with advice a] ≤

1/3.
We observe that this definition is weaker than the definition of the class AM/poly

following the Karp–Lipton notion of classes with advice, which requires that the (P, V)
be a valid constant-round interactive protocol (possibly for some language other than
L) for all possible settings of the advice. (We note that in both cases, the advice is
accessible to both the prover and the verifier.) Even though AMpoly appears to be
larger than AM/poly, they are in fact both equal to NP/poly (cf. [17]). Owing to
this, in our description of protocols we will not be concerned with the behavior of the
protocol when the advice is bad.

The protocol of Feigenbaum and Fortnow uses public coins. In contrast, our
protocol will use private coins. In the case of constant-round interactive protocols
without advice, it is known that private coin protocols can be simulated by public
coin protocols [26]. The argument extends to protocols with advice, and therefore we
may drop the public coin requirement in the definition of AMpoly.

The existence of AMpoly protocols for all of coNP implies a partial collapse of the
polynomial hierarchy, as was also observed in [17]: By the above observations, the
assumption coNP ⊆ AMpoly implies coNP ⊆ NP/poly, and by a result of Yap [42],
this gives Σ3 = Π3.

Protocols with shared auxiliary input. When applying two protocols in sequence,
the second protocol has access to the transcript of the interaction from the first
protocol. To allow access to this transcript, we extend our definition of interactive
protocol to include a shared auxiliary input. This shared auxiliary input comes with a
promise Υ, which may depend on the actual input. The completeness and soundness
conditions are required to hold for all auxiliary inputs satisfying the promise. In the
case of sequential composition of two protocols, the promise of the second protocol
includes the set of all transcripts that are not rejecting for the first protocol. The
running time of the verifier in a protocol with shared auxiliary input is measured with
respect to the length of the concatenation of the actual input and the shared auxiliary
input.

Protocols with private verifier input. In a protocol with private verifier input, the
verifier is given, in addition to the input x, a private input r not known to the prover.
The input r will be a “secret” of the verifier—a random string, uniformly distributed
among a range of secrets that may depend on the input x. We represent the range of
secrets by an NP relation H: A secret r for input x is chosen uniformly among all r
such that (x; r) satisfies H.

In our application, the protocol will be applied to instances of promise problems
(see [15, 22]) instead of languages. For this reason, we state a definition of constant-
round protocols with private verifier input for promise problems.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1131

Definition 2.4. An interactive protocol with private verifier input consists of a
polynomial-time verifier V , an unbounded prover P , and an NP relation H. A promise
problem Π = (ΠY ,ΠN) admits such a protocol with completeness c and soundness s
if

(i) for all x ∈ ΠY , Pr[(P, V (r)) accepts x] ≥ c.
(ii) for all x ∈ ΠN and every prover P ∗, Pr[(P ∗, V (r)) accepts x] ≤ s.

In both cases, the randomness is taken over V and over r chosen uniformly from all
strings that satisfy (x; r) ∈ H.

Notice that this definition extends the standard notion of proof system without a
private input, as we can specialize the definition to an NP relation H that mandates
a unique choice of r for every x. The definition can be naturally extended in the
case of protocols with shared auxiliary input. For such protocols to be sequentially
composable, we must require that the private input of the verifier be independent of
the shared auxiliary input, conditioned on the actual input.

Parallel repetition of two-round protocols. Suppose, given n instances x1, . . . , xn

of a promise problem Π in AMpoly, we want a AMpoly protocol that distinguishes
between the case when all xi ∈ ΠY and the case when at least one xi ∈ ΠN . A natural
approach is to run n independent instantiations of the protocol for Π in parallel, and
accept if all of them accept. Intuitively, if the protocol for Π has completeness 1 − ε
and soundness δ, we expect the parallel protocol to have completeness 1 − nε and
soundness δ. This worsens the completeness of the original protocol, while leaving
the soundness essentially unchanged.

One way to improve the soundness is the following. Suppose that we could settle
for distinguishing between the case when all xi ∈ ΠY and the case when xi ∈ ΠN for
at least t of the xis. Intuitively, this relaxation makes the work required of a cheating
prover much more demanding: Such a prover is now trying to convince the verifier to
accept an instance in which at least t of the xi’s are “no” instances of Π. We expect
such a prover to have success probability at most δt.

We prove that this is indeed the case for public coin two-round protocols (which is
sufficient for our application), even for proof systems with private verifier input. We
begin by describing the promise problem intended to be solved by parallel composition.
We then define parallel composition for two-round protocols with private verifier input,
and prove that parallel composition solves the intended problem.4

Given a promise problem Π = (ΠY ,ΠN), we define the n-wise repetition of Π
with threshold t to be the promise problem Πn,t = (Πn,t

Y ,Πn,t
N) as follows:

Πn,t
Y = {(x1, . . . , xn) : xi ∈ ΠY for all i},

Πn,t
N = {(x1, . . . , xn) : xi ∈ ΠN for at least t values of i}.

Suppose (P, V,H) is a k round protocol with private verifier input and with advice.
We define its n-fold parallel composition as the k round protocol (Pn, V n, Hn) with
private verifier input, where

(i) V n is the machine that, on input (x1, . . . , xn) and private verifier input
(r1, . . . , rn), simulates n independent runs of V , where the ith run takes input xi,
private verifier input ri, uses randomness independent of all other runs, and responds
according to the next message function of V given the transcript of messages generated

4Goldreich [21, Appendix C.1] proves that parallel composition has the desired completeness
and soundness errors for private coin protocols with arbitrary round complexity, but without private
verifier input. His proof easily extends to our setting, but for simplicity we present a self-contained
proof here.

1132 ANDREJ BOGDANOV AND LUCA TREVISAN

by the ith run of (P, V) so far. At the end of the interaction, V n accepts if the
transcripts produced by all the runs are accepting.

(ii) Pn is the machine, that, on input (x1, . . . , xn), simulates n runs of P , where
the ith run takes input xi and responds according to the next message function of P
given the transcript of messages generated by the ith run of (P, V) so far.

(iii) Hn is defined as follows: ((x1, . . . , xn); (r1, . . . , rn)) ∈ Hn iff (xi; ri) ∈ H for
all 1 ≤ i ≤ n.

Lemma 2.5. Suppose (P, V,H) is a two-round protocol (where the first message is
sent by the verifier) with private verifier input for promise problem Π with complete-
ness 1 − ε and soundness δ. Moreover, suppose that the message sent by V contains
all of V ’s coin tosses. Then (Pn, V n, Hn) is a protocol for Πn,t with completeness
1 − nε and soundness δt.

Proof. The completeness of (Pn, V n, Hn) follows by taking a union bound over
the n runs of (P, V,H). To argue soundness, suppose that x = (x1, . . . , xn) ∈ Πn,t

N .
Without loss of generality, assume that specifically x1, . . . , xt ∈ ΠN . For an input x
and private verifier input r, define Bx,r as the set of all messages μ sent by V on input
(x, r) for which there exists a response ν that makes V accept.

Consider an arbitrary prover P ∗ that interacts with V n. Suppose that V n receives
private verifier input r = (r1, . . . , rn), and sends the message μ = (μ1, . . . , μn). In the
second round, P ∗ responds with the message ν = (ν1, . . . , νn). Note that

Prr,μ[V n(x, r, μ, ν) accepts] ≤ Prr,μ[μi ∈ Bxi,ri for all 1 ≤ i ≤ t].

The independence of the verifier strategies on different runs implies that for every
i, the event μi ∈ Bxi,ri is independent of any function of μj , rj for j �= i. Therefore

Prr,μ[μi ∈ Bxi,ri for all 1 ≤ i ≤ t] =
∏t

i=1
Prri,μi

[μi ∈ Bxi,ri] ≤ δt

by the soundness of (P, V,H) for promise problem Π.
The lemma and the proof also extend to protocols with shared auxiliary input (in

addition to the private verifier input).

2.4. Lower and upper bound protocols. We now outline two protocols, used
for proving approximate bounds on the number of accepting inputs of a circuit, that
will be used as components in our constructions. The lower bound protocol of Gold-
wasser and Sipser [26] is used to prove an approximate lower bound on the number of
accepting inputs of a circuit C. The upper bound protocol of Fortnow [19] (also used
by Aiello and H̊astad [2]) is used to prove an approximate upper bound on the same
quantity, when the verifier is given private access to a random accepting input of the
circuit. We stress that our version of the upper bound protocol is somewhat different
from the protocols in [19, 2], as for our application we need a better approximation
than in the original protocols, but we can allow for a much larger soundness error.
The lower and upper bound protocols will allow the verifier to check whether queries
made by the reduction are light or heavy.

We state the completeness and soundness conditions of the protocols, and provide
proof sketches in section A.2 of the appendix.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1133

The lower bound protocol. The lower bound protocol solves the following problem,
which we denote ΠLB,ε (where ε > 0):

Inputs. (C, s), where C : {0, 1}m → {0, 1} is a circuit, 0 ≤ s ≤ 2m.

Shared auxiliary input. δ, ε > 0 (represented in unary), where δ is a parameter
that controls the completeness and soundness errors, and ε controls the precision of
the lower bound.

Yes instances. (C, s) such that |C−1(1)| ≥ s.

No instances. (C, s) such that |C−1(1)| ≤ (1 − ε)s.

The protocol. On input (C, s) and shared auxiliary input (δ, ε):
1 Verifier: Set k = �9/δε2�. Choose a pairwise independent hash function
h : {0, 1}m → Γ at random, where |Γ| = s/k�, and send h to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m, where l ≤ (1 + ε/3)k. An honest
prover sends all ri such that C(ri) = 1 and h(ri) = 0.

3 Verifier: If C(ri) �= 1 for any i, reject. If |l − k| > εk/3, reject. If h(ri) �= 0
for any i, reject. Otherwise, accept.

An alternative version of this protocol that achieves somewhat better parameters
appears in work by Goldreich, Vadhan, and Wigderson [25]. The protocol presented
here parallels the upper bound protocol, described below, more closely.

Lemma 2.6. The lower bound protocol is a protocol for ΠLB,ε with completeness
1 − δ and soundness δ.

In our applications we will need to apply the lower bound protocol on many
instances in parallel and to be guaranteed that all runs of the protocol are correct
with high probability. For this reason, we resort to Lemma 2.5, observing that the
lower bound protocol satisfies the hypothesis of this lemma. Applying Lemma 2.5
for t = 1 and setting δ = ε/n yields a parallel lower bound protocol for Πn,1

LB,ε with

completeness 1 − ε and soundness ε.5

Corollary 2.7 (parallel lower bound protocol). For every n and ε > 0 there
exists a constant round protocol for Πn,1

LB,ε (with shared auxiliary input ε, represented
in unary) with completeness 1 − ε and soundness ε.

The upper bound protocol. The upper bound protocol solves the following prob-
lem, which we denote ΠUB,ε (where ε > 0):

Inputs. (C, s), where C : {0, 1}m → {0, 1} is a circuit, 0 ≤ s ≤ 2m.

Shared auxiliary input. δ, ε > 0 (represented in unary), where δ is a parameter
that controls the completeness error and the soundness error. In contrast to the lower
bound protocol, ε controls the precision of the protocol and also affects the soundness.

Yes instances. (C, s) such that |C−1(1)| ≤ s.

No instances. (C, s) such that |C−1(1)| ≥ (1 + ε)s. The upper bound protocol is
a protocol with private verifier input: The verifier is provided a random sample r of

5For this setting of parameters, ε controls both the precision of the approximate lower bound and
the completeness and soundness errors. Had we wished to do so, we could have used independent
parameters for the precision and for the completeness/soundness errors, though this is not necessary
for our application. In contrast, in the parallel upper bound protocol presented below, the precision
of the protocol and the soundness error are intricately related.

1134 ANDREJ BOGDANOV AND LUCA TREVISAN

C−1(1), not known to the prover.

Private verifier input. A string r ∈ S. (Notice that the relation {((C, s); r) :
C(r) = 1} is an NP relation.)

The protocol. On input (C, s), shared auxiliary input (δ, ε), and private verifier
input r:

1 Verifier: Set k = �9/δε2�. Choose a 3-wise independent hash function h :
{0, 1}m → Γ at random, where |Γ| = (s− 1)/k� and send the pair (h, h(r))
to the prover.

2 Prover: Send a list r1, . . . , rl ∈ {0, 1}m, where l ≤ (1 + ε/3)k. An honest
prover sends all ri such that C(ri) = 1 and h(ri) = h(r).

3 Verifier: If C(ri) �= 1 for any i, reject. If l > (1 + ε/3)k or r �∈ {r1, . . . , rl},
reject. Otherwise, accept.

Lemma 2.8. The upper bound protocol is a protocol with private verifier input
for ΠUB,ε, completeness 1 − δ, and soundness 1 − ε/6 + δ.

Setting δ = o(ε), this yields a protocol with completeness 1− o(ε) and soundness
1 − Ω(ε), giving a narrow gap. To improve the soundness of the protocol, which
is necessary for our application, we apply parallel repetition. In particular, fixing
δ = o(ε/n) and setting t = ω(1/ε) in Lemma 2.5 yields a protocol for Πn,t

UB,ε with

completeness 1 − o(1) and soundness (1 − ε/6 + o(ε/n))t = o(1). More generally, we
have a parallel upper bound protocol for Πn,t

UB,ε with the following parameters.
Corollary 2.9 (parallel upper bound protocol). For every n and ε > 0 there

exists a constant round protocol with private verifier input (and shared auxiliary input
ε, represented in unary) such that for every t > 0 the protocol decides Πn,t

UB,ε with

completeness 1 − ε and soundness (1 − ε/9)t.

3. The protocols. In this section we describe the constant-round interactive
protocols that will constitute the building blocks of our main protocol. The order in
which the protocols are presented follows the order in which they will be composed
sequentially, which is the opposite of the description in the introduction. Recall that
we need protocols that accomplish each of the following tasks:

(i) For a fixed input x, estimate the probability that a random query of a given
length produced by the worst-to-average reduction on input x is light (that is, the
probability of it being produced by the reduction is smaller than a specified threshold).
We consider the following more abstract version of the problem: Given a circuit C,
estimate the fraction of heavy outputs of C. The heavy samples protocol, described
in section 3.1, solves this problem.

(ii) For a fixed input x, estimate the probability that a random query of a given
length produced by the worst-to-average reduction on input x is both light and a
“yes” instance. Abstractly, we can think of this problem as follows. We model the
worst-to-average reduction as a sampler circuit C and the set of “yes” instances of
a given length as a nondeterministic circuit V . As auxiliary input, we are given the
fraction of accepting inputs for V as well as the probability that a random output of
C is heavy. The task is to construct a protocol that estimates the probability that a
random output of C is both light and accepting for V . The hiding protocol, described
in section 3.2, accomplishes this task.

(iii) For a fixed input x, simulate an “approximate membership oracle” for
queries made by the reduction on input x. This calls for a protocol for the fol-

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1135

lowing task: We are given a “querier” Q, describing an instantiation of the reduction
on x, and an NP verifier V for “yes” instances. The following promise holds: When
provided an oracle for the set

SQ,V = {y : V accepts y and y is a light query of Q},

Q either outputs “yes” with very high probability, or outputs “no” with very high
probability (these cases correspond to the reduction saying “x ∈ L” and “x �∈ L”,
respectively). The simulation protocol, described in section 3.3, distinguishes between
these two cases when given as auxiliary inputs the fraction of heavy queries of Q and
the fraction of “yes” instances of SQ,V .

A note on approximations. The protocols described in this section cannot be
expected to certify the exact values of the probabilities in question, but can only
obtain approximations thereof. Intuitively, we will think of a protocol as computing
an approximation of p if, for arbitrary ε, the protocol runs in time polynomial in
1/ε and distinguishes between instances whose probability is p and instances whose
probability is outside the interval (p− ε, p + ε). Indeed, additive approximations are
sufficient in all our applications.

These protocols also take as inputs (actual and auxiliary) probabilities of vari-
ous events. We make the assumption that these probabilities are specified exactly,
but in fact the completeness and soundness of the protocols are unaffected even if
only approximations of these quantities were provided. The quality of approximation
required is, in all cases, a fixed inverse polynomial function of the input length.

Statistics. We use the following formulation of the law of large numbers to obtain
sampling estimates for various probabilities. For completeness we provide a proof in
section A.1 of the appendix.

Lemma 3.1 (sampling bound). Let Ω be a sample space, ε, η < 1, T ⊆ Ω, and
D a distribution on Ω. Suppose that S is a random sample of Ω consisting of at least
3 log(2/η)/ε3 elements chosen independently at random from the distribution D. Then
with probability at least 1 − η,

∣∣|T ∩ S|/|S| − D(T)
∣∣ ≤ ε.

High probability means probability 1 − o(1), where the o(·) notation is in terms
of the length of the input of the protocol.

The notation A � B is for the symmetric difference of sets A and B. We use
standard set facts about symmetric difference.

3.1. The heavy samples protocol. In this section we describe the protocol
used for estimating the fraction of heavy samples generated by a circuit C. Recall
that a string y is α-heavy for distribution D on {0, 1}m if D(y) ≥ α2−m. Given a
distribution D, the probability that a random sample of D is α-heavy is given by the
quantity

hD,α = Pry∼D[D(y) ≥ α2−m].

The problem we are considering is the following: Given a circuit C : {0, 1}n →
{0, 1}m, a threshold α, a heaviness estimate p, and an error parameter ε, we want a
protocol that accepts when p = hDC ,α and rejects when |p − hDC ,α| > ε. Here, as
throughout the section, DC denotes the output distribution of the circuit C.

A natural approach is to estimate the unknown hDC ,α by sampling: Suppose that
for a random sample y ∼ DC we could decide with good probability if the sample was

1136 ANDREJ BOGDANOV AND LUCA TREVISAN

α-heavy or α-light. Then, given k = O(1/ε3) samples y1, . . . , yk generated by running
C on independent inputs, we could estimate hDC ,α as the fraction of samples that are
α-heavy, and sampling bounds would guarantee that the answer is correct with good
probability.

However, in general we have no way of efficiently deciding whether a sample
y ∼ DC is heavy or light. However, we have at our disposal the upper and lower
bound protocols of section 2.4. For each sample yi, the verifier first asks the prover
to say if sample yi is α-heavy or α-light. Then the prover is asked to prove the claims
for the heavy samples using the lower bound protocol, and the claims for the light
samples using the upper bound protocol. In both cases, the claims concern the size
of the set C−1(yi), which is the restriction of an NP set on {0, 1}m.

There are several difficulties with implementing this approach. First, the upper
bound protocol requires the verifier to have a secret, random preimage ri of the set
C−1(yi). Fortunately, the verifier obtains this secret for free in the course of generating
yi. When generating yi, the verifier in fact chooses a random ri ∈ {0, 1}n and sets
yi = C(ri), so this ri (which is kept hidden from the prover) is indeed a random
preimage of yi.

Another difficulty is that the upper bound protocol guarantees an ε deviation
from the true value of C−1(yi) only with probability 1 − O(ε). Therefore the prover
has a good chance of getting away with a false upper bound claim on any particular
yi. But how many times can the prover play this trick? If the prover decides to
submit t false upper bound claims, its success probability quickly falls to (1 −O(ε))t

(see Corollary 2.7), so for t = ω(1/ε) the risk of detecting a false upper bound claim
becomes quite high for the prover. On the other hand, O(1/ε) false upper bound
claims make no real difference for the verifier. In the end, the verifier uses these
claims to compute its estimate of hDC ,α, so any set of O(1/ε) false claims among k
samples will change its estimate only by O(k/ε) = O(ε2), much less than the tolerated
deviation ε.

The final difficulty stems from the fact that both the upper and lower bound
protocols are approximate. To illustrate this issue, consider the case of a circuit
C for which the distribution DC is close to α-flat: Namely, every y ∈ {0, 1}m has
probability either 0 or (1± ε)α2−m under DC . Now for every sample yi of the verifier,
it happens that yi is approximately both α-heavy and α-light. Hence the verifier has
no soundness guarantee about the prover’s claims for any yi.

This issue appears quite difficult to resolve. We sidestep it by weakening the
requirement on the protocol. Instead of requiring soundness for all α, we settle for
soundness for a random choice of α. This avoids the “flatness” issue, because an
almost flat distribution is very unlikely to be close to α-flat for a random α. More
generally, given any distribution DC , if α is assigned a random value among any set
of 1/ε values that are spaced apart by a factor of at least 1 + 2ε, then the expected
probability mass under DC of samples that are both (1− ε)α-heavy and (1+ ε)α-light
can be at most ε. Therefore, the fraction of samples for which the verifier fails to
obtain a soundness guarantee cannot be much more than O(ε).

Choosing a heaviness threshold. We formalize the last observation in the following
claim. The claim is also used in sections 3.2 and 3.3. For every integer α0 and fraction
δ > 0, define the distribution

(1) Aα0,δ = uniform distribution on {α0(1 + 3δ)i : 0 ≤ i ≤ 1/δ}.
Observe that every value in Aα0,δ is in the range [α0, e

3 · α0]. Since the intervals
((1 − δ)α, (1 + δ)α) are pairwise disjoint over the various α ∈ Aα0,δ, the following

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1137

result holds.
Claim 3.2 (choosing a random threshold). For every α0 > 0 and 0 < δ < 1/3,

and every distribution D on {0, 1}m,

Eα∼Aα0,δ

[
Pry∼D[D(y) ∈ ((1 − δ)α2−m, (1 + δ)α2−m)]

]
≤ δ.

3.1.1. The protocol. We formalize the notion of a “protocol that works for
a random heaviness threshold α” by defining a family of problems {ΠHEAV Y,α},
parametrized by the threshold α, and requiring that the protocol be complete and
sound for a random problem in this family.

Inputs. (C, p, ε), where C : {0, 1}n → {0, 1}m is a circuit, and p ∈ [0, 1] is a proba-
bility, and ε > 0 is an error parameter represented in unary.

Shared auxiliary input. (α, δ), where α is a threshold parameter represented in
unary and 0 < δ < 1/3 is an error parameter.

Yes instances. (C, p, ε) such that hDC ,α = p.

No instances. (C, p, ε) such that |hDC ,α − p| > ε.

The heavy samples protocol. On input (C, p, ε) and shared auxiliary inputs α
and δ:

1. Verifier: Set k = �3 · 163 log(2/δ)/δ3�. Choose r1, . . . , rk ∼ {0, 1}n. Compute
yj = C(rj). Send y1, . . . , yk to the prover.

2. Prover: Send a partition (H,L) of [k]. An honest prover sets H = {i :
DC(yi) ≥ α2−m} and L = {i : DC(yi) < α2−m}.

3. Verifier and prover: Run the parallel upper bound protocol (see section 2.4)
with auxiliary input (ri : i ∈ L) with shared auxiliary input (error parameter)
δ for the claim “|C−1(yi)| < α2n−m for all i ∈ L.”

Run the parallel lower bound protocol (see section 2.4) with shared auxil-
iary input (error parameter) δ for the claim “|C−1(yi)| ≥ α2n−m for all i ∈ H.”
Accept iff

∣∣|H|/k − p
∣∣ ≤ ε/2.

3.1.2. Analysis of the protocol. The following lemma states the completeness
and soundness of the heavy samples protocol.

Lemma 3.3. For every integer α0 and fractions ε, δ, with probability 1 − O(δ/ε)
over α chosen uniformly from Aα0,δ, the heavy samples protocol (with input (C, p, ε)
and auxiliary input (α, δ) satisfying the promise) is a protocol for ΠHEAV Y,α with
completeness 1 −O(δ) and soundness O(δ).

Proof. We denote by H ′ and L′ the set of α-heavy and α-light samples, respec-
tively,

H ′ = {i : DC(yi) ≥ α2−m} and L′ = {i : DC(yi) < α2−m}.

The honest prover always chooses H = H ′ and L = L′.
By the sampling bound, for every prover strategy, with probability 1 − O(δ)

over the randomness of the verifier, the fraction of α-heavy samples among y1, . . . , yk
should closely approximate hDC ,α, and in particular,

(2)
∣∣|H ′|/k − hDC ,α

∣∣ ≤ ε/6.

1138 ANDREJ BOGDANOV AND LUCA TREVISAN

Completeness. Completeness (for arbitrary α) follows from high probability
estimate (2), together with completeness of the parallel lower bound protocol for

Π
|L|,1
LB,δ (see Corollary 2.7) and completeness of the parallel upper bound protocol for

Π
|H|,·
UB,δ (see Corollary 2.9).

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DC

[
DC(y) ∈ ((1 − δ)α2−m, (1 + δ)α2−m)

]
≤ ε/16.

By Claim 3.2 and Markov’s inequality, this holds with probability 1 − O(δ/ε) for a
random α in Aα0,δ. For such a choice of α, let B denote the set of samples that are
both (1 − δ)α-heavy and (1 + δ)α-light, that is,

B = {i : DC(yi) ∈ ((1 − δ)α2−m, (1 + δ)α2−m)}.

By the sampling bound, the number of samples in B is not much larger than ε/16
with high probability over the randomness of the verifier. Indeed,

Pr
[
|B| > εk/8

]
= Pr

[
|B|/k − ε/16 > ε/16

]
≤ δ.

Now fix a prover strategy for which the verifier accepts instance (C, p, ε) with
probability ω(δ). Then there exists a setting of the verifier’s randomness for which∣∣|H|/k − p

∣∣ ≤ ε/2 (by the last step of the verifier),
∣∣|H ′|/k − hDC ,α

∣∣ ≤ ε/6 (by high
probability estimate (2)), and the following conditions hold:

(i) For t = �log(1/δ)/δ� all but t + εk/8 samples in L are α-light, that is,
|L−L′| ≤ t+εk/8. Indeed, this is an event of probability 1−O(δ) over the randomness

of the verifier: By soundness of the parallel upper bound protocol for Π
|L|,t
UB,δ, fewer

than t of the samples in L are (1 + δ)α-heavy. Moreover, the number of samples in
L that are α-heavy but (1 + δ)α-light is upper bounded by the size of B. It follows
that with probability 1 −O(δ), |L− L′| ≤ t + εk/8.

(ii) All but εk/8 samples in H are α-heavy, that is, |H−H ′| ≤ εk/8. This is also
an event of probability 1−O(δ) over the randomness of the verifier: By soundness of

the parallel lower bound protocol for Π
|H|,1
LB,δ, none of the samples in H are (1−δ)α-light.

Moreover, the number of samples in H that are α-light but (1 − δ)α-heavy is upper
bounded by the size of B. It follows that with probability 1−O(δ), |H −H ′| ≤ εk/8.

It follows that
∣∣|H| − |H ′|

∣∣ ≤ |H −H ′| + |H ′ −H| = |H −H ′| + |L− L′| ≤ t + εk/4 < εk/3.

Therefore,

|hDC ,α− p| ≤
∣∣hDC ,α−|H ′|/k

∣∣+ ∣∣|H ′|/k−|H|/k
∣∣+ ∣∣|H|/k− p

∣∣ < ε/6+ ε/3+ ε/2 = ε.

Thus, (C, p, ε) is a “yes” instance of ΠHEAV Y ,α.

3.2. The hiding protocol. In this section we describe the protocol for estimat-
ing the probability that a random sample generated by a circuit C : {0, 1}n → {0, 1}m
is both a light sample and a “yes” instance of some NP language V . Let us denote
by DC the distribution of outputs of the circuit C and by U the uniform distribution
on {0, 1}m. We assume that we are given as advice the probability pY that a random
sample in {0, 1}m is a “yes” instance of V .

For starters, let us assume that we are guaranteed that the distribution DC is
α-smooth (for some reasonably small α); that is, no output of C is α-heavy. Let

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1139

us consider the following experiment. We choose among distributions DC and U by
flipping a coin biased towards DC with probability b (the value of interest is around
b = 1/α) and then generate a sample y according to either DC or U , depending on
the outcome of the coin. We then give the sample y to the prover and ask which
distribution it came from.

The best strategy for the prover to guess the origin of the sample is a maximum
likelihood test: Compute the ratio DC(y)/U(y), and declare “DC” if the ratio exceeds
1/b, and “U” otherwise. However, when b < 1/α, the maximum likelihood test will
always guess that the sample came from U . This effectively gives the verifier the
ability to hide samples from DC among samples from U .

Suppose now that the verifier wants to determine membership in V ∩ {0, 1}m for
a random sample from DC , but it has only the ability to determine membership for
random samples from U . The verifier can then use the prover as follows: Generate
ω(α) samples by choosing each one independently. The sample size is large enough so
that at least one of the samples, call it z, will originate from DC . The prover is then
asked to determine membership in V for all the samples. The verifier then checks if
the prover determined membership in V correctly for all the samples coming from U .
If this is the case, then chances are that the prover also determined membership in V
correctly for z, since this sample was hidden among all the other ones.

In our case, the verifier has no way of determining membership in V on samples
from U . Instead, it knows only that the fraction of samples from U that fall in V
should be roughly pY . Recall that the verifier is interested in determining the fraction
gDC ,V of samples from DC that fall in V . It is tempting to try the following protocol:
The verifier and prover run the hiding procedure on a sufficiently large sample. The
verifier then checks that the fraction of samples originating from U claimed to be in V
by the prover is within a small enough deviation δ of pY . If this is the case, the verifier
estimates gDC ,V as the fraction of samples originating from DC that are claimed to
be in V by the prover.

It is not difficult to see that this protocol is not sound: A prover can “convince”
the verifier, for instance, that gDC ,V = pY . To do so, for each sample the prover
answers independently “yes” with probability pY and “no” with probability 1 − pY
about the membership of this sample in V .

However, since V is an NP set, the verifier can impose an additional requirement:
Every time the prover makes a “yes” claim for a sample, an NP certificate for member-
ship in V of the sample must be provided. The prover’s cheating power now becomes
one-sided as it can no longer provide a “yes” answer for a sample that is not in V ;
the only way the prover can now cheat is by providing “no” answers for samples in
V . However, if the prover supplies such false answers on more than an O(δ) fraction
of the samples (where δ > 0 is an error parameter), it is likely that most of these
falsely answered samples originated from U , because the samples originating from U
comprise an overwhelming majority of all the samples. Therefore it is likely that the
fraction of samples from U claimed “yes” by the prover is smaller than pY − δ. On
the other hand, statistically it is very unlikely that fewer than a pY − δ fraction of
samples from U are in V . This prevents the prover from providing false answers on
more than an O(δ) fraction of all the samples. Since the number of samples from
DC is roughly a b fraction of the total number of samples, the prover in particular
cannot provide false answers on more than an O(δ/b) fraction of samples originating
from DC . Therefore a cheating prover is unlikely to skew the verifier’s estimate of
gDC ,V by more than O(δ/b). Setting δ = εb allows the verifier to obtain an additive
ε approximation of gDC ,V in time polynomial in 1/ε, α, and the sizes of C and V .

1140 ANDREJ BOGDANOV AND LUCA TREVISAN

Handling the heavy samples. Notice that if we drop the smoothness restriction
on DC , this argument fails because very heavy samples cannot be effectively hidden
among uniform samples. However, our goal is to merely estimate the probability
that a sample from DC is both in V and light. To do so, we run the protocol as
for smooth distributions, initially ignoring the heavy samples. The soundness of that
protocol still shows that the prover must have answered most of the light samples from
DC correctly. What remains to be done is to weed out the heavy samples. By the
protocol from section 3.1, the verifier can estimate the fraction pH of heavy samples.
(To avoid duplication, we assume the protocol here is given pH as auxiliary input.)
At this point, the verifier reveals its sample to the prover and asks the prover to give
lower bound proofs for a pH − ε fraction of samples from DC . The prover’s cheating
power here is also one-sided: By soundness of the parallel lower bound protocol, the
prover cannot claim any of the light samples as heavy, so it can cheat only by claiming
that some heavy samples are light. However, since the prover is required to provide
lower bound proofs for a pH − ε fraction of samples from DC , and the number of truly
heavy samples from DC is likely to be upper bounded by pH + ε, the prover cannot
cheat on more than an O(ε) fraction of the samples from DC . Therefore a cheating
prover cannot skew the verifier’s estimate of gDC ,V by more than an additive term of
O(ε).

We encounter the same issue regarding the choice of α as in the protocol for heavy
samples: If too many samples from DC have probability about α, the lower bound
protocol provides no soundness guarantee. As in section 3.1, we sidestep this problem
by choosing a random α and arguing soundness with high probability over α.

3.2.1. The protocol. We give a protocol for the following family of promise
problems, which we denote by {ΠHIDE,α}.

Inputs. (C, V, p, ε), where C : {0, 1}n → {0, 1}m is a circuit, V : {0, 1}m × {0, 1}l →
{0, 1} is a nondeterministic circuit,6 p ∈ [0, 1] is a probability, and ε > 0 is an error
parameter represented in unary.

Shared auxiliary input. (α, δ, pY , pH), where α > 0 is a threshold integer repre-
sented in unary, 0 < δ < 1/3 is an error parameter represented in unary, and pY , pH
satisfy

(3) pY = Pry∼U [y ∈ V] and |pH − p′H | < ε/32,

where p′H = Pry∼DC
[DC(y) ≥ α2−m].

Yes instances. (C, V, p, ε) such that p = gDC ,V,α, where

gDC ,V,α = Pry∼DC
[DC(y) < α2−m and y ∈ V].

No instances. (C, V, p, ε) such that |p− gDC ,V,α| > ε.

6A nondeterministic circuit V computes a relation over {0, 1}m×{0, 1}l, and we say y ∈ {0, 1}m
is accepted by V if there exists a w ∈ {0, 1}l such that V (y;w) accepts. Abusing notation, we also
write V for the set of all y accepted by V .

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1141

The hiding protocol. On input (C, V, p, ε) and auxiliary input (α, δ, pY , pH):
1. Verifier: Set b = δ/α and k = �6 · 323 log(2/δ)/(bε)3�. Choose a set TDC

⊆ [k]
by assigning each element of [k] to TDC

independently with probability b. Let
TU = [k] − TDC

.
Choose strings y1, . . . , yk ∈ {0, 1}m as follows. If j ∈ TDC

, choose yj ∼ DC .
If j ∈ TU , choose yj ∼ U . Send the sequence y1, . . . , yk to the prover.

2. Prover: Send sets Y,H ⊆ [k] and strings (wj : j ∈ Y) to the prover. An
honest prover sends
(a) Y as the set of all j such that yj ∈ V ,
(b) H as the set of all j such that yj is α-heavy for DC , and
(c) wj such that V (yj ;wj) accepts for all j ∈ Y .

3. Verifier: Reject under any of the following circumstances:
(a) (Witness checks) V (yj ;wj) does not accept for some j ∈ Y .
(b) (Frequency of “yes” samples in U)

∣∣|Y ∩ TU |/|TU | − pY
∣∣ ≥ εb/32.

(c) (Frequency of heavy samples in DC)
∣∣|H ∩ TDC

|/|TDC
| − pH

∣∣ ≥ ε/16.
(With prover) Run the parallel lower bound protocol with shared auxiliary
input (error parameter) δ for the claim

“|C−1(yj)| ≥ α2n−m for all j ∈ H ∩ TDC
.”

Accept iff

(4)
∣∣|Y ∩H ∩ TDC

|/|TDC
| − p

∣∣ < ε/4.

Remark. The parameter b needs to satisfy two constraints. It has to ensure that
the α-light queries are hidden well (as a choice of probability for membership in T)
and also has to guarantee that the fraction of “yes” samples in TU is very close to
pU—not only within O(ε), but within O(bε). This is necessary because TDC

is smaller
than TU by a factor of b, so to obtain an O(ε) deviation bound for the fraction of
light “yes” queries in TDC

, a stronger O(bε) deviation bound must be assumed for the
fraction of “yes” queries in TU .

3.2.2. Analysis of the protocol. The following lemma states the completeness
and soundness of the hiding protocol.

Lemma 3.4. For every integer α0 and fractions ε, δ, with probability 1 − O(δ/ε)
over α chosen uniformly from Aα0,δ, the hiding protocol (with input (C, V, p, ε) and
auxiliary input (α, δ, pY , pH) satisfying the promise) is a protocol for ΠHIDE,α with
completeness 1 −O(δ) and soundness O(δ).

Proof. We denote by Y ′ and H ′ the set of actual “yes” samples and the set of
actual heavy samples, respectively,

Y ′ = {j : yj ∈ V } and H ′ = {j : DC(yj) ≥ α2−m}.

An honest prover always chooses Y = Y ′ and H = H ′.
The sampling bound implies that, for any fixed prover strategy, all of the following

events hold with probability 1 −O(δ) over the randomness of the verifier:
(i) The number of samples in TDC

is large:

(5) |TDC
| > bk/2 ≥ 3 · 323 log(2/δ)/ε3.

1142 ANDREJ BOGDANOV AND LUCA TREVISAN

(ii) The number of samples in TU is large:

(6) |TU | > (1 − b− ε)k.

(iii) About a pY fraction of samples in TU are “yes” samples:

(7)
∣∣|Y ′ ∩ TU |/|TU | − pY

∣∣ < εb/32.

(iv) About a pH fraction of samples in TDC
are heavy samples:

(8)
∣∣|H ′ ∩ TDC

|/|TDC
| − p′H

∣∣ < ε/32.

(v) About a gDC ,V,α fraction of samples in TDC
are light “yes” samples:

(9)
∣∣|Y ′ ∩H

′ ∩ TDC
|/|TDC

| − gDC ,V,α

∣∣ < ε/4.

Completeness. Completeness (for arbitrary α) follows from high probability
estimates (7), (8), and (9), promise (3), and completeness of the parallel lower bound

protocol for Π
|H∩TDC

|,1
LB,δ .

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DC

[
DC(y) ∈ ((1 − δ)α2−m, (1 + δ)α2−m)

]
≤ ε/32.

By Claim 3.2 and Markov’s inequality, this holds with probability 1 − O(δ/ε) for
a random α in Aα0,δ. For such a choice of α, with probability 1 − O(δ) over the
randomness of the verifier, the number of samples in TDC

that are both (1 − δ)α-
heavy and α-light is at most ε|TDC

|/16. (This follows from the sampling bound and
high probability estimate (5).)

Now fix a prover strategy for which the verifier accepts instance (C, V, p, ε) with
probability ω(δ). The analysis will be split into the following two parts:

(i) Show that the fraction of samples in TDC
that were claimed both “yes” and

“light” by the prover is within O(ε) of the fraction of truly light samples that were
claimed “yes” by the prover. More generally, we show that for any set of samples
I ⊆ TDC

, the fraction of samples in I that are claimed heavy by the prover is within
O(ε) of the fraction of truly heavy samples in I. This will be shown in Claim 3.5.

(ii) Show that if the fraction of false “no” claims for samples in TU is small, then
the fraction of false “no” claims for light samples in TDC

is small. This will be shown
in Claim 3.6, which formalizes the hiding property of the protocol and contains the
main idea of the soundness analysis.

Observe that step 3(a) of the hiding protocol ensures Y ⊆ Y ′ whenever the verifier
accepts. Let Y − = Y ′ − Y .

Claim 3.5 (heavy samples). With probability 1 − O(δ) over the randomness of

the verifier, if the verifier accepts, then for every set I ⊆ TDC
,
∣∣|I ∩H| − |I ∩H

′|
∣∣ ≤

ε|TDC
|/4.

Claim 3.6 (hiding property). With probability 1 −O(δ) over the randomness of

the verifier, |Y − ∩ TU | > 1
2 |Y − ∩H

′|.
We give the proofs of both these claims at the end of the section. Let us see

first how these claims imply soundness. By a union bound, there exists an accepting
transcript for the verifier, where high probability estimates (5), (7), and (9) hold, and
the properties in Claims 3.5 and 3.6 hold. Fix such an accepting transcript.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1143

By the accepting condition (4) and high probability estimate (9),

|p− gDC ,V,α| <
ε

4
+

ε

4
+

∣∣∣∣ |Y ∩H ∩ TDC
|

|TDC
| − |Y ′ ∩H

′ ∩ TDC
|

|TDC
|

∣∣∣∣ (by (4) and (9))

=
ε

4
+

ε

4
+

∣∣∣∣ |Y ∩H ∩ TDC
|

|TDC
| −

(
|Y ∩H

′ ∩ TDC
|

|TDC
| +

|Y − ∩H
′ ∩ TDC

|
|TDC

|

)∣∣∣∣

≤ ε

4
+

ε

4
+

∣∣∣∣ |Y ∩H ∩ TDC
|

|TDC
| − |Y ∩H

′ ∩ TDC
|

|TDC
|

∣∣∣∣ +
|Y − ∩H

′ ∩ TDC
|

|TDC
|

≤ ε

4
+

ε

4
+

ε

4
+

|Y − ∩H
′ ∩ TDC

|
|TDC

| (by Claim 3.5).

We now apply the hiding property to bound the last term. First,

|Y − ∩ TU |
|TU |

=
|Y ′ ∩ TU |

|TU |
− |Y ∩ TU |

|TU |
=

(
|Y ′ ∩ TU |

|TU |
− pY

)
+

(
pY − |Y ∩ TU |

|TU |

)
<

εb

16

by high probability estimate (7) and step 3(b) of the verifier. Now, using the hiding
property and high probability estimate (5),

|Y − ∩H
′ ∩ TDC

|
|TDC

| ≤ |Y − ∩H
′|

|TDC
| < 2 · |Y

− ∩ TU |
|TDC

| < 2 · εbk/16

bk/2
=

ε

4
.

It follows that |p− gDC ,V,α| < ε, so (C, V, p, ε) is a yes instance of ΠHIDE,α.
Proof of Claim 3.5. For ease of notation, let G = H ∩ TDC

and G′ = H ′ ∩ TDC
.

Denote by G and G
′
the complements of G and G′ in TDC

, respectively.
Fix a transcript of the verifier for which high probability estimate (8) holds, none

of the samples in TDC
∩H are (1−δ)α-light, and the number of samples whose weight

is between (1 − δ)α and α in G is at most ε|TDC
|/16. By soundness of the parallel

lower bound protocol for Π
|G|,1
LB,δ, Claim 3.2, and the sampling bound, all these events

hold with probability 1 −O(δ).
Suppose the verifier accepts. Since none of the samples in G are (1 − δ)α-light

and the number of samples whose weight is between (1 − δ)α and α in G is at most
ε|TDC

|/16, it follows that

|G−G′|/|TDC
| < ε/16.

On the other hand, step 3(c) of the verifier, promise (3), and high probability estimate
(8) give

∣∣|G| − |G′|
∣∣/|TDC

| ≤
∣∣|G|/|TDC

| − pH
∣∣ + |pH − p′H | +

∣∣p′H − |G′|/|TDC
|
∣∣ < ε/8.

The last two equations imply that the sets G and G′ cannot differ on all but a few

elements. Therefore, G and G
′

must also be very close, and so must be I ∩ G and

I ∩G
′
.

The rest are calculations formalizing these claims. First, |G′ − G| must also be
small because

∣∣|G′| − |G|
∣∣ =

∣∣|G′ −G| − |G−G′|
∣∣ ≥ |G′ −G| − |G−G′|

1144 ANDREJ BOGDANOV AND LUCA TREVISAN

so that |G′ −G|/|TDC
| < 3ε/16. It follows that

∣∣|I ∩G| − |I ∩G
′|
∣∣ ≤ ∣∣|I ∩G| − |I ∩G ∩G

′|
∣∣ + |I ∩ (G

′ −G)|
= |I ∩ (G−G

′
)| + |I ∩ (G

′ −G)|
≤ |G−G

′| + |G′ −G|
≤ ε|TDC

|/4.

Proof of Claim 3.6. We will, in fact, reach the stronger conclusion

|Y − ∩H
′ ∩ TU | >

1

2
|Y − ∩H

′|.

For every sample j ∈ Y − ∩H
′
, that is, every light sample for which the prover made

a false “no” claim, consider the event “j ∈ TDC
” from the point of view of the prover.

For a fixed prover strategy, the first message of the verifier completely determines the

set Y − ∩H
′
. First, we show that for any first message y = (y1, . . . , yk) of the verifier,

the probability of each event “j ∈ TDC
” for j ∈ Y − ∩H

′
(over the randomness of the

verifier’s first message) is less than any constant:

Pr[j ∈ TDC
| y] = Pr[j ∈ TDC

|yj] (by independence of samples)

=
Pr[yj | j ∈ TDC

] Pr[j ∈ TDC
]

Pr[yj]

≤ Pr[yj | j ∈ TDC
] Pr[j ∈ TDC

]

Pr[yj | j ∈ TU] Pr[j ∈ TU]

≤ (α2−m) · b
2−m · (1 − b)

(by lightness)

≤ 2δ (by choice of b).

For fixed y, the quantity |Y − ∩H
′ ∩ TDC

| is a sum of indicator random variables for

the events “j ∈ TDC
” (one for each j ∈ Y − ∩H

′
), so it follows that

E
[
|Y − ∩H

′ ∩ TDC
| | y

]
=

∑
j∈Y −∩H

′ Pr[j ∈ TDC
| y] ≤ 2δ · |Y − ∩H

′|.

by Markov’s inequality, we have that

Pr

[
|Y − ∩H

′ ∩ TDC
| > 1

2
|Y − ∩H

′| | y
]
< 4δ.

Therefore

Pr

[
|Y − ∩H

′ ∩ TU | ≤
1

2
|Y − ∩H

′| | y
]
< 4δ.

The claim follows by taking expectation over y.

3.3. Simulating the reduction. In this section we describe the protocol that
simulates a querier circuit Q (describing an instantiation of the worst-to-average re-
duction on a particular input) querying an average-case membership oracle for some
NP set V . Let us assume that all the queries made by Q are identically distributed,

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1145

and denote by DQ the distribution of a single query. The average-case membership
oracle is for the set

S = {y ∈ {0, 1}∗ : y ∈ V and DQ(y) ≤ α2−|y|}.

Recall that if Q describes an instantiation of a worst-to-average reduction from some
language L to V , then distinguishing between the cases when Q accepts most of its
inputs and when Q rejects most of its inputs allows us to determine membership in L.

We assume that the protocol is given as advice the probability pH that a random
query of Q is α-heavy, and the probability pS that a random query of Q is in S.
In reality, the protocol is only given approximations of these values, but for the
sake of simplicity we ignore the distinction in this discussion. Suppose that Q on
input r ∈ {0, 1}n generates k queries y1, . . . , yk and a circuit C : {0, 1}k → {0, 1}.
Moreover, Q satisfies the promise that C(S(y1), . . . , S(yk)) either accepts or rejects
with probability 1 − η for some η > 0.

Let us first consider the case when the distribution DQ is α-smooth, that is, all
queries are α-light. In this case, S = V and pH = 0, and the protocol of Feigenbaum
and Fortnow can be used directly, as the advice pS gives the probability that a random
query generated by Q is a “yes” query, which is the advice needed for the Feigenbaum–
Fortnow protocol. Let us recall how this protocol works. The verifier generates l =
�24 · (k/η)3 log(2k/δ)� (where δ > 0 is an error parameter) random strings r1, . . . , rl,
sends these strings to the prover, and asks the prover to simulate the computation of
Q(ri) with oracle S for every i. To certify that most of the simulations are correct, the
prover provides, with every “yes” query made in the simulations, an NP witness (for
V) for this query. With high probability, for all query indices j ∈ [k], among the jth
queries made by Q, (pS ± η/k)l of these queries must be “yes” instances of V , so the
verifier can ask to see at least pSlk−ηl “yes” answers without affecting completeness.
But no prover can now make more than ηl false “no” claims, so if the verifier outputs
the outcome of a random simulation, it will be correct with probability 1 − η.

For a general distribution DQ, the difficulty is that the prover can no longer certify
membership in S as in the Feigenbaum–Fortnow protocol, as S is not an NP set.7

Instead of certifying membership in S directly, the verifier will first approximately
determine which of its queries are α-heavy. To do so, the verifier uses the fact that
heaviness is a certifiable property, thus limiting the cheating power of the prover:
Statistically, the fraction of heavy queries is within pH ± η/k with high probability,
and the verifier asks the prover to give proofs of heaviness (using the lower bound
protocol) for at least pHkl − ηl of its queries. Since the prover’s cheating power is
one-sided (the prover is likely to be caught cheating if it claims that a light query is
heavy), it can fool the verifier about heaviness on at most 2ηl queries.

Once the verifier knows approximately which queries are α-heavy, it can ask the
prover to reveal which queries are in V among the ones that are α-light: For each
query that the verifier thinks is α-light, the prover is asked to determine membership
in V and provide a certificate in case of a “yes” answer. Statistically, the fraction
of queries that are light and in V is within pS ± η/k with high probability, and the
verifier asks to see “yes” certificates for at least pSkl − ηl queries that it thinks are

7In fact, if S were defined as the set of y such that y ∈ V or y is α-heavy, then it would have been
an AM set (almost, save the fact that heaviness is an approximate AM property). This provides an
alternate way of proving the main theorem: Modify the hiding protocol to calculate the fraction of
samples that are either “yes” or heavy, then simulate the reduction using the Feigenbaum–Fortnow
protocol.

1146 ANDREJ BOGDANOV AND LUCA TREVISAN

α-light. If the set of queries that the verifier thinks are α-light coincided exactly with
the set of truly α-light queries, the prover would not be able to provide more than
2ηl false answers about membership in V among the α-light queries. In general these
two sets will not coincide exactly. However, the number of elements on which they
differ is at most 2ηl, so that the total number of truly α-light queries on which the
prover can cheat about membership in V is still O(ηl).

It follows that for a random i ∈ [l], the verifier can correctly simulate membership
in S with probability 1 −O(δ + η).

Regarding the choice of α, we encounter the same issue as in sections 3.1 and 3.2:
If too many queries have probability about α, the lower bound protocol provides
no soundness guarantee. Again, we sidestep this issue by arguing completeness and
soundness for a random α.

3.3.1. The protocol. We give a protocol for the following family of promise
problems, which we denote by {ΠSIM,α}.

Inputs. (Q,V, η), where V is a nondeterministic polynomial-time machine, Q :
{0, 1}n → {0, 1}poly(n) is a querier circuit producing k queries for the set

S = SDQ,V,α = {y ∈ {0, 1}∗ : V accepts y and DQ(y) < α2−|y|},
and η > 0 is an error parameter.

Shared auxiliary input. (α, δ, pH , pS), where α is a threshold parameter repre-
sented in unary, 0 < δ < 1/3 is an error parameter represented in unary, and pS , pH
satisfy

(10) |pH − p′H | < η/2k and |pS − p′S | < η/2k,

where p′H = Pry∼DQ
[DQ(y) ≥ α2−|y|] and p′S = Pry∼DQ

[y ∈ S].

Yes instances. (Q,V, η) such that Prr[Q
S(r) accepts] > 1 − η/2.

No instances. (Q,V, η) such that Prr[Q
S(r) accepts] < η/2.

The simulation protocol. On input (Q,V), and auxiliary input (α, δ, pH , pS):
1. Verifier: Set l = �24 · (k/η)3 log(2k/δ)�. Choose l random strings r1, . . . , rl ∈

{0, 1}n and send them to the prover. Denote the jth query of Q(ri) by yij .

2. Prover: Send sets Y,H ⊆ [l] × [k] and strings (wij : (i, j) ∈ Y) to the prover.
An honest prover sends:
(a) Y as the set of all (i, j) such that yij ∈ V ,
(b) H as the set of all (i, j) such that yij is α-heavy for DQ, and
(c) wij such that V (yij ;wij) accepts for all (i, j) ∈ Y .

3. Verifier: Reject under any of the following circumstances:
(a) (Witness checks) V (yij ;wij) does not accept for some (i, j) ∈ Y .
(b) (Frequency of heavy samples)

∣∣|H|/kl − pH
∣∣ > η/k.

(c) (Frequency of light “yes” samples)
∣∣|Y ∩H|/kl − pS

∣∣ > η/k.
(With prover) Run the parallel lower bound protocol with shared auxiliary
input (error parameter) δ for the claim

|{r : The first query of Q(r) is yij}| > α2n−|yij | for all (i, j) ∈ H.

Choose a random i ∈ [l]. Accept if the decider of Q(ri) accepts the input
(a1, . . . , ak), where aj = “yes” if (i, j) ∈ Y ∩H, and aj = “no” otherwise.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1147

3.3.2. Analysis of the protocol. The following lemma states the completeness
and soundness of the simulation protocol.

Lemma 3.7. For every integer α0, querier circuit Q that produces k queries, and
fractions η, δ, with probability 1 − O(δk/η) over α chosen uniformly from Aα0,δ, the
simulation protocol (with input (Q,V, η) and auxiliary input (α, δ, pH , pS) satisfying
the promise) is a protocol for ΠSIM,α with completeness 1 −O(δ + η) and soundness
O(δ + η).

Proof. We denote by H ′ and Y ′ the set of actual heavy samples, and the set of
actual “yes” samples, respectively,

H ′ = {(i, j) : DQ(yij) ≥ α2−|yij |} and Y ′ = {(i, j) : yij ∈ V }.

The honest prover always chooses H = H ′ and Y = Y ′.
First, we observe the following high probability estimates over the randomness of

the verifier (for any prover strategy), which follow directly from the sampling bound:

(11) (Q,V, η) is a yes instance

=⇒ Pr
[
|{i : QS(ri) accepts}| > (1 − η)l

]
= 1 −O(δ).

(12) (Q,V, η) is a no instance =⇒ Pr
[
|{i : QS(ri) accepts}| < ηl

]
= 1 −O(δ).

Let T denote an arbitrary fixed (that is, independent of both the verifier’s random-
ness and the prover’s strategy) subset of {0, 1}∗. The key observation of Feigenbaum
and Fortnow is that for any T , with probability 1−O(δ) over the randomness of the
verifier, the fraction of queries yij that fall inside T is |T |/kl±η/k, even though there
are dependencies among the queries. To see this, divide the queries into k sets, where
the jth set consists of queries q1j , . . . , qlj . Within each set, the queries are indepen-
dent, so by the choice of l = �24 · (k/η)3 log(2k/δ)� and by the sampling bound, the
fraction of queries in the jth set that fall inside T is |T |/kl ± η/k with probability
1 − O(δ/k). By a union bound over j, it follows that with probability 1 − O(δ) the
total fraction of queries yij that fall inside T is within η/k of |T |/kl.

Specifically, in the case when T is the set of α-heavy queries, we obtain that with
probability 1 −O(δ) over the randomness of the verifier, it holds that

(13)
∣∣|H ′|/kl − pH

∣∣ < η/2k.

When T is the set of α-light queries that are in V , again with probability 1 − O(δ)
over the randomness of the verifier, it holds that

(14)
∣∣|Y ′ ∩H

′|/kl − pS
∣∣ < η/2k.

Completeness. Completeness (for arbitrary α) follows from high probability
estimates (11), (13), (14), promise (10), and completeness of the parallel lower bound

protocol for the promise Π
|H|,1
LB,δ.

Soundness. Fix an α ∼ Aα0,δ such that

Pry∼DQ

[
DQ(y) ∈ ((1 − δ)α2−|y|, (1 + δ)α2−|y|)

]
≤ η/2k.

By Claim 3.2 and Markov’s inequality, this holds with probability 1 − 2δk/η for a
random α in Aα0,δ. For such a choice of α, it follows from the sampling bound that

1148 ANDREJ BOGDANOV AND LUCA TREVISAN

with probability 1 − O(δ) over the randomness of the verifier, the number of queries
that are both (1 − δ)α-heavy and α-light is at most ηl.

Fix a prover strategy for which the verifier accepts instance (Q,V, η) with prob-
ability ω(δ) + 11η. We will show that at least an 11η fraction of the transcripts
are accepting, satisfy high probability estimate (12), and have the property that the
prover is honest on all but at most 10ηl answers provided in step 2 of the protocol:
Namely, they satisfy the condition

(15) |(Y ∩H) � (Y ′ ∩H
′
)| < 10ηl.

Now consider all prefixes of transcripts consisting of the prover-verifier interaction
before the verifier’s choice of index i in step 3. There must exist at least one such
prefix that satisfies estimate (12) and condition (15), and for which at least an 11η
fraction of choices for i yield accepting transcripts. For this prefix, condition (15)
implies that for at least an 1−10η fraction of indices i, the verifier correctly simulates
the computation QS(ri) using the claims received from the prover in step 2. Therefore,
for at least an η fraction of indices i, the transcript resulting from this choice of i is
accepting. By condition (12), it follows that (Q,V, η) must be a “yes” instance.

We now show that at least an 11η fraction of transcripts are accepting, satisfy
high probability estimate (12), and satisfy condition (15). For an accepting transcript,
step 3(a) of the verifier guarantees that Y ⊆ Y ′. Let Y − = Y ′ − Y . If H were equal

to H
′
with high probability, we would have (Y ∩H) � (Y ′ ∩H

′
) = Y − ∩H

′
, so the

claim would follow from the verifier’s step 3(c) and estimates (12) and (14). The only

complication is that H and H
′
are not equal (and the difference between them can be

two-sided), but the set difference is small: |H � H ′| ≤ 4ηl for a 1 − O(δ) fraction of
transcripts because with probability 1−O(δ), both of the following properties hold:

(i) By soundness of the parallel lower bound protocol for Π
|H|,1
LB,δ, none of the

samples in H are (1−δ)α-light. Also, the number of samples whose weight is between
(1 − δ)α and α is at most ηl, so it follows that |H −H ′| ≤ ηl.

(ii) Step 3(b) of the verifier, promise (10), and high probability estimate (13)
give

∣∣|H| − |H ′|
∣∣ ≤ ∣∣|H| − pHkl

∣∣ + |pH − p′H |kl +
∣∣p′Hkl − |H ′|

∣∣ < 2ηl.

Then |H ′ −H| ≤ 3ηl because

∣∣|H ′| − |H|
∣∣ =

∣∣|H ′ −H| − |H −H ′|
∣∣ ≥ |H ′ −H| − |H −H ′|.

It follows that

(16) |H � H ′| = |H −H ′| + |H ′ −H| ≤ 4ηl.

By a union bound, at least an 11η fraction of transcripts are accepting and satisfy
high probability estimates (12), (14) and condition (16). For such transcripts, we
have

∣∣(Y ∩H) � (Y ′ ∩H
′
)
∣∣ =

∣∣(Y ∩H) � ((Y ∩H
′
) � (Y − ∩H

′
))
∣∣

=
∣∣(Y ∩ (H � H

′
)) � (Y − ∩H

′
)
∣∣

≤
∣∣H � H

′∣∣ + |Y − ∩H
′|

≤ 4ηl + |Y − ∩H
′|.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1149

The last line follows from the fact that the symmetric difference stays the same if the
sets are complemented. Therefore,

|Y − ∩H
′| ≤

∣∣|Y − ∩H
′| + (|Y ∩H

′| − |Y ∩H|)
∣∣ +

∣∣|Y ∩H
′| − |Y ∩H|

∣∣
≤

∣∣|Y ′ ∩H
′| − |Y ∩H|

∣∣ +
∣∣(Y ∩H

′
) � (Y ∩H)

∣∣
=

∣∣|Y ′ ∩H
′| − |Y ∩H|

∣∣ +
∣∣Y ∩ (H

′ � H)
∣∣

≤
(∣∣|Y ′ ∩H

′| − p′Skl
∣∣ + |p′S − pS |kl +

∣∣pSkl − |Y ∩H|
∣∣) + |H � H ′|

< (ηl/2 + ηl/2 + ηl) + 4ηl (by (14), (10), verifier step 3(c), and (16))

so that |(Y ∩H) � (Y ′ ∩H
′
)| < 4ηl + 6ηl = 10ηl.

4. Main theorem and proof. In this section we state and prove the main
theorem.

Theorem 4.1 (main theorem). For any two languages L and L′ such that L′ ∈
NP and every constant c, if there is an n−c nonadaptive worst-to-average reduction
from L to L′, then L ∈ NP/poly ∩ coNP/poly.

In particular, if L were hard for NP, then coNP ⊆ NP/poly, and therefore Σ3 =
Π3.

Proof. Fix an arbitrarily small constant η > 0. We will assume that there exist
polynomials k(n) and m(n) such that for every n and every input x of length n, the
reduction makes exactly k(n)/m(n) queries of every length between 1 and m(n), so
that the total number of queries made by the reduction is k(n). We will also assume
that the queries made by the reduction are identically distributed, and that (when
provided access to an average-case oracle) the reduction either accepts or rejects with
probability at least 1 − η/2. In section 2.2 we explained why all these assumptions
can be made without loss of generality.

Observe that if there is an n−c worst-to-average reduction from L to L′, then
there is also a worst-to-average reduction from L to L′, so it suffices to prove that L ∈
NP/poly. We describe an AM protocol for L with advice (in which completeness and
soundness hold only when the advice is correct) and private coins with completeness
1 −O(η) and soundness O(η). By the remarks in section 2.3, the existence of such a
protocol for L shows that L ∈ NP/poly.

Let Rn denote the circuit computing the worst-to-average reduction from L to L′

on inputs of length n. Let V be a nondeterministic machine for L′. Set α0 = n−c.

Input. A string x of length n.

Advice. For every 1 ≤ i ≤ m(n), the probability pY,i = Pry∼{0,1}i [y ∈ L′], and the
circuit Rn.

Let Q be the circuit obtained by hardwiring the input x to Rn. Thus, Q takes as
input a random string r and produces as output k(n) queries and a decider circuit.
For every 1 ≤ i ≤ m(n), let Ci denote the circuit that generates a random query of Q
of length i: The circuit Ci simulates the circuit Q, then uses additional randomness to
select uniformly one of the m(n) outputs of Q of length i. Let DCi

be the distribution
of a sample of Ci, and DQ be the distribution of the first query of Q. Finally, let
Vi be the nondeterministic circuit describing the computation of ML′ on an input of
length i.

1150 ANDREJ BOGDANOV AND LUCA TREVISAN

The protocol.
1. Verifier: Set the error parameters δ, ε1 and ε2 so that δ = min(ε1/m(n), 1/3),

ε1 = ε2/32, and ε2 = η/2k(n). Choose a random α from the distribution
Aα0,δ (see (1)). Send α to the prover.

2. Prover: For every 1 ≤ i ≤ m(n), send two probabilities hDCi
,α and gDCi

,V,α

to the verifier. An honest prover sends

hDCi
,α = Pry∼DCi

[DCi(y) ≥ α2−i] and

gDCi
,V,α = Pry∼DCi

[DCi
(y) < α2−i and y ∈ V].

3. Verifier and prover: For every 1 ≤ i ≤ m(n), run (in parallel) the heavy sam-
ples protocol (see section 3.1) on input (Ci, hDCi

,α, ε1) and shared auxiliary
input (α, δ).
For every 1 ≤ i ≤ m(n), run (in parallel) the hiding protocol (see section 3.2)
on input (Ci, Vi, gDCi

,Vi,α, ε2) and shared auxiliary input (α, δ, pY,i, hDCi
,α).

4. Verifier: Let

pH =
∑m(n)

i=1

1

m(n)
· hDCi

,α and pS =
∑m(n)

i=1

1

m(n)
· gDCi

,V,α.

5. Verifier and prover: Run the simulation protocol (see section 3.3) on input
(Q,ML′ , η) and shared auxiliary input (α, δ, pH , pS).

Observe that when the prover is honest, the probability pH is exactly the prob-
ability that a random query of Q is α-heavy regardless of its length. Conversely,
if pH deviates from the probability that a random query of Q is α-heavy by more
than ε, it must be that at least one of the claims hDCi

,α deviates from the value

Pry∼DCi
[DCi(y) ≥ α2−i]. Similar considerations apply to the probability pY .

Analysis of the protocol. The protocol intends to simulate a run of the reduction
R when given oracle access to the set L∗

α for some α, where

L∗
α = {y ∈ {0, 1}∗ : y ∈ L′ and DQ(y) < α2−|y|}.

Observe that for every α ∈ Aα0,δ, the languages L′ and L∗
α are 1/α0-close: The

distance between L′ and L∗
α equals the measure of the set of α-heavy samples for

DQ under the uniform distribution. Since the number of α-heavy samples of DQ of
length i cannot exceed α−1 ·2−i, the two sets are 1/α ≤ 1/α0-close under the uniform
distribution.

Observe that our choice of parameters guarantees that for a random choice of
α∼Aα0,δ, with probability 1 −O(η) over the choice of α, all runs of the heavy sam-
ples protocol, the hiding protocol, and the query simulation protocol satisfy the com-
pleteness and soundness conditions guaranteed by Lemmas 3.3, 3.4, and 3.7. For
such a choice of α, completeness and soundness of the protocol follow by inspec-
tion. The completeness error is O(η), which we obtain by adding the completeness
errors of all the component protocols. The soundness error is also O(η), which we
obtain by observing that parallel composition does not increase the soundness er-
ror (see section 2.3) and by adding the soundness errors from steps 3 and 5 of the
protocol.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1151

Remarks.
(i) If the worst-to-average reduction were uniform, the proof of Theorem 4.1

actually gives the stronger conclusion L ∈ AMlog. This requires small modification to
the protocol: Instead of requiring that the protocol be given as advice the values pY,i
for all i between 1 and m(n), we ask only that the advice consist of the average pY =∑m(n)

i=1 pY,i/m(n), which can be represented using O(log n) bits. As a preliminary step
of the modified protocol, the prover sends claims for the actual values pY,i, and the
verifier checks that pY is the average of these values. To check that these claims are
correct (within an arbitrarily small additive term ε), for each i, the verifier generates
ω(log(m(n))/ε3) uniformly random samples of length i and asks the prover to provide
certificates for membership in V for at least a pY,i − ε fraction of them. An honest
prover can provide sufficiently many certificates with high probability, and the power
of the cheating prover is one-sided: Such a prover cannot understate any pY,i by
more than 2ε, so to preserve the average pY it cannot overstate any pY,i by more
than 2εm(n). Choosing ε small enough provides the verifier with sufficiently good
approximations of the values pY,i.

(ii) The condition L′ ∈ NP can be weakened to L′ ∈ NP/poly, as the advice for
the verifier of L′ can be incorporated as advice to the protocol.

(iii) The conclusion of the theorem holds even under Levin’s notion of hardness
for efficient-on-average algorithms. This notion makes the additional requirement
that L∗ be an “errorless” approximation of L in the proof of Theorem 4.1; that is,
L∗ now takes values in {0, 1, “fail”} and it is required that if L∗(x) �= L′(x), then
L∗(x) = “fail.” Accommodating this change requires merely a slight modification of
the simulation protocol: Instead of simulating answers to heavy queries by “no,” the
modified protocol simulates answers to heavy queries by “fail.”

5. Search problems and samplable distributions. In this section, we gen-
eralize our results to reductions from worst-case hard languages to average-case search
problems (instead of languages) whose average-case complexity is measured with re-
spect to arbitrary samplable distributions (instead of the uniform distribution).

Observe that if a decision problem L in NP is hard on average with respect to some
distribution D, then the search version of L is also hard with respect to D. However,
the converse is not evident. Thus, even though Theorem 4.1 shows that nonadaptive
worst-case to average-case reductions from an NP-hard problem to decision problems
in NP are unlikely to exist, it is conceivable that reductions to search problems in NP
are possible. In this section we rule out this possibility, showing that reductions to
arbitrary search problems in distributional NP are no more powerful than reductions
to decision problems in NP with respect to the uniform distribution.

The idea of the proof is to show that if there exists a worst-to-average reduction
from some language L to a search problem in distributional NP, then this reduction
can be composed with known reductions from the average-case complexity of Impagli-
azzo and Levin [29] and Ben-David et al. [7] to obtain a worst-to-average reduction
from L to some language L′ with respect to the uniform distribution, thus reducing
this to the special case studied in Theorem 4.1. A crucial property for our purpose of
the reductions in [7, 29], which is implicit in those works, is that both reductions are
nonadaptive.

We begin by defining the type of reduction under consideration, as well as the
types of reductions implicit in [7, 29] that will be used in the proof of the main theorem
of this section.

1152 ANDREJ BOGDANOV AND LUCA TREVISAN

5.1. Average-case reductions for search problems. The notion of a “worst-
case to average-case reduction” can be generalized in several ways. Such generaliza-
tions are needed in order to extend our impossibility result for worst-case to average-
case reductions to the case when the average-case problem is a distributional search
problem. To obtain this result, we will need to compose worst-to-average reductions
with average-case reductions.

We begin with the notion of a heuristic NP search algorithm that not only works
well on average, but also provides witnesses for “yes” instances.

Let V be an NP relation. We denote by LV the NP language corresponding to
V ; i.e., LV (x) = 1 iff there exists a w such that V (x;w) = 1. A family of random
functions Fn : {0, 1}n → {0, 1}m is a δ-approximate witness oracle for V with respect
to the ensemble of distributions D if for all n,8

Prx∼D,F [V (x;F|x|(x)) = LV (x)] > 1 − δ.

We will omit the subscript of F when it is implicitly determined by the input length.
Note that the definition implies the existence of a set S of measure D(S) = 1 − 3δ
such that for all x ∈ S,

PrF [V (x;F|x|(x)) = LV (x)] > 2/3.

Intuitively, S is the set of inputs for which the oracle has a good chance of producing
a witness for the input, when such a witness exists. As usual, the constant 2/3 is
arbitrary, since if one has access to F , it can be queried k times independently in
parallel to obtain a good witness with probability 1 − 1/3k.

Just as languages in NP represent decision problems, witness oracles represent
search problems. For example, inverting a one-way function f : {0, 1}n → {0, 1}n on
a 1−δ fraction of inputs amounts to finding an algorithm A : {0, 1}n → {0, 1}n that is
δ-approximate for the relation V (y;x) ⇐⇒ y = f(x) with respect to the distribution
f(Un).

Using witness oracles, we can formalize the notion of nonadaptive reductions
between search problems, as well as reductions from search to decision problems. Let
us focus on the case of a reduction between two search problems (V,D) and (V ′,D′).
As in the case of languages, we want the property that the reduction transforms any
heuristic algorithm for (V ′,D′) into a heuristic algorithm for (V,D). Moreover, if
x ∈ LV , we want the reduction, on most inputs x ∼ D, to recover a witness for x
based on the answers provided by the witness oracle for V ′.

Definition 5.1 (reduction between search problems). Let V, V ′ be NP relations
and D,D′ be polynomial-time samplable distribution ensembles. A δ-to-δ′ search-to-
search reduction for search problems from (V,D) to (V ′,D′) is a family of polynomial
size circuits R = {Rn} such that on input x ∈ {0, 1}n, randomness r, Rn(x; r) outputs
strings y1, . . . , yk and a circuit C such that for any witness oracle F ∗ that is δ′-
approximate for V ′ with respect to D′, it holds that

V (x,C(F ∗(y1), . . . , F
∗(yk))) = LV (x)

with probability 1 − δ over the choice of x ∼ D, F ∗, and the randomness used by the
reduction.

8Technically, a witness oracle is an ensemble of distributions over function families {Fn}, but to
simplify notation we will identify samples from this ensemble with the ensemble itself.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1153

This definition subsumes the case of a worst-to-average reduction: A δ′ worst-to-
average reduction is simply a 0-to-δ′ average-to-average reduction. The other type of
reduction used in the analysis—the search-to-decision reduction—is formalized in a
similar way as follows.

Definition 5.2 (search-to-decision reduction). Let V be an NP relation, L′ be an
NP language, and D,D′ be polynomial-time samplable distribution ensembles. A δ-to-
δ′ search-to-decision reduction for search problems from (V,D) to (L′,D′) is a family
of polynomial size circuits R = {Rn} such that on input x ∈ {0, 1}n, randomness
r, Rn(x; r) outputs strings y1, . . . , yk, and a circuit C such that for any L∗ that is
δ′-close to L′ with respect to D′, it holds that

V (x,C(L∗(y1), . . . , L
∗(yk))) = LV (x)

with probability 1 − δ over the choice of x ∼ D and the randomness used by the
reduction.

5.2. Reductions to distributional search problems. We now state the main
result of this section.

Theorem 5.3. Let L be a language, V ′ be an NP relation, D′ be an arbitrary
polynomial-time samplable ensemble of distributions, and c be a constant. If there is a
nonadaptive n−c worst-to-average reduction from L to (V ′,D′), then L ∈ NP/poly ∩
coNP/poly.

To understand the meaning of Theorem 5.3, consider a polynomial-time com-
putable function f and a samplable ensemble of inputs D = {Dn}, and suppose that
we want to prove that f is a one-way function with respect to the distribution D.
(That is, for a random x ∼ Dn, it is hard on average to find a preimage of f(x).) We
may set our aim low and try only to prove that f is just infinitely often a weak one-way
function. This means that there is a polynomial p such that, for every polynomial-
time inverter A, the computation A(f(x)) fails with probability at least 1/p(n) to
output a preimage of f(x), where the probability is over the coin tosses of A and the
sampling of x from Dn, and the statement is true for infinitely many n. We could
try to provide evidence for the hardness of f by giving a reduction showing that an
adversary that inverts A with probability better than 1− 1/p(n) on all input lengths
would imply a BPP algorithm for a presumably hard language L. Theorem 5.3 implies
that if such a reduction is nonadaptive, then L ∈ coNP/poly, and if L were NP-hard
we would have a collapse of the polynomial hierarchy. Specifically, in order to apply
Theorem 5.3 to our setting, consider the NP relation V ′ made of pairs (f(x), x), and
define the distribution D′ as the ensemble {f(x)} when x is sampled from D. Then
solving the search problem of V ′ on a random instance of D′ is the same as inverting
f(x) on a random x taken from D. A nonadaptive reduction of a decision problem L
to such a problem implies that L ∈ coNP/poly.

Theorem 5.3 is an immediate consequence of Theorem 4.1 and the following two
lemmas.

Lemma 5.4. For every δ = δ(n) and NP relation V ⊆ ∪n{0, 1}n×{0, 1}m(n) there
exists an NP language L′ for which there is an O(δ(m(n))2)-to-δ average-to-average
reduction from (V,U) to (L′,U).

Lemma 5.5. For every δ = δ(n), NP relation V , and polynomial-time samplable
ensemble of distributions D there exists a constant c and an NP relation V ′ for which
there is an O(δnc)-to-δ average-to-average reduction from (V,D) to (V ′,U).

Analogues of Lemmas 5.4 and 5.5 are known in the context of the distributional
hardness of NP-problems. A variant of Lemma 5.4 appears in Ben-David et al. [7],

1154 ANDREJ BOGDANOV AND LUCA TREVISAN

while a variant of Lemma 5.5 was proved by Impagliazzo and Levin [29]. Our proofs
are in essence a recasting of these arguments in the formalism of nonadaptive average-
to-average reductions. These proofs are presented in sections A.3 and A.4, respec-
tively.

Appendix A.

A.1. Additive bounds for sampling. We provide the proof of Lemma 3.1
below.

Proof of Lemma 3.1. Let N = |S| and p = D(T). We use the following form of
the Chernoff bound (see [36, section 4.1]):

Pr[|T ∩ S| < (1 − ξ)Np] < exp(−ξ2Np/2) for ξ < 1

and

Pr[|T ∩ S| > (1 + ξ)Np] <

{
(4/e)−(1+ξ)Np for ξ > 1,

exp(−ξ2Np/3) for ξ ≤ 1.

If p < ε, the lower bound holds trivially, and for the upper bound we set ξ = ε/p > 1
to obtain

Pr[|T ∩ S| > (p + ε)N] < (4/e)−(p+ε)N < η.

If p ≥ ε, we set ξ = ε to obtain

Pr[|T ∩ S| �∈ (1 ± ε)Np] < 2 exp(−ε2Np/3) ≤ 2 exp(−ε3N/3) < η.

A.2. Proof sketches for the lower and upper bound protocols. We pro-
vide proof sketches for Lemmas 2.6 and 2.8 below.

Proof sketch for Lemma 2.6. Let S = C−1(1). For r ∈ S, let Ir be an indicator
for the event h(r) = 0, and let R = h−1(0), so that |R| =

∑
r∈S Ir. By the pairwise

independence of h, we have E[|R|] = |S|k/s, Var[|R|] ≤ |S|k/s, so by Chebyshev’s
inequality,

Pr

[
|R| �∈

(
1 ± ε

3

)
|S|k
s

]
≤ 9

ε2
· s

|S|k .

The bounds now follow by direct calculation.
Proof sketch for Lemma 2.8. Let S = C−1(1). Fix r and let S′ = S − {r},

k′ = |S′|/|Γ|, R = h−1(h(r)), R′ = R − {r}. For every r′ ∈ S′, let Ir′ be an
indicator for the event r′ ∈ R′, so that |R′| =

∑
r′∈S′ Ir′ . By the 3-wise independence

of h, the Ir′ are pairwise independent conditioned on h(r), so that E[|R′|] = k′,
Var[|R′|] = k′(1 − 1/|Γ|) < k′, and by Chebyshev’s inequality, for every ξ > 0,

Pr[|R′| �∈ (1 ± ξ)k′] < 1/ξ2k′.

Suppose |S| ≤ s. Without loss of generality we may assume |S| = s, since for
larger values of s the acceptance probability may only increase. In this case k′ = k,
so that

Pr[|R| > (1 + ε/3)k] = Pr[|R′| ≥ (1 + ε/3)k] < 9/ε2k.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1155

Given that |R| ≤ (1 + ε/3)k, the prover can list all elements of R, so that R =
{r1, . . . , rl} and l ≤ (1 + ε/3)k. In particular, this ensures that r ∈ R and the verifier
accepts.

Now suppose |S| ≥ (1 + ε)s, so that k′ > (1 + ε)k. Then

Pr

[
|R′| <

(
1 +

ε

2

)
k

]
< Pr

[
|R′| < 1 + ε/2

1 + ε
k′
]
< Pr

[
|R′| <

(
1 − ε

3

)
k′
]
<

9

ε2k
.

Given that |R| > (1 + ε/2)k, what is the best strategy for a prover to make the
verifier accept? Conditioned on (h, h(r)), r is uniformly distributed in R, so the best
the prover can do is set l = (1 + ε/3)k and pick {r1, . . . , rl} to be an arbitrary subset
of R. In this case,

Pr[r ∈ {r1, . . . , rl}] =
l

|R| <
(1 + ε/3)k

(1 + ε/2)k
< 1 − ε

6
.

A.3. Reductions from decision to search problems. We provide the proof
of Lemma 5.4 below.

Proof of Lemma 5.4. As in [7], we first reduce the search problem V to a search
problem with a unique witness, then encode the bits of the witness in the language
L′. The first step is based on the hashing argument of Valiant and Vazirani [41]. The
reduction, as described below, succeeds only with probability 1/16, but this can be
amplified to 2/3 by applying the reduction three times.

The inputs of the language L′ are of the form (x, k, j, h), where x is an instance of
LV , k and j are integers between 0 and m(|x|), and h is a pairwise independent hash
function mapping |x| bits to k bits (padded appropriately so the length of (x, k, j, h)
is a fixed polynomial of |x| only). Let wi denote the ith bit of a string w. We define

(x, k, j, h) ∈ L′ if there exists a w of length m(|x|) for which h(w) = 0
and wi = 1.

It is immediate that L′ ∈ NP.
The reduction works as follows: On input x ∈ {0, 1}n, choose a random h uni-

formly at random and generate the queries qkj = (x, k, j, h) for all 1 ≤ k ≤ m and
1 ≤ j ≤ m. Let akj ∈ {0, 1} denote the claimed answer to query qkj and wk be the
concatenation ak1 . . . akm. The decider looks for an index k such that wk is a witness
for x for all 1 ≤ j ≤ m and outputs wk; if no such k is found, the decider returns an
arbitrary answer.

Let L∗ be an arbitrary decision oracle that is δ-close to L′. Say an input x is good
in L∗ if for all 1 ≤ k ≤ m, 1 ≤ j ≤ m,

Prh,L∗ [L∗(x, k, j, h) = L(x, k, j, h)] > 15/16.

By a pigeonhole argument, x ∼ Un is good with probability at least 1−O(δ(m(n))2).
We show that the reduction succeeds on a good input with probability 1/16. By the
Valiant–Vazirani argument, for k = log2 |{w : V accepts (x;w)}|�, with probability
1/8 there exists a unique w such that h(w) = 0. It follows that whenever x is good
and x ∈ LV , with probability at least 1/16, L∗(x, k, j, h) = wk for all 1 ≤ j ≤ m, so
the decider encounters the witness wk.

Remark. The argument can be strengthened to obtain an O(δm(n))-to-δ average-
to-average reduction from (V,U) to (L′, U) by applying a Hadamard code to the
witness w in L′ instead of revealing its bits.

1156 ANDREJ BOGDANOV AND LUCA TREVISAN

A.4. Reductions for arbitrary samplable distributions. We provide the
proof of Lemma 5.5 below.

Proof of Lemma 5.5. Let S denote the sampler that yields the distribution en-
semble D: S is a polynomial-time computable function {0, 1}n×{0, 1}s(n) → {0, 1}n,
such that S(1n,Us(n)) = Dn.

We want to be able to map instances of V into instances of V ′ in such a way that
witnesses for V can be recovered from witnesses for V ′, and so that for most x, the
probability of an image of x in the uniform distribution is polynomially related to the
probability of x in distribution D.

Let V ′ be an NP relation for language L′, which we define next. The inputs of L
are of the form (n, k, h1, z, h2), where

(i) the integer n will denote the length of the input to the reduction coming
from D;

(ii) the integer k ∈ [s] (s = s(n)) will encode the approximate likelihood of the
input to the reduction according to D;

(iii) h1 : {0, 1}n → {0, 1}k+6 is a pairwise independent hash function, and z ∈
{0, 1}k+6 is an element in the range of h1;

(iv) h2 : {0, 1}s → {0, 1}s−k−3 is another pairwise independent hash function.
Suppose that the inputs (n, k, h1, z, h2) are padded appropriately so that their length
depends on n only.

A pair (w, r) is an NP-witness for input (n, k, h1, z, h2) in V ′ if the following three
conditions are satisfied: (1) V (S(1n, r);w) = 1; (2) h1(S(1n, r)) = z; (3) h2(r) = 0.

On input x, where |x| = n, the reduction produces queries (n, k, h1, h1(x), h2) for
all possible values of k by choosing h1 and h2 uniformly at random. The decider looks
at all answers (wk, rk) and returns wk if V (S(1n, rk);wk) = 1 for some k. If no such
k is found, the decider returns the string 0m.

Suppose F ∗ is a δ-approximate oracle for V ′ with respect to the uniform ensemble.
Given x ∈ {0, 1}n, we call an instance (n, k, h1, z, h2) good for x if the following three
conditions are satisfied:

(i) |x| = n, − log2 D(x)� = k, and h1(x) = z.
(ii) There exists an r such that h1(S(1n, r)) = z and h2(r) = 0.
(iii) If, for some r, h1(S(1n, r)) = z and h2(r) = 0, then S(1n, r) = x.
Let G(x) denote the set of all queries in L′ that are good for x. It is immediate

that the sets G(x) are pairwise disjoint over all x ∈ {0, 1}n. On the one hand, we will
show that, on input x, the reduction has a constant probability of producing a query
that lands in G(x). Moreover, conditioned on k, this query is uniformly distributed
in G(x). If x ∈ L and F ∗ and V ′ agree on the query that falls within G(x), then
F ∗(x) = (w, r) with S(1n, r) = x, so V (x;w) = 1. In addition, we will show that when
x ∼ D, with probability at least 1 − δs, F ∗ and V ′ do agree on a constant fraction
of G(x) for every k, so that the reduction has a constant probability of producing a
query on which F ∗ and V ′ agree.

Claim A.1. Suppose |x| = n and − log2 D(x)� = k. With probability 3/4 over
the choice of h1 and h2, the instance (n, k, h1, z, h2) is in G(x).

Proof. We first show that, with probability 7/8, the instance satisfies the second
condition for goodness; i.e., there exists an r such that S(1n, r) = x and h2(r) = 0.
If S(1n, r) = x, let Ir be an indicator for the event h2(r) = 0. By our choice of k,
|{r : S(1n, r) = x}| ≥ 2s−k, so that

E
[∑

r:S(1n,r)=xIr
]
≥ 2s−kE[Ir] = 8.

As the Ir are pairwise independent, the variance of this sum is at most the expectation,

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1157

so by Chebyshev’s inequality at least one Ir = 1 with probability 7/8.
Now we look at the probability of satisfying the third condition for goodness. Fix

r such that S(1n, r) �= x. By pairwise independence, Prh1 [h1(S(1n, r)) = h1(x)] =
2−k−6, and independently, Prh2 [h2(r) = 0] = 2−s+k+3. It follows that

Pr[∃r : S(1n, r) �= x and h1(S(1n, r)) = h1(x) and h2(r) = 0]

≤
∑

r:S(1n,r) �=x
Pr[h1(S(1n, r)) = h1(x)] Pr[h2(r) = 0]

≤
∑

r∈{0,1}s
2−k−62−s+k+3 = 1/8.

It follows that both conditions for goodness are satisfied with probability at least
3/4.

Claim A.2. For every x, U(G(x)) ≥ (3/64)(D(x)/ns).
Proof. Consider a random string (n, k, h1, z, h2). With probability 1/ns, n = |x|

and k = − log2 D(x)�. Conditioned on this, z = h1(x) with probability 2−k−3. By
the last claim, with probability 3/4 over h1 and h2, (n, k, h1, h1(x), h2) is in G(x).
Putting this together,

Pr[(n, k, h1, z, h2) ∈ G(x)] ≥ 1

ns
· 3

4
· 2−k−3 ≥ 3

64
· D(x)

ns
.

Let Z denote the set of all x ∈ LV for which

Pry∼U,F∗ [V ′(y, F ∗(y)) = 1 | y ∈ G(x)] > 8/9,

so that if the kth query qk lands in G(x), the answer (wk, rk) has an 8/9 probability of
being a good witness for the query. It follows that, unconditionally, V (qk, F

∗(qk)) = 1
with probability at least 8/9 · 3/4 = 2/3, and the decider is successful on the queries
that come from S.

On the other hand, by the disjointness of the sets G(x),

δ ≥
∑

x∈LV

U(G(x)) Pry∼U [V ′(y, F ∗(y)) = 0 | y ∈ G(x)]

>
∑

x∈Z
U(G(x)) · 1

9

≥
∑

x∈Z

1

9
· 3

64
· D(x)

ns
(by Claim A.2)

= Ω(D(Z)/ns),

so that D(Z) = O(δns).

Acknowledgments. We thank Madhu Sudan for suggesting the relevance of
[29], Oded Goldreich for stressing the relevance of our result to the question of bas-
ing cryptography on NP-hardness, and Amit Sahai for helpful discussions. We also
thank Oded Goldreich and an anonymous reviewer for many useful comments on the
presentation. The hiding protocol was suggested by Manikandan Narayanan.

1158 ANDREJ BOGDANOV AND LUCA TREVISAN

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, J. Comput.
System Sci., 39 (1989), pp. 21–50.

[2] W. Aiello and J. Håstad, Statistical zero-knowledge languages can be recognized in two
rounds, J. Comput. System Sci., 42 (1991), pp. 327–345.

[3] M. Ajtai, Generating hard instances of lattice problems, in Proceedings of the 28th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 99–108.

[4] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence,
in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1997, pp. 284–293.

[5] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in Proceedings of
the 7th Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin,
1990, pp. 37–48.

[6] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway, Locally random reductions: Im-
provements and applications, J. Crypt., 10 (1997), pp. 17–36.

[7] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average-case com-
plexity, in Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
ACM, New York, 1989, pp. 204–216.

[8] M. Blum, Designing Programs to Check Their Work, Tech. Report 88-09, Inter-
national Computer Science Institute, Berkeley, CA, 1988. Available online at
http://www.icsi.berkeley.edu/cgi-bin/pubs/publication.pl?ID-000495

[9] M. Blum and S. Kannan, Designing programs that check their work, J. ACM, 41 (1995),
pp. 269–291.

[10] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[11] A. Bogdanov and L. Trevisan, Average-Case Complexity: A Survey, in preparation, 2006.
[12] G. Brassard, Relativized cryptography, in Proceedings of the 20th Annual IEEE Symposium

on Foundations of Computer Science, IEEE, Los Alamitos, CA, 1979, pp. 383–391.
[13] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, Private information retrieval, J.

ACM, 45 (1998), pp. 965–982.
[14] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,

I22 (1976), pp. 644–654.
[15] S. Even, A. L. Selman, and Y. Yacobi, The complexity of promise problems with applications

to public-key cryptography, Inform. Control, 61 (1984), pp. 159–173.
[16] S. Even and Y. Yacobi, Cryptography and NP-completeness, in Proceedings of the 7th Annual

ICALP, Lecture Notes in Comput. Sci. 85, Springer-Verlag, Berlin, 1980, pp. 195–207.
[17] J. Feigenbaum and L. Fortnow, Random-self-reducibility of complete sets, SIAM J. Comput.,

22 (1993), pp. 994–1005.
[18] J. Feigenbaum, S. Kannan, and N. Nisan, Lower bounds on random-self-reducibility, in

Proceedings of the 5th Annual IEEE Conference on Structure in Complexity Theory, IEEE,
Los Alamitos, CA, 1990, pp. 100–109.

[19] L. Fortnow, The complexity of perfect zero-knowledge, in Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 204–209.

[20] O. Goldreich, Notes on Levin’s Theory of Average-Case Complexity, Tech. Report TR97–
058, Electronic Colloquium on Computational Complexity (ECCC), University of Trier,
Trier, Germany, 1997. Available online at http://eccc.hpi-web.de/eccc-reports/1997/TR97-
058/index.html

[21] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms
Combin. 17, Springer-Verlag, Berlin, 1999.

[22] O. Goldreich, On Promise Problems, Tech. Report TR05–018, Electronic Colloquium on
Computational Complexity (ECCC), University of Trier, Trier, Germany, 2005. Available
online at http://eccc.hpi-web.de/eccc-reports/2005/TR05-018/index.html

[23] O. Goldreich and S. Goldwasser, On the Possibility of Basing Cryptography on the As-
sumption that P �= NP , unpublished manuscript, 1998.

[24] O. Goldreich, H. Karloff, L. Schulman, and L. Trevisan, Lower bounds for linear locally
decodable codes and private information retrieval, in Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, IEEE, Los Alamitos, CA, 2002, pp. 175–183.

[25] O. Goldreich, S. Vadhan, and A. Wigderson, On interactive proofs with a laconic prover,
in Proceedings of the 28th Annual ICALP, Lecture Notes in Comput. Sci. 2076, Springer-
Verlag, Berlin, 2001, pp. 334–345.

ON WORST-CASE TO AVERAGE-CASE REDUCTIONS FOR NP 1159

[26] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems,
in Proceedings of the 18th Annual ACM Symposium on Theory of Computing, ACM, New
York, 1986, pp. 59–68.

[27] A. Healy, S. Vadhan, and E. Viola, Using nondeterminism to amplify hardness, in Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York,
2004, pp. 192–201.

[28] R. Impagliazzo, A personal view of average-case complexity, in Proceedings of the 10th Annual
IEEE Conference on Structure in Complexity Theory, IEEE, Los Alamitos, CA, 1995,
pp. 134–147.

[29] R. Impagliazzo and L. Levin, No better ways to generate hard NP instances than picking
uniformly at random, in Proceedings of the 31st Annual IEEE Symposium on Foundations
of Computer Science, IEEE, Los Alamitos, CA, 1990, pp. 812–821.

[30] J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error correcting
codes, in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing,
ACM, New York, 2000, pp. 80–86.

[31] A. Lempel, Cryptology in transition, ACM Computing Surveys, 11 (1979), pp. 285–303.
[32] L. A. Levin, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285–286.
[33] R. Lipton, New directions in testing, in Proceedings of DIMACS Workshop on Distributed

Computing and Cryptography, AMS, Providence, RI, 1989, pp. 191–202.
[34] D. Micciancio, Almost perfect lattices, the covering radius problem, and applications to Ajtai’s

connection factor, SIAM J. Comput., 34 (2004), pp. 118–169.
[35] D. Micciancio and O. Regev, Worst-case to average-case reductions based on Gaussian mea-

sure, in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, IEEE, Los Alamitos, CA, 2004, pp. 372–381.

[36] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[37] R. O’Donnell, Hardness amplification within NP, in Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, ACM, New York, 2002, pp. 751–760.

[38] O. Regev, New lattice based cryptographic constructions, in Proceedings of the 35th Annual
ACM Symposium on Theory of Computing, ACM, New York, 2003, pp. 407–416.

[39] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the XOR lemma,
J. Comput. System Sci., 62 (2001), pp. 236–266.

[40] L. Trevisan, On uniform amplification of hardness in NP, in Proceedings of the 37th Annual
ACM Symposium on Theory of Computing, ACM, New York, 2005, pp. 31–38.

[41] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Com-
put. Sci., 47 (1986), pp. 85–93.

[42] C. K. Yap, Some consequences of nonuniform conditions on uniform classes, Theoret. Com-
put. Sci., 26 (1983), pp. 287–300.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1160–1214

AN UNCONDITIONAL STUDY OF
COMPUTATIONAL ZERO KNOWLEDGE∗

SALIL P. VADHAN†

Abstract. We prove a number of general theorems about ZK, the class of problems possessing
(computational) zero-knowledge proofs. Our results are unconditional, in contrast to most previous
works on ZK, which rely on the assumption that one-way functions exist. We establish several new
characterizations of ZK and use these characterizations to prove results such as the following:

1. Honest-verifier ZK equals general ZK.
2. Public-coin ZK equals private-coin ZK.
3. ZK is closed under union.
4. ZK with imperfect completeness equals ZK with perfect completeness.
5. Any problem in ZK ∩ NP can be proven in computational zero knowledge by a BPPNP

prover.
6. ZK with black-box simulators equals ZK with general, non–black-box simulators.

The above equalities refer to the resulting class of problems (and do not necessarily preserve other
efficiency measures such as round complexity). Our approach is to combine the conditional techniques
previously used in the study of ZK with the unconditional techniques developed in the study of SZK,
the class of problems possessing statistical zero-knowledge proofs. To enable this combination, we
prove that every problem in ZK can be decomposed into a problem in SZK together with a set of
instances from which a one-way function can be constructed.

Key words. cryptography, computational complexity, zero-knowledge proofs, pseudoentropy,
language-dependent commitment schemes, auxiliary-input one-way functions

AMS subject classifications. 94A60, 68Q15

DOI. 10.1137/S0097539705447207

1. Introduction. Since their introduction by Goldwasser, Micali, and Rack-
off [35], zero-knowledge interactive proofs have become a central tool in cryptographic
protocol design, and have also provided fertile grounds for complexity-theoretic inves-
tigations into the interplay between fundamental notions such as proofs, randomness,
interaction, and secrecy.

The notion of zero-knowledge proofs raised a number of intriguing basic questions,
such as the following:

• Can we characterize the class ZK of problems possessing zero-knowledge
proofs?1

• Can we transform proof systems that are zero knowledge for the “honest
verifier” (i.e., the verifier that follows the specified protocol) into ones that
are zero knowledge in general (i.e., for all polynomial-time verifier strategies)?

∗Received by the editors March 18, 2005; accepted for publication (in revised form) April 4, 2006;
published electronically December 15, 2006. This work was done while the author was a Fellow
at the Radcliffe Institute for Advanced Study. This research was also supported by NSF grants
CNS-0430336, CCR-0205423, and CCR-0133096, and by ONR grant N00014-04-1-0478 and a Sloan
Research Fellowship. Preliminary versions of this paper have appeared in Proceedings of the IEEE
Symposium on Foundations of Computer Science [58] and Electronic Colloquium on Computational
Complexity [59].

http://www.siam.org/journals/sicomp/36-4/44720.html
†Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (salil@

eecs.harvard.edu).
1In this paper, we focus on the original notion of computational zero-knowledge proof systems, as

introduced in [35]. That is, the zero-knowledge condition is defined with respect to computationally
bounded verifiers (and distinguishers), and the soundness is defined with respect to computationally
unbounded prover strategies. In particular, we do not consider argument systems [10], which are
only computationally sound. 1160

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1161

That is, does HVZK = ZK, where HVZK denotes the class of problems
possessing honest-verifier zero-knowledge proofs?

• Is it always possible to modify zero-knowledge proofs to have additional useful
properties—such as having a small number of rounds, perfect completeness,
or public coins? Or do the latter properties restrict the class of problems
possessing zero-knowledge proofs?

• What closure properties does ZK have? Is it closed under complement?
Under union?

Almost all of these questions were seemingly resolved by a series of exciting works that
appeared within a few years after zero-knowledge proofs were defined. Specifically,
under the assumption that one-way functions (OWF) exist, it was shown that ZK
“hits the roof,” namely, ZK = IP, where IP is the class of problems possessing
interactive proofs [29, 39, 7, 45, 37]. Thus, ZK is completely characterized and,
moreover, has natural complete problems (namely, any complete problem for IP =
PSPACE [42, 54]). This also implies that HVZK equals ZK, since ZK ⊆ HVZK ⊆
IP is immediate from the definitions. In addition, the equality ZK = IP is proven by
a generic transformation from interactive proofs into zero-knowledge proofs, and this
transformation preserves many properties, such as those mentioned above, i.e., the
round complexity,2 public coins, and perfect completeness. Since we already know
how to transform interactive proofs into interactive proofs with public coins [36] and
perfect completeness [19], it follows that we can also transform zero-knowledge proofs
into zero-knowledge proofs with the same properties. ZK also inherits all the closure
properties of IP = PSPACE, in particular closure under complement and union.
However, all of these results are based on the assumption that one-way functions exist,
and without this assumption, all the questions listed above are open.

In this paper, we answer most of these questions unconditionally (i.e., without
any unproven complexity assumption). In particular, we do the following:

• Give several characterizations of ZK that make no reference to interaction or
zero knowledge. (These characterizations are not quite complete problems,
but turn out to have similar utility.)

• Prove that HVZK = ZK.
• Show how to transform any computational zero-knowledge proof into one

with public coins and perfect completeness.
• Establish closure properties of ZK, such as closure under union.

This paper is inspired by the work of Ostrovsky and Wigderson [50], who gave
the first hint that it might be possible to prove unconditional results about zero
knowledge. They showed that if computational zero knowledge is nontrivial (i.e.,
ZK �= BPP), then “some form of one-way functions” exists. Then they made
the appealing suggestion that one might prove unconditional results about compu-
tational zero knowledge by a case analysis as follows: If ZK = BPP, then many
results about ZK hold trivially (because every problem in BPP has a trivial zero-
knowledge proof, where the prover sends nothing and the verifier decides membership
on its own, using the BPP algorithm). On the other hand, if ZK �= BPP, then
we can try to use their “one-way functions” in the known conditional results about
ZK. Unfortunately, as they point out, this approach does not work because the
form of one-way functions they construct (in this case, ZK �= BPP) is too weak

2The round complexity is preserved up to an additive constant for achieving a polynomially small
soundness error. For a negligible error, any superconstant multiplicative factor suffices (by sequential
repetition).

1162 SALIL P. VADHAN

for the conditional constructions mentioned above.3 (See section 7.1 for more de-
tails.)

Our approach is to replace BPP with SZK, the class of problems possessing sta-
tistical zero-knowledge proofs (to be described in more detail shortly). In particular,
in the case when ZK �= SZK, we are able to construct a form of one-way functions
that is much closer to the standard notion than that in the Ostrovsky–Wigderson
result. However, now the case that ZK = SZK is not as trivial as before; instead
we rely on a large body of previous work giving unconditional results about SZK (as
described below). To make this approach work, we actually carry out the case analysis
on an input-by-input basis. That is, we show that for every problem in ZK, we can
partition its instances into “SZK instances” and “one-way function instances.” This
characterization is described in more detail below.

1.1. The SZK/OWF characterization.
Statistical zero knowledge. The distinction between general (computational) zero

knowledge and statistical zero knowledge involves the formulation of the “zero-knowl-
edge” property, i.e., the requirement that the verifier “learns nothing” from the in-
teraction other than the fact that the assertion being proven is true. The original
(and most general) notion discussed above, called computational zero knowledge, in-
formally says that a polynomial-time verifier learns nothing. Statistical zero knowledge
guarantees that even a computationally unbounded verifier learns nothing from the
interaction.4 Naturally, the stronger security guarantee of statistical zero knowledge
is preferable, but unfortunately it seems to severely constrain the class of statements
that can be proven in zero knowledge. Specifically, it is known that the class SZK of
problems possessing statistical zero-knowledge proofs is contained in AM ∩ co-AM
[18, 1], and thus NP-complete problems are unlikely to have statistical zero-knowledge
proofs. Thus statistical zero-knowledge proofs do not seem to have the wide appli-
cability of computational zero-knowledge proofs (which stems from the existence of
computational zero-knowledge proofs for all of NP [29]).

Nevertheless, the class SZK of problems possessing statistical zero-knowledge
proofs has turned out to be a rich object of study, and in recent years, there have been
a number of results substantially improving our understanding of it. These results in-
clude the identification of natural complete problems for class SZK [52, 34], showing
that SZK is closed under complement [48]; that honest-verifier SZK equals general
SZK [32]; and that private-coin SZK equals public-coin SZK [48]. (See [57] for a
unified presentation of all these results.) In contrast to what was known for computa-
tional zero knowledge, all these results are unconditional. That is, they do not rely on
any unproven complexity assumptions (such as the existence of one-way functions).

It was suggested in [34, 57] that the study of SZK could provide a useful testbed
for understanding zero knowledge before moving on to more complex models that

3A similar approach was used in an attempt to prove HVSZK = SZK [15], but subsequently a
more direct approach that avoids these difficulties was found [32].

4Recall that the zero-knowledge property is formalized by requiring that there be a probabilis-
tic polynomial-time algorithm S that “simulates” the verifier’s view of the interaction (when the
assertion being proven is true). In computational zero knowledge, the output distribution of the
simulator is required only to be computationally indistinguishable from the verifier’s view of the in-
teraction, whereas in statistical zero knowledge, it must be statistically close. We note that there is a
similar choice in the soundness condition. We, like the authors of [35], focus on interactive proof sys-
tems, where even a computationally unbounded prover cannot convince the verifier to accept a false
statement, except with negligible probability. In interactive argument systems [10], this soundness
condition is required only for polynomial-time provers.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1163

incorporate computational intractability (such as ZK). In this paper, we make ex-
tensive use of that methodology—not just proving results about ZK by analogy to
SZK, but actually making direct use of known results about SZK (e.g., in establishing
and using the characterization below).

The characterization. In this paper, we provide a new characterization of ZK in
terms of SZK and one-way functions as follows.

Definition 1.1. A promise problem5 Π = (ΠY ,ΠN) satisfies the SZK/OWF

Condition if there exists a set I ⊆ ΠY of yes instances, a polynomial-time com-
putable function f , and a polynomial p(n) such that the following hold:

• Ignoring the inputs in I, the problem Π has a statistical zero-knowledge proof.
Formally, we have Π′ ∈ SZK, where Π′ = (ΠY \ I,ΠN).

• When x ∈ I, the function fx(·) def
= f(x, ·) is hard to invert. That is, for every

nonuniform polynomial-time algorithm A, there exists a negligible function ε
such that for every x ∈ I,

Pr
[
A(fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ ε(|x|).

Intuitively, this characterization says that for every yes instance x, either one
can prove the membership of x in ΠY in statistical zero knowledge (“x is an SZK
instance”) or one can use x to construct a one-way function that is given x as an
auxiliary input (“x is an OWF instance”). Note that if one-way functions exist (in
the standard sense, i.e., without auxiliary input), then all promise problems satisfy
the SZK/OWF Condition (by setting I = ΠY , and fx(y) = g(y) where g is the
one-way function assumed to exist).

On the other hand, the above condition (regarding Π) alone cannot characterize
ZK, since if one-way functions do exist, Π will satisfy Definition 1.1 even if Π /∈ IP.
We prove that if we simply add the condition Π ∈ IP, then we do indeed obtain an
exact characterization.

Theorem 1.2 (SZK/OWF characterization of ZK). Π ∈ ZK if and only if
Π ∈ IP and Π satisfies the SZK/OWF Condition.

As noted above, the usefulness of this characterization is that it essentially re-
duces the unconditional study of ZK to its conditional study plus the study of SZK.
Theorem 1.2 is in some sense the central theorem of this paper; all other results are de-
duced as consequences of it or its proof. When proving each direction of Theorem 1.2,
we actually prove stronger statements than required. In the forward (“only if”) di-
rection, we actually show that every problem in HVZK, not just ZK, satisfies the
SZK/OWF Condition. In the reverse (“if”) direction, we show that every problem
in IP satisfying the SZK/OWF Condition is not only in ZK, but has a computa-
tional zero-knowledge proof with many nice properties, such as public coins, perfect
completeness, universal black-box simulation, etc. Combining the two directions, we
deduce that HVZK = ZK, and that every problem in ZK has a computational
zero-knowledge proof with the aforementioned properties.

1.2. Proof outline. Figure 1 illustrates our main steps in establishing both
directions of Theorem 1.2. In proving the forward direction, we first prove that
every problem in HVZK satisfies a “Conditional Pseudoentropy Condition”
and an “Indistinguishability Condition.” These are computational analogues

5A promise problem Π consists of a pair (ΠY ,ΠN) of disjoint sets of strings, corresponding to
the yes instances and no instances of Π, respectively [17]. All complexity classes we consider in this
paper, e.g., ZK, SZK, and IP, are taken to be classes of promise problems. See section 2.3.

1164 SALIL P. VADHAN

Lemma 3.7

Conditional Pseudoentropy Cond.

HVZK

Indistinguishability Cond.

Lemmas 3.13, 3.14

Lemma 3.10

Lemma 4.4

SZK/OWF Condition

+ Pi IPLemma 4.8

[32]

public-coin HVZK

ZK
(public coins, perfect completeness, ...)

Instance-dependent Commitment

Fig. 1. Steps of our proof.

of the known complete problems for SZK [52, 34] and are described in more detail
below. The reductions from HVZK to these characterizations are natural adaptations
of the reductions from HVSZK = SZK to the SZK-complete problems (which in
turn are based on the simulator analyses of [18, 1, 51]). We then show that every
problem satisfying the Conditional Pseudoentropy Condition also satisfies the
SZK/OWF Condition. This step utilizes the techniques of H̊astad et al. [37] to
construct the needed one-way functions fx.

In proving the reverse direction of Theorem 1.2, we first show that every problem
satisfying the SZK/OWF Condition has a certain kind of “instance-dependent com-
mitment scheme” [40] as discussed in more detail below. We then use the techniques of
[29, 39, 7, 40] to show that every problem in IP with such a commitment scheme has a
public-coin honest-verifier zero-knowledge proof. The honest-verifier zero-knowledge
proof is then converted into one that is zero knowledge even for cheating verifiers
using the compiler of [32]. The resulting proof system remains public coin, and also
has additional nice properties such as perfect completeness and black-box simulation.

Putting these steps together, we deduce that membership in HVZK, member-
ship in ZK (even with additional nice properties), the SZK/OWF Condition,
the Conditional Pseudoentropy Condition, the Indistinguishability Con-

dition, and having an instance-dependent commitment scheme are all equivalent (for
problems in IP). The latter three characterizations of ZK are of interest beyond their
role in establishing Theorem 1.2, so we describe them in more detail below.

1.3. Additional characterizations of ZK.
Computational analogues of the SZK-complete problems. Recall that in [52, 34],

it was demonstrated that SZK has two natural complete problems, Statistical

Difference and Entropy Difference. These problems proved to be very useful
tools in the study of SZK (cf. [52, 57]) because they reduced the study of the entire
class to the study of these specific problems.

In this work, we provide characterizations of ZK that are natural computational
analogues of these two problems. For example, recall that instances of the Statis-

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1165

tical Difference problem consist of pairs (X,Y) of probability distributions on
strings, specified by circuits that sample from them. The yes instances are pairs that
are statistically close and the no instances are pairs that are statistically far apart.
We show that if “statistically close” is replaced with “computationally indistinguish-
able,” the resulting condition characterizes ZK. This condition, which we refer to
as the Indistinguishability Condition, cannot be cast as a complete problem
because there can be distributions that are both computationally indistinguishable
and statistically far apart. Rather, we say that a promise problem satisfies the In-

distinguishability Condition if its instances can be efficiently mapped to pairs
(X,Y) that are computationally indistinguishable or statistically far apart, according
to whether the instance is a yes or no instance. We show that this characterizes ZK
in the sense that a promise problem is in ZK if and only if it is in IP and satisfies
the Indistinguishability Condition.

The computational analogue of Entropy Difference is less immediate, and
in fact a crucial step towards our establishment of the SZK/OWF characterization
theorem was the realization that the “right” problem to generalize is a variant of
Entropy Difference, which we call Conditional Entropy Approximation

rather than Entropy Difference itself. (See section 3 for more details.)
Instance-dependent commitments. A fundamental tool in the construction of

many zero-knowledge proofs is that of a commitment scheme. This is a protocol
whereby a sender can “commit” to a bit b in such a way that the receiver learns
nothing about b (the scheme is hiding), but nevertheless the sender cannot “open” the
commitment to a value other than b (the scheme is binding). Commitment schemes,
which can be constructed from any one-way function [45, 37], play an essential role
in the construction of zero-knowledge proofs for all of NP and IP [29, 39, 7]. Some
evidence that commitments are necessary for zero knowledge came from the work of
Damg̊ard [12, 13], who focused on 3-round public-coin zero-knowledge proofs, and
Ostrovsky [49] and Ostrovsky and Wigderson [50], who showed that zero-knowledge
proofs for hard-on-average languages imply one-way functions (and hence standard
commitment schemes [45, 37]).

In this work, we show an equivalence between zero-knowledge proofs and certain
types of commitment schemes, which we now describe. In an instance-dependent
commitment scheme [6, 40, 44] for a promise problem Π, both the sender and receiver
get a common auxiliary input x, which is an instance of Π. It is required that if x is
a yes instance of Π, then the scheme is hiding, and if x is a no instance, then the
scheme is binding. Thus, instance-dependent commitment schemes are a relaxation of
commitment schemes because the hiding and binding properties are not required to
hold at the same time. Nevertheless, this relaxation is still useful in constructing zero-
knowledge proofs. The reason is that zero-knowledge proofs based on commitments
(see, e.g., [29, 39, 7]) typically use only the hiding property in proving zero knowledge
(which is required only when x is a yes instance) and use only the binding property
in proving soundness (which is required only when x is a no instance).

We show that a promise problem is in ZK (resp., SZK) if and only if it has an
instance-dependent commitment scheme that is computationally (resp., statistically)
hiding on yes instances (and statistically binding on no instances). Indeed, the most
technical part of this paper is the construction of instance-dependent commitment
schemes for all of SZK, which utilizes much of the machinery previously developed in
the study of SZK [48, 52, 34]. The construction of instance-dependent commitments
for ZK then follows using the SZK/OWF characterization theorem and the known
construction of commitment schemes from one-way functions [45, 37].

1166 SALIL P. VADHAN

Two deficiencies in our instance-dependent commitments are that the hiding prop-
erty holds only against an honest receiver (i.e., one that follows the specified protocol)
and that the sender of the commitment scheme is not polynomial time, but rather
BPPNP. The effect of these are that the direct constructions of zero-knowledge proofs
that we obtain using the commitments are only honest-verifier zero knowledge and
have provers that require an NP oracle (rather than just an NP witness, as would
be preferable for problems in NP). The honest-verifier constraint is removed using
the compiler of [32], which converts public-coin honest-verifier zero-knowledge proofs
into general zero-knowledge proofs. The NP oracle has been removed in subsequent
work [46] by using a new, more relaxed, type of instance-dependent commitment
scheme; see section 8.

1.4. Organization. We begin in section 2 with the definitions, notation, and
basic results that we will use throughout the paper, in particular covering probability
and information theory, promise problems, and zero-knowledge proofs. Section 3
contains the proof of the forward direction of Theorem 1.2, including establishing
the computational analogues of the SZK-complete problems. Section 4 contains the
proof of the reverse direction of Theorem 1.2, except for the construction of instance-
dependent commitments for all of SZK, which is deferred to section 5. Section 6 ties
together the results of sections 3–5, in particular establishing Theorem 1.2. Section 7
contains several applications and extensions of our results, including monotone closure
properties of ZK, new proofs of the Ostrovsky–Wigderson theorems [50], and an
equivalence between strict and expected polynomial-time simulators. In section 8, we
conclude with some open problems and directions for further work.

2. Preliminaries.

2.1. Basic notation. If X is a random variable taking values in a finite set U ,
then we write x ← X to indicate that x is selected according to X. If S is a subset of
U , then x ← S means that x is selected according to the uniform distribution on S.
We adopt the convention that when the same random variable occurs several times
in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un

to denote the random variable distributed uniformly over {0, 1}n. The support of a
random variable X is Supp(X) = {x : Pr [X = x] > 0}. A random variable is flat if
it is uniform over its support. If X and Y are random variables, then X ⊗ Y denotes
the random variable obtained by taking independent random samples x ← X and
y ← Y and outputting the pair (x, y). We write ⊗kX to denote the random variable
consisting of k independent copies of X. For an event E, X|E denotes the random
variable X conditioned on E.

A function μ : N → [0, 1] is called negligible if μ(n) = n−ω(1). We let neg(n)
denote an arbitrary negligible function (i.e., when we say that f(n) < neg(n) we
mean that there exists a negligible function μ(n) such that for every n, f(n) < μ(n)).
Likewise, poly(n) denotes an arbitrary function f(n) = nO(1).

For a probabilistic algorithm A, we write A(x; r) to denote the output of A on
input x and coin tosses r. In this case, A(x) is a random variable representing the
output of A for uniformly selected coin tosses. PPT refers to probabilistic algorithms
(i.e., Turing machines) that run in strict polynomial time. A nonuniform PPT algo-
rithm is a pair (A, z̄), where z̄ = z1, z2, . . . is an infinite sequence of strings in which
|zn| = poly(n), and A is a PPT algorithm that receives pairs of inputs of the form
(x, z|x|). (The string zn is called the advice string for A for inputs of length n.) Non-

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1167

uniform PPT algorithms are equivalent to (nonuniform) families of polynomial-sized
Boolean circuits.

A Boolean circuit C : {0, 1}m → {0, 1}n defines a probability distribution on
{0, 1}n by evaluating C on a uniformly chosen input in {0, 1}m. That is, we view C
as specifying a sampling algorithm for the distribution, with C’s input gates being the
coin tosses; thus we will often refer to distributions specified by circuits as samplable
distributions. This is a “nonuniform” notion of samplability, because the sampling
algorithm C can be tailored to a particular output length n. Later, in Definition 2.11,
we will consider a uniform notion of samplability, which refers to ensembles (i.e., se-
quences) of probability distributions that are generated by a uniform PPT algorithm.
Samplable distributions will play a central role in the paper.

2.2. Statistical measures.
Statistical difference. The statistical difference (also known as the variation dis-

tance) between random variables X and Y taking values in U is defined to be

Δ(X,Y)
def
= max

S⊂U
|Pr [X ∈ S] − Pr [Y ∈ S]|

=
1

2

∑
x∈U

|Pr [X = x] − Pr [Y = x]|

= 1 −
∑
x∈U

min{Pr [X = x] ,Pr [Y = x]}.

We say that X and Y are ε-close if Δ(X,Y) ≤ ε. For basic facts about this metric,
see [52, sect. 2.3].

Entropy. The entropy of a random variable X is H(X) = Ex←X [log(1/Pr[X =
x])], where here and throughout the paper all logarithms are to base 2. Intuitively,
H(X) measures the amount of randomness in X on average (in bits). The min-
entropy of X is H∞(X) = minx[log(1/Pr[X = x])]; this is a “worst-case” measure of
randomness. In general H∞(X) ≤ H(X), but if X is flat, then H(X) = H∞(X) =
log |Supp(X)|. For p ∈ [0, 1], we define the binary entropy function H2(p) to be the
entropy of a binary random variable that is 1 with probability p and 0 with probability
1−p, i.e., H2(p) = p · log(1/p)+(1−p) · log(1/(1−p)). For jointly distributed random
variables X and Y , we define the conditional entropy of X given Y to be

H(X|Y)
def
= E

y←Y
[H(X|Y =y)] = E

(x,y)←(X,Y)

[
log

1

Pr[X = x|Y = y]

]
= H(X,Y) − H(Y).

A useful fact is that if two random variables are statistically close, then their
entropies must also be close, as follows.

Lemma 2.1 (cf. [34, Fact B.1]). For any two random variables, X and Y , ranging
over a universe U , if δ = Δ(X,Y), then

|H(X) − H(Y)| ≤ log(|U| − 1) · δ + H2(δ).

Another useful fact is that random variables taking values in a universe U can
be modified so that they do not assign any elements in their support of a probability
mass much smaller than 1/|U| without incurring a significant statistical difference or
change in entropy.

Lemma 2.2. Let (X,Y) be a random variable taking values in U × V. Then for
any δ > 0, there is a random variable (X ′, Y ′) that is δ-close to (X,Y) and satisfies

1168 SALIL P. VADHAN

Pr [X ′ = x|Y ′ = y] ≥ δ/|U| for all (x, y) ∈ Supp(X ′, Y ′). Moreover,

|H(X ′|Y ′) − H(X|Y)| ≤ log(|U| − 1) · δ + H2(δ).

Proof. For each y ∈ Supp(Y), the set

Sy = {x ∈ U : Pr [X = x|Y = y] < δ/|U|}

has total probability mass less than δ under the conditional distribution X|Y =y. Thus
shifting the probability mass of the points in Sy to other points in U yields a random
variable Zy that is δ-close to X|Y =y. By Lemma 2.1, for every y, the entropy of Zy

differs from that of X|Y =y by at most δ′ = log(|U| − 1) · δ + H2(δ). Thus taking
(X ′, Y ′) = (ZY , Y) satisfies the conclusion of the lemma.

For more background on entropy, see [11].
Direct products. We will often refer to the behavior of the above measures under

direct products, i.e., when we take k independent copies of a random variable. For
statistical difference, we have the following bounds.

Lemma 2.3 (cf. [52, Lemma 3.4]). For random variables X and Y , if δ =
Δ(X,Y), then for every k ∈ N, we have

1 − 2 exp(−kδ2/2) ≤ Δ(⊗kX,⊗kY) ≤ kδ.

For entropy, it holds that for every X,Y, H(X ⊗ Y) = H(X) + H(Y), and thus
H(⊗kX) = k · H(X). Similarly, for conditional entropy, if we write ⊗k(X,Y) =
((X1, Y1), . . . , (Xk, Yk)), then H((X1, . . . , Xk)|(Y1, . . . , Yk)) = k · H(X|Y).

Another well-known and useful feature of taking direct products is that it “flat-
tens” random variables so that probability masses become concentrated around 2−H(X).
(This is known as the asymptotic equipartition property in information theory;
see [11].) Our formalization of it follows [34], with an extension to conditional distri-
butions.

Definition 2.4 (heavy, light, and typical elements). Let X be a random variable
taking values in a universe U , and let x be an element of U . For a positive real
number Φ, we say that x is Φ-heavy (resp., Φ-light) if Pr [X = x] ≥ 2Φ · 2−H(X)

(resp., Pr [X = x] ≤ 2−Φ · 2−H(X)). Otherwise, we say that x is Φ-typical.
If Y is a random variable jointly distributed with X, and y ∈ Supp(Y), we say

that x is Φ-heavy given y (resp., Φ-light given y) if Pr [X = x|Y = y] ≥ 2Φ ·2−H(X|Y)

(resp., if Pr [X = x|Y = y] ≤ 2−Φ · 2−H(X|Y)). Otherwise, we say that x is Φ-typical
given y.

A natural relaxed definition of flatness follows. The definition links the amount
of slackness allowed in “typical” elements with the probability mass assigned to non-
typical elements.

Definition 2.5 (nearly flat distributions).6 A distribution X is called Φ-flat if
for every t ≥ 1 the probability that an element chosen from X is t ·Φ-typical is at least
1 − 2−t2 .

If Y is jointly distributed with X, then we say that X is Φ-flat given Y if for
every t ≥ 1, when (x, y) ← (X,Y), the probability that x is t · Φ-typical given y is at

least 1 − 2−t2 .

6The definition in [34] allows any t > 0, but requires only that the probability of being t·Φ-typical

be 1 − 2−t2+1. We find it more convenient to restrict to t ≥ 1, a setting that is satisfied in all our
applications.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1169

A consequence of this definition is that if X is Φ-flat, then for every t ≥ 1, the
random variable X is (2−t2)-close to a random variable X ′ with min-entropy at least
H(X) − tΦ.

Lemma 2.6 (flattening lemma). Let X be a distribution, k be a positive integer,
and ⊗kX denote the distribution composed of k independent copies of X. Suppose that
for all x in the support of X it holds that Pr [X = x] ≥ 2−m. Then ⊗kX is

√
k·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of
(X,Y) it holds that Pr [X = x|Y = y] ≥ 2−m. Then, defining the random variable
((X1, Y1), . . . , (Xk, Yk)) = ⊗k(X,Y), the random variable (X1, . . . , Xk) is

√
k ·m-flat

given (Y1, . . . , Yk).
The key point is that deviation from flatness grows sublinearly with k, while the

entropy grows linearly with k. We prove the flattening lemma in Appendix A for
completeness.

Hashing. The topic of randomness extraction is concerned with efficiently ex-
tracting as many almost-uniform random bits as possible from random variables that
are not uniformly distributed. The entropy of a random variable does not provide a
good measure of how many almost-uniform bits can be extracted, but its min-entropy
does, as long as we are willing to let the extraction procedure itself be probabilistic.
Surveys of the large body of work on this topic can be found in [47, 53]. Much of
that work focuses on minimizing the number of extra random bits used by the extrac-
tor; this is not a major concern for us, so we can use relatively simple randomness
extractors. In particular, the leftover hash lemma of [8, 37] shows that universal (or
pairwise-independent) hash functions can be used for this purpose.

Lemma 2.7 (leftover hash lemma). Let H be randomly selected from a family
of universal hash functions mapping {0, 1}n to {0, 1}m. Then, for every ε > 0 and
every distribution X on {0, 1}n of min-entropy at least m + 2 log(1/ε), the random
variable (H,H(X)) is ε-close to (H,Um).

Recall that for every n,m, there is an explicit family of universal hash functions
mapping {0, 1}n to {0, 1}m, where a random hash function in the family can be
described by O(n+m) random bits and can be evaluated in time poly(n,m) (cf. [22,
sect. 3.6.1]).

2.3. Promise problems. Roughly speaking, a promise problem [17] is a decision
problem in which some inputs are excluded. Formally, a promise problem is specified
by two disjoint sets of strings Π = (ΠY ,ΠN), where we call ΠY the set of yes instances
and ΠN the set of no instances. Such a promise problem is associated with the
following computational problem: Given an input that is “promised” to lie in ΠY ∪
ΠN , decide whether it is in ΠY or in ΠN . Note that languages are special cases
of promise problems (namely, a language L over an alphabet Σ corresponds to the
promise problem (L,Σ∗\L)). Thus, working with promise problems makes our results
more general. Moreover, even for proving our results just for languages, it turns out
to be extremely useful to work with promise problems along the way.

The complement of a promise problem Π = (ΠY ,ΠN) is the promise problem
Π = (ΠN ,ΠY). The union of two promise problems Π and Γ is the promise problem
Π ∪ Γ = (ΠY ∪ ΓY , ΠN ∩ ΓN). The intersection of two promise problems Π and Γ is
the promise problem Π ∩ Γ = (ΠY ∩ ΓY , ΠN ∪ ΓN).

Most complexity classes, typically defined as classes of languages, can be ex-
tended to promise problems in a natural way by translating conditions on inputs in
the language into conditions on yes instances, and conditions on inputs not in the
language into conditions on no instances. For example, a promise problem Π is in

1170 SALIL P. VADHAN

BPP if there is a PPT algorithm A such that x ∈ ΠY ⇒ Pr [A(x) = 1] ≥ 2/3 and
x ∈ ΠN ⇒ Pr [A(x) = 0] ≤ 1/3. All complexity classes in this paper denote classes of
promise problems.

A promise problem Π reduces to promise problem Γ if there is a polynomial-time
computable function f such that

x ∈ ΠY ⇒ f(x) ∈ ΓY ,

x ∈ ΠN ⇒ f(x) ∈ ΓN .

That is, we work with polynomial-time mapping reductions (i.e., Karp reductions)
unless otherwise specified. If C is a class of promise problems, then Π is complete for
C (or C-complete) if Π ∈ C and every promise problem in C reduces to Π. Sometimes
we will restrict our attention to reductions f that are nonshrinking, in the sense that
there is a constant δ > 0 such that |f(x)| ≥ |x|δ for all strings x.

We refer the reader to the recent survey of Goldreich [24] for more on the utility
and subtleties of promise problems.

2.4. Auxiliary-input cryptographic primitives. It will be very useful for
us to work with cryptographic primitives that are parameterized by an additional
“auxiliary” input x, and where the security condition will hold only if x is in some
particular set I. Indeed, recall that the SZK/OWF Condition refers to such a
variant of the notion of one-way functions (as captured in the definitions below).
Auxiliary-input primitives have been considered in the past, such as in the instance-
dependent commitments of [40] (which we consider in section 4.1) and the auxiliary-
input one-way functions of [50] (which are weaker than our formulation below). In this
section, we provide a general framework for discussing and relating such primitives.

Definition 2.8. An auxiliary-input function ensemble is a collection of functions
F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗ , where p and q are polynomials. We
call F polynomial-time computable (or just poly-time) if there is a (deterministic)
polynomial-time algorithm F such that for every x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), we
have F (x, y) = fx(y).

Definition 2.9. An auxiliary-input one-way function on I is a poly-time auxil-
iary-input function ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that for every
nonuniform PPT A, there exists a negligible function μ such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ μ(|x|).

(We note that since A is nonuniform, it is not essential that we give it the input
x, because x can be hardwired in as advice, but the definition seems more natural,
as above.) The standard definition of a one-way function is obtained by considering
I = {1n : n ≥ 0} and p(n) = n. The above is a stronger notion of an auxiliary-input
one-way function than the notion considered by Ostrovsky and Wigderson [50]. In
their formulation (which they denote by ∃1WF), the set I is not fixed for all A, but
rather can depend on A. That is, they require that for every PPT A, there must exist
an infinite set IA such that A has small probability of inverting fx for all x ∈ IA. (See
our Theorem 7.1 for a precise formulation of this notion and the result of [50].)

Given the above definition, we can restate the SZK/OWF Condition as follows.
Definition 2.10. A promise problem Π = (ΠY ,ΠN) satisfies the SZK/OWF

Condition if there is I ⊆ ΠY such that
• the promise problem Π′ = (ΠY \ I,ΠN) is in SZK.
• there exists an auxiliary-input one-way function on I.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1171

Similarly, the notion of computational indistinguishability has an auxiliary-input
analogue (which is widely used in the definition of zero knowledge; see section 2.5).

Definition 2.11. An auxiliary-input probability ensemble is a collection of ran-
dom variables {Xx}x∈{0,1}∗ , where Xx takes values in {0, 1}p(|x|) for some polynomial
p. We call such an ensemble samplable if there is a PPT algorithm M such that for
every x, the output M(x) is distributed according to Xx.

Definition 2.12. Two auxiliary-input probability ensembles {Xx} and {Yx} are
computationally indistinguishable on I ⊆ {0, 1}∗ if for every nonuniform PPT D,
there exists a negligible function μ such that for all x ∈ I,

|Pr [D(x,Xx) = 1] − Pr [D(x, Yx) = 1]| ≤ μ(|x|).

Similarly, we say that {Xx} and {Yx} are statistically indistinguishable on I ⊆
{0, 1}∗ if the above is required for all functions D (instead of only nonuniform PPT
D’s). Equivalently, {Xx} and {Yx} are statistically indistinguishable on I if and only
if Xx and Yx are μ(|x|)-close for some negligible function μ and all x ∈ I. If Xx are
Yx are identically distributed for all x ∈ I (i.e., μ = 0), we say that they are perfectly
indistinguishable.

Often, we will informally say “Xx and Yx are computationally indistinguishable
when x ∈ I” to mean that the ensembles {Xx} and {Yx} are computationally indis-
tinguishable on I. It is well known that indistinguishability is preserved when we take
polynomially many direct products. See the following lemma.

Lemma 2.13 (cf. [23, Chap. 3, Ex. 9]). If {Xx} and {Yx} are computationally
indistinguishable on I, then for every polynomial p, {⊗p(|x|)Xx} and {⊗p(|x|)Yx} are
computationally indistinguishable on I.

Now we can naturally define auxiliary-input pseudorandom generators.
Definition 2.14. An auxiliary-input pseudorandom generator on I is a poly-

time auxiliary-input function ensemble G = {Gx : {0, 1}p(|x|) → {0, 1}q(|x|)} such
that q(n) > p(n), and the probability ensembles {Gx(Up(|x|))}x and {Uq(|x|)}x are
computationally indistinguishable on I.

Almost all reductions between cryptographic primitives immediately extend to
their auxiliary-input analogues (using the same proof). One example is the equiva-
lence between the existence of pseudorandom generators and the existence of one-way
functions.

Theorem 2.15 (see [37]). For every set I ⊆ {0, 1}∗, there exists a pseudorandom
generator on I if and only if there exists a one-way function on I.

2.5. Zero-knowledge proofs. An interactive protocol (A,B) consists of two
algorithms that compute the next-message function of the (honest) parties in the
protocol. Specifically, A(x, a, α1, . . . , αk; r) denotes the next message αk+1 sent by
party A when the common input is x, A’s auxiliary input is a, A’s coin tosses are r,
and the messages exchanged so far are α1, . . . , αk. There are two special messages,
accept and reject, which immediately halt the interaction. We say that party A
(resp., B) is probabilistic polynomial time (PPT) if its next-message function can be
computed in polynomial time (in |x| + |a| + |α1| + · · · + |αk|). Sometimes (though
not in this section) we will refer to protocols with a joint output; such an output
is specified by a deterministic, polynomial-time computable function of the messages
exchanged.

For an interactive protocol (A,B), we write (A(a), B(b))(x) to denote the random
process obtained by having A and B interact on common input x, with (private)
auxiliary inputs a and b to A and B, respectively (if any), and with independent

1172 SALIL P. VADHAN

random coin tosses for A and B. We call (A,B) polynomially bounded if there is a
polynomial p such that for all x, a, b, the total length of all messages exchanged in
(A(a), B(b))(x) is at most p(|x|) with probability 1. Moreover, if B∗ is any interactive
algorithm, then A will immediately halt and reject in (A(a), B∗(b))(x) if the total
length of the messages ever exceeds p(|x|); we have the analogous requirement for B
interacting with any A∗.

The number of rounds in an execution of the protocol is the total number of mes-
sages exchanged between A and B, not including the final accept/reject message.
We call the protocol (A,B) public coin if all the messages sent by B are simply the out-
put of its coin tosses (independent of the history), except for the final accept/reject
message, which is computed as a deterministic function of the transcript. (Such pro-
tocols are also sometimes known as Arthur–Merlin games [2].)

Definition 2.16. An interactive protocol (P, V) is an interactive proof system
for a promise problem Π if there are functions c, s : N → [0, 1] such that 1 − c(n) >
s(n) + 1/poly(n) and the following hold:

• (Efficiency) (P, V) is polynomially bounded, and V is computable in PPT.
• (Completeness) If x ∈ ΠY , then V accepts in (P, V)(x) with probability at

least 1 − c(|x|).
• (Soundness) If x ∈ ΠN , then for every P ∗, V accepts in (P ∗, V)(x) with

probability at most s(|x|).
We call c(·) the completeness error and s(·) the soundness error. We say that (P, V)
has negligible error if both c and s are negligible. We say that it has perfect complete-
ness if c = 0. We denote by IP the class of promise problems possessing interactive
proof systems. We denote by AM the class of promise problems possessing two-round,
public-coin interactive proof systems.

AM is known to equal the class of promise problems possessing constant-round
(possibly private-coin) interactive proof systems [36, 2].

We write 〈A(a), B(b)〉(x) to denote B’s view of the interaction, i.e., a transcript
(γ1, γ2, . . . , γt; r), where the γi’s are all the messages exchanged and r is B’s coin
tosses.

There are various notions of zero knowledge arising from different choices for
the class of verifiers to be considered. The weakest is to consider only the “honest
verifier,” the one that follows the specified protocol.7

Definition 2.17 (honest-verifier zero knowledge). An interactive proof sys-
tem (P, V) for a promise problem Π is (perfect/statistical/computational) honest-
verifier zero knowledge if there exists a PPT simulator S such that the ensembles
{〈P, V 〉(x)} and {S(x)} are (perfectly/statistically/computationally) indistinguishable
on ΠY .8 We will often omit the word “computational” in reference to computational
zero knowledge.

HVPZK, HVSZK, and HVZK denote the classes of promise problems that
have honest-verifier perfect, statistical, and computational zero-knowledge proofs, re-
spectively.

While honest-verifier zero knowledge is already a nontrivial and interesting no-
tion, cryptographic applications usually require that the zero-knowledge condition

7This is an instantiation of what is called an “honest-but-curious adversary” or “passive adver-
sary” in the literature on cryptographic protocols.

8Actually, in the case of perfect zero knowledge, it is common to allow the simulator to output a
failure symbol ⊥ with some small probability (say, at most 1/2) and require that the output of S(x)
conditioned on nonfailure be identical to 〈P, V 〉(x) (cf. [23, Def. 4.3.1]). However, we define perfect
zero knowledge only for the sake of context and will not use it anywhere else in the paper.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1173

hold even if the verifier deviates arbitrarily from the specified protocol. This idea is
captured by the following definition.

Definition 2.18 (auxiliary-input zero knowledge).9 An interactive proof system
(P, V) for a promise problem Π is (perfect/statistical/computational) (auxiliary-input)
zero knowledge if for every PPT V ∗ and polynomial p, there exists a PPT S such that
the ensembles

{〈P, V ∗(z)〉(x)} and {S(x, z)}(1)

are (perfectly/statistically/computationally) indistinguishable on the set

{(x, z) : x ∈ ΠY , |z| = p(|x|)}.

PZK, SZK, and ZK are the classes of promise problems possessing perfect,
statistical, and computational (auxiliary-input) zero-knowledge proofs, respectively.

The auxiliary input z in the above definition allows one to model a priori informa-
tion that the verifier may possess before the interaction begins, such as from earlier
steps in a larger protocol in which the zero-knowledge proof is being used or from
prior executions of the same zero-knowledge proof. As a result, auxiliary-input zero
knowledge is closed under sequential composition. That is, if an auxiliary-input zero-
knowledge proof is repeated sequentially polynomially many times, then it remains
auxiliary-input zero knowledge [30]. Plain zero knowledge (i.e., without auxiliary in-
puts) is not closed under sequential composition [27], and thus auxiliary-input zero
knowledge is the definition typically used in the literature.

Typically, a protocol is proven to be zero knowledge by actually exhibiting a
single, universal simulator that simulates an arbitrary verifier strategy V ∗ by using
V ∗ as a subroutine. That is, the simulator does not depend on or use the code of V ∗

(or its auxiliary input) and instead requires only black-box access to V ∗. This type
of simulation is formalized as follows.

Definition 2.19 (black-box zero knowledge). An interactive proof system (P, V)
for a promise problem Π is (perfect/statistical/computational) black-box zero knowl-
edge if there exists an oracle PPT S such that for every nonuniform PPT V ∗, the
ensembles

{〈P, V ∗〉(x)}x∈ΠY
and {SV ∗(x,·;·)(x)}x∈ΠY

are (perfectly/statistically/computationally) indistinguishable.
Even though the above definition does not explicitly refer to an auxiliary input,

the definition encompasses auxiliary-input zero knowledge because we allow V ∗ to be
nonuniform (and thus the auxiliary input can be hardwired in V ∗ as advice). The
recent work of Barak [3] demonstrated that non–black-box zero-knowledge proofs
can achieve properties (such as simultaneously being public coin, having a constant
number of rounds, and having negligible error) that were known to be impossible for
black-box zero knowledge [27]. Nevertheless, our results will show that, when ignoring

9Our formulation of auxiliary-input zero knowledge is slightly different than, but equivalent to,
the definition in the textbook [23]. We allow V ∗ to run in polynomial time in the lengths of both its
input x and its auxiliary input z, but put a polynomial bound on the length of the auxiliary input.
In [23, sect. 4.3.3], V ∗ is restricted to run in time that is polynomial in just the length of the input
x, and no bound is imposed on the length of the auxiliary input z (so V ∗ may only be able to read
a prefix of z). The purpose of allowing the auxiliary input to be longer than the running time of z
is to provide additional nonuniformity to the distinguisher (beyond that which the verifier has); we
do this directly by allowing the distinguisher to be nonuniform in Definition 2.12.

1174 SALIL P. VADHAN

efficiency considerations, black-box zero knowledge is as rich as standard, auxiliary-
input zero knowledge; that is, every problem in ZK has a black-box zero-knowledge
proof system.

Remarks on the definitions. Our definitions mostly follow the now standard def-
initions of zero-knowledge proofs as presented in [23], but we highlight the following
points:

1. (Promise problems) As has been done numerous times before (see, e.g., [28,
52]), we extended all of the definitions to promise problems Π = (ΠY ,ΠN)
in the natural way; i.e., conditions previously required for inputs in the lan-
guage (e.g., completeness and zero knowledge) are now required for all yes

instances, and conditions previously required for inputs not in the language
(e.g., soundness) are now required for all no instances. Similarly, all our
complexity classes (e.g., ZK, SZK, HVZK, HVSZK, BPP) are classes of
promise problems. These extensions to promise problems are essential for
formalizing our arguments, but all the final characterizations and results we
derive about ZK automatically hold for the corresponding class of languages,
simply because languages are special cases of promise problems.

2. (Nonuniform formulation) As has become standard, we have adopted a non-
uniform formulation of zero knowledge, where the computational indistin-
guishability has to hold even with respect to nonuniform distinguishers and
is universally quantified over all yes instances. Uniform treatments of zero
knowledge are possible (see [21] and [4, Apdx. A]), but the definitions are
much more cumbersome. We do not know whether analogues of our results
hold for uniform zero knowledge, and thus we leave that as a problem for
future work.

3. (Strict polynomial-time simulators) Following [23], we initially restrict our
attention to zero knowledge with respect to simulators that run in strict
polynomial time. The original definition of zero knowledge [35] allows for
simulators that run in expected polynomial time. In section 7.3, we extend
our techniques to zero knowledge with respect to expected polynomial-time
simulators (in fact, an even weaker notion) and ultimately prove that the
class of problems having zero-knowledge proofs with expected polynomial-
time simulators and the class of problems having zero-knowledge proofs with
strict polynomial-time simulators are equal.

4. (Proof systems versus arguments) We restrict our attention to the original
notion of interactive proof systems [35, 2], where the soundness condition
holds even for computationally unbounded prover strategies. A direction for
future work is to consider the more relaxed notion of interactive argument
systems [10], where the soundness condition is required only for polynomial-
time prover strategies.

5. (Security parameterization) In the definition of computational indistinguisha-
bility (Definition 2.12), and consequently in the formulation of zero knowl-
edge, computational indistinguishability is measured in terms of the input
length, |x|. That is, only “long” statements can be proven with “high” secu-
rity. An alternative, and perhaps more natural, formulation of zero knowl-
edge (see [57, sect. 2.3]) measures indistinguishability in terms of a sepa-
rate security parameter k, given to the prover, verifier, and simulator, and
such that the protocol is allowed running time poly(|x|, k). We stick with
the formulation in terms of the input length |x| because it is the original
and more commonly used definition. However, all of our results can be

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1175

extended to the security-parameterized definition via the observation that
a security-parameterized zero-knowledge proof for a promise problem Π is
equivalent to a (standard, non–security-parameterized) zero-knowledge proof
for its “padded” version Π′ defined by Π′

Y = {(x, 1k) : x ∈ ΠY , k ∈ N} and
Π′

N = {(x, 1k) : x ∈ ΠN , k ∈ N}. For example, our result that HVZK = ZK
implies that the security-parameterized versions of these classes are also equal:
for any promise problem Π having a security-parameterized honest-verifier
zero-knowledge proof, we have Π′ ∈ HVZK = ZK, which implies that Π has
a security-parameterized (cheating-verifier) zero-knowledge proof. Note that
we are not claiming that every problem in ZK has a security-parameterized
zero-knowledge proof. (In contrast, it was shown in [52] that every problem
in SZK has a security-parameterized statistical zero-knowledge proof.)

6. (Closure under reductions) All of the zero-knowledge classes defined above, in
particular HVZK and ZK, are easily seen to be closed under nonshrinking
reductions f (i.e., ones where |f(x)| ≥ |x|Ω(1)): If f reduces Π to Γ ∈ ZK, we
can obtain a zero-knowledge proof for Π by having the prover and verifier on
input x execute the zero-knowledge proof for Γ on f(x). The nonshrinking
condition is needed because the security of the zero-knowledge proof for Γ
is measured as a function of |f(x)|, and we need to relate it to security in
terms of |x|. The nonshrinking condition is unnecessary if one works with a
security-parameterized definition of zero-knowledge proofs, as in item 5 above
(cf. [57, Prop. 2.4.1]).

3. From HVZK to the SZK/OWF CONDITION. In this section, we prove
that every problem in HVZK satisfies the SZK/OWF Condition.

A first attempt. To show that every Π ∈ HVZK satisfies the SZK/OWF Con-

dition, it is tempting to take the following approach. Consider the (honest-verifier)
simulator for Π’s computational zero-knowledge proof system. Let I be the set of
inputs x ∈ ΠY for which the simulator’s output is statistically far from the verifier’s
view. When we ignore the inputs in I, we have an (honest-verifier) statistical zero-
knowledge proof system. On inputs in I, the output of the simulator and the verifier’s
view are statistically far apart but computationally indistinguishable. Goldreich [20]
has shown that from any two samplable distributions that are statistically far apart
but computationally indistinguishable, we can construct a one-way function.

This approach has two difficulties:
• What threshold of statistical difference should we use to partition the inputs

in ΠY ? The result of Goldreich requires a statistical difference of at least
1/p(n) for any fixed polynomial p(n), but the definition of statistical zero
knowledge requires negligible statistical difference 1/nω(1).

• The result of Goldreich [20] requires that both distributions be (polynomial-
time) samplable, but the verifier’s view of the real interaction with the prover
will typically not be samplable. Moreover, if we require only one of the two
distributions in Goldreich’s hypothesis to be samplable, then it is unlikely
to imply one-way functions. Indeed, it has been proven unconditionally that
the uniform distribution on {0, 1}n (which is trivially samplable) is compu-
tationally indistinguishable from some (nonsamplable) distributions that are
statistically very far from uniform (indeed have entropy polylog(n)) [26].

The first difficulty can be overcome using known results about SZK. Specifically,
in [34] it is shown that if a problem Π has an interactive proof system that can be
simulated to within a statistical difference of 1/p(n) for a sufficiently large (but fixed)

1176 SALIL P. VADHAN

polynomial p (e.g., the cube of the communication complexity), then Π ∈ SZK.
For the second difficulty, we use the fact that a samplable distribution that is com-

putationally indistinguishable from an arbitrary (possibly nonsamplable) distribution
of noticeably higher entropy does imply one-way functions [37]. This leads us to look
for “high-entropy” distributions in the real prover-verifier interaction. We find such
distributions using the techniques of [1, 51, 34]. This approach leads us to establish
two other characterizations of ZK en route to the SZK/OWF Condition. These
characterizations are computational analogues of the complete problems for SZK,
and may be of independent interest.

3.1. Analogues of the SZK-complete problems. We establish two charac-
terizations of ZK that are related to the complete problems for SZK, so we begin by
recalling those.

The complete problems for SZK. The first problem is Statistical Difference,
the promise problem SD = (SDY ,SDN) defined by

SDY = {(X,Y) : Δ(X,Y) ≤ 1/3},
SDN = {(X,Y) : Δ(X,Y) ≥ 2/3},

where X and Y are samplable distributions specified by circuits that sample from
them, and Δ(X,Y) denotes statistical difference. (See sections 2.1 and 2.2.)

The second problem is Entropy Difference, the promise problem ED =
(EDY ,EDN) defined by

EDY = {(X,Y) : H(X) ≥ H(Y) + 1},
EDN = {(X,Y) : H(X) ≤ H(Y) − 1},

where H(·) denotes the entropy function (see section 2.2).
The completeness theorems of [52, 34] can be stated as follows.
Theorem 3.1 (see [52, 34]). Statistical Difference and Entropy Differ-

ence are complete for SZK. That is, they are both in SZK, and for every problem
Π ∈ SZK, there is a polynomial-time computable function mapping strings x to pairs
of samplable distributions (X,Y) such that

• if x ∈ ΠY , then Δ(X,Y) ≤ 1/3;
• if x ∈ ΠN , then Δ(X,Y) ≥ 2/3,

Analogous points hold for Entropy Difference.
Note that the result that SZK is closed under complement [48] follows from

the fact that Entropy Difference trivially reduces to its complement (via the
reduction (X,Y) �→ (Y,X)).

It turns out that, for obtaining ZK analogues of this completeness theorem, it
is crucial that we do not work with Entropy Difference, but with a variant,
Conditional Entropy Approximation (CEA), defined as follows:

CEAY = {((X,Y), r) : H(X|Y) ≥ r},
CEAN = {((X,Y), r) : H(X|Y) ≤ r − 1}.

Here (X,Y) is a samplable joint distribution specified by two circuits that use the
same coin tosses.

Proposition 3.2. Conditional Entropy Approximation is complete for
SZK.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1177

Proof. To show that Conditional Entropy Approximation is in SZK, we
reduce it to Entropy Difference. Given an instance ((X,Y), r) of CEA, we define
X ′ = ⊗2(X,Y), Y ′ = (⊗2Y) ⊗ U2r−1. Then

H(X ′) − H(Y ′) = 2 · H(X,Y) − (2 · H(Y) + (2r − 1)) = 2 · (H(X|Y) − r) + 1.

It follows that ((X,Y), r) ∈ CEAY ⇒ (X ′, Y ′) ∈ EDY and ((X,Y), r) ∈ CEAN ⇒
(X ′, Y ′) ∈ EDN .

To show that CEA is SZK-hard, we provide a reduction from SD to CEA, based
on the reduction from SD to ED given in [57, sect. 4.4]. Given an instance (X0, X1)
of SD, we construct the following samplable joint distribution:

(B, Y): Select b ← {0, 1}. Sample x ← Xb. Output (b, x).

Intuitively, both H(B|Y) and Δ(X0, X1) measure how well B can be predicted from
Y = XB . Indeed, it is shown in [57, Claim 4.4.2] that 1−δ ≤ H(B|Y) ≤ H2((1−δ)/2),
where δ = Δ(X0, X1). Plugging in δ = 1/3 and δ = 2/3, we see that

(X0, X1) ∈ SDY ⇒ H(B|Y) ≥ 1 − 1/3 = 2/3,

(X0, X1) ∈ SDN ⇒ H(B|Y) ≤ H2((1 − 2/3)/2) < .651.

Now we amplify the gap to more than one bit by taking direct products. Specifi-
cally, let (B′, Y ′) = ((B1, . . . , B66), (Y1, . . . , Y66)), where the (Bi, Yi)’s are independent
copies of (B, Y). Then

(X0, X1) ∈ SDY ⇒ H(B′|Y ′) ≥ 66 · (2/3) = 44,

(X0, X1) ∈ SDN ⇒ H(B′|Y ′) < 66 · .651 < 43.

So (X0, X1) �→ ((B′, Y ′), 44) is a valid reduction from SD to CEA.
We note that the unconditional version of CEA (where Y is not present and we

consider only H(X)), called Entropy Approximation, is known to be complete for
noninteractive statistical zero knowledge [33].

Analogous characterizations of ZK. We present analogous characterizations of
ZK, albeit not in terms of complete problems.

Definition 3.3. A promise problem Π satisfies the Indistinguishability Con-

dition if there is a polynomial-time computable function mapping strings x to pairs
of samplable distributions (X,Y) such that

• if x ∈ ΠY , then X and Y are computationally indistinguishable (in the sense
of Definition 2.12);

• if x ∈ ΠN , then Δ(X,Y) ≥ 2/3.
We note that the constant 2/3 in the second bullet is arbitrary. By taking di-

rect products and applying Lemmas 2.3 and 2.13, we can boost a threshold as low
as 1/poly(n) to as high as 1− 2−poly(n), while preserving the computational indistin-
guishability in the first bullet.

Like the SZK/OWF Condition, if one-way functions exist, then every promise
problem satisfies the Indistinguishability Condition: On an input x of length n,
we can define X = G(Un) and Y = U2n, where G is a length-doubling pseudorandom
generator, and then X and Y are both computationally indistinguishable and have
large statistical difference. Thus, as before, to obtain a characterization of ZK, we
need to add the condition Π ∈ IP.

Theorem 3.4 (indistinguishability characterization of ZK). Π ∈ ZK if and only
if Π ∈ IP and Π satisfies the Indistinguishability Condition.

1178 SALIL P. VADHAN

The preceding example, showing that every promise problem satisfies the In-

distinguishability Condition if one-way functions exist, also illustrates why Π
satisfying the Indistinguishability Condition cannot be cast as a reduction from
Π to some promise problem—the conditions for yes instances and no instances may
hold at the same time. Nevertheless, we expect that the indistinguishability charac-
terization of ZK will have much the same utility as a complete problem (such as
Statistical Difference). Indeed, several of the results about ZK presented in
section 7 can be established simply by taking the corresponding proof for SZK and
replacing Statistical Difference with the Indistinguishability Condition.
However, we instead choose to use the results for SZK as a “black box,” and reduce
the ZK case to the SZK case via the SZK/OWF characterization.

In [52], it was already proven that every problem that has a public-coin computa-
tional zero-knowledge proof satisfies the Indistinguishability Condition. Thus,
what is new here is showing that the characterization holds even for private-coin
proofs and establishing a converse (for Π ∈ IP).

A characterization analogous to Conditional Entropy Approximation fol-
lows.

Definition 3.5. A promise problem Π satisfies the Conditional Pseudoen-

tropy Condition if there is a polynomial-time computable function mapping strings
x to a samplable joint distribution (X,Y) (i.e., two circuits that use the same coin
tosses) and a parameter r such that

• if x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution
(X ′, Y ′) such that (X ′, Y ′) is computationally indistinguishable from (X,Y)
and H(X ′|Y ′) ≥ r, and

• if x ∈ ΠN , then H(X|Y) ≤ r − 1,
where H(·|·) denotes conditional entropy. (See section 2.2.)

As before, this definition is satisfied by all promise problems if one-way functions
exist. It is crucial that we generalize Conditional Entropy Approximation in-
stead of Entropy Difference. Indeed, in [57] we pointed out that the condition
analogous to Entropy Difference, using H(X) − H(Y) instead of H(X|Y), is sat-
isfied by all promise problems (regardless of whether or not one-way functions exist)
and thus is useless.10 (At the time, we saw this as an obstacle to finding ZK analogues
of the complete problems for SZK.) Our use of conditional entropy was inspired in
part by its role in the conjectures of [4, sect. 9].

Theorem 3.6 (conditional pseudoentropy characterization of ZK). Π ∈ ZK if
and only if Π ∈ IP and Π satisfies the Conditional Pseudoentropy Condition.

Note that, in contrast to the SZK-completeness of Entropy Difference, this
theorem does not seem to imply that ZK is closed under complement. The reason is
that the Conditional Pseudoentropy Condition is not symmetric with respect
to yes and no instances.

Overview of the proofs of Theorems 1.2, 3.6, and 3.4. In the remainder of this sec-
tion, we show that every promise problem in HVZK satisfies the Conditional Pseu-

doentropy Condition, that the Conditional Pseudoentropy Condition is
equivalent to the Indistinguishability Condition, and that every promise problem

10The reason comes from the fact that we do not require X′ and Y ′ above to be samplable.
It is known (via the probabilistic method) that there exists a (nonsamplable) distribution D of
low entropy (e.g., n/2) that is indistinguishable from the uniform distribution Un [26]. Thus, if
the above characterization referred to H(X) − H(Y), then it would hold for all promise problems
by setting X = Y = X′ = Un, Y ′ = D, and r = 1 so that H(X′) − H(Y ′) ≥ n/2 ≥ r and
H(X) − H(Y) = 0 = r − 1.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1179

satisfying the Conditional Pseudoentropy Condition satisfies the SZK/OWF

Condition. This establishes the forward (“only if”) directions of Theorems 1.2,
3.6, and 3.4. The reverse directions, showing that problems in IP satisfying the
characterizations are in ZK, follow from our results in sections 4 and 5. Section 6
puts everything together and formally deduces the theorems.

3.2. The CONDITIONAL PSEUDOENTROPY CONDITION.
Lemma 3.7. If a promise problem Π is in HVZK, then Π satisfies the Condi-

tional Pseudoentropy Condition.
Proof. The proof is an adaptation of the reduction from HVZK to Entropy

Difference in [34]. Let (P, V) be an honest-verifier computational zero-knowledge
proof for Π, with simulator S. We modify the proof system to satisfy the following
(standard) additional properties:

• The completeness error c(|x|) and soundness error s(|x|) are both negligible.
This can be achieved by standard error reduction via (sequential) repetition.

• On every input x, the two parties exchange 2�(|x|) messages for some poly-
nomial �, with the verifier sending even-numbered messages and sending all
its r(|x|) ≥ |x| random coin tosses in the last message. Having the verifier
send its coin tosses at the end does not affect soundness because it is after
the prover’s last message and does not affect honest-verifier zero knowledge
because the simulator is required to simulate the verifier’s coin tosses.

• On every input x, the simulator always outputs accepting transcripts, where
we call a sequence γ of 2� messages an accepting transcript on x if all the
verifier’s messages are consistent with its coin tosses (as specified in the last
message) and the verifier accepts in such an interaction. To achieve this, we
first modify the proof system so that the verifier always accepts if its coin
tosses are 0r(|x|); this increases the soundness error only negligibly. Then we
modify the simulator so that any time it is about to output a nonaccepting
transcript, it instead outputs the accepting transcript where all of the prover
messages are the empty string and the verifier’s coin tosses are 0r(|x|). This
has a negligible effect on the quality of the simulation because when x ∈
ΠY , the original simulator can only output nonaccepting transcripts with
negligible probability (otherwise its output could easily be distinguished from
the real interaction, which has nonaccepting transcripts with probability at
most c(|x|) = neg(|x|)).

For a transcript γ, we denote by γi the prefix of γ consisting of the first i messages.
For readability, we often drop the input x from the notation, e.g., using � = �(|x|),
〈P, V 〉 = 〈P, V 〉(x), etc. Thus, in what follows, 〈P, V 〉i and Si are random variables
representing prefixes of transcripts generated by the real interaction and simulator,
respectively, on a specified input x.

The following two claims are shown in [1, 51, 34].
Claim 3.8. For every x,

�∑
i=1

[H(〈P, V 〉2i) − H(〈P, V 〉2i−1)] = r.

Since 〈P, V 〉2i−1 is a prefix of 〈P, V 〉2i, the term H(〈P, V 〉2i)−H(〈P, V 〉2i−1) in the
sum equals the conditional entropy H(〈P, V 〉2i|〈P, V 〉2i−1). Thus, the sum measures
the total entropy contributed by the verifier’s messages, and it is natural that this
should equal the number of coin tosses of the verifier. (Recall that the verifier reveals
its coin tosses at the end.)

1180 SALIL P. VADHAN

What is less obvious is that the sum should be significantly smaller when we
consider the simulated transcripts for x ∈ ΠN (rather than for x ∈ ΠY).

Claim 3.9. For every x ∈ ΠN ,

�∑
i=1

[H(S2i) − H(S2i−1)] ≤ r − log
1

s(|x|) < r − 1.

It may seem strange to consider the simulator’s output distribution on no in-
stances, since the zero-knowledge condition does not provide any guarantees about
the quality of simulation on no instances. Indeed, Claim 3.9 is not derived from the
zero-knowledge property of the proof system. Rather, it is based on the soundness
of the proof system and the fact that the simulator always produces accepting tran-
scripts (by our modification above). Intuitively, it says that the simulation captures
at most an s(|x|) fraction of the probability space of the verifier’s messages. Indeed, it
is shown in [1, 51, 34] that if this were not the case, then the simulator could be used
to construct a prover strategy that convinces the verifier to accept with probability
greater than s(|x|), contradicting the soundness of the proof system. Now, given input
x, we construct circuits that sample from the following (joint) random variables:

(X,Y): Select i ← {1, . . . , �(|x|)}, choose random coin tosses R for the simulator, and

output (S2i(x;R), S2i−1(x;R)).

When x ∈ ΠY , then S is computationally indistinguishable from 〈P, V 〉. So
(X,Y) is indistinguishable from (X ′, Y ′) = (〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a
uniform random element of {1, . . . , �}. By Claim 3.8, we have

H(X ′|Y ′) =
1

�

�∑
i=1

H(〈P, V 〉2i|〈P, V 〉2i−1) =
r

�
.

When x ∈ ΠN , then by Claim 3.9, we have

H(X|Y) =
1

�

�∑
i=1

H(S2i|S2i−1) ≤
r − 1

�
.

This is what we need to prove, except the entropy gap is only 1/�. This can be
increased to 1 by taking � independent samples from the joint distribution. That is,
we define (X,Y) = ((X1, . . . , X�), (Y1, . . . , Y�)), where the (Xi, Yi)’s are independent
copies of (X,Y). When x ∈ ΠY , then (X,Y) is computationally indistinguishable
from the analogously defined (X ′, Y ′), and H(X ′|Y ′) = � · H(X ′|Y ′) = r. Also, when
x ∈ ΠN , then H(X|Y) = � · H(X|Y) ≤ r − 1.

Therefore the mapping x �→ ((X,Y), r) satisfies Definition 3.5.

3.3. The SZK/OWF CONDITION. In this section, we show that the Condi-

tional Pseudoentropy Condition implies the SZK/OWF Condition.
Lemma 3.10. If a promise problem satisfies the Conditional Pseudoentropy

Condition, then it also satisfies the SZK/OWF Condition.
The idea behind the proof is the following. If Π satisfies the Conditional Pseu-

doentropy Condition, then on every yes instance, we obtain a samplable distribu-
tion (X,Y) that is computationally indistinguishable from (X ′, Y ′), where H(X ′|Y ′)
is large. We consider two cases. If, for the original distributions X and Y , we have

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1181

that H(X|Y) is large, then the instance is information-theoretically distinguishable
from a no instance (where H(X|Y) is small), and such instances can be reduced to
Conditional Entropy Approximation, which is complete for SZK by Proposi-
tion 3.2. If instead H(X|Y) is small, then (X,Y) is computationally indistinguishable
from a joint distribution with higher conditional entropy (namely, (X ′, Y ′)). From
such a pair, we can construct a one-way function using the techniques of H̊astad
et al. [37]. This case analysis provides the partition of yes instances into SZK in-
stances and OWF instances.

Before proceeding with the actual proof, we state the result we need from [37],
adapted to our auxiliary-input setting.

Definition 3.11. An auxiliary-input false entropy generator on I is a samplable
auxiliary-input probability ensemble D = {Dx} for which there exists a samplable
auxiliary-input probability ensemble F = {Fx} that is computationally indistinguish-
able from D on I and satisfies H(Fx) ≥ H(Dx) + 1 for all x ∈ I.

Note that the above definition refers to entropy, rather than conditional entropy
as in the intuition above. We will need to cope with this in the proof. Also note that
the definition requires that F = {Fx} is also samplable. This is actually not necessary
(i.e., Lemma 3.12 below holds regardless), but we will achieve samplability of F in
passing from conditional entropy to entropy, so we include the samplability condition
for consistency with [37].11

Lemma 3.12 (see [37]; cf. our Appendix B). If there exists an auxiliary-input
false entropy generator on I, then there exists an auxiliary-input one-way function
on I.

H̊astad et al. [37] actually show how to construct pseudorandom generators, rather
than just one-way functions, but we need only a one-way function to establish the
SZK/OWF Condition. This allows some steps in the construction to be omitted;
see Appendix B for a proof of Lemma 3.12 (and a generalization, which we use to
handle expected polynomial-time simulators in section 7.3).

Proof of Lemma 3.10. Given an instance x of the promise problem Π, we can
efficiently construct two samplable distributions (X,Y) and parameter r such that if
x ∈ ΠY , then H(X ′|Y ′) ≥ r + 1 for some (X ′, Y ′) indistinguishable from (X,Y), and
if x ∈ ΠN , then H(X|Y) ≤ r− 1. (We may assume a gap of 2 rather than 1 by taking
multiple independent samples from the joint distribution.)

Let I be the set of instances x ∈ ΠY such that H(X|Y) < r. First, we show
that Π′ = (ΠY \ I,ΠN) is in SZK. We prove this by reducing Π′ to Conditional

Entropy Approximation. Indeed, the reduction is simply x �→ ((X,Y), r + 1).
Then H(X|Y) ≥ r when x ∈ ΠY \ I, and H(X|Y) ≤ r − 1 when x ∈ ΠN , as needed.

Now we show that we can construct a one-way function from instances x ∈ I.
Intuitively, the facts that H(X ′|Y ′) ≥ r + 1 and that (X ′, Y ′) is indistinguishable
from (X,Y) mean we should be able to extract r+1 pseudorandom bits from X given
Y . That is, if we let H be a random hash function mapping to r + 1 bits, then the
distribution (H,Y,H(X)) is computationally indistinguishable from (H,Y ′, H(X ′)),
which we might hope to be statistically close to (H,Y ′, Ur+1) (because H(X ′|Y ′) ≥
r+1), which in turn is computationally indistinguishable from (H,Y, Ur+1). However,
the entropy of (H,Y,H(X)) equals H(H)+H(Y)+H(X|Y) < H(H)+H(Y)+r, which
is one bit less than the entropy of (H,Y, Ur+1). So, if this argument worked, then

11The samplability of F is needed only in [37] for proving results with respect to uniform adver-
saries. Indeed, the condition was not included in the conference version [38], which dealt only with
nonuniform adversaries.

1182 SALIL P. VADHAN

(H,Y,H(X)) would be a false entropy generator.
However, there are two (standard) difficulties in implementing this intuition.

First, entropy (much less conditional entropy) is not a strong enough measure of ran-
domness to allow extracting almost-uniform bits. (That is, it is not guaranteed that
(H,Y ′, H(X ′)) is statistically close to (H,Y ′, Ur+1).) Instead, we need a lower bound
on (conditional) min-entropy, as required in the leftover hash lemma (Lemma 2.7).
Second, randomness extraction (e.g., as provided by the leftover hash lemma) does
not extract all the bits of min-entropy, but rather suffers an entropy loss related to
the distance ε desired from uniform in the extracted bits. So we need a larger gap
than one bit of entropy to tolerate this loss and still obtain a false entropy generator.
Both of these difficulties are solved by taking direct products, i.e., many independent
samples of (X,Y). Taking a direct product has the effect of both (linearly) growing
the entropy gap and converting entropy to min-entropy (with a sublinearly loss in
entropy, as shown by the flattening lemma, Lemma 2.6).

We now proceed with the formal details. Let n = |x|, let m be the number of bits
output by X, set k = 4n · (m+ n)2, and let H be an explicit family of universal hash
functions mapping {0, 1}km to {0, 1}kr+1. Let s = O(km) be the number of random
bits to choose a random hash function from H. Consider the samplable distribution

D = (H,Y1, . . . , Yk, H(X1, . . . , Xk)),

where H is a random hash function from H, and the (Xi, Yi)’s are independent copies
of (X,Y). When x ∈ I, we have H(D) ≤ s + k · H(Y) + k · r. On the other hand,
we will show below that D is computationally indistinguishable from the samplable
distribution

F = (H,Y1, . . . , Yk, Ukr+1),

which has entropy s + k · H(Y) + (kr + 1), which in turn is one bit larger than the
entropy of D. Thus, we have constructed an auxiliary-input false entropy generator
on I, and thus by Lemma 3.12 there exists a one-way function on I, as desired.

We now proceed to show that when x ∈ ΠY , D is computationally indistinguish-
able from F . We know that there exist (X ′, Y ′) indistinguishable from (X,Y) such
that H(X ′|Y ′) ≥ r + 1. By Lemma 2.2, we can modify (X ′, Y ′) to obtain (X∗, Y ∗)
indistinguishable from (X,Y) such that H(X∗|Y ∗) ≥ r+1 and Pr [X∗ = x|Y ∗ = y] ≥
2−n · 2−m for all (x, y) ∈ Supp(X∗, Y ∗).

By a hybrid argument (Lemma 2.13), D and F are computationally indistinguish-
able from

D∗ = (H,Y ∗
1 , . . . , Y

∗
k , H(X∗

1 , . . . , X
∗
k))

and

F ∗ = (H,Y ∗
1 , . . . , Y

∗
k , Ukr+1),

respectively, where the (X∗
i , Y

∗
i)’s are independent copies of (X∗, Y ∗).

Now we proceed to show that D∗ is statistically indistinguishable from F ∗, which
will complete the proof. By Lemma 2.6, X∗ = (X∗

1 , . . . , X
∗
k) is Φ-flat given Y ∗ =

(Y ∗
1 , . . . , Y

∗
k) for Φ =

√
k · (m+ n). This implies that (X∗, Y ∗) is (2−n)-close to some

(W,Y ∗) such that for every y ∈ Supp(Y ∗), the min-entropy of W conditioned on
Y ∗ = y is at least

k · H(X∗|Y ∗) −
√
n · Φ ≥ k · (r + 1) −

√
n · Φ

> kr + 2n + 1,

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1183

where in the last inequality we use
√
nΦ ≤ k/2 and 2n + 1 ≤ k/2.

Thus, D∗ is statistically close to the distribution (H,Y ∗, H(W)), which is (2−n)-
close to (H,Y ∗, Ukr+1) = F ∗ by the leftover hash lemma (Lemma 2.7). This completes
the proof.

3.4. The INDISTINGUISHABILITY CONDITION. In this section, we show
that the Indistinguishability Condition is equivalent to the Conditional Pseu-

doentropy Condition, and is thus satisfied by every problem in HVZK. This
equivalence is proven using computational analogues of the reductions given in [57,
sects. 3.4 and 4.4] between the complete problems for SZK. We note that the results
of this section are not used later in the paper, except of course to establish the indis-
tinguishability characterization of ZK (Theorem 3.4); they are included because this
characterization may be of independent interest and may be of use in further studies
of ZK.

Lemma 3.13. If a promise problem satisfies the Conditional Pseudoentropy

Condition, then it satisfies the Indistinguishability Condition.
Proof. The reduction is identical to the one used in the proof of Lemma 3.10

to construct a pseudoentropy generator on the instances in I. Let Π be a promise
problem satisfying the Conditional Pseudoentropy Condition. As in the proof
of Lemma 3.10, given an instance x of the promise problem Π, we can efficiently
construct two samplable distributions (X,Y) and parameter r such that if x ∈ ΠY ,
then H(X ′|Y ′) ≥ r+1 for some (X ′, Y ′) indistinguishable from (X,Y), and if x ∈ ΠN ,
then H(X|Y) ≤ r − 1. From X and Y, we can construct the samplable distributions
D and F as in the proof of Lemma 3.10. In that proof, it is shown that when x ∈ ΠY ,
then D and F are computationally indistinguishable. It is also shown that when
H(X|Y) < r (in particular if x ∈ ΠN), then H(F) ≥ H(D) + 1. By Lemma 2.1, this
implies that Δ(D,F) ≥ 1/2�, where � = poly(n) is the number of bits output by D and
F . Applying Lemmas 2.3 and 2.13, we can increase the statistical difference to 2/3 on
no instances while maintaining computationally indistinguishability on yes instances.
Thus, we conclude that Π satisfies the Indistinguishability Condition.

Lemma 3.14. If a promise problem satisfies the Indistinguishability Condi-

tion, then it satisfies the Conditional Pseudoentropy Condition.
Proof. This is proved in the same way that we reduced Statistical Difference

to Conditional Entropy Approximation in the proof of Proposition 3.2. Let
Π be a promise problem satisfying the Indistinguishability Condition. This
means that given an instance x of Π, we can efficiently construct two samplable
distributions (X0, X1) such that X0 and X1 are computationally indistinguishable if
x ∈ ΠY and such that Δ(X0, X1) ≥ 2/3 if x ∈ ΠN . Consider the following pair of
jointly distributed random variables:

(B, Y) : Select b ← {0, 1}. Sample x ← Xb. Output (b, x).

When x ∈ ΠY , the distributions X0 and X1 are computationally indistinguishable.
This implies that (B, Y) is computationally indistinguishable from (B′, Y), where B′

is a random bit independent of Y . Note that H(B′|Y) = 1.
When x ∈ ΠN , it holds that Δ(X0, X1) ≥ 2/3. Then, as in the proof of Proposi-

tion 3.2, we have H(B|Y) < .651 < 2/3.
Thus, the mapping x �→ (B, Y), r = 1 meets the requirements of the Condi-

tional Pseudoentropy Condition, except that the gap in conditional entropies
between the two cases is only 1 − 2/3 = 1/3 bits. The gap can be amplified to one
bit by taking direct products in the usual manner.

1184 SALIL P. VADHAN

4. From the SZK/OWF CONDITION to ZK. In this section, we construct
a computational zero-knowledge proof system for every problem Π in IP that satisfies
the SZK/OWF Condition. A first approach is for the prover to use the SZK proof
system, when the input is in ΠY \ I, and to use the proof system obtained by the
generic, one-way-function-based compiler from IP to ZK [39, 7] when the input is in
I. The difficulty with this is that the set I may not be efficiently recognizable, so
this approach leaks information to the verifier (namely, whether or not the input is
in I). Because of this difficulty, we take a more indirect approach. Instead of trying
to construct separate zero-knowledge proofs for the “SZK instances” and the “OWF
instances” and then combining them, we construct a certain type of bit-commitment
scheme in each of the two cases. The advantage is that the commitment schemes are
easy to combine (via simple secret sharing). We then use the combined commitment
scheme in the generic compiler from IP to ZK [39, 7].

4.1. Instance-dependent commitments. Recall that a commitment scheme
is a two-phase protocol between a sender and a receiver. In the first phase, called
the commit phase, the sender “commits” to a private bit b. In the second phase,
called the reveal phase, the sender reveals b and “proves” that it was the bit to
which she committed in the first phase. We require two properties of commitment
schemes. The hiding property says that the receiver learns nothing about m in the first
phase. The binding property says that after the commit phase, the sender is bound
to a particular value of m; that is, she cannot successfully open the commitment
to two different messages in the reveal phase. It is impossible to have commitment
schemes that are both statistically hiding and statistically binding, but it is known how
to construct commitment schemes that are computationally hiding and statistically
binding, assuming one-way functions exist [45, 37]. In fact, this is the only way
that one-way functions are used in the construction of computational zero-knowledge
proofs for all of IP [29, 39, 7] and all the resulting theorems about ZK that rely on
the assumption that one-way functions exist.

In this section, we will show how to use the fact that a promise problem Π
satisfies the SZK/OWF Condition to construct a relaxed form of commitment
scheme, tailored to Π, that still suffices for obtaining a zero-knowledge proof for Π.
Specifically, we will construct an instance-dependent commitment scheme for Π. This
is an auxiliary-input version of a commitment protocol, where the auxiliary input
x (given to both the sender and receiver) is viewed as an instance of the promise
problem Π. It is required that the scheme is hiding when x ∈ ΠY and is binding when
x ∈ ΠN . Thus, they are a relaxation of standard commitment schemes, since we do
not require that the hiding and binding properties hold at the same time. Nevertheless,
this relaxation is still useful in constructing zero-knowledge proofs. The reason is that
zero-knowledge proofs based on commitments (in, e.g., [29, 39, 7]) typically use only
the hiding property in proving zero knowledge (which is required only when x is a yes

instance) and use only the binding property in proving soundness (which is required
only when x is a no instance).

An example, used in Bellare, Micali, and Ostrovsky [6], is based on the Graph

Isomorphism problem: Given graphs (G0, G1), a commitment to bit b ∈ {0, 1} is a
random isomorphic copy of Gb. When G0

∼= G1, the commitment is perfectly hid-
ing, and when G0 � G1, then the commitment is perfectly binding. This idea was
abstracted by Itoh, Ohta, and Shizuya [40], who studied the general utility of instance-
dependent commitment schemes for constructing zero-knowledge proofs. Specifically,
they showed that every language possessing a noninteractive instance-dependent

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1185

commitment scheme that is perfectly binding and perfectly hiding is in PZK, as is
the complement of every such language. Recently, in [44], the notion was further gen-
eralized to allow interactive commitments, statistical security, and promise problems,
and was suggested as a possible tool for proving that every problem in SZK ∩ NP
has a statistical zero-knowledge proof system with an efficient prover.

Here we consider further relaxations of the definition. First, we allow the hid-
ing property to be computational, since we will use them to construct computational
zero-knowledge proofs. Second, we require security only for an honest receiver (i.e.,
one that follows the specified protocol); this means that the zero-knowledge proofs we
construct with them will only be honest-verifier zero knowledge. However, since our
honest-verifier zero-knowledge proofs will also be public coin (due to the instance-
dependent commitments being public coin), we will be able to make them robust
against cheating verifiers using the compiler of [32]. Third, and most significantly, we
allow the sender’s algorithm to be computationally unbounded. This is okay when we
use the instance-dependent commitments to construct zero-knowledge proofs, because
the sender’s role is played by the prover, who is allowed to be computationally un-
bounded. (Though this naturally renders the commitments useless for the application
in [44], which focused on prover efficiency.)

The fact that the sender is not polynomial time, however, complicates the defini-
tion substantially, because many commonly used properties of commitment schemes
implicitly use the fact that the sender algorithm is polynomial time. For example,
with a standard commitment scheme, one can assume without loss of generality that
we have a “canonical reveal phase,” whereby the sender gives the message m and her
coin tosses r to the receiver and the receiver checks that the transcript of the commit
phase is consistent with m and r. (See [23, sect. 4.4.1].) This is not possible when the
sender is computationally unbounded, because the receiver cannot run the sender’s
algorithm to check the transcript. Another example is the fact that commitments are
automatically “zero knowledge” in the sense that the receiver learns nothing (from
both phases) other than the bit b to which the sender commits; this is the case be-
cause the receiver can simulate a commitment to bit b by simply running the sender’s
algorithm. Instead, we will need to explicitly include such properties in the following
definition.

Definition 4.1. An (unbounded-sender, honest-receiver) instance-dependent
commitment scheme for a promise problem Π consists of two interactive protocols
(S1, R1) (the commitment phase) and (S2, R2) (the reveal phase) and a promise
problem Val = (ValY ,ValN) (capturing the “valid” commitments). In the com-
mitment phase, both S1 and R1 receive a common input x ∈ {0, 1}∗, S1 receives a
private input b ∈ {0, 1}, and the protocol produces as output a commitment z. In the
reveal phase, both S2 and R2 receive the common input x ∈ {0, 1}∗, a commitment
z, and a bit b ∈ {0, 1}, and at the end of the protocol, R2 accepts or rejects. We
allow S1 and S2 (resp., R1 and R2) to share the same coin tosses (as a way to main-
tain private state beyond the public commitment value z). We write (S1(b), R1)(x),
(S2, R2)(x, z, b), and (S,R)(x, b) to denote the interaction between S and R in the
commit phase, reveal phase, and the two phases combined, respectively.

We require the following conditions:
1. (Efficiency) R = (R1, R2) is computable in PPT (in the length of the common

input x). (In contrast, S is allowed to be computationally unbounded.)
2. (Completeness) For all x ∈ {0, 1}n and all b ∈ {0, 1}, if we let z be the output

of (S1(b), R1)(x), then (x, z, b) ∈ ValY with probability 1 − neg(n).

1186 SALIL P. VADHAN

3. (Validity tests) (S2, R2) is an interactive proof system (with negligible error
probabilities) for Val. Moreover, the promise problem Val is in AM.

4. (Statistical zero knowledge) There is a PPT algorithm M such that for every
x ∈ {0, 1}∗ and b ∈ {0, 1}, the distribution M(x, b) has statistical difference
neg(n) from R’s view of (S,R)(x, b).

5. (Computationally hiding on yes instances) If x ∈ ΠY , then R’s views in
(S1(0), R1)(x) and (S1(1), R1)(x) are computationally indistinguishable. In
case these views are statistically indistinguishable, we will refer to the scheme
as statistically hiding.

6. (Statistically binding on no instances) If x ∈ ΠN , then for every S∗, if we
let z be the output of (S∗

1 , R1)(x), then with probability at least 1 − neg(n),
either (x, z, 0) or (x, z, 1) is in ValN .

The commitment scheme is called public coin if it is public coin for the receiver R.
We make a few remarks on the above conditions, as follows:
• As mentioned earlier, the fact that we allow S to be computationally un-

bounded results in several differences between the above definition and stan-
dard definitions of commitment schemes. When S is restricted to be polyno-
mial time, the zero-knowledge condition is trivial to satisfy (because M(x, b)
could carry out an execution of (S,R)(x, b)) and thus is typically omitted,
and the reveal phase can, without loss of generality, consist of S just sending
its coin tosses to R.

• The completeness and zero-knowledge conditions (and the validity tests) are
required for all inputs x ∈ {0, 1}∗, not just those that satisfy the promise
of Π. This will be useful in combining two instance-dependent commitment
schemes to obtain one for the union of the corresponding promise problems.

• The definition provides for two different kinds of validity tests. One is the
specified protocol (S2, R2) (which may have many rounds, but is “zero knowl-
edge” according to item 4). The other is the (unspecified) AM protocol for
Val (which has only two rounds). Both will be useful for us.

• Both the zero-knowledge and hiding conditions are required only for honest
receivers. The result is that the proof systems we construct using such com-
mitments will be only honest-verifier zero knowledge. We will then obtain
zero knowledge against cheating-verifier strategies using the compiler of [32]
and the fact that our commitment schemes are public coin.

As shown in section 6, our results yield characterizations of ZK and SZK in
terms of instance-dependent commitment schemes, as follows.

Theorem 4.2 (commitment characterization of ZK). Π ∈ ZK if and only if Π ∈
IP and Π has a public-coin, computationally hiding instance-dependent commitment
scheme in the sense of Definition 4.1.

Theorem 4.3 (commitment characterization of SZK). Π ∈ SZK if and only if
Π ∈ IP and Π has a statistically hiding instance-dependent commitment scheme in
the sense of Definition 4.1.

These theorems demonstrate that commitment schemes are at the heart of all
zero-knowledge proofs. This intuition has been held by researchers for a number
of years, based first on the construction of zero-knowledge proofs for all of NP and
IP from commitment schemes [29, 39, 7]. Partial converses were given by Damg̊ard
[12, 13], who showed that every problem having a 3-round, public-coin zero-knowledge
proof has an instance-dependent commitment scheme12 (as above, the commitment is

12Damg̊ard’s result is not stated in the language of instance-dependent commitments, but this
formulation seems to follow from his technique.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1187

statistically hiding if the proof system is statistical zero knowledge), and by Ostrovsky
[49] and Ostrovsky and Wigderson [50], who showed that zero-knowledge proofs for
hard-on-average languages imply one-way functions (and hence standard commitment
schemes [45, 37]). As far as we know, the above theorems are the first to establish
a genuine equivalence between zero-knowledge proofs and some form of commitment
schemes.

In this section, we focus on proving the forward direction of Theorem 4.2.
Lemma 4.4. If a promise problem Π satisfies the SZK/OWF Condition, then

Π has an instance-dependent commitment scheme (in the sense of Definition 4.1).
Moreover, the scheme is public coin and the sender is PPT given an NP oracle.

We will prove this lemma by dealing separately with the SZK instances and OWF
instances. This is done by combining two instance-dependent commitment schemes,
one that is hiding on the “OWF instances” and the other that is hiding on the “SZK
(yes) instances.” For the OWF instances, we use a straightforward application of the
known construction of commitment schemes from one-way functions [45, 37].

Lemma 4.5. If there exists an auxiliary-input one-way function on set I, then
there is an instance-dependent commitment scheme for the promise problem Π =
(I, I). Moreover, this commitment scheme is public coin and the sender is PPT.

Proof. By Theorem 2.15, we can construct an auxiliary-input pseudorandom
generator {Gx : {0, 1}p(|x|) → {0, 1}3p(|x|)} on I. Now we adapt Naor’s commitment
scheme from pseudorandom generators [45] as follows:

Commit phase. (S1(b), R1)(x), where |x| = n.
1. R1 chooses v ← {0, 1}3p(n) and sends v to S1. Both parties set v1 = v and

v0 = 03p(n).
2. S1 chooses r ← {0, 1}p(n) and sends w = Gx(r) ⊕ vb to R1.
3. The commitment z is defined to be the pair (v, w).

We define the promise problem Val = (ValY ,ValN) by

ValY = {(x, (v, w), b) : ∃r ∈ {0, 1}p(|x|) w = Gx(r) ⊕ vb},
ValN = ValY ,

where again we define v1 = v and v0 = 03p(|x|). Clearly Val ∈ NP, and in fact the
reveal phase (S2, R2) simply consists of the sender S2 providing the standard NP
proof that (x, (v, w), b) ∈ ValY (namely, r such that w = Gx(r) ⊕ vb). Thus we have
the required validity tests.

The completeness and public coin properties hold by inspection. The zero-
knowledge condition holds because the sender is polynomial time. Following [45],
the (computational) hiding property on x ∈ I follows from the pseudorandomness
of Gx on such instances. Specifically, we know that Gx(Up(n)) is indistinguishable
from U3p(n). Thus, if we let the random variable V denote the message of R1, we see
that R1’s view of a commitment to 1, (V,Gx(Up(n)) ⊕ V), is indistinguishable from
(V,U3p(n) ⊕ V) ≡ (V,U3p(n)), which in turn is indistinguishable from R1’s view of a
commitment to 0, (V,Gx(Up(n))). Following [45], the (statistical) binding property
on x /∈ I (in fact on all x ∈ {0, 1}∗) follows from the fact that Gx is length-tripling.
Specifically, with probability at least 1− 2−p(n) over v ← {0, 1}3p(n), the image of Gx

will be disjoint from the image of Gx ⊕ v, in which case there is no w such that (v, w)
is a valid commitment of both 0 and 1.

For the SZK instances, we prove the following (which is the forward direction of
Theorem 4.3) in section 5.

Lemma 4.6. Every problem Π in SZK has an instance-dependent commitment

1188 SALIL P. VADHAN

scheme. Moreover, the scheme is public coin and statistically hiding, and the sender
is PPT given an NP oracle.

We now show how to combine these two commitment schemes to prove Lemma
4.4.

Lemma 4.7. If promise problems Π = (ΠY ,ΠN) and Γ = (ΓY ,ΓN) each have

instance-dependent commitment schemes, then the promise problem Π∪Γ
def
= (ΠY ∪ΓY ,

ΠN∩ΓN) has an instance-dependent commitment scheme. If the commitment schemes
for Π and Γ are both public coin, then so is the commitment scheme for Π ∪ Γ.
Moreover, the strategy of the sender in the commitment scheme for Π∪Γ on auxiliary
input x is PPT given oracle access to the strategies of the senders in the commitment
schemes for Π and Γ on auxiliary input x.

Proof. Let (S′, R′) be the instance-dependent commitment scheme for Π, and
(S′′, R′′) the one for Γ, with valid commitments defined by promise problems Val

′

and Val
′′. Intuitively, on an input x, we would like to use (S′, R′) if x ∈ ΠY and

use (S′′, R′′) if x ∈ ΓY . Unfortunately, we do not know which is the case. So we will
use both, and do so in such a way that the resulting scheme is hiding even when only
one of the two is hiding. The natural thing to do is for the sender to commit to two
“shares” of its bit b, one with each scheme, and this is indeed what we do.

Specifically the new scheme (S,R) = ((S1, S2), (R1, R2)) is constructed as follows:
Commit phase (S1(b), R1)(x): 1. S1 chooses random b′, b′′ ← {0, 1} such that

b′ ⊕ b′′ = b.
2. S1 and R1 execute (S′

1(b
′), R′

1)(x) and (S′′
1 (b′′), R′′

1)(x) to obtain com-
mitments z′ and z′′, respectively.

3. The output commitment is z = (z′, z′′).
Valid commitments: The promise problem of valid commitments is defined to be

Val = (ValY ,ValN), where

ValY = {(x, (z′, z′′), b) : ∃ b′, b′′ ∈ {0, 1}

[b′ ⊕ b′′ = b] ∧ [(x, z′, b′) ∈ Val
′
Y] ∧ [(x, z′′, b′′) ∈ Val

′′
Y]},

ValN = {(x, (z′, z′′), b) : ∀ b′, b′′ ∈ {0, 1}

[b′ ⊕ b′′ �= b] ∨ [(x, z′, b′) ∈ Val
′
N] ∨ [(x, z′′, b′′) ∈ Val

′′
N]}.

Reveal phase (S2, R2)(x, (z
′, z′′), b): 1. S2 sends b′, b′′.

2. R2 checks that b′ ⊕ b′′ = b and rejects immediately if not.
3. S2 and R2 execute (S′

2, R
′
2)(x, z

′, b′) and (S′′
2 , R

′′
2)(x, z′′, b′′), and R2 ac-

cepts if both R′ and R′′ accept.
The completeness property of (S,R) on all x follows from the completeness prop-

erties of (S′, R′) and (S′′, R′′), which guarantee that with high probability (x, z′, b′) ∈
Val

′
Y and (x, z′′, b′′) ∈ Val

′′
Y , and hence (x, (z′, z′′), b) ∈ ValY . (Here it is impor-

tant that we require completeness to hold on all instances, rather than just on yes

instances, since ΠY and ΓY need not be the same.) The fact that (S2, R2) is an
interactive proof for Val follows by inspection, and the fact that Val ∈ AM follows
from the fact that both Val

′ and Val
′′ are in AM (combining the AM proof systems

in the same way that we combined (S′
2, R

′
2) and (S′′

2 , R
′′
2) to get (S2, R2)). For the

zero-knowledge property, we have the new simulator M(x, b) choose b′, b′′ ← {0, 1}
such that b′⊕b′′ = b, run the original simulators M ′(x, b′) and M ′′(x, b′′), and combine
their outputs to simulate the view of R.

For the hiding property on ΠY ∪ΓY , suppose w.l.o.g. that x ∈ ΓY . Note that the
view of R1 in (S1(b), R1)(x) consists of the view of R′

1 in (S′
1(b

′), R′
1)(x) concatenated

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1189

with the view of R′′
1 in (S′′

1 (b′′), R′′
1)(x), where b′ and b′′ are chosen randomly such that

b′⊕b′′ = b. The first part of the view (namely, the R′
1-view) has the same distribution

regardless of the value b, because b′ is a random bit. Thus, it suffices to show that
for every fixed value of b′ and the R′

1-view, the R′′
1 -view in case b′′ = b′ (i.e., b = 0) is

indistinguishable from the R′′
1 -view in case b′′ �= b′ (i.e., b = 1). But this follows from

the hiding property of (S′′, R′′) on x ∈ ΓY .
The binding property on x ∈ ΠN ∩ ΓN follows from the binding properties of the

two commitment schemes: For every strategy S∗, we know that with high probability,
the output (z′, z′′) of (S∗, R) satisfies the following. There is at most one b′ ∈ {0, 1}
such that (x, z′, b′) /∈ Val

′
N , and there exists at most one b′′ ∈ {0, 1} such that

(x, z′′, b′′) /∈ Val
′′
N . Thus there is at most one b (namely, b = b′ ⊕ b′′) such that

(x, (z′, z′′), b) /∈ ValN , as desired.
By inspection, the above transformation maintains public coins and the sender’s

complexity.
Putting the above together, we can prove Lemma 4.4, stating that every lan-

guage satisfying the SZK/OWF Condition has an instance-dependent commitment
scheme.

Proof of Lemma 4.4. Let Π be any promise problem satisfying the SZK/OWF

Condition, and let I ⊆ ΠY be the set of “OWF instances.” Since Π′ = (ΠY \I,ΠN) is
in SZK, Lemma 4.6 gives us an instance-dependent commitment scheme for Π′, with
public coins and a sender that is PPT given an NP oracle. Since we have an auxiliary-
input one-way function on I, Lemma 4.5 gives us an instance-dependent commitment
scheme for Γ = (I, I), with public coins and a PPT sender. Combining these via
Lemma 4.7, we get an instance-dependent commitment scheme for Π′ ∪ Γ = Π, with
public coins and a sender that is PPT given an NP oracle.

4.2. The zero-knowledge proof. We now show that to obtain a zero-knowl-
edge proof for a problem Π ∈ IP, it suffices for Π to have an instance-dependent
commitment scheme in the sense of the previous section. This is done by simply using
the instance-dependent commitment scheme to implement the IP-to-ZK compiler of
[29, 39, 7].

Lemma 4.8. If a promise problem Π is in IP and has a computationally hid-
ing (resp., statistically hiding) instance-dependent commitment scheme (in the sense
of Definition 4.1), then Π ∈ HVZK (resp., Π ∈ HVSZK). Moreover, if the
instance-dependent commitment scheme is public coin, then so is the honest-verifier
zero-knowledge proof for Π. Also, the prover’s strategy P ′

x in the honest-verifier zero-
knowledge proof is PPT given with oracles for Sx and Px, where S is the sender
algorithm in the instance-dependent commitment scheme and P is a prover in any
public-coin interactive proof system for Π.

Proof. We begin with the special case that Π ∈ NP, where we follow the approach
of Itoh, Ohta, and Shizuya [40] using our more general notion of instance-dependent
commitments. The idea is to use the zero-knowledge proofs of Goldreich, Micali,
and Wigderson [29] for all of NP, replacing the commitment scheme used there with
the instance-dependent commitment for Π. An outline of the steps of the resulting
protocol follows.

Zero-knowledge proof (P, V)(x):
1. Both parties reduce x to an instance G of 3-coloring.
2. P selects an arbitrary 3-coloring C0 of G and lets C be the coloring obtained

by permuting the three colors in C0 uniformly at random.
3. P commits to the color of each vertex under C by engaging with V in (poly-

nomially many executions of) the commitment phase of instance-dependent

1190 SALIL P. VADHAN

commitment scheme for Π on common input x.
4. V selects a random edge e in G and sends e to P .
5. P reveals the colors of the endpoints of e and proves their validity to V via

the reveal phase of the instance-dependent commitment scheme.
6. V accepts if the colors of the endpoints are different and accepts in both

executions of the reveal phase.
Completeness follows from completeness of the instance-dependent commitment

scheme. Soundness follows from the binding property of the instance-dependent com-
mitment scheme when x ∈ ΠN . (Honest-verifier) zero knowledge follows from the
hiding and zero-knowledge properties of the commitment scheme when x ∈ ΠY .
Specifically, the simulator chooses a random edge e in the graph (to be the veri-
fier’s challenge), chooses two random distinct colors for its endpoints, and assigns
arbitrary colors for the rest of the graph. It uses the simulator for the commitment
scheme to simulate all the commitments, using the simulated commitment phase for
all the commitments, but the simulated reveal phase only for the edge e. (Note that
here, unlike in [29], we deal with an honest verifier, and thus the verifier’s challenge
e is equivalent to its coin tosses and is indeed chosen uniformly at random.) The
computational (resp., statistical) hiding property of the commitment scheme implies
that this simulation is computationally (resp., statistically) indistinguishable from the
(honest) verifier’s view.

For the general case that Π ∈ IP, we follow [39, 7] and transform an interactive
proof (P, V) for Π into a zero-knowledge proof. By [36], we may assume that (P, V)
is public coin. An outline of the zero-knowledge proof follows.

Zero-knowledge proof (P ′, V ′)(x):
1. (P ′, V ′) simulate the public-coin interactive proof (P, V)(x), but instead of

sending P ’s messages explicitly, P ′ commits to P ’s messages using the com-
mit phase of the instance-dependent commitment scheme on common input
x. (The public-coin nature of (P, V) ensures that V can compute its mes-
sages without seeing P ’s messages explicitly.) Let (z1, . . . , zm) be all the
commitments obtained in this way.

2. V chooses and sends a random strings r1, . . . , rm for the AM proof system
for Val.

3. Now P proves the following NP statement to V using the zero knowledge pro-
tocol described above (i.e., that of Goldreich, Micali, and Wigderson imple-
mented with instance-dependent commitments): There exist values b1, . . . , bm
such that (a) V would have accepted in the interactive proof if the prover re-
sponses were given by b1, . . . , bm, and (b) there are prover responses s1, . . . , sm
such that the AM verifier for Val would accept on transcript ((x, zi, bi), ri, si)
for i = 1, . . . ,m.

The analysis of this proof system is similar to the previous one. The claim about
the prover complexity follows by inspection.

The above gives honest-verifier zero-knowledge proofs. These can be converted
into zero-knowledge proofs that tolerate cheating verifiers using the following compiler
of Goldreich, Sahai, and Vadhan [32].

Theorem 4.9 (see [32]). Any honest-verifier public-coin zero-knowledge proof
system can be transformed into a (cheating-verifier) public-coin zero-knowledge proof
system. Furthermore,

1. the resulting proof system has twice as many rounds as the original one.
2. the resulting prover strategy on any input x is PPT given oracle access to the

original prover strategy on the same input x.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1191

3. the resulting proof system has completeness error 2−Ω(n) and soundness er-
ror 1/n on input length n. In case the original proof system has perfect
completeness, so does the resulting one.

4. if the original proof system is statistical zero knowledge, then so is the resulting
proof system.

5. the resulting proof system has a black-box simulator.
Note that the above theorem provides a zero-knowledge proof with a nonnegligible

soundness error (namely 1/n). This can be reduced to a negligible error by performing
ω(1) sequential repetitions.

5. Instance-dependent commitments for SZK. In this section, we construct
our instance-dependent commitment schemes for SZK, thereby proving Lemma 4.6.
This is technically the most involved part of our work.

5.1. Overview. We will construct an instance-dependent commitment scheme
for the SZK-complete problem Statistical Difference [52]. This means that
we will design a commitment protocol in which both the sender and receiver get as
auxiliary input a pair (X0, X1) of samplable distributions. The commitment scheme
should be statistically hiding when X0 and X1 are statistically close and should be
statistically binding when X0 and X1 are statistically far apart. By the polarization
lemma of [52], we may assume, w.l.o.g., that the statistical difference between X0 and
X1 is either exponentially small (for yes instances) or exponentially close to 1 (for
no instances).

A natural idea, suggested in [44], is the following. To commit to a bit b, the
sender sends a random sample x ← Xb. To decommit, the sender reveals b and the
coin tosses r used to generate x, and the receiver verifies that x = Xb(r).

When X0 and X1 are statistically close, this scheme is indeed hiding. On the other
hand, when Δ(X0, X1) = 1 (i.e., X0 and X1 have disjoint supports), then the scheme
is perfectly binding. But we are guaranteed only that Δ(X0, X1) is exponentially
close to 1, and this does not suffice for any sort of binding. Indeed, two distributions
can have statistical difference exponentially close to 1 and yet have identical supports
(which means that every commitment can be opened in two ways).

To get around this difficulty, we notice that the intersection of the supports can
consist of two kinds of elements. First, there can be samples that are atypically
light for at least one of the distributions (i.e., have probability mass much smaller
than 2−h, if we assume (w.l.o.g.) that H(X0) = H(X1) = h). Note that there can
be many (� 2h) such elements. Second, there can be samples that are not atypically
light for either distribution. However, it can be shown that there can be only a
relatively few (� 2h) elements of this second type, provided the distributions have
statistical difference exponentially close to 1. Still, we need to cope with both kinds of
samples.

To deal with these problems, we replace both the commit phase and reveal phase
with interactive protocols. The commit phase protocol constrains the sender’s choice
of the sample/commitment x. Even if the sender deviates from the protocol, with
high probability the commit phase will produce a sample that is atypically light for
at least one of the two distributions, in which case we will regard it as a commitment
to the bit corresponding to the other distribution. The fact that this is feasible relies
on the fact that there are relatively few samples that are not atypically light for both
distributions. The reveal phase protocol, then, is simply an interactive proof that the
sample is not atypically light for Xb.

Needless to say, the challenge is to design both of these protocols so that the

1192 SALIL P. VADHAN

hiding property is maintained in the case of yes instances. Fortunately, there are
two protocols due to Okamoto [48] (see also [34, 57]) that turn out to be well-suited
for these tasks. Specifically, we use an adaptation of Okamoto’s “sample generation
protocol” for the commitment phase, and his “sample test protocol” for the reveal
phase. The price we pay for using these protocols is that the sender is no longer PPT
(but rather in BPPNP), and also that the round complexity becomes polynomial
rather than being a constant.

5.2. Preprocessing the distributions. We will not apply Okamoto’s proto-
cols directly to instances of Statistical Difference itself, but rather do some
preprocessing on the distributions. The first drives the thresholds from 1/3 and 2/3
to be exponentially close to 0 and 1, respectively.

Lemma 5.1 (polarization lemma [52]). There is a polynomial-time computable
function mapping pairs of distributions (X0, X1) (specified by circuits which sample
from them) and a unary parameter 1k to pairs of distributions (Y0, Y1) such that

Δ(X0, X1) ≤ 1/3 ⇒ Δ(Y0, Y1) ≤ 2−k,

Δ(X0, X1) ≥ 2/3 ⇒ Δ(Y0, Y1) ≥ 1 − 2−k.

The second transformation we will use is simply taking direct products, as ana-
lyzed in section 2.2. Combining these two transformations, we prove the following.

Lemma 5.2. For every promise problem Π ∈ SZK, there is a polynomial-time
computable function mapping instances x of length n and unary parameters 1k, 1� to
pairs of distributions (Z0, Z1) such that

• if x ∈ ΠY , then Δ(Z0, Z1) ≤ � · 2−k.
• if x ∈ ΠN , then Δ(Z0, Z1) ≥ 1 − 2−�.
• for all x, H(Z0) = H(Z1) and both Z0 and Z1 are

√
� · poly(n, k)-flat.

The key point for us is that the statistical difference in the case of no instances
goes to 1 exponentially fast with �, whereas the deviation from flatness grows sub-
linearly with �. Specifically, we can take k to be linear in n and take � to be a large
polynomial in n and have the deviation from flatness

√
� · poly(n, k) remain sublinear

in �. We will show (in Lemma 5.3 below) that this implies that the intersection of
the supports of the two distributions is due only to (a) atypically light elements and
(b) a small number of other elements (i.e., much fewer than 2H(Zb)).

Proof. Let an instance x of Π ∈ SZK and the parameters 1k and 1� be given. By
the completeness of Statistical Difference and the polarization lemma (Lemma
5.1), we can produce in polynomial time distributions (Y0, Y1) such that

x ∈ ΠY ⇒ Δ(Y0, Y1) ≤ 2−2k,

x ∈ ΠN ⇒ Δ(Y0, Y1) ≥ 1 − 2−2k ≥ 1/2.

Now, let W0 = Y0 ⊗Y1 (i.e., a sample of Y0 followed by an independent sample of Y1)
and W1 = Y1 ⊗ Y0. This ensures H(W0) = H(W1), and we have

x ∈ ΠY ⇒ Δ(W0,W1) ≤ 2 · 2−2k,

x ∈ ΠN ⇒ Δ(W0,W1) ≥ 1/2.

Now we let Z0 = ⊗c·�W0 and Z1 = ⊗c·�W1, for a sufficiently large constant c. Then,
by Lemma 2.3,

x ∈ ΠY ⇒ Δ(Z0, Z1) ≤ c� · 2 · 2−2k ≤ � · 2−k,

x ∈ ΠN ⇒ Δ(Z0, Z1) ≥ 1 − exp(−Ω(c�)) ≥ 1 − 2−�,

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1193

for an appropriate constant c and sufficiently large k. Also, H(Z0) = c� · H(W0) =
H(Z1). Finally, if m = poly(n, k) is the number of input gates to W0 and W1, then
Pr[Wb = w] ≥ 2−m for all b ∈ {0, 1} and all w in the support of Wb, so the flattening
lemma (Lemma 2.6) tells us that Z0 and Z1 are both

√
� ·m-flat.

The following lemma shows that for two nearly flat distributions with statistical
difference very close to 1, there can be only a relatively small number of strings that
are nonlight for both distributions.

Lemma 5.3. Suppose Z0 and Z1 are random variables such that H(Z0) = H(Z1)
and Δ(H(Z0),H(Z1)) ≥ 1 − 2−�. Then for any Φ > 0,

{z : z is not Φ-light for Z0 and z is not Φ-light for Z1} ≤ 2H(Z0)

2�−Φ
.

Proof. Let S be the set of z that are neither Φ-light for Z0 nor for Z1. Then

2−� ≥ 1 − Δ(Z0, Z1)

=
∑
z

min{Pr [Z0 = z] ,Pr [Z1 = z]}

>
∑
z∈S

min
{

2−Φ · 2−H(Z0), 2−Φ · 2−H(Z1)
}

= |S| · 2−Φ · 2−H(Z0).

Thus, |S| < 2H(Z0)/2�−Φ, as desired.
Note that the above lemma gives us a useful bound (� 2H(Zb)) when the slackness

parameter of Φ is smaller than �. Fortunately, Lemma 5.2 allows us to obtain Φ = o(�)
while still having a statistical difference of 1 − 2−� on no instances.

5.3. Okamoto’s protocols. We now describe the two protocols of Okamoto [48]
that we will use in our commitment scheme. The first is used for generating a random
sample from a nearly flat distribution so that even if one party cheats, the output
will be unlikely to fall in any sufficiently small set. The second is used to test that
a sample from a nearly flat distribution is not too light. Our presentation of these
protocols follows [34, 57].

Below, all distributions are given in the form of circuits that generate them. The
input to these protocols will include a distribution, denoted X. We will denote by
m (resp., n) the length of the input to (resp., output of) the circuit generating the
distribution X.

Definition 5.4 (sample generation protocol). A protocol (S,R) is called a sam-
ple generation protocol if on common input a distribution X, specified by a circuit
with m input gates and n output gates, and parameters Φ and t, such that X is Φ-flat
and 1 ≤ t ≤ Φ, the protocol yields a common output in {0, 1}n such that the following
holds:

1. (Efficiency) R is PPT.
2. (“Completeness”) If both parties are honest, then the output of the protocol

has a statistical difference of at most m · 2−Ω(t2) from X.
3. (“Soundness I”) If R is honest, then no matter how S plays, the output will

be 2
√
tΦ · Φ-heavy with probability at most m · 2−Ω(t2).

4. (“Soundness II”) If R is honest, then for every set T ⊆ {0, 1}n of size at

most 2−6
√
tΦ·Φ · 2H(X), no matter how S plays, the output will be in T with

probability at most m · 2−Ω(t2).

1194 SALIL P. VADHAN

5. (Strong “zero knowledge”) There exists a PPT simulator M so that for every
(X,Φ, t) as above, the following two distributions have statistical difference at

most m · 2−Ω(t2):
(A) Execute (S,R) on common input (X,Φ, t) and output the view of R,

appended by the output.
(B) Choose x ← X and output (M(X,Φ, t, x), x).

A sample generation protocol is said to be public coin if it is public coin for R.
In [48, 34, 57], only the first soundness condition is given, but we will actually

use the second. (Our proof that the protocol satisfies the second soundness condition
will make use of the first.) The above zero-knowledge property is referred to as strong
since the simulator cannot produce a view-output pair by first generating the view
and then computing the corresponding output. Instead, the simulator is forced (by
the explicit inclusion of x in distribution (B)) to generate a random view consistent
with a given random output (of the protocol). We comment that the trivial protocol
in which R uniformly selects an input r to the circuit X and reveals both r and the
output x = X(r) cannot be used since the simulator is given only x, and it may
be difficult to find an r yielding x in general. Still, a sample generation protocol is
implicit in Okamoto’s work [48] (where it is called a “pretest”). Note also that the
zero-knowledge condition implies the completeness condition; still, conceptually it is
convenient to state them separately.

Theorem 5.5 (implicit in [48]; explicit in [34]). There exists a sample generation
protocol. Furthermore, the protocol is public coin, the sender strategy is PPT given
an NP oracle, and the number of messages exchanged in the protocol is linear in m,
the input length of the sampling circuit for the input distribution X.

Actually, in [48, 34], the sample generation protocol is not shown to satisfy ei-
ther the Soundness II condition of Definition 5.4 or the bound on sender complexity
specified in Theorem 5.5. Thus we repeat the description of the protocol here.

Sample generation protocol (S,R):
Input: (X,Φ, t), where X has m input gates and n output gates and t ≤ Φ.

1. S: Select x0 ∈ {0, 1}n according to X and send x0 to R.
2. S,R: Repeat for i from 1 to m:

(a) R: Choose hi uniformly from a family of pairwise independent hash
functions mapping {0, 1}m+n to {0, 1}m−3tΦ and send hi to S.

(b) S: Choose (ri−1, xi) from the distribution {r : X(r) = xi−1} ⊗ X,
conditioned on h(ri−1, xi) = 0, and send (ri−1, xi) to R. (If there is no
such pair (r, x′), then S sends fail to R.)

(c) R: Check that X(ri−1) = xi−1 and h(ri−1, xi) = 0. If either condition
fails, reject.

Output: xm, unless R rejects in some iteration of the above loop, in which case output
any canonical string outside {0, 1}n, e.g., 0n+1.

The sender complexity claimed in Theorem 5.5 follows from the observation that
the sender need only sample strings uniformly from efficiently decidable sets (i.e.,
satisfying assignments to a known, polynomial-sized circuit), and it is known how to
do such sampling given an NP oracle [41, 5].

Lemma 5.6. The above protocol satisfies the Soundness II condition of Defini-
tion 5.4.

Proof. Fix a set T of size at most 2−6
√
tΦ·Φ · 2H(X). We need to show that the

output xm is in T with probability at most m ·2−Ω(t2), even under a cheating strategy
for S. The Soundness I condition says that xm is 2

√
tΦ · Φ-heavy with probability

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1195

at most m · 2−Ω(t2). In fact, the proof of this condition in [34] also shows that xm−1

is 2
√
tΦ · Φ-heavy with probability at most m · 2−Ω(t2). (Indeed, the protocol could

have been terminated after m− 1 or even slightly fewer stages, but m was chosen as
a clean upper bound on the number of stages needed.) We will show that if xm−1 is
not 2

√
tΦ · Φ-heavy, then the probability (over hm) that S can select xm to be in T

(without R rejecting) is at most 2−Ω(t2).
The number N of strings rm−1 such that X(rm−1) = xm−1 is

N = 2m · Pr [X = xm−1] < 2m · 22
√
tΦ·Φ · 2−H(X),

where the inequality is due to xm−1 not being 2
√
tΦ · Φ-heavy. Thus, the number of

pairs (rm−1, xm) such that X(rm−1) = xm−1 and xm ∈ T equals

N · |T | =
(
2m · 22

√
tΦ·Φ · 2−H(X)

)
·
(
2−6

√
tΦ·Φ · 2H(X)

)
≤ 2−t2 · 2m−3tΦ,

where the last inequality uses t ≤ Φ. Since hm(z) is uniformly distributed in its range
{0, 1}m−3tΦ for every z, the probability that there exists a pair (rm−1, xm−1) such

that hm(rm−1, xm−1) = 0 is at most 2−t2 .
The second protocol tests whether a sample is too light; here we do not need any

modifications from the definition in [34].
Definition 5.7 (sample test protocol). A protocol (S,R) is called a sample test

protocol if on common input a distribution X, specified by a circuit with m input
gates and n output gates, a string x ∈ {0, 1}n, and parameters Φ, t, such that X is
Φ-flat and t ≤ Φ, the following hold:

1. (Efficiency) R is PPT.
2. (“Completeness”) If both parties are honest and x is t · Φ-typical, then R

accepts with probability at least 1 −m · 2−Ω(t2).
3. (“Soundness”) If x is 6

√
tΦ · Φ-light and R is honest, then no matter how S

plays, R accepts with probability at most m · 2−Ω(t2).
4. (Weak “zero knowledge”) There exists a PPT simulator M so that for every

(X,Φ, t) as above and for every t ·Φ-typical x, the following two distributions

have statistical difference at most m · 2−Ω(t2):
(A) Execute (S,R) on common input (X,x,Φ, t), and output the view of R.
(B) Choose r uniformly in {r′ : X(r′) = x}, and output M(X,x,Φ, t, r).

A sample test protocol is said to be public coin if it is public coin for R.
The above zero-knowledge property is referred to as weak since the simulator gets

a random r giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas R is given
only x). A sample test protocol is implicit in Okamoto’s work [48] (where it is called
a “posttest”).

Theorem 5.8 (implicit in [48]; explicit in [34]). There exists a public-coin sam-
ple test protocol. Furthermore, the protocol is public coin, the sender strategy is com-
putable in PPT with an NP oracle, and the number of messages exchanged in the
protocol is linear in m.

5.4. The commitment scheme. Now we use the above protocols to design
instance-dependent commitments for all of SZK, and thereby prove Lemma 4.6. Let
Π be a promise problem in SZK, let x be any string of length n, and let k = 2n,
and � = n7c for a sufficiently large constant c to be determined later. Applying the
reduction of Lemma 5.2 to x, we obtain distributions (Z0, Z1) such that

• if x ∈ ΠY , then Δ(Z0, Z1) ≤ � · 2−k < 2−n.

1196 SALIL P. VADHAN

• if x ∈ ΠN , then Δ(Z0, Z1) ≥ 1 − 2−�.
• for all x, it holds that H(Z0) = H(Z1) and both Z0 and Z1 are Φ-flat for

Φ =
√
� · poly(n, k) < n4c, when c is sufficiently large.

Now we also define a new distribution Z as follows Z(b, r) = Zb(r). That is, Z
outputs a random sample of Z0 with probability 1/2 and a random sample of Z1 with
probability 1/2. Since H(Z0) = H(Z1), we have H(Z0) ≤ H(Z) ≤ H(Z0) + 1. We also
claim that Z inherits the flatness of Z0 and Z1.

Claim 5.9. Z is 3Φ-flat.
The tedious proof of this claim is deferred to Appendix A. Now we construct the

instance-dependent commitment scheme (S,R) as follows, setting t = n:
Commit phase (S1(b), R1)(x):

1. S1 and R1 execute the sample generation protocol of Theorem 5.5 on
input (Z, 3Φ, t) to obtain output z, where Z, Φ, and t are as defined
above.

2. S1 chooses (c, r) uniformly s.t. Z(c, r) = z and sends d = b⊕ c to R.
3. The commitment is defined as the pair (z, d).

(Intuitively, if Z0 and Z1 are statistically close, then a random sample z of
Z is nearly equally likely to have come from Z0 or Z1, so the bit c is random
and hides b.)

Valid commitments: The promise problem of valid commitments is defined to be
Val = (ValY ,ValN), where

ValY = {(x, (z, d), b) : z is tΦ-typical for Zd⊕b},
ValN = {(x, (z, d), b) : z is 6

√
tΦ · Φ-light for Zd⊕b}.

Reveal phase (S2, R2)(x, (z, d), b): S2 and R2 execute the sample test protocol of
Theorem 5.8 on the input (Zd⊕b, z,Φ, t), and R2 accepts or rejects according
to its outcome.

Claim 5.10. The above protocol is a statistically hiding instance-dependent com-
mitment scheme in the sense of Definition 4.1.

Proof.
1. (Receiver’s efficiency) This follows from the efficiency of the sample generation

and sample test protocols.
2. (Completeness) By the completeness of the sample generation protocol, the

string z generated in the (S1(b), R1)(x) has statistical difference at most m ·
2−t2 < 2−n from Z, where m = poly(n) is the number of input gates of the
circuit generating Z. Thus, (c, r) has statistical difference at most 2−n from
uniform. If (c, r) were uniformly distributed, then by the Φ-flatness of Zc⊕d,
the probability (over r) that z = Zc(r) is tΦ-typical for Zc = Zd⊕b is at least

1 − 2−t2 > 1 − 2−n. Therefore, (x, (z, d), b) ∈ ValY with probability at least
1 − 2 · 2−n.

3. (Validity tests) The completeness and soundness of the sample test protocol
show that (S2, R2) is an interactive proof system for Val. To show that
Val is in AM, we design an AM proof system for it as follows. On input
(x, (z, d), b), the prover sends an approximation k to H(Zd⊕b), and then proves
that (a) H(Zd⊕b) � k, and (b) |{r : Zd⊕b(r) = z}| � 2m ·2−k−tΦ, where again
m is the number of input gates of the circuit generating Z. Step (a) can be
done because approximating entropy to within an additive constant (say ±1)

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1197

is in AM ∩ co-AM [51].13 Step (b) can be done using an AM protocol for
proving approximate lower bounds on the sizes of efficiently recognizable sets
[55, 56, 2]. Proving (a) and (b) suffices because on yes instances of Val, we
have

|{r : Zd⊕b(r) = z}| ≥ 2m · 2−H(Zd⊕b)−tΦ,

and on no instances, we have

|{r : Zd⊕b(r) = z}| ≤ 2m · 2−H(Zd⊕b)−6
√
tΦ·Φ < 2m · 2−H(Zd⊕b)−tΦ−5.

4. (Zero knowledge) This follows from the zero-knowledge conditions of the sam-
ple generation and sample test protocols. Specifically, the simulator M(x, b)
chooses a uniformly random (c, r), sets z = Z(c, r) and d = b ⊕ c, runs
the simulator for the sample generation protocol on input (Z, 3Φ, t, z) to
obtain a transcript γ1, runs the simulator for the sample test protocol on
(Zc, z,Φ, t, (c, r)) to obtain a transcript γ2, and outputs (γ1, d, γ2).

5. (Statistically hiding on yes instances) The only dependence of R1’s view on
the bit b is in the value d = b ⊕ c, where c is selected according to the con-
ditional distribution C|ZC=z, where C is uniform in {0, 1}. We have seen
above that the sample generation protocol generates z according to a distri-
bution that has a statistical difference of at most 2−n from a random sample
of Z ≡ ZC . Thus, the pair (z, c) is generated according to a distribution
having a statistical difference of at most 2−n from (ZC , C). In the case of a
yes instance, where Z0 and Z1 have a statistical difference of at most 2−n,
(ZC , C) has a statistical difference of at most 2−n from (ZC , C

′), where C ′ is
a random bit independent of C. Thus, R1’s view in case b = 0 is statistically
indistinguishable from R1’s view in case b = 1.

6. (Statistically binding on no instances) Let

T = {z : z is not 6
√
tΦ · Φ-light for Z0 or for Z1}.

By Lemma 5.3,

|T | ≤ 2H(Z0)

2�−6
√
tΦ·Φ

≤ 2−6
√
tΦ·Φ · 2H(Z),

where the last inequality holds because � = n7c > 12n6c+.5 > 12
√
tΦ · Φ.

By the second soundness condition of the sample generation protocol, the
probability that the output z is in T is at most 2−Ω(t2) < 2−n. If the output
is not in T , then for any d, there is at most one value of b such that z is not
6
√
tΦ · Φ-light for Zd⊕b. That is, there is at most one value of b such that

(x, (z, d), b) /∈ ValN , as desired.
Proof of Lemma 4.6. Using Claim 5.10, all that is left to verify is that the protocol

is public coin, and the sender is PPT given an NP oracle. Both of these follow from
the analogous properties of the sample generation and sample test protocols given in
Theorems 5.5 and 5.8.

13Indeed, the promise problem Entropy Approximation (EA), where EAY = {(X, k) : H(X) ≥
k + 1}, EAN = {(X, k) : H(X) ≤ k}, is complete for noninteractive statistical zero knowledge
(NISZK) [33], and NISZK ⊆ SZK ⊆ AM ∩ co-AM [18, 1].

1198 SALIL P. VADHAN

6. Putting it together. Now we can put together the results proved in the
previous three sections and establish Theorems 1.2, 3.4, 3.6, and 4.2.

Theorem 6.1 (ZK characterization theorem). For a promise problem Π, the
following conditions are equivalent:

1. Π ∈ HVZK.
2. Π ∈ IP, and Π satisfies the Conditional Pseudoentropy Condition.
3. Π ∈ IP, and Π satisfies the SZK/OWF Condition.
4. Π ∈ IP, and Π satisfies the Indistinguishability Condition.
5. Π ∈ IP, and Π has a public-coin computationally hiding instance-dependent

commitment scheme in the sense of Definition 4.1. Moreover, the sender is
PPT given an NP oracle.

6. Π ∈ ZK.
7. Π has a public-coin computational zero-knowledge proof with a black-box sim-

ulator and perfect completeness.
8. Π has a public-coin computational zero-knowledge proof with a black-box sim-

ulator, where on any input x, the prover strategy Px is PPT given an NP
oracle and an oracle for P̂x, where P̂ is the prover in any interactive proof
system for Π. In particular, if Π ∈ NP (or even Π ∈ AM), then Px is PPT
given an NP oracle.

Proof.
1 ⇒ 2 This follows from Lemma 3.7, together with the trivial inclusion HVZK ⊆

IP.
2 ⇒ 3 This is Lemma 3.10.
3 ⇒ 5 This is Lemma 4.4.
5 ⇒ 7 Suppose Π ∈ IP, and that Π has a public-coin instance-dependent com-

mitment scheme. By Lemma 4.8, Π has a public-coin honest-verifier zero-knowledge
proof. We can convert this into a public-coin proof system with perfect complete-
ness using the transformation of Fürer et al. [19], which preserves honest-verifier
zero knowledge. Finally, by Theorem 4.9, this can be converted into a public-coin
(cheating-verifier) zero-knowledge proof with a black-box simulator and perfect com-
pleteness.

5 ⇒ 8 This is proved the same way as in the previous item, except we omit the
transformation of Fürer et al. [19] (which seems to increase the prover complexity
beyond BPPNP). For bounding the prover complexity, we first note that if Π ∈ IP,
then a (variant of) the Goldwasser–Sipser [36] transformation converts any interactive
proof (P̂ , V̂) for Π into a public-coin interactive proof, where the prover on input x
is PPT given an NP oracle and oracle access to P̂x. Then Lemma 4.8 preserves this
prover complexity because the sender in the instance-dependent commitment is PPT
given with an NP oracle. The same holds for Theorem 4.9.

7/8 ⇒ 6 ⇒ 1 These are immediate from the definitions.
2 ⇔ 4 This is by Lemmas 3.13 and 3.14.
We also prove Theorem 4.3, which we restate here.
Theorem 6.2 (Theorem 4.3, restated). Π ∈ SZK if and only if Π ∈ IP and

Π has a statistically hiding instance-dependent commitment scheme in the sense of
Definition 4.1.

Proof.
⇒ This follows from Lemma 4.6, together with the trivial inclusion SZK ⊆ IP.
⇐ This follows from Lemma 4.8, together with the fact that HVSZK = SZK

[48, 32].

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1199

7. Applications and extensions.

7.1. The Ostrovsky–Wigderson theorems. As described in the introduc-
tion, the approach of this paper, and in particular the SZK/OWF characterization
theorem, are inspired by the work of Ostrovsky and Wigderson [50], who showed that
“nontriviality” of ZK implies “some form of one-way functions.” In this section, we
show how our results can be used to give new, more modular proofs of the Ostrovsky–
Wigderson theorems. Specifically, we use the SZK/OWF characterization theorem
to deduce the Ostrovsky–Wigderson theorems about ZK from the earlier (and much
simpler) work of Ostrovsky [49] on SZK. In fact, we need only our results from sec-
tion 3, showing that every problem in HVZK satisfies the SZK/OWF Condition.
Our results in the converse direction, from sections 4, 5, and 6, are not needed.

The two Ostrovsky–Wigderson theorems are obtained by two different interpreta-
tions of “nontriviality” and “some form of one-way functions.” In their first theorem
(mentioned in the introduction), both are interpreted in a weak sense as follows.

Theorem 7.1 (see [50, Thm. 1]). If HVZK �= BPP, then there exists a poly-
time auxiliary-input family of functions {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} that is not
“easy to invert.” That is, for every PPT A and every polynomial r(n), there exists
an infinite set I ⊆ {0, 1}∗ such that

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ 1/r(|x|)

for all x ∈ I.
We point out that the theorem above refers to uniform PPT inverters A; to obtain

functions that are not easy to invert by nonuniform algorithms, the hypothesis should
be replaced with HVZK �⊂ P/poly.

In their second theorem, both conditions are interpreted in a strong sense as
follows.

Definition 7.2. A promise problem Π is hard on average if there exists a PPT
sampling algorithm S, a polynomial r, and a constant δ > 0 such that for every
nonuniform PPT A, the following holds for all but finitely many n:

Pr
x←S(1n)

[
(x ∈ ΠY ∪ ΠN) ∧ (A(x) �= χΠ(x)) ∧ |x| ≥ nδ

]
≥ 1

r(n)
,

where χΠ is the characteristic function of Π, i.e., χΠ(x) = 1 if x ∈ ΠY , χΠ(x) = 0 if
x ∈ ΠN , and χΠ(x) =
 otherwise.

Theorem 7.3 (see [50, Thm. 2]). If HVZK contains a hard-on-average promise
problem, then (standard) one-way functions exist.

We begin by observing that the SZK/OWF characterization (Theorem 1.2) im-
mediately implies a stronger form of one-way functions than given by Theorem 7.1
under the stronger (but still worst-case) hypothesis that HVZK �= HVSZK.

Theorem 7.4. If HVZK �= HVSZK, then there exists an auxiliary-input one-
way function on some infinite set I. That is, there is a poly-time auxiliary-input
family of functions {fx : {0, 1}p(|x|) → {0, 1}q(|x|)} and an infinite set I such that for
every nonuniform PPT A and every polynomial r(n), we have

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ 1/r(|x|)

for all sufficiently long x ∈ I.
The key difference between the conclusions of Theorems 7.1 and 7.4 is that the

order of quantifiers between the adversary A and the infinite set I is reversed. In

1200 SALIL P. VADHAN

the former, the infinite set of indices x for which the adversary fails to invert fx can
depend on the adversary A, whereas in the latter, there is a fixed infinite set of indices
such that fx is hard for all polynomial-time adversaries A.

Recall that HVSZK ⊆ AM∩ co-AM [18, 1], and thus it is unlikely that NP ⊆
HVSZK. Thus Theorem 7.4 can be interpreted as further evidence, incomparable
to what is given by the Ostrovsky–Wigderson theorems (Theorems 7.1 and 7.3), that
one-way functions are necessary to construct zero-knowledge proofs for all of NP (not
to mention all of IP). (Recall that it is known that one-way functions are sufficient
to establish that IP = ZK [29, 39, 7, 45, 37].)

Proof of Theorem 7.4. Suppose HVZK �= HVSZK, and let Π be any promise
problem in HVZK \ HVSZK. By Theorem 6.1, Π satisfies the SZK/OWF Con-

dition. That is, there is a set I such that Π′ = (ΠY \ I,ΠN) is in SZK and there
exists an auxiliary-input one-way function on I. We claim that I is infinite (which
suffices to complete the proof). Suppose for the sake of contradiction that I is finite.
Since Π′ ∈ SZK and Π and Π′ differ on only a finite set of inputs, we conclude that
Π ∈ SZK ⊆ HVSZK. (The statistical zero-knowledge proof for Π is the same as the
statistical zero-knowledge proof for Π′, except we hardwire the set I into the verifier
and simulator, have the verifier immediately accept inputs x ∈ I, and have the prover
send nothing on such inputs.) This contradicts the choice of Π.

We now give alternate proofs of the Ostrovsky–Wigderson theorems themselves
based on the work of Ostrovsky on SZK, as captured in the following theorem.

Theorem 7.5 (implicit in Ostrovsky [49]). For every problem Π ∈ HVSZK,
there exists a poly-time auxiliary-input function ensemble F = {fx : {0, 1}p(|x|) →
{0, 1}q(|x|)}x∈{0,1}∗ , a probabilistic polynomial-time oracle machine M , and a negli-
gible function ε such that for every x ∈ ΠY ∪ ΠN , every t ∈ N, and every function
A : {0, 1}q(|x| → {0, 1}p(|x|), we have

Pr
[
A(fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
> ε(|x|) +

1

t

⇒ Pr
[
MA(x, 1t) = χΠ(x)

]
≥ 1 − 2−|x|,

where χΠ is again the characteristic function of Π.
Note that t, which specifies A’s success probability in inverting fx (up to a negli-

gible term), is given as an input (in unary) to the oracle machine M . Intuitively, for
M to take advantage of the fact that A inverts fx with probability ≈ 1/t, M must be
allowed running time polynomially related to t.

Proof of Theorem 7.1. Suppose that HVZK �= BPP. Then either HVZK �=
HVSZK or HVSZK �= BPP. In the first case, we are done by Theorem 7.4. Thus,
we need only show that HVSZK �= BPP implies the existence of an auxiliary-input
family of functions that is not easy to invert. This follows readily from Theorem 7.5.
Let Π be any promise problem in HVSZK \ BPP, and let {fx} be the family of
functions provided by Theorem 7.5. If there is a uniform PPT A inverting fx with
probability at least 1/r(|x|), for some polynomial r and all but finitely many x, then
by Theorem 7.5, MA(x,·)(x, 12r(|x|)) is a PPT algorithm that decides Π correctly for
all but finitely many x.14 This contradicts the assumption that Π /∈ BPP.

14A minor technicality is that Theorem 7.5 is stated for deterministic oracles A, whereas here
A may be probabilistic. However, after a standard error reduction obtained by O(r(|x|)) repeated
trials, we can ensure that with probability .99 over A’s coin tosses w, the deterministic algorithm
A(x, ·;w) inverts fx(Up(|x|)) with probability (.75) · (1/r(|x|)). So we obtain a BPP algorithm for

Π by randomly choosing w and running MA(x,·,w)(x, 12r(|x|)).

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1201

The above proof illustrates why Theorem 7.1 yields only a family of functions
that is not easy to invert, rather than the stronger notion of auxiliary-input one-way
functions achieved in Theorem 7.4. The reason is that the supposed inverter A for
the family of functions is used to construct a BPP algorithm for the promise problem
Π ∈ SZK. The hypothesis that SZK �= BPP seems to guarantee only that for every
inverter A there exists an infinite set IA of instances on which this procedure fails,
not that there exists a fixed infinite set I of “hard” instances on which the procedure
fails for any A. For example, an inverter A running in time n2 may be able to succeed
on a larger set of instances than an inverter running in time n, and one running in
time n3 may succeed on an even larger set of instances, and so on. Ultimately, the
set of instances which are hard for all polynomial-time A may be empty.

How is this difficulty avoided in Theorem 7.4, which relies on the SZK/OWF

Condition as established in section 3? Intuitively, the reason is that the hardness
of inverting the function fx of the SZK/OWF Condition when x is an “OWF
instance” is not derived from the intractability of the promise problem Π, which does
not make sense for fixed instances x (for the reasons discussed above), but rather is
based on the intractability of distinguishing the output of the simulator from the real
interaction in an HVZK proof system (which makes sense for fixed instances x and
indeed is required to hold for every x ∈ ΠY).

Theorem 7.3 gets around this difficulty in a different way by requiring a stronger
form of intractability for the problem Π, namely, that it is hard on average. Let us first
consider the case that we have a hard-on-average problem Π ∈ HVSZK, following
Ostrovsky [49]. Instead of hoping that x’s membership in Π will be hard to decide,
and thus that fx from Theorem 7.5 will be hard to invert for particular values of x,
we simply can sample a random instance x and be guaranteed, by the definition of
“hard on average,” that for any polynomial-time algorithm A, the instance x will be
“hard” for A with at least a fixed nonnegligible probability. Thus f(x, y) = (x, fx(y))
will be hard to invert with a fixed nonnegligible probability for any polynomial-time
inverter. Now to handle the more general case of Π ∈ HVZK, we use the SZK/OWF

Condition, combining Ostrovsky’s one-way functions just described, which are hard
to invert in the case that x is an “SZK instance,” with the one-way functions of the
SZK/OWF Condition, which are hard to invert in the case that x is an “OWF
instance.” This yields the following new proof of Theorem 7.3.

Proof of Theorem 7.3. Suppose Π ∈ HVZK is hard-on-average with respect to the
sampling algorithm S. Theorem 6.1 tells us that Π satisfies the SZK/OWF Condi-

tion, so there is a set I ⊆ ΠY and a poly-time auxiliary-input function ensemble F =
{fx : {0, 1}p(|x|) → {0, 1}q(|x|)} such that Π′ = (ΠY \ I,ΠN) is in SZK = HVSZK
and F is one-way on I. We now apply Theorem 7.5 to Π′ to get another poly-time
auxiliary-input function ensemble F ′ = {f ′

x : {0, 1}p′(|x|) → {0, 1}q′(|x|)} such that
any inverter for f ′

x can be used to decide whether x is a yes or no instance of Π′.
Now we construct a one-way function gn, where n is the security parameter, as

follows: The input to gn is a triple (r, w,w′). To compute gn(r, w,w′), we interpret r
as coin tosses for the sampling algorithm S, obtaining an instance x = S(1n; r) of Π,
and output (x, fx(w), f ′

x(w′)).
We will now argue that gn is a weak one-way function, namely, that no nonuniform

PPT algorithm can invert gn with probability higher than 1−1/(4r(n)), where r is the
polynomial in the definition of hard on average. Suppose that there is a nonuniform
PPT inverter A such that

Pr
[
A(gn(R,W,W ′)) ∈ g−1

n (gn(R,W,W ′))
]
≥ 1 − 1/(4r(n))

1202 SALIL P. VADHAN

for infinitely many n, when R, W , and W ′ are chosen uniformly at random from the
bit-strings of appropriate length. (Since A is nonuniform, we may assume that it is
deterministic w.l.o.g.)

First, we note that when X = S(1n;R) ∈ I, then A has only a negligible proba-
bility of inverting over the choice of W , by the one-wayness of fX . Thus, we have

Pr
[
A(gn(R,W,W ′)) ∈ g−1

n (gn(R,W,W ′)) ∧ S(1n;R) /∈ I
]
≥ 1 − 1/(3r(n)).(2)

Now we use Theorem 7.5 to convert A into an algorithm B that decides Π′, and
hence Π, well on average (with respect to the distribution S(1n)). Specifically, on
input x, B chooses w uniformly at random and runs MA(x,fx(w),·)3(x, 1|x|), where δ is
the constant in the definition of hard on average and A(x, fx(w), ·)3 denotes the third
component of the output of A.

From (2), it follows that with probability at least 1 − 2/(3r(n)) over the choices
of r ← R and w ← W , we have x = S(1n; r) /∈ I and

Pr
[
A(x, fx(w), f ′

x(W ′))3 ∈ (f ′
x)−1(f ′

x(W ′))
]

≥ Pr
[
A(gn(r, w,W ′)) ∈ g−1

n (gn(r, w,W ′))
]
≥ 1/2,(3)

where the probabilities are taken only over W ′. Whenever inequality (3) holds and we
have x ∈ Π′

Y ∪Π′
N = (ΠY ∪ΠN) \ I, Theorem 7.5 ensures that MA(x,fx(w),·)3(x, 1|x|)

correctly decides whether x is a yes or no instance of Π′ with probability at least
1 − 2−|x|. Thus, setting X = S(1n;R), we have

Pr
[
(X ∈ ΠY ∪ ΠN) ∧ (B(X) �= χΠ(X)) ∧ (|X| ≥ nδ

]
≤ 2/(3r(n)) + 2−nδ

< 1/r(n).

This contradicts the fact that Π is hard on average with respect to the distribution
S(1n).

We note that an alternative way to prove a version of Theorem 7.3 is to combine
our results with [52, Thm. 5.12], which shows that if a hard-on-average problem satis-
fies the Indistinguishability Condition, then one-way functions exist. However,
[52, Thm. 5.12] uses a stronger definition of hard on average than Definition 7.2, re-
quiring that any PPT algorithm has error probability negligibly close to 1/2, rather
than just 1/poly(n). In addition, we feel that it is informative to see how the result
for ZK follows from combining Ostrovsky’s work on SZK (i.e., Theorem 7.5) with the
SZK/OWF

Condition.

7.2. Monotone closure. In this section, we use our results to prove closure
properties of ZK. We begin by noting that the fact that ZK is closed under inter-
section is immediate: To prove that x ∈ ΠY ∩ ΓY for promise problems Π,Γ ∈ ZK,
the prover can prove that x ∈ ΠY using the zero-knowledge proof for Π and then
prove that x ∈ ΓY using the zero-knowledge proof for Γ, and the verifier accepts only
if both proofs are convincing. The analogous approach for union, however, does not
work. In particular, proving that x ∈ ΠY ∪ ΓY seems to require the prover to reveal
whether x ∈ ΠY or x ∈ ΓY , and thus the proof system may not be zero knowledge.

In this section, we show ZK is indeed closed under union. More generally, for ev-
ery Π ∈ ZK, we give zero-knowledge proofs for arbitrary monotone Boolean formulae
over statements about membership in Π, where the formula can even be specified as
part of the common input. Such closure properties were previously known for SZK

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1203

[14, 48, 52].15 Indeed we prove our results by reduction to the SZK case via the
SZK/OWF characterization theorem. (An alternative way of proving the results is to
mimic the proofs for SZK, replacing the Statistical Difference in the construc-
tion of [52] with the Indistinguishability Condition.)

Theorem 7.6. ZK is closed under union.
Proof. By Theorem 1.2, a promise problem is in ZK if and only if it is in IP and

it satisfies the SZK/OWF Condition. Since IP is closed under union, it suffices
to show that the class of problems satisfying the SZK/OWF Condition is closed
under union.

Suppose that Π and Γ satisfy the SZK/OWF Condition. Then there are sets
I and J and poly-time auxiliary-input families of functions {fx}, {gx} such that Π′ =
(ΠY \ I,ΠN) and Γ′ = (ΓY \ J,ΓN) are both in SZK, fx is one-way when x ∈
I, and gx is one-way when x ∈ J . We claim that the set K = I ∪ J of “OWF
instances” and the family of functions {hx}, where hx(y, z) = (fx(y), gx(z)), meet the
requirements for showing that Π ∪ Γ satisfies the SZK/OWF Condition. Indeed,
when x ∈ K, then hx is one-way because either fx or gx is one-way. The promise
problem ((ΠY ∪ΓY)\K, ΠN ∩ΓN) is in SZK because it is a restriction of the promise
problem Π′ ∪Γ′ = (Π′

Y ∪Γ′
Y , Π′

N ∩Γ′
N) (i.e., the yes instances of the former problem

are a subset of those of the latter, and the no instances of both problems are the
same), and Π′ ∪ Γ′ in SZK because SZK is closed under union [48].

We now present some definitions (closely following [52]) to formalize the more
general monotone closure properties we will obtain. Specifically, in order to deal with
instances of promise problems that violate the promise, we will work with an extension
of Boolean algebra that includes an additional “ambiguous” value
.

Definition 7.7. A partial assignment to variables v1, . . . , vk is a k-tuple a =
(a1, . . . , ak) ∈ {0, 1,
}k. For a propositional formula (or circuit) φ on variables
v1, . . . , vk, the evaluation φ(a) is recursively defined as follows:

vi(a) = ai, (φ ∧ ψ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 1 and ψ(a) = 1,

0 if φ(a) = 0 or ψ(a) = 0,

 otherwise,

(¬φ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 0,

0 if φ(a) = 1,

 if φ(a) =
,

(φ ∨ ψ)(a) =

⎧⎪⎨
⎪⎩

1 if φ(a) = 1 or ψ(a) = 1,

0 if φ(a) = 0 and ψ(a) = 0,

 otherwise.

Note that φ(a) equals 1 (resp., 0) for some partial assignment a; then φ(a′) also
equals 1 (resp., 0) for every Boolean a′ obtained by replacing every
 in a with either
a 0 or 1. The converse, however, is not true: The formula φ = v ∨ ¬v evaluates to 1
on every Boolean assignment, yet is not 1 when evaluated at
. Thus, the “law of
excluded middle” φ∨¬φ ≡ 1 no longer holds in this setting. However, other identities
in Boolean algebra, such as De Morgan’s laws (e.g., ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ), do remain
true.

Definition 7.8. For a promise problem Π, the characteristic function of Π is

15In fact, since SZK is closed under complement [48], its closure properties extend even to non-
monotone formulae.

1204 SALIL P. VADHAN

the map χΠ : {0, 1}∗ → {0, 1,
} given by

χΠ(x) =

⎧⎪⎨
⎪⎩

1 if x ∈ ΠY ,

0 if x ∈ ΠN ,

 otherwise.

Definition 7.9. For any promise problem Π and constant δ > 0, we define a
new promise problem Monδ(Π) as follows:

Monδ(Π)Y = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 1 and ∀i |xi| ≥ nδ},
Monδ(Π)N = {(φ, x1, . . . , xk) : φ(χΠ(x1), . . . , χΠ(xk)) = 0 and ∀i |xi| ≥ nδ},

where φ is a monotone k-ary propositional formula, and n = |(φ, x1, . . . , xk)|.
The condition |xi| ≥ nδ is a technicality due to the fact that the security of

zero-knowledge proofs is defined with respect to the input length. Intuitively, we
will be constructing zero-knowledge proofs for instances of Monδ(Π) of length n =
|(φ, x1, . . . , xk)|, but these will be built by using zero-knowledge proofs (or the re-
sulting SZK/OWF Condition) for the individual xi’s. Hence to achieve security in
terms of n, we will need the xi’s to be of length polynomially related to n. Naturally,
this entire issue disappears if one works with a security-parameterized definition of
zero knowledge (cf. remark 5 at the end of section 2.5).

Theorem 7.10. For any promise problem Π ∈ SZK and any constant δ > 0,
Monδ(Π) ∈ SZK.

Proof. First, we note that IP is closed under Monδ(·). To prove that (φ, x1, . . . , xk)
is in Monδ(Π)Y , it suffices to prove that a subset of the xi’s is in ΠY , due to the
monotonicity of φ. Thus, by Theorem 1.2 we need only show that if Π satisfies the
SZK/OWF Condition, then Monδ(Π) satisfies the SZK/OWF Condition.

Let Π be any promise problem satisfying the SZK/OWF Condition, with a
corresponding set I ⊆ ΠY and poly-time auxiliary-input functions {fx} such that
Π′ = (ΠY \I,ΠN) is in SZK and fx is hard to invert when x ∈ I. Since SZK is closed
under Monδ(·) (even for δ = 0) [14, 52], we have that Monδ(Π

′) ∈ SZK. Note that
Monδ(Π

′) is identical to Monδ(Π) except on instances (φ, x1, . . . , xk), where at least
one xi is in I, because then χΠ(xi) = 1 but χΠ′(xi) =
. Specifically, since changing
a variable’s assignment from 1 to
 can change the value of a monotone formula only
from 1 to
, we have Monδ(Π

′)N = Monδ(Π)N and Monδ(Π
′)Y = Monδ(Π)Y \ J ,

where

J = {(φ, x1, . . . , xk) ∈ Monδ(Π)Y : ∃i xi ∈ I}.

Thus, to show that Monδ(Π) satisfies the SZK/OWF Condition, it suffices to show
that we can construct a one-way function from any instance in J . To do this, we
simply define

g(φ,x1,...,xk)(y1, . . . , yk) = (fx1(y1), . . . , fxk
(yk)).

Then when x = (φ, x1, . . . , xk) ∈ J , there is at least one fxi that is hard to invert (by
nonuniform PPT algorithms running in time poly(|xi|) = poly(|x|), since |x| ≥ |xi| ≥
|x|δ), implying that g is hard to invert.

Following [52], Theorem 7.10 implies that ZK is closed under “NC1 truth-table
reductions” (nonadaptive Cook reductions, where the postcomputation is done by a
polynomial-sized formula) and implies that the hierarchy of “computational knowledge
complexity in the hint sense” [31] collapses by logarithmic additive terms. Details can
be found in our technical report [59].

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1205

7.3. Expected polynomial-time simulators and weak-ZK. Recall that, fol-
lowing Goldreich [23], our definitions of zero knowledge (in section 2.5) refer to simu-
lators that run in strict polynomial time. In this section, we extend our results to the
original Goldwasser–Micali–Rackoff [35] definition, which allows the simulator to run
in expected polynomial time. Indeed, we will prove that the two definitions yield ex-
actly the same class ZK; that is, every problem having a zero-knowledge proof with
an expected polynomial-time simulator also has one with a strict polynomial-time
simulator. In fact, we will consider a further relaxation, captured by the following
definitions.

Definition 7.11. For a function ε : N → [0, 1], we say that two auxiliary-input
probability ensembles {Xx} and {Yx} are ε-indistinguishable on I ⊆ {0, 1}∗ if for
every nonuniform PPT D, there exists a negligible function μ such that for all x ∈ I,

|Pr [D(x,Xx) = 1] − Pr [D(x, Yx) = 1]| ≤ ε(|x|) + μ(|x|).
Definition 7.12 (weak zero knowledge [15]). An interactive proof system (P, V)

for a promise problem Π is weak honest-verifier zero knowledge if for every polyno-
mial p there exists a probabilistic (strict) polynomial-time simulator S such that the
ensembles {〈P, V 〉(x)}x∈ΠY

and {S(x)}x∈ΠY
are (1/p(n)) indistinguishable.

weak-HVZK denotes the class of promise problems having weak honest-verifier
zero-knowledge proofs.

The above definition is more relaxed than allowing expected polynomial-time
simulators, because if a simulator S has expected running time t(n), then running it
for p(n)·t(n) steps yields a strict polynomial-time simulator whose output distribution
is (1/p(n))-close to that of S. In particular, if the verifier’s view is computationally
indistinguishable from the output of S, then it is (1/p(n))-indistinguishable from the
truncated version of S. (An intermediate notion is that of ε-knowledge [16], where
the simulator’s running time is required to be bounded by a fixed polynomial in p(n)
and t(n).)

We remark that in the past, expected polynomial-time simulators and weak sim-
ulators have arisen mainly when considering cheating verifiers (e.g., in [35, 29, 25,
15, 16]); that is, strict polynomial-time simulators have always seemed to suffice
for simulating the honest verifier’s view. For such cases, an equivalence between
zero knowledge with weak simulators (for cheating verifiers) and zero knowledge with
strict polynomial-time simulators has already been established by our result that
HVZK = ZK (Theorem 6.1). However, this does leave open the possibility that
weak simulation makes a difference for honest-verifier zero knowledge. We rule out
this possibility in the following theorem.

Theorem 7.13. weak-HVZK = ZK.
Analogous results were previously known for statistical zero knowledge [34] and

noninteractive statistical zero knowledge [33].
By the definitions, ZK ⊆ weak-HVZK, so we need only show weak-HVZK ⊆

ZK. We will do this by showing that every problem in weak-HVZK satisfies the
SZK/OWF Condition, and by applying Theorem 6.1. (By definition, weak-HVZK
⊆ IP.) We will do the former by extending our proof that every problem in HVZK
satisfies the SZK/OWF Condition (from section 3). Intuitively, the “weak” com-
putational indistinguishability in the definition of weak-HVZK will translate into
obtaining a “weak” one-way function (in the sense that the inversion probability is
bounded by, say, 1/2 rather than being negligible), and then we will apply Yao’s con-
version from weak one-way functions to standard one-way functions (see Goldreich
[23, Thm. 2.3.2]).

1206 SALIL P. VADHAN

We begin with an extension of Lemma 3.7.
Lemma 7.14. If a promise problem Π is in weak-HVZK, then Π satisfies the

following Weak Conditional Pseudoentropy Condition: There exists a fixed
polynomial m such that for every polynomial p, there is a polynomial-time computable
function mapping strings x to a samplable joint distribution (X,Y) on {0, 1}m(|x|) ×
{0, 1}m(|x|) and a parameter r such that

• if x ∈ ΠY , then there exists a (not necessarily samplable) joint distribu-
tion (X ′, Y ′) such that (X ′, Y ′) is (1/p(n))-indistinguishable from (X,Y)
and H(X ′|Y ′) ≥ r, and

• if x ∈ ΠN , then H(X|Y) ≤ r − 1.
A crucial point is that the output length m of the circuits X and Y does not grow

with the level of indistinguishability required (as specified by p).16 Note, however,
that we allow the sizes of the circuits and their input length (i.e., number of coin
tosses) to indeed depend on p.

Proof sketch. Recall that the proof of Lemma 3.7 first constructed distributions
X and Y as follows:

(X,Y) : Select i ← {1, . . . , �(|x|)}, choose random coin tosses R for the simulator, and

output (S2i(x;R), S2i−1(x;R)),

where � = �(|x|) is the number of rounds in the proof system. Here we do the
same, but for any given polynomial p, we take S to be the simulator achieving ε-
indistinguishability, where ε(|x|) = 1/(�(|x|) · p(|x|)).

As in the proof of Lemma 3.7, when x ∈ ΠY , then (X,Y) is ε-indistinguishable
from (X ′, Y ′) = (〈P, V 〉2I , 〈P, V 〉2I−1), where I denotes a uniform random element of
{1, . . . , �}, and H(X ′|Y ′) = r/�. On the other hand, when x ∈ ΠN , then H(X|Y) ≤
(r − 1)/�, exactly as in Lemma 3.7.

The final distributions are taken to be (X1, . . . , X�) and (Y1, . . . , Y�), where each
(Xi, Yi) is an independent copy of (X,Y). This increases the entropy gap to 1 bit as
before, and the level of indistinguishability deteriorates to � · ε < 1/p. Notice that the
output lengths of these distributions depend only on the communication complexity
of the proof system (but the circuit sizes and number of random bits required depend
on the simulator, which in turn depends on the choice of p).

Given this lemma, we proceed to reduce the Weak Conditional Pseudoen-

tropy Condition to the SZK/OWF Condition, analogously to Lemma 3.10. In
the proof, we will need a weak analogue of the notion of a false entropy generator, as
follows.

Definition 7.15. We say that there is an auxiliary-input weak false entropy
generator on I if there exists a fixed polynomial m such that for every polynomial
p, we have samplable auxiliary-input probability ensembles D = {Dx} and F = {Fx}
such that Dx and Fx take values in {0, 1}m(|x|) and when x ∈ I, Dx, and Fx are
1/p(|x|)-indistinguishable and satisfy H(Fx) ≥ H(Dx) + 1.

The following generalization of Lemma 3.12, proved in Appendix B, states that
such weak false entropy generators also imply one-way functions.

16Indeed, otherwise every promise problem would trivially satisfy the Weak Conditional Pseu-

doentropy Condition. Let p = p(n) be an arbitrary polynomial, and let m = p. Given an
input x of length n, let (X,Y) be the distribution that always outputs (0m, 0m), let r = 1, and let
(X′, Y ′) equal (0m, 0m) with probability 1 − 1/p and equal (Um, 0m) with probability 1/p. Then
H(X|Y) = 0 ≤ r − 1, (X′, Y ′) is 1/p-close to (X,Y), and H(X′|Y ′) ≥ (1/p) ·m = r.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1207

Lemma 7.16. If there is an auxiliary-input weak false entropy generator on I,
then there exists an auxiliary-input one-way function on I.

We now use this to establish the SZK/OWF Condition.
Lemma 7.17. If a promise problem satisfies the Weak Conditional Pseu-

doentropy Condition, then it satisfies the SZK/OWF Condition.
Proof. Let Π be a promise problem satisfying the Weak Conditional Pseu-

doentropy Condition, with m being the associated fixed polynomial. Then for any
given ε = ε(n) = 1/poly(n) and any instance x ∈ {0, 1}n, we can efficiently construct
two samplable distributions (X,Y) on {0, 1}m ×{0, 1}m and a parameter r such that
if x ∈ ΠY , then H(X ′|Y ′) ≥ r + 1 for some (X ′, Y ′) that is ε-indistinguishable from
(X,Y), and if x ∈ ΠN , then H(X|Y) ≤ r − 1.

Let I be the set of instances x ∈ ΠY such that H(X|Y) < r. The argument that
Π′ = (ΠY \ I,ΠN) is in SZK is identical to the argument in the proof of Lemma 3.10.

Thus, we focus on constructing one-way functions on I. The first step of the
construction (given in the proof of Lemma 3.10) does not change. We set k = 4n ·
(m + n)2 and consider the samplable distributions

D = (H,Y1, . . . , Yk, H(X1, . . . , Xk)),

F = (H,Y1, . . . , Yk, Ukr+1).

As in the proof of Lemma 3.10, H(F) ≥ H(D) + 1. The only change is that instead
of arguing that D and F are computationally indistinguishable, we claim that they
are ε′-indistinguishable from Z for ε′ = 2k · ε. The deterioration by a factor of k
comes from applying the hybrid argument to k samples of (Xi, Yi); this occurs both
when relating D to D∗ and when relating F to F ∗ in the proof of Lemma 3.10; hence
the additional factor of 2. Recalling that k = 4n · (m + n)2 depends only on n and
the output length m, we see that we can still make the level ε′ of indistinguishability
arbitrarily small (by a suitable choice of ε). Moreover, the output length m′ of D
and F remains independent of the choice of ε′ = 1/poly(n). Thus, we have a weak
auxiliary-input false entropy generator on I. By Lemma 7.16, we have an auxiliary-
input one-way function on I, as needed.

8. Open problems. The following are some results that are known about ZK
under the assumption that one-way functions exist, but for which we have not given
unconditional proofs:

1. ZK is closed under complement. (If one-way functions exist, then ZK =
IP = PSPACE = co-PSPACE [29, 39, 7, 45, 37, 42, 54].)

2. If Π ∈ ZK ∩ NP, then Π has a constant-round zero-knowledge proof with
soundness error 1/poly(n) [29, 9]. (Constant-round protocols with negligible
soundness error are known under stronger assumptions [25].)

3. If Π ∈ ZK ∩ NP, then Π has a computational zero-knowledge proof, where
the prover runs in PPT given an NP witness for membership [29]. (In our
Theorem 6.1, the prover needs an NP oracle.)

The only bottleneck for proving the latter two results unconditionally is our instance-
dependent commitment scheme for SZK (Theorem 4.3), which has polynomially many
rounds and a BPPNP sender, so any improvement to that commitment scheme in
these respects would have an analogous impact on ZK. In fact, at the time of this
work, the last two items (round complexity and prover efficiency) were open problems
for SZK as well, and in [44] instance-dependent commitments were proposed as an
approach to the question of prover efficiency for SZK. Subsequent to this work,
in joint work with Nguyen [46], we resolve the prover efficiency question, proving

1208 SALIL P. VADHAN

item 3 unconditionally, as well as its SZK analogue. That work does not, however,
construct standard instance-dependent commitment schemes with an efficient sender
for all of SZK and ZK (but rather some new variant of such commitment schemes),
and this remains an interesting open problem having additional consequences, e.g., for
unconditional results on concurrent zero knowledge [43].

Given that we have been able to prove unconditional results about ZK, which al-
lows for computational security in the zero-knowledge condition, a natural subsequent
project is to try and handle computational security in the soundness condition, that
is, undertake a similar unconditional study of zero-knowledge arguments, as defined
in [10, 23].

Appendix A. Lemmas about flat distributions.
Lemma A.1 (flattening lemma restated). Let X be a distribution, k be a positive

integer, and ⊗kX denote the distribution composed of k independent copies of X.
Suppose that for all x in the support of X it holds that Pr [X = x] ≥ 2−m. Then
⊗kX is

√
k ·m-flat.

Suppose Y is jointly distributed with X, and for all (x, y) in the support of (X,Y)
it holds that Pr [X = x|Y = y] ≥ 2−m. Then, defining ((X1, Y1), . . . , (Xk, Yk)) =
⊗k(X,Y), the random variable (X1, . . . , Xk) is

√
k ·m-flat given (Y1, . . . , Yk).

Proof. For every (x, y) in the support of (X,Y), we define the weight of x given
y to be wt(x|y) = log(1/Pr [X = x|Y = y]). Then wt(·) maps the support of (X,Y)
to [0,m]. For every x1, . . . , xk and y1, . . . , yk, we have

log
1

Pr [(X1, . . . , Xk) = (x1, . . . , xk)|(Y1, . . . , Yk) = (y1, . . . , yk)]
=

k∑
i=1

wt(xi|yi).

Thus, if we let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk), we have

Pr
[
X is not tΦ-typical given Y

]
= Pr

[∣∣∣∣∣
k∑

i=1

wt(Xi|Yi) − H(X|Y)

∣∣∣∣∣ ≥ tΦ

]
.

For every i, E[wt(Xi|Yi)] = H(X|Y) and H(X|Y) = k · H(X|Y), so we are bounding
the probability that the average of k independent, identically distributed random vari-
ables taking values in [0,m] deviates from its expectation by tΦ/k. By the Hoeffding
inequality, this probability is at most

2 · exp

(
−2 · k · (tΦ/k)2

m2

)
.

For Φ =
√
k ·m and t ≥ 1, this bound becomes 2 exp(−2t2) ≤ 2−t2 , establishing the

lemma.
Lemma A.2 (Claim 5.9 restated). Let Z0 and Z1 be Φ-flat distributions, for

Φ ≥ 1. Let Z = ZC , where C is a uniformly chosen random bit. Then Z is 3Φ-flat.
Proof. We need to show that, for every t ≥ 1, a random sample z ← Z is not

t · 3Φ-typical for Z with probability at most 2−t2 . For this, it suffices to separately
bound the probabilities that z is not t·3Φ-light and that z is not t·3Φ-heavy. Note that
t·3Φ ≥ 2t·Φ+1, so we can bound the probabilities with respect to a lightness/heaviness
threshold of 2t · Φ + 1 instead.

Bounding the lightness probability is relatively straightforward because z being
light for Z implies that it is light for both Z0 and Z1. Specifically, for any z that is

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1209

(2t · Φ + 1)-light for Z, we have

Pr [Z0 = z] ≤ 2 · Pr [Z = z] ≤ 2 · 2−(2tΦ+1) · 2−H(Z) ≤ 2−2tΦ · 2−H(Z0).

The analogous bound holds for Z1. Therefore any such z is also 2tΦ-light for Z0 and
Z1. Hence, if z ← Z, then z is (2t ·Φ+1)-light for Z with probability at most 2−(2t)2 .

The heaviness probability is a bit more subtle because z being heavy for Z implies
only that it is heavy for either Z0 or Z1; specifically, if z is (2t · Φ + 1)-heavy for Z,
then

max{Pr [Z0 = z] ,Pr [Z1 = z]} ≥ Pr [Z = z] ≥ 22tΦ+1 · 2−H(Z) ≥ 22tΦ+1 · 2−(H(Z0)+1).

Thus, any such z is 2tΦ-heavy for either Z0 or Z1. W.l.o.g. say that z is heavy for Z0.

The probability that Z0 outputs a string that is 2tΦ-heavy (for Z0) is at most 2−(2t)2 ,
by Φ-flatness. However we also need to bound the probability that Z1 outputs such a
string. Let H0 be the set of strings that are 2tΦ-heavy for Z0. The total probability
mass of H0 under Z0 is at least |H0| · 2−H(Z0)+2tΦ and at most 2−(2t)2 by Φ-flatness.

Thus, |H0| ≤ 2−(2t)2 · 2H(Z0)−2tΦ. Then

Pr [Z1 ∈ H0] ≤ Pr [Z1 is 2tΦ-heavy] + |H0| · 2−H(Z1)+2tΦ ≤ 2−(2t)2 + 2−(2t)2 .

We can perform an identical analysis for the strings H1 that are 2tΦ-heavy for Z1.
Then

Pr [Z ∈ H0 ∪H1] =
1

2
(Pr [Z0 ∈ H0] + Pr [Z1 ∈ H0] + Pr [Z0 ∈ H1] + Pr [Z1 ∈ H1])

≤ 1

2

(
2−(2t)2 + 2 · 2−(2t)2 + 2 · 2−(2t)2 + 2−(2t)2

)

= 3 · 2−(2t)2 .

In total, we see that the probability that a random sample of Z is not (2tΦ+1)-typical

for Z is at most 2−(2t)2 + 3 · 2−(2t)2 ≤ 2−t2 , for t ≥ 1.

Appendix B. Weak false entropy generators imply one-way functions.
We recall the definition of a weak false entropy generator.

Definition B.1 (Definition 7.15 restated). We say that there is an auxiliary-
input weak false entropy generator on I if there exists a fixed polynomial m such
that for every polynomial p, we have samplable auxiliary-input probability ensembles
D = {Dx} and F = {Fx} such that Dx and Fx take values in {0, 1}m(|x|) and when
x ∈ I, Dx, and Fx are 1/p(|x|)-indistinguishable and satisfy H(Fx) ≥ H(Dx) + 1.

The following generalizes Lemma 3.12 (due to [37]). Intuitively, the weakness
of the false entropy generator translates to constructing only a weak one-way func-
tion (where the inversion probability is at most, say, 1/2), which is known to imply
standard one-way functions [60] (cf. [23]).

Lemma B.2 (Lemma 7.16 restated). If there is an auxiliary-input weak false
entropy generator on I, then there exists an auxiliary-input one-way function on I.

Proof. Let x ∈ I, n = |x|, and let D = Dx and F = Fx be the samplable
auxiliary-input probability ensembles on {0, 1}m that are ε-indistinguishable. Recall
that the definition of auxiliary-input weak false entropy generators gives us a fixed
polynomial m = m(n) such that we can take ε = 1/p(n) for any desired polynomial
p (which we will choose later in the proof). To construct an auxiliary-input one-way

1210 SALIL P. VADHAN

function, we will essentially follow the construction of H̊astad et al. [37] which converts
a “false entropy generator” to a “pseudoentropy generator”—where the output is
indistinguishable from a distribution whose min-entropy is higher than the seed-length
of the generator. However, since we are starting from only a weak false entropy
generator D, we need to ensure that the level of indistinguishability deteriorates only
as a function of the output length m of D and the security parameter (but not with
the number of random bits used to generate D).

This part of the construction depends on “guess” e for (an approximation to) the
entropy of D. (At the end we will enumerate over all choices for e.) Specifically, set
k = 256n · (m+n)2, let q be the number of random bits used to generate D, let G be
a random universal hash function mapping {0, 1}kq to {0, 1}kq−ke−k/8, and consider
the following samplable distributions:

We = (D(R1), . . . , D(Rk), G,G(R1, . . . , Rk)),

W ′
e = (F1, . . . , Fk, G, Ukq−ke−k/8),

where R1, . . . , Rk are independent copies of Uq, and F1, . . . , Fk are independent copies
of F .

Claim B.3. For H(D) ≤ e ≤ H(D) + 1/2, we have that
1. We and W ′

e are kε-indistinguishable.
2. Pr [W ′

e ∈ Supp(We)] ≤ (k + 2) · 2−n.
Before proving the claim, we describe how it completes the proof of the lemma.

Specifically, we argue that the circuit generating We defines a (weak) one-way function.
Any algorithm that inverts We with probability at least δ can be used to distinguish
between We and W ′

e with an advantage of at least δ − (k + 2) · 2−n (because by
item 2 it is information-theoretically impossible to find a We-preimage of a random
sample of W ′

e, except with probability (k + 2) · 2−n). By item 1, we conclude that
We can be inverted with probability at most δ = (k + 2) · 2−n + kε ≤ 1/2, for a
sufficiently large choice of the polynomial p (recalling that ε = 1/p), and is thus a
weak one-way function. Since we do not know the value of H(D), we consider the
function fx(y1, . . . , y2m) = (W1/2(y1),W1(y2), . . . ,Wm−1/2(y2m−1),Wm(y2m)), which
is a weak one-way function because one of its components is a weak one-way function
(and the others are independent). Applying the standard reduction from weak one-
way functions to standard one-way functions [60] (cf. [23]) completes the proof. Thus,
all that remains is to establish Claim B.3.

Proof of Claim B.3. It will first be useful to remove low-probability samples from
both D and F , analogously to Lemma 2.2. Let

L = {z : Pr [D = z] ≤ 2−n · 2−m}.

By a union bound, Pr [D ∈ L] ≤ 2−n. Then D̂ = D|D/∈L is 2−n-close to D and,
moreover, for every z ∈ Supp(D̂),

Pr
[
D̂ = z

]
≥ Pr [D = z] ≥ 1/2m+n.

By Lemma 2.1, we have |H(D̂) − H(D)| ≤ 2−n · m + H2(2
−n), which is negligible.

By the flattening lemma, ⊗kD̂ is Φ-flat for Φ =
√
k · (m + n). Analogously, us-

ing F we can define a set L′ of light samples and obtain an F̂ satisfying the same
conclusions.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1211

The Φ-flatness of ⊗kD̂ implies that with probability at least 1 − 2−n over z =
(z1, . . . , zk) ← ⊗kD̂, we have

Pr[⊗kD̂ = z] ≥ 2−
√
n·Φ · 2−k·H(D̂).

Since ⊗kD and ⊗kD̂ are k ·2−n-close (by Lemma 2.3), the same holds with probability
at least 1 − (k + 1) · 2−n over z ← ⊗kD. For any such z, we have

#{(r1, . . . , rk) : ∀i D(ri) = zi}
= 2kq · Pr[⊗kD = z]

≥ 2kq · Pr[⊗kD = z| ⊗k D ∈ (Lc)k] · Pr
[
⊗kD ∈ (Lc)k

]
(where Lc = {z : z /∈ L})

≥ 2kq · Pr[⊗kD̂ = z] · (1 − k · 2−n)

≥ 2kq · 2−
√
n·Φ−k·H(D̂) · (1 − k · 2−n)

≥ 2kq−ke−k/8+2n,

where Lc denotes the complement of L and in the last inequality we use the facts
that H(D̂) ≤ H(D) + neg(n) ≤ e + neg(n) and

√
n · Φ = k/16, 2n + 1 ≤ k/16 for

sufficiently large n. This implies that conditioned on (D(R1), . . . , D(Rk)) = z, the
min-entropy of (R1, . . . , Rk) is at least kq − ke − k/8 + 2n. Thus, by the leftover
hash lemma (Lemma 2.7), (G,G(R1, . . . , Rk)) is (2−n)-close to (G,Ukq−ke−k/8). We
conclude that We is statistically indistinguishable from

V = (D1, . . . , Dk, G, Ukq−ke−k/8),

where D1, . . . , Dk are independent copies of D. Since D is ε-indistinguishable from
F , it follows that V is (kε)-indistinguishable from W ′

e. Therefore, We and W ′
e are

(kε)-indistinguishable, as desired.
Now we proceed to item 2. First, we bound |Supp(We)|. Let g be the number of

random bits to generate G. Then the number of random bits used to generate We is
at most kq + g. Hence |Supp(We)| ≤ 2kq+g. Next, we show that W ′

e is statistically
indistinguishable from a distribution with min-entropy significantly higher than kq+g.
This amounts to lower bounding the min-entropy of (F1, . . . , Fk) = ⊗kF , since the
remaining components of the W ′

e are independent and have min-entropy g+kq−ke−
k/8. As above, instead of F , we consider F̂ . Recall that ⊗kF̂ is (k2−n)-close to ⊗kF
and is Φ-flat. By Φ-flatness, ⊗kF̂ is (2−n)-close to a distribution with min-entropy
k · H(F̂) −

√
nΦ ≥ k · (e + 1/2 − neg(n)) − k/16 ≥ ke + k/4 for sufficiently large n.

Therefore, W ′
e is (k + 1) · (2−n)-close to a distribution with min-entropy at least

(g + kq − ke− k/8) + (ke + k/4) > kq + g + n

for sufficiently large n. A distribution of min-entropy at least w = kq+g+n can land
in Supp(We) with probability at most 2−w · |Supp(We)| ≤ 2−n. Therefore W ′

e lands
in Supp(We) with probability at most 2−n + (k + 1) · 2−n, as desired.

Acknowledgments. I am grateful to Emanuele Viola for an inspiring conversa-
tion about pseudoentropy and [37] that prompted me to revisit the questions addressed
in the present paper. I thank Oded Goldreich, Shafi Goldwasser, and Shien Jin Ong
for clarifying discussions. Their comments, as well as those of the anonymous refer-
ees, also improved the presentation significantly. Finally, I thank Danny Gutfreund,
Madhu Sudan, and Luca Trevisan for some past conversations that have influenced
this work.

1212 SALIL P. VADHAN

REFERENCES

[1] W. Aiello and J. Håstad, Statistical zero-knowledge languages can be recognized in two
rounds, J. Comput. System Sci., 42 (1991), pp. 327–345.

[2] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system and a hierarchy
of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.

[3] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science (Las Vegas, NV), 2001, pp. 106–115.

[4] B. Barak, Y. Lindell, and S. Vadhan, Lower bounds for non-black-box zero knowledge,
J. Comput. System Sci., 72 (2006), pp. 321–391.

[5] M. Bellare, O. Goldreich, and E. Petrank, Uniform generation of NP-witnesses using an
NP-oracle, Inform. and Comput., 163 (2000), pp. 510–526.

[6] M. Bellare, S. Micali, and R. Ostrovsky, Perfect zero-knowledge in constant rounds, in
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing
(Baltimore, MD), 1990, pp. 482–493.

[7] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Ro-

gaway, Everything provable is provable in zero-knowledge, in Advances in Cryptology—
CRYPTO ’88, Lecture Notes in Comput. Sci. 403, S. Goldwasser, ed., Springer-Verlag,
Berlin, 1990, pp. 37–56.

[8] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy amplification by public discussion,
SIAM J. Comput., 17 (1988), pp. 210–229.

[9] M. Blum, How to prove a theorem so no one else can claim it, in Proceedings of the In-
ternational Congress of Mathematicians (Berkeley, CA), AMS, Providence, RI, 1987, pp.
1444–1451.

[10] G. Brassard, D. Chaum, and C. Crépeau, Minimum disclosure proofs of knowledge, J.
Comput. System Sci., 37 (1988), pp. 156–189.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley Series in
Telecommunications, John Wiley & Sons, New York, 1991.

[12] I. B. Damg̊ard, On the existence of bit-commitment schemes and zero-knowledge proofs, in
Advances in Cryptology—CRYPTO ’89, Lecture Notes in Comput. Sci. 435, G. Brassard,
ed., Springer-Verlag, Berlin, 1990, pp. 17–29.

[13] I. B. Damg̊ard, Interactive hashing can simplify zero-knowledge protocol design without com-
putational assumptions (extended abstract), in Advances in Cryptology—CRYPTO ’93,
Lecture Notes in Comput. Sci. 773, D. R. Stinson, ed., Springer-Verlag, Berlin, pp. 100–
109.

[14] A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung, Image density is complete
for non-interactive-SZK, in Proceedings of the 25th International Colloquium on Au-
tomata, Languages and Programming (Aalborg, Denmark), Lecture Notes in Comput.
Sci., Springer-Verlag, Berlin, pp. 784–795.

[15] G. Di Crescenzo, T. Okamoto, and M. Yung, Keeping the SZK-verifier honest uncondi-
tionally, in Advances in Cryptology—CRYPTO ’97, Lecture Notes in Comput. Sci. 1294,
B. S. Kaliski, Jr., ed., Springer-Verlag, Berlin, pp. 31–45.

[16] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, J. ACM, 51 (2004), pp.
851–898.

[17] S. Even, A. L. Selman, and Y. Yacobi, The complexity of promise problems with applications
to public-key cryptography, Inform. Control, 61 (1984), pp. 159–173.

[18] L. Fortnow, The complexity of perfect zero-knowledge, in Advances in Computing Research,
Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 327–343.

[19] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, On completeness and
soundness in interactive proof systems, in Advances in Computing Research, Vol. 5, S.
Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 429–442.

[20] O. Goldreich, A note on computational indistinguishability, Inform. Process. Lett., 34 (1990),
pp. 277–281.

[21] O. Goldreich, A uniform-complexity treatment of encryption and zero-knowledge, J. Cryp-
tology, 6 (1993), pp. 21–53.

[22] O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudorandomness, Algorithms
and Combin. 17, Springer-Verlag, Berlin, 1999.

[23] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cam-
bridge, UK, 2001.

[24] O. Goldreich, On Promise Problems (A Survey in Memory of Shimon Even [1935–2004]),
Tech. Report TR05–018, Electronic Colloquium on Computational Complexity, 2005.
Available online at http://eccc.hpi-web.de/.

UNCONDITIONAL STUDY OF COMPUTATIONAL ZERO KNOWLEDGE 1213

[25] O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof systems
for NP, J. Cryptology, 9 (1996), pp. 167–190.

[26] O. Goldreich and H. Krawczyk, Sparse pseudorandom distributions, Random Structures
Algorithms, 3 (1992), pp. 163–174.

[27] O. Goldreich and H. Krawczyk, On the composition of zero-knowledge proof systems, SIAM
J. Comput., 25 (1996), pp. 169–192.

[28] O. Goldreich and E. Kushilevitz, A perfect zero-knowledge proof system for a problem
equivalent to the discrete logarithm, J. Cryptology, 6 (1993), pp. 97–116.

[29] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity,
or all languages in NP have zero-knowledge proof systems, J. Assoc. Comput. Mach., 38
(1991), pp. 691–729.

[30] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems,
J. Cryptology, 7 (1994), pp. 1–32.

[31] O. Goldreich and E. Petrank, Quantifying knowledge complexity, Comput. Complex., 8
(1999), pp. 50–98.

[32] O. Goldreich, A. Sahai, and S. Vadhan, Honest verifier statistical zero-knowledge equals
general statistical zero-knowledge, in Proceedings of the 30th Annual ACM Symposium on
Theory of Computing (Dallas, TX), 1998, pp. 399–408.

[33] O. Goldreich, A. Sahai, and S. Vadhan, Can statistical zero-knowledge be made non-
interactive?, or On the relationship of SZK and NISZK, in Advances in Cryptology—
CRYPTO ’99, Lecture Notes in Comput. Sci. 1666, M. Wiener, ed., Springer-Verlag, Berlin,
pp. 467–484.

[34] O. Goldreich and S. Vadhan, Comparing entropies in statistical zero-knowledge with appli-
cations to the structure of SZK, in Proceedings of the Fourteenth Annual IEEE Conference
on Computational Complexity (Atlanta, GA), 1999, pp. 54–73.

[35] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[36] S. Goldwasser and M. Sipser, Private coins versus public coins in interactive proof systems,
in Advances in Computing Research, Vol. 5, S. Micali, ed., JAI Press, Greenwich, CT,
1989, pp. 73–90.

[37] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[38] R. Impagliazzo, L. A. Levin, and M. Luby, Pseudo-random generation from one-way func-
tions (extended abstract), in Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing (Seattle, WA), 1989, pp. 12–24.

[39] R. Impagliazzo and M. Yung, Direct minimum-knowledge computations (extended abstract),
in Advances in Cryptology—CRYPTO ’87 Lecture Notes in Comput. Sci. 293, C. Pomer-
ance, ed., Springer-Verlag, Berlin, 1988, pp. 40–51.

[40] T. Itoh, Y. Ohta, and H. Shizuya, A language-dependent cryptographic primitive, J. Cryp-
tology, 10 (1997), pp. 37–49.

[41] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, Random generation of combinatorial
structures from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[42] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. Assoc. Comput. Mach., 39 (1992), pp. 859–868.

[43] D. Micciancio, S. J. Ong, A. Sahai, and S. Vadhan, Concurrent zero knowledge without
complexity assumptions, in Proceedings of the Third Theory of Cryptography Conference
(TCC ’06), Lecture Notes in Comput. Sci. 3876, S. Halevi and T. Rabin, eds., Springer-
Verlag, Berlin, pp. 1–20.

[44] D. Micciancio and S. Vadhan, Statistical zero-knowledge proofs with efficient provers: Lattice
problems and more, in Advances in Cryptology—CRYPTO ’03, Lecture Notes in Comput.
Sci. 2729, D. Boneh, ed., Springer-Verlag, Berlin, pp. 282–298.

[45] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[46] M. Nguyen and S. Vadhan, Zero knowledge with efficient provers, in Proceedings of the 38th

Annual ACM Symposium on Theory of Computing (STOC ’06), Seattle, WA, 2006, pp.
287–295.

[47] N. Nisan and A. Ta-Shma, Extracting randomness: A survey and new constructions, J. Com-
put. System Sci., 58 (1999), pp. 148–173.

[48] T. Okamoto, On relationships between statistical zero-knowledge proofs, J. Comput. System
Sci., 60 (2000), pp. 47–108.

[49] R. Ostrovsky, One-way functions, hard on average problems, and statistical zero-knowledge
proofs, in Proceedings of the Sixth Annual Structure in Complexity Theory Conference
(Chicago, IL), 1991, pp. 133–138.

1214 SALIL P. VADHAN

[50] R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial zero-
knowledge, in Proceedings of the Second Israel Symposium on Theory of Computing and
Systems, IEEE Press, Los Alamitos, CA, 1993, pp. 3–17.

[51] E. Petrank and G. Tardos, On the knowledge complexity of NP, in Proceedings of the
37th Annual Symposium on Foundations of Computer Science (Burlington, VT), 1996, pp.
494–503.

[52] A. Sahai and S. Vadhan, A complete problem for statistical zero knowledge, J. ACM, 50
(2003), pp. 196–249.

[53] R. Shaltiel, Recent developments in explicit constructions of extractors, in Current Trends in
Theoretical Computer Science: The Challenge of the New Century, Vol. I: Algorithms and
Complexity, G. Paun, G. Rozenberg, and A. Salomaa, eds., World Scientific, River Edge,
NJ, 2004, pp. 189–228.

[54] A. Shamir, IP = PSPACE, J. Assoc. Comput. Mach., 39 (1992), pp. 869–877.
[55] M. Sipser, A complexity theoretic approach to randomness, in Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing (Boston, MA), 1983, pp. 330–335.
[56] L. Stockmeyer, On approximation algorithms for #P, SIAM J. Comput., 14 (1985), pp.

849–861.
[57] S. P. Vadhan, A Study of Statistical Zero-Knowledge Proofs, Ph.D. thesis, Massachusetts

Institute of Technology, Cambridge, MA, 1999. Available from author’s Web page,
http://eccs.harvard.edu/∼salil.

[58] S. P. Vadhan, An unconditional study of computational zero knowledge, in Proceedings of the
45th Annual IEEE Symposium on Foundations of Computer Science (Rome, Italy), 2004,
pp. 176–185.

[59] S. P. Vadhan, An Unconditional Study of Computational Zero Knowledge, Tech. Report TR06-
056, Electronic Colloquium on Computational Complexity, 2006. Available online from
http://eccc.hpi-web.de/.

[60] A. C. Yao, Theory and applications of trapdoor functions (extended abstract), in Proceedings
of the 23rd Annual IEEE Symposium on Foundations of Computer Science (Chicago, IL),
1982, pp. 80–91.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 4, pp. 1215–1230

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL
GROUPS∗

AMIR SHPILKA† AND AVI WIGDERSON‡

Abstract. The main result of this paper is a near-optimal derandomization of the affine homo-
morphism test of Blum, Luby, and Rubinfeld [J. Comput. System Sci., 47 (1993), pp. 549–595].

We show that for any groups G and Γ, and any expanding generating set S of G, the natural
deramdomized version of the BLR test in which we pick an element x randomly from G and y
randomly from S and test whether f(x) ·f(y) = f(x ·y), performs nearly as well (depending of course
on the expansion) as the original test. Moreover, we show that the underlying homomorphism can
be found by the natural local “belief propagation decoding.”

We note that the original BLR test uses 2 log2 |G| random bits, whereas the derandomized test
uses only (1 + o(1)) log2 |G| random bits. This factor of 2 savings in the randomness complexity
translates to a near quadratic savings in the length of the tables in the related locally testable codes
(and possibly probabilistically checkable proofs which may use them).

Our result is a significant generalization of recent results that either refer to the special case of
the groups G = Zm

p and Γ = Zp or are nonconstructive. We use simple combinatorial arguments
and the transitivity of Cayley graphs (and this analysis gives optimal results up to constant factors).
Previous techniques used the Fourier transform, a method which seems unextendable to general
groups (and furthermore gives suboptimal bounds).

Finally, we provide a polynomial time (in |G|) construction of a (somewhat) small (|G|ε) set of
expanding generators for every group G, which yield efficient testers of randomness (1+ ε) log |G| for
G. This result follows from a simple derandomization of a known probabilistic construction.

Key words. derandomization, linearity testing, homomorphism testing

AMS subject classification. 68Q99

DOI. 10.1137/S009753970444658X

1. Introduction.

1.1. Property testers and randomness complexity. Let F be the family of
all functions (from a given domain to a given range), and P a subset of these functions
(those with property “P”). A tester T is a probabilistic algorithm that receives as
input a (black box for) function f ∈ F , evaluates f on a set of points in the domain,
and uses this information to accept or reject the input function f . Roughly speaking,
T is a tester for the property P if every f in P is accepted with high probability, and
every f which is “far” from P (in Hamming distance) is rejected with high probability.
This is the basic set up of property testing, by now a very large field dealing with
many other objects than functions, such as strings, distributions, graphs, etc. (see
excellent surveys by Goldreich [19] and by Ron [30]). A central theme in this field
is relating error(T), the probability that our tester fails to give the correct output,
to its “complexity” query(T), measuring the number of domain samples it used, and
its “accuracy” dist(T), which is how far from P are the functions it rejects. The
importance of this field for various applications follow numerous results giving testers

∗Received by the editors November 29, 2004; accepted for publication (in revised form) July 1,
2005; published electronically December 15, 2006.

http://www.siam.org/journals/sicomp/36-4/44658.html
†Technion, Haifa, Israel (shpilka@cs.technion.ac.il). The work of this author was supported by

the Koshland fellowship.
‡Institute for Advanced Study, Princeton, NJ (avi@ias.edu). The work of this author was partially

supported by NSF grant CCR-0324906.

1215

1216 AMIR SHPILKA AND AVI WIGDERSON

for a variety of properties P , in which both query and distance depend only on error
(and not on the size of the domain of the functions).

Central applications of this area are (the related) locally testable codes (LTCs)
and probabilistically checkable proofs (PCPs). In these, the answers to all possible
sets of queries are explicitly written down, and it is a major concern to minimize
their length. This length can be seen to be directly related to (indeed, an exponential
of) the number of random bits random(T) used by the tester T , and so this param-
eter and its tradeoffs with the others have been investigated as well. Related are
the “derandomized” amplification of hardness results [23, 33] which lead to optimal
derandomization of BPP .

A recent paper of Goldreich and Sudan [20] addresses the minimization of
random(T) for two important testers: the homomorphism tester of Blum, Luby,
and Rubinfeld [12] (which was the first and motivating example of property testing
of functions), and the “point vs. lines” low-degree tester of Rubinfeld and Sudan [31]
(which was central in the proof of the PCP theorem). Both testers use randomness
to name two random domain queries, which is related to having quadratic proof/code
length (as a function of the length of the appropriate input). They note that in order
to reduce this length to near linear, one must use only randomness which is sufficient
for only one query. Moreover, [20] showed that nonuniformly such a saving is possible
(the arguments of [20] can achieve similar savings in much more general contexts of
multiprover systems, but we will restrict our discussion from this point on only to
the first tester for homomorphism, which is the subject of our paper). Indeed Ben-
Sasson et al. [13] were able to minimize random(T) for the special case of testing
homomorphism between the groups Zm

p and Zp.

1.2. Affine homomorphism testing. Given two finite groups G,Γ, a homo-
morphism is a function f : G → Γ such that for every g1, g2 ∈ G we have that
f(g1 · g2) = f(g1) · f(g2). When the groups are abelian it is customary to use “ + ”
instead of “·, ” so a homomorphism is a function that for every g1, g2 ∈ G satisfies
f(g1 + g2) = f(g1)+ f(g2). This is the reason that in abelian groups homomorphisms
are referred to as linear functions. In particular the famous paper of Blum et al. [12]
analyze homomorphism testing (which they call linearity testing) for abelian groups.
An affine homomorphism between G and Γ is a function f such that f(1)−1 · f is a
homomorphism (in the case of abelian groups this is sometimes denoted as f − f(0)).
The BLR linearity testing can be slightly changed to yield an affine version of their
linearity test.

Let G and Γ be finite groups. Let F be all functions from G to Γ, let Phom ⊆ F
be the set of all homomorphisms from G to Γ, and Paff ⊆ F be the set of all affine
homomorphisms from G to Γ. For two functions f, h ∈ F we have the normalized
Hamming distance dist(f, h) = Prob[f(x) �= h(x)] for a uniform element x ∈ G.

Fix a subset E of G × G (which may be viewed as a directed graph on G),
and consider the following tester TE . It picks uniformly a random pair (x, y) ∈ E;
evaluates the input function f on the three (related) elements x, y, and x−1y; and
accepts if and only if it satisfies the equation f(x)f(x−1y)f(y)−1 = 1. It is easy to
see that if f is a homomorphism, then TE will accept f with probability one. The
interesting direction is showing that if the error of the test is small, then f is close
to a homomorphism (or an affine homomorphism). We say that TE is a (δ, ε)-test if
every function that passes the test with probability at least 1− δ is at most ε far from
having the property (either Phom or Paff).

The well known BLR linearity tester [12] uses (in this notation) E = G×G. They

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1217

proved that TG×G is a (δ, 9δ/2)-test. However, their analysis wasn’t tight and was
later improved by [9, 8, 7]. Ben-Or et al. [10] extended the BLR result and showed
that the test with E = G×G works for general groups as well. The proof of Ben-Or
et al. is similar to the proof of [12].

Theorem 1.1 (see [12, 10, 8, 9, 7]). Let G,Γ be groups. Consider the test TG×G

described above. There the test picks uniformly at random two elements x, y ∈ G and
accepts if f(x) · f(y) = f(x · y). For every δ > 0, if f passes the test with probability
> 1−δ, then there exist a homomorphism h ∈ Phom such that dist(f, h) ≤ δ/3+O(δ2).
In other words, TG×G is a

(
δ, δ/3 + O(δ2)

)
-test for Phom.

To save on randomness, [20] suggested to use sparser graphs E. The tester TE

obviously has random(TE) = log |E| (all logs are to base 2). The value attained by
the BLR test, random(TG×G) = 2 log |G|. It is also easy to see that any nontrivial
tester (giving any dependence between error and distance) must satisfy random(TE) ≥
log |G|−O(1). Goldreich and Sudan [20] showed that this lower bound can essentially
be matched, and at negligible cost to the dependence of distance on error.

Theorem 1.2 (see [20]). For all but exp(−|G|) fraction of all possible graphs
E of size C|G| log |Γ| (with C an absolute constant) the following holds. For every
δ > 0, TE is a

(
δ, δ/3 + O(δ2) + exp(−|G|)

)
-test for Phom.

On the one hand, notice that for this size of E, we have random(TE) = log |G|+
log log |Γ| + O(1). This gives (1 + o(1)) log |G| for all interesting cases (|Γ| ≤ |G|). It
gives the optimal log |G|+O(1) when Γ is of fixed size, which includes the important
special case of linearity testing in which Γ = Zp for a fixed prime p and G = Zm

p for
a large m.

On the other hand, the proof of [20] is not explicit. It uses a probabilistic argument
in choosing E, which gives no clue to which graphs induce good testers. This is a
major problem if one wants to use such testers in objects like PCPs. This raises a
natural “derandomization” problem (which Goldreich and Sudan [20] raise in their
paper), of explicitly constructing good testers E, or at least characterize good testers
E.

This problem was answered for a special case of affine linear testing (i.e., for the
property Paff), by Ben-Sasson et al. [13] who proved the following theorem.

Theorem 1.3 (see [13]). Fix any λ > 0. Let S be a λ-biased set in G = Zm
p ,

and let E denote all pairs (x, xs) for all x ∈ G and s ∈ S. Then for every δ > 0, TE

is a
(
δ,O

(
p2(δ + λ)

))
-test 1 for Paff .

λ-biased sets of size poly(m/λ) can be explicitly constructed for these groups
[3, 4, 16, 24, 29], which gives explicit testers TE with near optimal randomness
random(TE) ≤ log |G| + O(log(m/λ)).2

Ben-Sasson et al. [13] note that the resulting graphs E are precisely Cayley graphs
over G with generating set S whose second (normalized) eigenvalue is bounded by λ.
In short, Cayley expanders are good tests. This fact, as well as the fact that most
graphs in Theorem 1.2 are expanders, may cause one to be tempted to conjecture
that any expander leads to a good homomorphism test for any group G. However,
[13] caution that their proof works only due to the link between the algebra of the
test and the algebraic structure of the graph, which needs to be a Cayley graph over
the same group GZm

p .
Indeed, the insight that one needs a specific expander rather than an arbitrary

1Observe that this bound is useless unless both δ and λ are below 1/p2.
2Note that the second term is only O(1) for the case where p is a fixed prime in the existential

result of Theorem 1.2.

1218 AMIR SHPILKA AND AVI WIGDERSON

one comes from Goldreich [18] who designed a counter example for m = 2. Goldreich
introduced a function which is very far from any linear function from Z2

p to Zp, and
yet passes with high probability the test defined by the Margulis graph [27, 17] (which
is a Schrier graph of some group action on G = Z2

p , but is not a Cayley graph).
Thus the question of which graphs are good testers for general groups G (and Γ)

seem more subtle. Moreover, the techniques of [13] use Fourier transforms and seem
to work only for abelian groups. We make significant progress for characterizing good
testers for general groups, which we describe next.

1.3. Our results. In brief, we show that for every domain group G, all expand-
ing Cayley graphs E on the group G are good testers for (affine) homomorphism.
Since any group G has an expanding generating set of size O(log |G|) [6], our re-
sult immediately gives a nonuniform test with a near-optimal randomness(TE) =
log |G|+O(log log |G|). Moreover, we derandomize [6] to give a polynomial time algo-
rithm (in |G|) to generate, for every group G, an expanding set of generators of size
|G|ε, giving the randomness (1+ ε) log |G| explicitly and uniformly. We also note that
we can find in quasi-polynomial time an expanding generating set of size O(log |G|),
which implies a test with a near-optimal randomness(TE) = log |G| + O(log log |G|).

We note that even our nonexplicit result is much stronger than [20], as one can
efficiently verify whether a given Cayley graph is an expander and therefore good as
a test graph, while Goldreich and Sudan cannot tell which of their random graphs
are good. We note again that Goldreich gave an example showing that not every
expander is good. We include this example in section 5.

Our testing result depends on two parameters: λ, which is the (normalized) second
largest eigenvalue (in absolute value) of the Cayley graph of G with the generating
set S, and δ, which is the error of the test (δ = error(TG×S)). We show that if S is
expanding (i.e., λ < 1), then dist(TG×S) = O(δ).

Theorem 1.4. For every G,Γ and a subset S of G, the tester that picks uniformly
at random an edge (x, xs) ∈ Cay(G;S) and checks whether f(x) · f(s) = f(xs) surely
accepts any homomorphism f : G → Γ, and rejects with probability at least δ any
f : G → Γ, which is 4δ/(1−λ) far from being an affine homomorphism, provided that
12δ
1−λ < 1.

Note that it follows that if f is at least 1
3 -far from any affine homomorphism, then

f is rejected with probability at least 1−λ
12 . We also note that the test accepts any

homomorphism, but rejects any function that is far from any affine homomorphism
(rather than any function that is far from any homomorphism). It is still open to
derandomize the homomorphism test of BLR. By a slight modification to the tester
TG×S we can get a tester that accepts any affine homomorphism and rejects any
function that is far from any affine homomorphism.

Theorem 1.5. For every G,Γ and a subset S of G, the tester that picks uniformly
at random an edge (x, xs) ∈ Cay(G;S) and checks whether f(x) ·f(1)−1 ·f(s) = f(xs)
surely accepts any affine homomorphism f : G → Γ, and rejects with probability at
least δ any f : G → Γ which is 4δ/(1 − λ) far from being an affine homomorphism,
given that 12δ

1−λ < 1. In other words, this tester is a (δ, 4δ
1−λ)-test for Paff .

Note that the tester of Theorem 1.5 makes 4 queries whereas the tester of Theo-
rem 1.4 makes only 3 queries.

The proof of Theorem 1.4 uses a simple combinatorial argument together with
the transitivity of groups (the proof of Theorem 1.5 is by a reduction to Theorem 1.4).
Recent analysis of (variants of) the BLR test [7, 13] use some sort of Fourier transform
on abelian groups. As we deal with nonabelian groups as well, we cannot use this

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1219

approach, and so rather study what may be a natural analog—the correlation of shifts
of the given function with itself. It is interesting to note that the close homomorphism
is defined globally, despite the fact that the tester makes only local (neighbor) tests.
We also stress that our analysis avoids what seems to be an inherent problem in the
Fourier approach, i.e., the relation between the Fourier coefficients and the distance
to linearity is not tight (not even up to a constant factor), resulting in the suboptimal
bounds of Theorem 1.3 of [13]. We note, however, that the Fourier approach has the
advantage that it extends to the case where the error is relatively large, as in [13] (list
decoding regime)—something we cannot do in general groups.

Our bounds are independent of the groups at hand, and thus are meaningful for
constants δ and λ (in contrast to the bounds of [13]). As a consequence of our proof we
get that the natural decoding procedure in which group elements correct their values
according to the majority of their neighbors’ values, converges to a homomorphism.
It is interesting that this local decoding proof needs the global consistency in homo-
morphism testing. In contrast to derandomized “low degree” testers, Ben-Sasson et
al. [13] derive the global consistency via iterated local decoding. It is interesting if
their result has a different proof that goes along the lines of the current paper.

Our testers require expanding generators for the groups at hand. As mentioned,
for abelian groups such small explicit sets were known. We next provide the first
nontrivial explicit construction of expanding generating sets in every group. It is
fairly weak; improving it to approach the existential bound of Alon and Roichman [6]
is very interesting.

Theorem 1.6. For every ε > 0 there is a polynomial time algorithm which, on
input a group G, given by its multiplication table, produces a set S of size |G|ε of
expanding generators. More precisely,

λ(Cay(G;S)) ≤ O
(
|G|−ε/8

)
.

Finally, combining the two theorems we have the following corollary.
Corollary 1.7. For every ε > 0 there is a polynomial time algorithm, which

given any two groups G,Γ, produces a tester of randomness complexity (1+ ε) log |G|.
This tester accepts every affine homomorphism between G and Γ with probability one,
and for every β > 0, rejects every function which is β-far from any such affine homo-
morphism, with probability ≥ 1 − β/5.

An alternative way to view our test is that we accept with probability 1 any
homomorphism and reject with high probability any function that is far from any
affine homomorphism.

2. Preliminaries.
Definition 2.1 (affine homomorphism). Let G,Γ be finite groups. A homomor-

phism φ : G → Γ is a function with the property that for every g, h ∈ G we have
that φ(g · h) = φ(g) · φ(h). We say that φ is an affine homomorphism if there ex-
ists an element γ ∈ Γ such that γ · φ is an homomorphism. Note that in this case
φ · γγ−1 · (γ · φ) · γ is also an homomorphism.

For two functions f1, f2 : G → Γ we define

dist(f1, f2) = Prg∈RG[f1(g) �= f2(g)].

2.1. Expander graphs. Let G = (V,E) be a graph on n vertices. Let AG be
its adjacency matrix. For two sets A,B ⊂ V denote

E(A,B) = {(u, v) | u ∈ A and v ∈ B}.

1220 AMIR SHPILKA AND AVI WIGDERSON

Let e(A,B) = |E(A,B)|. Denote with λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of AG . In
case that G is a d-regular graph we get that λ1 = d. Denote

λ[G] =
1

d
· max(λ2, |λn|);

we sometimes use λ instead of λ[G] when G is clear from the context.
The next lemma due to [1] relates the edge expansion of G to λ.
Lemma 2.2 (expander mixing lemma; see [1]). For any two sets A,B ⊂ V we

have that ∣∣∣∣e(A,B) − d · |A| · |B|
n

∣∣∣∣ ≤ λ · d ·
√
|A| · |B|;

in case A = Bc, we get a stronger result [34, 5].
Lemma 2.3 (analog of the Cheeger constant; see [34, 5]).

1 − λ

2
· d ≤ min

|A|≤n/2

e(A,Ac)

|A| ≤ 2
√

1 − λ · d.

In particular we obtain the following corollary.
Corollary 2.4.

• For any A we have that

min(|A|, n− |A|) ≤ 2

1 − λ
· e(A,Ac)

d
.

• If we remove 2δdn < 1−λ
6 · dn edges from the graph, then there is a connected

component of size at least
(
1 − 4δ

1−λ

)
· n.

Proof. The first part follows immediately from Lemma 2.3. For the second part
notice that if A and Ac are disconnected after the removal of the edges, then e(A,Ac) ≤
2δdn. Thus if |A| ≤ n

2 , then by the first part we get that

|A| ≤ 2

1 − λ
· 2δdn

d

4δ

1 − λ
· n < n/3.(1)

Therefore, after the removal of the edges, if we take the union of two components

smaller than n
2 , then the size of the union is smaller than 2n/3 <

(
1 − 4δ

1−λ

)
·n. Thus

the complement of the union has size larger than 4δ
1−λ · n and therefore must be of

size at least n
2 (because otherwise, by (1), its size is ≤ 4δ

1−λ · n). It follows that the

size of the union is smaller than 4δ
1−λ · n. By induction we get that the union of all

components of size smaller than n
2 has size at most 4δ

1−λ · n. Hence there is a large

component of size
(
1 − 4δ

1−λ

)
· n.

Next we describe a simple dynamical process on graphs, which converges quickly
in every (good enough) expander. The constants below are just some parameters
which suffice for our purposes—clearly one can state a more general result along the
same lines.

Definition 2.5 (the infection process). Let G = (V,E) be a d-regular graph on
n vertices. Assume that initially an adversary “infects” a subset B0 of the vertices V .

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1221

At every subsequent time step t the infected set Bt is determined to be exactly those
vertices which have at least 1/3 fraction of their neighbors in Bt−1. A graph is healthy
if for every initial subset B0 of size at most n/4, after a finite number T of steps we
have BT = ∅.

The following is an easy consequence of the expander mixing Lemma 2.2.
Corollary 2.6. Assume that λ[G] < 1/13. Then G is healthy. Moreover, the

convergence time T is at most O(log n).
Proof. We will show that for every t |Bt| ≤ 0.9|Bt−1|. By definition, the number

of edges between Bt and Bt−1 is lower bounded by e(Bt, Bt−1) ≥ d|Bt|/3. Applying
the expander mixing lemma to these two sets gives

d|Bt|/3 ≤ e(Bt, Bt−1) ≤ d|Bt| · |Bt−1|/n + λd
√
|Bt| · |Bt−1|.

As λ < 1/13 and (by induction) |Bt−1| ≤ n/4, we get that

|Bt| ≤
(

12

13

)2

|Bt−1| < 0.9|Bt−1|.

Iterating O(log n) times shrinks the infected set to a number smaller than 1, hence
zero.

2.2. Expanding Cayley graphs. Let G be a group. Let S be a generating set
for G. That is, G is the minimal subgroup of G that contains all the elements of S.
S is called symmetric if s ∈ S ⇔ s−1 ∈ S. We now define the Cayley graph of G with
respect to a symmetric set of generators S.

Definition 2.7. Let G be a group and S a symmetric generating set for G. We
define the graph Cay(G;S) as follows. The vertices are the elements of G. For every
g ∈ G and s ∈ S we put an edge (labeled s) from g to gs.

The definition describes Cay(G;S) as a directed graph, which will be one useful
view of it, e.g., for describing the testers. However, since S is symmetric, if there is
an edge from g to h labeled s, then there is an edge from h to g labeled s−1, and both
can be thought of as one undirected edge. Thus Cay(G;S) can also be viewed as an
undirected graph (which is regular of degree |S|), which will be used for studying its
spectral and connectivity properties.

A very nice property of Cayley graphs is their transitivity. That is, if (g1, g2) is
an edge, then so does (gg1, gg2) for every g.

An interesting open problem is to deterministically find, for a given group G, a
small symmetric generating set S, such that Cay(G;S) is a good expander, in time
poly(|G|). For G = Z

n
2 it is easy to verify that Cay(G;S) is an expander with second

eigenvalue λ if and only if S is a λ-biased set (see [3]). However, except for some
special groups [26, 27, 28] it is not known in general how to deterministically find
such an S. The following result of Alon and Roichman [6] guarantees that if we pick
a large enough S at random, then almost surely the associated Cayley graph is an
expander.

Theorem 2.8 (see [6]). For every η > 0 there is a constant c(η) > 0 such that
the following holds. Let G be a group of order n and let S be a symmetric set of
c(η) log n random elements of G then, with probability at least 1 − η,

λ[Cay(G;S)] < η.

1222 AMIR SHPILKA AND AVI WIGDERSON

This theorem assures us that we can always find an S of size O(log |G|) such that
Cay(G;S) is an expander.

We will show that a simple “derandomization” of this argument leads to a deter-
ministic construction of expanding generating sets of size O (|G|ε) for every group G
and ε > 0. For this, the following well known estimate via the trace formula will be
very useful.

Definition 2.9. Fix G. For a (symmetric) set S ⊆ G and integer m, let P2m be
the probability that a random word of length 2m in the elements of S evaluates to the
identity in G.

Proposition 2.10. For every m,

λ[Cay(G;S)]2m ≤ nP2m − 1.

Proof. Let A be the adjacency matrix of Cay(G;S). Let λ1 ≥ · · · ≥ λn be its
eigenvalues. Let λ = λ[Cay(G;S)]. Note that ∀ 1 ≤ i ≤ n, P2m =

(
(1
dA)2m

)
i,i

. Thus

nP2m = trace

((
1

d
A

)2m
)

=

n∑
i=1

(
λi

d

)2m

≥ 1 + λ2m.

3. Derandomized homomorphism testers. We first prove Theorem 1.4. Then
we show that the natural local decoding procedure (namely belief propagation) con-
verges to a homomorphism. As it is easy to verify that every homomorphism passes
the test with probability 1, we focus on the other direction—showing that any function
that passed the test is close to an affine homomorphism.

3.1. Proof of Theorem 1.4. As it is easy to verify that every homomorphism
passes the test with probability 1, we focus on the other direction—showing that any
function that passed the test is close to an affine homomorphism.

Let G,Γ be groups such that |G| = n. Let f be a given function from G to Γ.
Fix a symmetric S ⊆ G of size |S| = d and let λ = λ[Cay(G;S)]. Consider the test
that picks a random g ∈ G and a random s ∈ S and accepts if f(g)f(s) = f(gs). Let
δ be the rejection probability, i.e.,

δ = Pr
y∈G, s∈S

[f(y)f(s) �= f(ys)].(2)

Also assume that

12δ

1 − λ
< 1.

Define the function

φ(x) = Pluralityy∈Gf(xy)f(y)−1.

We will prove that, for every x, almost all y agree on the value of φ(x) (i.e., satisfy
f(xy)f(y)−1 = φ(x)), then prove that φ is a homomorphism, and finally that it is close
to an affine shift of f . The first of these tasks, proved in the next lemma, is perhaps
the most surprising, as the test guarantees (near) local consistency, and we show it
implies (near) global consistency. This claim is the main technical contribution of our
proof and the rest of it follows the footsteps of the proof of [10].

Lemma 3.1. For every x ∈ G we have that

Pr
y∈G

[f(xy)f(y)−1 = φ(x)] ≥ 1 − 4δ

1 − λ
.

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1223

Proof. Fix x ∈ G. Note that some constructs in this proof will depend on x and
later we will use them for all values of x. From (2) we have for random y ∈ G

δ = Pr
y∈G, s∈S

[f(xy)f(s) �= f(xys)].(3)

We now construct a subgraph of Cay(G;S). Call the edge (y, ys) bad for x if either
f(y)f(s) �= f(ys) or f(xy)f(s) �= f(xys). By (2) and (3) the number of bad edges
is at most 2δdn. Consider the subgraph Hx obtained by removing all (undirected)
edges that are bad for x. By the expansion of Cay(G;S), and since we remove only
2δdn edges, we get by Corollary 2.4 that Hx contains a connected component Cx of

size at least
(
1 − 4δ

1−λ

)
n.

By connectivity and the fact that the remaining edges satisfy the test, we get that
for all y in that component the value f(xy)f(y)−1 is constant. We prove it formally
as it is a bit subtle.

Proposition 3.2. For every two distinct elements v, u ∈ Cx we have f(xv)f(v)−1

= f(xu)f(u)−1.
Proof. Let v = v1, v2, . . . , vt = u be a path between v and u in Cx. Let si =

v−1
i vi+1 be the generator labeling the ith edge (i.e., the ith edge is (vi, visi)). For

every i, the existence of the edge (vi, vi+1) in Hx implies by definition the existence
of the edge (xvi, xvi+1) in Hx as well. Since all these edges are good for x, it follows
that

f(vi)
−1f(vi+1) = f(si) = f(xvi)

−1f(xvi+1)

for all i. Thus

f(v)−1f(u) = f(v1)
−1f(vt) =

t−1∏
i=1

f(vi)
−1f(vi+1) =

t−1∏
i=1

f(si)

=

t−1∏
i=1

f(xvi)
−1f(xvi+1) = f(xv1)

−1f(xvt) = f(xv)−1f(xu).

By changing sides we get that f(xv)f(v)−1 = f(xu)f(u)−1 as required.
Thus, f(xy)f(y)−1 is the same for all y ∈ Cx. As |Cx| > |G|/2, and we have

defined φ using plurality over y, we get φ(x) = f(xy)f(y)−1 for every y ∈ Cx. Since
|Cx| ≥

(
1 − 4δ

1−λ

)
n, Lemma 3.1 follows.

Lemma 3.3. φ is a homomorphism.
Proof. We need to show that for every x, y ∈ G we have that φ(x)φ(y) = φ(xy).

Consider (like [10]) arbitrary x, y ∈ G and the probability over h ∈ G

Pr
h∈G

[φ(x)φ(y) = φ(xy)](4)

which is independent of h, and thus is either 0 or 1. We prove that this probability is
positive and therefore 1. We lower bound it by the probability of the intersection of
three events over the same random variable h chosen uniformly in G

Pr
h∈G

[φ(x)φ(y) = φ(xy)] ≥ Pr
h∈G

⎡
⎣ φ(x) = f(xh)f(h)−1 and

φ(y) = f(h)f(y−1h)−1 and
φ(xy) = f(xh)f(y−1h)−1

⎤
⎦

1224 AMIR SHPILKA AND AVI WIGDERSON

since in this case φ(x)φ(y) = f(xh)f(h)−1f(h)f(y−1h)−1 = f(xh)f(y−1h)−1 =
φ(xy). Now

• By Lemma 3.1 Prh∈G[φ(x) = f(xh)f(h)−1] ≥ 1 − 4δ
1−λ .

• Notice that

Pr
h∈G

[φ(y) = f(h)f(y−1h)−1] = Pr
h∈G

[φ(y) = f(y · (y−1h))f(y−1h)−1].

As h is random this probability equals

Pr
h′∈G

[φ(y) = f(yh′)f(h′)−1]

which by Lemma 3.1 is at least 1 − 4δ
1−λ .

• Similarly we get that

Pr
h∈G

[φ(xy) = f(xh)f(y−1h)−1] = Pr
h∈G

[φ(xy) = f((xy) · (y−1h))f(y−1h)−1]

≥ 1 − 4δ

1 − λ
.

Note that each of these events have probability of at least 1 − 4δ
1−λ , and so the

probability of their intersection is at least 1 − 12δ
1−λ which is strictly positive and so

must be 1.
Finally we show that f is close to some affine shift of φ.
Lemma 3.4. There exists γ ∈ Γ such that

Pr
x∈G

[φ(x)f(x) · γ] ≥ 1 − 4δ

1 − λ
.

Proof. For every x ∈ G denote with Gx the set of (“good”) y’s satisfying
φ(x) = f(xy)f(y)−1 (note that the set Gx contains the set Cx defined in the proof of
Lemma 3.1, but may in fact be even larger). By Lemma 3.1, for every x it holds that
|Gx| ≥ (1 − 4δ

1−λ)|G|. It follows by averaging that there exist y ∈ G such that

|{x : y ∈ Gx}| ≥
(

1 − 4δ

1 − λ

)
|G|.

For this y we have that

Pr
x∈G

[φ(x) = f(xy)f(y)−1] ≥ 1 − 4δ

1 − λ
.

Therefore

Pr
x′∈G

[φ(x′y−1) = f(x′)f(y)−1] ≥ 1 − 4δ

1 − λ
.

As φ is a homomorphism we get that

Pr
x′∈G

[φ(x′) = f(x′)f(y)−1φ(y)] ≥ 1 − 4δ

1 − λ
.

The lemma follows by defining γ = f(y)−1φ(y).
This completes the proof of Theorem 1.4.

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1225

3.2. Proof of Theorem 1.5. Again it is easy to see that if f is an affine
homomorphism, then f passes the test with probability 1. To prove the other direction
we define a new function f ′ : G → Γ in the following way:

f ′(x)
�
= f(1)−1 · f(x).

It is obvious that f ′(x) · f ′(y) = f ′(xy) if and only if f(x) · f(1)−1 · f(y) = f(xy).
In particular the probability of success of the tester of Theorem 1.5 on f equals the
probability of success of the tester of Theorem 1.4 on f ′. Assume that f passed the
test with probability ≥ δ for δ as in the statement of the theorem. Theorem 1.4
implies that f ′ is 4δ

1−λ close to some affine homomorphism γ · φ. Hence f is 4δ
1−λ close

to the affine homomorphism f(1) · γ · φ.

3.3. Iterated local majority decoding. Recall that the close homomorphism
in the proof above was defined according to a global majority: every group element x
chose the value φ(x) according to the plurality of f(xy)f(y)−1 over all group elements
y ∈ G. We show that iterated local majority decoding, where (in each phase) every
group element x updates its value according to the plurality of f(xs)f(s−1) over its
neighbors in the Cayley graph, converges to (the same) global homomorphism φ.

Definition 3.5 (iterated majority decoding). Let G,Γ be groups, S a subset of
G and f : G → Γ any function. Set f = f0 and for every integer t define ft by

ft(x) = Pluralitys∈Sft−1(xs)f0(s
−1).3

Theorem 3.6. Let G,Γ, S, λ, δ, γ be as in Theorem 1.4 and further assume that
λ, δ ≤ 1/17. Let f : G → Γ be such that the tester Cay(G;S) accepts f with prob-
ability of at least 1 − δ. Then the iterated decoding procedure above converges to a
homomorphism φ : G → Γ in O(log |G|) steps. Moreover, φ is a conjugate of the
homomorphism defined in the proof of Theorem 1.4, and is at most 4δ/(1 − λ)-far
from γ · f .

Proof. By Theorem 1.4 we get that there is a homomorphism φ such that4

dist(φ, γ · f) ≤ 4δ
1−λ for some γ ∈ Γ. Let ft be the sequence of functions defined

by the iterated majority decoding procedure above, and let Dt denote the set of
group elements on which γ · ft and φ disagree. By our choice of parameters,

|D0| ≤
4δ

1 − λ
|G| < |G|/4.

We reduced the analysis of the local decoding to that of the infection process in 2.6
at the end of section 2.1.

Set B0 = D0 and apply the infection process to it, to obtain a sequence Bt. We
show by induction that for every t, we have Dt ⊆ Bt so the theorem follows from
Corollary 2.6. Assume for the moment that for all but 1/6 fraction of the s ∈ S we
have f(s) = φ(s). Then every element x in step t which has a 2/3 of its neighbors
in the complement of Bt−1, gets the same value from at least 2

3 − 1
6 = 1

2 of them (as
Dt−1 ⊂ Bt−1), and this value agrees with φ, namely γ · ft(x) = φ(x).

3Note that we keep using the initial values on S in all iterations.

4In the proof of Theorem 1.4 we found φ that was close to f · γ, this implies that φ′(x)
�
=

γ · φ(x) · γ−1 is close to γ · f .

1226 AMIR SHPILKA AND AVI WIGDERSON

We now argue that for at most 1/6 fraction of s ∈ S it is the case that f(s) �= φ(s).
Fix any “bad” s for which f(s) �= φ(s). Since |D0| < |G|/4, for at least 1/2 of all the
elements x ∈ G we have both γ · f(x) = φ(x) and γ · f(xs) = φ(xs). All these pairs
x, s are rejected by the tester, and since it rejects only a δ fraction of all such pairs,
the number of bad s is at most 2δ < 1/6.

Note that the proof relies on the fact that f passed the test with high probability.
It is not sufficient that f is close to an homomorphism: consider the constant function
f = γ for some γ �= 1. It is clear that f is an affine homomorphism and that f does
not pass the test TG×S . We get that ft = γt+1, where ft is defined by the iterative
process above. Clearly ft does not converge to 1Γ (the identity element of Γ), which
is the homomorphism close to γ−1 · f .

4. Explicit expanding generators–Proof of Theorem 1.6. In this section
we give a polynomial time algorithm to find a relatively small expanding generating
set in every group. We state the main technical result, which is nearly identical to
Theorem 2.8 of Alon and Roichman, except adding the condition that the choices of
the generators need not be fully independent. The proof remains identical to their
proof, only we’ll need it with different parameters. We give the proof for completeness.

Definition 4.1. A set A ⊂ [n]d is a k-wise independent sample space if for any
subset I ⊂ [d] of size |I| = k, and any sequence (g1, ..., gk) ∈ [n]k, we have that

Pr
a∈RA

[aI = (g1, ..., gk)] =
1

nk
,

where aI denotes the restriction of the d-tuple a to the set of coordinates I.
There are many works showing how to construct k-wise independent sample spaces

efficiently [2, 14, 16].
Theorem 4.2 (see [2, 14, 16]). There is a deterministic algorithm, which on

input n, d, k outputs a k-wise independent sample space in time max(n, d)O(k) (this
also implies that the size of the set is max(n, d)O(k)).

For the rest of the section we fix a group G of size n.
Theorem 4.3. Fix any integer m ≥ 2. Consider the following distribution on

Cayley graphs on G. Let A be a 2m-wise independent sample space of d-tuples from
Gd. Draw a random sample (g1, . . . , gd) from A to form a (multi)set T = {g1, ..., gd},
and let S = T ∪ T−1. Then the expectation of λ(Cay(G;S)) is

E[λ(Cay(G;S))] < (2n)1/2m(16m/d)1/4.

Proof. We repeat the essentials of the proof of [6], with the only difference being
the limited independence of the generators. This turns out not to change the analysis.
We skip easy proofs which can be obtained from their paper.

By Proposition 2.10 and Jensen’s inequality we get that

E[λ(Cay(G;S))] < (nE[P2m] − 1)
1/(2m)

,

where Pm was defined in Definition 2.9. Thus, it suffices to prove that E[P2m] ≤
1/n + 2(16m/d)m/2. In order to bound P2m we construct a random word of length
2m in three steps.

• Pick a random word W ′ of length 2m in the alphabet {a1, a
−1
1 , . . . , ad, a

−1
d }.

• Reduce the word over the free group on d generators to obtain the word W .
• Replace every ai by the associated random gi from T .

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1227

The upper bound on the expectation of P2m will follow from the following three
probability estimates.

Lemma 4.4.

Pr[|W | < m] ≤ (32/d)m/2.

Lemma 4.5. Call W bad if none of the d letters5 appears exactly once in W .
Condition on |W | ≥ m. Then

Pr[W bad] ≤ (16m/d)m/2.

Lemma 4.6. Fix any good w, and replace each ai by gi as above to generate the
word w(T) in G. Then

Pr[w(T) = 1G] = 1/n.

We prove only the last lemma, since this is the only point where the limited inde-
pendence of T could make a difference. The first two lemmas follow from [6] after an
adjustment of the parameters.

Proof. Since w is good, there is some generator, say a1 w.l.o.g., which occurs
exactly once in w. There are at most 2m − 1 other generators ai in w. For each of
these, expose their gi value. Now the probability in question is the probability that
g1 equals a fixed group element determined by the exposed gi’s and w. But g1 is
completely uniform given these choices, and so that probability is precisely 1/n.

The proof now follows as the expectation of P2m is bounded by the sum of the
probabilities of the events in the lemmas above. This concludes the proof of Theo-
rem 4.3.

Corollary 4.7. Take d = n4/m. Then

E[λ(Cay(G;S))] < 3m1/4d−1/8.

Finally we show how to choose a set of generators deterministically, establishing
Theorem 1.6. Given ε > 0, we set m = 4/ε, and d = n4/m = nε. Apply Theorem 4.2
to construct a sample space of size at most poly(nm) of d-tuples over G which are
(2m)-wise independent. This takes polynomial time in nm (remember that m is a
constant). For each such tuple T compute (again in polynomial time, as all we need
is a reasonable approximation) the associated λ(Cay(G;S)), and returns the set S for
which this eigenvalue is smallest.

This concludes the proof of Theorem 1.6.

5. Not every expander is good. In this section we present a construction,
due to Goldreich, of an expander graph on a group (but not a Cayley graph), for
which the natural tester fails miserably.

Let p be a prime and consider the (Schreier) graph Hp describing the action of
the group SL2(p) on the vector space Z2

p , with generators S being the two matrices

(
1 1
0 1

) (
1 0
1 1

)

and their inverses.

5ai and a−1
i are considered the same letter.

1228 AMIR SHPILKA AND AVI WIGDERSON

More concretely, the vertices of Hp are (x, y) ∈ Zp×Zp, and the four neighbors of
(x, y) are (x, y±x) and (x± y, y). Note that Hp has two connected components—the
vertex (0, 0) and the rest. Thus Hp has two eigenvalues of value 1, and we denote
here by λ(Hp) the maximum absolute value of any of the other eigenvalues.

The graph Hp is a variant of the famous Margulis graph—the first explicit ex-
pander. The expansion of (the large component of) Hp follows directly from the ex-
pansion of the Cayley graph Cay(SL2(p);S), which follows from Selberg’s celebrated
3/16 Theorem (see Lubotzky [25] for details).

Theorem 5.1 (see [25]). For every p, λ(Hp) ≤ 13/16.
We will consider functions from Z2

p to Zp. Since the groups are abelian, we will
write them additively.

For defining the tester (and the function), it will be convenient to view each
undirected edge as directed “positively.” In other words every vertex v = (x, y) has
two directed edges emanating from it: to u = (x, y + x) (labeled by u − v = (0, x))
and to w = (x + y, y), (labeled by w − v = (y, 0)).

Observe that in our graph, labels of edges always have 0 in one of their compo-
nents. Also note that there are roughly 2p distinct labels, despite the graph having
degree 4—this is very different from a Cayley graph (in which the number of labels is
the degree).

In this notation, the tester associated to this graph, picks uniformly at random a
(directed edge) from v to u and tests if f(u) − f(v) = f(u− v).

We now present the example that beats this tester. It will be very far from any
affine homomorphism, but will pass the test with probability close to 1.

Consider the function f : Zp × Zp → Zp defined as follows. f(x, y) = x2 if y = 0,
f(x, y) = y2 if x = 0, and f(x, y) = x · y otherwise (with all arithmetic in Zp).

Theorem 5.2. For the function f defined above we have that
• f is (1 − 4/p)-far from any affine homomorphism.
• f passes the test with probability 1 − 4/p.

Proof. First we prove the first item in the theorem. Every affine homomorphism
g from Z2

p to Zp looks like g(x, y) → ax + by + c for some constants a, b, c ∈ Zp.
Consider only pairs x, y �= 0, as only 2/p of the pairs (x, y) are not of this form. We
want to count the number of possible solutions to the equation xy = ax + by + c.
When x = b there can be p solutions. For every other possible value of x we get a
(different) nonconstant linear equation in y, which has at most one solution. So for
every possible affine homomorphism g we have dist(f, g) ≥ 1 − 4/p, as required.

Now we prove the second item in the theorem. Only 8p − 4 of the 2p2 directed
edges have a 0 component in either of their endpoints. Thus with probability of at
least 1 − 4/p the chosen neighboring vertices v, u have no zero component. We show
that all these edges pass the test. Let v = (x, y). There are 2 similar cases. First take
u = (x, y + x). Then

f(u) − f(v) = x(y + x) − xy = x2 = f(u− v).

Now take w = (x + y, y). Then

f(w) − f(v) = (x + y)y − xy = y2 = f(w − v).

Acknowledgments. We thank Eli Ben-Sasson and Salil Vadhan for many illumi-
nating discussions and for reading and commenting earlier versions of the manuscript.
We thank Oded Goldreich for many valuable discussions and for suggestions that im-
proved the presentation of the results. We also thank Oded for kindly allowing us

DERANDOMIZING HOMOMORPHISM TESTING IN GENERAL GROUPS 1229

to include his counterexample here. We thank the anonymous referees for their com-
ments.

REFERENCES

[1] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete
Math., 72 (1988), pp. 15–19.

[2] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

[3] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, Simple constructions of almost k-wise
independent random variables, Random Structures Algorithms, 3 (1992), pp. 289–304.

[4] N. Alon and Y. Mansour, ε-Discrepancy sets and their applications for interpolation of sparse
polynomials, Inform. Process. Lett., 54 (1995), pp. 337–342.

[5] N. Alon and V. D. Milman, Eigenvalues, Expanders, and Superconcentrators (extended ab-
stract), in Proceedings of the 25th Annual Symposium on Foundations of Computer Sci-
ence, Singer Island, FL, 1984, pp. 320–322.

[6] N. Alon and Y. Roichman, Random Cayley graphs and expanders, Random Structures Algo-
rithms, 5 (1994), pp. 271–284.

[7] M. Bellare, D. Coppersmith, J. Håstad, M. Kiwi, and M. Sudan, Linearity testing over
characteristic two. Codes and Complexity, IEEE Trans. Inform. Theory, 42 (1996), pp.
1781–1795.

[8] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistic checkable
proofs and applications to approximation, in Proceedings of the 25th Annual ACM Sym-
posium on the Theory of Computing, San Diego, CA, 1993, pp. 294–304.

[9] M. Bellare and M. Sudan, Improved non-approximability results, in Proceedings of the 26th
Annual ACM Symposium on the Theory of Computing, Montreal, Quebec, Canada, 1994,
pp. 184–193.

[10] M. Ben-Or, D. Coppersmith, M. Luby, and R. Rubinfeld, Nonabelian homomorphism
testing, in Approximation, Randomization, and Combinatorial Optimization—Algorithms
and Techniques (Random-Approx 2004), Lecture Notes in Comput. Sci. 3122, Cambridge,
MA, 2004, pp. 273–285.

[11] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCP, and nonapproximability—
towards tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[12] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[13] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson, Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets, in Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, San Diego, CA, 2003, pp. 612–621.

[14] B. Chor and O. Goldreich, On the power of two-point based sampling, J. Complexity, 5
(1989), pp. 96–106.

[15] F. R. K. Chung, Diameters and eigenvalues, J. AMS, 2 (1989), pp. 187–196.
[16] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic, Approximations of general

independent distributions, in Proceedings of the 24th Annual ACM Symposium on the
Theory of Computing, Victoria, BC, Canada, 1992, pp. 10–16.

[17] O. Gabber and Z. Galil, Explicit constructions of linear size superconcentrators, in Proceed-
ings of the 20th Annual Symposium on Foundations of Computing Science, New York,
1979, pp. 364–370.

[18] O. Goldreich, Private communication, 2002.
[19] O. Goldreich, Combinatorial Property Testing, DIMACS Ser. Discrete Math. Theoret. Com-

put. Sci., Vol. 43, AMS, 1999, pp. 45–59.
[20] O. Goldreich and M. Sudan, Locally testable codes and PCPs of almost-linear length, in Pro-

ceedings of the 43rd Annual Symposium on Foundations of Computer Science, Vancouver,
BC, Canada, 2002, pp. 13–22.

[21] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[22] J. Håstad and A. Wigderson, Simple analysis of graph tests for linearity and PCP, Random

Structures Algorithms, 22 (2003), pp. 139–160.
[23] R. Impagliazzo and A. Wigderson, P=BPP unless E has subexponential circuits: Deran-

domizing the XOR lemma, in Proceedings of the 29th Annual ACM Symposium on the
Theory of Computing, El Paso, TX, 1997, pp. 220–229.

[24] N. M. Katz, An estimate for character sums, J. AMS, 2 (1989), pp. 197–199.
[25] A. Lubotzky, Discrete Groups, Expanding Graphs, and Invariant Measures, Progress in

1230 AMIR SHPILKA AND AVI WIGDERSON

Math. 125, Birkhaüser Verlag, Basel, Switzerland, 1994.
[26] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), pp.

261–277.
[27] G. A. Margulis, Explicit constructions of concentrators, Problemy Peredači Informacii, (1973),

pp. 71–80.
[28] M. Morgenstern, Existence and explicit constructions of q+1 regular Ramanujan graphs for

every prime power q, J. Combin. Theory Ser. B, 62 (1994), pp. 44–62.
[29] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,

SIAM J. Comput., 22 (1993), pp. 838–856.
[30] D. Ron, Property Testing, Handbook of Randomized Computing, S. Rajasekaran, P. M. Parda-

los, J. H. Reif, and J. D. P. Rolim, eds., Kluwer Press, Dordrecht, The Netherlands, 2001.
[31] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to

program testing, SIAM J. Comput., 25 (1996), pp. 252–271.
[32] A. Samorodnitsky and L. Trevisan, A PCP characterization of NP with optimal amor-

tized query complexity, in Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, Portland, OR, 2000, pp. 191–199.

[33] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the XOR lemma,
J. Comput. System Sci., 62 (2001), pp. 236–266.

[34] R. M. Tanner, Explicit concentrators from generalized N-gons, SIAM J. Algebraic Discrete
Methods, 5 (1984), pp. 287–293.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1231–1247

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES AND
EXPOSURE-RESILIENT CRYPTOGRAPHY∗

JESSE KAMP† AND DAVID ZUCKERMAN‡

Abstract. We give an efficient deterministic algorithm that extracts Ω(n2γ) almost-random

bits from sources where n
1
2
+γ of the n bits are uniformly random and the rest are fixed in advance.

This improves upon previous constructions, which required that at least n/2 of the bits be random in
order to extract many bits. Our construction also has applications in exposure-resilient cryptography,
giving explicit adaptive exposure-resilient functions and, in turn, adaptive all-or-nothing transforms.
For sources where instead of bits the values are chosen from [d], for d > 2, we give an algorithm that
extracts a constant fraction of the randomness. We also give bounds on extracting randomness for
sources where the fixed bits can depend on the random bits.

Key words. extractors, randomness, deterministic, bit-fixing sources, exposure-resilient, cryp-
tography, resilient function, random walks

AMS subject classifications. 68Q10, 94A60, 68W20

DOI. 10.1137/S0097539705446846

1. Introduction. True randomness is needed for many applications, such as
cryptography. However, most physical sources of randomness are not even close to
being truly random, and may in fact seem quite weak in that they can have substantial
biases and correlations. A natural approach to dealing with the problem of weak
physical sources is to apply a randomness extractor—a function that transforms a
weak random source into an almost uniformly random source. For certain natural
notions of such random sources, it has been shown that it is impossible to devise a
single function that extracts even one bit of randomness [32]. One way to combat this
problem is to allow the use of a small number of uniformly random bits as a catalyst
in addition to the bits from the weak random source. Objects constructed in this
manner, known as seeded extractors [28], have been shown to extract almost all of
the randomness from general weak random sources (see [33] for a recent survey).

However, we would like to eliminate the need for the random catalyst by re-
stricting the class of weak random sources for which we need our function to work.
Following the lead of Trevisan and Vadhan [34], we call such functions deterministic
extractors for the given class of sources. More formally, we say that a function is an
ε-extractor for a class of sources if the output of the function is ε-close to uniform (in
variation distance) for all sources in the class.

1.1. Bit-fixing and symbol-fixing sources. The particular class of sources
that we are interested in are bit-fixing sources, in which some subset of the bits are
fixed and the rest are chosen at random. There are two classes of bit-fixing sources,

∗Received by the editors January 19, 2005; accepted for publication (in revised form) March 12,
2006; published electronically December 21, 2006. A preliminary version of this paper has appeared
in IEEE Symposium on Foundations of Computer Science, 2003, pp. 92–101.

http://www.siam.org/journals/sicomp/36-5/44684.html
†Department of Computer Science, University of Texas, Austin, TX 78712 (kamp@cs.utexas.edu).

The research of this author was supported in part by NSF grants CCR-9912428 and CCR-0310960.
‡Department of Computer Science, University of Texas, Austin, TX 78712 (diz@cs.utexas.edu).

The research of this author was supported in part by a David and Lucile Packard Fellowship for Sci-
ence and Engineering, NSF grants CCR-9912428 and CCR-0310960, a Radcliffe Institute Fellowship,
and a Guggenheim Fellowship.

1231

1232 JESSE KAMP AND DAVID ZUCKERMAN

depending on whether the fixed bits are chosen before or after the random bits are
determined, known respectively as oblivious and nonoblivious bit-fixing sources. We
will construct extractors for both classes.

Extractors for oblivious bit-fixing sources were first studied in [11], in which they
considered the case of exactly uniform output. They proved that at least n/3 random
bits are needed to extract even two bits from an input of length n. Friedman gener-
alized this result to obtain bounds on the number of random bits needed for longer
outputs [16]. The large amount of randomness needed to obtain exactly uniform re-
silient functions led to the consideration of relaxing this restriction to allow for almost
uniform output. We note that even when we allow the extractor to have small error,
the best previous constructions still required that at least half of the bits be random
[23, 4].

We are able to improve on these constructions by outputting Ω(n2γ) bits when

the input has at least n
1
2+γ random bits.

Theorem 1.1. For any γ > 0 and any constant c > 0, there exists an ε-extractor
f : {0, 1}n → {0, 1}m for the set of oblivious bit-fixing sources with n

1
2+γ random bits,

where m = Ω(n2γ) and ε = 2−cm. This extractor is computable in a linear number of
arithmetic operations on m-bit strings.

We can even extract some bits when there are fewer random bits, although we
get a much shorter output.

Theorem 1.2. There exists an ε-extractor f : {0, 1}n → {0, 1} 1
4 log k, for the set

of oblivious bit-fixing sources with k random bits, where ε = 1
2k

1
4 exp(−π2

√
k

2). This
extractor is computable in a linear number of arithmetic operations on 1

4 log k bits.

In addition to studying oblivious bit-fixing sources, we introduce the related model
of d-ary oblivious symbol-fixing sources (SF sources). Such a source consists of a string
of symbols over a d symbol alphabet where k of the symbols are random and the rest
are fixed. This model is somewhat more restricted than the bit-fixing model. For
example, for d = 2, this model is the same as the oblivious bit-fixing model, and for
d = 4, it corresponds to oblivious bit-fixing sources where the fixed and random bits
have to come in pairs. However, it is still an extremely natural and interesting model.

For SF sources with d > 2, we get much better results than for oblivious bit-
fixing sources. We extract a constant fraction of the randomness for sources with any
number of random symbols, with the constant depending on d. In particular, as d
grows large we can extract almost all of the randomness.

Theorem 1.3. For every d > 2 there exists a cd > 0 such that for every n and
k, there exists an ε-extractor f : [d]n → [d]m for the set of d-ary SF sources with
k random symbols that outputs m = cd k − O(logd(1/ε)) symbols, where cd → 1 as
d → ∞. This extractor is computable in a linear number of arithmetic operations on
m-symbol strings.

Another interesting related class of sources for which deterministic extraction is
possible are nonoblivious bit-fixing sources [3, 21]. In such sources, the fixed bits
can depend on the random bits chosen. This problem was originally studied in the
context of collective coin flipping [3], which can be viewed as extraction of a single
bit. For the single bit case, nearly optimal lower [21] and upper [2] bounds are known,
though the upper bound is not completely constructive. However, little attention has
previously been given to generalizing these results to the case of multiple output bits.
We give bounds for this case. If � = n − k is the number of fixed bits in the source,
we show that at most n/� bits can be extracted from these sources, which is likely
to be nearly optimal. We also give a construction of an ε-extractor for nonoblivious

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1233

bit-fixing sources which outputs Ω((ε/�)log2 3 · n) bits.

1.2. Exposure-resilient cryptography. Our work has applications in cryp-
tography. In traditional cryptography, secret keys are required to remain secret. Most
cryptographic schemes have no security guarantees even when an adversary learns only
a small part of the secret key. Is it possible to achieve security even when the adver-
sary learns most of the secret key? The class of mappings known as all-or-nothing
transforms (AONT), introduced by Rivest [30], address this issue. An AONT is an
efficient randomized mapping that is easy to invert given the entire output, but where
an adversary would gain “no information” about the input even if it could see almost
the entire output of the AONT. Various important applications of the AONT have
been discovered, such as the previously mentioned application of protecting against
almost complete exposure of secret keys [10], and increasing the efficiency of block
ciphers [27, 20, 5].

Boyko used the random-oracle model to give the first formalizations and construc-
tions of the AONT [9]. Canetti et al. gave the first constructions in the standard
computational model [10]. For their construction, they introduced a new, related
primitive known as an exposure-resilient function (ERF). An ERF is an efficiently
computable deterministic function where the output looks random even if the adver-
sary obtains almost all of the bits of a randomly chosen input. They then reduced
the task of constructing an AONT to constructing an equivalent ERF. This work was
extended by Dodis, Sahai, and Smith [15] to the adaptive setting, where the adversary
can decide which bits to look at based on the bits he has already seen. This setting is
applicable to the problem of partial key exposure, where it is likely that the adversary
would be adaptive.

An important idea used in both [10] and [15] is that we can construct ERF’s
in the computational setting by first constructing ERF’s in the statistical setting
and then applying a pseudorandom generator to the output. This allows us to get
longer output lengths, which is useful for applications. Because of this observation,
we can restrict our attention to constructing ERF’s in the statistical setting, where
the output must be statistically close to the uniform distribution. However, though
[15] gives a probabilistic construction of adaptive statistical ERF’s, the problem of
giving an explicit construction was left open (see also [14]).

We address this problem by giving an explicit construction of efficient adaptive
ERF’s in the statistical setting, which in turn gives an explicit construction of adaptive
AONT’s. Our construction actually gives a stronger function, known as an almost-
perfect resilient function (APRF), introduced in [23]. An APRF is like an ERF, except
it works for even the case where the adversary can fix some bits of the input instead
of merely looking at them. The connection between APRF’s and exposure resilient
cryptography was shown in [15], where it was proved that APRF’s are also adaptive
ERF’s. In fact, it is easy to see that APRF’s are essentially the same as deterministic
extractors for oblivious bit-fixing sources. So by constructing extractors for oblivious
bit-fixing sources, we will also get APRF’s and thus adaptive statistical ERF’s and
AONT’s.

1.3. Overview of our constructions. We now give an overview of our various
extractor constructions along with an outline of the rest of the paper.

Our extractor for d-ary SF sources involves using the input symbols to take a
random walk on a d-regular expander graph, starting from an arbitrary start vertex.
The extractor then outputs the label of the final vertex on the walk. We show that
even though we allow some of the steps to be fixed in advance, corresponding to the

1234 JESSE KAMP AND DAVID ZUCKERMAN

fixed bits of the source, these steps will not hurt us. Therefore the random walk
behaves essentially like a random walk on the random steps only. Because of the
rapid mixing properties of expanders, this output will be close to uniform, and we
can extract a linear fraction of the entropy, thus proving Theorem 1.3. For d = 2,
we cannot use an expander graph since expanders only exist for degree d > 2, but we
show that if we take a random walk on a cycle we can still extract some bits, proving
Theorem 1.2; we give these constructions in section 3.1. We also note that similar
types of random walks have been used in previous pseudorandomness constructions
[1, 12, 19].

For oblivious bit-fixing sources, we show that we can extract even more bits by
first converting the sources into sources that are close to SF sources, which we call
approximate symbol-fixing (approx-SF) sources, and then applying the expander walk
extractor. This gives the extractor from Theorem 1.1. We show in section 3.2 that our
extractor for SF sources also works for approx-SF sources. To convert the oblivious
bit-fixing source into a d-ary approx-SF source, we partition the input into blocks.
For each block, we take a random walk on the d-cycle and output the label of the
final vertex. Enough of the blocks will have enough random bits so that enough of
the symbols are almost random. We note that the symbols in the output source
have constant error, so we can’t just add the errors from the almost random steps
since they are too large. Because of this conversion step, we “lose” some of the
randomness, which is why we require that the number of random bits be greater than√
n in Theorem 1.1. In section 4, we show how to do the conversion and prove that

the extractor works.
In section 5, we show the relation between our extractors for oblivious bit-fixing

sources and exposure-resilient cryptography.
We give our results for nonoblivious bit-fixing sources in section 6. For such

sources, let � = n − k be the number of fixed bits. We show that at most n/� bits
can be extracted from these sources using a generalization of the edge isoperimetric
inequality on the cube. This is likely to be nearly optimal, as it almost corresponds to
applying known single bit functions to blocks of the input. In particular, we can use
any function with low “influence” [3]. Our best explicit construction uses the iterated
majority function of Ben-Or and Linial [3] and outputs Ω((ε/�)log2 3 ·n) bits. However,
there are nonexplicit constructions that give bounds within a polylogarithmic factor
of our edge isoperimetric bound [2].

1.4. Subsequent work. Since this paper first appeared, Gabizon, Raz, and
Shaltiel [18] have improved upon our constructions of extractors for oblivious bit-
fixing sources. Using our extractors as building blocks, they are able to extract almost
all of the randomness from oblivious bit-fixing sources. Unfortunately, however, the
error they achieve is not good enough for our application of constructing adaptive
ERF’s.

2. Preliminaries. For ease of notation, we sometimes assign noninteger values
to integer variables when we mean to round off the values. It is easy to observe that
any errors introduced in this manner do not affect our results.

We frequently write our definitions in terms of a single function f , though we really
mean for f to represent a family of functions over all input lengths, so asymptotic
notions make sense.

2.1. Probability definitions. We need some standard definitions for probabil-
ity distributions. First, we express our probability distributions as probability vectors

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1235

p = (p1, ..., pn) with
∑

i pi = 1. Unless otherwise stated, π represents the uniform
probability vector (of the appropriate length). The variation (statistical) distance
|p − q| between two distributions with probability vectors p and q is half the �1 dis-
tance, so |p− q| = 1

2

∑
i |pi − qi|. Also, we use ‖.‖ to represent the standard �2 norm

for vectors. It is well known that |p− q| ≤ 1
2

√
n‖p− q‖.

A source is a family of probability distributions (a probability ensemble). For
ease of notation, we usually refer to a source as a single probability distribution.

2.2. Extractor definitions. Trevisan and Vadhan studied what would hap-
pen if you removed the random catalyst from ordinary extractors, and they called
such functions deterministic extractors [34]. Deterministic extractors for general weak
sources are impossible, and they’re even impossible for semirandom sources [32]. How-
ever, if we restrict our attention to certain classes of weak sources, then the problem
becomes tractable. The following definition of a deterministic extractor is taken from
[14], which is implicit in the definitions of [34].

Definition 2.1. An efficiently computable function f : {0, 1}n → {0, 1}m is
an ε-extractor for a set of random sources X , if for every X ∈ X , f(X) is within
variation distance ε of uniform.

The sets of sources we use are the sets of oblivious bit-fixing [11], symbol-fixing,
and nonoblivious bit-fixing sources [3]. Oblivious bit-fixing sources are the easiest to
handle, since the fixed bits do not depend on the random bits.

Definition 2.2 (see [11]). An (n, k) oblivious bit-fixing source X is a source with
n bits, of which all but k are fixed and the rest are then chosen uniformly at random.

Definition 2.3. An (n, k, d) oblivious SF source X is a source with n indepen-
dent symbols each taken from [d], of which all but k are fixed and the rest are then
chosen uniformly at random.

Note that for d = 2t, SF sources can be viewed as a special case of bit-fixing
sources where the bits are divided up into blocks of size t and each block is either
fixed or random.

Nonoblivious bit-fixing sources are more difficult to handle, since the fixed bits
can depend on the random bits.

Definition 2.4 (see [3]). An (n, k) nonoblivious bit-fixing source X is a source
with n bits, of which k are chosen uniformly at random and then the remaining n− k
bits are chosen, possibly depending on the random bits.

We will need a slightly weaker notion of symbol-fixing sources when converting
bit-fixing sources to symbol-fixing sources.

Definition 2.5. An (n, k, d, ε) approximate oblivious symbol-fixing (approx-SF)
source X is a source with n symbols independently chosen from [d], of which k have
distributions within an �2 distance of ε of uniform.

2.3. Graph definitions. We define some standard notions used when studying
random walks on graphs. Transition matrices indicate the probability of following any
edge in a random walk. A (general) transition matrix P for a graph G = (V,E) with
n vertices is an n× n matrix with entries pij ≥ 0 if (i, j) ∈ E and pij = 0 otherwise,
and

∑n
j=1 pij = 1 for all rows i. The uniform transition matrix P of a d-regular graph

G = (V,E) has all nonzero entries equal to 1/d. The way to view these definitions is
that the probability of choosing edge (i, j) if we are currently at vertex i corresponds
to pij . The stationary probability vector π for a random walk with transition matrix
P is the vector such that πP = π, and is well defined for connected graphs. In the
cases we will look at, π corresponds to the uniform distribution on the vertices.

1236 JESSE KAMP AND DAVID ZUCKERMAN

For each random walk, the input is a string of values, each of which can take on
any value in [d], where d is the degree of the graph. A directed edge (u, v) is labeled
i if (u, v) is the edge taken when the random walk is at u and receives input value i.

One property that we need in our graphs is that the error shouldn’t accumulate
in any of the vertices. In order for our graphs to have this property, we require that
no vertex has two incoming edges with the same label. Such a graph is said to be
consistently labeled. All of our results apply only to consistently labeled graphs.

An expander graph is a graph that has low degree, but is well connected, so that
random walks on expanders converge quickly to the uniform distribution. For a given
matrix P , let λ(P) denote the second largest eigenvalue in absolute value. Here we
define expanders in terms of λ(P).

Definition 2.6. A family of expander graphs is an infinite set of regular graphs
G with uniform transition matrix P that have λ(P) = 1− ε for some constant ε > 0.

We will need all of our expander graphs that we use to be efficiently constructible,
that is, we should find the neighbors of any vertex in polynomial time in the length
of the vertex label. There are various constructions that give infinite families of
constant-degree consistently labeled expander graphs that are efficiently computable;
see, e.g., [17, 25, 26, 29]. Though these constructions don’t work for every degree,
we can always construct an expander for a given degree by adding an appropriate
number of self loops to an existing expander. It is easy to see that doing so maintains
the eigenvalue separation. We also should note that there are expander constructions
that work for degrees as small as 3.

3. Constructing extractors for SF and approx-SF sources. In this section,
we first show how to construct deterministic extractors for SF sources. We will then
show how this construction can be extended to extract from approx-SF sources. We
will use the construction for approx-SF sources in the next section to show how we
can extract from oblivious bit-fixing sources.

3.1. Extracting from SF sources. In this section, we prove the following
generalization of Theorem 1.3 to show that we can extract a constant fraction of the
randomness from SF sources.

Theorem 3.1. For any k = k(n), ε and d > 2, if there exists an efficiently
computable d-regular expander with λ(P) ≤ d−α on dm vertices, for m ≤ 2αk −

2
log d log 1

2ε , then there exists an efficiently computable ε-extractor for the set of (n, k, d)
SF sources which outputs m symbols.

The extractor works by taking a walk on an expander with dm vertices starting
at a fixed vertex and using the input symbols as steps. The output is the label of the
final vertex.

We get extractors with the longest output length when we use Ramanujan ex-
panders, for which λ(P) = 2

√
(d− 1)/d. For certain parameters, there exist efficiently

computable Ramanujan graphs [26, 25]. Note that for Ramanujan graphs, as d grows
large, α approaches 1/2, so the output length approaches k.

For d = 2, we can’t use an expander, but we can use the symbols to take a walk
on the cycle to get an extractor for oblivious bit-fixing sources that extracts a small
number of bits from any source regardless of k. Note that we’re restricted to using
odd size cycles here, since random walks on even cycles don’t converge to uniform, as
they alternate between the even and odd vertices.

Theorem 3.2. For odd d, there exists an ε-extractor f : {0, 1}n → [d], for the

set of (n, k) oblivious bit-fixing sources, where ε = 1
2

√
d exp(−π2k

2d2). This extractor is

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1237

computable in a linear number of arithmetic operations on log d bits.
Note that for this extractor to be useful, we must have log d < 1

2 log k, which
shows that we can output only a small amount of the original randomness with this
technique. In particular, if we take d = k

1
4 , we get Theorem 1.2.

Both Theorems 3.1 and 3.2 arise from the following key lemma.
Lemma 3.3. Let P be a uniform transition matrix with stationary distribution π

for an undirected nonbipartite d-regular graph G on M vertices. Consider an n step
walk on G, with the steps taken according to the symbols from an (n, k, d) SF source
X. For any initial probability distribution p = v+π, the distance from uniform at the
end of the walk is bounded by∣∣∣∣∣p

n∏
i=1

Pi − π

∣∣∣∣∣ ≤
1

2
‖p

n∏
i=1

Pi − π‖
√
M ≤ 1

2
λ(P)k

√
M.

To prove this lemma, we show that the random symbols from the source bring us
closer to uniform and also that the fixed symbols don’t bring us any further away.

For the random steps, it is well known that the distance can be bounded in terms
of λ(P). This gives the following lemma, a proof of which can be found in [24].

Lemma 3.4. Let P be a uniform transition matrix for an undirected, d-regular
graph G. Then for any probability vector p = v + π,

‖pP − π‖ ≤ λ(P)‖v‖.

In our case, most of the steps in our random walks will be fixed. The consistent
labeling property ensures that the transition matrix for these fixed steps will be a
permutation matrix. Thus these steps leave the distance from uniform unchanged,
and so we get the following lemma.

Lemma 3.5. Let P be a transition matrix for a fixed step on an undirected,
d-regular graph G. Then for any probability vector p = v + π,

‖pP − π‖ = ‖v‖.

Now, using the previous two lemmas, we can prove Lemma 3.3.
Proof of Lemma 3.3. For the random symbols we can apply Lemma 3.4. Since

there are k random symbols, this gives us the λ(P)k factor. We also use that by
Lemma 3.5 the steps corresponding to the fixed symbols don’t increase the distance
from uniform. Combining both the random and the fixed steps together with the
relation between the variation and �2 distance and the fact that the ‖v‖ ≤ 1, we get
the stated bound.

Now we can use Lemma 3.3 to prove Theorem 3.1.
Proof of Theorem 3.1. We can apply Lemma 3.3, where in this case λ(P) ≤ d−α

and M = dm. Thus the error ε ≤ 1
2d

−αk+(m/2). Taking logarithms and solving for m,
we get the stated bound on m.

Now, using Lemma 3.3, we can prove Theorem 3.2. We first separate out the
following lemma which will be useful later.

Lemma 3.6. Let P be a uniform transition matrix for the random walk on the
d-cycle for d odd. Suppose the length of the walk is n, with the steps taken according
to the symbols from an (n, k) oblivious bit fixing source X. For any initial probability
distribution p = v+π, the distance from uniform at the end of the walk is bounded by∣∣∣∣∣p

n∏
i=1

Pi − π

∣∣∣∣∣ ≤
1

2
‖p

n∏
i=1

Pi − π‖
√
d ≤ 1

2
(cos(π/d))k

√
d.

1238 JESSE KAMP AND DAVID ZUCKERMAN

Proof. The lemma follows from Lemma 3.3 and the fact that the d-cycle has
λ(P) = cos(π/d) (see [13]).

Proof of Theorem 3.2. The extractor outputs the result of a random walk on
the d-cycle. By Lemma 3.6, this will be within 1

2

√
d(cos(π/d))k of uniform. Since

cos(π/d) ≤ exp(− π2

2d2) (see [13, p. 26]), we get the desired error.
There is one slight difficulty, since we may want to use a family of expander graphs

(or cycles) that includes graphs that don’t have exactly 2m vertices. (In fact, in the
cycle case, we can’t use any even sized cycle.) This difficulty can be overcome by
outputting the result of the random walk on a much larger graph modulo 2m. The
following lemma shows that doing so has little impact on the error.

Lemma 3.7. If a random variable X is within ε of uniform over [N], then the
random variable Y = X mod M is within ε + 1/r of uniform over [M], where r =
	N/M
.

Proof. Divide the y ∈ [M] up into two classes, those corresponding to r different
x ∈ [N] with y = x mod M and those corresponding to r + 1 different x ∈ [N].
The probability that Y assigns to each y is then either r/N or (r + 1)/N , plus the
corresponding part of the original error ε. Since r/N ≤ 1/M ≤ (r + 1)/N , the
additional error introduced for each y when going from X to Y is at most 1/N . So
the total additional error introduced is at most M/N ≤ 1/r.

3.2. Extracting from approx-SF sources. We now show how the previous
construction can be extended to handle the case of approx-SF sources. Our main
result in this section is the following variant of Lemma 3.3 for approx-SF sources.

Lemma 3.8. Let P be a uniform transition matrix with stationary distribution π
for an undirected nonbipartite d-regular graph G on M vertices. Suppose we take a
walk on G for n steps, with the steps taken according to the symbols from an (n, k, d, ε)
approx-SF source X. For any initial probability distribution p = v + π, the distance
from uniform at the end of the walk is bounded by∣∣∣∣∣p

n∏
i=1

Pi − π

∣∣∣∣∣ ≤
1

2
‖p

n∏
i=1

Pi − π‖
√
M ≤ 1

2
(λ(P) + ε

√
d)k

√
M.

In the case of approx-SF sources, the random steps in our random walk will be
only almost uniformly random. This introduces some small amount of error into
our transition matrix. We can separate out the error terms by dividing up our new
transition matrix P ′ into the uniform transition matrix P and an error matrix E,
which is defined as follows.

Definition 3.9. An ε-error matrix E for a d-regular graph G is a matrix with
the following properties. If |Eij | > 0, then (i, j) is an edge in G; all of the columns of
E sum to 0; and the �2 norm of each column of E is at most ε.

For slightly nonuniform random steps, we can modify the bound from Lemma 3.4
slightly to get the following lemma.

Lemma 3.10. Let P be a uniform transition matrix for an undirected, d-regular
graph G. Let E be an ε-error matrix for G. Now let P ′ = P + E be our modified
transition matrix. Then P ′ has the same stationary distribution π as P and for any
probability vector p = v + π,

‖pP ′ − π‖ ≤ (λ(P) + ε
√
d)‖v‖.

Proof. Because π is uniform and because each of the columns of E sum to 0 by
definition, πE = 0. Thus πP ′ = πP + πE = π by the above observation combined
with the stationarity of π with respect to P . Thus P ′ has stationary distribution π.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1239

Now we bound ‖pP ′ − π‖. We first observe that ‖pP ′ − π‖ = ‖vP ′ + πP ′ −
π‖ = ‖vP ′‖ since we know from above that π is stationary. Now we can focus on
bounding ‖vP ′‖. By the triangle inequality ‖vP ′‖ ≤ ‖vP‖ + ‖vE‖. We know that
‖vP‖ ≤ λ(P)‖v‖. Letting eij denote the entries of E, we get

‖vE‖ =

⎛
⎜⎝∑

j

⎛
⎝ ∑

i;eij �=0

eijvi

⎞
⎠

2
⎞
⎟⎠

1
2

≤

⎛
⎝∑

j

⎛
⎝ ∑

i;eij �=0

e2
ij

⎞
⎠

⎛
⎝ ∑

i;eij �=0

v2
i

⎞
⎠
⎞
⎠

1
2

≤ ε

⎛
⎝∑

j

∑
i;eij �=0

v2
i

⎞
⎠

1
2

≤ ε
√
d‖v‖,

where the first line is simply from the definition, and noting that we only need to sum
over all nonzero eij . The second line follows from the Cauchy–Schwarz inequality.
The third line follows from the fact that the sum of the square of the errors e2

ij over

any column is at most ε2. The final inequality comes from the fact that eij can only
be nonzero when ij corresponds to an edge in G. Since there are d edges adjacent to
i, we will have at most d v2

i terms in the sum for each i.
Putting everything together we get the desired bound on ‖pP ′ − π‖.
Unlike in the case of SF sources, the nonrandom steps may not be fixed, but may

simply not have enough randomness in them. However, we would still like to show
that these steps do not take us further from the uniform distribution. The following
lemma shows that since any step chosen according to a symbol from a d-ary source is a
convex combination of permutations, the nonrandom steps in our random walk don’t
increase the distance from uniform. Note that this result depends on our assumption
that the graph G is consistently labeled.

Lemma 3.11. Let P be a transition matrix for a step chosen according to a symbol
Xj from a d-ary source X. Then P is a convex combination of permutation matrices
and for any probability vector p = v + π, πP = P , and ‖pP − π‖ ≤ ‖v‖.

Proof. First we show that P is a convex combination of permutation matrices.
Every possible value from i ∈ [d] for x gives a permutation matrix Pi. If Xj is

distributed with probabilities αi for each i ∈ [d], then P =
∑d−1

i=0 αiPi, which is a
convex combination of permutation matrices.

Then note that since any permutation of π is still uniform, we have πPi = π and
thus πP = P . This gives us ‖pP − π‖ = ‖vP‖. We bound ‖vP‖ by the triangle
inequality as ‖vP‖ ≤

∑
i αi‖vPi‖ =

∑
i αi‖v‖ = ‖v‖, where the second inequality

follows from the fact that since Pi is a permutation, ‖vPi‖ = ‖v‖.
Using the previous two lemmas, we can prove Lemma 3.8.
Proof. Let Pi be the transition matrix of the random walk at the ith step. By

Lemma 3.11 Pi is a convex combination of permutation matrices and πPi = π. This
gives us π

∏n
i=1 Pi = π, so p

∏n
i=1 Pi − π = v

∏n
i=1 Pi.

Let vj =
∏j

i=1 Pi. Then vj = vj−1Pj , and v0 = v. For k of the steps, the symbols
are within an �2 distance of ε from uniform, which implies Pj = P +Ej , where every
column of Ej has �2 norm at most ε. Since G is consistently labeled, the sum of each
column of Ej is equal to 0, so Ej is indeed an error matrix. So for these steps, by

1240 JESSE KAMP AND DAVID ZUCKERMAN

Lemma 3.10, ‖vj−1Pj‖ ≤ (λ(P) + ε
√
d)‖vj−1‖. For the other steps, we still have by

Lemma 3.11 that ‖vj−1Pj‖ ≤ ‖vj−1‖. So for k steps the �2 norm is reduced while for
the rest of the steps it, at worst, remains the same. Thus∥∥∥∥∥p

n∏
i=1

Pi − π

∥∥∥∥∥ =

∥∥∥∥∥v
n∏

i=1

Pi

∥∥∥∥∥ ≤ (λ(P) + ε
√
d)k‖v‖.

Now apply the bound relating the �2 norm and variation distance and ‖v‖ ≤ 1.

4. From SF sources to oblivious bit-fixing sources. In this section, we
show how to extend our results for SF sources to oblivious bit-fixing sources to get
the following theorem, which is basically a restatement of Theorem 1.1. Though we
state the theorem for general values of δ, we have in mind the case δn = n

1
2+γ .

Theorem 4.1. For any positive δ = δ(n) ≤ 1 and any constant c > 0, there
exists an ε-extractor f : {0, 1}n → {0, 1}m, for the set of (n, δn) oblivious bit-fixing
sources, where m = Ω(δ2n) and ε = 2−cm. This extractor is computable in a linear
number of arithmetic operations on m-bit strings.

There are two main steps in the extractor construction. First, we transform the
source into an approx-SF source by dividing it into blocks. For each block we take
a random walk on the cycle and output the label of the final vertex on the walk.
The approx-SF source is then the concatenation of these outputs. Then we use the
expander walk extractor from the previous section to extract from the approx-SF
source.

We start by applying Lemma 3.6 to our degree 2 walks on the d-cycle for each of
the blocks. We will show that enough of the blocks mix to within ε′ of the uniform
distribution, for some ε′. This process gives us an approx-SF source.

Lemma 4.2. For any odd d, any (n, δn) oblivious bit-fixing source can be deter-

ministically converted into a (δn2t ,
δ2n
4t , d, ε) approx-SF source, where t = � log ε

log(cos(π/d))�.
The almost random symbols in the approx-SF source correspond to blocks where

we have “enough” random bits. Using a Markov-like argument, we can quantify how
many such blocks we will have, as shown in the following lemma.

Lemma 4.3. Suppose we have n bits from an (n, k) oblivious bit-fixing source,
where k = δn. For any partition of the n bits into δn/2t blocks of size 2t/δ, the

number r of blocks with at least t random bits satisfies r > δ2n
4t .

Proof. We know that in the r blocks with at least t random bits there are at
most 2t/δ random bits. In the remaining blocks there are less than t random bits.
Combining these two facts we get that the total number of random bits k < 2rt/δ +
t((nδ/2t) − r), which after a simple calculation gives the desired result.

Using this lemma, we can now prove Lemma 4.2.
Proof of Lemma 4.2. Divide the input r up into δn/2t blocks of size 2t/δ. Then

take a random walk on a d-cycle using the bits from each block and output the vertex
label of the end vertex for each walk. These vertex labels are the symbols for our
approx-SF source. We call a block good if this random walk reaches within an �2
distance of ε from uniform, which means the corresponding symbol is good for our
source. By Lemma 3.6, if there are at least t random bits in the block the �2 distance
from uniform is at most (cos(π/d))t ≤ ε, which means all such blocks are good. Then

by Lemma 4.3, the number of good blocks r satisfies r > δ2n
4t . Thus the output source

is an approx-SF source with the appropriate parameters.
The symbols from the approx-SF source then correspond to our almost random

steps in the expander graph, so we can apply Lemma 3.8 to the expander walk to get

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1241

that the final distribution is close to uniform.

Proof of Theorem 4.1. If δ = O(1/
√
n), we can take f to be the parity function,

since in this case outputting a single bit is enough. Otherwise, let G be a d-regular
expander graph on 2m vertices with uniform transition matrix P . Choose ε′ so that
λε′ = λ(P) + ε′

√
d < 1. Then use the procedure in Lemma 4.2 to convert the

(n, δn) oblivious bit-fixing source to a (δn2t ,
δ2n
4t , d, ε

′) approx-SF source, where t =
�(log ε′)/(log(cos(π/d)))�.

Now we use the approx-SF source to take a random walk on G. We take the
label of the final vertex of the walk on G as the output f(r). Then we can apply
Lemma 3.8, which states that the variation distance from uniform of f(r) is at most

1

2
λr
ε′2

m/2 < λ
δ2n
4t

ε′ 2m/2.

We want this to be at most ε = 2−cm, so setting m = bδ2n for some constant b > 0
and taking the logarithm, we get 1

4t log 1
λε′

≥ b
(
c + 1

2

)
. The left-hand side of this

inequality is just some positive constant, so for any given value of c we can select b
so that the inequality is satisfied. These constants give the desired output length and
the desired error ε.

Since there are a linear number of expander steps and there exist expanders that
take a constant number of arithmetic operations per step, f is computable in a linear
number of arithmetic operations on m-bit strings.

Note that in the last proof we only needed a bound on the �2 distance, which
from the proof of Lemma 3.8 is tighter than the bound on the variation distance, but
this difference only affects the constants in the theorem.

5. Exposure-resilient cryptography. We now discuss the needed background
from exposure-resilient cryptography and how our extractor for oblivious bit-fixing
sources can be used to get better statistical adaptive ERF’s and AONT’s.

There are a few different types of resilient functions that we define, taken from [15],
each of which involve making the output look random given an adversary with certain
abilities. For all of these definitions, f is a polynomial time computable function
f : {0, 1}n → {0, 1}m. Also, there is a computationally unbounded adversary A that
has to distinguish the output of f from a uniformly random string R ∈ {0, 1}m. A
function ε(n) is said to be negligible if ε(n) = O(1

nc) for all constants c.

Adaptive k-ERFs are defined as functions that remain indistinguishable from
uniform even by adversaries that can adaptively read most of the input.

Definition 5.1 (see [15]). An adaptive k-ERF is a function f where, for a
random input r, when A can adaptively read all of r except for k bits, |Pr[Ar(f(r)) =
1] − Pr[Ar(R) = 1]| ≤ ε(n) for some negligible function ε(n).

Our goal is to construct adaptive ERF’s. We might first think that any ε(n)-
extractor for oblivious bit-fixing sources would work as long as ε(n) is negligible.
However, [15] show that there are functions that are oblivious bit-fixing extractors
but not adaptive ERF’s. To solve this problem, they use a stronger condition which
they show is sufficient. This condition is that every single output value has to occur
with almost uniform probability. Functions that satisfy this stronger condition are the
APRFs (first stated in section 1.2), introduced by Kurosawa, Johansson, and Stinson
[23].

Definition 5.2 (see [23]). A k = k(n) APRF is a function f where, for any
setting of n− k bits of the input r to any fixed values, the probability vector p of the

1242 JESSE KAMP AND DAVID ZUCKERMAN

output f(r) over the random choices for the k remaining bits satisfies |pi − 2−m| <
2−mε(n) for all i and for some negligible function ε(n).

Theorem 5.3 (see [15]). If f is a k-APRF, then f is an adaptive k-ERF.
The following lemma shows that any extractor for oblivious bit-fixing sources with

small enough error is also an APRF. We use this lemma to show that the extractor
we constructed earlier is also an APRF, and hence an adaptive k-ERF.

Lemma 5.4. Any 2−mε(n)-extractor f : {0, 1}n → {0, 1}m for the set of (n, k)
oblivious bit-fixing sources, where ε(n) is negligible, is also a k-APRF.

Proof. Since f is an extractor, the total variation distance from uniform of the
output of f when n − k bits of the input are fixed is within 2−mε(n). Thus the
distance of any possible output from uniform must also be within 2−mε(n), and the
APRF property is satisfied.

Now using this lemma we get the following theorem.
Theorem 5.5. For any positive constant γ ≤ 1/2, there exists an explicit k-

APRF f : {0, 1}n → {0, 1}m, computable in a linear number of arithmetic operations

on m-bit strings, with m = Ω(n2γ) and k = n
1
2+γ .

Proof. Apply Lemma 5.4 to the extractor from Theorem 4.1, choosing c > 1.
We can use adaptive ERFs to construct AONTs, which were introduced by Rivest

[30] and extended to adaptive adversaries by Dodis, Sahai, and Smith [15]. We first
give a formal definition of AONTs. There are two parts to the definition. First, the
AONT is an efficient randomized mapping that is easily invertible given the entire
output. Second, an adversary gains negligible information about the input to the
AONT even when it can read almost the entire output. This is formalized by the
adversary not being able to distinguish between any two distinct inputs. Note that
the output of the AONT has two parts. We call the first part of the output the secret
part and the second part of the output the public part.

Definition 5.6 (see [15]). A polynomial time randomized transformation T :
{0, 1}m → {0, 1}s × {0, 1}p is a statistical adaptive k-AONT if

1. T is invertible in polynomial time.
2. For any adversary A who has oracle access to string y = (ys, yp) and is

required not to read at least k bits of ys, and for any x0, x1 ∈ {0, 1}m and some
negligible function ε(s + p):

|Pr[AT (xo)(x0, x1) = 1] − Pr[AT (x1)(x0, x1) = 1]| ≤ ε(s + p).

The following lemma from [15] relates adaptive k-ERF’s to adaptive k-AONT’s,
and shows that our construction gives adaptive k-AONT’s.

Theorem 5.7 (see [15]). If f : {0, 1}n → {0, 1}m is an adaptive k-ERF, then
T (x) = 〈r, x ⊕ f(r)〉 is a statistical adaptive k-AONT with secret part r and public
part x⊕ f(r).

By combining Theorem 5.7 with Theorem 5.5, we get the following theorem.
Theorem 5.8. For any positive constant γ ≤ 1/2, there exists an explicit function

f : {0, 1}n → {0, 1}m computable in a linear number of arithmetic operations on m-
bit strings, with m = Ω(n2γ), such that T (x) = 〈r, x ⊕ f(r)〉 is a statistical adaptive
k-AONT with secret part r and public part x⊕ f(r).

6. Extracting from nonoblivious bit-fixing sources. In this section, we
switch our focus to nonoblivious bit-fixing sources, where the fixed bits can depend
on the random bits. We give upper and lower bounds for extracting from such sources.

Previous bounds on nonoblivious bit-fixing sources have been defined in terms of
the “influence” of variables on a function [3]. The influence of a set of variables S on a

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1243

function f , denoted If (S), is the probability that if the variables not in S are chosen
randomly, the function remains undetermined. The following two lemmas show that
the influence of a function is related to the variation distance of the function from
uniform when the input comes from a nonoblivious bit-fixing source. The first lemma
shows that having low influence for all sets of a given size implies that a function is
an extractor, while the second lemma shows that a function that has a set with high
influence cannot be an extractor.

Lemma 6.1. Suppose f : {0, 1}n → {0, 1}m maps the uniform distribution Un to
Um and If (S) ≤ ε for all sets S of � variables. Then f is an ε-extractor for the set of
(n, n− �) nonoblivious bit-fixing sources.

Proof. Let X be an (n, n− �) nonoblivious bit-fixing source and let S denote the
set of fixed variables of X. Since If (S) ≤ ε, for all but an ε fraction of the choices for
the random bits in X, f has the same distribution regardless of whether the rest of
the bits are chosen according to X or according to Un. Thus the variation distance is
at most ε.

Lemma 6.2. Let S be a set of � variables. If, for some ε > 0, If (S) = ε, then
there exists an (n, n− �) nonoblivious bit-fixing source X with set of fixed variables S
so that

|f(X) − Um| ≥ ε/4.

Proof. View the possible outputs as vertices of a hypergraph on 2m vertices. Look
at all possible values of the n − � bits not in S. Since If (S) = ε, we know that an ε
fraction of these values leave f undetermined. For each such value, place a hyperedge
between all possible output values of f (when going over all possible values for the
bits in S).

Eliminate all of the vertices with no edges. Now divide all of the remaining vertices
at random into two sets of equal size, A and B. The expected number of hyperedges
in the cut between A and B is at least half the total number of hyperedges, so there
exists a pair of sets with at least this many hyperedges. Consider such A and B, and
look at only the hyperedges in the cut. Now each of these hyperedges corresponds to
a setting of the n− � bits not in S. So we define two (n, n− �) nonoblivious bit-fixing
sources XA and XB based on how the values of the bits in S are set for each cut
hyperedge. Define XA (XB) by setting the bits in S for each cut hyperedge so that
the output of f lies in A (B). Since these hyperedges have total probability at least
ε/2, these sources will differ by at least ε/2. Thus at least one of them will differ by
at least ε/4 from the uniform distribution.

Using Lemma 6.1, we immediately see that known constructions of Boolean func-
tions with low influence [3, 2] are extractors. To get longer output length, we show
that we can construct an extractor that extracts several bits from any Boolean func-
tion with small influence. The extractor simply works by applying the low influence
function to blocks of the input and concatenating the resulting output bits.

Lemma 6.3. Suppose there exists a function g : {0, 1}s → {0, 1}, with expectation
1/2, and a value r(s) such that any set S of �(s, ε) = εr(s) variables has Ig(S) ≤ ε
for all ε > 0. Then there exists an ε-extractor f : {0, 1}n → {0, 1}m for the set of
(n, n− �(s, ε)) nonoblivious bit-fixing sources that extracts m = n/s bits.

Proof. Divide the input into m = n/s blocks of size s. The jth output bit of
f will be g applied to the jth block. Fix a set S. By Lemma 6.1 we need to show
that f has If (S) ≤ ε for all sets S of � = �(s, ε) variables. Let �i be the number
of bits in S in block i and set εi = �i/r(s). The influence for each output bit is

1244 JESSE KAMP AND DAVID ZUCKERMAN

then at most εi. Now we note that since the random bits for each of these functions
are chosen independently, the total influence is at most the sum of the influences for
each of these Boolean functions. Thus, since

∑m
i=1 εi = (

∑m
i=1 �i)/r(s) = �/r(s) = ε,

If (S) ≤ ε.
We can apply this lemma to the iterated majority function of Ben-Or and Linial

[3] to get an explicit extractor for nonoblivious bit-fixing sources.
Theorem 6.4 (see [3]). For every s, there is an explicit construction of functions

g : {0, 1}s → {0, 1}, with expectation 1/2, where any set S of �(s, ε) = ε
(
s
3

)α
variables

has Ig(S) ≤ ε for every ε > 0, where α = log3 2.
Theorem 6.5. For every n, we can construct an ε-extractor f : {0, 1}n → {0, 1}m

for the set of (n, n − �) nonoblivious bit-fixing sources that extracts m = 1
3 (ε/�)1/αn

bits, where α = log3 2.
Proof. Apply Lemma 6.3 using the function from Theorem 6.4.
Ajtai and Linial [2] give hope for improvement since their functions allow Ω(s/ log2 s)

fixed bits. However, their construction is nonexplicit, and a bound like that in
Lemma 6.3 is only known to hold for ε ≥ 1/polylog(s) [31].

In the other direction, we now show that at most n/� bits can be extracted from
nonoblivious bit-fixing sources. To do so, we generalize the edge-isoperimetric bound
from [3].

Lemma 6.6. For every function f : {0, 1}n → {0, 1}m with output within ε of
uniform on uniform input, the expected influence over all sets of variables S of size �
is at least

1 − 2

(
n−m+1

l

)
(
n
l

) − 2ε.

Proof. View all 2n possible inputs as vertices of the n dimensional cube. Color the
vertices of the cube with 2m colors, where the color of x corresponds to f(x). Now for
each possible set S of size � and setting of the remaining n−� random variables, there
is a corresponding subcube of dimension � in the cube. Note that f is undetermined
over such a subcube if and only if the subcube is not monochromatic. So the average
influence over all possible S is the probability that a randomly chosen � dimensional
subcube is not monochromatic. We divide the set of colors into two classes, those with
at most 2n−m+1 vertices and those with more, which we call “small” and “large.”

First, we handle the large colors. Let t be the number of large colors. Each
of these t colors contributes at least 2−m to the error ε of f with uniform input,
so t ≤ ε2m. Since the distance from uniform is at most ε, the total number of
vertices with large colors is at most ε2n + t2n−m ≤ 2ε2n. The probability that a
subcube is monochromatic for a large color is at most the probability that the subcube
lies completely within this set of vertices, which is at most the probability that any
given vertex in the subcube is in this set. Thus, the probability that a subcube is
monochromatic for a large color is at most 2ε.

Second, we handle the small colors. Each small color has at most 2n−m+1 ver-
tices. By a generalization of the edge-isoperimetric inequality, the set of vertices of size
2n−m+1 with the most monochromatic subcubes of dimension � corresponds to a sub-
cube of dimension n−m + 1 [7, 6]. This larger subcube contains

(
n−m+1

�

)
2n−m+1−�

subcubes of dimension �. Since there are at most 2m small colors, the total num-
ber of monochromatic subcubes with small colors is at most 2n+1−�

(
n−m+1

�

)
. Since

there are 2n−�
(
n
�

)
subcubes total, the probability of a randomly chosen subcube being

monochromatic for a small color is at most 2
(n−m+1

l)
(nl)

.

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1245

Thus, the probability of a randomly chosen subcube being not monochromatic

is at least 1 − 2
(n−m+1

l)
(nl)

− 2ε, which means that the average influence is at least this

much.
Note that due to the tightness of the isoperimetric bounds, this bound is essen-

tially the best that can be achieved using an averaging argument. Using Lemmas 6.6
and 6.2, we’re able to prove the following theorem. Note that the theorem says that
if m > n/�, then we can’t even extract with error a small constant.

Theorem 6.7. No function f : {0, 1}n → {0, 1}m is an ε-extractor for (n, n− �)

nonoblivious bit-fixing sources for any ε ≤ 1
10 min{ �·(m−1)

n , 1}.
Proof. Suppose f is an ε-extractor. First note that f must be within ε of uniform

on uniform input. So by Lemma 6.6, there is a set of variables S of size � with

If (S) ≥ 1 − 2

(
n−m+1

l

)
(
n
l

) − 2ε

≥ 1 − 2

(
1 − m− 1

n

)�

− 2ε

≥ 1 − e−�·(m−1)/n − 2ε.

By Lemma 6.2, there is an (n, n−�) nonoblivious bit-fixing source X so that f(X) is of
distance at least If (S)/4 from uniform, so ε > If (S)/4. Thus ε > (1−e−�·(m−1)/n)/6.
If � · (m − 1)/n ≥ 1, then ε > (1 − e−1)/6 > 1/10. If � · (m − 1)/n < 1, then

e−�·(m−1)/n < 1 − (1 − e−1) �·(m−1)
n , so ε > (1−e−1)

6
�·(m−1)

n > 1
10

�·(m−1)
n .

7. Open questions. There remains some work to be done in order to get truly
optimal deterministic extractors for oblivious bit-fixing sources. Though we can get
nearly optimal results for the d-ary case, for d > 2, we lose a factor of δ in the binary
case because of the need to take the random walks on the cycle. Ideally, we would like
to improve the output length from Ω(δ2n) to Ω(δn), to match the number of random
bits in the input. The extractor of [18] is able to extract almost all of the randomness;
however, the error is not as good. In particular, their extractor is not useful for the
application to exposure-resilient cryptography. Can we construct an extractor that
extracts a linear fraction of the randomness and has small error?

For nonoblivious bit-fixing sources, there also remains more work to be done. It
would be nice to eliminate some of the difference between the lower and upper bounds.
For the single bit case, Kahn, Kalai, and Linial [21] give a lower bound that improves
upon the edge isoperimetric bound by a factor of logn using a harmonic analysis
argument. Perhaps similar techniques could be applied to the general case of many
output bits. Also, we could get better extractors if we could modify the construction
of Ajtai and Linial [2] to work for smaller error and make it explicit.

Another interesting future direction would be to identify additional classes of
sources that have deterministic extractors. One interesting possibility is the set of
affine sources, where k bits are chosen uniformly at random and the n bits of the
source are affine combinations of these bits. Affine sources are a special case of
nonoblivious bit-fixing sources, so our constructions apply to affine sources as well.
Other methods allow us to extract when k > n/2, but it would be interesting to
construct extractors for affine sources that work for k ≤ n/2. Recently, Bourgain
[8] has overcome this barrier by constructing extractors that work for affine sources
with k = δn for any constant δ. However, there is still room for improvement,

1246 JESSE KAMP AND DAVID ZUCKERMAN

since probabilistic arguments show that affine source extractors exist even when k is
logarithmic in n.

Another interesting model is sources generated using a small amount of space.
Recently, in joint work with Rao and Vadhan [22], we have given the first explicit
constructions of deterministic extractors for such sources.

8. Acknowledgments. We thank Peter Bro Miltersen for suggesting the prob-
lem of extractors for oblivious bit-fixing sources and Anindya Patthak and Vladimir
Trifonov for helpful discussions.

REFERENCES

[1] M. Ajtai, J. Komlós, and E. Szemerédi, Deterministic simulation in Logspace, in the 19th
ACM Symposium on Theory of Computing, New York, NY, 1987, pp. 132–140.

[2] M. Ajtai and N. Linial, The influence of large coalitions, Combinatorica, 13 (1993), pp. 129–
145.

[3] M. Ben-Or and N. Linial, Collective coin flipping, in Randomness and Computation, S. Mi-
cali, ed., Academic Press, New York, 1990, pp. 91–115.

[4] J Bierbrauer and H. Schellwat, Almost independent and weakly biased arrays: Efficient
constructions and cryptologic applications, in Advances in Cryptology—CRYPTO 2000,
Lecture Notes in Comput. Sci. 1880, Springer-Verlag, Berlin, 2000, pp. 531–543.

[5] M. Blaze, High-bandwidth encryption with low-bandwidth smartcards, in Fast Software En-
cryption, Third International Workshop, Cambridge, UK, Lecture Notes in Comput. Sci
1039, Springer-Verlag, Berlin, 1996, pp. 33–40.

[6] B. Bollobás and I. Leader, Exact edge-isoperimetric inequalities, European J. Combin., 11
(1990), pp. 335–340.

[7] B. Bollobás and A. J. Radcliffe, Isoperimetric inequalities for faces of the cube and the
grid, European J. Combin., 11 (1990), pp. 323–333.

[8] J. Bourgain, On the Construction of Affine Extractors, Geom. Funct. Anal., to appear.
[9] V. Boyko, On the security properties of the oaep as an all-or-nothing transform, in Advances

in Cryptology—CRYPTO 1999, M. Wiener, ed., Lecture Notes in Comput. Sci. 1666,
Springer-Verlag, Berlin, 1999, pp. 503–518.

[10] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai, Exposure-resilient functions
and all-or-nothing transforms, in Advances in Cryptology—EUROCRYPT 2000, B. Pre-
neel, ed., Lecture Notes in Comput. Sci. 1807, Springer-Verlag, Berlin, 2000, pp. 453–469.

[11] B. Chor, J. Friedman, O. Goldreich, J. Håstad, S. Rudich, and R. Smolensky, The bit
extraction problem or t–resilient functions, in 26th Annual Symposium on Foundations of
Computer Science, Portland, OR, 1985, pp. 396–407.

[12] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in 30th Annual Symposium on Foundations of Computer Science, Research Tri-
angle Park, NC, 1989, pp. 14–19.

[13] P. Diaconis, Group Representations in Probability and Statistics, Lecture Notes—Monograph
Series 11, Institute of Mathematical Statistics, Hayward, CA, 1988.

[14] Y. Dodis, Exposure-Resilient Cryptography, Ph.D. thesis, MIT, Cambridge, MA, 2000.
[15] Y. Dodis, A. Sahai, and A. Smith, On perfect and adaptive security in exposure-resilient cryp-

tography, in Advances in Cryptology—EUROCRYPT 2001, Birgit Pfitzmann, ed., Lecture
Notes in Computer Sci. 2045, Springer-Verlag, 2001, pp. 301–324.

[16] J. Friedman, On the bit extraction problem, in 33rd Annual Symposium on Foundations of
Computer Science, Pittsburgh, PA, 1992, pp. 314–319.

[17] O. Gabber and Z. Galil, Explicit construction of linear sized superconcentrators, J. Comput.
System Sci., 22 (1981), pp. 407–420.

[18] A. Gabizon, R. Raz, and R. Shaltiel, Deterministic extractors for bit-fixing sources by
obtaining an independent seed, in 45th Annual Symposium on Foundations of Computer
Science, Rome, Italy, 2004, pp. 394–403.

[19] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in the 30th Annual Sympo-
sium on Foundations of Computer Science, Research Triangle Park, NC, 1989, pp. 248–253.

[20] M. Jakobsson, J. P. Stern, and M. Yung, Scramble all, encrypt small, Lecture Notes in
Comput. Sci. 1636 (1999), pp. 95–111.

[21] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions, in the
29th Annual Symposium on Foundations of Computer Science, White Plains, NY, 1988,

DETERMINISTIC EXTRACTORS FOR BIT-FIXING SOURCES 1247

pp. 68–80.
[22] J. Kamp, A. Rao, S. Vadhan, and D. Zuckerman, Deterministic extractors for small space

sources, in the 38th ACM Symposium on Theory of Computing, Seattle, WA, 2006, pp.
691–700.

[23] K. Kurosawa, T. Johansson, and D. R. Stinson, Almost k-wise independent sample spaces
and their cryptologic applications, J. Cryptology, 14 (2001), pp. 231–253.

[24] L. Lovász, Random walks on graphs: A survey, in Combinatorics, Paul Erdős is Eighty, Vol.
2, D. Miklós, V. T. Sós, and T. Szőnyi, eds., János Bolyai Math. Soc., Budapest, 1996,
pp. 353–398.

[25] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser-Verlag,
Basel, Switzerland, 1994.

[26] A. Lubotzky, R. Philips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988),
pp. 261–277.

[27] S. Matyas, M. Peyravian, and A. Roginsky, Encryption of long blocks using a short-block
encryption procedure. http://grouper.ieee.org/groups/1363/P1363a/LongBlock.html.

[28] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52
(1996), pp. 43–52.

[29] O. Reingold, S. Vadhan, and A. Wigderson, Entropy waves, the zig-zag product, and new
constant-degree expanders and extractors, Ann. of Math. (2), 155 (2002), pp. 155–187.

[30] R. L. Rivest, All-or-nothing encryption and the package transform, Lecture Notes in Comput.
Sci., 1267 (1997), pp. 210–218.

[31] A. Russell and D. Zuckerman, Perfect-information leader election in log∗ n + O(1) rounds,
J. Comput. System Sci., 63 (2001), pp. 612–626.

[32] M. Santha and U. V. Vazirani, Generating quasi-random sequences from semi-random
sources, J. Comput. System Sci., 33 (1986), pp. 75–87.

[33] R. Shaltiel, Recent developments in explicit constructions of extractors, Bull. Eu. Assoc.
Theor. Comput. Sci., (2002), pp. 67–95.

[34] L. Trevisan and S. P. Vadhan, Extracting randomness from samplable distributions, in the
41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, IEEE
Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 32–42.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1248–1263

LINEAR UPPER BOUNDS FOR RANDOM WALK ON SMALL
DENSITY RANDOM 3-CNFs∗

MIKHAIL ALEKHNOVICH† AND ELI BEN-SASSON‡

In memory of Mikhail (Misha) Alekhnovich—friend, colleague and brilliant mind

Abstract. We analyze the efficiency of the random walk algorithm on random 3-CNF instances
and prove linear upper bounds on the running time of this algorithm for small clause density, less
than 1.63. This is the first subexponential upper bound on the running time of a local improvement
algorithm on random instances. Our proof introduces a simple, yet powerful tool for analyzing such
algorithms, which may be of further use. This object, called a terminator, is a weighted satisfying
assignment. We show that any CNF having a good (small weight) terminator is assured to be solved
quickly by the random walk algorithm. This raises the natural question of the terminator threshold
which is the maximal clause density for which such assignments exist (with high probability). We
use the analysis of the pure literal heuristic presented by Broder, Frieze, and Upfal [Proceedings of
the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 322–330] and Luby,
Mitzenmacher, and Shokrollahi [Proceedings of the Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 1998, pp. 364–373] and show that for small clause densities good terminators exist.
Thus we show that the pure literal threshold (≈1.63) is a lower bound on the terminator threshold.
(We conjecture the terminator threshold to be in fact higher.) One nice property of terminators is
that they can be found efficiently via linear programming. This makes tractable the future investi-
gation of the terminator threshold and also provides an efficiently computable certificate for short
running time of the simple random walk heuristic.

Key words. SAT solving, random CNF, SAT heuristics, random walk algorithm

AMS subject classifications. 68Q25, 68W20, 68W40

DOI. 10.1137/S0097539704440107

1. Introduction. The phenomena we seek to explain is best described by Fig-
ure 1.

RWalkSAT, originally introduced by Papadimitriou [35], tries to find a satisfying
assignment for a CNF C by the following method. We start with a random assignment,
and as long as the assignment at hand does not satisfy the CNF, an unsatisfied clause
C ∈ C is picked, and the assignment to a random literal in this clause is flipped.
The new assignment satisfies C but may “ruin” the satisfiability of other clauses. We
repeat this process (of flipping a bit in the current assignment according to some
unsatisfied clause) until either a satisfying assignment is found (success) or we get
tired and give up (failure).

The lower batch in Figure 1 (plus sign) was obtained by selecting 810 random
3-CNF formulas1 with a clause density (i.e., clause/variable ratio) of 1.6 and running
RWalkSAT on each instance. The y-axis records the number of assignments used before
finding a satisfying one. In particular, the algorithm found an assignment in all

∗Received by the editors January 27, 2004; accepted for publication (in revised form) March 24,
2006; published electronically December 21, 2006.

http://www.siam.org/journals/sicomp/36-5/44010.html
†The author is deceased. Former address: Department of Mathematics, University of California,

San Diego, La Jolla, CA 92093-0112. This work was done while the author was a graduate student at
MIT. This author was supported in part by NSF award CCR 0205390 and MIT NTT award 2001-04.

‡Department of Computer Science, Technion-Israel Institute of Technology, Technion City, Haifa
32000, Israel (eli@cs.technion.ac.il). This work was done while the author was a Postdoctoral Fellow
at MIT and Harvard University. This author was supported by NSF grants CCR-0133096 and
CCR-9877049, NSF award CCR 0205390, and NTT award MIT 2001-04.

1Ten formulas per n= 2000, 2050, 2100, . . . , 6000 were selected.

1248

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1249

2000 2500 3000 3500 4000 4500 5000 5500 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Running time of RWalkSAT on random 3CNF instances

Number of variables

R
un

ni
ng

 ti
m

e
(n

um
be

r
of

 a
ss

ig
nm

en
ts

) Density 1.6
Density 2.5

Fig. 1. Running time of RWalkSAT on random 3-CNF instances with clause densities 1.6 and 2.5.

instances. The upper batch (star sign) was similarly obtained by running RWalkSAT

on 810 random 3-CNF instances with a higher clause density of 2.5.
Figure 1 raises the conjecture that for clause density 1.6 the running time is

linear. Actually, it is even less than the number of variables (and clauses) and seems
to have a slope of ≈ 1/2. In this paper we offer an explanation for the seemingly
linear running time of Figure 1. We prove that random 3-CNFs with clause density
less than 1.63 take (with high probability) a linear number of RWalkSAT steps. (We
leave the explanation of the running time displayed in the upper batch of Figure 1 as
an interesting open problem.)

1.1. Techniques: Terminators. Our technique can be viewed as a general-
ization of the analysis of RWalkSAT on satisfiable 2-CNF formulas [35], so we briefly
review this result. Papadimitriou showed that the Hamming distance of the assign-
ment at time t from some fixed satisfying assignment α is a random variable that
decreases at each step with probability at least 1/2. Thus, in at most O(n2) steps
this random variable will reach 0, implying we have found α. (The algorithm may
succeed even earlier by finding some other satisfying assignment.)

We look at weighted satisfying assignments; i.e., we give nonnegative weights to
the bits of α. Instead of Hamming distance, we measure the weighted distance between
α and the current assignment αt. We show that in some cases, one can find a satisfying
assignment α and a set of weights w such that for any unsatisfied clause at time t, the
expectation of the weighted distance (between α and αt) decreases by at least 1. More-
over, the maximal weight given to any variable is constant. In this case the running
time of RWalkSAT will be linear with high probability (even better than the quadratic
upper bound of [35] for 2-CNFs). We call such weighted assignments terminators, as
their existence assures us that RWalkSAT will terminate successfully in linear time.

Two parameters of a terminator bound the running time of RWalkSAT. The total
weight (sum of weights of all variables) bounds the distance needed to be traversed by
the random walk, because the weighted distance of α0 from α can be as large as this

1250 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

sum. The second parameter is the maximal weight of a variable, which bounds the
variance of our random walk. Thus we define the termination weight of C (denoted
Term(C)) to be the minimal product of these two parameters, taken over all termi-
nators for C. As stated above, the running time of RWalkSAT is linear (at most) in
the termination weight of C. Not all satisfiable CNFs have these magical terminators,
and if C has no terminator, we define its termination weight to be ∞.

1.2. Results. With the terminator concept in hand, we examine the running
time of RWalkSAT on random 3-CNF formulas. If C is a random 3-CNF, then Term(C)
is a random variable. Understanding this variable and bounding it from above bounds
the running time of RWalkSAT . Our main result (Theorem 4.1) is that for clause den-
sity ≤ 1.63, a random 3-CNF has linear termination weight (hence RWalkSAT succeeds
in linear time). This matches the behavior depicted in Figure 1 up to a multiplicative
constant. We also present a determinisitic version of RWalkSAT and show it finds a
satisfying assignment in linear time for the same clause density (section 3.1).

Our result relies on previous analysis done for bounding a different SAT heuristic,
called the pure literal heuristic [10] (see also [31] for a different and shorter analysis).
This heuristic is known to succeed up to a clause density threshold of 1.63 and fails
above this density. We conjecture terminators should exist even beyond the pure
literal threshold, as (unreported) experimental data seems to indicate. However, at
clause density ≥ 2 only a negligible fraction of random CNFs has terminators (see
section 5), meaning we need to develop new techniques for explaining the observed
linear running time at (say) density 2.5 depicted in (the upper part of) Figure 1.

A terminator is a solution to a linear system of inequalities, and thus linear pro-
gramming can be used to find it. Thus, the existence of a terminator for random C can
be decided efficiently, and an upper bound on Term(C) can be computed efficiently.
(However, obtaining the exact value of Term(C) is not known to be efficiently com-
putable.) This may allow us to gain a better empirical understanding of the behavior
of RWalkSAT and its connection to the termination weight parameter.

The success of the pure literal heuristic does not necessarily imply polynomial
running time for RWalkSAT. Indeed, in section 6 we provide a counterexample that
requires exponential time from RWalkSAT, although a solution can be found using the
pure literal heuristic in linear time. Furthermore, for a random planted SAT instance
with large enough clause density, RWalkSAT takes exponential time (section 7). This
is in contrast to the efficient performance of spectral algorithms for planted SAT
presented by Flaxman [18].

1.3. History and related results.
Local improvement algorithms. RWalkSAT was introduced by Papadimitriou, who

showed it has quadratic running time on satisfiable 2-CNFs [35]. An elegant up-
per bound was given by Schoning, who showed that the expected running time of
RWalkSAT on any k-CNF is at most (1 + 1/k)n (compared with the exhaustive search
upper bound of 2n) [38]. The (worst case) upper bound of [38] was improved in a
sequence of results [15, 21, 8, 22, 37], and the best upper bound for 3-SAT is (1.324)n,
given by the recent paper [22].

RWalkSAT is one of a broad family of local improvement algorithms, (re)introduced
in the 1990s with the work of [41]. Algorithms in this family start with an assignment
to the input formula, and gradually change it one bit at a time, by trying to locally
optimize a certain function. These algorithms (the most famous of which is Walk-
SAT) are close relatives of the simulated annealing method and were found to com-
pete with DLL-type algorithms (also known as Davis–Putnam algorithms). Empirical

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1251

results on random 3CNFs with up to 100, 000 variables seem to indicate that RWalkSAT
terminates successfully in linear time up to clause density ≤ 2.6 [36, 40]. More
advanced algorithms such as WalkSAT (a Metropolis algorithm that is related to
RWalkSAT) appear empirically to solve random 3CNF instances with clause density
≤ 4 in quadratic time, and there is data indicating polynomial running time up to
density ≤ 4.2 (the empirical SAT threshold is ≈ 4.26) [39].

Random 3-CNFs. Random CNFs have received much interest in recent years,
being a natural distribution on NP-complete instances that seems (empirically as
well as theoretically) computationally hard for a wide range of parameters. This
distribution is investigated in such diverse fields as physics [30, 32], combinatorics [24],
proof complexity [13], algorithm analysis [3], and hardness of approximation [17], to
mention just a few. One of the basic properties of random 3-CNFs is that for small
density (Δ < 3.52 . . . (see [20, 29])) almost all formulas are satisfiable, whereas for
large density (Δ > 4.506 . . . (see [16])) they are almost all unsatisfiable. Another
interesting property is that the threshold between satisfiability and unsatisfiability is
sharp [24]. It is conjectured that a threshold constant exists, and empirical experiments
estimate it to be ≈ 4.26 [14]. The analysis of SAT solving algorithms on random
CNFs has been extensively researched empirically, and random CNFs are commonly
used as test cases for analysis and comparison of SAT solvers. From a theoretical
point of view, several upper bounds were given on the running time of DPLL-type
algorithms of increasing sophistication [1, 2, 3, 10, 31, 11, 12, 19, 20, 29]. The best
rigorous upper bound for random 3-CNFs is given by the recent papers [20, 29]. An
exponential lower bound on a wide class of DPLL algorithms for density ≈ 3.8 and
above was given by [3]. Recently, Mézard et al. presented the survey propagation
algorithm and showed that nonrigorous arguments based on replica symmetry and
experimental results indicate it efficiently solves large random 3CNF instances very
close to the empirical satisfiability [32, 33].

Upper bounds for algorithms imply lower bounds on the satisfiability threshold,
and in fact, all lower bounds on the threshold (for k = 3) so far have come from
analyzing specific SAT solving algorithms. Most of the algorithms for which average
case analysis has been applied so far are DPLL algorithms (and typically, with the ex-
ception of the recent papers [20, 29], when proving upper bounds on these algorithms,
myopic2 versions are considered). Much less is known about non-DPLL algorithms,
in particular local improvement ones. Our result is (to the best of our knowledge) the
first rigorous theoretical analysis of a non-DPLL algorithm on random CNFs.

Paper outline. After giving the necessary formal definition in section 2, we discuss
terminators in section 3. Using terminators we prove our upper bound in section 4.
In section 5 we give some theoretical upper bounds on the terminator threshold. We
then discuss the tightness of the terminator method (section 6). We conclude with
exponential lower bounds on the running time of RWalkSAT on random CNFs from
the “planted-SAT” distribution (section 7).

2. Preliminaries.
Random 3-CNFs. For xi a Boolean variable, a literal �i over xi is either xi or x̄i

(the negation of xi), where xi is called a positive literal and x̄i is a negative one. A
clause is a disjunction of literals, and a CNF formula is a set of clauses. Throughout
this paper we reserve calligraphic notation for CNF formulas. For C a CNF, let
V ars(C) denote the set of variable appearing in C (we will always assume V ars(C) =

2See [3] for the definition and tightest analysis of myopic algorithms.

1252 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

{x1, . . . , xn} for some n). An assignment to C is some Boolean vector α ∈ {0, 1}n. A
literal �i is satisfied by α iff �i(αi) = 1. We study the following distribution.

Definition 2.1. Let F
n
Δ be the probability distribution obtained by selecting Δn

clauses uniformly at random from the set of all 8·
(
n
3

)
clauses of size 3 over n variables.

C ∼ F
n
Δ means that C is selected at random from this distribution. We call such a C

a random 3-CNF
The algorithm. RWalkSAT is described by the following pseudocode. C is the input

CNF and T is the time bound; i.e., if no satisfying assignment is found in T steps,
we give up. We use the notation UNSAT (C, α) for the set of clauses of C that are
unsatisfied by α.
RWalkSAT(C, T)
Select α ∈ {0, 1}n (uniformly) at random

Initialize t = 0
While t < T {
If C(α) = 1 Return (“Input satisfied by” α)
Else {
Select C ∈ UNSAT (C, α) at random

Select literal � ∈ C at random

Flip assignment of α at �
t + + }

}
Return “Failed to find satisfying assignment in T steps”

Martingales and Azuma’s inequality. Below we state Azuma’s inequality for mar-
tingales. We refer the reader to [34] for the definition of conditional expectation and
for more information about martingales.

A martingale is a sequence X0, X1, X2, . . . , Xm of random variables such that for
0 ≤ i < m holds

E[Xi+1|Xi] = Xi.

The following version of Azuma’s inequality [7, 27] may be found in [6].
Theorem 2.2 (Azuma’s inequality). Let 0 = X0, . . . , Xm be a martingale with

|Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr[Xm > λ
√
m] < e−λ2/2.

3. Terminators. In this section we develop the tools needed to bound the run-
ning time of RWalkSAT on various interesting instances.

Intuition. Suppose a k-CNF C over n variables has a satisfying assignment α such
that each clause of C is satisfied by at least k/2 literals under α. In this case RWalkSAT
will terminate in quadratic time (with high probability). The reason is that if a clause
C is unsatisfied at time t by αt, then αt must disagree with α on at least half of the
literals in C. So with probability ≥ 1/2 we decrease the Hamming distance between
our current assignment and α. If we let simt be the similarity of αt and α, i.e., the
number of bits that are identical in both assignments (notice 0 ≤ simt ≤ n), then
simt is a submartingale, i.e., E(simt|sim1, . . . , simt−1) ≥ simt−1. Standard techniques
from the theory of martingales show that sim reaches n (so αt reaches α) within
O(n2) steps. One elegant example of this situation is when C is a satisfiable 2-CNF.
Papadimitriou [35] proved quadratic upper bounds on the running time of RWalkSAT
in this case, using the proof method outlined above.

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1253

For a general 3-CNF we do not expect a satisfying assignment to have two sat-
isfying literals per clause. Yet all we need in order to prove good running time
is to set up a measure of similarity between αt and some fixed satisfying assign-
ment α such that (i) if simt reaches its maximal possible value, then αt = α; and
(ii) the random variables sim1, sim2, . . . are a submartingale. We achieve both these
properties by giving nonnegative weights w1, . . . , wn to the variables x1, . . . , xn. In-
stead of similarity, we measure the weighted similarity between α and αt, defined by

simw(α, αt)
def
=

∑
αt

i
=αi

wi. Now suppose there exists a satisfying assignment α such

that for any clause C, the expected change in simw, conditional on C being unsatis-
fied, is nonnegative. Suppose, furthermore, that all wi are bounded by a constant and
every clause has a variable with nonzero weight bounded below by another constant.
Then we may conclude as above that αt will reach its maximal value W =

∑
i wi in

time O(W 2).
In some cases we can do even better. We set up a system of weights such that

(for any clause C) the expected change in simw (conditional on C being unsatisfied)
is strictly positive. In this case the running time is linear in W =

∑
wi (instead of

quadratic). As we shall later see, such a setting of weights is possible (with high
probability) for random 3-CNFs. But first we formalize our intuition.

Notation. In what follows Boolean variables range over {−1, 1}. A CNF C with n
variables and m clauses is represented by an m×n matrix AC with {−1, 0, 1}-entries.
The ith clause is represented by AC

i (the ith row of AC) and has a −1-entry in the
jth position if x̄j is a literal of the ith clause of C, a 1-entry if xj is a literal of Ci,
and is zero otherwise. Thus, if C is a k-CNF, then the support size of each row AC

i is
at most k. A Boolean assignment is α ∈ {−1, 1}n, and we say α satisfies C iff for all
i ∈ [m]

〈AC
i , α〉 > −

∥∥AC
i

∥∥
1
,(1)

where 〈α, β〉 is the standard inner product over R
n (defined by

∑n
i=1 αi · βi) and ‖·‖1

is the �1 norm (defined by ‖β‖1 =
∑n

i=1 |βi|). It is easy to see that this definition of
satisfiability coincides with the standard one.

Terminator: Definition. A terminator is a generalization of a satisfying assign-
ment. On the one hand, we allow α to be any vector in R

n, but we require a stronger
satisfying condition than (1).

Definition 3.1 (terminators). Let C be a k-CNF with n variables and m clauses
represented by the matrix AC. α ∈ R

n is a terminating satisfying assignment (or
terminator) if for all i ∈ [m]

〈AC
i , α〉 ≥ 1.(2)

The termination weight of C is

Term(C)
def
= min{‖α‖1 · ‖α‖∞ : α terminator for C}.

In case C has no terminator, we define Term(C) to be ∞.
One may think of sign(αi) as the Boolean assignment to variable xi (where

sign(αi) is 1 if αi ≥ 0 and is −1 otherwise) and |αi| as the weight given to xi.
Notice that if α is a terminator, then the {−1, 1}-vector sign(α) satisfies C. This is
because by property (2) in each clause there is at least one literal that agrees in sign
with α.

1254 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

The decisive name given in the previous definition is justified by the following
claim, which is the main theorem of this section.

Theorem 3.2 (terminator theorem). If a k-CNF C has a terminator α, then
RWalkSAT succeeds on C in time O(‖α‖1 · ‖α‖∞) with probability ≥ 1−exp(−Ω(‖α‖1 /
‖α‖∞)).

Notice that we do not claim that when RWalkSAT terminates, it finds the as-
signment sign(α), but rather the existence of any terminator of small weight implies
short running time. We can say that RWalkSAT is “drawn to” α but only when using
the weighted distance measure given by |α|. If |αi| = 1, this means RWalkSAT indeed
approaches α (as is the case when each clause is satisfied by two literals). But in
general, being “close” according to the weighted measure |α| does not imply small
Hamming distance.

Proof of Theorem 3.2. Let C be a k-CNF and α be a terminator of minimal
weight for C, i.e., Term(C) = ‖α‖1 · ‖α‖∞ < ∞. Let βt ∈ {−1, 1}n be the sequence
of assignments traversed by RWalkSAT(C) starting from the random assignment β1,
where t ≤ T = c ·k · ‖α‖1 · ‖α‖∞ (c will be fixed later). For t ≥ 1 let Y t be the random
variable 〈βt, α〉. If RWalkSAT fails to find a satisfying assignment in T steps, then the
following event occurs:

Y t < ‖α‖1 for all t < T.(3)

This is because 〈βt, α〉 = ‖α‖1 implies βt = sign(α) and sign(α) satisfies C. Thus
we need only to bound the probability of event (3). Suppose clause Ci is picked at
time t (i.e., Ci is unsatisfied by βt−1). We claim the expected change in Y t (with
respect to Y t−1) is precisely

2

k
· 〈AC

i , α〉.(4)

With probability 1/k we flip the assignment to each literal xj of Ci, which amounts
to multiplying βt−1

j by −1. Thus the expected change in Y t is −2
k · 〈βt−1|i, α〉, where

βt−1|i is the restriction of βt−1 to support of AC
i . But Ci being unsatisfied by βt−1

implies βt−1|i = −AC
i , so (4) is proved. Thus by property (2) in Definition 3.1

E[Y t|Y 1, . . . , Y t−1] = Y t−1 +
2

k
〈AC

i , α〉 ≥ Y t−1 +
1

k
.

We claim that the sequence of random variables

Xt
def
=

t∑
�=1

(
Y � − E[Y �|Y 1, . . . , Y �−1]

)

is a martingale satisfying EX1 = 0. Indeed,

E[Xt|X1, . . . , Xt−1] = E[Xt|Y 1, . . . , Y t−1]

= E

[
t∑

�=1

(
Y � − E[Y �|Y 1, . . . , Y �−1]

)
|Y 1, . . . , Y t−1

]

= E
[
Y t|Y 1, . . . , Y t−1

]
− E

[
E[Y t|Y 1, . . . , Y t−1]|Y 1, . . . , Y t−1

]

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1255

+E

[
t−1∑
�=1

(
Y � − E[Y �|Y 1, . . . , Y �−1]

)
|Y 1, . . . , Y t−1

]

= 0 + E

[
t−1∑
�=1

(
Y � − E[Y �|Y 1, . . . , Y �−1]

)
|Y 1, . . . , Y t−1

]

=

t−1∑
�=1

(
Y � − E[Y �|Y 1, . . . , Y �−1]

)
= Xt−1.

Also E[X1] = E[Y 1−E[Y 1]] = 0. For all t, |Xt+1−Xt| = Y t+1−E[Y t+1|Y 1, . . . , Y t] ≤
‖α‖∞ . Note that

Xt = Y t −
t∑

�=1

(E[Y �|Y 1, . . . , Y �−1] − Y �) − EY 1 ≤ Y t − t/k + ‖α‖1 .

In order to bound the probability of event (3), it suffices to bound the probability
of the event “XT < 2 ‖α‖1 − T/k” (if this event does not occur, then Y T ≥ −‖α‖1 +
XT ≥ ‖α‖1). Recalling T = c · k · ‖α‖1 · ‖α‖∞ we will pick c > 4

k so that

2 ‖α‖1 −
T

k
= 2 ‖α‖1 − c · ‖α‖1 · ‖α‖∞ < −ck

2
‖α‖1 · ‖α‖∞ .

We now apply Azuma’s inequality and get

(3) ≤ Pr

[
XT < −ck

2
‖α‖1 ‖α‖∞

]

= Pr

[
XT

‖α‖∞
< −ck

2
‖α‖1

]

≤ exp

(
−

(ck2 ‖α‖1)
2

2T

)

≤ exp

(
− c2k2(‖α‖1)

2

8ck · ‖α‖1 ‖α‖∞

)

≤ exp

(
−ck ‖α‖1

8 ‖α‖∞

)
= exp

(
−Ω

(
‖α‖1

‖α‖∞

))
.

The theorem is proved.

3.1. A deterministic variant of RWalkSAT. Consider the following determin-
istic variant of RWalkSAT, which we will call DWalkSAT. Fix an ordering on clauses in
C. Initialize α0 to be (say) the all zero assignment. At each step t, select the smallest
clause unsatisfied by αt and flip the assignment to all literals in it. Repeat this pro-
cess until all clauses are satisfied. Naturally, one can introduce a time bound T and
declare failure if a satisfying assignment is not found within T steps. We immediately
get the following result.

Theorem 3.3. If a CNF C has a terminator α, then DWalkSAT succeeds on C
within 2 · ‖α‖1 steps.

Proof. We closely follow the proof of the terminator theorem, Theorem 3.2. Let
β1, . . . be the (deterministic) sequence of assignments traversed by the algorithm.

1256 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

Let Y t = 〈βt, α〉 (noticing Y t is no longer random). Clearly, Y 1 ≥ −‖α‖1, and if
Y t = ‖α‖1, then βt (equals sign(α), hence) satisfies C. So we have to only show for
all t

Y t ≥ Y t−1 + 2.(5)

This follows from the fact that the clause Ci flipped at time t was unsatisfied at time
t−1. Flipping all variables in Ci amounts to adding to Y t−1 the amount 〈AC

i , α〉, and
this, by definition of terminator, is at least one. We have proved (5) and with it the
theorem.

4. Linear upper bounds on random CNFs. In this section we show that for
clause densities for which the pure literal heuristic succeeds, there exist linear weight
terminators. Our current analysis uses insights into the structure of such pure CNFs,
but we see no reason to believe that the terminator threshold is linked to the pure
literal threshold. The main theorem of this section is the following.

Theorem 4.1. For any Δ < 1.63, there exists a constant c such that with high
probability C ∼ F

n
Δ has a terminator α ∈ R

n with ‖α‖∞ ≤ c and hence ‖α‖1 ≤ c · n.
Corollary 4.2. For any Δ < 1.63, ε > 0, there exists a constant c such that

with high probability for C ∼ F
n
Δ, RWalkSAT succeeds on C in time c ·n with probability

≥ 1 − ε.
Corollary 4.3. For any Δ < 1.63, ε > 0, there exists a constant c such that

with high probability for C ∼ F
n
Δ, DWalkSAT succeeds on C in time c · n.

To prove our main theorem, we construct small weight terminators for pure and
expanding CNFs and then merge the two into one small weight terminator.

4.1. Terminators for pure CNFs. A literal � in C is called pure if it appears
only as a positive literal, or only as a negative literal, in C. A clause in C is said to
be pure if it contains a pure literal. When seeking a satisfying assignment, a natural
strategy is to start by assigning all pure literals their satisfying assignment and thus
remove all pure clauses. The removal of pure clauses may result in the emergence
of new pure literals in the restricted CNF, and the process may be repeated. The
pure literal heuristic is the heuristic that applies this removal process until no pure
clauses remain. If the remaining CNF is empty, the pure literal heuristic has found a
satisfying assignment, and otherwise it failed.

Let us introduce some notation. For C a CNF, define C0 = C, L0 to be the set of
pure literals in C, and P0 to be the set of pure clauses in C. Recursively define Ci+1 to
be Ci \Pi, and let Li+1, Pi+1 be, respectively, the set of pure literals and pure clauses
in Ci+1. Finally, let r be the minimal i such that Li = ∅. Notice that the pure literal
succeeds on C iff Cr = ∅. If Cr = ∅, we say C is r-pure.

Theorem 4.4. Every r-pure k-CNF over n variables has a terminator α ∈ R
n

with ‖α‖∞ ≤ kr and ‖α‖1 ≤ n · kr, so Term(C) ≤ n · k2r. Moreover, α is supported
only on ∪r−1

i=0Li.
Notice that invoking Theorem 3.2 we bound the running time of RWalkSAT on an

r-pure k-CNF by n · k2r (with high probability).
Proof. Let L0, . . . , Lr−1 be the pure literals in C0, . . . , Cr−1. Notice that ∪r−1

j=0Lj

does not necessarily cover all variables in C, but assigning each pure literal to 1 (i.e.,
if �i is pure, then set sign(αi) = sign(�i)) and assigning the other variables arbitrarily
gives a satisfying assignment α. We now deal with the weights (absolute values) of α.
Fix the weight of each variable in Lj to kr−j . For any variable xi �∈ ∪r−1

j=0Lj fix its
weight to 0.

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1257

To see that α is a terminator (of weight nkr), consider any clause Ci ∈ Pj . By
definition of Pj there are no literals from L0, . . . , Lj−1 appearing in C. Thus all literals
appearing in C have weight ≤ (k)r−j . There is at least one literal �s ∈ C that has
weight kr−j and agrees with αs in sign, and any literal disagreeing with α must have
weight ≤ (k)r−j−1. Hence

〈AC
i , α〉 ≥ kr−j − (k − 1) · kr−j−1 ≥ 1.

Broder, Frieze, and Upfal showed that with high probability the pure literal
heuristic finds a satisfying assignment for a random 3-CNF with clause density < 1.63
[10] (for a simpler analysis of the same heuristic see [31]). In particular, the follow-
ing theorem follows from the work of [10]. A proof of this theorem can be found in
Appendix A.

Theorem 4.5 (see [10]). For every Δ < 1.63, there exists a constant c such that
with high probability C ∼ F

n
Δ is c log n-pure.

By applying Theorems 3.2 and 4.4 to Theorem 4.5 we conclude that the running
time of RWalkSAT on a random instance (with small enough clause density) is at most
polynomial.

4.2. Terminators for expanding CNFs. Our next step in proving Theo-
rem 4.1 starts with the following theorem, which is a combination of a result of
Broder, Frieze, and Upfal [10] and (the now) standard analysis of random CNFs,
originating in the work of Chvátal and Szemerédi [13]. Being standard and somewhat
technical, we defer its proof to Appendix A.

Definition 4.6. For C a CNF, we say C is an (r, c)-expander if for all C′ ⊆
C |C′| ≤ r, |V ars(C′)| ≥ c · |C′|.

Theorem 4.7. For every Δ < 1.63, there exists an integer d such that for C ∼
F
n
Δ, with high probability Cd is a (|Cd|, 7/4)-expander, where Cd is the CNF remaining

of C after removing the d outermost pure layers.
This theorem assures us that after removing a constant number of the layers from

a random C (with small clause density), we have in hand a residual CNF Cd, such
that any subset of it, including all of Cd, has a very large set of neighbors. This in
turn implies the existence of small weight terminators for Cd.

Theorem 4.8. If C is an (|C|, 7/4)-expanding 3-CNF over n variables, then C
has a terminator α ∈ R

n with ‖α‖∞ ≤ 4 (hence ‖α‖1 ≤ 4n).
Proof. Form the following bipartite graph G. On the left-hand side, put one

vertex for each clause in C. On the right-hand side, put 4 distinct vertices for each
variable appearing in C. Connect the vertex labeled by the clause C to all 12 vertices
labeled by variables appearing in C. We do not care if the appearance is as positive
or negative literals.

Since C is an (|C|, 7
4)-expander, G has expansion factor 7; i.e., for all subsets S

on the left-hand side, |N(S)| ≥ 7 · |S|, where N(S) is the set of neighbors of S. By
Hall’s matching theorem [26] we conclude that there is a 7-matching from the left-
hand side to the right; i.e., each node C on the left-hand side can be associated with
a set of seven of its neighbors on the right-hand side (denoted N ′(C)), such that for
all clauses C �= D, N ′(C) ∩ N ′(D) = ∅. We now use N ′ to define our terminator
α. For any variable x, if there exists a clause C such that N ′(C) has at least three
members labeled by x, then we say x is associated with C, and the weight of x is
the number of copies of x in N ′(C) (notice this weight is either 3 or 4). For any
variable xi associated with a clause C, set sign(αi) to the value that satisfies C and
set |αi| to the weight of xi. Set all other variables to zero. α is well defined because a

1258 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

variable can be associated with at most one clause. We are left with verifying that it
is a terminator. This follows by a case analysis, using the fact that each clause has a
dozen neighbors, and seven of them are in N ′(Ci). There are three cases to consider.
Ci has at least two associated variables: In this case, sign(α) agrees with C on at least

two variables, and each variable has weight at least 3. The remaining variable
has weight at most 4, so 〈AC

i , α〉 ≥ 6 − 4 ≥ 2.
Ci has one associated variable of weight three: The remaining four neighbors of N ′(Ci)

must be evenly split between the two remaining variables of C (otherwise Ci

would have two associated variables). So the remaining pair of variables of
Ci have weight zero. Hence 〈AC

i , α〉 = 3.
Ci has one associated variable of weight four: The remaining three neighbors of N ′(Ci)

are split between the remaining two variables. One variable has two such
neighbors (and hence zero weight) and the other has one neighbor, so the
weight of this literal is at most 3. Thus, 〈AC

i , α〉 ≥ 4 − 3 = 1.
Theorem 4.8 follows.

4.3. Small weight terminators for random CNFs.
Proof of Theorem 4.1. By Theorem 4.7, (with high probability) C can be parti-

tioned into the d outermost pure layers C′ def
= ∪d−1

i=0 Pi and the remaining residual inner
core C′′ = Cd. This inner core is a (|C′′|, 7/4)-expander. We know (by Theorems 4.4
and 4.8, respectively) how to construct terminators for each of these formulas, so all
we need to do is merge them into a single terminator for C.

Let α′, α′′ be the respective terminators of C′, C′′. By Theorem 4.4 α′ has all
its support on pure literals, which do not appear in C′′. Thus the supports of α′

and α′′ are disjoint. We merge the two assignments by defining α as the assignment
that agrees with 9 · α′ on the support of α′ and agrees with α′′ otherwise (the reason
for multiplying α′ by the scalar 9 will soon become clear). By our previous remark
(that α′ and α′′ have disjoint supports) α is well defined, and we now prove it is a
terminator.

Consider a clause Ci ∈ C. If Ci ∈ C′′, then 〈AC
i , α〉 = 〈AC

i , α
′′〉 ≥ 1, because all

literals appearing in C′′ are given zero weight by α′. Otherwise, Ci ∈ C′ might have
some of its (nonpure) literals in V ars(C′′), but recall that the maximal weight of α′′

is 4, so in the worst case Ci has two literals with weight 4 coming from α′′. Thus
〈AC

i , α〉 ≥ 9 − 2 · 4 = 1. We have shown the existence of a terminator of linear total
weight, and the proof of Theorem 4.1 is complete.

5. Investigating the terminator threshold. When C is a random CNF,
Term(C) is a random variable. Since Term(C) bounds the running time of RWalkSAT,
investigating this random variable is an interesting question. The property of having
a terminator α with ‖α‖∞ ≤ w is monotone with respect to addition of new clauses.
Thus one can define the terminator threshold θwn as the density for which a terminator
α, ‖α‖∞ ≤ w exists with probability 1/2.

Claim 5.1. A CNF C with m clauses and n variables has some terminator iff
0 �∈ convex hull({AC

i : i = 1, . . . ,m}).
Proof. Think of a terminator α as the normal of a hyperplane in R

n passing
through zero. This hyperplane partitions R

n into two parts. 〈AC
i , α〉 > 0 iff the point

AC
i lies in the positive half of R

n. Thus 〈AC
i , α〉 > 0, i = 1, . . . ,m, iff zero is not in the

convex hull of the points.
Füredi proved the following general theorem (he gave a tighter bound than pre-

sented here, but the form we quote is sufficient for our purposes). A set of points

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1259

P ⊂ R
n is symmetric if p ∈ P ⇒ (−p) ∈ P .

Theorem 5.2 (see [25]). Let {Pn ⊂ R
n}n∈N be an infinite family of finite sym-

metric sets of points. Suppose (2 + ε)n points are selected uniformly at random from
Pn. Then

lim
n→∞

Pr[0 �∈ convex hull of points] = 0.

In our case Pn is the symmetric set of {−1, 0, 1}-valued points with support
size 3. Thus, by Füredi’s theorem when the clause density is greater than 2, with
high probability there is no terminator. Notice this upper bound on the terminator
threshold holds for any k-CNF, even for nonconstant k (e.g., k = n). Combining
Theorem 4.1 with Füredi’s theorem gives for k = 3 the following bounds:

1.63 ≤ θ∞n ≤ 2.

We leave the resolution of the terminator threshold for k = 3 as an interesting open
problem.

For the case of 2-CNFs we can bound the terminator threshold from above by
1, because this is the satisfiability threshold for random 2-CNFs (and a terminator
implies satisfiability). It seems reasonable to conjecture that for k = 2 the satisfiability
and terminator threshold coincide. This could be used to prove that for random
2-CNFs below the satisfiability threshold, RWalkSAT terminates in linear time (as
opposed to the quadratic upper bound guaranteed for any satisfiable 2-CNF by [35]).

6. Tightness of terminator based bounds. In this section we show that the
upper bound derived by the terminator method is tight, even for pure CNFs. We
present pure CNFs such that the running time of RWalkSAT on them is exponential
in the number of variables and also lower bounded by the terminator weight.

Theorem 6.1. For arbitrarily large n, there exist pure 3-CNFs over n variables,
with total terminator weight ≥ 2n/2, and the running time of RWalkSAT on them is
2εn for some ε > 0.

Proof. Use the following formula, which is a slight variation of the X-DAG con-
tradiction used in [9].

Definition 6.2. Let Gn be the following CNF over variables x1, . . . , xn, y1, . . . ,
yn, z:

{x̄1} ∧ {ȳ1} ∧
n−1∧
i=1

{xi ∨ yi ∨ x̄i+1} ∧
n−1∧
i=1

{xi ∨ yi ∨ ȳi+1} ∧ {xn ∨ yn ∨ z̄}.

Gn has a unique satisfying assignment, �0. Moreover, Gn is n-pure, because z̄
appears only in one clause, and once z is satisfied and removed, ȳn, x̄n each appear
in one clause in the remaining formula. Thus, one can repeatedly remove xi−1, yi−1

until all the formula is satisfied. This implies the existence of a terminator of weight
3n, and it is not hard to see that any terminator must have weight 2n at least. We
claim that RWalkSAT requires exponential time to succeed on Gn.

Let Xt be the number of ones assigned by αt to the variables x2, . . . , xn, y2, . . . , yn.
With high probability X0 > (1 − ε)n, and if RWalkSAT(Gn, T) succeeds, we know
XT = 0. But for every step t, the probability of Xt decreasing is at most 1/3. The
theorem follows.

1260 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

7. Lower bounds for large density planted SAT. In this section, we state
(without proofs) that RWalkSAT is not a good algorithm for random CNFs with large
clause density. By definition, RWalkSAT gives the correct answer on any unsatisfiable
formula. For large enough clause density (Δ > 4.6), almost all formulas in F

n
Δ are

unsatisfiable [16]. Thus, one may argue that RWalkSAT operates very well for these
densities. On second thought, on this distribution, even the constant time algorithm
that fails on every input, without reading it, operates well. Thus, it makes sense to
discuss the performance of RWalkSAT only on the uniform distribution over satisfiable
formulas with Δn clauses (denoted SATΔ

n). The problem is that for small densities,
SATΔ

n is not well characterized, we do not know how to analyze it. Thus, we propose
looking at the following pair of planted SAT distributions over satisfiable 3-CNFs.

Definition 7.1 (planted SAT). Let S
n
Δ be the distribution obtained by selecting

at random β ∈ {0, 1}n and selecting at random Δn clauses out of all clauses of size 3
that are satisfied by β. Denote a random formula from this distribution by C ∼ S

n
Δ.

Let P
n
Δ be the distribution obtained by selecting at random β ∈ {0, 1}n, and for

each clause C satisfied by β, select C to be in C with independent probability pΔ
n =

6Δ
7(n−1)(n−2) . Denote a random formula from this distribution by C ∼ P

n
Δ.

This distribution is highly interesting in its own right. It is the analogue of the
planted clique and planted bisection distributions, studied, e.g., in [5, 23, 28]. There
are efficient spectral algorithms for finding the satisfying assignment for the planted
SAT distribution [18], and in this section we argue that RWalkSAT performs poorly
(takes exponential running time) on this distribution. The proofs of this result are
fairly straightforward, so we omit them from the paper.

Theorem 7.2 (main lower bound). There exists a constant Δ0 > 0, such that
for all Δ ≥ Δ0 (Δ may be a function of n), with high probability for C ∼ P

n
Δ, or

C ∼ S
n
Δ

P[RWalkSAT(C, 2εn) succeeds] ≤ 2−εn,

where ε > 0 is some a constant, depending on Δ.
The rest of this section is devoted to a sketch of the proof of Theorem 7.2. We

warm up by discussing the case of C being the maximal size CNF satisfying β and
then apply our insights to the case of a random CNF. For the rest of this section we
assume without loss of generality that β, the random planted assignment, is the all
zero vector, denoted �0.

The full CNF of size n, denoted Fn, has all clauses of size exactly 3 (without
repetition of literals) that are satisfied by �0. Our starting point is the following.

Lemma 7.3. P[RWalkSAT(Fn, 2
n/100) succeeds] ≤ 2−n/100.

Intuitively, the lemma holds because for an assignment that is very close to �0,
the fraction of falsified clauses that have two (or more) positive literals is significantly
larger than the fraction of falsified clauses with only one positive literal. Thus, a
random falsified clause is more likely to lead us away from �0 and hence the exponential
running time.

To complete the proof of Theorem 7.2, notice C ∼ P
n
Δ is a “random fraction” of

Fn. Additionally, for large Δ all satisfying assignments are close to �0. Thus, when
the random walk algorithm reaches an assignment that is close to �0, the fraction of
clauses with two or more positive literals is significantly larger than the fraction of
falsified clauses with one positive literal. Thus, as in the case of Fn, RWalkSAT is more
likely to move away from �0 than to approach it, resulting in exponential running time.
This completes the sketch of the proof of Theorem 7.2.

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1261

8. Open problems.
1. What is the largest Δ for which one can prove RWalkSAT to have polynomial

running time on C ∼ F
n
Δ?

2. What are the statistics of the random variable Term(C) as a function of the
clause density? Does Term(C) < ∞ have a sharp threshold? Is there a
terminator threshold independent of n? How does Term(C) correspond to n
(number of variables) above density 1.63 (below 1.63 it is linear)?

Appendix A. Proofs. In this section we prove Theorems 4.5 and 4.7. Our
starting point is the following theorem and lemma proved implicitly in [10]. The
lemma is a slight generalization of Lemma 4.4 in [10], so we provide its proof. (The
original Lemma 4.4 of [10] needed only expansion factor of 3/2, whereas we need a
constant fraction more than 3/2. The proof is essentially the same.)

Theorem A.1 (see [10]). For every Δ < 1.63, there exists an integer d such that
with high probability for C ∼ F

n
Δ, |Cd| ≤ n

600Δ2 .
Lemma A.2 (see [10]). Let Δ0 = 1.63. For any constant Δ ≤ Δ0 with high

probability C ∼ F
n
Δ is a (n

600Δ2
0
, 3/2 + 10−3)-expander.

Proof of Lemma A.2. Set ε = 10−3. Let Ak be the event that there exists a set
of k clauses having less than 3/2 + ε variables. Let us bound the probability of these
bad events, using a union bound. Let r = n

600Δ2
0

and c = 3/2+ ε. We make use of the

following well-known inequality
(
n
k

)
≤

(
en
k

)k
:

P[Bad] ≤
r∑

k=1

P[Ak] ≤
r∑

k=1

(
Δn

k

)
·
(
n

ck

)
·
(
ck

n

)3k

≤
r∑

k=1

(
eΔ0n

k

)k

·
(
en

ck

)ck

·
(
ck

n

)3k

≤
r∑

k=1

[
(e1+cc3−cΔ0) ·

(
k

n

)2−c
]k

≤
r∑

k=1

[
37 ·

(
k

n

) 1
2−ε

]k

= o(1),

where the last inequality holds for r ≤ n
600Δ2

0
.

Notice that if Cd is a (|Cd|, 3
2 + ε)-expander, then every subset of Cd (including Cd

itself) has at least ε unique neighbors (i.e., literals appearing in exactly one clause),
and these unique neighbors are pure. Thus, Cd is O(log n)-pure. Hence C is O(log n)-
pure (remember d is a constant), and this proves Theorem 4.5. In order to prove
Theorem 4.7 we need the following lemma from [13].

Lemma A.3 (see [13]). For all constants Δ > 0, c < 2, there exists some constant
δ > 0 such that with high probability C ∼ F

n
Δ is a (δΔn, c)-expander.

Let δ be the constant promised by Lemma A.3 for Δ = 1.63 and c = 7/4. By
Theorem 4.5, |Cd| ≤ n/(600Δ2

0) for some constant d. By Lemma A.2, Cd is a (|Cd|, ε)-
boundary expander for some ε > 0. Remove an additional d′ layers from C (each
containing at least an ε/3 fraction of the remaining clauses) so that |Cd+d′ | ≤ δn, and
by Lemma A.3 this remaining CNF is (with high probability) a (|Cd+d′ , 7/4)-expander.
This proves Theorem 4.7.

1262 MIKHAIL ALEKHNOVICH AND ELI BEN-SASSON

Acknowledgments. We thank Madhu Sudan for many useful discussions. We
thank Bart Selman and Andrew Parkes for valuable information on the empirical
results regarding RWalkSAT and Balint Virag for his help with the analysis of mar-
tingales. We thank Jon Feldman for providing code for running LP simulations for
empirical investigation of the terminator threshold and Jeong Han Kim (via private
communication) for allowing us to include the upper bound on the terminator thresh-
old (section 5) in the paper. The second author thanks Rocco Servedio, Salil Vadhan,
and Dimitris Achlioptas for helpful discussions. Finally, we thank the anonymous
referees for helpful remarks.

REFERENCES

[1] D. Achlioptas, Setting two variables at a time yields a new lower bound for random 3-SAT,
in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, 2000,
pp. 28–37.

[2] D. Achlioptas, Lower bounds for random 3-SAT via differential equations, Theoret. Comput.
Sci., 285 (2001), pp. 159–185.

[3] D. Achlioptas and G. B. Sorkin, Optimal myopic algorithms for random 3-SAT, in Pro-
ceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000,
pp. 590–600.

[4] D. Achlioptas, P. Beame, and M. Molloy, A sharp threshold in proof complexity, in Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 337–346.

[5] N. Alon, M. Krivelevich, and B. Sudakov, Finding a large hidden clique in a random graph,
Random Structures Algorithms, 13 (1998), pp. 457–466.

[6] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., Wiley, New York, 2000.
[7] K. Azuma, Weighted sums of certain dependent random variables, Tôhoku Math. J., 19 (1967),

pp. 357–367.
[8] S. Baumer and R. Schuler, Improving a probabilistic 3-SAT algorithm by dynamic search and

independent clause pairs, in Proceedings of the 8th International Conference on Theory
and Applications of Satisfiability Testing, Lecture Notes in Comput. Sci. 2919, Springer,
Berlin, 2004, pp. 150–161.

[9] E. Ben-Sasson, Size space tradeoffs for resolution, in Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, 2002, pp. 457–464.

[10] A. Broder, A. Frieze, and E. Upfal, On the satisfiability and maximum satisfiability of
random 3-CNF formulas, in Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, 1993, pp. 322–330.

[11] M. T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability
problem, Inform. Sci., 51 (1990), pp. 289–314.

[12] V. Chvátal and B. Reed, Mick gets some (the odds are on his side), in Proceedings of the
33rd Annual IEEE Symposium on Foundations of Computer Science, 1992, pp. 620–627.

[13] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. Assoc. Comput. Mach.,
35 (1988), pp. 759–768.

[14] J. M. Crawford and L. D. Auton, Experimental results on the crossover point in random
3-SAT, Artificial Intelligence, 81 (1996), pp. 31–57.

[15] E. Danstin, A. Goerdt, E. A. Hirsch, J. Kleinberg, C. Papadimitriou, P. Raghavan,

and U. Schoning, A deterministic 2 − 2
k+1

algorithm for k-SAT based on local search,

Theoret. Comput. Sci., 223 (1999), pp. 1–72.
[16] O. Dubois, Y. Boufkhad, and J. Mandler, Typical random 3-SAT formulae and the sat-

isfiability threshold, in Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, 2000, pp. 126–127.

[17] U. Feige, Relations between average case complexity and approximation complexity, in Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 534–543.

[18] A. Flaxman, A spectral technique for random satisfiable 3CNF formulas, in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 357–363.

[19] A. Frieze and S. Suen, Analysis of two simple heuristics for random instances of k-SAT,
J. Algorithms, 20 (1996) pp. 312–355.

[20] M. T. Hajiaghayi and G. B. Sorkin, The Satisfiability Threshold of Random 3-SAT Is at
Least 3.52, IBM Research Report RC22942, 2003, submitted.

[21] T. Hofmeister, U. Schoning, R. Schuler, and O. Watanabe, Probabilistic 3-SAT algorithm

ANALYSIS OF RANDOM WALK ALGORITHM ON RANDOM 3-CNF 1263

further improved, in Proceedings of the 19th International Symposium on Theoretical As-
pects of Computer Science, 2002, pp. 193–202.

[22] K. Iwama and S. Tamaki, Improved bounds for 3-SAT, in Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 321–322.

[23] U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semi-random
graph, Random Structures Algorithms, 16 (2000), pp. 195–208.

[24] E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Amer. Math.
Soc., 12 (1999), pp. 1017–1054.

[25] Z. Füredi, Random polytopes in the d-dimensional cube, Discrete Comput. Geom., 1 (1986),
pp. 315–319.

[26] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26–30.
[27] W. Heoffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.

Assoc., 58 (1963), pp. 13–30.
[28] M. Jerrum and G. B. Sorkin, Simulated annealing for graph bisection, in Proceedings of the

34th Annual IEEE Symposium on Foundations of Computer Science, 1993, pp. 94–103.
[29] A. Kaporis, L. M. Kirousis, and E. G. Lalas, The probabilistic analysis of a greedy satisfia-

bility algorithm, in Proceedings of the 10th Annual European Symposium on Algorithms,
Rome, Italy, 2002.

[30] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,
Science, 220 (1983), pp. 671–680.

[31] M. Luby, M. Mitzenmacher, and A. Shokrollahi, Analysis of random processes via and-or
tree evaluation, in Proceeding of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1998, pp. 364–373.

[32] M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random sat-
isfiability problems, Science, 297 (2002), pp. 812–815.

[33] M. Mézard and R. Zecchina, Random k-satisfiability: From an analytic solution to an effi-
cient algorithm, Phys. Rev. E, 66 (2002), 056126.

[34] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[35] C. H. Papadimitriou, On selecting a satisfying truth assignment, in Proceedings of the 32nd
Annual IEEE Symposium on Foundations of Computer Science, 1991, pp. 163–169.

[36] A. J. Parkes, private communication.
[37] D. Rolf, 3-SAT in RTIME(O(1.32793n))—Improving Randomized Local Search by Initializ-

ing Strings of 3-Clauses, ECCC report TR03-054, 2003.
[38] U. Schoning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, in

Proceedings of the 40th Annual Symposium on Foundations of Computer Science, 1999,
pp. 410–414.

[39] B. Selman, private communication.
[40] B. Selman and H. Kautz, Local search strategies for satisfiability testing, in Proceedings of

the Second DIMACS Challenge on Cliques, Coloring, and Satisfiability, AMS, Providence,
RI, 1993, pp. 521–532.

[41] B. Selman, H. Levesque, and D. Mitchell, A new method for solving hard satisfiability
problems, in Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-
92), San Jose, CA, 1992, pp. 440–446.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1264–1300

THE COMPLEXITY OF COMPUTING THE SIZE OF AN INTERVAL∗

LANE A. HEMASPAANDRA† , CHRISTOPHER M. HOMAN‡ , SVEN KOSUB§ , AND

KLAUS W. WAGNER¶

Abstract. Given a p-order A over a universe of strings (i.e., a transitive, reflexive, antisymmetric
relation such that if (x, y) ∈ A, then |x| is polynomially bounded by |y|), an interval size function of
A returns, for each string x in the universe, the number of strings in the interval between strings b(x)
and t(x) (with respect to A), where b(x) and t(x) are functions that are polynomial-time computable
in the length of x. By choosing sets of interval size functions based on feasibility requirements for their
underlying p-orders, we obtain new characterizations of complexity classes. We prove that the set
of all interval size functions whose underlying p-orders are polynomial-time decidable is exactly #P.
We show that the interval size functions for orders with polynomial-time adjacency checks are closely
related to the class FPSPACE(poly). Indeed, FPSPACE(poly) is exactly the class of all nonnegative
functions that are an interval size function minus a polynomial-time computable function. We study
two important functions in relation to interval size functions. The function #DIV maps each natural
number n to the number of nontrivial divisors of n. We show that #DIV is an interval size function
of a polynomial-time decidable partial p-order with polynomial-time adjacency checks. The function
#MONSAT maps each monotone boolean formula F to the number of satisfying assignments of F .
We show that #MONSAT is an interval size function of a polynomial-time decidable total p-order
with polynomial-time adjacency checks. Finally, we explore the related notion of cluster computation.

Key words. computational complexity, interval size functions, cluster computing, counting
functions

AMS subject classifications. 03D15, 06A05, 06A06, 68Q05, 68Q10, 68Q15, 68Q17

DOI. 10.1137/S0097539705447013

1. Introduction. The class NP, which is widely believed to contain compu-
tationally intractable problems, captures the complexity of determining for a given
problem instance whether at least one suitable affirmative solution exists within an
exponentially large set of (polynomial-sized) potential solutions. It is certainly not
simpler, and seemingly much harder, to count all affirmative solutions in such solu-
tion sets. The corresponding counting functions constitute Valiant’s widely studied
counting class #P [Val79]. In the theory of counting functions, which is devoted to
the study of counting versions of decision problems, most classes considered try to
capture the pure phenomenon of counting, and in doing so they obscure other factors,
e.g., orders on solution sets.

∗Received by the editors February 13, 2005; accepted for publication (in revised form) April 25,
2006; published electronically December 21, 2006. A preliminary version of some parts of this paper
was presented at the 28th International Colloquium on Automata, Languages and Programming held
in Crete, Greece, in July 2001 [HKW01]. This work was supported in part by grants NSF-CCR-
9322513, NSF-INT-9815095/DAAD-315-PPP-gü-ab, and NSF-CCF-0426761. This work was done
in part while the second author was at the University of Rochester, and in part while the first two
authors were visiting Julius-Maximilians-Universität Würzburg.

http://www.siam.org/journals/sicomp/36-5/44701.html
†Department of Computer Science, University of Rochester, Rochester, NY 14627 (www.cs.

rochester.edu/u/lane).
‡Department of Computer Science, Rochester Institute of Technology, Rochester, NY 14623 (www.

cs.rit.edu/̃ cmh).
§Institut für Informatik, Technische Universität, München, D-85748 Germany (www14.in.tum.

de/personen/kosub).
¶Institut für Informatik, Julius-Maximilians-Universität Würzburg, D-97074 Würzburg, Germany

(www4.informatik.uni-wuerzburg.de/personen/mitarbeiter/wagner).

1264

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1265

Natural counting problems in #P, of course, sometimes exhibit strong relation-
ships between solutions to the problems. As an example, consider the counting
function #DIV, which counts for each natural number the number of its nontriv-
ial divisors. Clearly, #DIV is in #P since division can be done in polynomial
time. A suitable structure in the set of solutions is the partial order of divisibil-
ity, that is, the order defined by n ≤| m if and only if n divides m. Obviously,
#DIV(m) = ‖{k | 1 <| k <| m}‖, i.e., #DIV(m) counts the number of elements in
the open interval (1,m) in the partial order “≤|” on natural numbers.

Is #DIV an exceptional case among #P functions in that it has such an interval
size characterization? Interestingly, “no” is the answer. It turns out that a function
f is in #P if and only if it is an interval size function of a P-decidable partial p-order.
The latter means that there exist a partial p-order A (i.e., A is a partial order and
in addition satisfies the requirement that for some polynomial p and all x and y, it
holds that x ≤A y implies |x| ≤ p(|y|)) that is P-decidable (i.e., x ≤A y is decidable
in polynomial time) and polynomial-time computable functions b and t such that
f(x) = ‖{z | b(x) <A z <A t(x)}‖, where a <A b denotes a ≤A b ∧ a �= b.

However, knowing that a partial p-order is polynomial-time decidable does not
give us as much information as sometimes is needed. For example, the polynomial-
time decidability of a p-order seemingly does not ensure that it has efficient adjacency
checks, i.e., that there is a polynomial-time algorithm checking whether two elements
are adjacent in this partial p-order. Indeed, if every P-decidable partial p-order has
efficient adjacency checks, then P = NP (and vice versa). Hence adding efficient
adjacency checks to the properties listed above seems to be a restriction. Denote by
IFp the class of interval size functions of P-decidable partial p-orders with efficient
adjacency checks. Denote by IFt the class of interval size functions of P-decidable
total p-orders with efficient adjacency checks. We have IFt ⊆ IFp ⊆ #P. Are these
containments proper? On one hand, we prove that IFt - FP = IFp - FP = #P - FP,
where A - B = {a − b | a ∈ A ∧ b ∈ B}. Thus these three classes do not seem to
be very different; indeed, they are identical given the smoothing power of subtracting
polynomial-time computable adjustments. On the other hand, IFp = #P is equivalent
to P = NP, and IFt = IFp only if UP = PH. Thus it is unlikely that any two of IFt,
IFp, and #P coincide. Further, we study relationships between the classes IFt, FP,
and UPSVt.

We already mentioned that it is unlikely that every P-decidable partial p-order
has efficient adjacency checks. What about the converse? This also is not likely; if
every partial p-order with efficient adjacency checks is P-decidable, then P = PSPACE
(and vice versa). Hence, in the presence of efficient adjacency checks, removing the P-
decidability requirement seems to be a relaxation. Denote by IF∗

p the class of interval
size functions of partial p-orders with efficient adjacency checks. Denote by IF∗

t the
class of interval size functions of total p-orders with efficient adjacency checks. We
have IFp ⊆ IF∗

p and IFt ⊆ IF∗
t ⊆ IF∗

p ⊆ FPSPACE(poly). We prove that IF∗
t (and

IF∗
p) are remarkably powerful: IF∗

t - FP = FPSPACE(poly) - FP. Thus IF∗
t (and

IF∗
p) are in a certain sense close to FPSPACE(poly), the class of polynomially length-

bounded, polynomial-space computable functions. Nonetheless, we show that if these
classes coincide, then UP = PSPACE. We clarify further relationships among such
classes and also with respect to other function classes, in order to understand the
power of interval computing.

We study two important natural functions in relation to interval size functions.
We prove that the counting function #DIV is in IFp. Also, we show that the func-

1266 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

tion #MONSAT, which counts for each monotone boolean formula the number of
satisfying assignments that it has, belongs to IFt.

Using order-theoretic notions to approach complexity issues has a rich tradition
and appears in the literature in a variety of settings (e.g., [GHJY91, GS91, VW95,
HVW96, Kos99]). The approaches in the examples just cited differ in intent from our
approach in that they are based on a specific ordering, namely the lexicographical
ordering. In contrast, for our purposes it is essential to consider more general feasible
orderings (see [MP79, Ko83]).

Among earlier studies, perhaps the notion lying nearest to our approach is that
of a cluster machine, which is a nondeterministic Turing machine that satisfies the
promise that, on each input, all accepting computation paths are always neighbors
with respect to the lexicographical ordering, i.e., the accepting paths must form a
“cluster” [Kos99]. Based on this machine type, Kosub [Kos99] defined the counting
class c#P (in a manner analogous to the way that #P is based on standard, non-
deterministic polynomial-time Turing machines). Kosub obtained many interesting
results about c#P, e.g., c#P seems to differ dramatically from #P in its closure prop-
erties (as regards, e.g., integer division, see [OH93, Kos99]), and he showed that c#P
is closely related to a relatively simple unambiguous-nondeterminism-based function
class, “UPSVt.”

Most of the known results about c#P are proven by techniques that are exceed-
ingly dependent on the fact that c#P is defined using adjacency clusters with respect
to lexicographic order. In particular, the fact that in lexicographic order the function
f(a, b) = ‖{c | a ≤lex c ≤lex b}‖ is easy to compute underpins the results.

In the present paper we define the class CL#P, which studies the complexity of
cluster computing in a context of relatively general (though length-respecting and hav-
ing efficient adjacency checks) orders, rather than merely in the extremely special case
of lexicographic order. We study CL#P and show, for example, that it does not equal
c#P unless UP = PP (and thus the polynomial hierarchy collapses). On the other
hand, we also prove that c#P and CL#P coincide on polynomially bounded func-
tions, and that CL#P shows some behaviors quite reminiscent of c#P, e.g., though
#P is closed under increment, we show that CL#P is closed under increment only if
unexpected complexity collapses occur. More generally, we explore the relationship
between CL#P and such classes as IFt, IFp, and #P. Though CL#P is in general
flavor like an interval function (over a total order satisfying appropriate conditions
but freed from the polynomial-time computability constraints of the functions defin-
ing the top and bottom of the interval), our results usually show that CL#P differs
from the these classes unless unexpected complexity class collapses occur.

2. Preliminaries. Fix our finite alphabet to be Σ = {0, 1}, and let Σ∗ denote
the set of all finite strings over Σ. Let ε denote the empty string. The length of a
string x ∈ Σ∗ is denoted by |x|. The set of all strings of length n is denoted by Σn.
The complement of a set L ⊆ Σ∗ is denoted by L, i.e., L = Σ∗ \L. For any class K of
subsets of Σ∗, let coK be the class {L ⊆ Σ∗ | L ∈ K}. The cardinality of a finite set
S is denoted by ‖S‖. The characteristic function of a set L ⊆ Σ∗ is denoted by χL,
i.e., for all x ∈ Σ∗, χL(x) = 1 ⇔ x ∈ L and χL(x) = 0 ⇔ x /∈ L. Let N denote the set
{0, 1, 2, . . . }. Let N

+ denote the set {1, 2, 3, . . . }.
For the basic notions of complexity theory such as P, NP, PSPACE, and so on

see, e.g., the handbook [HO02].
The computation model we use is the standard nondeterministic Turing machine.
We review the definitions of some complexity classes of functions, already existing

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1267

in the literature, that we will use in this paper.

• FP is the class of all (deterministic) polynomial-time computable, total func-
tions from Σ∗ to N. We will at times use FP to mean the class of all
polynomial-time computable, total functions from Σ∗ to Σ∗. Via the nat-
ural, efficient bijection between N and Σ∗, these two notions are essentially
the same.

• [Lad89] FPSPACE(poly) is the class of all polynomial-space computable,
total functions from Σ∗ to N having polynomially length-bounded outputs.
We will at times use FPSPACE(poly) to mean the class of all polynomial-
space computable, total functions from Σ∗ to Σ∗ having polynomially length-
bounded outputs. Via the natural, efficient bijection between N and Σ∗, these
two notions are essentially the same.

• [Val79] #P is the class of all total functions f for which there exists a
nondeterministic polynomial-time Turing machine M such that, for each x,
f(x) is the number of accepting computations of M(x). Equivalently, #P
is the class of all total functions f for which there exist a set B ∈ P and a
polynomial p such that, for all x ∈ Σ∗, f(x) = ‖{z | |z| = p(|x|)∧(x, z) ∈ B}‖.

• [GS88, Kos99] UPSVt is the class of all total functions f for which there
exists a nondeterministic polynomial-time Turing machine M that, on each
input x ∈ Σ∗, has exactly one accepting path, and the output of this unique
accepting path is f(x).

For function classes F and G where each f ∈ F ∪G maps from Σ∗ to N, let F - G
denote the class of all functions {f − g | f ∈ F and g ∈ G}. Note that the codomain
of F - G functions is {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. For each class K of sets, let FPK

(respectively, PK) be the class of functions (respectively, sets) that can be computed
in polynomial time with an oracle from K.

Next, we review the definitions of some complexity classes (of sets), already ex-
isting in the literature, that we will use in this paper.

• [Val76] UP is the class of all sets L such that χL ∈ #P.
• [Coo71, Lev75] NP is the class of all sets L for which there exists a function
f ∈ #P such that, for all x ∈ Σ∗, x ∈ L ⇔ f(x) > 0.

• [Sim75, Gil77] PP is the class of all sets L for which there exist functions
f ∈ #P and g ∈ FP such that, for all x ∈ Σ∗, x ∈ L ⇔ f(x) ≥ g(x).

• [OH93, FFK94] SPP is the class of all sets L such that χL ∈ #P - FP.
• [CH90] Few is the class of all sets L for which there exist a function f ∈ #P,

a set B ∈ P, and a polynomial p such that, for all x ∈ Σ∗, f(x) ≤ p(|x|) and
x ∈ L ⇔ (x, 1f(x)) ∈ B. In this definition, changing from “f(x) ≤ p(|x|)” to
“0 < f(x) ≤ p(|x|)” can easily be seen to also yield Few.

• [MS72, Sto77] PH = P ∪ NP ∪ NPNP ∪ NPNPNP

∪

The following results are well-known or easy to see.

Proposition 2.1.

1. FP ⊆ UPSVt = FPUP∩coUP ⊆ #P ⊆ FPSPACE(poly).
2. P ⊆ UP ⊆ Few ∩ NP ⊆ Few ∪ NP ⊆ PNP ⊆ PH ⊆ PSPACE.
3. NP ∪ SPP ⊆ PP.
4. [KSTT92] Few ⊆ SPP.

In this paper, we will sometimes for conciseness refer to the jth part of Theorem i
as Theorem i.j, e.g., we may refer to the third part of the above proposition as
Proposition 2.1.3.

We will use the complexity-theoretic function-to-set operator ∃ of Hempel and

1268 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Wechsung [HW00], which maps function classes to set classes. For a function class F ,
∃ ·F is the class of all sets L for which there exists a function f ∈ F such that, for all
x ∈ Σ∗, x ∈ L ⇔ f(x) > 0.

The following statements are easy to see.

Proposition 2.2.

1. ∃ ·FP = ∃ · (FP - FP) = P.
2. ∃ ·UPSVt = ∃ · (UPSVt - FP) = ∃ · (UPSVt - UPSVt) = UP ∩ coUP.
3. ∃ ·#P = NP.
4. ∃ · (#P - FP) = PP.
5. ∃ ·FPSPACE(poly) = PSPACE.

3. Orders with feasibility constraints. In this section, we define the notions
of ordering that we use for the remainder of this paper (see also [Ko83]).

A binary relation A ⊆ Σ∗ × Σ∗ is a partial order if it is reflexive, antisymmetric
(i.e., (∀x, y ∈ Σ∗)[x �= y =⇒ ((x, y) �∈ A ∨ (y, x) �∈ A)]), and transitive. A partial
order A is a total order if, for all x, y ∈ Σ∗, (x, y) ∈ A or (y, x) ∈ A. A partial order A
is a partial p-order if there exists a polynomial q such that for all (x, y) ∈ A it holds
that |x| ≤ q(|y|).

For any partial p-order A, we employ the following standard notational conven-
tions. We write x ≤A y if (x, y) ∈ A. We write x <A y if x ≤A y and x �= y. We write
x ≺A y if x <A y and there is no z such that x <A z <A y. If x ≺A y, we say that
x precedes y or, equivalently, y succeeds x. We let A≺ =def {(x, y) | x ≺A y}. The
lexicographical order is denoted by ≤lex, and lexicographical adjacency is denoted by
≺lex.

Note that, for every partial p-order A and every string y, there exist at most
exponentially (in the length of y) many strings that are less than y with respect to
A. Thus, the output of an interval size function on a partial p-order is always at
most exponential in the input length. Note that such exponential value bounds are
typically the case with function classes, such as FP and #P, that are based on Turing
machines having polynomial-time running bounds.

Feasibility constraints on orders are essential to our study. A partial p-order A is
P-decidable if A ∈ P. A partial p-order A is said to have efficient adjacency checks if
A≺ ∈ P.

There are complexity-theoretic connections between these two feasibility require-
ments.

Proposition 3.1. Let A be a partial p-order.

1. If A ∈ P, then A≺ ∈ coNP.
2. If A≺ ∈ P, then A ∈ PSPACE.

Proof. The proof of (1) is immediate.

For (2), let A be a partial p-order that has efficient adjacency checks. Let M
be an NPSPACE machine that accepts A by, on input (x, y), accepting immediately
if x = y and otherwise guessing a sequence z1, . . . , zk such that x ≺A z1 ≺A z2 ≺A

· · · ≺A zk ≺A y. Since A is a partial p-order, for each i ∈ {1, . . . , k}, |zi| is poly-
nomially bounded with respect to |y|, so we need only guess such zi’s whose lengths
are polynomially bounded in |y|. So A ∈ NPSPACE. However, as is well-known,
NPSPACE = PSPACE.

Corollary 3.2.

1. If P = NP, then all P-decidable partial p-orders have efficient adjacency
checks.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1269

2. If P = PSPACE, then all partial p-orders with efficient adjacency checks are
P-decidable.

In what follows we will see that the converse of each of the claims of Corollary 3.2
also holds.

4. Orders without efficient adjacency checks. We say that a function f :
Σ∗ → N is an interval size function if there exist boundary functions b and t mapping
from Σ∗ to Σ∗ and a partial order A ⊆ Σ∗ × Σ∗ such that, for all x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖. In this section, we characterize #P in terms of interval size
functions with polynomial-time decidable p-orders and polynomial-time computable
boundary functions. We also note that if we omit all feasibility restrictions on p-
orders, then all polynomially length-bounded functions can be characterized in a
manner analogous to the way that interval size functions of resource-bounded orders
characterize #P.

Theorem 4.1.

1. For any function f , the following statements are equivalent.
(a) f ∈ #P.
(b) There exist a partial p-order A ∈ P and functions b, t ∈ FP such that,

for all x ∈ Σ∗, f(x) = ‖{z | b(x) <A z <A t(x)}‖.
(c) There exist a total p-order A ∈ P and functions b, t ∈ FP such that, for

all x ∈ Σ∗, b(x) ≤A t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖.
2. For any function f the following statements are equivalent.

(a) f is polynomially length-bounded.
(b) There exist a partial p-order A and functions b, t ∈ FP such that, for all

x ∈ Σ∗, f(x) = ‖{z | b(x) <A z <A t(x)}‖.
(c) There exist a total p-order A and functions b, t ∈ FP such that, for all

x ∈ Σ∗, b(x) ≤A t(x) and f(x) = ‖{z | b(x) <A z <A t(x)}‖.
Proof. The implications (1c) ⇒ (1b), (1b)⇒ (1a), (2c) ⇒ (2b), and (2b) ⇒ (2a)

are obvious. We prove that (1a) ⇒ (1c) and (2a) ⇒ (2c).
It is easy to see that, for every polynomially length-bounded function f : Σ∗ → N,

there exist a set B ⊆ Σ∗ × Σ∗ and a strictly increasing polynomial p such that
f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖. Note that we may choose B so that, for all
x ∈ Σ∗, (x, 0p(|x|)) �∈ B and (x, 1p(|x|)) �∈ B. If, in addition, f ∈ #P, then B can be
chosen from P.

We construct a total p-order A on Σ∗ as follows. Generally, A will coincide with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|) and x1p(|x|) (inclusively) is ordered differently in the following way.

• First comes x1p(|x|).
• Next come the elements of {xz | |z| = p(|x|) ∧ (x, z) ∈ B} in lexicographical

order.
• Finally come the elements of {xz | |z| = p(|x|) ∧ (x, z) �∈ B ∧ z �= 1p(|x|)} in

lexicographical order.
Note that f(x) = ‖{w | x1p(|x|) <A w <A x0p(|x|)}‖. If, in addition, B ∈ P, then
A ∈ P.

We pass on a referee’s comment that if one feels that putting x0p(|x|) before x1p(|x|)

results in a more natural order, one could slightly tweak the order used and still have
the proof go through.

5. Polynomial-time orders with efficient adjacency checks. We know
from Theorem 4.1 that counting the size of intervals with respect to P-decidable
partial p-orders that have polynomial-time computable boundaries computes some

1270 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

function in #P. The situation changes if in addition we require each P-decidable
partial p-order to have efficient adjacency checks.

Definition 5.1. IFp (respectively, IFt) is the class of all functions f : Σ∗ → N

for which there exist a partial (respectively, total) p-order A ∈ P having efficient
adjacency checks and functions b, t ∈ FP, such that, for every x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖.

The following theorem places the classes IFt and IFp between two well-known
complexity classes.

Theorem 5.2. FP ⊆ IFt ⊆ IFp ⊆ #P.

Proof. The second inclusion follows from the definitions of IFt and IFp, and the
third inclusion follows from Theorem 4.1. Thus, it remains to prove that FP ⊆ IFt.
For each f ∈ FP, there exists a strictly increasing polynomial p such that f(x) <
2p(|x|) − 1. For x ∈ Σ∗ and i < 2p(|x|), let bin(x, i) be the binary description of i
having exactly p(|x|) bits.

We construct a total p-order A on Σ∗ as follows. Generally, A coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|) and x1p(|x|) (inclusively) is ordered in the following way.

• First come the elements of {xbin(x, i) | 0 ≤ i ≤ f(x)} in lexicographical
order.

• Next comes x1p(|x|).
• Finally come the elements of {xbin(x, i) | f(x) < i < 2p(|x|) − 1} in lexico-

graphical order.

Note that A is P-decidable, has efficient adjacency checks, and satisfies f(x) = ‖{w |
x0p(|x|) <A w <A x1p(|x|)}‖.

What else can we say about the relationships between FP, IFt, IFp, and #P? We
start by providing a characterization of IFp based on an important subset of #P. Let
supp(f) denote the support of f , i.e., supp(f) = {x | f(x) �= 0}.

Theorem 5.3. IFp = {f ∈ #P | supp(f) ∈ P}.
Proof. Suppose that f ∈ IFp, via p-order A ∈ P having polynomial-time adja-

cency checks and boundary functions b, t ∈ FP. Note that supp(f) = {x | b(x) ≺A

t(x) ∨ b(x) �≤A t(x)}. Thus, since A ∈ P and A≺ ∈ P, it follows that supp(f) ∈ P
and thus that supp(f) ∈ P. By Theorem 5.2, f ∈ #P. Therefore IFp ⊆ {f ∈
#P | supp(f) ∈ P}.

We now show that {f ∈ #P | supp(f) ∈ P} ⊆ IFp. Suppose f ∈ #P and
supp(f) ∈ P. Since f ∈ #P, there exist a set B ⊆ Σ∗ × Σ∗ from P and a strictly
increasing polynomial p such that f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖.

We construct a partial p-order A on Σ∗ as follows. Generally, A coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|)00 and x1p(|x|)11 (inclusively) is ordered according to the following rules.

1. x0p(|x|)00 <A x0p(|x|)01 <A x0p(|x|)11.
2. The elements from {xz10 | |z| = p(|x|)∧ (x, z) ∈ B} are pairwise incompara-

ble, and all are between x0p(|x|)01 and x0p(|x|)11.
3. The elements from {xz10 | |z| = p(|x|) ∧ (x, z) �∈ B} ∪ {xzσ | |z| = p(|x|) ∧

z �= 0p(|x|) ∧ σ ∈ {00, 01, 11}} are pairwise incomparable, and all are between
x0p(|x|)00 and x0p(|x|)01.

Note that A is P-decidable and satisfies f(x) = ‖{w | x0p(|x|)01 <A w <A

x0p(|x|)11}‖. Define b(x) =def x0p(|x|)01 and t(x) =def x0p(|x|)11. For each x, we
have by the construction of A that b(x) ≺A t(x) if and only if f(x) = 0. Since by
assumption {x | f(x) > 0} ∈ P the set {x | b(x) ≺A t(x)} belongs to P. By our

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1271

construction, all other adjacency questions are very easily answered by the obvious,
efficient test. So A≺ ∈ P.

From this it follows that IFp and #P coincide on Nonzero, defined as the set
{f | (∀x ∈ Σ∗)[f(x) > 0]}.

Corollary 5.4. IFp ∩ Nonzero = #P ∩ Nonzero.

In what follows, we will sometimes write 1 for the function class consisting of
precisely the constant function λx.1, and we will sometimes write O(1) for the function
class consisting of precisely the functions λx.0, λx.1, λx.2,

Corollary 5.5.

1. #P ⊆ IFp - 1.
2. #P - O(1) = IFp - O(1).

From Theorem 5.2 and Corollary 5.5 we can conclude that IFp ⊆ IFp - 1, which
is equivalent to saying that IFp is closed under increment, i.e., for every f ∈ IFp, the
function f ′ is also in IFp, where, for all x ∈ Σ∗, f ′(x) =def f(x) + 1.

Corollary 5.6. The class IFp is closed under increment.

Regarding IFt, we have the following theorem. Note that this theorem’s second
part says that the three function classes IFt, IFp, and #P are so closely related that
in the presence of easy-to-compute subtractive postcomputation adjustments they
become the same. Though it is not concerned with interval functions, we commend
to the attention of the interested reader a beautiful paper by Ogihara et al. [OTTW96]
that studies whether for #P postcomputation adjustments can annihilate even the
effects of various operators.

Theorem 5.7.

1. #P ⊆ IFt - FP.
2. IFt - FP = IFp - FP = #P - FP.

Proof. (1) For f : Σ∗ → N in #P, there exist a set B ⊆ Σ∗ × Σ∗ from P and a
strictly increasing polynomial p such that f(x) = ‖{z | |z| = p(|x|) ∧ (x, z) ∈ B}‖.

We construct a total p-order A on Σ∗ as follows. Generally, A coincides with the
lexicographical order on Σ∗ except that, for every x, the interval between x0p(|x|)+2

and x1p(|x|)+2 (inclusively) is ordered differently in the following way.

• First come the elements of {xz00 | |z| = p(|x|)} in lexicographical order.
• Next come the elements of {xz11 | |z| = p(|x|) ∧ (x, z) ∈ B} ∪ {xz01 | |z| =

p(|x|)} in lexicographical order.
• Finally come the elements of {xz11 | |z| = p(|x|)∧ (x, z) �∈ B}∪{xz10 | |z| =

p(|x|)} in lexicographical order.

Note that A is in P, has efficient adjacency checks, and satisfies ‖{w | x1p(|x|)00 <A

w <A x0p(|x|)10}‖ = f(x) + 2p(|x|).

(2) This follows from Theorem 5.2 and part 1 of the present theorem.

Corollary 5.8. FPIFt = FPIFp = FP#P.

The previous results indicate that the computational power of IFp and IFt are not
far from the computational power of #P. Nonetheless, Theorem 5.10 shows that these
classes cannot coincide unless P = NP. In the proof of Theorem 5.10 we will draw
on the following lemma regarding the application of the ∃ operator to IFp and IFt.
Comparing Lemma 5.9 with Corollary 5.4 and taking into account that ∃·#P = NP,
it turns out that it is precisely the possibility that f(x) = 0 that makes the classes
#P and IFp potentially differ.

Lemma 5.9. ∃· IFp = ∃· IFt = P.

Proof. For L ∈ ∃·IFp there exist a p-order A ∈ P having efficient adjacency checks
and b, t ∈ FP such that, for all x, it holds that x ∈ L ⇔ ‖{z | b(x) <A z <A t(x)}‖ > 0.

1272 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Thus, for all x ∈ Σ∗, x ∈ L ⇔ [b(x) ≤A t(x) and b(x) �≺A t(x)], so x ∈ L can be
checked in polynomial time.

Choose L ∈ P. Thus χL ∈ FP. By Theorem 5.2, χL ∈ IFt, thus L ∈ ∃· IFt.

Theorem 5.10. The following statements are equivalent.

1. P = NP.
2. IFp = #P.
3. IFt = #P.
4. Every P-decidable partial p-order has efficient adjacency checks.
5. Every P-decidable total p-order has efficient adjacency checks.

Proof. (1) ⇒ (4) follows from Corollary 3.2.1. (4) ⇒ (5) is immediate from
the definitions. (5) ⇒ (3) follows from Theorem 4.1.1. (3) ⇒ (2) follows from
Theorem 5.2. To see that (2) ⇒ (1), if IFp = #P then ∃·IFp = ∃·#P. By Lemma 5.9
and Proposition 2.2.3 we have P = NP.

We know from Theorem 5.2 that FP ⊆ IFt. However, if IFt ⊆ FP or even
IFt ⊆ UPSVt, then severe consequences follow.

Theorem 5.11.

1. FP = IFt if and only if P = PP.
2. IFt ⊆ UPSVt if and only if UP = PP.
3. UPSVt ⊆ IFp if and only if P = UP ∩ coUP.

Proof. For items (1) and (2) we consider the left-to-right direction first. From
Theorem 5.7 and Proposition 2.2, we can conclude under the assumption FP = IFt

that PP = ∃ · (#P - FP) = ∃ · (IFt − FP) = ∃ · (FP - FP) = P and we can
conclude under the assumption IFp ⊆ UPSVt that PP = ∃ · (#P - FP) = ∃ · (IFt -
FP) ⊆ ∃ · (UPSVt - FP) = UP ∩ coUP. For the right-to-left directions, if P = PP,
then IFt ⊆ #P ⊆ FP#P = FPPP = FP. Thus, IFt = FP. If UP = PP, then
IFt ⊆ #P ⊆ FP#P = FPPP = FPUP∩coUP = UPSVt.

For item (3), from UPSVt ⊆ IFp, Proposition 2.2, and Lemma 5.9 it follows
that UP ∩ coUP = ∃ · UPSVt ⊆ ∃ · IFp = P. For the right-to-left direction, by
Proposition 2.1.1, P = UP ∩ coUP implies UPSVt = FP. So, by Theorem 5.2,
P = UP ∩ coUP implies UPSVt ⊆ IFp (and even UPSVt ⊆ IFt).

In contrast to Theorem 5.11.3, when restricted to strictly positive functions the
class UPSVt is even included in IFt.

Theorem 5.12. UPSVt ∩ Nonzero ⊆ IFt ∩ Nonzero.

A proof of Theorem 5.12 is in the technical report version [HHKW05] of this
paper. Since UPSVt is closed under increment, Theorem 5.12 yields the following
corollary.

Corollary 5.13. UPSVt ⊆ IFt - 1.

Corollary 5.6 showed that the class IFp is closed under increment. This is also
true for the class IFt.

Theorem 5.14. The class IFt is closed under increment.

Proof. For f ∈ IFt there exist a P-decidable p-order A on Σ∗ with efficient adja-
cency checks and functions b, t ∈ FP such that, for all x ∈ Σ∗, f(x) = ‖{w | b(x) <A

w <A t(x)}‖. Without loss of generality we may require that b(x) ≤A t(x), since on
inputs not satisfying that we may modify t(x) to output b(x). Let p be a strictly
increasing polynomial such that, for all y ∈ Σ∗ satisfying y ≤A t(x), |y| < p(|x|).

We construct a total p-order A′ on Σ∗ as follows. Generally, A′ coincides with
the lexicographical order on Σ∗ except that, for every x ∈ Σ∗, the interval between
x0p(|x|)+2 and x1p(|x|)+2 (inclusively) is ordered in the following way.

• First comes x0p(|x|)+2.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1273

• Next come the elements of Dx =def {x0p(|x|)−|z|1z0 | b(x) ≤A z ≤A t(x)}, for
which we set x0p(|x|)−|y|1y0 ≤A′ x0p(|x|)−|z|1z0 if and only if y ≤A z.

• Finally come the elements of {xu | |u| = p(|x|) + 2} − (Dx ∪ {0p(|x|)+2}) in
lexicographical order.

Note that A′ is P-decidable, that it has efficient adjacency checks, and that f(x)+1 =
‖{w | x0p(|x|)+2 <A′ w <A′ x0p(|x|)−|t(x)|1t(x)0}‖.

Corollary 5.15. IFt ⊆ IFt - 1.

Although the statement “UPSVt = IFt” is not likely to be true (see Theo-
rem 5.11), for the case of strictly positive, polynomially bounded functions the analo-
gous statement holds. We define PolyBounded =def {f | (∃ polynomial p)(∀x)[f(x) ≤
p(|x|)]}.

Theorem 5.16.

1. IFt ∩ PolyBounded ⊆ UPSVt ∩ PolyBounded.
2. IFt ∩ PolyBounded ∩ Nonzero = UPSVt ∩ PolyBounded ∩ Nonzero.
3. UPSVt ∩ PolyBounded ⊆ IFp ∩ PolyBounded if and only if P = UP ∩ coUP.

A proof of Theorem 5.16 is in the technical report version [HHKW05] of this
paper.

From Theorem 4.1 we know that total p-orders that are efficiently decidable and
partial p-orders that are efficiently decidable describe the same class of functions in
our setting (namely #P). If we consider p-orders that additionally have efficient
adjacency checks, then the analogous confluence of total and partial does not hold
unless an unexpected complexity class collapse occurs.

Theorem 5.17. If IFt = IFp, then UP = PH.

Proof. Assume that IFt = IFp. We show that coNP ⊆ UP (which is equivalent to
the statement UP = PH). Let L ∈ coNP, i.e., there is a function f ∈ #P such that, for
all x ∈ Σ∗, x ∈ L ⇔ f(x) = 0. Consider the function f ′, where f ′(x) =def f(x) + 1.
Thus x ∈ L ⇔ f ′(x) = 1 and, since #P is closed under increment, we conclude
that f ′ ∈ #P ∩ Nonzero = IFp ∩ Nonzero = IFt ∩ Nonzero. Thus, there exist a
total p-order A ∈ P with efficient adjacency checks and functions b, t ∈ FP such that
f ′(x) = ‖{z | b(x) <A z <A t(x)}‖. Let q be a polynomial such that (x, y) ∈ A implies
|x| ≤ q(|y|). Define M to be a machine that, on input x ∈ Σ∗, nondeterministically
guesses z such that |z| ≤ q(|t(x)|) and checks whether b(x) ≺A z ≺A t(x). Clearly,
M runs in polynomial time (since A has efficient adjacency checks) and always has
at most one accepting path (since A is a total p-ordering and we are doing two
adjacency checks in our test). Moreover, x ∈ L if and only if M on x has an accepting
computation path. Thus, L ∈ UP.

6. Arbitrary orders with efficient adjacency checks. In the previous sec-
tion, we studied polynomial-time-decidable p-orders having efficient adjacency checks.
We showed that the classes defined by interval size functions over such orders, IFp

and IFt, are very close to #P. In the present section, we consider what happens when
we do not insist on polynomial-time decidability for the order but still require efficient
adjacency checks. Section 6.1 presents our results on this. Due to its complexity and
length, the proof of one key claim of that section, Lemma 6.5, is presented separately
as section 6.2.

6.1. Results on arbitrary orders with efficient adjacency checks. In this
section, we study p-orders that have efficient adjacency checks but that are not re-
quired to be polynomial-time decidable. We define two classes to capture this behav-
ior.

1274 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Definition 6.1. The class IF∗
p (respectively, IF∗

t) is the set of all functions
f : Σ∗ → N for which there exist a partial (respectively, total) p-order A having
efficient adjacency checks and functions b, t ∈ FP such that, for every x ∈ Σ∗, f(x) =
‖{z | b(x) <A z <A t(x)}‖.

We have the following inclusions between classes of interval size functions and
other complexity classes of functions.

Proposition 6.2. IFt ⊆ IF∗
t ⊆ IF∗

p ⊆ FPSPACE(poly) and IFt ⊆ IFp ⊆
IF∗

p ∩ #P ⊆ #P ⊆ FPSPACE(poly).
Proof. The only inclusion that is nontrivial is IF∗

p ⊆ FPSPACE(poly). Let f be in
IF∗

p via a partial p-order A having efficient adjacency checks and functions b, t ∈ FP.
Let p be a polynomial such that, for all x, y ∈ Σ∗, (x, y) ∈ A implies |x| ≤ p(|y|).
From Proposition 3.1 we know that A is in PSPACE. Thus, there is a polynomial-
space Turing machine M that, for any input x ∈ Σ∗, counts by brute force how many
strings z of length at most p(|t(x)|) satisfy b(x) <A z <A t(x). We may thus conclude
that f is in FPSPACE(poly).

The main results of this section show that the computational powers of IF∗
p and

IF∗
t are close to the computational power of FPSPACE(poly). In fact, within the

flexibility of the simple postcomputation adjustment of subtracting polynomial-time
computable functions, these three classes become the same.

Theorem 6.3. IF∗
t - FP = IF∗

p - FP = FPSPACE(poly) - FP.
Theorem 6.4. ∃ · IF∗

t = ∃ · IF∗
p = PSPACE.

Theorem 6.4 can be interpreted to say something a bit surprising about the com-
plexity of reachability, namely, that in a certain sense reachability checking in suc-
cinctly specified chains is PSPACE-complete. To see this, we reason as follows. There
exist PSPACE-complete problems. So from that and Theorem 6.4, in light of Defini-
tion 6.1, we have that there are a total p-order A and functions b, t ∈ FP such that the
set {x | f(x) > 0} is PSPACE-complete, where f(x) = ‖{z | b(x) <A z <A t(x)}‖. To
interpret this all in terms of reachability in a succinctly specified chain, we can view
A as specifying an infinite chain such that a has an edge to b precisely if b is right-
adjacent to a. Testing whether f(x) > 0 is asking “Is it the case that both (a) t(x) is
not right-adjacent to b(x), and (b) there is a path from b(x) to t(x) within the chain?”
Note that the “(a)” part of this test is a polynomial-time test, so the complexity is
coming from the “(b)” part. Thus, in the sense just mentioned, Theorem 6.4 shows
the unexpected result that even for succinctly, simply specified chains, reachability
testing where the “to” and “from” elements are indirectly polynomial-time specified
by the input is PSPACE-complete. However, the problem just discussed, where the
“to” and “from” elements are determined by polynomial-time computable functions
of the input, can easily be seen—being careful of course about condition “(a)” from
above—to polynomial-time many-one reduce to the more flexible case in which the
“to” and “from” elements are the input. And so we have that there exists a set
A ⊆ N

2, A ∈ P, such that the directed graph (N, A) is a chain and its reachability
problem,

{(x, y) | x, y ∈ N and y is reachable from x in (N, A)},

is PSPACE-complete. Even in light of the existing results showing that many problems
about succinctly specified graphs are hard, and often PSPACE-complete (see [Wag84,
Wag86, PY86, GW83], but for contrast see also [HHW05, NT05]), this result, which
speaks to succinctly specified chains, seems surprising. (These comments all regard
the “total” part of Theorem 6.4. The “partial” part of Theorem 6.4 implies the

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1275

analogous but far less surprising claim for succinctly specified graphs (as opposed to
succinctly specified chains), and in fact would give one an alternate way of seeing
the known (see [Wag84, Wag86, PY86, GW83]) result that the graph reachability
problem in succinctly specified graphs is PSPACE-complete. By the way, PSPACE-
completeness is known from those earlier works to still hold even when the graphs are
restricted to outdegree one (see [Wag84, Wag86, PY86, GW83], and the discussion in
[Tan01]), which brings one somewhat closer to the chains cases mentioned above.)

Theorems 6.3 and 6.4 follow immediately from Proposition 6.2 and the following
lemma, whose proof is deferred to section 6.2.

Lemma 6.5. For each f ∈ FPSPACE(poly), there exist a total p-order A having
efficient adjacency checks and polynomial-time computable functions s : N → N, b :
Σ∗ → Σ∗, b′ : Σ∗ → Σ∗, and t : Σ∗ → Σ∗ such that, for all x ∈ Σ∗,

1. s is polynomially bounded,
2. ‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2, and
3. ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.

As a consequence of Theorems 6.3 and 6.4, we obtain characterizations for the
class FPSPACE(poly) in terms of IF∗

t . For classes F and G of functions from Σ∗ to
N, let F � G denote the class of all total, nonnegative functions in F - G, i.e., the
class of all total functions h for which there exist total functions f ∈ F and g ∈ G
such that, for all x ∈ Σ∗, f(x) ≥ g(x) and h(x) = f(x) − g(x).

Corollary 6.6.

1. FPSPACE(poly) = IF∗
t � FP = FPIF∗

t = FP∃·IF∗
t .

2. FPSPACE(poly) = IF∗
p � FP = FPIF∗

p = FP∃·IF∗
p .

Proof. Regarding part 1, by Theorem 6.3, Proposition 6.2, and Theorem 6.4
we have FPSPACE(poly) ⊆ IF∗

t � FP ⊆ FPIF∗
t ⊆ FPFPSPACE(poly) ⊆ FPPSPACE

⊆ FP∃·IF∗
t ⊆ FPPSPACE ⊆ FPSPACE(poly). Part 2 holds by the same inclusion

chain applied to IF∗
p.

Though Theorem 6.3 shows that IF∗
t is almost as powerful as FPSPACE(poly),

the following theorem shows that it is unlikely that IF∗
t actually coincides with

FPSPACE(poly).

Theorem 6.7. If FPSPACE(poly) ⊆ IF∗
p, then UP = PSPACE.

Proof. Suppose that FPSPACE(poly) ⊆ IF∗
p. Let L ∈ PSPACE. Then its

characteristic function χL is in FPSPACE(poly), and by hypothesis χL ∈ IF∗
p via

some partial p-order A having efficient adjacency checks, some polynomial p such that
(x, y) ∈ A implies |x| ≤ p(|y|), and functions b, t ∈ FP such that χL(x) = ‖{z | b(x) <A

z <A t(x)}‖. Note that L = {x | (∃z)[|z| ≤ p(|t(x)|) ∧ b(x) ≺A z ≺A t(x)]}. Thus,
keeping in mind that (∀x)[χL(x) ≤ 1], we have L ∈ UP.

From Theorems 6.3 and 6.4, if IF∗
t = IFt or IF∗

t ⊆ #P - FP, then strong conse-
quences follow, as the following two corollaries show.

Corollary 6.8. The following statements are equivalent.

1. P = PSPACE.
2. IFp = IF∗

p.
3. IFt = IF∗

t .
4. Every partial p-order with efficient adjacency checks is P-decidable.
5. Every total p-order with efficient adjacency checks is P-decidable.

Proof. (1) ⇒ (4) is just Corollary 3.2.2. (4) ⇒ (5) is trivial. (4) ⇒ (2) and (5)
⇒ (3) follow from the definitions of IFp, IF∗

p, IFt, and IF∗
t . By Theorem 6.4 and

Lemma 5.9, (2) implies PSPACE = ∃·IF∗
p = ∃·IFp = P and so implies (1). Similarly,

(3) implies PSPACE = ∃· IF∗
t = ∃· IFt = P and so implies (1).

1276 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Corollary 6.9.

1. If IF∗
t ⊆ #P - FP, then SPP = PSPACE.

2. If IF∗
t ⊆ #P, then NP = SPP = PSPACE.

Proof. (1): For L ∈ PSPACE, χL ∈ FPSPACE(poly). By Proposition 6.2, Theo-
rem 6.3, and our assumption, χL ∈ #P - FP. Thus, L ∈ SPP.

(2): From Theorem 6.4 and our hypothesis, we obtain PSPACE ⊆ ∃ · #P =
NP. Combining this with the first part of this theorem we have SPP = NP =
PSPACE.

The next result is analogous to results regarding the potential equality of IFt and
IFp.

Theorem 6.10. If IF∗
t = IF∗

p, then UP = PH.
Proof. The proof follows the proof of Theorem 5.17, except that, for the function

there called f ′, we now conclude that f ′ ∈ #P ∩ Nonzero = IFp ∩ Nonzero ⊆ IF∗
p ∩

Nonzero = IF∗
t ∩ Nonzero. This approach works because the hypothesis f ′ ∈ IF∗

t can
be exploited in the same way as the hypothesis f ′ ∈ IFt was exploited in the proof of
Theorem 5.17. This is because in the proof of Theorem 5.17 the P-decidability of the
total p-order underlying f ′ ∈ IFt was not even used.

Figure 1 summarizes the results we have obtained regarding the inclusion struc-
ture of our classes. Although we have not proven consequences of collapses other than
those drawn in the figure, we conjecture that the inclusions in the figure are all one
can prove without assuming unexpected collapses of complexity classes.

6.2. Proof of Lemma 6.5. The goal of this section is to prove Lemma 6.5. For
convenience, we repeat its statement here.

Lemma 6.5. For each f ∈ FPSPACE(poly), there exist a total p-order A having
efficient adjacency checks and polynomial-time computable functions s : N → N, b :
Σ∗ → Σ∗, b′ : Σ∗ → Σ∗, and t : Σ∗ → Σ∗ such that, for all x ∈ Σ∗,

1. s is polynomially bounded,
2. ‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2, and
3. ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.

Constructing the p-order A mentioned in Lemma 6.5 is, compared to the other p-
orders described in this paper, more technically involved. Before we prove Lemma 6.5,
we will show, for any f ∈ FPSPACE(poly), how to construct A based on the behavior
of a Turing machine that computes f . We will then prove Lemma 6.5 by showing
that A has all the properties claimed by the lemma.

Our approach is based on the fact that, for any deterministic Turing machine M
and any halting configuration c of M , the set of all configurations of M that lead to
c form a tree having c as its root and as its edges every pair of configurations where
in one time step M moves from one configuration to the other. We base the order
of A on a traversal of these trees. Each argument to A encodes either nonsense or
an input to M , a configuration of M whose length is bounded in the space bound on
M(x), a direction relative to the traversal of the tree to which the given configuration
belongs, a guess as to what the eventual halting configuration of M will be when
run from the given configuration, and some additional information we describe later.
These arguments effectively yield multiple copies of each tree. The order A organizes
the arguments in such a way that, in the case of Lemma 6.5.2 (Lemma 6.5.3 uses
basically the same approach) b(x) and t(x) delimit an interval that has two elements
for every configuration within the space bound imposed by M(x), and f(x) additional
elements.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1277

UPSVt

IFp � 1

U
P

=
P
SP

A
C
E

P
=

P
SPA

C
E

SP
P

=
P
SPA

C
E

UP
=

PP

P
=

UP
∩ co

UP

UP = PH

NP = PP

P = NP

UP = PH

P = PP

U
P

=
S
P
P

IFt � 1

IF∗
p

IFp

#P

FP

#P � FP = IFp � FP = IFt � FP

IF∗
t

FPSPACE(poly) = IF∗
p � FP = IF∗

t � FP = FPIF∗
p = FPIF∗

t = FP∃·IF∗
p = FP∃·IF∗

t

P
=

UP
∩ co

UP

UP = PH

IFt

P
=

P
SPA

C
E

UP = PP

Fig. 1. The landscape of interval size function classes and related function classes. An equation
E on the edge between the function classes F1 and F2 means that F1 = F2 implies E. The edge
equations that are not immediate consequences of the results of this paper are well-known or easy to
see. Since FP, which forms the base of this containment tower, is of type Σ∗ → N, the fact that in
the above figure we use “�” rather than “-” is of no consequence.

The key “trick” in this construction is the sequence of “guess bits” each argument
to A has, which allow us to send along each tree “messages” that link each config-
uration to its actual halting configuration. We “pad” A, near arguments containing
initial configurations, with as many additional arguments as the guess bits predict.
We of course do not know at this point (i.e., “near” an initial configuration) if the
guess is correct. However, by the end of the computation we do know. So we simply
place together in A all trees corresponding to correct guesses and set, in the case of
Lemma 6.5.2, b(x) and t(x) to the boundaries of this interval (which “squeezes out”
from the desired interval all incorrect guesses). This yields the claimed results.

We will construct A in five phases, described as follows.

1. Fixing the computational model. We will base A on a Turing machine
M that computes f in a natural but somewhat nonstandard way. The benefit
of using M rather than an arbitrary FPSPACE(poly) Turing machine for f
is that it will be easier to work with binary encodings of the configurations

1278 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

of M and the actions of M than with those of an arbitrary FPSPACE(poly)
Turing machine for f .

2. Fixing the encoding. We will base A on binary encodings of the con-
figurations of M , which we call enhanced instantaneous descriptions. Our
encodings are like standard instantaneous descriptions (IDs) [HMU01] but
differ in three crucial ways. First, our encodings are actual binary strings
rather than sequences of abstract symbols. Second, we use different syntax
(which we describe below). Finally, our descriptions contain more informa-
tion than is actually needed to describe a configuration of M at an instant in
time. This additional information is never accessed by M , so its presence in
the encodings does not affect the performance of M . At the same time, its
presence will greatly aid us in constructing A.

3. Building trees. For some appropriate polynomial s, we will, for each x ∈ Σ∗,
define a tree whose nodes are enhanced instantaneous descriptions of M and
whose edges are based on the next move function of M . This tree will have
a subtree Tx having exactly 22s(|x|) nodes.

4. Traversing the trees. We will associate multiple strings with each node
in the tree described above (by padding the labels of the nodes) in such a
way that f(x) + 2 strings are associated with one of the nodes in Tx and
two strings are associated with each of the remaining 22s(|x|) − 1 nodes in Tx.
We will then define a total, one-to-one, polynomial-time computable function
DM over these strings in such a way that DM , applied repeatedly to some
appropriate starting point, represents a traversal of the tree such that the
traversal visits each of these strings once, i.e., from a particular one of the
strings z associated with the root of the tree, for each string y associated

with some node of the tree there is an integer i ∈ N such that D
(i)
M (z) = y,

where D
(0)
M (z) = z, and, for each i ∈ {1, 2, 3, . . . }, D(i)

M (z) = DM (D
(i−1)
M (z)).

Moreover, for strings w and y, DM (w) = y only if the nodes associated with
w and y are related (i.e., parent/child, sibling, or identical nodes).

5. Constructing A. We will base A on DM . For example, A crucially will
have the property that if w and z are two of the strings described in Phase 4,
then w ≺A z if and only if z = DM (w). Note there will also be many strings
on which DM is not defined that will nonetheless have to be accounted for.
Through careful encoding at each phase in the construction, it will be easy
to account for these strings in such a way that A has all the properties we
desire.

After we handle these five phases, we will prove Lemma 6.5. We now proceed with
the construction. Please note that, due to the length of this construction, we overload
certain variables. For instance, the variable t denotes both a function over strings and
over natural numbers, and has distinct semantics in each case. Over strings it is the
function that determines the “bottom” of an interval (i.e., it is used as it typically is
throughout this paper), and over the natural numbers it bounds the amount of space
needed for part of the encodings we use.

Phase 1: Fixing the computational model. Let M = (Q,Σ,Γ, δ, B, q0, F)
be a Turing machine that computes f , where

• Q is the set of state symbols,
• Σ = {0, 1} is the set of input symbols,
• B is the blank symbol,
• Γ ⊇ {0, 1, B} is the set of allowable tape symbols,

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1279

• δ is the next move function, i.e., a mapping from Q× Γ to Q× Γ × {−1, 1},
• q0 is the start state, and
• F ⊆ Q is the set of final states.

We assume that M has the following properties.
• For some m ∈ N, ‖Q‖ = ‖Γ‖ = 2m (any Turing machine not having this prop-

erty can be turned into one having this property by adding extra “dummy”
states and symbols to its current sets of state and tape symbols, respectively).
Since Γ ⊇ {0, 1, B}, m ≥ 2.

• F contains a single element, qf , and q0 �= qf .
• M has a single, one-way infinite tape (a standard PSPACE(poly) Turing

machine would have distinct input, output, and work tapes). On no input x
does a true run of M move off the left end of the tape. (One way to ensure
that M has this latter property is to include the symbols, 0e, 1e, and Be

in Γ. These symbols will be used, exactly on the leftmost cell of the tape,
as replacements for 0, 1, and B. We can then construct M so that it is in
its start state just once, namely at the beginning of the run, and that, from
its start state, it always replaces the then-current symbol (which, in a true
run, will always be located in the leftmost tape cell and will be either 0, 1,
or B) not with whatever symbol it would normally write during that step
but rather with the appropriate analogue among 0e, 1e, and Be. Similarly,
our machines can be forced to be such that they attempt to ensure that at
all future times this left-marking is preserved, i.e., a 0e/1e/Be-marker square
may be changed during the run but just among 0e, 1e, and Be, as appropriate.
A Turing machine constructed in this way can, on any true run, determine
when it is about to (were it to mindlessly perform the simulation of the
underlying machine) move off the left end, and can indeed handle—without
itself running off the left end and in a fashion that is consistent in effect with
whatever standard behavior (typically either rejection or “bouncing off” the
left end) we in our notion of Turing machines associate with attempting to
go off the left end—the left-end move-off that was about to happen.)

• δ on input (q, r) ∈ Q× Γ is defined if and only if (q, r) �∈ {qf} × Γ.
• For all r ∈ Γ and all i ∈ {−1, 1}, (q0, r, i) is not in the image of δ. (That is,

nothing moves to the start state.)
• For all x ∈ Σ∗, M on input x halts with y ∈ Σ∗ written on its |y| leftmost tape

cells, where y is the shortest binary representation of f(x) (i.e., no leading
zeros, unless f(x) = 0), and with every other tape cell containing the blank
symbol.

• There is a strictly increasing polynomial p such that, on each input x ∈ Σ∗,
M uses, at most, p(|x|) tape cells and p(|x|) > 0.

Phase 2: Fixing the encoding. We now describe the binary encoding we use
to describe the configurations of M . Figure 2 provides an overview of this phase of
the construction. Let ϕ : Q → {0, 1}m be a total bijection (recall that ‖Q‖ = 2m

and m ≥ 2) such that ϕ(q0) = 0m and ϕ(qf) = 1m. The function ϕ−1 denotes the
unique total bijection from {0, 1}m to Q that inverts ϕ. Let θ : Γ → {0, 1}m be a
total bijection (recall that ‖Γ‖ = 2m and m ≥ 2) such that θ(B) = 0m, θ(0) = 1m−10,

and θ(1) = 1m. Define θ̂ : Γ∗ → ({0, 1}m)∗ recursively as θ̂(ε) = ε, and, for all y ∈ Γ

and w ∈ Γ∗, θ̂(wy) = θ̂(w)θ(y). Since θ̂ is also a bijection, we use θ̂−1 to denote the

unique total bijection from ({0, 1}m)∗ to Γ∗ that inverts θ̂.
We define the “partially encoded” next move function δ′ : {0, 1}m × {0, 1}m →

1280 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

enhanced ID

standard ID X0X1 · · ·XbqXb+1Xb+2 · · ·Xa−1

X0X1 · · ·Xb−1q
′XbX

′
b+1Xb+2 · · ·Xa−1

μ

xq′c′w′X0X1 · · ·XbX
′
b+1Xb+2Xb+3 · · ·Xa−1

xqcwX0X1 · · ·Xa−1

μ

Fig. 2. A brief comparison between standard instantaneous descriptions (IDs) and the enhanced
IDs we use. Before the computation step illustrated above, the tape head is at cell b + 1 and the
machine is in state q. Afterwards, the head is at cell b and the machine is in state q′. The symbol
μ represents the next move function. In standard IDs, the state q appears immediately before the
tape cell that the head is currently visiting (e.g., in the case illustrated above, cell b + 1 before the
move and b afterwards). Our enhanced IDs contain additional strings: x, c, and w. The string
x encodes the input to the Turing machine, c encodes the number of computation steps the Turing
machine has performed so far, and w is the position of the tape head. The state string remains in
the same place throughout the computation, and instead w is updated with the position of the tape
head. Thus, w encodes the number b + 1 (i.e., the position of the tape head before the computation
step), and w′ encodes b (i.e., the position of the tape head after the computation step). The strings
c and c′ also represent numbers, where the number encoded by c′ is one greater than the number
encoded by c. For more details on eIDs and encodings, see the text.

{0, 1}m × {0, 1}m × {−1, 1} on input (q, r) ∈ {0, 1}m × {0, 1}m as δ′(q, r) = (ϕ(q′),
θ(r′), i), where q′, r′, and i are specified by δ(ϕ−1(q), θ−1(r)) = (q′, r′, i).

Recall that Σ = {0, 1}. Define ν : Γ∗ → N recursively as ν(ε) = 0 and, for each
y ∈ Γ and w ∈ Γ∗,

ν(wy) =

⎧⎪⎪⎨
⎪⎪⎩

1 + 2ν(w) if y = 1 ∧ w ∈ Σ∗

2ν(w) if y = 0 ∧ w ∈ Σ∗

ν(w) if y = B
0 otherwise.

This has the property that if z ∈ Σ∗B∗, then ν(z) is the natural number that z
represents in binary. And if z ∈ Γ∗ − Σ∗B∗, then ν(z) = 0.

We also need the following notation. For any domain S, any (possibly partial)

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1281

function h : S → S, any i ∈ N, and any s ∈ S, we define h(i)(s) as

h(i)(s) =def

⎧⎪⎪⎨
⎪⎪⎩

s if i = 0
h(h(i−1)(s)) if i > 0 ∧ (h(i−1)(s) is defined)∧

(h(i−1)(s) ∈ domain(h))
undefined otherwise.

Note that if h(a) is undefined, then so, for example, will be h(1)(a) and h(2)(a).
All logarithms in this paper are base two, i.e., logm means log2 m. Define func-

tions r, s, and t on input n ∈ N as r(n) =def �log p(n)� (recall that, by assumption, on
any input of length n, M uses at most p(n) tape cells and p(n) > 0), t(n) =def m2r(n),
and s(n) =def m + r(n) + t(n).

Let eID =def

⋃∞
n=0{0, 1}n+2s(n) be the set of enhanced instantaneous descriptions

of M . Informally speaking, for each n ∈ N and x ∈ Σn, q ∈ {0, 1}m, c ∈ Σs(n),
w ∈ Σr(n), and X0, X1, . . . , X2r(n)−1 ∈ Σm, the string xqcwX0X1 · · ·X2r(n)−1 ∈ eID is
interpreted as follows.

• The string x represents the input to f .
• The string q represents the instantaneous state of M .
• The string c will be used as an external clock (“external” because it is not

maintained by M itself but rather by an “outside observer”) to count the
number of computational steps M has made so far. The presence of the
external clock will allow us to adapt the next move function of M to the
enhanced instantaneous descriptions of M in such a way that cycles never
occur, even if M from a particular configuration may cycle. Note that, since
the number of tape cells M uses is polynomially bounded in the length of its
input, we need only a polynomial amount of bits for the clock. Intuitively
speaking, if the clock “runs out of time” by running out of bits, then (assuming
we chose a large enough polynomial to control the number of clock bits) we
know that a cycle has occurred.

• The string w encodes the instantaneous position of the tape head, i.e., a
position of 0 or 1 or . . . or 2r(|x|) − 1 is encoded (respectively) by the string
0r(x) or 0r(x)−11 or . . . or 1r(x).

• The strings X0, X1, . . . , X2r(n)−1 represent the instantaneous contents of the

leftmost 2r(n) tape cells of M .
Note that the second, fourth, and fifth sections of the string described above (i.e., q,
w, and X0, X1, . . . , X2r(n)−1) are already sufficient to describe M at any instant. Note
also that, because s, r, and t are all polynomial-time computable and nondecreasing,
we can, in polynomial time, for each n ∈ N and each z ∈ Σn+2s(n), compute from
z the value n and the locations of the five above-described sections of z, and these
locations are well-defined.

For each x ∈ Σ∗, we call x0m0s(|x|)0r(|x|)ϕ(x)0t(|x|)−|ϕ(x)| = x02s(|x|)−t(|x|)ϕ(x)
0t(|x|)−|ϕ(x)| ∈ eID the initial configuration of M on x, denoted iM,x. The string iM,x

represents a configuration on which M would be started under “normal usage.” Note
that eID contains strings that represent configurations of M that are never reached
under “normal usage.” From these “unreachable” configurations, M may run forever
or attempt to move off the left end of the tape. (Note that the true run of M on
input x certainly does not run forever, since M is computing an FPSPACE(poly)
function and FPSPACE(poly) is a class of total functions, and our model of function
computing requires M to halt in order for it to compute a value. Recall that we
assume that on no true run of M on input x will M attempt to move off the left end

1282 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

of the tape. We did not explicitly discuss the semantics of attempting to move off the
left end of the tape, but the point of the comment above is that even if our model of
computing FPSPACE(poly) functions is such that moving off the left end of the tape
is considered like running forever and makes a function be undefined on the input,
and so never happens on a true run of a machine computing an FPSPACE(poly)
function, it nonetheless may be the case that such a machine when started at some
“unreachable” configuration might attempt to run off the left end of the tape.)

We define a move over eID via a function μ : Σ∗ → Σ∗ that we will define now.
An important consideration in the design of μ is to exploit the additional information
present in the enhanced IDs to guarantee that μ never loops and that it always “ends”
(i.e., returns the value undefined) “gracefully” (in a sense that will soon become clear,
including, for example, that it does not blindly try to move off the left end of the tape).

For each x ∈ Σ∗, c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), X0, X1, . . . , X2r(|x|)−1 ∈ {0, 1}m,
and q ∈ {0, 1}m − {1m},

μ(xqcwX0X1 · · ·X2r(|x|)−1) =def(1)

xq′c′w′X0X1 · · ·Xν(w)−1Y Xν(w)+1Xν(w)+2 · · ·X2r(|x|)−1

if

δ′(q,Xν(w)) is defined ∧ c �= 1s(|x|) ∧ 0 ≤ ν(w) + i < 2r(|x|),(2)

where

δ′(q,Xν(w)) = (q′, Y, i), c′ ∈ {0, 1}s(|x|), w′ ∈ {0, 1}r(|x|),
ν(c′) = ν(c) + 1, and ν(w′) = ν(w) + i,

and

μ(xqcwX0X1 · · ·X2r(|x|)−1) =def x1mcwX0X1 · · ·X2r(|x|)−1(3)

otherwise. If q = 1m, μ(xqcwX0X1 · · ·X2r(|x|)−1) is undefined. For all y �∈ eID, μ(y)
is undefined. It is easy to see that the behavior of μ described by (1) is roughly
analogous to the behavior of δ. Indeed, for all x ∈ Σ∗, there exists a number j ∈ N

such that μ(j)(iM,x) = x1mcwz, where c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), z ∈ {0, 1}t(|x|),
ν(c) = j, and ν(θ̂−1(z)) = f(x). Equation (3) enforces “gracefulness” by detecting
when the configuration encoded by the input string is about to move off the left end of
the tape or is about to use too much tape or has a “c” value that has already reached
2s(|x|) (note that no actual run can ever run more than 2s(n) steps without running
forever, but running forever can never happen on actual runs since all functions in
FPSPACE(poly) are total). In such cases, μ simply changes the state bits to represent
the final state (i.e., 1m).

Proposition 6.11 collects several easy-to-see properties of μ.
Proposition 6.11.

1. The function μ is polynomial-time computable.
2. The function μ is length-preserving, i.e., for all w ∈ Σ∗, if μ(w) is defined,

then |w| = |μ(w)|.
3. For all x ∈ Σ∗, all w ∈ {0, 1}2s(|x|)−m, and all q ∈ {0, 1}m, μ(xqw) is defined

if and only if q �= 1m.
4. For all w ∈ Σ∗, there exists a number j such that μ(j)(w) is undefined.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1283

x1mcy

iM,x

(eIDx, Ex)

Fig. 3. The directed forest (eIDx, Ex). Note that precisely one tree in the digraph (eIDx, Ex)
has iM,x as a node, and note that in that tree iM,x will be a leaf node. For some c and y satisfying

c ∈ {0, 1}2s(|x|)−t(|x|)−m, y ∈ {0, 1}t(|x|), and ν(θ̂−1(y)) = f(x), that tree will have as its root node
x1mcy.

5. In polynomial time we can, for each z ∈ Σ∗, enumerate all y such that μ(y) =
z.

6. For each w ∈ eID and each j ∈ N
+, if μ(j)(w) is defined, then μ(j)(w) �= w.

Proof. All items are easy to see. However, item 5 deserves some additional
explanation. To perform this enumeration, if z �∈ eID, then there is no y such that
μ(y) = z. If z ∈ eID, then examine the next move function of M to determine the
configurations from which M in one step will move into the configuration encoded
by z. There are only a constant number of such configurations. Output the strings
of length |z| that encode these configurations. This takes care of all preimages of z
that satisfy equation (2). If, for some x ∈ Σ∗, c ∈ {0, 1}s(|x|), w ∈ {0, 1}r(|x|), and
X0, X1, . . . , X2r(|x|)−1 ∈ {0, 1}m it holds that z = x1mcwX0X1 · · ·X2r(|x|)−1 (i.e., if z
satisfies the conditions of equation (3)) then, for each q ∈ {0, 1}m − {1m} such that
xqcwX0X1 · · ·X2r(|x|)−1 does not satisfy equation (2), output xqcwX0X1 · · ·X2r(|x|)−1.
This takes care of all preimages of z that do not satisfy equation (2).

Phase 3: Building trees. For each x ∈ Σ∗, let

eIDx = {xw | w ∈ {0, 1}2s(|x|)}

and

Ex = {(xw, xz) | xw, xz ∈ eIDx ∧ μ(xw) = xz}.

A directed forest is an acyclic digraph in which all nodes have outdegree at most one.
Note that the digraph (eIDx, Ex) has outdegree at most one. By Proposition 6.11.6,
(eIDx, Ex) is acyclic. Thus, (eIDx, Ex) is a directed forest (see Figure 3).

1284 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

For each x ∈ Σ∗, let (keep in mind that given the string xw ∈ eID, it is easy to
identify x and w)

eID′x = {xwy | xw ∈ eIDx ∧ y ∈ {0, 1}t(|x|)}

and

E′
x = {(xwy, xzy) | w ∈ {0, 1}2s(|x|) ∧ y ∈ {0, 1}t(|x|) ∧ xwy ∈ eID′x ∧ μ(xw) = xz}.

Note that the digraph (eID′x, E
′
x) is a directed forest, and that, for each tree in

(eIDx, Ex), there are exactly 2t(|x|) corresponding trees in (eID′x, E
′
x) (see Figure 4

for a pictorial preview of this part of the construction).
Let Rx =def {xwy ∈ eID′x | w ∈ {0, 1}2s(|x|)∧y ∈ {0, 1}t(|x|)∧(μ(xw) is undefined)}.

Note that, by Proposition 6.11.3, Rx = {xwy ∈ eID′x | w ∈ {0, 1}2s(|x|) ∧ y ∈
{0, 1}t(|x|) ∧ (xw is the root of a tree in (eIDx, Ex))} = {x1mwy ∈ eID′x | w ∈
{0, 1}2s(|x|)−m ∧ y ∈ {0, 1}t(|x|)}. Let ≤Rx denote the order (with <Rx and ≺Rx

denoting the corresponding “less than” and “predecessor” relations, respectively) de-
fined over Rx that is determined by the following sequence. (The reader is cautioned
that in what follows “w” is used as a variable to catch substrings of various lengths
other than the 2s(|x|)-length strings it has been primarily used for so far.)

• First come the elements of {xwyy ∈ Rx | w ∈ {0, 1}2s(|x|)−t(|x|) ∧ y ∈
{0, 1}t(|x|)} in lexicographic order. Note that the last element in this sequence
is x12s(|x|)+t(|x|).

• Next come the elements of {xwdy ∈ Rx | w ∈ {0, 1}2s(|x|)−t(|x|) ∧ d, y ∈
{0, 1}t(|x|) ∧ d �= y} in lexicographic order. Note that the last element in this
sequence is x12s(|x|)+t(|x|)−10.

For each x ∈ Σ∗, w ∈ {0, 1}2s(|x|), and y ∈ {0, 1}t(|x|), we define μ1 : Σ∗ → Σ∗, on
input xwy, as

μ1(xwy) =

{
μ(xw)y if xwy �∈ Rx

xz if xwy ∈ Rx ∧ xwy �= x12s(|x|)+t(|x|)−10, where xwy ≺Rx xz.

In all other cases, μ1 is undefined. Informally speaking, μ1 is an “augmented next
move” function based on μ but with the difference that μ1 in effect strings together
all the trees in (eID′x, E

′
x) into one giant tree TM,x (see Figure 4 again).

Proposition 6.12. For each x ∈ Σ∗, let E′′
x =def {(w, z) | w ∈ eID′x∧μ1(w) = z},

and define TM,x to be the digraph (eID′x, E
′′
x).

1. The function μ1 is polynomial-time computable.
2. The function μ1 is length-preserving (i.e., on inputs a for which it is not

undefined, |μ1(a)| = |a|).
3. In polynomial time we can, for any z ∈ Σ∗, enumerate all y ∈ Σ∗ such that

μ1(y) = z.
4. For every x ∈ Σ∗ and every w ∈ {0, 1}2s(|x|)+t(|x|), there exists a number

j ∈ N such that μ
(j)
1 (xw) = x12s(|x|)+t(|x|)−10. (See also Figure 4.)

5. For every x ∈ Σ∗ and every w ∈ {0, 1}2s(|x|)+t(|x|), μ1(xw) is undefined if and
only if w = 12s(|x|)+t(|x|)−10.

6. For each x ∈ Σ∗ and each w ∈ {0, 1}2s(|x|), there is a unique y ∈ {0, 1}t(|x|)
such that, for some k ∈ N, μ

(k)
1 (xwy) = x12s(|x|)+t(|x|). (Again, viewing

Figure 4—paying particular attention to the black trees—will help make this
clear).

7. For each x ∈ Σ∗, ‖{w | (∃j ∈ N)[μ
(j)
1 (w) = x12s(|x|)+t(|x|)]}‖ = 22s(|x|).

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1285

(eIDx, Ex)

(eID′x, E
′
x)

TM,x

iM,xy, where f(x) = ν(θ̂−1(y))

x12s(|x|)+t(|x|)

x12s(|x|)+t(|x|)−10

y1 = 0t(|x|) ∈ {0, 1}t(|x|)
each node name ends in each node name ends in

y2t(|x|) = 1t(|x|) ∈ {0, 1}t(|x|)
each node name ends in

y2 = 0t(|x|)−11 ∈ {0, 1}t(|x|)

Fig. 4. Transforming the directed forest (eIDx, Ex) into TM,x. First, 2t(|x|) copies of each tree
in (eIDx, Ex) are made by appending t(|x|) “guess” bits to each node in each original tree, creating
the directed forest (eID′x, E

′
x). Next, the trees in (eID′x, E

′
x) are strung together into a single tree

TM,x in such a way that a subtree of TM,x is formed by the trees in (eID′x, E
′
x) having (note: Rx

will be defined in the main text) roots in {xwyy ∈ Rx | w ∈ {0, 1}2(|s|)−t(|x|) ∧ y ∈ {0, 1}t(|x|)}
(represented in the figure by the black trees), i.e., the trees whose “guess” bits equal the contents of
the machine tape at the end of the computation. This subtree has exactly one node for each string
in eIDx, including iM,x, and the node associated with iM,x has as its “guess” bits the true output of
M on input x. We will later exploit this information when we define a traversal of this tree.

8. For each x ∈ Σ∗, the unique (by item 6) y ∈ {0, 1}t(|x|), and each k ∈ N such

that μ
(k)
1 (iM,xy) = x12s(|x|)+t(|x|), it holds that f(x) = ν(θ̂−1(y)).

9. For each x ∈ Σ∗, the digraph TM,x is a tree.
10. The subtree of TM,x rooted at x12s(|x|)+t(|x|) has exactly 22s(|x|) nodes.

Proof. Items 1–5 follow from the definition of μ1.

For item 6, choose an arbitrary x ∈ Σ∗, w ∈ {0, 1}2s(|x|), and y ∈ {0, 1}t(|x|), and
let j ∈ N, v ∈ {0, 1}2s(|x|)−t(|x|), and d ∈ {0, 1}t(|x|) be such that μ(j)(xw) = xvd and
μ(xvd) is undefined (such j, v, and d exist by Propositions 6.11.4 and 6.11.2). By the
definition of Rx, xvdy ∈ Rx. By the definition of ≤Rx , μ(j)(xw)d ≤Rx x12s(|x|)+t(|x|)

and so, by the definition of μ1, there exists a number k ≥ j such that μ
(k)
1 (xwd) =

x12s(|x|)+t(|x|). On the other hand, for all y ∈ {0, 1}t(|x|) such that y �= d, by the
definition of ≤Rx , x12s(|x|)+t(|x|) <Rx μ(j)(xw)y, and so, by items 4 and 5 (which

guarantee that μ1 does not cycle), there is no k such that μ
(k)
1 (xwy) = x12s(|x|)+t(|x|).

Item 7 follows from item 6.

For item 8, choose an arbitrary x ∈ Σ∗, and by item 6 let y be the unique

member of {0, 1}t(|x|) such that, for some k ∈ N, μ
(k)
1 (iM,xy) = x12s(|x|)+t(|x|). Choose

1286 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

j ∈ N such that μ(j)(iM,x)y ∈ Rx. By the definition of μ1, there exists a number
v ∈ {0, 1}2s(|x|)−t(|x|) such that μ(j)(iM,x) = xvy and, by the definition of μ, M on

input x halts with y on its tape. Thus, f(x) = ν(θ̂−1(y)).
Item 9 follows from items 4 and 5.
Item 10 follows from item 7 and the observation that, for any x ∈ Σ∗ and any

w, y ∈ eID′, w is in the subtree of TM,x rooted at y if and only if y is a node of TM,x

and there exists a number k ∈ N such that μ
(k)
1 (w) = y.

Phase 4: Defining a traversal. We define dwn : Σ∗ → Σ∗ ∪ {⊥}, on input w,
as

dwn(w) =

{
maxlex μ

−1
1 (w) if μ−1

1 (w) �= ∅
⊥ otherwise,

where maxlex returns the maximal element (with respect to the lexicographical order)
of a set of strings and we define acr : Σ∗ → Σ∗ ∪ {⊥} on input w as

acr(w) =

⎧⎨
⎩

maxlex{w′ | w′ ∈ μ−1
1 (μ1(w)) ∧ w′ <lex w} if μ1(w) is defined

∧ w �= minlex μ
−1
1 (μ1(w))

⊥ otherwise,

where minlex returns the minimal element (with respect to the lexicographical order)
of a set of strings. Clearly, both dwn and acr are polynomial-time computable. The
function dwn is named “dwn” because it describes a descent down the tree TM,x, and
acr is named “acr” because it describes movement across the tree (i.e., from one
sibling node to another). Note that, for all x ∈ Σ∗ and all w ∈ {0, 1}2s(|x|)+t(|x|)

satisfying xw ∈ Rx − {x1m02s(|x|)+t(|x|)−m}, it holds that dwn(xw) ∈ Rx.
Now, for each x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈ {0, 1}t(|x|), we define

DM : Σ∗ → Σ∗, a “depth-first”-like traversal of TM,x, on input xwyza, as

DM (xwyza) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dwn(xwy)z0 if a = 0 ∧ dwn(xwy) �= ⊥ ∧ ν(z) = 0
xwyz1 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw �= iM,x ∧ ν(z) = 0
xwyz′0 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw = iM,x∧

ν(z) < ν(θ̂−1(y)), where z ≺lex z′

xwy0t(|x|)1 if a = 0 ∧ dwn(xwy) = ⊥ ∧ xw = iM,x∧
ν(z) = ν(θ̂−1(y))

acr(xwy)z0 if a = 1 ∧ acr(xwy) �= ⊥ ∧ ν(z) = 0
μ1(xwy)z1 if a = 1 ∧ acr(xwy) = ⊥ ∧ ν(z) = 0.

On all other inputs, DM is undefined. Figure 5 illustrates the action of DM and
Proposition 6.13 formally establishes the most important aspects of DM ’s action,
most of which we will draw on soon.

Proposition 6.13.

1. The function DM is polynomial-time computable.
2. The function DM is length-preserving (i.e., for each v, either DM (v) is un-

defined or |DM (v)| = |v|).
3. For each x ∈ Σ∗, each subtree (and here we really mean each subtree, i.e.,

not just those corresponding to the trees in digraph (eID′x, E
′
x)—the purpose

of this item is to provide insight into how DM describes a traversal of TM,x)
T of TM,x, each w ∈ {0, 1}2s(|x|), and each y ∈ {0, 1}t(|x|), xwy is a node of
T if and only if there exist i, j, and k such that |v| = |xwy| (where v is the

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1287

iM,xy

z
2 0

0
t(
|x|

)+
1

0
t(
|x|

) 1

0
t(
|x|

) 1
0
t(|x|)10 t(|x|)+

1

0
t(|x|)+

1

z
ν(θ̂ −

1
(y)) 0

z ν
(θ̂

(y
))
−

1
0

z 1
0

0 t(|x|)1

0 t(|x|)1
0 t(|x|)+

1

0
t(
|x|

)+
1

0
t(|x|)+

1

0
t(|x|)1

Fig. 5. The traversal described by DM . Pictured is a portion of TM,x that contains a node in
the initial configuration. The arrows represent the strings associated with the node below them (in
the case of the initial configuration node, the arrows below are also associated with it) by padding.
The string that is the actual padding appears next to each arrow. DM is defined over these padded
strings. The last bit of each padding string can be seen as controlling the “direction” in which DM

“moves.” Note that y ∈ {0, 1}t(|x|) and z1 = 0t(|x|)−11, z2 = 0t(|x|)−210,

root of T), D
(i)
M (v0t(|x|)+1) = xwy0t(|x|)+1, D

(j)
M (xwy0t(|x|)+1) = xwy0t(|x|)1,

and D
(k)
M (xwy0t(|x|)1) = v0t(|x|)1.

4. For every x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈ {0, 1}t(|x|),
DM (xwyza) is defined if and only if xwyza = x12s(|x|)+t(|x|)−10t(|x|)+2∨(wy ∈
{0, 1}2s(|x|)+t(|x|) − {12s(|x|)+t(|x|)−10} ∧ z = 0t(|x|)) ∨ (xw = iM,x ∧ ν(z) ≤
ν(θ̂−1(y)) ∧ a = 0).

5. For every x ∈ Σ∗ and every w ∈ {0, 1}2(s(|x|)+t(|x|))+1, if DM (xw) is defined,

then there exists an i ∈ N such that D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xw.

6. For all x ∈ Σ∗, all w ∈ {0, 1}2s(|x|)+t(|x|), all z ∈ {0, 1}t(|x|)+1, and all i ∈ N,

if D
(i)
M (xwz) = x12s(|x|)+t(|x|)0t(|x|)+1, then xw ∈ Rx.

7. The function λy.minlex{w | y <lex w∧ (DM (w) is undefined)} is polynomial-
time computable.

1288 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Proof. Items 1 and 2 follow from the definition of DM .

For item 3, choose an arbitrary x ∈ Σ∗. We prove item 3 by induction over the
depth of the subtrees of TM,x.

For the base case, choose an arbitrary subtree T of TM,x having depth 1. Let
v be the (only) node of T . Thus, dwn(v) = ⊥. If, for all y ∈ {0, 1}t(|x|), v �=
iM,xy, then, by the definition of DM , D

(0)
M (v0t(|x|)+1) = v0t(|x|)+1, DM (v0t(|x|)+1) =

v0t(|x|)1, and D
(0)
M (v0t(|x|)1) = v0t(|x|)1. Otherwise, let y ∈ {0, 1}t(|x|) be such that

v = iM,xy. Then D
(0)
M (v0t(|x|)+1) = v0t(|x|)+1, D

(ν(θ̂−1(y))+1)
M (v0t(|x|)+1) = v0t(|x|)1,

and D
(0)
M (v0t(|x|)1) = v0t(|x|)1.

For the induction case, suppose, for some n that is less than the depth of TM,x

and all subtrees T of TM,x having depth at most n, that the induction hypothe-
sis holds. Let S be a subtree of TM,x of depth n + 1, and let v be the root of
S. Let {a1, . . . , ab} = μ−1

1 (v), where ab <lex · · · <lex a1. It follows that each
a1, . . . , ab is the root of a subtree of S of depth at most n. By the definition of DM ,
DM (v0t(|x|)+1) = a10

t(|x|)+1, DM (a10
t(|x|)1) = a20

t(|x|)+1, . . . , DM (ab−10
t(|x|)1) =

ab0
t(|x|)+1, and DM (ab0

t(|x|)1) = v0t(|x|)1. By applying the induction hypothesis to
the subtrees of S rooted at a1, . . . , ab, we conclude that z is a node of S if and only

if there exist i, j, k such that D
(i)
M (v0t(|x|)+1) = z0t(|x|)1, D

(j)
M (z0t(|x|)+1) = z0t(|x|)1,

and D
(k)
M (z0t(|x|)1) = v0t(|x|)1.

Item 4 follows from the definition of DM (to see the case where xwyza =
x12s(|x|)+t(|x|)−10t(|x|)+2, it helps to note that μ1 is undefined on x12s(|x|)+t(|x|)−10
and thus DM (x12s(|x|)+t(|x|)−10t(|x|)+2) is defined but DM (x12s(|x|)+t(|x|)−10t(|x|)+11)
is not).

For item 5, choose arbitrary x ∈ Σ∗, w ∈ {0, 1}2s(|x|), a ∈ {0, 1}, and y, z ∈
{0, 1}t(|x|). If xwyza = x12s(|x|)+t(|x|)−10t(|x|)+2 ∨ (wy ∈ {0, 1}2s(|x|)+t(|x|) −
{12s(|x|)+t(|x|)−10} ∧ z = 0t(|x|)), then, by item 3, there exists an i ∈ N such that

D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwyza. If xw = iM,x ∧ ν(z) ≤ ν(θ̂−1(y)) ∧ a = 0,

then, by the definition of DM , D
(ν(z))
M (xwy0t(|x|)+1) = xwyza. Since, by item 3, there

exists an i ∈ N such that D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwy0t(|x|)+1, it holds that

D
(i+ν(z))
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = xwyza.

For item 6, choose an arbitrary x ∈ Σ∗. Recall that, for all xw ∈ Rx −
{x1m02s(|x|)+t(|x|)−m}, dwn(xw) ∈ Rx. Thus, since x12s(|x|)+t(|x|) ∈ Rx and
x12s(|x|)+t(|x|)−10 ∈ Rx, it follows from the definitions of dwn and ≤Rx that, for
some i ∈ N, dwn(i)(x12s(|x|)+t(|x|)−10) = x12s(|x|)+t(|x|), and for all j ∈ N such that
0 ≤ j ≤ i, it holds that dwn(j)(x12s(|x|)+t(|x|)−10) ∈ Rx. Thus, by the definition

of DM , D
(i)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = x12s(|x|)+t(|x|)0t(|x|)+1, and for all j ∈ N

such that 0 ≤ j ≤ i, it holds that D
(j)
M (x12s(|x|)+t(|x|)−10t(|x|)+2) = w0t(|x|)+1, where

w ∈ Rx.

For item 7, note that, by item 4, for all w, y, z ∈ Σ∗ such that w ≺lex y ≺lex z,
either DM (y) is undefined or DM (z) is undefined.

Phase 5: Creating A. We are now ready to define A. A is the same as
the lexicographical ordering except that the strings between x02(s(|x|)+t(|x|))+1 and
x12(s(|x|)+t(|x|))+1 are ordered as follows (let z = x12s(|x|)+t(|x|)−10t(|x|)+1).

• First come the strings D
(0)
M (z0) = z0, D

(1)
M (z0) = DM (z0), D

(2)
M (z0), . . . , z1,

in the order just stated.
• Next come the strings {xw | w ∈ {0, 1}2(s(|x|)+t(|x|))+1∧DM (xw) is undefined

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1289

∧xw �= z1}, in lexicographical order.
By Proposition 6.13.2, A is a p-order. By Proposition 6.13.4, A is total. By Proposi-
tions 6.13.1 and 6.13.7, A has efficient adjacency checks.

End of Construction
We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. For each f ∈ FPSPACE(poly), we define A as above.
We define b : Σ∗ → Σ∗, t : Σ∗ → Σ∗, and b′ : Σ∗ → Σ∗ on input x ∈ Σ∗

as, respectively, b(x) =def x12s(|x|)+t(|x|)0t(|x|)+1, t(x) =def x12s(|x|)+t(|x|)0t(|x|)1, and

b′(x) =def iM,xy0
t(|x|)+1, where y = θ(1)0t(|x|)−|θ(1)| (thus ν(θ̂−1(y)) = 1). Note that

each of these functions is in FP.
For item 1, note that s is polynomially bounded.
For item 2, we prove that, for all x ∈ Σ∗, ‖{z | b(x) <A z <A t(x)}‖ =

22s(|x|)+1 + f(x) − 2. Choose an arbitrary x ∈ Σ∗. By Proposition 6.13.4, both
DM (x12s(|x|)+t(|x|)0t(|x|)+1) and DM (x12s(|x|)+t(|x|)0t(|x|)1) are defined. Thus, by the

definition of A, {z | b(x) <A z <A t(x)} = {z | (∃i, k ∈ N : i > 0∧k > 0)[D
(i)
M (b(x)) =

z ∧D
(k)
M (z) = t(x)]}. By Proposition 6.12.10, there are exactly 22s(|x|) strings in the

subtree of TM,x rooted at x12s(|x|)+t(|x|). Let S = {xwy0t(|x|)a | w ∈ {0, 1}2s(|x|) ∧a ∈
{0, 1} ∧ y ∈ {0, 1}t(|x|) ∧ b(x) <A xwy0t(|x|)a <A t(x)}. By Proposition 6.13.3, ‖S‖ =
22s(|x|)+1 − 2. By Propositions 6.12.6 and 6.13.3, there is a unique y′ ∈ {0, 1}t(|x|)
such that iM,xy

′0t(|x|)+1 ∈ {z | b(x) <A z <A t(x)}. Moreover, by Proposition 6.12.8,

ν(θ̂−1(y′)) = f(x). By the definition of DM , D
(ν(θ̂−1(y′))+1)
M (iM,xy

′0t(|x|)+1) ∈ S, and

for each i ∈ N such that 0 < i ≤ ν(θ̂−1(y′)), it holds that D
(i)
M (iM,xy

′0t(|x|)+1) �∈ S.
For each of the remaining 22s(|x|)+1 − 3 strings w in S, DM (w) ∈ S ∪ {t(x)}. Thus
‖{z | b(x) <A z <A t(x)}‖ = 22s(|x|)+1 + f(x) − 2.

For item 3, we prove that ‖{z | b′(x) <A z <A t(x)}‖ > 0 if and only if f(x) = 1.
Choose x ∈ Σ∗ and let y = θ(1)0t(|x|)−|θ(1)|. Suppose that f(x) = 1. Then, by
Proposition 6.12.8, xiM,xy is in the subtree of TM,x rooted at x12s(|x|)+t(|x|). Thus,

by Proposition 6.13.3, there exists a k such that D
(k)
M (b′(x)) = t(x). By the definitions

of DM , b′, and t, DM (b′(x)) �= t(x), thus k > 1. By the definition of A, ‖{z | b′(x) <A

z <A t(x)}‖ > 0. Now, suppose f(x) �= 1. Since f(x) �= ν(θ̂−1(y)), it follows from
Proposition 6.12.8 that iM,xy is not in the subtree of TM,x rooted at x12s(|x|)+t(|x|).

Thus, by Proposition 6.13.3, for all k ∈ N, D
(k)
M (b′(x)) �= t(x). Thus b′(x) �<A t(x),

and so ‖{z | b′(x) <A z <A t(x)}‖ = 0.

7. The complexity of counting divisors. Consider the function #DIV : N →
N, defined on input m ∈ N as

#DIV(m) =def

{
‖{n ∈ N | n �= 1, n �= m, and n divides m}‖ if m ≥ 1
0 otherwise.

What can we say about its complexity? We claim that #DIV belongs to the
interval size function class IFp.

Theorem 7.1. #DIV is in IFp.
Proof. Let PRIMES be the set of all prime numbers. Observe that #DIV ∈ #P

and PRIMES = {x | #DIV(x) = 0}. PRIMES ∈ P [AKS04]. Thus Theorem 7.1
follows from Theorem 5.3.

8. The complexity of counting satisfying assignments of monotone for-
mulas. In this section, we show that the #MONSAT function fits into our collection
of function classes. A monotone boolean function is any boolean function such that

1290 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

changing an input from 0 to 1 (while keeping all other inputs fixed) never changes
the value of the function from 1 to 0. A positive boolean formula is a boolean formula
that computes a monotone boolean formula. A monotone boolean formula is a formula
that is built from propositional variables and the connectives ∧ and ∨. Note that the
class of functions computed by monotone boolean formulas is exactly the monotone
boolean functions. Monotone computing models have long been studied (see, e.g.,
Grigni and Sipser [GS92] and the references therein).

Define

#MONSAT(F) =def

⎧⎪⎪⎨
⎪⎪⎩

‖{(a1, . . . , an) |
(∀i : 1 ≤ i ≤ n)[ai ∈ {0, 1}] ∧ F (a1, . . . , an) = 1}‖

if F is a monotone boolean formula
0 otherwise,

i.e., #MONSAT(F) counts the number of satisfying assignments of monotone boolean
formulas. For the remainder of this section, we identify each assignment (a1, . . . , an)
to the n variables of F with the n-bit string a1 . . . an ∈ {0, 1}n. Theorem 8.5 states
that #MONSAT belongs to the class IFt. To prove this theorem, we will use the
following proposition.

Proposition 8.1. Let ϕ be the function that is defined for every boolean formula
F (x1, . . . , xn), a ∈ {0, 1}n, and r ∈ {0, 1} as ϕ(F, a, r) =def min

{
b
∣∣ b ∈ {0, 1}n ∧

a ≤lex b ∧ F (b) = r
}

if
{
b
∣∣ b ∈ {0, 1}n ∧ a ≤lex b ∧ F (b) = r

}
is nonempty and F

is a monotone boolean formula, and ϕ(F, a, r) =def ⊥ otherwise, where the min in the
above definition is taken with respect to the lexicographical order. The function ϕ is
polynomial-time computable.

Proof. To prove this proposition we use two natural properties of monotone
boolean formulas. First, note that, for each monotone boolean formula F of arity n
and for each a = a1 . . . an ∈ {0, 1}n and b = b1 . . . bn ∈ {0, 1}n, it holds that F (a) ≤
F (b) whenever (∀i ≤ n)[ai ≤ bi]. Second, there is an assignment making F true
(respectively, false) if and only if F (1n) = 1 (respectively, F (0n) = 0). Consider the
algorithm of Figure 6 running on an n-ary monotone boolean formula F , a ∈ {0, 1}n,
and r ∈ {0, 1}.

The algorithm works as follows. If none of the boundary conditions in lines [1]
through [6] are met, then assume that the assignments to the variables of F are just
the labels of the leaves of a complete binary tree having 2n leaves, i.e., the leftmost
leaf is 0n, and the rightmost leaf 1n. The algorithm starts in the leaf numbered a,
and searches the next node u on the path from a to the root such that the path
comes into u from the left, and the right subtree below u contains an assignment b
with F (b) = r (lines [6] to [9]). The least b of the subtree having this property is
determined via binary search (lines [10] to [18]). Thus, the algorithm is correct and
runs in polynomial time with respect to the input length.

We state as Proposition 8.2 some subcases of Proposition 8.1. (A “part 2 of
Proposition 8.2” parallel to the first sentence of part 1 of Proposition 8.2 is not
included since that trivially holds (test the all-0 assignment).) Though we could not
find Proposition 8.2 in the literature, it is sufficiently fundamental that we believe it
may well be known or a folk theorem.

Proposition 8.2.

1. The problem of finding the least satisfying assignment for monotone boolean
formulas has a polynomial-time algorithm. Indeed, the problem of finding the
least satisfying assignment lexicographically greater than or equal to a given
assignment has, for monotone boolean formulas, a polynomial-time algorithm.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1291

[1] b ← a
[2] if (b = 1n and F (b) �= r) or F (rn) �= r
[3] then
[4] return ⊥
[5] else
[6] while b �= ε and F (brn−|b|) �= r do
[7] b ← the string which succeeds b in lexicographical order
[8] b ← longest prefix of b which ends with 1
[9] endwhile
[10] m ← |b| + 1
[11] for j ← m to n do
[12] if F (b0rn−|b|−1) = r
[13] then
[14] b ← b0
[15] else
[16] b ← b1
[17] endif
[18] endfor
[19] return b
[20] endif

Fig. 6. An algorithm used in the proof of Proposition 8.1.

2. The problem of finding the least unsatisfying assignment lexicographically
greater than or equal to a given assignment has, for monotone boolean for-
mulas, a polynomial-time algorithm.

This section has, so far, spoken of monotone boolean formulas. However, note that
if we view the algorithm from Figure 6 as accessing a black-box boolean function, the
algorithm in fact shows that the query complexity of the task is polynomial—indeed
linear—if the black-box function is a monotone boolean function. Thus we have the
following results.

Proposition 8.3. Let ϕ be the function that is defined for every n ≥ 1, every
boolean formula f(x1, . . . , xn), every a ∈ {0, 1}n, and every r ∈ {0, 1} as

ϕf (a, r) =def

⎧⎨
⎩

min{b | b ∈ {0, 1}n ∧ a ≤lex b ∧ f(b) = r}
if {b | b ∈ {0, 1}n ∧ a ≤lex b ∧ f(b) = r} �= ∅

⊥ otherwise,

where the min in the above definition is taken with respect to the lexicographical order.
When restricted to monotone boolean functions, the function ϕ is of linear (in the
number of variables) query complexity (and polynomial, in the number of variables,
time complexity). That is, there exist a Turing machine M and a linear function
q and a polynomial s such that for each n ≥ 1, each monotone boolean n-variable
function f , each a ∈ {0, 1}n, and each r ∈ {0, 1} it holds that

1. Mf (a, r) makes at most q(n) queries to f , and
2. Mf (a, r) halts within s(n) steps with ϕf (a, r) on its output tape.

Similarly to Proposition 8.2, we have the following (where the time and query
complexities are relative to the number of variables or, equivalently, relative to the
size of the “input,” i.e., |a| + |r|).

1292 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

Proposition 8.4.

1. The problem of finding the least satisfying assignment when restricted to
monotone boolean functions has a linear-query-complexity algorithm (that
in addition is of polynomial-time complexity). Indeed, the problem of find-
ing the least satisfying assignment lexicographically greater than or equal to
a given assignment has, when restricted to monotone boolean functions, a
linear-query-complexity algorithm (that in addition is of polynomial-time com-
plexity).

2. The problem of finding the least unsatisfying assignment lexicographically
greater than or equal to a given assignment has, when restricted to mono-
tone boolean functions, a polynomial-time algorithm.

Note that in neither Proposition 8.3 nor Proposition 8.4 do we make any claims
about what the procedure will compute if the black-box function is not a monotone
boolean formula.

We now relate #MONSAT to interval functions.
Theorem 8.5. #MONSAT ∈ IFt.
Proof. We assume that F is given as a string over the alphabet Σ. We construct a

total p-order A ∈ P having efficient adjacency checks as follows. Generally, A coincides
with the lexicographical order on Σ∗ except that, for each monotone boolean formula
F of arity n, the interval between 1|F |0F0000n and 1|F |0F1001n is ordered in the
following way.

• First comes {1|F |0F000y | |y| = n} in lexicographical order (we always use
n = nF to denote the arity of F).

• Next comes the set {1|F |0F001a | a is a satisfying assignment of F} in lexi-
cographical order.

• Next comes {1|F |0F010y | |y| = n} in lexicographical order.
• Next comes the set {1|F |0F011a | a is not a satisfying assignment of F} in

lexicographical order.
• Finally comes the set {1|F |0F100y | |y| = n} in lexicographical order.

Clearly, A is a total p-order that is decidable in polynomial time. In light of the func-
tion ϕ from Proposition 8.1 it is not hard to see that A has efficient adjacency checks.
Also, for any monotone boolean formula F (x1, . . . , xn), let b(F) =def 1|F |0F0001n

and t(F) =def 1|F |0F0100n. Obviously, b, t ∈ FP, and we obtain #MONSAT(F) =
‖{z | b(F) <A z <A t(F)}‖. Thus, #MONSAT ∈ IFt.

Valiant [Val79] showed that counting the number of satisfying assignments of
2CNF monotone formulas is Turing complete for #P. Since #2CNFMONSAT metri-
cally reduces to #MONSAT, we immediately obtain from this theorem that
#MONSAT is complete for IFt under Turing reductions, and we get an alternate
proof for Corollary 5.8.

9. Cluster computations. Finally, we discuss the complexity of computing
the size of intervals for which the boundaries are not required to be polynomial-time
computable. This leads to the notion of cluster computation, as introduced in [Kos99]
for the case of the lexicographical order. We first review the formal definitions related
to cluster computation, but here we present a more general version of the definitions
than what previously appeared in [Kos99].

Let M be any nondeterministic Turing machine that is “balanced” in the sense
that, on every input, the graph of the nondeterministic choices M makes is a complete,
balanced, binary tree. Let y and z encode computation paths of M on x. By the
above assumption that M is “balanced,” |y| = |z|. Fix a total order A on Σ∗. We say

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1293

that y ∼A,M,x z if and only if (a) y ≺A z or z ≺A y, and (b) M on x accepts on path
y if and only if M on x accepts on path z. Let ≡A,M,x be the equivalence closure (i.e.,
the reflexive-symmetric-transitive closure) of ∼A,M,x. Then the relation ≡A,M,x is an
equivalence relation and thus induces a partitioning of the computation tree of M on
x. An A-cluster is an equivalence class whose representatives are accepting paths.
Additionally, we consider ∅ to be a valid A-cluster.

For a nondeterministic Turing machine M , let accM (x) ⊆ Σ∗ denote the set
of all accepting paths of M on input x. Let #accM : Σ∗ → N be the function
defined as #accM (x) =def ‖accM (x)‖. Let outM (x) ⊆ Σ∗ denote the set of all distinct
outputs of accepting paths of M on input x. A nondeterministic Turing machine M
is a lexicographical cluster machine if and only if M is balanced in the sense defined
earlier and, for every x, there is a computation path y of M on x such that

accM (x) = {z | z ≡lex,M,x y and y ∈ accM (x)}.

The intuition here is simple: Such machines on each input in the set have a single,
nonempty, contiguous stretch of accepting paths.

Definition 9.1 (Kosub [Kos99]).
c#P =def {#accM | M is a polynomial-time lexicographical cluster machine}.
We mention some basic properties of the class c#P.
Definition 9.2. A nondeterministic Turing machine computes a function f

almost-uniquely if and only if, for each x,
1. f(x) > 0 implies outM (x) = {f(x)} and #accM (x) = 1, and
2. f(x) = 0 implies outM (x) = ∅.

Recalling from section 6.1 the definition of �, we have the following.
Proposition 9.3 (Kosub [Kos99]).
1. A function f lies in c#P if and only if there exists a nondeterministic

polynomial-time Turing machine that computes f almost-uniquely.
2. UPSVt ⊆ c#P = c#P � FP ⊆ #P.
3. UPSVt ∩ Nonzero = c#P ∩ Nonzero.
4. c#P = #P if and only if UP = PP.

Proposition 9.4.

1. ∃ · c#P = ∃ · (c#P - FP) = UP.
2. If IFt ⊆ c#P, then UP = PP.
3. If c#P ⊆ IFt, then P = UP.

Proof. (1): It is easy to see that UP ⊆ ∃ · c#P, since any balanced machine
for a given UP language already implicitly shows that that language is in ∃ · c#P
due to the unique paths being each a size-one equivalence class. It follows from the
definitions that ∃ · (c#P � FP) ⊆ ∃ · (c#P - FP) and from Proposition 9.3.2 we have
∃ · c#P = ∃ · (c#P � FP). However, in light of Proposition 9.3.1, we can see that
each set in ∃ · (c#P - FP) is in fact in UP.

(2): By Theorem 5.7, IFt ⊆ c#P implies #P - FP ⊆ c#P - FP. From this,
Proposition 2.2.4, and the first part of the present result we have PP = ∃ · (#P -
FP) ⊆ ∃ · (c#P - FP) = UP.

(3): Apply the operator ∃ to both sides of the inclusion, and apply Lemma 5.9
and the first part of the present result.

Proposition 9.3, which in essence says that c#P functions are relatively simple,
is extremely dependent on the fact that c#P is built based on lexicographical order.
In particular, the results reflect the fact that it is easy, given two strings, a and b, to
compute ‖{c | a ≤lex c ≤lex b}‖. Proposition 9.3.1 for example is driven in large part

1294 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

by the fact that one can, for inputs where the function is not zero, guess (and check
the guess of) the rightmost and leftmost accepting paths, and then, since one knows
that the complete set of accepting paths is simply the contiguous block between and
including these, one can easily compute the number of accepting paths.

It is natural to wish to remove the focus here on lexicographic order, and to
instead study machines whose set of accepting paths is always a contiguous block—
with respect to some total order that has efficient adjacency checks like lexicographic
order, but that perhaps does not satisfy the extremely restrictive “interval sizes are
always trivial to compute” property of lexicographic order. We introduce the class
CL#P, which captures exactly this more flexible, natural notion of cluster computing.
(The work of this paper led to further study of CL#P in [HHK06], which studies the
closure properties of, alternate definitions of, and classes related to CL#P.)

An order A on Σ∗ is said to be length-respecting if and only if, for all x, y, |x| < |y|
implies x <A y. Note that a length-respecting order is always a p-order.

Definition 9.5. A function f belongs to the class CL#P if and only if there
exist a nondeterministic polynomial-time Turing machine M , a polynomial p, and a
length-respecting total order A with efficient adjacency checks such that, for all x, the
following conditions hold.

1. All computation paths of M on x have length exactly p(|x|).1
2. The set of all accepting paths of M on x is an A-cluster.
3. f(x) = #accM (x).

As might be expected, the class IFt is included in CL#P. Indeed, the following
inclusions hold.

Theorem 9.6. c#P ∪ IFt ⊆ CL#P ⊆ #P.
Proof. The inclusions c#P ⊆ CL#P and CL#P ⊆ #P are trivial. It remains

to prove the inclusion IFt ⊆ CL#P. Choose f ∈ IFt via a total p-order A ∈ P
having polynomial-time adjacency checks, functions b, t ∈ FP, and a polynomial p
that witnesses that A is a p-order. We may without loss of generality assume that
p is monotonic. For each x ∈ Σ∗, let Sx = {x0p(|x|)−|y|1y0 | y ≤A x}. Define A′ as
follows. Generally, A′ corresponds to the lexicographical order on Σ∗, except that,
for every x ∈ Σ∗, the interval between x0p(|x|)+2 and x1p(|x|)+2 is defined as follows.

• First come all strings in Sx, such that, for any strings x0p(|x|)−|y1|1y10,
x0p(|x|)−|y2|1y20 ∈ Sx, let x0p(|x|)−|y1|1y10 ≤A′ x0p(|x|)−|y2|1y20 if and only if
y1 ≤A y2.

• Next come all the strings not in Sx, in lexicographical order.
We claim that A′ is a total, polynomial-time computable p-order having efficient
adjacency checks. Clearly, A′ is total. Also, it is clear that, for any s ∈ Σ∗, it is
possible to determine in polynomial time whether there is an x ∈ Σ∗ such that s ∈ Sx.
It follows by this and by the definition of A that A′ is polynomial-time computable.
We claim that A′ has efficient adjacency checks. For any x ∈ Σ∗, the lexicographically
smallest element in Sx is x0p(|x|)−|sA|1sA0, where sA ∈ Σ∗ is the smallest element in
the ordering imposed by A, and the lexicographically largest element is x0p(|x|)−|x|1x0.
If x0p(|x|)−|y1|1y10, x0p(|x|)−|y2|1y20 ∈ Sx, then x0p(|x|)−|y1|1y10 ≺A′ x0p(|x|)−|y2|1y20
if and only if y1 ≺A y2 (this is true because, for every y ∈ Σ∗ such that y ≤A x, it holds

1As we do in many places, we take it here as tacitly clear that the length of a path is its number
of nondeterministic guesses, all of which in this model must be binary guesses. Note also that in the
context of our model “All computation paths of M on x have length exactly p(|x|)” certainly implies
that M is balanced in the sense defined at the start of this section: It will have every (and only) path
corresponding to a guess sequence from {0, 1}p(|x|). We mention, however, that we do not require a
machine to make nondeterministic guesses at each step.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1295

that x0p(|x|)−|y|1y0 ∈ Sx; and thus, for such y1 and y2, it is impossible for some string
longer than p(|x0|) to be “wedged between” them). The lexicographically smallest
element not in Sx is x0p(|x|)+2 and the largest is x1p(|x|)+2. For any w1, w2 ∈ Σ∗ and
b1, b2 ∈ {0, 1} such that both w1b1 and w2b2 are lexicographically between x0p(|x|)+2

and x1p(|x|)+2 but neither is in Sx, w1b1 ≺A w2b2 if and only if (w1b1 ≺lex w2b2)
or (w1b1 �≺lex w2b2 and b1 = b2 = 1 and w1 ≺lex w2 and w20 ∈ Sx). All other
cases are handled in the way obvious from the above, e.g., for any w1, w2 ∈ Σ∗ and
b1, b2 ∈ {0, 1} such that both of w1b1 and w2b2 are lexicographically between x0p(|x|)+2

and x1p(|x|)+2, and exactly one of them—say w1b1—is in Sx, the above makes it clear
that w1b1 ≺A′ w2b2 exactly if w1b1 = x0p(|x|)−|x|1x0 and w2b2 = x0p(|x|)+2.

Define M to be a Turing machine that, on input x ∈ Σ∗, guesses a string w ∈
Σp(|t(x)|)+2. If t(x)w �∈ St(x), then M rejects. Otherwise, M accepts if and only if

t(x)0p(|t(x)|)−|b(x)|1b(x)0 <A′ t(x)w <A′ t(x)0p(|t(x)|)−|t(x)|1t(x)0. Clearly, M runs in
polynomial time and has computation paths of length exactly p(t(|x|)) + 2. Also,
the number of accepting paths of M on x equals f(x). By construction, the set of
accepting computation paths of M on x is an A′-cluster. Thus, f ∈ CL#P.

From Proposition 9.4 and Theorem 9.6, it is clear that CL#P is different from
both c#P and IFt unless some surprising complexity class collapses occur. In partic-
ular, the following holds.

Corollary 9.7.

1. If c#P = CL#P, then UP = PP.
2. If IFt = CL#P, then P = UP.

Nonetheless, when considering only polynomially bounded functions, c#P and
CL#P do coincide.

Theorem 9.8. c#P ∩ PolyBounded = CL#P ∩ PolyBounded.

Proof. The inclusion “⊆” is immediate. For the inclusion “⊇,” choose f ∈ CL#P
via a nondeterministic polynomial-time Turing machine M , a polynomial p, and a
length-respecting total order A having efficient adjacency checks, all three of which
have the properties and behaviors described in Definition 9.5. Recall that all accepting
paths of M on any input x will be of length p(|x|). Let q be a polynomial such that,
for all x ∈ Σ∗, f(x) ≤ q(|x|). We now will define a nondeterministic polynomial-time
Turing machine N that almost-uniquely computes f in the sense of Definition 9.2.
Define N to be a Turing machine that, on input x ∈ Σ∗, does the following.

1. If ε is an accepting path of M(x), then accept and output 1.
2. N nondeterministically guesses strings y, z ∈ Σp(|x|), y′ ∈ Σp(|x|)−1 ∪ Σp(|x|),

and z′ ∈ Σp(|x|) ∪ Σp(|x|)+1.
3. N checks whether all of the following hold.

(a) y′ ≺A y and z ≺A z′.
(b) y′ /∈ accM (x).
(c) z′ /∈ accM (x).
(d) y ∈ accM (x) and z ∈ accM (x).

4. If (3) does not hold, then N rejects, otherwise if y = z, N accepts and outputs
1.

5. If (3) does hold and y �= z, then N proceeds as follows.
(a) N nondeterministically guesses an integer r with 0 ≤ r ≤ q(|x|) − 2.
(b) N nondeterministically guesses r strings v1, . . . , vr ∈ Σp(|x|).
(c) N checks whether y ≺A v1 ≺A v2 ≺A · · · ≺A vr ≺A z.
(d) If (5c) does not hold, then N rejects. Otherwise, N accepts and outputs

r + 2.

1296 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

N is a nondeterministic polynomial-time Turing machine that, on each input, has one
accepting path if f(x) > 0 and no accepting paths if f(x) = 0. If f(x) > 0, then N
on x outputs f(x) on its accepting path. Thus, N almost-uniquely computes f , and
so by Proposition 9.3.1 f ∈ c#P.

For a class F of functions, let ∃! ·F be the class of all sets L for which there exists
a function f ∈ F such that, for all x, x ∈ L ⇔ f(x) = 1.

Theorem 9.9.

1. ∃! · IFp = coNP.
2. ∃! · c#P = ∃! · CL#P = UP.

Proof. For (1), coNP ⊆ ∃! · IFp follows from Corollary 5.4 and the observation
that any language in coNP is also (via considering the NP machine for the language’s
complement but with one extra accepting path added on each input) in ∃! · (#P ∩
Nonzero). To see ∃! · IFp ⊆ coNP, choose L ∈ ∃! · IFp, via f ∈ IFp. Let boundary
functions b, t ∈ FP and partial, polynomial-time computable p-order A having efficient
adjacency checks witness that f ∈ IFp. Let M be a nondeterministic polynomial-time
Turing machine that, on input x, (i) guesses y, z ∈ Σ∗ such that y �= z and (ii) accepts
if b(x) ≺A t(x) ∨ (b(x) <A y <A t(x) ∧ b(x) <A z <A t(x)). It is easy to see that M
accepts L, thus L ∈ NP.

For (2), UP ⊆ ∃! · c#P is obvious. To see that ∃! · CL#P ⊆ UP, choose L ∈ ∃! ·
CL#P. Thus there exists a function f ∈ CL#P such that, for all x, x ∈ L ⇔ f(x) = 1.
Let M be a machine that computes f via total order A having efficient adjacency
checks and polynomial p (where M , A, and p are in the sense of Definition 9.5). Recall
that all accepting paths of M(x) are of length p(x). Let N be a nondeterministic
polynomial-time Turing machine that, on input x, guesses strings y ∈ Σp(|x|) and
x, z ∈ Σp(|x|)−1 ∪ Σp(|x|) ∪ Σp(|x|)+1, and accepts if and only if all the following hold.

1. y ≺A z ∧ y ∈ accM (x) ∧ (w ≺A y ∨ w = y = ε).
2. w /∈ accM (x) ∨ w = y = ε.
3. z /∈ accM (x).

Clearly, N has on any input at most one accepting path and N accepts L.

The next result shows that CL#P is probably not powerful enough to capture
#P.

Theorem 9.10. If CL#P = #P, then UP = PH.

Proof. Using Theorem 5.2 and both parts of Theorem 9.9, we have coNP ⊆
∃! · #P = ∃! · CL#P = UP.

On the other hand, proving CL#P to be different from #P is at least as hard as
proving that P �= NP and UP �= PP.

Proposition 9.11. If P = NP or UP = PP, then CL#P = #P.

Proof. Suppose UP = PP. Then by Proposition 9.3.4 c#P = #P, and so (see
Theorem 9.6) CL#P = #P. Suppose that P = NP. Then by Theorem 5.10 it holds
that IFt = #P, and so (see Theorem 9.6) CL#P = #P.

Unfortunately, the necessary and sufficient conditions we have obtained for the
equality of #P and CL#P differ, i.e., they do not yield a complete characteriza-
tion. However, if we consider polynomially bounded functions, then such a com-
plete characterization can be established in terms of the classes UP [Val76] and
Few [CH90] (see section 2 for a review of their definitions). Note that UP = Few ⇔
UP = coUP = FewP = Few and so in light of Theorem 9.12 we easily have that
CL#P ∩ PolyBounded = #P ∩ PolyBounded implies UP = coUP = FewP.

Theorem 9.12. CL#P ∩ PolyBounded = #P ∩ PolyBounded if and only if
UP = Few.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1297

Proof. [⇒]: Suppose that L ∈ Few via a function f ∈ #P, a set B ∈ P, and a
polynomial p such that, for all x, f(x) ≤ p(|x|), and x ∈ L ⇔ (x, 1f(x)) ∈ B. Let
g(x) =def 1+f(x). Then g ∈ #P, and g is polynomially bounded. From our hypothesis
and Theorem 9.8, we obtain g ∈ c#P. Since g(x) > 0, by Proposition 9.3.3 we have
that g ∈ UPSVt via some nondeterministic polynomial-time (function-computing)
Turing machine M whose behavior is UPSVt-like. Define N to be a Turing machine
that, on input x, nondeterministically guesses a computation path y of M on input x,
simulates M on input x along computation path y, and accepts (on its current path)
if and only if y is an accepting path with output z satisfying (x, 1z−1) ∈ B. Clearly,
N is a nondeterministic polynomial-time Turing machine with at most one accepting
path on each input. Furthermore, it holds that N on x has an accepting computation
path if and only if (x, 1f(x)) ∈ B. This gives L ∈ UP.

[⇐]: Let f be any polynomially bounded #P function. Define A =def {(x, 1y) |
y ≤ f(x)}. Note that A ∈ Few. So by our hypothesis A ∈ UP. Indeed, since Few
is closed under complementation and Few = UP by hypothesis, A ∈ UP ∩ coUP.
Via binary search using A as an oracle, we can compute f in polynomial time. That
is, f is in FPUP∩coUP = UPSVt ⊆ c#P. Thus, CL#P ∩ PolyBounded = #P ∩
PolyBounded.

From Corollary 9.7, we know that CL#P and c#P probably are different classes.
However, under the ∃ operator the difference disappears, since both are mapped to
UP. (Recall that Proposition 9.4.1 established ∃ · c#P = UP.)

Theorem 9.13. ∃ · CL#P = UP.

Proof. The inclusion UP ⊆ ∃·CL#P is immediate from Proposition 9.4.1 and the
fact that c#P ⊆ CL#P. To show the inclusion ∃ · CL#P ⊆ UP, choose an arbitrary
L ∈ ∃·CL#P. Let L ∈ ∃·CL#P via some function f ∈ CL#P with x ∈ L ⇔ f(x) > 0.
Let f ∈ CL#P be witnessed (in the sense of the M , p, and A of Definition 9.5) by
some Turing machine M , polynomial p, and total order A with efficient adjacency
checks. Define N to be a Turing machine that, on input x ∈ Σ∗, does the following.

1. N nondeterministically guesses z ∈ Σp(|x|) and z′ ∈ Σp(|x|) ∪ Σp(|x|)+1.
2. N checks whether each of the following conditions holds.

(a) z ≺A z′.
(b) z ∈ accM (x).
(c) z′ /∈ accM (x).

3. N accepts if and only if 2 holds.

Clearly, N runs in polynomial time and always has at most one accepting path. Also,
it holds that #accN (x) = 1 ⇔ x ∈ L. Thus, L ∈ UP.

It is known that c#P is not closed under increment unless UP = coUP [Kos99].
We note that CL#P displays the same behavior.

Theorem 9.14. If CL#P is closed under increment, then UP = coUP.

Proof. Observe that co(∃ · F) ⊆ ∃! · (F + 1) is true for every class F of total
functions, where F + 1 denotes {g | (∃f ∈ F)(∀x)[g(x) = f(x) + 1]}. Thus by our
hypothesis and Theorem 9.13 we have coUP = co(∃ · CL#P) ⊆ ∃! · (CL#P + 1) ⊆
∃! · CL#P = UP.

As a corollary, we obtain that CL#P is incomparable to IFp unless some unex-
pected complexity class collapse occurs.

Corollary 9.15.

1. If CL#P ⊆ IFp, then P = UP.
2. If IFp ⊆ CL#P, then UP = PH.

Proof. Regarding (1), from our hypothesis and Theorem 9.13 we have UP =

1298 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

∃·CL#P ⊆ ∃·IFp = P. To verify (2), observe that from our hypothesis, Theorem 9.9.1,
and Theorem 9.13 we obtain coNP ⊆ ∃! · IFp ⊆ ∃! · CL#P = UP.

10. Conclusion and open problems. We introduced interval size functions
over p-orders and used them to provide an alternate definition of #P as the set of all
interval size functions over polynomial-time decidable p-orders. We also introduced
the classes IFp and IFt, the interval size functions over partial and total polynomial-
time computable p-orders with efficient adjacency checks. We proved that IFp is the
class of all functions in #P whose support is in P. We also proved that IFt - FP =
#P - FP and IFp - O(1) = #P - O(1), but that IFp = #P if and only if P = NP,
and that IFt = IFp only if UP = PH.

We also introduced the classes IF∗
p and IF∗

t , the interval size functions over partial
and total p-orders with efficient adjacency checks. We proved that ∃ · IF∗

t = ∃ · IF∗
t =

PSPACE.
Finally, we introduced CL#P, the set of all functions that count the number

of accepting paths of polynomial-time cluster machines whose underlying orders are
total and have efficient adjacency checks, and we studied the relationship between
CL#P and the previously studied cluster computing class c#P.

Reviewing all the results on the interval size function classes IFp, IF∗
p, IFt, and

IF∗
t , it seems that we have a good understanding of the computational power of the

classes IFp, IF∗
p, and IF∗

t . Regarding the class IFt, we commend as an open issue
obtaining an understanding of the class IFt - O(1), which can be loosely considered
to be a kind of “total order” #P.

In section 8, we showed that #MONSAT is complete for IFt under Turing re-
ductions. Valiant showed that #2CNFMONSAT is complete for #P under Turing
reductions (and thus of course #MONSAT is complete for #P under Turing reduc-
tions). In light of this, a referee suggested as interesting open issues such questions as
the following: Can one more broadly determine which #P-complete problems fall in
IFt and which fall in IFp? And what can one say about the downward closure, under
various reductions, of #MONSAT, of IFt, and of IFp? In particular, what reduc-
tions are sufficiently restrictive as to leave IFt and/or IFp closed downward under the
reductions, and relatedly, which reductions are sufficiently restrictive as to have the
class of sets reducing to #MONSAT under the reductions be a subset of IFt and/or
IFp?

Acknowledgments. We are grateful to J. Rothe, H. Spakowski, and M. Thakur
for proofreading an earlier draft of this paper, and to E. Hemaspaandra and K.-
J. Lange for helpful discussions. We also thank the anonymous referees for their
careful, helpful reviews and for comments that improved the presentation of the paper.

REFERENCES

[AKS04] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann. of Math. (2), 160
(2004), pp. 781–793.

[CH90] J.-Y. Cai and L. Hemachandra, On the power of parity polynomial time, Math.
Systems Theory, 23 (1990), pp. 95–106.

[Coo71] S. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, ACM, New York, 1971, pp.
151–158.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes, J. Comput.
System Sci., 48 (1994), pp. 116–148.

[GHJY91] J. Goldsmith, L. A. Hemachandra, D. Joseph, and P. Young, Near-testable sets,
SIAM J. Comput., 20 (1991), pp. 506–523.

THE COMPLEXITY OF COMPUTING INTERVAL SIZE 1299

[Gil77] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Com-
put., 6 (1977), pp. 675–695.

[GS88] J. Grollmann and A. L. Selman, Complexity measures for public-key cryptosystems,
SIAM J. Comput., 17 (1988), pp. 309–335.

[GS91] A. V. Goldberg and M. Sipser, Compression and ranking, SIAM J. Comput., 20
(1991), pp. 524–536.

[GS92] M. Grigni and M. Sipser, Monotone complexity, in Boolean Function Complexity,
London Math. Soc. Lecture Note Ser. 169, M. Paterson, ed., Cambridge University
Press, Cambridge, UK, 1992, pp. 57–75.

[GW83] H. Galperin and A. Wigderson, Succinct representations of graphs, Inform. and
Control, 56 (1983), pp. 183–198.

[HHK06] L. Hemaspaandra, C. Homan, and S. Kosub, Cluster computing and the power of
edge recognition, in Proceedings of the Third Annual Conference on Theory and
Applications of Models of Computation, Lecture Notes in Computer Sci. 3959,
Springer-Verlag, Berlin, 2006, pp. 283–294.

[HHKW05] L. Hemaspaandra, C. Homan, S. Kosub, and K. Wagner, The Complexity of Com-
puting the Size of an Interval, Technical report TR-856, University of Rochester,
Department of Computer Science, Rochester, NY, February 2005, revised March
2005.

[HHW05] E. Hemaspaandra, L. Hemaspaandra, and O. Watanabe, The Complexity of Kings,
Technical report TR-870, University of Rochester, Department of Computer Sci-
ence, Rochester, NY, 2005.

[HKW01] L. Hemaspaandra, S. Kosub, and K. Wagner, The complexity of computing the size
of an interval, in Proceedings of 28th International Colloquium on Algorithms,
Languages and Programming, Lecture Notes in Computer Sci. 2076, Springer-
Verlag, Berlin, 2001, pp. 1040–1051.

[HMU01] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed., Addison-Wesley, Boston, 2001.

[HO02] L. Hemaspaandra and M. Ogihara, The Complexity Theory Companion, Springer-
Verlag, Berlin, 2002.

[HVW96] U. Hertrampf, H. Vollmer, and K. Wagner, On balanced versus unbalanced com-
putation trees, Math. Systems Theory, 29 (1996), pp. 411–421.

[HW00] H. Hempel and G. Wechsung, The operators min and max on the polynomial hier-
archy, Internat. J. Found. Comput. Sci., 11 (2000), pp. 315–342.

[Ko83] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983),
pp. 209–221.

[Kos99] S. Kosub, A note on unambiguous function classes, Inform. Process. Lett., 72 (1999),
pp. 197–203.

[KSTT92] J. Köbler, U. Schöning, S. Toda, and J. Torán, Turing machines with few ac-
cepting computations and low sets for PP, J. Comput. System Sci., 44 (1992), pp.
272–286.

[Lad89] R. E. Ladner, Polynomial space counting problems, SIAM J. Comput., 18 (1989), pp.
1087–1097.

[Lev75] L. Levin, Universal sequential search problems, Probl. Inf. Transm., 9 (1975), pp.
265–266.

[MP79] A. Meyer and M. Paterson, With What Frequency are Apparently Intractable Prob-
lems Difficult?, Technical report MIT/LCS/TM-126, MIT, Laboratory for Com-
puter Science, Cambridge, MA, 1979.

[MS72] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions
with squaring requires exponential time, in Proceedings of the 13th Symposium
on Switching and Automata Theory, IEEE Press, Los Alamitos, CA, 1972, pp.
125–129.

[NT05] A. Nickelsen and T. Tantau, The complexity of finding paths in graphs with bounded
independence number, SIAM J. Comput., 34 (2005), pp. 1176–1195.

[OH93] M. Ogiwara and L. Hemachandra, A complexity theory of feasible closure properties,
J. Comput. System Sci., 46 (1993), pp. 295–325.

[OTTW96] M. Ogihara, T. Thierauf, S. Toda, and O. Watanabe, On closure properties of
#P in the context of PF ◦ #P, J. Comput. System Sci., 53 (1996), pp. 171–179.

[PY86] C. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs,
Inform. and Control, 71 (1986), pp. 181–185.

[Sim75] J. Simon, On Some Central Problems in Computational Complexity, Ph.D. thesis,
Cornell University, Ithaca, NY, 1975.

1300 L. HEMASPAANDRA, C. HOMAN, S. KOSUB, AND K. WAGNER

[Sto77] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1977), pp.
1–22.

[Tan01] T. Tantau, A Note on the Complexity of the Reachability Problem for Tournaments,
Technical report TR01-092, Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/ (2001).

[Val76] L. Valiant, Relative complexity of checking and evaluation, Inform. Process. Lett., 5
(1976), pp. 20–23.

[Val79] L. G. Valiant, The complexity of enumeration and reliability problems, SIAM J.
Comput., 8 (1979), pp. 410–421.

[VW95] H. Vollmer and K. Wagner, Complexity classes of optimization functions, Inform.
and Comput., 120 (1995), pp. 198–219.

[Wag84] K. Wagner, The complexity of problems concerning graphs with regularities, in Pro-
ceedings of the 11th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Sci. 176, Springer-Verlag, Berlin, 1984, pp. 544–
552.

[Wag86] K. Wagner, The complexity of combinatorial problems with succinct input represen-
tations, Acta Inform., 23 (1986), pp. 325–356.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1301–1328

CHOSEN-CIPHERTEXT SECURITY FROM
IDENTITY-BASED ENCRYPTION∗

DAN BONEH† , RAN CANETTI‡ , SHAI HALEVI‡ , AND JONATHAN KATZ§

Abstract. We propose simple and efficient CCA-secure public-key encryption schemes (i.e.,
schemes secure against adaptive chosen-ciphertext attacks) based on any identity-based encryption
(IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First,
our schemes give a new paradigm for achieving CCA-security; this paradigm avoids “proofs of well-
formedness” that have been shown to underlie previous constructions. Second, instantiating our
construction using known IBE constructions we obtain CCA-secure encryption schemes whose per-
formance is competitive with the most efficient CCA-secure schemes to date. Our techniques extend
naturally to give an efficient method for securing IBE schemes (even hierarchical ones) against adap-
tive chosen-ciphertext attacks. Coupled with previous work, this gives the first efficient constructions
of CCA-secure IBE schemes.

Key words. identity-based encryption, public-key encryption, chosen-ciphertext security

AMS subject classifications. 94A60, 68P25

DOI. 10.1137/S009753970544713X

1. Introduction. Security against adaptive chosen-ciphertext attacks [49, 50,
28, 2] is the de facto level of security required for public-key encryption schemes used
in practice. This security notion is appropriate for encryption schemes used in the
presence of active attackers who may potentially modify messages in transit, and
schemes proven secure with respect to this notion may be securely “plugged in” to
higher-level protocols deployed in unauthenticated networks that were designed and
analyzed under the idealized assumption of “secure channels” (see, e.g., [15, 19]).
Unfortunately, only a handful of approaches are known for constructing encryption
schemes that meet this notion of security. In this work we put forward a new approach
for constructing such schemes.

1.1. Background. Security for public-key encryption was first defined formally
by Goldwasser and Micali [38]. Their notion of semantic security, roughly speaking,
requires that observation of a ciphertext does not enable an adversary to compute
anything about the underlying plaintext message that it could not have computed on
its own (i.e., prior to observing the ciphertext); this should hold even if the adver-
sary has some a priori information about the message. Goldwasser and Micali (see
also [47, 35, 36]) proved that semantic security is equivalent to the notion of indis-
tinguishability that requires (roughly) the following: for any two messages, given a
“challenge” ciphertext C that is an encryption of one of these messages it is infeasible
to determine (with any noticeable advantage over a random guess) which message was

∗Received by the editors March 3, 2005; accepted for publication (in revised form) April 29, 2006;
published electronically December 21, 2006. This work appeared in preliminary form as Chosen-
ciphertext security from identity-based encryption, in Eurocrypt 2004 [18] and Improved efficiency
for CCA-secure cryptosystems built using identity-based encryption, in RSA-CT 2005 [12].

http://www.siam.org/journals/sicomp/36-5/44713.html
†Department of Computer Science, Stanford University, Stanford, CA 94305 (dabo@cs.stanford.

edu). This author’s research was supported by NSF grant CNS-0331640.
‡IBM T. J. Watson Research Center, Hawthorne, NY 10532 (canetti@watson.ibm.com, shaih@

alum.mit.edu). The research of the second author was supported by NSF grant CNS-0430450.
§Department of Computer Science, University of Maryland, College Park, MD 20742 (jkatz@

cs.umd.edu). This author’s research was supported by NSF grant CNS-0310751.

1301

1302 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

actually encrypted. Because these definitions imply security even when the adversary
can mount a chosen-plaintext attack to obtain encryptions of messages of its choice,
we will refer to these notions using the commonly accepted term “CPA-security.”

CPA-security does not guarantee any security against chosen-ciphertext attacks
by which an adversary may obtain decryptions of ciphertexts of its choice (note that
attacks of this sort may arise in practice [5, 53]). Indistinguishability-based defini-
tions appropriate for this setting were given by Naor and Yung [49] and Rackoff and
Simon [50]. Naor and Yung consider a nonadaptive chosen-ciphertext attack in which
the adversary may request decryptions only before it obtains the challenge ciphertext.
Rackoff and Simon define the stronger notion of security against adaptive chosen-
ciphertext attacks whereby the adversary may request decryptions even after seeing
the challenge ciphertext, under the natural limitation that the adversary may not re-
quest decryption of the challenge ciphertext itself. (We will refer to the latter notion
as “CCA-security.”) See [28, 2, 36] for further discussion of these definitions. Exten-
sions of semantic security to the case of chosen-ciphertext attacks were considered in
[36, 37, 55], where it is shown that, as in the case of CPA-security, these definitions
are equivalent to the indistinguishability-based ones.

As we have already mentioned, CCA-security is now the de facto level of security
for public-key encryption due to its numerous advantages (some of which were sum-
marized earlier). Unfortunately, only a handful of public-key encryption schemes have
been proven secure against adaptive chosen-ciphertext attacks without resorting to
heuristics such as the random oracle methodology [3], a controversial and problematic
approach [16].

In fact, prior to this work only two approaches were known for constructing
CCA-secure cryptosystems. The first follows the paradigm introduced by Naor and
Yung [49] to achieve nonadaptive chosen-ciphertext security, later extended to the
case of adaptive chosen-ciphertext security by Dolev, Dwork, and Naor [28] and Sahai
[51]. This technique uses as building blocks any CPA-secure public-key encryption
scheme and any noninteractive zero-knowledge (NIZK) proof system for all of NP [6,
31]. Consequently, this approach can be based on general cryptographic assumptions
[31]: specifically, the existence of enhanced trapdoor permutations [36, sect. C.4.1].
Encryption schemes resulting from this approach, however, are highly impractical
because they employ generic NIZK proofs which in turn require a Karp reduction
from the NP language of interest to some NP-complete language. Thus, given the
current state of the art, this approach serves as a feasibility result for the existence
of CCA-secure cryptosystems based on general assumptions but does not lead to any
practical constructions.

The second technique is due to Cramer and Shoup [21, 22] and is based on al-
gebraic constructs with particular homomorphic properties (namely, those admitting
“smooth hash proof systems” in the terminology of [22]). Algebraic constructs of
the appropriate type are known to exist based on some specific number-theoretic as-
sumptions [21, 22], including the decisional Diffie–Hellman (DDH) assumption. Other
constructions relying on this technique have been given recently [32, 23, 42], leading
to a number of practical schemes.

Interestingly, Elkind and Sahai have observed [29] that both the above approaches
for constructing CCA-secure encryption schemes can be viewed as special cases of a
single paradigm. In this paradigm one starts with a CPA-secure cryptosystem in
which certain “ill-formed” ciphertexts are indistinguishable from honestly generated
ciphertexts. A CCA-secure cryptosystem is then obtained by having the sender hon-
estly generate a ciphertext using the underlying CPA-secure scheme, and then append

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1303

a “proof of well-formedness” (satisfying certain criteria) to this ciphertext. The NIZK
proofs used by Sahai [51] as well as the smooth hash proof systems used by Cramer
and Shoup [21, 22] are shown by Elkind and Sahai to satisfy the appropriate criteria.

1.2. Summary of our results. We propose two new approaches for construct-
ing CCA-secure public-key encryption schemes based on any CPA-secure identity-
based encryption (IBE) scheme1 (see sections 2.1 and 3.1 for definitions of the latter
notion). A number of IBE schemes based on specific number-theoretic assumptions
are known [17, 7, 8, 56, 34]; thus, our techniques yield new constructions of CCA-
secure encryption schemes based on these same assumptions.

From a theoretical perspective, our work offers new ways of constructing CCA-
secure encryption schemes that do not use “proofs of well-formedness” and hence do
not seem to fit within the Elkind–Sahai characterization mentioned above. From a
practical perspective, we show that a specific instantiation of our construction yields
a practical CCA-secure scheme with efficiency close to that of the best previous con-
struction (cf. section 7). This efficient instantiation is based on the decisional bilinear
Diffie–Hellman (BDH) assumption, described in section 7.3. Comparing this assump-
tion to those used in prior constructions of CCA-secure encryption schemes, we note
the following:

• The decisional BDH assumption seems incomparable to the assumption of
enhanced trapdoor permutations that underlies the standard construction of
generic NIZK as used in the schemes of [28, 51]. Nevertheless, the decisional
BDH assumption is known to imply the existence of generic NIZK proof
systems for all of NP [17, Appendix B] and hence was already known to
imply CCA-secure encryption via [28, 51]. We stress again that the schemes
shown here are orders of magnitude more efficient than schemes constructed
via generic NIZK.

• The decisional BDH assumption implies the DDH assumption that underlies
the schemes of [21, 42]. However, less efficient variants of our scheme can be
proven secure using assumptions that are incomparable to the DDH assump-
tion; see footnote 6 in section 7.3. In addition, our scheme lends itself to
threshold encryption much more efficiently than previous schemes; see below.

Further extensions and applications. Both our approaches extend to give a
transformation from any CPA-secure (� + 1)-level hierarchical identity-based encryp-
tion (HIBE) scheme [41, 33] to a CCA-secure �-level HIBE scheme (HIBE is described
in section 3.2). In particular, applying our technique to any 2-level HIBE scheme
gives a CCA-secure IBE scheme. Using this approach with known HIBE schemes
[17, 7, 8, 56, 9] yields the first efficient constructions of CCA-secure IBE schemes.

Our first approach, when instantiated with an appropriate IBE scheme, serves as
the basis for the first CCA-secure threshold encryption scheme with noninteractive
decryption [7, 10]. (In a threshold encryption scheme [25] the secret key is shared
among multiple servers, some fraction of whom must cooperate in order to decrypt
a given ciphertext.) Security in this case crucially relies on specific properties of
our construction and, in particular, on the feature that a certain class of “valid”
ciphertexts can be efficiently recognized without knowledge of the global secret key;
the reader is referred to [7, 10] for further discussion.

1Our constructions use other primitives, but these can all be constructed based on one-way
functions which are in turn implied by CPA-secure encryption.

1304 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

Our approaches are generic and can be used to construct a CCA-secure encryption
scheme from an arbitrary IBE scheme. Extending our work, Boyen, Mei, and Waters
[14] show that for some concrete IBE schemes (e.g., the one of Waters [56]) a more
efficient and direct construction of a CCA-secure encryption scheme is possible.

1.3. Organization. In the following section, we provide an informal overview
of IBE and HIBE as well as some high-level intuition regarding our techniques. For-
mal definitions of all relevant cryptographic notions (including IBE and CCA-secure
public-key encryption) appear in section 3 and the appendix. The first of our trans-
formations is discussed in section 4, and the second transformation is presented in
section 5. We discuss the extension to HIBE in section 6.

The treatment in the above sections is generic and does not rely on any spe-
cific cryptographic assumptions. In section 7 we recall one specific number-theoretic
assumption under which an IBE scheme is known to exist, describe a concrete in-
stantiation of our construction based on this assumption, and compare the efficiency
of the resulting CCA-secure encryption scheme to the most efficient such construc-
tion that was previously known (namely, the Kurosawa–Desmedt variant [42] of the
Cramer–Shoup encryption scheme [21]).

2. Overview of our techniques.

2.1. Identity-based encryption. Before sketching our constructions, we first
recall the notion of IBE as introduced by Shamir [52]. Informally, an IBE scheme
is a public-key encryption scheme in which any string (i.e., identity) can serve as a
public key. In more detail, a trusted authority called a private-key generator (PKG)
is assumed to initialize the system by running a key-generation algorithm to generate
“master” public and secret keys. The master public key PK is published, while the
PKG stores the master secret key. Given the master secret key and an arbitrary
string ID (viewed as the identity of a party in the system), the PKG can derive a
“personal secret key” SKID and give it to this party. Any sender can encrypt a
message for this party using only the master public key PK and the string ID; we
denote such encryption by EPK(ID, ·). The resulting ciphertext can be decrypted
using the personal secret key SKID, but the following extension of CPA-security is
required to hold:

For any two messages and any identity ID, given a challenge cipher-
text C that is an encryption of one of these messages (with respect
to ID) it is infeasible to determine (with any noticeable advantage
over a random guess) which message was actually encrypted. This
should hold even if the adversary is given SKID′ for multiple identi-
ties ID′ �= ID chosen adaptively by the adversary.

The first formal definition of security for IBE was given by Boneh and Franklin
[11]. In their definition, the adversary may choose the “target identity” (ID in the
above) in an adaptive manner, based on the master public key PK and any keys
{SKID′} the adversary has obtained thus far; we call such schemes “fully secure.”
A weaker notion, proposed by Canetti, Halevi, and Katz [17] and called “selective-
ID” security there, requires the adversary to specify the target identity in advance,
before the master public key is published. Fully secure IBE schemes in the random
oracle model were first demonstrated by Boneh and Franklin [11] and Cocks [20].
Canetti, Halevi, and Katz [17], building on earlier work of Gentry and Silverberg [33],
constructed an IBE scheme satisfying selective-ID security in the standard model;
more efficient constructions were given by Boneh and Boyen [7]. More recently, Boneh

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1305

and Boyen [8] have shown a fully secure IBE scheme in the standard model, and more
efficient constructions were subsequently given by Waters [56] and Gentry [34].

Both our constructions of CCA-secure encryption from IBE require an IBE scheme
satisfying only the weaker notion of selective-ID security. Our transformation from
any CPA-secure (� + 1)-level HIBE scheme to a CCA-secure �-level HIBE scheme
preserves the level of security in the above sense; i.e., if the original scheme is fully
secure then so is the derived scheme, but selective-ID security of the original scheme
is sufficient for selective-ID security of the derived scheme.

2.2. Our techniques.

Our first construction. Given an IBE scheme, we construct a CCA-secure
public-key encryption scheme as follows: The public key of the new scheme is the
master public key PK of the IBE scheme and the secret key is the corresponding
master secret key. To encrypt a message with respect to public key PK, the sender
first generates a key-pair (vk, sk) for a strong2 one-time signature scheme, and then
encrypts the message with respect to the “identity” vk. The resulting ciphertext
C ← EPK(vk,m) is then signed using sk to obtain a signature σ. The final ciphertext
consists of the verification key vk, the IBE ciphertext C, and the signature σ. To
decrypt a ciphertext 〈vk, C, σ〉, the receiver first verifies the signature on C with
respect to vk and outputs ⊥ if the verification fails. Otherwise, the receiver derives
the secret key SKvk corresponding to the “identity” vk, and uses SKvk to decrypt
the ciphertext C using the underlying IBE scheme.

Security of the above scheme against adaptive chosen-ciphertext attacks can be
informally understood as follows. Say a ciphertext 〈vk, C, σ〉 is valid if σ is a valid sig-
nature on C with respect to vk. Now consider a challenge ciphertext c∗ = 〈vk∗, C∗, σ∗〉
given to the adversary. We may first notice that any valid ciphertext c = 〈vk, C, σ〉
submitted by the adversary to its decryption oracle (implying c �= c∗) must, except
with negligible probability, have vk �= vk∗ by the strong security of the one-time
signature scheme. The crux of the security proof is then to show that (selective-ID)
security of the IBE scheme implies that obtaining the decryption of C does not help
the adversary in deciding which message the ciphertext C∗ corresponds to. Intu-
itively, this is because the adversary cannot guess the message corresponding to C∗

with probability better than 1/2 even if it were given the secret key SKvk. (This is
so since vk �= vk∗, and C∗ was encrypted for “identity” vk∗ using an IBE scheme.)
But giving SKvk to the adversary only makes the adversary more powerful, since it
could then decrypt C itself.

Our use of a strong one-time signature scheme to force the adversary’s decryption
queries to differ from the challenge ciphertext in a specific way is reminiscent of
prior work in the context of CCA-security [28, 51]. The key difference is that prior
work used the verification key vk to implement “unduplicatable set selection” (cf.
[51]) which requires Θ(k) invocations of some underlying encryption scheme, where
k is the security parameter. Furthermore, prior work also required some sort of
“proof of consistency” for the resulting ciphertext, leading (as described earlier) to
an impractical scheme. In contrast, our construction gives a CCA-secure encryption
scheme with relatively minimal overhead as compared to the original IBE scheme.

We note also independent work of MacKenzie, Reiter, and Yang [45], who intro-
duce a weaker notion of CCA-secure encryption and use essentially the same con-

2A “strong” signature scheme has the property that it is infeasible to create a new, valid signature
even for a previously signed message. A formal definition is given in the appendix.

1306 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

struction to convert any scheme satisfying their weaker definition into a full-fledged
CCA-secure encryption scheme. Their work, however, shows only efficient realizations
of schemes in the random oracle model.

We remark that if the signature scheme used is only unforgeable in the standard
sense (rather than strongly unforgeable), we obtain an encryption scheme satisfying
the slightly weaker notion of replayable CCA-security [19]. Also, a simple modifica-
tion of the above construction gives an encryption scheme secure against nonadaptive
chosen-ciphertext attacks [49, 28, 2] but with essentially no overhead as compared to
the underlying IBE scheme. Namely, replace the verification key vk by a randomly
chosen string r ∈ {0, 1}ω(log k); the resulting ciphertext is simply 〈r, C〉, where C is
encrypted with respect to the “identity” r. Since an adversary cannot guess in ad-
vance (with better than negligible probability) which r will be used for the challenge
ciphertext, an argument similar to the above shows that this scheme is secure against
nonadaptive chosen-ciphertext attacks.

Improving the efficiency. Focusing again on security against adaptive chosen-
ciphertext attacks, the previous construction—although conceptually simple and effi
cient—does add noticeable overhead in practice to the underlying IBE scheme: en-
cryption requires the sender to generate signing/verification keys and sign a message;
the ciphertext length is increased by the size of a verification key plus the size of a
signature; and decryption requires the receiver to perform a signature verification.
Although one-time signatures are “easy” to construct in theory and are more efficient
than full-fledged signatures (i.e., those which are strongly unforgeable under adaptive
chosen-message attack), they still have their price.

• Known one-time signature schemes based on general one-way functions [43,
30] allow very efficient signing ; key generation and signature verification,
on the other hand, require Θ(k) evaluations of the one-way function and
are relatively expensive. More problematic, perhaps, is that such schemes
have very long public keys and/or signatures (with combined length Θ(k2)),
resulting in very long ciphertexts in our construction above.

• One-time signature schemes can of course be based on number-theoretic
assumptions (say, by adapting full-fledged signature schemes); this yields
schemes whose computational cost for key generation, signing, and verifying
is more expensive, but which (may) have the advantage of short(er) public
keys and signatures.

Motivated by the above, we modify the previous construction by using a message
authentication code (MAC) in place of a one-time signature scheme in the following
way: the secret signing key is replaced by a secret MAC key r and the public veri-
fication key (which was used as the “identity” for the IBE scheme) is replaced by a
commitment to r. In more detail, encryption of a message m is performed by first com-
mitting to a random MAC key r, resulting in a commitment com and a corresponding
decommitment dec. The ciphertext is 〈com, C, tag〉, where C is an encryption of the
“message” m ◦ dec with respect to the “identity” com (i.e., C ← EPK(com, m ◦ dec))
and tag is a message authentication code computed on C using key r. Decryption of
ciphertext 〈com, C, tag〉 is done in the natural way: the receiver first decrypts C with
respect to “identity” com to obtain m ◦ dec, and then recovers r using com and dec.
The receiver then tries to verify tag using key r, outputting m if verification succeeds
and ⊥ otherwise.

In fact, a weaker form of commitment than the standard one suffices for our
purposes (cf. section 5.1); we refer to this weaker notion as “encapsulation.” The

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1307

advantage of the former is that encapsulation schemes can potentially be more efficient
than full-fledged commitment schemes.

The intuition for the security of this construction is quite similar to that discussed
previously. Consider a challenge ciphertext 〈com∗, C∗, tag∗〉 that was constructed
using MAC key r∗. As before, decryption queries that use a different “identity” com �=
com∗ are useless to the attacker due to the security of the underlying IBE scheme.
For decryption queries 〈com∗, C, tag〉 that use the same “identity” we note that either
(1) C decrypts to m◦dec, where dec is a valid decommitment of com∗ to some r �= r∗,
or (2) the attacker was able to compute a valid tag on C �= C∗ with respect to the
MAC key r∗. The first case is easily shown to violate the binding property of the
commitment scheme. The second case can be shown to violate the secrecy of the
commitment scheme (i.e., the adversary learns something about r∗ from com∗), the
secrecy of the encryption (i.e., the adversary learns something about r∗ from C∗), or
the security of the MAC (i.e., the adversary generates a valid tag without learning
anything about r∗).

The actual proof for this scheme is more difficult than for the previous case due
to the fact that here C must be decrypted before validity of the ciphertext as a whole
can be checked. We thus must be careful to avoid the seeming circularity which arises
since the MAC key r is used to authenticate a string (namely, C) that depends on r
(via dec).

The idea of using a MAC and a commitment to the key was suggested previously
in the context of nonmalleable commitment (e.g., [26, 27]), but our application of this
technique is qualitatively different precisely due to the apparent circularity (and the
resulting complications to the proof) discussed above. In particular, in the context
of nonmalleable commitment the MAC key can be revealed by the sender during the
decommitment phase and hence the key is not used to authenticate a message which
depends on itself. In contrast, here the MAC key must be transmitted to the receiver
as part of the ciphertext. The idea of encapsulating the MAC key (rather than using
full-fledged commitment), as well as the encapsulation scheme we propose, are new
to this work.

3. Definitions. We use the standard definitions of public-key encryption schemes
and their security against adaptive chosen-ciphertext attacks strong one-time signa-
ture schemes, and MACs. For convenience and to fix notation, we recall these defini-
tions in the appendix. Our definitions of IBE and HIBE schemes have also appeared
previously; however, since these definitions are less familiar yet are central to our
work, we include the appropriate definitions in this section. Encapsulation schemes
are defined in section 5.1. Our definitions and proofs are phrased with respect to
uniform adversaries but can be easily extended to the nonuniform setting. We let
“ppt” stand for “probabilistic polynomial-time.”

If Σ is a set then Σn denotes the set of n-tuples of elements of Σ, with Σ0

denoting the set containing only the empty tuple. Thus, using this notation, {0, 1}n

denotes the set of binary strings of length n. We also define Σ<n def
=

⋃
0≤i<n Σi and

Σ≤n def
=

⋃
0≤i≤n Σi.

3.1. Identity-based encryption. We begin by reviewing the functional defi-
nition of an IBE scheme [11].

Definition 1. An identity-based encryption scheme for identities of length n
(where n is a polynomially bounded function) is a tuple of ppt algorithms (Setup,Der,
E ,D) such that the following hold:

1308 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

• The randomized setup algorithm Setup takes as input a security parameter
1k. It outputs a master public key PK and a master secret key msk. (We
assume that k and n = n(k) are implicit in PK and msk.)

• The (possibly randomized) key-derivation algorithm Der takes as input the
master secret key msk and an identity ID ∈ {0, 1}n. It returns the corre-
sponding decryption key SKID. We write SKID ← Dermsk(ID).

• The randomized encryption algorithm E takes as input the master public key
PK, an identity ID ∈ {0, 1}n, and a message m in some implicit3 message
space; it outputs a ciphertext C. We write C ← EPK(ID,m).

• The (possibly randomized) decryption algorithm D takes as input an identity
ID, an associated decryption key SKID, and a ciphertext C. It outputs a
message m or the symbol ⊥ (which is not in the message space). We write
m ← DSKID

(ID,C).
We require that for all (PK,msk) output by Setup, all ID ∈ {0, 1}n, all SKID output
by Dermsk(ID), all m in the message space, and all C output by EPK(ID,m) we have
DSKID

(ID,C) = m.
We now define security for IBE. As mentioned in the introduction, the definition

we give is weaker than that considered by Boneh and Franklin [11] and conforms to
“selective-ID” security [17] where the “target” identity is selected by the adversary
before the public key is generated.

Definition 2. An identity-based encryption scheme Π for identities of length
n is selective-ID secure against chosen-plaintext attacks if the advantage of any ppt

adversary A in the following game is negligible in the security parameter k:
1. A(1k) outputs a “target” identity ID∗ ∈ {0, 1}n(k).
2. Setup(1k) outputs (PK,msk). The adversary is given PK.
3. The adversary A may make polynomially many queries to an oracle Dermsk(·),

except that it may not request a secret key corresponding to the target identity
ID∗.
The adversary is allowed to query this oracle repeatedly using the same iden-
tity; if Der is randomized, then a different secret key may possibly be returned
each time.

4. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit
b is randomly chosen and the adversary is given a “challenge” ciphertext
C∗ ← EPK(ID∗,mb).

5. A may continue to query its oracle Dermsk(·) as above. Finally, A outputs a
guess b′.

We say that A succeeds if b′ = b and denote the probability of this event by PrIBE
A,Π[Succ].

The adversary’s advantage is defined as AdvIBE
A,Π(k)

def
=

∣∣PrIBE
A,Π[Succ] − 1/2

∣∣.
The definition may be extended to take into account security against adaptive

chosen-ciphertext attacks. In this case, the adversary additionally has access to an
oracle D̂(·) such that D̂(C) returns DSKID∗ (C), where SKID∗ is the secret key asso-
ciated with the target identity ID∗ (computed using Dermsk(ID

∗)).4 The adversary
has access to this oracle throughout the entire game but cannot submit the challenge
ciphertext C∗ to D̂.

On deterministic versus randomized key derivation. For simplicity, when

3For example, the message space may consist of all strings of length p(k), where p is polynomially
bounded.

4Note that decryption queries for identities ID �= ID∗ are superfluous, as A may make the
corresponding Der query itself and thereby obtain SKID.

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1309

dealing with chosen-ciphertext security for IBE schemes we will assume that Der is
deterministic. If Der is not deterministic, a definition of chosen-ciphertext security is
complicated by the question of whether different invocations of the decryption oracle D̂
should use the same secret key SKID∗ (computed using Der the first time D̂ is invoked)
or a fresh secret key (computed by running Der using fresh random coins each time).
The resulting security definitions obtained in each case seem incomparable, and there
does not appear to be any reason to prefer one over the other. A related difficulty
arises in the case of HIBE (discussed next) even in the case of chosen-plaintext attacks.
These distinctions all become irrelevant when Der is deterministic.

Assuming deterministic key derivation is anyway without much loss of generality:
given an IBE scheme with randomized key-derivation algorithm Der we can construct
an IBE scheme with deterministic key derivation by (1) including a random key sk
for a pseudorandom function F as part of the master secret key msk; and (2) gener-
ating the decryption key for identity ID by running Dermsk(ID) using “randomness”
Fsk(ID). A similar idea applies to the case of HIBE.

3.2. Hierarchical identity-based encryption. Hierarchical identity-based en-
cryption (HIBE) is an extension of IBE suggested by Horwitz and Lynn [41]. In an
�-level HIBE scheme, there is again assumed to be a trusted authority who gener-
ates master public and secret keys. As in the case of IBE, it is possible to derive
a personal secret key SKID1 for any identity ID1 using the master secret key. The
additional functionality provided by a HIBE scheme is that this personal secret key
SKID1

may now be used to derive a personal secret key SKID1,ID2 for the “ID-vector”
(ID1, ID2), and so on, with the scheme supporting the derivation of keys in this way
for ID-vectors of length at most �. As in the case of IBE, any sender can encrypt
a message for the ID-vector v = (ID1, . . . , IDL) using only the master public key
and v; the resulting ciphertext can be decrypted by anyone who knows SKID1,...,IDL

.
Security is defined as the natural analogue of security in the case of IBE: informally,
indistinguishability should hold for ciphertexts encrypted with respect to a target ID-
vector v = (ID1, . . . , IDL) as long as the adversary does not know the secret keys of
any identity of the form (ID1, . . . , IDL′) for L′ ≤ L.

Before formally defining an �-level HIBE scheme, we first introduce some notation
to deal with ID-vectors v ∈ ({0, 1}n)≤�. For an ID-vector v = (v1, . . . , vL) (with
vi ∈ {0, 1}n), we define the length of v as |v| = L and let v.r (for r ∈ {0, 1}n) denote
the ID-vector (v1, . . . , vL, r) of length |v|+1. We let ε denote the ID-vector of length 0.
Given v as above and an ID-vector v′ = (v′1, . . . , v

′
L′), we say that v is a prefix of v′

if |v| ≤ |v′| and vi = v′i for i ≤ |v|.
Rephrased using the above notation, the functional property of an �-level HIBE

scheme is this: given the secret key SKv associated with the ID-vector v it is possible
to derive a secret key SKv′ associated with the ID-vector v′ (assuming |v′| ≤ �)
whenever v is a prefix of v′. Similarly, the security provided by a HIBE scheme is
that indistinguishability should hold for ciphertexts encrypted with respect to an ID-
vector v even if the adversary has multiple keys {SKv′}v′∈V for some set V as long
as no v′ ∈ V is a prefix of v.

Formal definitions follow. The functional definition is essentially from [33], al-
though we assume for simplicity that the key derivation algorithm is deterministic
(cf. the remark in the previous section). As in the case of IBE, the definition of se-
curity we give is the one proposed by Canetti, Halevi, and Katz [17], which is weaker
than the one considered in [33].

Definition 3. An �-level HIBE scheme for identities of length n (where �, n are

1310 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

polynomially bounded functions) is a tuple of ppt algorithms (Setup,Der, E ,D) such
that the following hold:

• The randomized setup algorithm Setup takes as input a security parameter 1k.
It outputs a master public key PK and a master secret key denoted SKε. (We
assume that k, � = �(k), and n = n(k) are implicit in PK and all node secret
keys.)

• The deterministic key-derivation algorithm Der takes as input an ID-vector v ∈
({0, 1}n)<�, its associated secret key SKv, and a string r ∈ {0, 1}n. It re-
turns the secret key SKv.r associated with the ID-vector v.r. We write this
as SKv.r := DerSKv

(v, r).
• The randomized encryption algorithm E takes as input the master public

key PK, an ID-vector v ∈ ({0, 1}n)≤�, and a message m in some implicit
message space. It outputs a ciphertext C. We write this as C ← EPK(v,m).

• The (possibly randomized) decryption algorithm D takes as input an ID-
vector v ∈ ({0, 1}n)≤�, its associated secret key SKv, and a ciphertext C. It
returns a message m or the symbol ⊥ (which is not in the message space).
We write m ← DSKv (v, C).

We require that for all (PK,SKε) output by Setup, all v ∈ ({0, 1}n)≤�, any secret
key SKv correctly generated (in the obvious way) for v, and any message m we have
m = DSKv

(v, EPK(v,M)).

Definition 4. An �-level HIBE scheme Π for identities of length n is selective-
ID secure against chosen-plaintext attacks if the advantage of any ppt adversary A
in the following game is negligible in the security parameter k:

1. Let � = �(k), n = n(k). Adversary A(1k) outputs a “target” ID-vector v∗ ∈
({0, 1}n)≤�.

2. Algorithm Setup(1k) outputs (PK,SKε). The adversary is given PK.
3. The adversary may adaptively ask for the secret key(s) corresponding to any

ID-vector(s) v, as long as v is not a prefix of the target ID-vector v∗. The
adversary is given the secret key SKv correctly generated for v using SKε

and (repeated applications of) Der.
4. At some point, the adversary outputs two messages m0,m1 with |m0| = |m1|.

A bit b is randomly chosen, and the adversary is given a “challenge” ciphertext
C∗ ← EPK(v∗,mb).

5. The adversary can continue asking for secret keys as above. Finally, A out-
puts a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrHIBE
A,Π [Succ].

The adversary’s advantage is defined as AdvHIBE
A,Π (k)

def
=

∣∣PrHIBE
A,Π [Succ] − 1/2

∣∣.
As in the case of IBE, it is easy to modify the above to take into account security

against adaptive chosen-ciphertext attacks. Here, the adversary may additionally
query an oracle D̂(·, ·) such that D̂(v, C) returns DSKv (v, C) using key SKv correctly

generated for v. The only restriction is that the adversary may not query D̂(v∗, C∗)
after receiving the challenge ciphertext C∗.

4. Chosen-ciphertext security from identity-based encryption. Given an
IBE scheme Π′ = (Setup,Der, E ′,D′) for identities of length n which is selective-ID
secure against chosen-plaintext attacks, we construct a public-key encryption scheme
Π = (Gen, E ,D) secure against adaptive chosen-ciphertext attacks. In the construc-
tion, we use a strong one-time signature scheme Sig = (G,Sign,Vrfy) (cf. Definition 11
in the appendix) in which the verification key output by G(1k) has length n = n(k).

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1311

The construction of Π proceeds as follows:

Key generation. Gen(1k) runs Setup(1k) to obtain (PK,msk). The public key is
PK and the secret key is msk.

Encryption. To encrypt message m using public key PK, the sender first runs G(1k)
to obtain verification key vk and signing key sk (with |vk| = n). The sender
then computes C ← E ′

PK(vk,m) (i.e., the sender encrypts m with respect to
the “identity” vk) and σ ← Signsk(C). The final ciphertext is 〈vk, C, σ〉.

Decryption. To decrypt ciphertext 〈vk, C, σ〉 using secret key msk, the receiver first

checks whether Vrfyvk(C, σ)
?
= 1. If not, the receiver simply outputs ⊥.

Otherwise, the receiver computes SKvk ← Dermsk(vk) and outputs m ←
D′

SKvk
(vk, C).

It is clear that the above scheme satisfies correctness. We give some intuition
as to why Π is secure against chosen-ciphertext attacks. Let 〈vk∗, C∗, σ∗〉 be the
challenge ciphertext (cf. Definition 8). It should be clear that, without any decryption
oracle queries, the plaintext corresponding to this ciphertext remains “hidden” to
the adversary; this is so because C∗ is output by Π′ which is CPA-secure (and the
additional components of the ciphertext provide no additional help).

We claim that decryption oracle queries cannot further help the adversary in
determining the plaintext (i.e., guessing the value of b; cf. Definition 8). On one
hand, if the adversary submits to its decryption oracle a ciphertext 〈vk, C, σ〉 that is
different from the challenge ciphertext but with vk = vk∗ then (with all but negligible
probability) the decryption oracle will reply with ⊥ since the adversary is unable to
forge new, valid signatures with respect to vk. On the other hand, if vk �= vk∗

then (informally) the decryption query will not help the adversary since the eventual
decryption using D′ (in the underlying scheme Π′) will be done with respect to a
different “identity” vk. In the proof below, we formalize these ideas.

Theorem 1. If Π′ is an identity-based encryption scheme which is selective-ID
secure against chosen-plaintext attacks and Sig is a strong one-time signature scheme,
then Π is a public-key encryption scheme secure against adaptive chosen-ciphertext
attacks.

Proof. Assume we are given a ppt adversary A attacking Π in an adaptive
chosen-ciphertext attack. Say a ciphertext 〈vk, C, σ〉 is valid if Vrfyvk(C, σ) = 1. Let
〈vk∗, C∗, σ∗〉 denote the challenge ciphertext received by A during a particular run
of the experiment, and let Forge denote the event that A submits a valid ciphertext
〈vk∗, C, σ〉 to the decryption oracle. (We may assume that vk∗ is chosen at the outset
of the experiment so this event is well defined even before A is given the challenge
ciphertext. Recall also that A is disallowed from submitting the challenge ciphertext
to the decryption oracle once the challenge ciphertext is given to A.) We prove the
following claims.

Claim 1. PrPKE
A,Π[Forge] is negligible.

Claim 2.

∣∣PrPKE
A,Π[Succ ∧ Forge] + 1

2 PrPKE
A,Π[Forge] − 1

2

∣∣ is negligible.

To see that these imply the theorem, note that

∣∣∣PrPKE
A,Π[Succ] − 1

2

∣∣∣
≤

∣∣∣PrPKE
A,Π[Succ ∧ Forge] − 1

2 PrPKE
A,Π[Forge]

∣∣∣ +
∣∣∣PrPKE

A,Π[Succ ∧ Forge] + 1
2 PrPKE

A,Π[Forge] − 1
2

∣∣∣
≤ 1

2 PrPKE
A,Π[Forge] +

∣∣∣PrPKE
A,Π[Succ ∧ Forge] + 1

2 PrPKE
A,Π[Forge] − 1

2

∣∣∣,

1312 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

which is negligible given the stated claims. (A concrete security bound can be derived
easily.)

Proof of Claim 1. The proof is quite straightforward. We construct a ppt forger
F who forges a signature with respect to signature scheme Sig (in the sense of Defi-
nition 11) with probability exactly PrPKE

A,Π[Forge]. Security of Sig implies the claim.

F is defined as follows: given input 1k and verification key vk∗ (output by G),
F first runs Setup(1k) to obtain (PK,msk), and then runs A(1k, PK). Note that F
can answer any decryption queries of A. If A happens to submit a valid ciphertext
〈vk∗, C, σ〉 to its decryption oracle before requesting the challenge ciphertext, then F
simply outputs the forgery (C, σ) and stops. Otherwise, when A outputs messages
m0,m1, forger F proceeds as follows: it chooses a random bit b, computes C∗ ←
E ′
PK(vk∗,mb), and obtains (from its signing oracle) a signature σ∗ on the “message”

C∗. Finally, F hands the challenge ciphertext 〈vk∗, C∗, σ∗〉 to A. If A submits a
valid ciphertext 〈vk∗, C, σ〉 to its decryption oracle, note that we must have (C, σ) �=
(C∗, σ∗). In this case, F simply outputs (C, σ) as its forgery. It is easy to see that
F ’s success probability (in the sense of Definition 11) is exactly PrPKE

A,Π[Forge].
Proof of Claim 2. We use A to construct a ppt adversary A′ which attacks the

IBE scheme Π′ in the sense of Definition 2. Relating the advantages of A and A′ gives
the desired result.

Define adversary A′ as follows:
1. A′(1k) runs G(1k) to generate (vk∗, sk∗) and outputs the “target” identity

ID∗ = vk∗.
2. A′ is given a master public key PK. Adversary A′, in turn, runs A(1k, PK).
3. When A makes decryption oracle query D(〈vk, C, σ〉), adversary A′ proceeds

as follows:
(a) If vk = vk∗ then A′ checks whether Vrfyvk∗(C, σ) = 1. If so, A′ aborts

and outputs a random bit. Otherwise, it simply responds with ⊥.
(b) If vk �= vk∗ and Vrfyvk(C, σ) = 0 then A′ responds with ⊥.
(c) If vk �= vk∗ and Vrfyvk(C, σ) = 1 then A′ makes the oracle query

Dermsk(vk) to obtain SKvk. It then computes m ← D′
SKvk

(vk, C) and
responds with m.

4. At some point, A outputs two equal-length messages m0,m1. These messages
are output by A′ as well. In return, A′ is given a challenge ciphertext C∗;
adversary A′ then computes σ∗ ← Signvk∗(C∗) and returns 〈vk∗, C∗, σ∗〉 to
A.

5. A may continue to make decryption oracle queries, and these are answered
by A′ as before.

6. Finally, A outputs a guess b′; this same guess is output by A′.
Note that A′ represents a legal adversarial strategy for attacking Π′; in particular, A′

never requests the secret key corresponding to the “target” identity vk∗. Furthermore,
A′ provides a perfect simulation for A until event Forge occurs. It is thus easy to see
that ∣∣∣PrIBE

A′,Π′ [Succ] − 1
2

∣∣∣ =
∣∣∣PrPKE

A,Π[Succ ∧ Forge] + 1
2 PrPKE

A,Π[Forge] − 1
2

∣∣∣,
and the left-hand side of the above is negligible by the assumed security of Π′.

This concludes the proof of the theorem.

5. A more efficient construction. We show here how the idea from the previ-
ous section can be implemented using a MAC and a primitive we call an “encapsulation

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1313

scheme” instead of a one-time signature scheme. As argued in the introduction, this
results in more efficient constructions of CCA-secure encryption schemes than the pre-
vious approach. However, using MACs rather than signatures—which, in particular,
will imply that ciphertext validity can no longer be determined efficiently without an
appropriate decryption key—complicates the security proof somewhat.

5.1. Encapsulation. We begin by defining a notion of “encapsulation” which
may be viewed as a weak variant of commitment. In terms of functionality, an encap-
sulation scheme commits the sender to a random string as opposed to a string chosen
by the sender as in the case of commitment. In terms of security, encapsulation only
requires binding to hold for honestly generated encapsulations; this is analogous to
assuming an honest sender during the first phase of a commitment scheme.

Definition 5. An encapsulation scheme is a triple of ppt algorithms (Init,S,R)
such that the folllowing hold:

• Init takes as input the security parameter 1k and outputs a string pub.
• S takes as input 1k and pub and outputs (r, com, dec) with r ∈ {0, 1}k. We

refer to com as the commitment string and dec as the decommitment string.
• R takes as input (pub, com, dec) and outputs r ∈ {0, 1}k ∪ {⊥}.

We require that for all pub output by Init and for all (r, com, dec) output by S(1k, pub),
we have R(pub, com, dec) = r. We also assume for simplicity that com and dec have
fixed lengths for any given value of the security parameter.

As in the case of commitment, an encapsulation scheme satisfies notions of binding
and hiding. Informally, “hiding” requires that com should not reveal information
about r; formally, r should be indistinguishable from random even when given com
(and pub). “Binding” requires that an honestly generated com can be “opened” to
only a single (legal) value of r; see below.

Definition 6. An encapsulation scheme is secure if it satisfies both hiding and
binding as follows:
Hiding: The following is negligible for all ppt A:∣∣∣∣Pr

[
pub ← Init(1k); r0 ← {0, 1}k;

(r1, com, dec) ← S(1k, pub); b ← {0, 1} : A(1k, pub, com, rb) = b

]
− 1

2

∣∣∣∣ .
Binding: The following is negligible for all ppt A:

Pr

⎡
⎣ pub ← Init(1k);

(r, com, dec) ← S(1k, pub);
dec′ ← A(1k, pub, com, dec)

: R(pub, com, dec′) �∈ {⊥, r}

⎤
⎦ .

Both hiding and binding are required to hold only computationally. The encap-
sulation scheme we will later construct achieves statistical hiding (and computational
binding).

Since encapsulation is a weaker primitive than commitment, we could use any
commitment scheme as an encapsulation scheme. We will be interested, however, in
optimizing the efficiency of the construction (in particular, the lengths of com and dec
for a fixed value of k) and therefore focus on satisfying only the weaker requirements
given above. See further discussion in section 7.2.

5.2. The construction. Let Π′ = (Setup,Der, E ′,D′) be an IBE scheme for
identities of length n = n(k) which is selective-ID secure against chosen-plaintext
attacks, let (Init,S,R) be a secure encapsulation scheme in which commitments com
output by S have length n, and let (Mac,Vrfy) be a MAC. We construct a public-key
encryption scheme Π as follows:

1314 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

Key generation. Keys for our scheme are generated by running Setup(1k) to gen-
erate (PK,msk) and Init(1k) to generate pub. The public key is (PK, pub),
and the secret key is msk.

Encryption. To encrypt a message m using public key (PK, pub), a sender first en-
capsulates a random value by running S(1k, pub) to obtain (r, com, dec). The
sender then encrypts the “message” m ◦ dec with respect to the “identity”
com; that is, the sender computes C ← E ′

PK(com,m ◦ dec). The resulting
ciphertext C is then authenticated by using r as a key for a message authen-
tication code; i.e., the sender computes tag ← Macr(C). The final ciphertext
is 〈com, C, tag〉.

Decryption. To decrypt a ciphertext 〈com, C, tag〉, the receiver derives the secret
key SKcom corresponding to the “identity” com, and uses this key to decrypt
the ciphertext C as per the underlying IBE scheme; this yields a “message”
m ◦ dec (if decryption fails, the receiver outputs ⊥). Next, the receiver runs
R(pub, com, dec) to obtain a string r; if r �=⊥ and Vrfyr(C, tag) = 1, the
receiver outputs m. Otherwise, the receiver outputs ⊥.

Theorem 2. If Π′ is an identity-based encryption scheme which is selective-ID
secure against chosen-plaintext attacks, the encapsulation scheme is secure (in the
sense of Definition 6), and (Mac,Vrfy) is a strong one-time message authentication
code, then Π a public-key encryption scheme secure against adaptive chosen-ciphertext
attacks.

Proof. Let A be a ppt adversary attacking Π in an adaptive chosen-ciphertext
attack. On an intuitive level, the proof here is the same as the proof of Theorem 1
in the following sense: Say a ciphertext 〈com, C, tag〉 is valid if decryption of this
ciphertext (using msk) does not result in ⊥. Let 〈com∗, C∗, tag∗〉 denote the challenge
ciphertext received by A. We will show that (1) A submits to its decryption oracle
a valid ciphertext 〈com∗, C, tag〉 (with 〈C, tag〉 �= 〈C∗, tag∗〉) only with negligible
probability; and (2) assuming that the previous event does not occur, the decryption
queries made by A do not help A to “learn” the underlying plaintext. The second
statement is relatively easy to prove based on the security of Π′; the first, however,
is now more challenging to prove since validity of a ciphertext cannot be determined
without knowledge of msk. Because of this, we structure the proof as a sequence of
games to make it easier to follow. We let Pri[·] denote the probability of a particular
event occurring in game i.

Game 0 is the original game in which A attacks Π in a chosen-ciphertext attack
as described in Definition 8. Let r∗, com∗, dec∗ denote the values that are used in
computing the challenge ciphertext, and notice that we may assume these values are
generated at the outset of the experiment (since these values are generated indepen-
dently of A’s actions). We are interested in upper-bounding

∣∣Pr0[Succ] − 1
2

∣∣, where
(recall) Succ denotes the event that A’s output bit b′ is identical to the bit b used in
constructing the challenge ciphertext.

In Game 1, we modify the experiment as follows: on input of a ciphertext of
the form 〈com∗, C, tag〉, the decryption oracle simply outputs ⊥. Let Valid denote
the event that A submits a ciphertext 〈com∗, C, tag〉 to its decryption oracle which is
valid, and note that

∣∣∣Pr1[Succ] − Pr0[Succ]
∣∣∣ ≤ Pr0[Valid] = Pr1[Valid].

The above holds since Games 0 and 1 are identical until Valid occurs.

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1315

Let NoBind denote the event that A at some point submits a ciphertext
〈com∗, C, tag〉 to its decryption oracle such that: (1) C decrypts to m ◦ dec (us-
ing the secret key SKcom∗ derived from msk) and (2) R(pub, com∗, dec) = r with
r �∈ {r∗,⊥}. Let Forge denote the event that A at some point submits a ciphertext
〈com∗, C, tag〉 to its decryption oracle such that Vrfyr∗(C, tag) = 1. We clearly have
Pr1[Valid] ≤ Pr1[NoBind] + Pr1[Forge].

It is relatively easy to see that Pr1[NoBind] is negligible assuming the binding
property of the encapsulation scheme. Formally, consider an adversary B acting as
follows: given input (1k, pub, com∗, dec∗), adversary B generates (PK,msk) by run-
ning Setup(1k) and then runs A on inputs 1k and (PK, pub). Whenever A makes a
query to its decryption oracle, B can respond to this query as required by Game 1;
specifically, B simply responds with ⊥ to a decryption query of the form 〈com∗, C, tag〉,
and responds to other queries using msk. When A submits its two messages m0,m1,
adversary B simply chooses b ∈ {0, 1} at random and encrypts mb in the expected
way to generate a completely valid challenge ciphertext 〈com∗, C∗, tag∗〉. (Note that
B can easily do this since it has dec∗ and can compute r∗.) At the end of the ex-
periment, B can decrypt every query of the form 〈com∗, C, tag〉 that A made to its
decryption oracle to see whether NoBind occurred and, if so, to learn a value dec such
that R(pub, com∗, dec) �∈ {r∗,⊥}. But this exactly violates the binding property of
encapsulation scheme (Init,S,R), implying that Pr1[NoBind] must be negligible.

Game 2 is derived by modifying the way the challenge ciphertext is computed.
Specifically, when A submits its two messages m0,m1 we now compute
C∗ ← E ′

PK(com∗, 0|m0| ◦0n) followed by tag∗ ← Macr∗(C
∗). The challenge ciphertext

is 〈com∗, C∗, tag∗〉. (A random bit b is still chosen, but is only used to define event
Succ.) Since the challenge ciphertext is independent of b, it follows immediately that
Pr2[Succ] = 1

2 .

We claim that |Pr2[Succ] − Pr1[Succ]| is negligible. To see this, consider the
following adversary A′ attacking the IBE scheme Π′ via a chosen-plaintext attack:

• Algorithm A′(1k) first runs Init(1k) to generate pub and then runs S(1k, pub)
to obtain (r∗, com∗, dec∗). It outputs com∗ as the target identity and is
then given the master public key PK. Finally, A′ runs A on inputs 1k and
(PK, pub).

• Decryption queries of A are answered in the natural way:
– Queries of the form 〈com∗, C, tag〉 are answered with ⊥.
– Queries of the form 〈com, C, tag〉 with com �= com∗ are answered by first

querying Dermsk(com) to obtain SKcom, and then decrypting in the usual
way.

• Eventually, A submits two equal-length messages m0,m1. A′ selects a bit
b at random, and sends mb ◦ dec∗ and 0|m0| ◦ 0n to its encryption oracle.
It receives in return a challenge ciphertext C∗, and uses this to generate a
ciphertext 〈com∗, C∗, tag∗〉 in the natural way.

• Further decryption queries of A are answered as above.
• Finally, A outputs a bit b′. If b = b′, then A′ outputs 0; otherwise, A′

outputs 1.

Note that A′ is a valid adversary. When the encryption query of A′ is answered with
an encryption of mb ◦ dec∗, then the view of A is exactly as in Game 1; on the other
hand, when the encryption query of A′ is answered with an encryption of 0|m0| ◦ 0n,

1316 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

then the view of A is exactly as in Game 2. Thus,

AdvIBE
A′,Π′(k) =

∣∣ 1
2 Pr1[Succ] + 1

2 Pr2[Succ] − 1
2

∣∣
= 1

2 ·
∣∣∣Pr1[Succ] − Pr2[Succ]

∣∣∣ .
Security of Π′ implies that AdvIBE

A′,Π′ is negligible, implying that |Pr2[Succ]−Pr1[Succ]|
is negligible. An exactly analogous argument shows that |Pr2[Forge] − Pr1[Forge]| is
negligible as well. (The only difference is that A′ runs A to completion and then
checks whether A has made any decryption query of the form 〈com∗, C, tag〉 for which
Vrfyr∗(C, tag) = 1. If so, then A′ outputs 1; otherwise, it outputs 0.)

In Game 3, we introduce one final change. The components com∗ and C∗ of
the challenge ciphertext are computed as in Game 2; however, the component tag∗

is computed by choosing a random key r ∈ {0, 1}k and setting tag∗ = Macr(C
∗).

Event Forge in this game is defined as before, but using the key r; that is, Forge is
now the event that A makes a decryption query of the form 〈com∗, C, tag〉 for which
Vrfyr(C, tag) = 1.

We claim that |Pr3[Forge] − Pr2[Forge]| is negligible. To see this, consider the
following algorithm B attacking the hiding property of the encapsulation scheme:

• B is given input 1k and (pub, com∗, r̃). It then runs Setup(1k) to generate
(PK,msk), and runs A on inputs 1k and (PK, pub).

• Decryption queries of A are answered in the natural way.
• Eventually, A submits messages m0,m1. B computes C∗ ← E ′

PK(com∗, 0|m0|◦
0n), computes tag∗ = Macr̃(C

∗), and returns the challenge ciphertext 〈com∗,
C∗, tag∗〉 to A.

• Further decryption queries of A are answered as above.
• When A halts, B checks whether A has made any decryption query of the

form 〈com∗, C, tag〉 for which Vrfyr̃(C, tag) = 1. If so, B outputs 1; otherwise,
it outputs 0.

Now, if r̃ is such that (r̃, com∗, dec∗) was output by S(1k, pub), then the view of A
is exactly as in Game 2 and so B outputs 1 with probability Pr2[Forge]. On the other
hand, if r̃ is chosen at random independently of com∗, then the view of A is exactly
as in Game 3 and so B outputs 1 with probability Pr3[Forge]. The hiding property of
the encapsulation scheme thus implies that |Pr3[Forge] − Pr2[Forge]| is negligible.

To complete the proof, we show that Pr3[Forge] is negligible. This follows rather
easily from the security of the MAC, but we sketch the details here. Let q = q(k)
be an upper bound on the number of decryption oracle queries made by A, and
consider the following forging algorithm F : first, F chooses a random index j ←
{1, . . . , q}. Next, F begins simulating Game 3 for A in the natural way. If the jth
decryption query 〈comj , Cj , tagj〉 occurs before A makes its encryption query, then
F simply outputs (Cj , tagj) and halts. Otherwise, in response to the encryption

query (m0,m1) of A, forger F computes (r∗, com∗, dec∗) ← S(1k, pub) followed by
C∗ ← E ′

PK(com∗, 0|m0| ◦ 0n). Next, F submits C∗ to its Mac oracle and receives in
return tag∗. Forger F then gives the challenge ciphertext 〈com∗, C∗, tag∗〉 to A and
continues running A until A submits its jth decryption query 〈comj , Cj , tagj〉. At
this point, F outputs (Cj , tagj) and halts.

It is not difficult to see that the success probability of F in outputting a valid
forgery is at least Pr3[Forge]/q. Since (Mac,Vrfy) is a strong one-time MAC and q is
polynomial, this shows that Pr3[Forge] is negligible.

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1317

Putting everything together, we have∣∣∣Pr0[Succ] − 1
2

∣∣∣ ≤
∣∣∣Pr0[Succ] − Pr1[Succ]

∣∣∣ +
∣∣∣Pr1[Succ] − 1

2

∣∣∣
≤ Pr1[NoBind] + Pr1[Forge] +

∣∣∣Pr1[Succ] − Pr2[Succ]
∣∣∣ +

∣∣∣Pr2[Succ] − 1
2

∣∣∣
= Pr1[NoBind] + Pr1[Forge] +

∣∣∣Pr1[Succ] − Pr2[Succ]
∣∣∣

≤ Pr1[NoBind] + Pr3[Forge] +
∣∣∣Pr2[Forge] − Pr3[Forge]

∣∣∣
+
∣∣∣Pr1[Forge] − Pr2[Forge]

∣∣∣ +
∣∣∣Pr1[Succ] − Pr2[Succ]

∣∣∣ ,
and all terms in the final equation are negligible. (A concrete security analysis follows
easily from the above.)

6. Chosen-ciphertext security for IBE and HIBE schemes. The tech-
niques of the previous two sections extend relatively easily to enable construction
of an �-level HIBE scheme secure against chosen-ciphertext attacks based on any
(�+1)-level HIBE scheme secure against chosen-plaintext attacks. (Note that an IBE
scheme is simply a 1-level HIBE scheme.) We give the details for the signature-based
approach of section 4. For arbitrary � ≥ 1, let Π′ = (Setup′,Der′, E ′,D′) be an (�+1)-
level HIBE scheme handling identities of length n+ 1, and let Sig = (G,Sign,Vrfy) be
a signature scheme in which the verification key output by G(1k) has length n = n(k).
We construct an �-level HIBE scheme Π handling identities of length n. The intuition
behind the construction is simple: the ID-vector v = (v1, . . . , vL) ∈ ({0, 1}n)L in Π
will be mapped to the ID-vector

Encode(v)
def
= (0v1, . . . , 0vL) ∈ ({0, 1}n+1)L

in Π′. We will maintain the invariant that the secret key SKv for ID-vector v in Π
will be the secret key SK ′

v̂ for ID-vector v̂ = Encode(v) in Π′. When encrypting a
message m to ID-vector v in Π, the sender will generate a verification key vk and
then encrypt m to the ID-vector v̂.(1vk) using Π′. (The resulting ciphertext will then
be signed as in section 4.) The extra 0 and 1 bits used as “padding” ensure that any
decryption queries asked by an adversary (in Π) correspond (in Π′) to nodes that are
not ancestors of the target ID-vector.

In more detail, Π is constructed as follows:
Setup. The Setup algorithm is the same as in Π′. (Note that Encode(ε) = ε so the

master secret key SKε = SK ′
ε satisfies the desired invariant.)

Key derivation. DerSKv
(v, r) runs as follows: let v̂ = Encode(v) and r̂ = Encode(r).

Run Der′SKv
(v̂, r̂) and output the result as SKv.r. (To see that key derivation

maintains the desired invariant given that SKv = SK ′
v̂, note that Encode(v.r)

= Encode(v).Encode(r).)
Encryption. EPK(v,m) first runs G(1k) to obtain (vk, sk). Let v̂ = Encode(v).(1vk).

The algorithm then computes C ← E ′
PK(v̂,m) and σ ← Signsk(C). The final

ciphertext is 〈vk, C, σ〉.
Decryption. DSKv (v, 〈vk, C, σ〉) proceeds as follows: first check whether Vrfyvk(C, σ)

?
= 1. If not, output ⊥. Otherwise, let v̂ = Encode(v) and run Der′SKv

(v̂, (1vk))
to generate the key SK∗ = SK ′

v̂.(1vk). Then output m := D′
SK∗(v̂, C).

It can be verified easily that the above scheme is correct. An analogous construction
can be given using the MAC-based construction of section 5. We now state the main
result of this section.

1318 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

Theorem 3. If Π′ is selective-ID secure against chosen-plaintext attacks and Sig
is a strong one-time signature scheme, then Π is selective-ID secure against chosen-
ciphertext attacks.

Proof. The proof is similar to that of Theorem 1. Given any ppt adversary A
attacking Π in a selective-ID chosen-ciphertext attack, we define an event Forge and
then prove the analogues of Claims 1 and 2 in our setting. For visual comfort, we use
Pr[·] instead of PrHIBE

A,Π [·].
Let v∗ denote the “target” ID-vector initially output by A, and let 〈vk∗, C∗, σ∗〉

be the challenge ciphertext received by A. Let Forge be the event that A makes a
decryption query D̂(v∗, 〈vk∗, C, σ〉) with Vrfyvk∗(C, σ) = 1. (As in the previous proof,
we may assume vk∗ is chosen at the beginning of the experiment and so this event
is defined even before A receives the challenge ciphertext. Recall again that A is
disallowed from submitting the challenge ciphertext to its decryption oracle once this
ciphertext has been given to A.) A proof exactly as in the case of Claim 1, relying
again on the fact that Sig is a strong one-time signature scheme, shows that Pr[Forge]
is negligible.

We next show that |Pr[Succ ∧ Forge] + 1
2 Pr[Forge] − 1

2 | is negligible. To do so,
we define adversary A′ attacking Π′ in a selective-ID chosen-plaintext attack. A′ is
defined as follows:

1. A′(1k) runs A(1k) who, in turn, outputs an ID-vector v∗ ∈ ({0, 1}n)≤�. Ad-
versary A′ runs G(1k) to generate (vk∗, sk∗) and outputs the target ID-vector
V ∗ = Encode(v∗).(1vk∗).

2. A′ is given PK, which it gives to A.
3. When A requests the secret key for ID-vector v, A′ requests the secret key

SK ′
v̂ for ID-vector v̂ = Encode(v) and returns this secret key to A. Note that

since v is not a prefix of the target ID-vector v∗ of A, it follows that v̂ is not
a prefix of the target ID-vector V ∗ of A′.

4. When A makes a decryption query D̂(v, 〈vk, C, σ〉), adversary A′ proceeds as
follows:
(a) If v = v∗ then A′ checks whether Vrfyvk(C, σ) = 1. If so, then A′ aborts

and outputs a random bit. Otherwise, it simply responds with ⊥.
(b) If v �= v∗, or if v = v∗ and vk �= vk∗, then A′ sets v̂ = Encode(v) and

requests the secret key SK ′
v̂.(1vk). (Note that v̂.(1vk) is not a prefix of

the target ID-vector V ∗ of A′, so A′ is allowed to submit this request.) It
then honestly decrypts the submitted ciphertext and returns the result
to A.

5. When A outputs its two messages m0,m1, these same messages are output by
A′. In return, A′ receives a challenge ciphertext C∗. Adversary A′ computes
σ∗ ← Signsk∗(C∗) and returns challenge ciphertext 〈vk∗, C∗, σ∗〉 to A.

6. Any of A’s subsequent decryption queries, or requests for secret keys, are
answered as before.

7. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π′. As in the proof
of Claim 2, it follows from the security of Π′ that |Pr[Succ∧ Forge] + 1

2 Pr[Forge]− 1
2 |

is negligible. This completes the proof.

We remark that when Π′ is fully secure against chosen-plaintext attacks [11, 33],
then Π is fully secure against chosen-ciphertext attacks. A proof for this case is easily
derived from the proof above.

Canetti, Halevi, and Katz [17] define a slightly stronger notion of HIBE which

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1319

requires the HIBE scheme to support an arbitrary (polynomial) number of levels �
and identities of arbitrary (polynomial) length n (where �, n are provided as input to
the initial Setup algorithm). We refer to HIBE schemes of this type as unbounded.
Security is defined as in Definition 4, except that the adversary’s advantage must be
negligible for all adversaries A as well as for all polynomially bounded functions �, n.
Since the above construction requires only a strong one-time signature scheme, which
can be constructed based on any one-way function (and hence from any secure HIBE
scheme), we have the following.

Corollary 1. If there exists an unbounded HIBE scheme which is selective-ID
secure (resp., fully secure) against chosen-plaintext attacks, then there exists an un-
bounded HIBE scheme which is selective-ID secure (resp., fully secure) against adap-
tive chosen-ciphertext attacks.

The analogous result for the case of (standard) public-key encryption is not
known.

7. An efficient instantiation. Here, we describe one instantiation of our generic
construction of CCA-secure cryptosystems from section 5. We then compare the ef-
ficiency of this construction with the most efficient previously known CCA-secure
scheme. To instantiate our construction, we need to specify a message authentica-
tion code, an encapsulation scheme, and an IBE scheme which is selective-ID secure
against chosen-plaintext attacks. We consider each of these in turn.

7.1. Message authentication code. A number of efficient (strong, one-time)
MACs are known. Since the computational cost of these schemes will be dominated
by the computational cost of the IBE scheme, we focus instead on minimizing the
lengths of the key and the tag. For concreteness, we suggest using CBC-MAC with
128-bit AES as the underlying block cipher. (In this scheme, both the secret key and
the tag are 128 bits long.) We remark, however, that strong one-time MACs with
information-theoretic security [57, 54] could also be used.

7.2. Encapsulation scheme. Adapting earlier work of Damg̊ard, Pedersen,
and Pfitzmann [24] and Halevi and Micali [39], we propose an encapsulation scheme
based on any universal one-way hash function (UOWHF) family {Hs : {0, 1}k1 →
{0, 1}k} (where k1 ≥ 3k is a function of the security parameter k). Our scheme works
as follows:

• Init chooses a hash function h from a family of pairwise-independent hash
functions mapping k1-bit strings to k-bit strings, and also chooses at random
a key s defining UOWHF Hs. It outputs pub = (h, s).

• The encapsulation algorithm S takes pub as input, chooses a random x ∈
{0, 1}k1 , and then outputs (r = h(x), com = Hs(x), dec = x).

• The recovery algorithm R takes as input ((h, s), com, dec) and outputs h(dec)
if Hs(dec) = com, and ⊥ otherwise.

We prove the following regarding the above scheme.
Theorem 4. The scheme above is a secure encapsulation scheme. Specifically,

the scheme is computationally binding under the assumption that {Hs} is a UOWHF
family, and statistically hiding (without any assumptions).

Proof. The binding property is easy to see. In particular, violation of the binding
property implies that an adversary finds dec′ �= dec for which Hs(dec′) = Hs(dec).
Since dec is chosen independently of the key s in an honest execution of S, security of
the UOWHF family implies that binding can be violated with only negligible proba-
bility. We omit the straightforward details. (Note, however, that a UOWHF rather

1320 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

than a collision-resistant hash function is sufficient here since the binding property
we require is weaker than that required by a standard commitment scheme.)

We next prove the following claim, which immediately implies statistical hiding.
Claim 3. For the encapsulation scheme described above, the statistical difference

between the following distributions is at most 2 · 2
2k−k1

3 ≤ 2 · 2−k/3:

(1){pub ← Setup; (r, com, dec) ← S(pub) : (pub, com, r)},
(2){pub ← Setup; (r, com, dec) ← S(pub); r′ ← {0, 1}k : (pub, com, r′)}.

The proof of this claim is loosely based on [24, 39], but our proof is much simpler. Let

α
def
= 2k1−k

3 , and assume for simplicity that k1, k are multiples of 3. Fix an arbitrary

s for the remainder of the discussion. For any fixed x ∈ {0, 1}k1 , let Nx
def
= {x′ |

Hs(x
′) = Hs(x)}; this is simply the set of elements hashing to Hs(x). Call x good

if |Nx| ≥ 2α, and bad otherwise. Since the output length of Hs is k bits, there are
at most 2α · 2k = 2α+k bad x’s; thus, the probability that an x chosen uniformly at
random from {0, 1}k1 is bad is at most

2α+k−k1 = 2
2k−k1

3 ≤ 2−k/3

(using the fact that k1 ≥ 3k).
When x is good, the min-entropy of x—given (h, s) and Hs(x)—is at least α

since every x̃ ∈ Nx is equally likely. Let Uk represent the uniform distribution over
{0, 1}k. Viewing h as a strong extractor (or, equivalently, applying the leftover-
hash lemma [40]) we see that the statistical difference between {h, s,Hs(x), h(x)} and
{h, s,Hs(x), Uk} is at most

2−(α−k)/2 = 2
2k−k1

3 ≤ 2−k/3.

The claim, and hence the theorem, follows.
A practical setting of the above parameters (and one that we will use when dis-

cussing the efficiency of our scheme, below) is k1 = 448, k = 128 which yields a 128-bit

r with statistical difference at most 2·2 256−448
3 = 2−63 from uniform.5 Also, in practice

one would likely replace the UOWHF by a suitable modification of a cryptographic
hash function such as SHA-1.

7.3. IBE scheme. Boneh and Boyen [7] recently proposed two efficient IBE
schemes satisfying the definition of security needed for our purposes. In the interest
of space, we explore an instantiation of our construction using their first scheme only.
(Of course, their second scheme could also be used. Doing so yields a mild efficiency
improvement at the expense of requiring a stronger cryptographic assumption.)

We briefly discuss the cryptographic assumption on which the Boneh–Boyen IBE
scheme is based. Let IG denote an efficient algorithm which, on input 1k, outputs
descriptions of two cyclic groups G,G1 of prime order q (with |q| = k), a generator
g ∈ G, and an efficiently computable function ê : G × G → G1 which is a nontrivial
bilinear map; namely, (1) for all μ, ν ∈ G and a, b ∈ Zq we have ê(μa, νb) = ê(μ, ν)ab

and (2) ê(g, g) is a generator of G1. (See [11] for a discussion about realizing an
algorithm IG with these properties.) Following the standard terminology, we refer to
ê as a pairing.

5Note that since only second-preimage resistance is needed to achieve the binding property, a
128-bit output length provides sufficient security.

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1321

The computational bilinear Diffie-Hellman (BDH) problem with respect to IG is
the following: given (G,G1, g, ê) as output by IG along with gα, gβ , and gγ (for
random α, β, γ ∈ Zq), compute ê(g, g)αβγ . Informally, we say that IG satisfies the
computational BDH assumption if the computational BDH assumption with respect
to IG is hard for any ppt algorithm.

The decisional BDH problem with respect to IG is to distinguish between tuples
of the form (gα, gβ , gγ , ê(g, g)αβγ) and (gα, gβ , gγ , ê(g, g)μ) for random α, β, γ, μ ∈ Zq

(note that ê(g, g)μ is simply a random element of G1). Informally, we say IG satisfies
the decisional BDH assumption if no ppt algorithm can solve the decisional BDH
problem with respect to IG with probability significantly better than 1

2 . We refer to
[11] for formal definitions and further discussion.

A concrete IBE scheme. We refer to [7] for the full details and content our-
selves with giving only a high-level description of their first IBE scheme here, modified
slightly for our eventual application. We assume for simplicity that system param-
eters (G,G1, g, ê) have already been established by running IG(1k) (of course, it is
also possible for IG to be run during key generation). Let G : G1 → {0, 1}k be a
function whose output is indistinguishable from uniform when its input is uniformly
distributed in G1 (however, G need not expand its input). The IBE scheme is defined
as follows:
Setup. Pick random generators g1, g2 ∈ G and a random x ∈ Zq. Set g3 = gx and

Z = ê(g1, g3). The master public key is PK = (g, g1, g2, g3, Z) and the master
secret key is msk = x.

Derive. To derive the secret key for the identity ID ∈ Zq using msk = x, choose a
random t ∈ Zq, and return the key SKID = (gx1g

t
2g

t·ID
3 , gt).

Encrypt. To encrypt a message M ∈ {0, 1}k with respect to the identity ID ∈ Zq,
choose a random s ∈ Zq, and output the ciphertext (gs, gs2g

s·ID
3 , G(Zs)⊕M).

Decrypt. To decrypt ciphertext (A,B,C) using private key (K1,K2), output

C ⊕G(ê(A,K1)/ê(B,K2)).(7.1)

Correctness can be easily verified. Security of the above scheme is based on the
decisional6 BDH assumption. For efficiency, the master secret key msk may also
contain the discrete logarithms of g1, g2 (with respect to g), in which case the key-
derivation algorithm requires only two exponentiations with respect to the fixed base
g.

7.4. Putting it all together. Given the above, we now fully describe a CCA-
secure encryption scheme. In describing the scheme, we focus on the case of encrypting
“long” messages (say, 104 bits or longer). Focusing on this case allows for a more
accurate comparison with the scheme of [42] (which also focuses on this case).

Let (Mac,Vrfy) denote the CBC-MAC using 128-bit AES as the underlying block
cipher. Let H : {0, 1}448 → {0, 1}128 represent a hash function assumed to be second-
preimage resistant (constructed, e.g., via a suitable modification of SHA-1). Let
G : G1 → {0, 1}∗ denote a pseudorandom generator with sufficiently long output
length (constructed, e.g., by first hashing elements of G1 and then using a suitable
modification of a block/stream cipher). We assume that |q| > 128 so that strings
in {0, 1}128 may be mapped to Zq in a one-to-one manner. Using the IBE scheme

6Note that if G instead represents a hard-core predicate for the computational BDH assumption,
we obtain a scheme (encrypting a single bit) secure under this, possibly weaker, assumption. Running
the scheme in parallel we obtain a scheme encrypting longer messages, as needed by our construction.

1322 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

Table 7.1

Efficiency comparison for CCA-secure encryption schemes. See text for discussion.

Encryption Decryption Key generation Ciphertext overhead
Our scheme 3.5 f-exps. 1.5 exp. + 1 pairing 4 f-exps. 2 · LBG + 704
KD-CS [42] 3.5 f-exps. 1.5 exps. 3 f-exps. 2 · LDDH + 128

outlined above, we obtain the following (we assume that G,H, q,G,G1, ê, g, and ê(g, g)
are provided as universal parameters):
Key generation. Choose α1, α2, x ← Zq and set g1 = gα1 , g2 = gα2 , and g3 = gx.

Also set Z = ê(g, g)α1x. Finally, choose hash function h from a family of
pairwise-independent hash functions. The public key is PK = (g1, g2, g3, Z, h)
and the secret key is SK = (α1, α2, x).

Encryption. To encrypt message M using public key (g1, g2, g3, Z, h), first choose
random r ∈ {0, 1}448 and set k1 = h(r) and ID = H(r). Choose random
s ∈ Zq and then set C = (gs, gs2g

s·ID
3 , G(Zs)⊕(M ◦r)). Output the ciphertext

〈ID,C,Mack1(C)〉.

Decryption. To decrypt ciphertext 〈ID,C, tag〉, first parse C as (A,B, Ĉ). Then
pick a random t ∈ Zq and compute the values (M ◦ r) = Ĉ ⊕ G(ê

(Aα1x+t(α2+x·ID)B−t, g)). Set k1 = h(r). If Vrfyk1
(C, tag)

?
= 1 and H(r)

?
=

ID output M ; otherwise, output ⊥.
We have changed the steps used in decryption for efficiency purposes, but it is easily
checked that decryption yields the same result as deriving a secret key for identity
ID and then using this key to decrypt C.

We tabulate the efficiency of our scheme, and compare it to the Kurosawa–
Desmedt variant of Cramer–Shoup encryption [42, 21] (which we refer to as KD–CS)
in Table 7.1. In tabulating computational efficiency, “private-key” operations (that
is, evaluations of G,H, and h) and group multiplications are ignored; “exp” stands
for exponentiation; “f-exp” refers to exponentiation relative to a fixed base (where
efficiency can be improved using precomputation); and one multiexponentiation is
counted as 1.5 exponentiations [46, p. 618]. Ciphertext overhead is the difference (in
bits) between the lengths of the ciphertext and the message. LBG is the bit-length
of an element in a group G suitable for our scheme, and LDDH is the bit-length of an
element in a group suitable for the KD–CS scheme.

Although performance of the two systems looks similar, efficiency of the KD–
CS scheme scales better with the security parameter. To see why, fix the measure of
hardness to be the difficulty of computing discrete logarithms in the respective groups.
(Although the underlying computational problems used to prove security of the above
two schemes are not known to be equivalent to the discrete logarithm problem, in each
case the best currently known algorithms for solving the problem rely on a discrete
logarithm computation.) Consider two concrete settings:

80-bit security. Suppose we wish to use groups in which solving the discrete
logarithm problem (using the best currently known algorithms) is roughly equivalent
to the security attained by 80-bit symmetric-key cryptography.

• Our scheme can use groups based on the elliptic curves suggested by Miyaji,
Nakabayashi, and Takano[48]. In this case, the discrete logarithm problem in
a group G in which elements can be written using LBG = log q bits (q prime)
can be reduced to a discrete logarithm problem in F

∗
q6 . (See [13, section

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1323

4.3].) 80-bit security for the latter is obtained by setting q6 ≈ 21024 [44, 1]
(specifically, our numbers throughout this discussion are taken from [1, Table
2]). We thus need LBG ≈ 1024/6 ≈ 171.

• The KD–CS scheme can use standard elliptic curve groups, for which the best-
known algorithm for computing discrete logarithms is Pollard’s rho algorithm
that runs in time proportional to

√
q for groups of order q. This gives LDDH =

log q ≈ 160 [1].

We see that for this level of security, both schemes have ciphertexts of roughly the
same length and group operations take roughly the same amount of time. Still, the
KD–CS scheme outperforms our scheme (even if by a relatively small margin in some
cases) in all parameters; this is especially true for decryption since a pairing calculation
is computationally expensive compared to an exponentiation.

256-bit security. Now, the KD–CS scheme performs even better relative to
ours.

• For our scheme, we can use groups based on a certain class of elliptic curves
suggested by Barreto and Naehrig [4] (note that such curves will give worse
performance for the case of 80-bit security considered above). Now, the dis-
crete logarithm problem in a group G in which elements can be written using
LBG = log q bits (q prime) can be reduced to a discrete logarithm problem in
F
∗
q12 . 256-bit security for the latter is obtained by setting q12 ≈ 215360. We

thus need LBG ≈ 15386/12 ≈ 1280.
• Using the same the analysis as before, the KD–CS scheme can use LDDH =

log q ≈ 512.

We conclude that for currently acceptable settings of the security parameter the
schemes have comparable performance, though the KD–CS scheme is more efficient.
We stress that our goal is not to displace the KD–CS system but rather to show
another approach to building practical CCA-secure systems. Our construction also
has advantages not present in the KD–CS scheme, such as being readily amenable to
a threshold implementation [10].

8. Conclusions. We presented in this paper new paradigms for constructing
CCA-secure public-key encryption schemes using IBE as a building block. Our
paradigms extend to enable constructions of CCA-secure (hierarchical) IBF schemes
as well. Instantiating our constructions with an existing IBE system yields a CCA-
secure encryption scheme whose performance, for standard settings of the security
parameter, is competitive with the best CCA-secure schemes known to date.

Appendix. Review of standard definitions. We provide the standard defi-
nitions of public-key encryption schemes and their security against adaptive chosen-
ciphertext attacks, as well as appropriate definitions for strong one-time signature
schemes and message authentication codes.

A.1. Public-key encryption.

Definition 7. A public-key encryption scheme is a triple of ppt algorithms
(Gen, E ,D) such that the following hold:

• The randomized key generation algorithm Gen takes as input a security pa-
rameter 1k and outputs a public key PK and a secret key SK.

• The randomized encryption algorithm E takes as input a public key PK and
a message m (in some implicit message space), and outputs a ciphertext C.
We write C ← EPK(m).

1324 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

• The (possibly randomized) decryption algorithm D takes as input a ciphertext
C and a secret key SK. It returns a message m or the symbol ⊥ (which is
not in the message space). We write m ← DSK(C).

We require that for all (PK,SK) output by Gen, all m in the message space, and all
C output by EPK(m) we have DSK(C) = m.

We recall the standard definition of security against adaptive chosen-ciphertext
attacks (cf. [2]).

Definition 8. A public-key encryption scheme Π is secure against adaptive
chosen-ciphertext attacks (i.e., “CCA-secure”) if the advantage of any ppt adversary
A in the following game is negligible in the security parameter k:

1. Gen(1k) outputs (PK,SK). Adversary A is given 1k and PK.
2. The adversary may make polynomially many queries to a decryption oracle

DSK(·).
3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit

b is randomly chosen and the adversary is given a “challenge ciphertext”
C∗ ← EPK(mb).

4. A may continue to query its decryption oracle DSK(·) except that it may not
request the decryption of C∗.

5. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and we denote the probability of this event by

PrPKE
A,Π[Succ]. The adversary’s advantage is defined as AdvPKE

A,Π(k)
def
=

∣∣PrPKE
A,Π[Succ] −

1/2
∣∣.
A.2. Signatures and MACs. We remind the reader of the standard functional

definitions for signature schemes and MACs, followed by a definition of strong one-
time security appropriate for each.

Definition 9. A signature scheme is a triple of ppt algorithms (G,Sign,Vrfy)
such that the following hold:

• The randomized key generation algorithm G takes as input the security pa-
rameter 1k and outputs a verification key vk and a signing key sk. We assume
for simplicity that the length of vk is fixed for any given value of k.

• The signing algorithm Sign takes as input a signing key sk and a message
m (in some implicit message space), and outputs a signature σ. We write
σ ← Signsk(m).

• The verification algorithm Vrfy takes as input a verification key vk, a message
m, and a signature σ, and outputs a bit b ∈ {0, 1} (where b = 1 signifies “ac-
ceptance” and b = 0 signifies “rejection”). We write this as b := Vrfyvk(m,σ).

We require that for all (vk, sk) output by G, all m in the message space, and all σ
output by Signsk(m), we have Vrfyvk(m,σ) = 1.

A MAC is similar in spirit to a signature scheme, except that here the signing
key and verification key are identical. We review the definition for convenience.

Definition 10. A message authentication code is a pair of ppt algorithms
(Mac,Vrfy) such that the following hold:

• The tagging algorithm Mac takes as input a key sk ∈ {0, 1}k (where k is the
security parameter) and a message m (in some implicit message space). It
outputs a tag tag, and we denote this by tag ← Macsk(m).

• The verification algorithm Vrfy takes as input a key sk, a message m, and
a tag tag; it outputs a bit b ∈ {0, 1} (where b = 1 signifies “acceptance” and
b = 0 signifies “rejection”). We write this as b := Vrfysk(m, tag).

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1325

We require that for all sk, all m in the message space, and all tag output by Macsk(m),
we have Vrfysk(m, tag) = 1.

We next turn to definitions of security for signature schemes and MACs. The
definition of security is analogous in each case: the adversary should be unable to
forge a valid message/signature (resp., message/tag) pair, after receiving a signature
(resp., tag) on any single message m of the adversary’s choice. Note that we require
so-called strong security in each case, so that it should be infeasible for the adversary
to generate even a different signature (resp., tag) on the same message m.

Definition 11. A signature scheme Sig is a strong one-time signature scheme
if the success probability of any ppt adversary A in the following game is negligible
in the security parameter k:

1. G(1k) outputs (vk, sk) and the adversary is given 1k and vk.
2. A(1k, vk) may do one of the following:

(a) A may output a pair (m∗, σ∗) and halt. In this case (m,σ) are undefined.
(b) A may output a message m, and is then given in return σ ← Signsk(m).

Following this, A outputs (m∗, σ∗).

We say the adversary succeeds if Vrfyvk(m
∗, σ∗) = 1 but (m∗, σ∗) �= (m,σ) (assuming

(m,σ) are defined). We stress that the adversary may succeed even if m∗ = m.

Definition 12. A message authentication code (Mac,Vrfy) is a strong one-time
message authentication code if the success probability of any ppt adversary A in the
following game is negligible in the security parameter k:

1. A random key sk ∈ {0, 1}k is chosen.
2. A(1k) may do one of the following:

(a) A may output (m∗, tag∗). In this case, (m, tag) are undefined.
(b) A may output a message m and is then given in return tag ← Macsk(m).

Following this, A outputs (m∗, tag∗).

We say the adversary succeeds if Vrfysk(m
∗, tag∗) = 1 but (m∗, tag∗) �= (m, tag)

(assuming (m, tag) are defined). We stress that the adversary may succeed even if
m∗ = m.

Acknowledgments. We thank Eu-Jin Goh for pointing out that our techniques
imply a conversion from IBE to nonadaptive CCA-security with essentially no over-
head. We also thank the anonymous referees for their helpful comments, and in
particular for suggesting a way to simplify the presentation of the proof of Theo-
rem 2.

REFERENCES

[1] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendation
for key management—Part 1: General, NIST Special Publication 800-57, Au-
gust 2005, National Institute of Standards and Technology, available online at
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf.

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, Relations among notions of se-
curity for public-key encryption schemes, in Advances in Cryptology—Crypto ’98, Lecture
Notes in Comput. Sci. 1462, Springer-Verlag, New York, 1998, pp. 26–45.

[3] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing effi-
cient protocols, in Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security, ACM, New York, 1993, pp. 62–73.

[4] P. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, in Selected
Areas in Cryptography—SAC 2005, Lecture Notes in Comput. Sci. 3897, Springer-Verlag,
New York, 2006, pp. 319–331.

1326 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

[5] D. Bleichenbacher, Chosen-ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1, in Advances in Cryptology—Crypto ’98, Lecture Notes in Comput.
Sci. 1462, Springer-Verlag, New York, 1998, pp. 1–12.

[6] M. Blum, P. Feldman, and S. Micali, Noninteractive zero-knowledge and its applications,
in Proceedings of the 20th ACM Symposium on Theory of Computing, ACM, New York,
1988, pp. 103–112.

[7] D. Boneh and X. Boyen, Efficient selective-ID secure identity-based encryption without
random oracles, in Advances in Cryptology—Eurocrypt 2004, Lecture Notes in Com-
put. Sci. 3027, Springer-Verlag, New York, 2004, pp. 223–238. Full version available at
http://eprint.iacr.org/2004/172.

[8] D. Boneh and X. Boyen, Secure identity-based encryption without random oracles, in Ad-
vances in Cryptology—Crypto 2004, Lecture Notes in Comput. Sci. 3152, Springer-Verlag,
New York, 2004, pp. 443–459. Full version available at http://eprint.iacr.org/2004/173.

[9] D. Boneh, X. Boyen, and E.-J. Goh, Hierarchical identity-based encryption with constant-
size ciphertexts, in Advances in Cryptology—Eurocrypt 2005, Lecture Notes in Com-
put. Sci. 3494, Springer-Verlag, New York, 2005, pp. 440–456. Full version available at
http://eprint.iacr.org/2005/015.

[10] D. Boneh, X. Boyen, and S. Halevi, Chosen-ciphertext secure public-key threshold encryp-
tion without random oracles, in Topics in Cryptology—CT-RSA 2006, Lecture Notes in
Comput. Sci. 3860, Springer-Verlag, New York, 2006, pp. 226–243.

[11] D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, SIAM J. Com-
put., 32 (2003), pp. 586–615.

[12] D. Boneh and J. Katz, Improved efficiency for CCA-secure cryptosystems built using identity-
based encryption, in Topics in Cryptology—CT-RSA 2005, Lecture Notes in Comput.
Sci. 3376, Springer-Verlag, New York, 2005, pp. 87–103.

[13] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, J. Cryptology,
17 (2004), pp. 297–319.

[14] X. Boyen, Q. Mei, and B. Waters, Direct chosen ciphertext security from identity-based
techniques, in Proceedings of the 12th ACM Conference on Computer and Communications
Security, ACM, New York, 2005, pp. 320–329.

[15] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols,
in Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 2001, pp. 136–145. Full version available at
http://eprint.iacr.org/2000/067.

[16] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, J.
ACM, 51 (2004), pp. 557–594.

[17] R. Canetti, S. Halevi, and J. Katz, A forward-secure public-key encryption
scheme, in Advances in Cryptology—Eurocrypt 2003, Lecture Notes in Comput.
Sci. 2656, Springer-Verlag, New York, 2003, pp. 255–271. Full version available at
http://eprint.iacr.org/2003/083. J. Cryptology, to appear.

[18] R. Canetti, S. Halevi, and J. Katz, Chosen-ciphertext security from identity-based encryp-
tion, in Advances in Cryptology—Eurocrypt 2004, Lecture Notes in Comput. Sci. 3027,
Springer-Verlag, New York, 2004, pp. 207–222.

[19] R. Canetti, H. Krawczyk, and J.B. Nielsen, Relaxing chosen ciphertext security, in Ad-
vances in Cryptology—Crypto 2003, Lecture Notes in Comput. Sci. 2656, Springer-Verlag,
New York, 2003, pp. 565–582.

[20] C. Cocks, An identity-based encryption scheme based on quadratic residues, in Cryptography
and Coding, Lecture Notes in Comput. Sci. 2260, Springer-Verlag, New York, 2001, pp.
360–363.

[21] R. Cramer and V. Shoup, Design and analysis of practical public-key encryption schemes
secure against adaptive chosen-ciphertext attack, SIAM J. Comput., 33 (2003), pp. 167–
226.

[22] R. Cramer and V. Shoup, Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption, in Advances in Cryptology—Eurocrypt 2002, Lecture
Notes in Comput. Sci. 2332, Springer-Verlag, New York, 2002, pp. 45–64.

[23] J. Camenisch and V. Shoup, Practical verifiable encryption and decryption of discrete log-
arithms, in Advances in Cryptology—Crypto 2003, Lecture Notes in Comput. Sci. 2729,
Springer-Verlag, New York, 2003, pp. 126–144.

[24] I. Damg̊ard, T. P. Pedersen, and B. Pfitzmann, On the existence of statistically-hiding
bit commitment schemes and fail-stop signatures, in Advances in Cryptology—Crypto ’93,
Lecture Notes in Comput. Sci. 773, Springer-Verlag, New York, 1993, pp. 250–265.

CHOSEN-CIPHERTEXT SECURITY FROM IBE 1327

[25] Y. Desmedt and Y. Frankel, Threshold cryptosystems, in Advances in Cryptology—Crypto
’89, Lecture Notes in Comput. Sci. 435, Springer-Verlag, New York, 1990, pp. 307–315.

[26] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky, Noninteractive and nonmalleable commit-
ment, in Proceedings of the ACM Symposium on Theory of Computing, ACM, New York,
1998, pp. 141–150.

[27] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith, Efficient and noninteractive non-
malleable commitment, in Advances in Cryptology—Eurocrypt 2001, Lecture Notes in
Comput. Sci. 2045, Springer-Verlag, New York, 2001, pp. 40–59.

[28] D. Dolev, C. Dwork, and M. Naor, Nonmalleable cryptography, SIAM J. Comput., 30
(2000), pp. 391–437.

[29] E. Elkind and A. Sahai, A unified methodology for constructing public-key encryp-
tion schemes secure against adaptive chosen-ciphertext attack, available online at
http://eprint.iacr.org/2002/042.

[30] S. Even, O. Goldreich, and S. Micali, On-line/off-line digital signatures, J. Cryptology, 9
(1996), pp. 35–67.

[31] U. Feige, D. Lapidot, and A. Shamir, Multiple noninteractive zero knowledge proofs under
general assumptions, SIAM J. Comput., 29 (1999), pp. 1–28.

[32] R. Gennaro and Y. Lindell, A framework for password-based authenticated key exchange, in
Advances in Cryptology—Eurocrypt 2003, Lecture Notes in Comput. Sci. 2656, Springer-
Verlag, New York, 2003, pp. 524–543.

[33] C. Gentry and A. Silverberg, Hierarchical identity-based cryptography, in Advances in
Cryptology—Asiacrypt 2002, Lecture Notes in Comput. Sci. 2501, Springer-Verlag, New
York, 2002, pp. 548–566.

[34] C. Gentry, Practical identity-based encryption without random oracles, in Advances in
Cryptology—Eurocrypt 2006, Lecture Notes in Comput. Sci. 4004, Springer-Verlag, New
York, 2006, pp. 445–464.

[35] O. Goldreich, A uniform complexity treatment of encryption and zero-knowledge, J. Cryp-
tology, 6 (1993), pp. 21–53.

[36] O. Goldreich, Foundations of Cryptography, Vol. 2: Basic Applications, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[37] O. Goldreich, Y. Lustig, and M. Naor, On chosen-ciphertext security of multiple encryp-
tions, available online at http://eprint.iacr.org/2002/089.

[38] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270–299.

[39] S. Halevi and S. Micali, Practical and provably-secure commitment schemes from collision-
free hashing, in Advances in Cryptology—Crypto ’96, Lecture Notes in Comput. Sci. 1109,
Springer-Verlag, New York, 1996, pp. 201–215.

[40] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[41] J. Horwitz and B. Lynn, Toward hierarchical identity-based encryption, in Advances in
Cryptology—Eurocrypt 2002, Lecture Notes in Comput. Sci. 2332, Springer-Verlag, New
York, 2002, pp. 466–481.

[42] K. Kurosawa and Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances
in Cryptology—Crypto 2004, Lecture Notes in Comput. Sci. 3152, Springer-Verlag, New
York, 2004, pp. 426–442.

[43] L. Lamport, Constructing Digital Signatures from a One-Way Function, Technical Report
CSL-98, SRI International, Menlo Park, CA, 1979.

[44] A. K. Lenstra and E. R. Verheul, Selecting cryptographic key sizes, J. Cryptology, 14 (2001),
pp. 255–293.

[45] P. MacKenzie, M. Reiter, and K. Yang, Alternatives to nonmalleability: Definitions,
constructions, and applications, in Proceedings of the 1st Theory of Cryptography
Conference—TCC 2004, Lecture Notes in Comput. Sci. 2951, Springer-Verlag, New York,
2004, pp. 171–190.

[46] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, Boca Raton, FL, 1997.

[47] S. Micali, C. Rackoff, and B. Sloan, The notion of security for probabilistic cryptosystems,
SIAM J. Comput., 17 (1988), pp. 412–426.

[48] A. Miyaji, M. Nakabayashi, and S. Takano, New explicit constructions of elliptic curve
traces for FR-reduction, IEICE Trans. Fundamentals, E84-A (2001), pp. 1234–1243.

[49] M. Naor and M. Yung, Public-key cryptosystems provably-secure against chosen-ciphertext
attacks, in Proceedings of the 22nd ACM Symposium on Theory of Computing, ACM, New
York, 1990, pp. 427–437.

1328 D. BONEH, R. CANETTI, S. HALEVI, AND J. KATZ

[50] C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen ci-
phertext attack, in Advances in Cryptology—Crypto ’91, Lecture Notes in Comput. Sci. 576,
Springer-Verlag, New York, 1992, pp. 433–444.

[51] A. Sahai, Nonmalleable noninteractive zero knowledge and adaptive chosen-ciphertext security,
in Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Los Alamitos, CA, 1999, pp. 543–553.

[52] A. Shamir, Identity-based cryptosystems and signature schemes, in Advances in Cryptology—
Crypto ’84, Lecture Notes in Comput. Sci. 196, Springer-Verlag, New York, 1985, pp.
47–53.

[53] V. Shoup, Why chosen ciphertext security matters, IBM Research Report RZ 3076, IBM,
Armonk, NY, 1998. Available online at http://www.shoup.net/papers.

[54] D. R. Stinson, Universal hashing and authentication codes, Des. Codes Cryptogr., 4 (1994),
pp. 369–380.

[55] Y. Watanabe, J. Shikata, and H. Imai, Equivalence between semantic security and indistin-
guishability against chosen-ciphertext attacks, in Public-Key Cryptography 2003, Lecture
Notes in Comput. Sci. 2567, Springer-Verlag, New York, 2003, pp. 71–84.

[56] B. Waters, Efficient identity-based encryption without random oracles, in Advances in
Cryptology—Eurocrypt 2005, Lecture Notes in Comput. Sci. 3494, Springer-Verlag, New
York, 2005, pp. 114–127.

[57] M. N. Wegman and J. L. Carter, New hash functions and their use in authentication and
set equality, J. Comput. System Sci., 22 (1981), pp. 265–279.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1329–1341

A DETERMINISTIC ALGORITHM FOR FINDING ALL MINIMUM
k-WAY CUTS∗

YOKO KAMIDOI† , NORIYOSHI YOSHIDA† , AND HIROSHI NAGAMOCHI‡

Abstract. Let G = (V,E) be an edge-weighted undirected graph with n vertices and m edges.
We present a deterministic algorithm to compute a minimum k-way cut of G for a given k. Our
algorithm is a divide-and-conquer method based on a procedure that reduces an instance of the
minimum k-way cut problem to O(n2k−5) instances of the minimum (�(k +

√
k)/2� + 1)-way cut

problem, and can be implemented to run in O(n4k/(1−1.71/
√
k)−31) time. With a slight modification,

the algorithm can find all minimum k-way cuts in O(n4k/(1−1.71/
√
k)−16) time.

Key words. minimum cut, multiway cut, divide-and-conquer

AMS subject classifications. 05C85, 68R10, 68W05

DOI. 10.1137/050631616

1. Introduction. For an edge-weighted graph G = (V,E), a subset F of edges is
called a k-way cut if removal of F from G results in at least k connected components.
The minimum k-way cut problem asks to find a minimum weight k-way cut in G.
Given k vertices (called terminals), a k-way cut F is called a k-terminal cut if no
two terminals are in the same connected component after removal of F . The problem
of finding a minimum weight k-terminal cut is called the minimum k-terminal cut
problem. These problems have several important applications such as VLSI design
[1, 6, 26], task allocation in distributed computing systems [25, 34], graph strength
[4, 9, 32], and network reliability [3, 35].

For k = 2, the minimum 2-terminal cut problem in a graph can be solved by
applying a maximum flow algorithm. Let F (n,m) denote the time complexity of a
maximum flow algorithm in an edge-weighted graph with n vertices and m edges.
The complexity F (n,m) was found to be O(n3) in [24] and O(nm log(n2/m)) in [7].
Dahlhaus et al. [5] proved that the minimum k-terminal cut problem is NP-hard for
any fixed k ≥ 3. Several approximation algorithms have been proposed [2, 5, 21],
among which a 1.3438-approximation algorithm is obtained by Karger et al. [21]. An
extension of this problem to a general setting defined by submodular set functions
can be found in the articles by Zhao, Nagamochi, and Ibaraki [39, 40]. For planar
graphs, the minimum k-terminal cut problem admits a polynomial time algorithm [5],
and currently an O(k4kn2k−4 log n) time algorithm in [14] and an O((k − 3

2)k−1(n−
k)2k−4[nk − 3

2k
2 + 1

2k] log(n− k)) time algorithm in [37] are known.
On the other hand, Goldschmidt and Hochbaum [8] proved that the minimum

k-way cut problem is NP-hard if k is an input parameter but admits a polynomial
time algorithm if k is regarded as a constant. The minimum 2-way cut problem (i.e.,

∗Received by the editors May 15, 2005; accepted for publication (in revised form) June 12, 2006;
published electronically December 21, 2006. A preliminary version of this paper appeared in Pro-
ceedings of the 4th Japanese–Hungarian Symposium on Discrete Mathematics and Its Applications,
Budapest, Hungary, 2005, pp. 224–233. This research was supported by the Scientific Grant-in-Aid
from Ministry of Education, Science, Sports and Culture of Japan.

http://www.siam.org/journals/sicomp/36-5/63161.html
†Faculty of Information Sciences, Hiroshima City University, 3-4-1, Ozuka-Higashi, Asaminami-

ku, Hiroshima 731-3194, Japan (yoko@ce.hiroshima-cu.ac.jp, nyoshida@khaki.plala.or.jp).
‡Department of Applied Mathematics and Physics, Kyoto University, Sakyo, Kyoto 606-8501,

Japan (nag@amp.i.kyoto-u.ac.jp).

1329

1330 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

the problem of computing edge-connectivity) can be solved by O(nm + n2 log n) and
O(nm log(n2/m)) time deterministic algorithms [12, 28] and by O(n2(log n)3) and
O(m(log n)3) time randomized algorithms [20, 22, 23]. Approximation algorithms for
a minimum k-way cut problem of G have been proposed in [16, 33, 38]. Saran and
Vazirani [33] first proposed a 2(1−1/k)-approximation algorithm for the minimum k-
way cut problem, which runs in O(nF (n,m)) time. Kapoor [16] also gave a 2(1−1/k)-
approximation algorithm for the minimum k-way cut problem of G, which requires
O(k(nm+n2 log n)) time. Zhao et al. [38] also presented an approximation algorithm
by using a set of minimum 3-way cuts. Their algorithm has the performance ratio 2−
3/k for an odd k and 2−(3k−4)/(k2−k) for an even k, and runs in O(kmn3 log(n2/m))
time. Approximation algorithms for a multiway cut problem defined by submodular
set functions are discussed in the articles by Zhao, Nagamochi, and Ibaraki [39, 40].

Goldschmidt and Hochbaum [8] presented an O(nk2/2−3k/2+4F (n,m)) time algo-
rithm for solving the minimum k-way cut problem. This running time is polynomial
for any fixed k. The algorithm is based on a divide-and-conquer approach. Suppose
that we can choose a family X of subsets of V such that at least one subset X ∈ X has
a property that a minimum (k− 1)-way cut {V1, . . . , Vk−1} in the subgraph G[V −X]
induced by V−X gives rise to a minimum k-way cut {X,V1, . . . , Vk−1} in the original
graph G. Then we can find a minimum k-way cut in G by solving the (k−1)-way cut
problem instances G[V −X] for all X ∈ X . Goldschmidt and Hochbaum [8] proved
that such a family X of O(n2k−3) subsets of V can be found in polynomial time,

implying an O(nO(k2)) time algorithm for the minimum k-way cut problem.

For small k ≤ 6 or planar graphs, faster algorithms have been obtained [16, 17,
18, 29, 30, 31]. For k ≤ 6, the above family X can be constructed in polynomial time
by collecting O(n) subsets of V , and an O(mnk log(n2/m)) time algorithm is known
[29, 30, 31]. For planar graphs, Hartvigsen [13] gave an O(n2k−1) time algorithm, and
Nagamochi and Ibaraki [30] and Nagamochi, Katayama, and Ibaraki [31] showed that
the problem can be solved in O(nk) time if k ≤ 6. The case of unweighted planar
graphs with k = 3 can be solved in O(n log n) time [15].

Randomized algorithms have been developed for the k-way cut problem. Karger
and Stein [23] proposed a Monte Carlo algorithm for the minimum k-way cut problem
which runs in O(n2(k−1) log3 n) time. Afterward, Levine [27] gave a Monte Carlo
algorithm for k ≤ 6 that runs in O(mnk−2 log3 n) time. However, for a general k
and a general graph G, no faster deterministic algorithm has been discovered since
Goldschmidt and Hochbaum [8] found an O(nO(k2)) time algorithm.

In this paper, we present the first O(nO(k)) time deterministic algorithm to com-
pute a minimum k-way cut of G. Our algorithm is based on a divide-and-conquer
method which consists of a procedure that reduces an instance of the minimum k-
way cut problem to O(n2k−5) instances of the minimum (�(k +

√
k)/2� + 1)-way cut

problem, and can be implemented to run in O(n4k/(1−1.71/
√
k)−31) time. With a slight

modification, we can also find all minimum k-way cuts in O(n4k/(1−1.71/
√
k)−16) time.

The paper is organized as follows. Section 2 introduces notation and reviews
basic properties of 2-way cuts. Section 3 presents our divide-and-conquer algorithm,
assuming an efficient procedure for computing a family X of subsets required to reduce
a given problem instance, which is discussed in section 5, after proving a key property
on crossing 2-way cuts in section 4. Section 6 analyzes the runtime of our algorithm.
Section 7 shows how to modify the algorithm so that all minimum k-way cuts can be
computed, and section 8 makes some concluding remarks.

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1331

2. Preliminaries. Let G = (V,E) stand for an edge-weighted undirected graph
consisting of a vertex set V and an edge set E with an edge weight function cost : E →
R+, where R+ is the set of nonnegative real numbers. Let n = |V | be the number of
vertices and m = |E| be the number of edges. We may simply call G a graph. Let
comp(G) denote the number of connected components in G. An edge e ∈ E with
end vertices u and v may be denoted by e = (u, v), and its weight is denoted by
cost(e). For a nonempty subset F ⊆ E, we let cost(F) denote

∑
e∈F cost(e). Let

X1, X2, . . . , Xp be mutually disjoint subsets of V .

We denote the set of edges e = (u, v) with u ∈ Xi and v ∈ Xj for some i
= j by
(X1;X2; . . . ;Xp), and the sum of the weights of these edges by cost(X1;X2; . . . ;Xp),
which is defined to be 0 if (X1;X2; . . . ;Xp) = ∅. For a subset X of V , we may denote
f(X) = cost(X;V−X), where f is called a cut function of G and satisfies the following
identities:

f(X) + f(Y) = f(X ∩ Y) + f(X ∪ Y) + 2cost(X− Y, Y −X)(2.1)

for all X,Y ⊆ V ,

f(X) + f(Y) =f(X− Y) + f(Y −X) + 2cost(X ∩ Y, V − (X ∪ Y))(2.2)

for all X,Y ⊆ V .

Let F be a subset of E in G. We denote by G − F the graph obtained from G
by deleting edges in F . We call F a k-way cut if comp(G − F) ≥ k. A k-way cut F
is minimum if it has the minimum cost(F) over all k-way cuts. Given a graph G and
an integer k(≥ 2), the minimum k-way cut problem asks to find a minimum k-way
cut in G. We denote the cost of a minimum k-way cut in G by opt(G, k). Note that
opt(G, k) = 0 if and only if the set of edges with positive weights induces a subgraph
of G with at least k connected components. Any inclusionwise minimal k-way cut F is
given by F = (X1;X2; . . . ;Xk) for some partition {X1, X2, . . . , Xk} of V . Conversely,
for any partition {V1, V2, . . . , Vk} of V , F ′ = (V1;V2; . . . ;Vk) is a k-way cut, where
possibly comp(G−F ′) > k. For a set C of subsets F of E, we denote the union ∪F∈CF
by E(C).

Given a nonempty vertex subset X, let G[X] = (X,EX) be the subgraph of G
induced by X, where G[X] has the edge weight function costX : EX → R+, which
is defined such that costX(e) = cost(e) for every edge e ∈ EX . For a subset Y of
vertices of V , we denote V − Y by Y if V is clear from the context.

Given p mutually disjoint nonempty subsets T1, T2, . . . , Tp of V , called terminal
sets, a subset F ⊆ E is called a (T1, T2, . . . , Tp)-terminal cut of G if the removal of F
from G disconnects each terminal set from the others. A (T1, T2, . . . , Tp)-terminal cut
is called minimum if it has the minimum cost(F) among all (T1, T2, . . . , Tp)-terminal
cuts.

3. Divide-and-conquer algorithm. Each of the previously known determin-
istic algorithms reduces a minimum k-way cut problem instance to a set of minimum
(k − 1)-way cut problem instances, where the target k on the number of components
is reduced only by 1. In this paper, we reduce a minimum k-way cut problem instance
to a set of minimum k′-way cut problem instances with k′ nearly equal to k/2. For
this, we first observe the following property.

Lemma 3.1. Let (V1;V2; . . . ;Vk) be a minimum k-way cut in a graph G = (V,E),
where k ∈ [2, n].

1332 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

Then for any integer p ∈ [1, k− 1], there is a union X of p subsets in {V1, V2, . . . ,
Vk} such that

f(X) ≤ 2(kp− p2)

(k2 − k)
opt(G, k).

Proof. Let X be the family of all such unions X. Then |X | =
(
k
p

)
. For each edge

e = (u, v) ∈ (V1;V2; . . . ;Vk), there are 2
(
k−2
p−1

)
unions X ∈ X such that u ∈ X and

v ∈ X or u ∈ X and v ∈ X. Therefore it holds that
∑

X∈X f(X) = 2
(
k−2
p−1

)
opt(G, k),

and the average of f(X) over all X ∈ X is [2
(
k−2
p−1

)
opt(G, k)]/

(
k
p

)
= 2(kp− p2)/(k2 −

k)opt(G, k). This implies the lemma.
Let p = �(k −

√
k)/2� − 1, which satisfies 2(kp − p2)/(k2 − k) < 1/2 for k ≥ 5.

Then there exists a set X ⊆ V such that

f(X) < opt(G, k)/2

and X is a union of p subsets in {V1, V2, . . . , Vk} for a minimum k-way cut (V1;V2; . . . ;
Vk) in G. For such a subset X, we can reduce the current instance (G, k) into two
instances (G[X], p) and G([V −X], k − p), where a minimum k-way cut F for (G, k)
is obtained from a minimum p-way cut F ′ for (G[X], p) and a minimum (k − p)-way
cut F ′′ for (G[V −X], k − p) by constructing a k-way cut F = (X;V −X) ∪ F ′ ∪ F ′′.
Note that the size k is reduced to at most k − �(k −

√
k)/2� + 1 = �(k +

√
k)/2� + 1,

which is nearly a half of k for a large k.
Section 5 shows that the number of such subsets X ∈ V with f(X) < opt(G, k)/2

is at most n2k−5 and a family X of n2k−5 subsets including these subsets X (possibly
together with some other subsets) can be obtained in O(n2k−5F (n,m)) time. With
this property, our divide-and-conquer algorithm can be described as follows.
Algorithm MULTIWAY(G, k)
Input: A graph G = (V,E) and an integer k ∈ [1, |V |].
Output: A minimum k-way cut F in G.
1. if opt(G, k) = 0 then Return F := ∅
2. else /* opt(G, k) > 0 */
3. if k ≤ 2 then Return a minimum k-way cut F of G in the time of O(1)

maximum flow computations
4. else if k ≤ 6 then Return a minimum k-way cut F of G by O(|V |k−1)

maximum flow computations
5. else /* k ≥ 7 */
6. Compute a set X of at most |V |2k−5 subsets of V such that any 2-way cut

with cost less than opt(G, k)/2 is given by (X;V −X) for some X ∈ X ;

7. p := �(k −
√
k)/2� − 1;

8. for each X ∈ X with |X| ≥ p and |V −X| ≥ k − p do
9. FX := (X;V −X)∪MULTIWAY(G[X], p)∪MULTIWAY(G[V −X], k − p);
10. end /* for */
11. Choose a k-way cut FX with the minimum cost over all X, and return

F := FX

12. end /* if */
13. end. /* if */

For the correctness of algorithm MULTIWAY, we have only to give a procedure
in line 5, which will be discussed in section 5. The runtime of MULTIWAY will be
analyzed in section 6.

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1333

4. A crossing property. This section provides a property on crossing 2-way
cuts, based on which a procedure for collecting all subsets X ⊂ V with f(X) <
opt(G, k)/2 is designed in section 5.

Lemma 4.1. For a graph G = (V,E), let {Y1, Y2, . . . , Yq,W,Z} be a partition
of V , and let Q be a subset of V such that each subset in {Y1 −Q,Y2 −Q, . . . , Yq −
Q,W ∩Q,Q ∩ Z,Z −Q} is nonempty. Then partition {Y ′

i = Yi −Q (i = 1, 2, . . . , q),
Y ′
q+1 = Q ∩ Z, W ′ = (W ∪Q) − Z, Z ′ = Z −Q} of V satisfies

2cost(Y1;Y2; . . . ;Yq;W ;Z) − f(Y1,q) + f(Q)

≥ 2cost(Y ′
1 ;Y ′

2 ; . . . ;Y ′
q ;Y ′

q+1;W
′;Z ′) − f(Y ′

1,q+1) + f(W ∩Q),

where we denote Y1,i = Y1 ∪ Y2 ∪ · · · ∪ Yi and Y ′
1,j = Y ′

1 ∪ Y ′
2 ∪ · · · ∪ Y ′

j .
Proof. We obtain

(4.1)

f(Y1) + f(Y2) + · · · + f(Yq) + f(Y ′
1,q+1)

≥ f(Y ′
1) + f(Y ′

2) + · · · + f(Y ′
q) + f(Y1,q ∪ (Q ∩ Z)) + 2cost(Y1,q ∩Q;Q ∩ Z),

by summing up the following q inequalities implied by (2.1):

f(Y1) + f((Y1,q −Q) ∪ (Q ∩ Z))

≥ f(Y1 −Q) + f(Y1 ∪ (Y1,q −Q) ∪ (Q ∩ Z)) + 2cost(Y1 ∩Q;Q ∩ Z),

f(Y2) + f(Y1 ∪ (Y1,q −Q) ∪ (Q ∩ Z))

≥ f(Y2 −Q) + f(Y1,2 ∪ (Y1,q −Q) ∪ (Q ∩ Z)) + 2cost(Y2 ∩Q;Q ∩ Z)

· · ·
f(Yq) + f(Y1,q−1 ∪ (Y1,q −Q) ∪ (Q ∩ Z))

≥ f(Yq −Q) + f(Y1,q ∪ (Y1,q −Q) ∪ (Q ∩ Z)) + 2cost(Yq ∩Q;Q ∩ Z).

On the other hand, (2.1) and (2.2) mean

f(Z) + f(W) + f(Q) ≥ f(Z) + f(W ∩Q) + f(W ∪Q)(4.2)

≥ f((W ∪Q) − Z) + f(Z −Q) + 2cost(Y1,q −Q;Q ∩ Z) + f(W ∩Q).

From (4.1) and (4.2), we have

f(Y1) + f(Y2) + · · · + f(Yq) + f(W) + f(Z) + f(Y ′
1,q+1) + f(Q)

≥ f(Y ′
1) + f(Y ′

2) + · · · + f(Y ′
q) + f((W ∪Q) − Z) + f(Z −Q)

+ f(Y1,q ∪ (Q ∩ Z)) + 2cost(Y1,q ∩Q;Q ∩ Z) + 2cost(Y1,q −Q;Q ∩ Z) + f(W ∩ Q)

= f(Y ′
1) + f(Y ′

2) + · · · + f(Y ′
q) + f(W ′) + f(Z ′) + f(Q ∩ Z) + f(Y1,q) + f(W ∩Q),

implying the lemma.
Lemma 4.2. For a graph G = (V,E) and an integer k ∈ [5, n − 1], let (X;X)

be a 2-way cut of G, R be a nonempty subset of X, and T = {t1, t2, . . . , tp} be a
set of p ≥ 2 vertices in X − R. Assume that, for each ti, there exists a minimum
(X,T ∪R−{ti})-terminal cut (Xi;Xi) which satisfies X ∪{ti} ⊆ Xi (see Figure 4.1).
Let C = {(Xi;Xi) | 1 ≤ i ≤ p}. Then E(C) is a (p + 2)-way cut which partitions V
into p + 2 subsets

Z = ∩1≤i≤pXi, W = ∪1≤i<j≤p(Xi ∩Xj), and Yi = Xi −W (i = 1, 2, . . . , p).

1334 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

=tp

X3

R

X
_
X

t2

t3

t1

X2

=Xp

X1

Fig. 4.1. Illustration for a 2-way cut (X;X) and a minimum (X;T ∪ R − {ti})-terminal cut
(Xi;Xi), i = 1, 2, 3 (= p).

Furthermore (p + 2)-way cut E(C) = (Y1;Y2; . . . ;Yp;Z;W) satisfies

cost(E(C)) + cost(Z;W) + cost(Y1;Y2; . . . ;Yp) ≤ f(X1) + f(X2).(4.3)

Proof. Since X ⊆ W , ti ∈ Yi (1 ≤ i ≤ p), and R ⊆ Z hold, we see that E(C) is a
(p + 2)-way cut. We prove (4.3) by an induction on p.

Basis case. For p = 2, Z = V − (X1 ∪ X2), W = X1 ∩ X2, Y1 = X1 −X2,
and Y2 = X2 −X1. Then it holds that cost(Y1;Y2;Z;W) + cost(Z;W) + cost(Y1;Y2)
= cost(X1 −X2;X2 −X1;V − (X1 ∪ X2);X1 ∩ X2) + cost(V − (X1 ∪ X2);X1 ∩ X2)
+cost(X1 −X2;X2 −X1) = f(X1) + f(X2), as required.

Inductive case. Let q ≥ 2. Assuming that (4.3) holds for p = q, we prove that
(4.3) holds for p = q + 1. Let R′, T ′ = {t1, t2, . . . , tq+1} ⊂ X − R′ and C′ be subsets
of X and a set of q+1 2-way cuts satisfying the condition of the lemma for q+1. We
here consider R = R′ ∪ {tp+1}, T = T ′−{tq+1}, and C = C′−{(Xq+1;Xq+1)}, which
satisfy the condition of the lemma for q (see Figure 4.2). Hence, by the induction

tq

Z

X

_
X

t2

t1

Y2

Yq

Y1

Xq+1

tq+1

R

W-Xq+1

W Xq+1 U
 ‘

Fig. 4.2. Illustration for a minimum (X,T ′ ∪ R′ − {tp})-terminal cut (Xp;Xp) and subsets
Y1, Y2, . . . , Yp−1.

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1335

hypothesis, we have

f(X1) + f(X2)

≥ cost(E(C)) + cost(Z;W) + cost(Y1;Y2; . . . ;Yq)

= 2cost(E(C)) − f(Y1,q),(4.4)

where Z = ∩1≤i≤qXi, W = ∪1≤i<j≤q(Xi ∩ Xj), and Yi = Xi − W (i = 1, 2, . . . , q).
By Lemma 4.1 to Y1, . . . , Yq, W , Z, and Q = Xq+1, we obtain

2cost(E(C)) − f(Y1,q) ≥ 2cost(E(C′)) − f(Y ′
1,q+1) + f(W ∩Xq+1) − f(Xq+1)

≥ 2cost(E(C′)) − f(Y1,q+1),

where f(W ∩Xq+1) ≥ f(Xq+1) holds since (W ∩Xq+1;W ∩Xq+1) is an (X,T ′∪R′−
{tq+1})-terminal cut in G. This implies that (4.3) holds for p.

5. Computing small cuts. With Lemma 4.2, we are ready to present an
O(n2k−5F (n,m)) time procedure for collecting all subsets X ∈ V with f(X) <
opt(G, k)/2.

Theorem 5.1. For a graph G = (V,E) and an integer k ∈ [5, n− 1], let (X;X)
be a 2-way cut with f(X) < opt(G, k)/2. Then, for any vertices s∗ ∈ X and t∗ ∈ X,
there are subsets S ⊆ X and T ⊆ X with |S| ≤ k−3 and |T | ≤ k−3 such that (X;X)
is a unique minimum (S ∪ {s∗}, T ∪ {t∗})-terminal cut in G.

Proof. Let (X;X) be a 2-way cut with f(X) ≤ opt(G, k)/2. We first prove the
next claim.

Claim 5.2. A set T of at most k− 3 vertices in X can be chosen so that (X;X)
becomes a unique minimum (X,T ∪ {t∗})-terminal cut.

Proof. Let Y be the family of all subsets Y with X ⊂ Y ⊆ V − {t∗} such that

f(Y) ≤ f(X).

We choose a subset T of X −{t∗} so that T becomes a minimal transversal of Y (i.e.,
T is an inclusion-wise minimal subset of X−{t∗} such that Y ∩T
= ∅ for all Y ∈ Y).
Since T is a transversal of Y, no other (X,T ∪ {t∗})-terminal cut than (X;X) has
cost less than or equal to f(X). Hence, to prove the claim, it suffices to show that
|T | ≤ k − 3.

For each t ∈ T , let (Xt;Xt) denote a minimum (X, (T −{t})∪{t∗})-terminal cut.
We show that

f(Xt) ≤ f(X), t ∈ Xt.

By the minimality of T , each vertex t ∈ T has a subset Y ′ ∈ Y such that t ∈ Y ′ and
Y ′ ∩ (T − {t}) ∪ {t∗}) = ∅. Hence f(Xt) ≤ f(Y ′) ≤ f(X). This also implies that
Xt ∈ Y and hence t must belong to Xt (since otherwise Xt ∩ T = ∅ would hold). See
Figure 4.1, where R = {t∗}.

The above sets R = {t∗}, T , C = {(Xt;Xt) | t ∈ T} satisfy the condition of
Lemma 4.2. By Lemma 4.2 and the assumption on f(X), E(C) is a (|T |+ 2)-way cut
with cost(E(C)) ≤ 2 max{f(Xt) | t ∈ T} ≤ 2f(X) < opt(G, k). Therefore |T | ≤ k − 3
holds, since otherwise comp(G − E(C)) ≥ |T | + 2 ≥ k would hold, contradicting the
definition of opt(G, k). This proves the claim.

By applying the above claim to X, we see that a set S of at most k−3 vertices in
X can be chosen so that (X;X) becomes a unique minimum (S ∪ {s∗}, X)-terminal
cut.

1336 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

Finally we show that (X;X) is a unique minimum (S ∪ {s∗}, T ∪ {t∗})-terminal
cut in G. Assume indirectly that G has another minimum (S∪{s∗}, T ∪{t∗})-terminal
cut (Z;Z). By the property of S and T , neither Z ⊆ X nor Z ⊇ X; the remaining
case is X − Z
= ∅
= Z −X. In this case, by the submodularity of cost function,

f(X) + f(Z) ≥ f(X ∩ Z) + f(Z ∪X)

holds, and we see that at least one of (X∩Z;X ∩ Z) and (Z∪X;Z ∪X) is a minimum
(S ∪ {s∗}, T ∪ {t∗})-terminal cut. This, however, contradicts the above property of S
and T . This completes the proof of the theorem.

Based on this theorem, we can find all 2-way cuts (X;X) with f(X) < opt(G, k)/2
by O(n2k−5) maximum flow computations. For this, choose a vertex s∗ ∈ V , and
execute the following procedure for each vertex t∗ ∈ V − {s∗}: Choose disjoint sets
S, T ⊆ V − {s∗, t∗} with 2 ≤ |S| ≤ k − 3 and 2 ≤ |T | ≤ k − 3, and compute a
minimum (S ∪ {s∗}, T ∪ {t∗})-terminal cut (X;X) in G. Then the set of these 2-way
cuts (X;X) for all t∗ ∈ V − {s∗} include those with cost less than opt(G, k)/2. For
fixed s∗ and t∗, there are at most n2k−6 such pairs of S and T . Hence, we need
O(n2k−6 · n) = O(n2k−5) maximum flow computations. We also have the following
corollary.

Corollary 5.3. Let G = (V,E) be a graph, k ∈ [5, n] be an integer, and
opt(G, k) > 0. Then the number of subsets X ⊂ V such that f(X) < (1/2)opt(G, k)
is O(n2k−5).

6. Runtime of MULTIWAY. In this section, we analyze the runtime of algo-
rithm MULTIWAY.

Theorem 6.1. For a graph G = (V,E) with n vertices, m edges, and an in-
teger k ∈ [1, n], MULTIWAY(G, k) runs in O(nk−1F (n,m)) time for k ≤ 6 and in

O(n4k/(1−1.71/
√
k)−34F (n,m)) time for k ≥ 7, where F (n,m) denotes the time com-

plexity for computing a maximum flow in a graph with n vertices and m edges.
Proof. We derive an upper bound N(k, n) on the number of maximum flow

computations to execute MULTIWAY(G, k) for a graph G with n vertices, where we
assume that N(k, n) is an increasing function with respect to k and n. For k ≤ 6, it
is known that a minimum k-way cut can be obtained by at most 1 (resp., 2n2, 4n3,
60n4, and 900n5) maximum flow computations for k = 2 [12] (resp., k = 3, 4, 5, 6
[29, 30, 31]). For k ≥ 5, it suffices to consider N(k, n) such that

N(k, n) ≤ n2k−5 + n2k−5N(k − �(k −
√
k)/2� + 1, n− �(k −

√
k)/2� + 1)

≤ n2k−5N(�(k +
√
k)/2� + 1, n).

Then we define M(k) by a recursive formula M(k) = 2k − 5 + M(�(k +
√
k)/2� + 1)

for k ≥ 7 and M(2) = 0, M(3) = 2, M(4) = 3, M(5) = 4, and M(6) = 5. We see
that 900nM(k) gives an upper bound on the number of maximum flow computations
needed to execute MULTIWAY(G, k). We see that M(k) ≤ 4k/(1 − 1.71/

√
k) − 34

holds for k ≤ 1.3 × 106 by generating all those M(k) with a computer program. We
prove that M(k) ≤ 4k/(1 − 1.71/

√
k) − 34 holds for k > 1.3 × 106 with the recursive

formula. Let a = 1.71, and k′ = �(k +
√
k)/2� + 1 ≤ (k +

√
k + 2)/2. Then by the

induction hypothesis we have

M(k) = 2k − 5 + M(k′) ≤ 2k − 5 + 4k′
√
k′/(

√
k′ − a) − 34.

Then it suffices to show that

4k
√
k/(

√
k−a)−34−(2k−5)−2(k+

√
k+2)

√
k +

√
k + 2/(

√
k +

√
k + 2−

√
2a)+34

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1337

is nonnegative for k > 1.3 × 106. For this, we prove the following is nonnegative:

4k
√
k(

√
k +

√
k + 2 −

√
2a) − (

√
k − a)(2k − 5)(

√
k +

√
k + 2 −

√
2a)

− (
√
k − a)2(k +

√
k + 2)

√
k +

√
k + 2

=

(
(4a− 2)k + (2a + 1)

√
k − a

)√
k +

√
k + 2(6.1)

+
√

2a(−2k
√
k − 2ak − 5

√
k + 5a).

Since (4a− 2)k + (2a + 1)
√
k − a > 0 for k > 1.3 × 106, (6.1) is at least

((4a− 2)k + (2a + 1)
√
k − a)

√
k +

√
2a(−2k

√
k − 2ak − 5

√
k)

=
√
k

[
((4 − 2

√
2)a− 2)k + (2a(1 −

√
2a) + 1)

√
k − (1 + 5

√
2)a

]
,

which is nonnegative, since 4a− 2
√

2a− 2 > 0 holds for k = 1.3× 106 and in this case
it holds that

((4 − 2
√

2) × 1.71 − 2) × 1.3 × 106 + (2 · 1.71 × (1 −
√

2 · 1.71) + 1) ×
√

1.3 × 106

− (1 + 5
√

2) × 1.71 > 0.

This proves that M(k) ≤ 4k/(1 − 1.71/
√
k) − 34 holds for k > 1.3 × 106.

7. Enumerating all minimum k-way cuts. In this section, we show that
algorithm MULTIWAY can be modified so that all minimum k-way cuts in G can
be enumerated in nearly the same time complexity. Given a graph G = (V,E) and
integer k, we can construct all minimum k-way cuts F by combining a minimum p-
way cut F ′ in G[X] and a minimum (k − p)-way cut F ′′ in G[V −X] for all possible
subsets X ⊂ V such that X is a union of p subsets in {V1, . . . , Vk} for a minimum
k-way cut in G.

However, we cannot apply Corollary 5.3 to instances (G, k) with k ≤ 4. From
Lemma 3.1 with p = 1, we see that for any minimum k-way cut (V1;V2; . . . ;Vk) in a
graph G = (V,E), there is a subset X ∈ {V1, V2, . . . , Vk} such that

f(X) ≤ (2/k)opt(G, k).

For k ∈ {2, 3, 4}, we derive an upper bound on the number of subsets X ⊂ V with
f(X) ≤ (2/k)opt(G, k).

Lemma 7.1. Let G = (V,E) be a graph, k ∈ [2, 4] be an integer, and opt(G, k) > 0.
Then the number of subsets X ⊂ V such that f(X) ≤ (2/k)opt(G, k) for k = 2 (resp.,
k = 3, 4) is O(n2), (resp., O(n4) and O(n4)).

Proof. Let Xk be the family of subsets X with f(X) ≤ (2/k)opt(G, k). Let λ(G)
denote the edge-connectivity of G (i.e., λ(G) = opt(G, 2)). It is known [19] that, for
λ(G) > 0, there are O(n2α) subsets X with f(X) ≤ αλ(G).

(i) Let k = 2. Then λ(G) > 0 holds by assumption opt(G, 2) > 0. This proves
that |X2| = O(n2α) = O(n2) holds for α = 1.

For k ∈ {3, 4}, we assume that Xk contains two subsets X1 and X2 such that each
of Y1 = X1 ∩X2, Y2 = X1 −X2, Y3 = V − (X1 ∪X2), and Y4 = X2 −X1 is nonempty
(otherwise |Xk| ≤ 2n holds).

1338 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

(ii) Let k = 3. If λ(G) = 0, then the edges with positive weights induce from
G exactly two connected components G1 and G2, where we see that a minimum 3-
way cut in G is a minimum 2-way cut in G1 or G2. By the result of (i) we have
|Xk| = O(n2

1 + n2
2) = O(n2), where ni is the number of vertices in Gi. We next

assume λ(G) > 0. Then for the above two crossing subsets X1, X2 ∈ X3, we have

4opt(G, 3) ≤ cost(Y1;Y2;V − (Y1 ∪ Y2)) + cost(Y2;Y3;V − (Y2 ∪ Y3))

+cost(Y3;Y4;V − (Y3 ∪ Y4)) + cost(Y4;Y1;V − (Y4 ∪ Y1))

= 3(f(X1) + f(X2)) − 2cost(Y1;Y3) − 2cost(Y2;Y4)

≤ 3((2/3)opt(G, 3) + (2/3)opt(G, 3)) − 2cost(Y1;Y3) − 2cost(Y2;Y4)

= 4opt(G, 3) − 2cost(Y1;Y3) − 2cost(Y2;Y4),

implying that f(X1) = f(X2) = (2/3)opt(G, 3) and cost(Y1;Y3) = cost(Y2;Y4) =
0. Hence no two subsets X,X ′ ∈ X3 with f(X) < (2/3)opt(G, 3) and f(X ′) <
(2/3)opt(G, 3) cross each other, indicating that the number of subsets X with f(X) <
(2/3)opt(G, 3) is O(n). If λ(G) < (1/3)opt(G, 3), then there is a subset Z ⊂ V with
f(Z) = λ(G) < (1/3)opt(G, 3)(< f(X1)), where Z
= X1
= V − Z holds, and F =
(Z;V−Z)∪(X1;V−X1) is a 3-way cut with cost(F) < (1/3)opt(G, 3)+(2/3)opt(G, 3) =
opt(G, 3), which is a contradiction. Therefore, λ(G) ≥ (1/3)opt(G, 3) holds, and
f(X) = (2/3)opt(G, 3) ≤ 2λ(G) holds for every subset X with f(X) = (2/3)opt(G, 3),
implying that |X3| = O(n2α) = O(n4) holds for α = 2.

(iii) Let k = 4. If λ(G) = 0, then it is not difficult to see that |X3| = O(n4) holds
by using the results in (i)–(ii). Assume λ(G) > 0. For the above two crossing subsets
X1, X2 ∈ X4, we have

opt(G, 4) ≤ cost(Y1;Y2;Y3;Y4)

= f(X1) + f(X2) − cost(Y1;Y3) − cost(Y2;Y4)

≤ (1/2)opt(G, 4) + (1/2)opt(G, 4) − cost(Y1;Y3) − cost(Y2;Y4)

= opt(G, 4) − cost(Y1;Y3) − cost(Y2;Y4),

implying that f(X1) = f(X2) = (1/2)opt(G, 4) and cost(Y1;Y3) = cost(Y2;Y4) = 0.
From this, the number of subsets X with f(X) < (1/2)opt(G, 4) is O(n). Let
X ′

4 = {X ∈ X4 | f(X) = (1/2)opt(G, 4)}. If λ(G) ≥ (1/4)opt(G, 4), then f(X) =
(1/2)opt(G, 4) ≤ 2λ(G) holds for every subset X with f(X) = (1/2)opt(G, 4), imply-
ing that |X ′

4| = O(n2α) = O(n4) holds for α = 2. Assume λ(G) < (1/4)opt(G, 4). Let
Z be a subset of V with f(Z) = λ(G). Consider two crossing subsets X1, X2 ∈ X ′

4 with
Z ∩X1
= ∅
= Z ∩X2. As observed above, we have f(X1) = f(X2) = (1/2)opt(G, 4)
and cost(Y1;Y3) = cost(Y2;Y4) = 0, indicating that one of the 3-way cuts F1 =
(Y1;Y2;Y3∪Y4), F2 = (Y1;Y2∪Y3;Y4), F3 = (Y1∪Y2;Y3;Y4), and F4 = (Y1∪Y4;Y2;Y3)
has cost at most (3/4)opt(G, 4). Such a 3-way cut Fi and (Z;V −X) have cost(Fi) +
cost(Z;V−X) ≤ (3/4)opt(G, 4)+λ(G) < (3/4)opt(G, 4)+ (1/4)opt(G, 4) = opt(G, 4),
and this means that Fi∪ (Z;V−X) remains a 3-way cut, i.e., X1∩X2 = Z (otherwise
Fi ∪ (Z;V −X) would be a 4-way cut with cost less than opt(G, 4)). Hence we have a
property that, for two crossing subsets X,X ′ ∈ X ′

4 with Z ∩X
= ∅
= Z ∩X ′, X − Z
and X ′−Z are disjoint, and we see that there are O(n) subsets X ∈ X ′

4 with Z∩X
= ∅.
Since there are O(n2) subsets Z with f(Z) = λ(G), we have |X ′

4| = O(n2 ·n) = O(n3).
This completes the proof of the lemma.

It is known that the h minimum 2-way cuts can be enumerated in O(hnF (n,m))
time [10, 11, 36]. Thus, for k = 2, 3, 4 (resp., k ≥ 5), all subsets X with f(X) ≤

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1339

(2/k)opt(G, k) (resp., f(X) < (1/2)opt(G, k)) can be obtained in O(n3F (n,m)) time
for k = 2, in O(n5F (n,m)) time for k = 3, 4 (by Lemma 7.1), and in O(n2k−5F (n,m))
time for k ≥ 5 (by Theorem 5.1).

We are ready to describe our algorithm for enumerating all minimum k-way cuts.

Algorithm ALL CUTS(G, k)
Input: A graph G = (V,E) and an integer k ∈ [1, |V |].
Output: The set F of all minimum k-way cuts in G.
1. if opt(G, k) = 0 then Return F := ∅
2. else /* opt(G, k) > 0 */
3. if k = 2 then Return {(X;V −X) | f(X) = λ(G)}
4. else if k ∈ {3, 4} then

Compute the set Xk of all subsets X ⊂ V such that
f(X) ≤ (2/k)opt(G, k) and |V −X| ≥ k − 1;

5 F := {(X;V −X) ∪ F2 | X ∈ Xk, F2 ∈ ALL CUTS(G[V −X], k − 1)};
6. Return F := F − {F ∈ F | cost(F) > opt(G, k)} /* minF∈F cost(F) =

opt(G, k) */
7. else /* k ≥ 5 */
8. Compute the set Xk of all subsets X ⊂ V such that f(X) <

(1/2)opt(G, k);

9. p := �(k −
√
k)/2� − 1;

10. F :=
⋃

X∈Xk:|X|≥p, |V−X|≥k−p{F1 ∪ F2 |
F1 ∈ ALL CUTS(G[X], p), F2 ∈ ALL CUTS(G[V −X], k − p)};

11. Return F := F − {F ∈ F | cost(F) > opt(G, k)} /* minF∈F cost(F) =
opt(G, k) */

12. end /* if */
13. end /* if */
14. end. /* if */

We have the same recursive formula on the number of instances generated during
the execution of ALL CUTS, where the difference from the analysis for the runtime of
MULTIWAY is some of initial terms in M(k). By checking a solution to the formula
up to 1.3 × 106 by a computer program, we see that the total number of instances

is O(n4k/(1−1.71/
√
k)−20). Since each subset X ∈ Xk is generated in O(nF (n,m)) =

O(n4) time, we establish the next result.

Theorem 7.2. For a graph G = (V,E) with n vertices m edges and an integer k ∈
[3, n], ALL CUTS(G, k) finds all minimum k-way cuts in O(n4k/(1−1.71/

√
k)−19F (n,m))

time, where F (n,m) denotes the time complexity for computing a maximum flow in
a graph with n vertices and m edges.

8. Concluding remarks. In this paper, we have shown that, for general k, all

minimum k-way cuts can be computed in O(n4k/(1−1.71/
√
k)−16) time. This is the first

deterministic algorithm with time complexity whose exponent is O(k) for a general

graph. The new time bound improves the previous time bound O(nk2/2−3k/2+4F (n,m))
for deterministic algorithms but is still higher than the bound O(n2(k−1) log3 n) of a
Monte Carlo algorithm due to Karger and Stein [23]. So, it is left open to derive a
better upper bound on the number of subsets X with f(X) < opt(G, k)/2. The key
property for our algorithm is Theorem 5.1. A similar property is found in the article
by Goldschmidt and Hochbaum [8], but we have a simpler proof for this property
under a less constrained setting, which allows us to apply Lemma 3.1 to generate

1340 Y. KAMIDOI, N. YOSHIDA, AND H. NAGAMOCHI

instances with nearly halved k. However, based on Theorem 5.1, we can find all min-
imum k-way cuts, requiring a high time complexity. Another future work is to find
a more restricted characterization for a family X of subsets X from which we can
construct at least one minimum k-way cut.

Acknowledgments. The authors would like to thank the referees for their thor-
ough reading of this article, which led to many useful suggestions for improving pre-
sentation, and the editor for the effort of coordinating.

REFERENCES

[1] C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: A survey, Integra-
tion, The VLSI Journal, 19 (1995), pp. 1–81.

[2] D. Bertsimas, C. P. Teo, and R. Vohra, Analysis of LP relaxations for multiway and
multicut problems, Networks, 34 (1999), pp. 102–114.

[3] C. J. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, Oxford,
UK, 1987.

[4] W. H. Cunningham, Optimal attack and reinforcement of a network, J. ACM, 32 (1985),
pp. 549–561.

[5] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis,
The complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.

[6] W. E. Donath, Logic partitioning, in Physical Design Automation of VLSI Systems, B. T. Preas
and M. J. Lorenzetti, eds., Benjamin Cummings, Menlo Park, CA, 1988, pp. 65–86.

[7] A. V. Goldberg and R. E. Tarjan, A new approach to the maximum-flow problem, J. ACM,
35 (1998), pp. 921–940.

[8] O. Goldschmidt and D. S. Hochbaum, Polynomial algorithm for the k-cut problem for fixed
k, Math. Oper. Res., 19 (1994), pp. 24–37.

[9] D. Gusfield, Connectivity and edge-disjoint spanning trees, Inform. Process. Lett., 16 (1983),
pp. 87–89.

[10] H. W. Hamacher, J.-C. Picard, and M. Queyranne, Ranking the cuts and cut-sets of a
network, in Algebraic and Combinatorial Methods in Operations Research, North–Holland
Math. Stud. 95, North–Holland, Amsterdam, 1984, pp. 183–200.

[11] H. W. Hamacher, J.-C. Picard, and M. Queyranne, On finding the K best cuts in a network,
Oper. Res. Lett., 2 (1984), pp. 303–305.

[12] J. Hao and J. Orlin, A faster algorithm for finding the minimum cut in a directed graph, J.
Algorithms, 17 (1994), pp. 424–446.

[13] D. Hartvigsen, Minimum path basis, J. Algorithms, 15 (1993), pp. 125–142.
[14] D. Hartvigsen, The planar multiterminal cut problem, Discrete Appl. Math., 85 (1998),

pp. 203–222.
[15] X. He, An improved algorithm for the planar 3-cut problem, J. Algorithms, 12 (1991), pp. 23–

37.
[16] S. Kapoor, On minimum 3-cuts and approximating k-cuts using cut trees, in Integer Pro-

gramming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 1084, Springer-
Verlag, Berlin, 1996, pp. 132–146.

[17] Y. Kamidoi, S. Wakabayashi, and N. Yoshida, Faster algorithms for finding a minimum
k-way cut in a weighted graph, in Proceedings of the IEEE International Symposium on
Circuits and Systems, IEEE Circuits and Systems Society, Piscataway, NJ, 1997, pp. 1009–
1012.

[18] Y. Kamidoi, S. Wakabayashi, and N. Yoshida, A divide-and-conquer approach to the mini-
mum k-way cut problem, Algorithmica, 32 (2002), pp. 262–276.

[19] D. R. Karger, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm,
in Proceedings of the ACM–SIAM Symposium on Discrete Algorithms, ACM, New York,
SIAM, Philadelphia, 1993, pp. 21–30.

[20] D. R. Karger, Minimum cuts in near-linear time, in Proceedings of the 28th ACM Symposium
on Theory of Computing, ACM, New York, 1996, pp. 56–63.

[21] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. Young, Rounding algorithms for a
geometric embedding of minimum multiway cut, in Proceedings of the 31st ACM Sympo-
sium on Theory of Computing, ACM, New York, 1999, pp. 668–678.

[22] D. R. Karger and C. Stein, An Õ(n2) algorithm for minimum cuts, in Proceedings of the
25th ACM Symposium on Theory of Computing, ACM, New York, 1993, pp. 757–765.

AN ALGORITHM FOR FINDING ALL MINIMUM K-WAY CUTS 1341

[23] D. R. Karger and C. Stein, A new approach to the minimum cut problems, J. ACM, 43
(1996), pp. 601–640.

[24] A. V. Karzanov, Determining the maximal flow in a network by the method of preflows, Soviet
Math. Dokl., 15 (1974), pp. 434–437.

[25] C. H. Lee, M. Kim, and C. I. Park, An efficient k-way graph partitioning algorithm for
task allocation in parallel computing systems, in Proceedings of the IEEE International
Conference on Computer-Aided Design, IEEE Computer Society, Los Alamitos, CA, 1990,
pp. 748–751.

[26] T. Lengaur, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, New York, 1990.
[27] M. S. Levine, Faster randomized algorithms for computing minimum {3, 4, 5, 6}-way cuts, in

Proceedings of the ACM–SIAM Symposium on Discrete Algorithms, ACM, New York,
SIAM, Philadelphia, 2000, pp. 735–742.

[28] H. Nagamochi and T. Ibaraki, Computing the edge-connectivity in multigraphs and capaci-
tated graphs, SIAM J. Discrete Math., 5 (1992), pp. 54–66.

[29] H. Nagamochi and T. Ibaraki, A fast algorithm for computing minimum 3-way and 4-way
cuts, in Integer Programming and Combinatorial Optimization, Lecture Notes in Comput.
Sci. 1610, Springer-Verlag, 1999, pp. 377–390.

[30] H. Nagamochi and T. Ibaraki, A fast algorithm for computing minimum 3-way and 4-way
cuts, Math. Program., 88 (2000), pp. 507–520.

[31] H. Nagamochi, S. Katayama, and T. Ibaraki, A faster algorithm for computing minimum
5-way and 6-way cuts in graphs, J. Comb. Optim., 4 (2000), pp. 151–169.

[32] J. Naor and Y. Rabani, Tree packing and approximating k-cuts, in Proceedings of the ACM–
SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia, 2001,
pp. 26–27.

[33] H. Saran and V. V. Vazirani, Finding k cuts within twice the optimal, SIAM J. Comput., 24
(1995), pp. 101–108.

[34] H. S. Stone, Multiprocessor scheduling with the aid of network flow algorithms, IEEE Trans.
Software Engrg., 3 (1977), pp. 85–93.

[35] P. Tittmann, Partitions and network reliability, Discrete Appl. Math., 95 (1999) pp. 445–453.
[36] V. Vazirani and M. Yannakakis, Suboptimal cuts: Their enumeration, weight, and number,

in Algebraic and Logic Programming, Lecture Notes in Comput. Sci. 632, Springer-Verlag,
Berlin, 1992, pp. 366–377.

[37] W. C. Yeh, A simple algorithm for the planar multiway put problem, J. Algorithms, 39 (2001),
pp. 68–77.

[38] L. Zhao, H. Nagamochi, and T. Ibaraki, Approximating the minimum k-way cut in a graph
via minimum 3-way cuts, J. Comb. Optim., 5 (2001), pp. 397–410.

[39] L. Zhao, H. Nagamochi, and T. Ibaraki, On generalized greedy splitting algorithms for
multiway partition problems, Discrete Appl. Math., 143 (2004), pp. 130–143.

[40] L. Zhao, H. Nagamochi, and T. Ibaraki, Greedy splitting algorithms for approximating
multiway partition problems, Math. Program., 102 (2005), pp. 167–183.

SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1342–1359

ONLINE CONFLICT-FREE COLORING FOR INTERVALS∗

KE CHEN† , AMOS FIAT‡ , HAIM KAPLAN‡ , MEITAL LEVY‡ , JIŘÍ MATOUŠEK§ ,

ELCHANAN MOSSEL¶, JÁNOS PACH‖, MICHA SHARIR#, SHAKHAR SMORODINSKY††,

ULI WAGNER‡‡, AND EMO WELZL††

Abstract. We consider an online version of the conflict-free coloring of a set of points on the
line, where each newly inserted point must be assigned a color upon insertion, and at all times the
coloring has to be conflict-free, in the sense that in every interval I there is a color that appears
exactly once in I. We present deterministic and randomized algorithms for achieving this goal,
and analyze their performance, that is, the maximum number of colors that they need to use, as a
function of the number n of inserted points. We first show that a natural and simple (deterministic)
approach may perform rather poorly, requiring Ω(

√
n) colors in the worst case. We then derive

two efficient variants of this simple algorithm. The first is deterministic and uses O(log2 n) colors,
and the second is randomized and uses O(logn) colors with high probability. We also show that
the O(log2 n) bound on the number of colors used by our deterministic algorithm is tight on the
worst case. We also analyze the performance of the simplest proposed algorithm when the points
are inserted in a random order and present an incomplete analysis that indicates that, with high
probability, it uses only O(logn) colors. Finally, we show that in the extension of this problem to
two dimensions, where the relevant ranges are disks, n colors may be required in the worst case.

Key words. conflict-free coloring, online algorithms, randomized algorithms, branching pro-
cesses

AMS subject classifications. 05C15, 52C45, 68Q25, 68W20, 68W40

DOI. 10.1137/S0097539704446682

1. Introduction. Let P be a set of n points in R
d and R a set of subsets of

R
d, called ranges (e.g., the set of all disks in the plane). A coloring of P is called

∗Received by the editors December 14, 2004; accepted for publication (in revised form) June 23,
2006; published electronically December 26, 2006. Part of the work on the paper was carried out at
MSRI, Berkeley, when several of the authors visited this institute during the fall of 2003. This paper
combines and extends results from [5, 11].

http://www.siam.org/journals/sicomp/36-5/44668.html
†Department of Computer Science, University of Illinois, 201 N. Goodwin Ave., Urbana, IL 61801

(kechen@uiuc.edu). Work by this author was partially supported by NSF award CCR-0132901.
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel (fiat@post.tau.ac.il, haimk@

post.tau.ac.il, levymeit@post.tau.ac.il). Work by the third author was partially supported by German
Israeli Foundation (GIF) grant 2051-1156-6/2002.

§Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI),
Charles University, Prague, Czech Republic (matousek@kam.mff.cuni.cz).

¶Department of Statistics, University of California at Berkeley, Berkeley, CA 94720 (mossel@stat.
berkeley.edu). Work by this author was supported by a Miller Fellowship in Statistics and Computer
Science, University of California at Berkeley.

‖Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (pach@
cims.nyu.edu).

#School of Computer Science, Tel Aviv University, Tel Aviv, Israel, and Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il). Work
by this author was supported by a grant from the U.S.–Israeli Binational Science Foundation, by
a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), by
NSF grants CCR-97-32101 and CCR-00-98246, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University. Part of the work was carried out during a visit to Charles
University, which was supported by COMBSTRU.

††Institute for Theoretical Computer Science, ETH Zürich, Zürich, Switzerland (sshakhar@inf.
ethz.ch, emo@inf.ethz.ch).

‡‡Department of Applied Mathematics, Charles University, Prague, Czech Republic (uli@kam.mff.
cuni.cz). Work by this author was supported by COMBSTRU.

1342

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1343

conflict-free (CF) with respect to R if for each r ∈ R with P ∩ r �= ∅, there is at least
one color that appears exactly once in r.

We consider the following dynamic scenario of CF coloring of points on the line,
with respect to interval ranges. We maintain a finite set P ⊂ R. Initially, P is empty,
and we repeatedly insert points into P , one point at a time. We denote by P (t) the
set P after the tth point has been inserted. Each time we insert a point p, we need to
assign a color c(p) to it, which is a positive integer. Once the color has been assigned
to p, it cannot be changed in the future. The coloring should remain CF at all times.
That is, as in the static case, for any interval I that contains points of P (t), there is
a color that appears exactly once in I.

The static version of CF coloring has been studied recently in several papers
[9, 10, 12, 14, 15] in considerably more general settings, involving point sets in higher
dimensions and ranges that are disks, balls, axis-parallel boxes, or more general ranges
that satisfy certain geometric conditions. The study of this problem is motivated by
the problem of frequency-assignment in cellular networks. Specifically, cellular net-
works are heterogeneous networks with two different types of nodes: base stations
(that act as servers) and clients. The base stations are interconnected by an exter-
nal fixed backbone network. Clients are connected only to base stations; connections
between clients and base stations are implemented by radio links. Fixed frequencies
are assigned to base stations to enable links to clients. Clients, on the other hand,
continuously scan frequencies in search of a base station with good reception. The
fundamental problem of frequency-assignment in cellular networks is to assign fre-
quencies to base stations so that every client, located within the receiving range of
at least one station, can be served by some base station, in the sense that the client
is located within the range of the station and no other station within its reception
range has the same frequency (such a station would be in “conflict” with the given
station due to mutual interference). The goal is to minimize the number of assigned
frequencies (“colors”) since the frequency spectrum is limited and costly.

Suppose we are given a set of n base stations, also referred to as antennae. As-
sume, for simplicity, that the area covered by a single antenna is given as a disk in the
plane. Namely, the location of each antenna (base station) and its radius of transmis-
sion are fixed and given (the transmission radii of the antennae are not necessarily
equal). Even et al. [10] have shown that one can find an assignment of frequencies to
the antennae with a total of at most O(log n) frequencies such that each antenna is
assigned one of the frequencies and the resulting assignment is free of conflicts, in the
preceding sense. Furthermore, it has been shown that this bound is worst-case opti-
mal [10, 13, 14]. When the given antennae all have the same radius of transmission
(say, unit radius), the problem is easily seen to be equivalent to that of coloring n
points in the plane such that for any unit radius disk that contains more than one of
the given points, at least one of the colors in that disk is unique. This is the scenario
whose online version is studied in this paper. We do not address the dual version, in
which the goal is to color n given ranges so that, for each point p that lies in their
union, there is a color that appears exactly once among the ranges that contain p.
See [10, 12, 14] for many variants of both (static) versions of the problem.

To capture a dynamic scenario where antennae can be added to the network,
we introduce and study an online version of the CF coloring problem, as described
above. As we show in this paper, the online version of the problem is considerably
harder, even in the one-dimensional case, where the static version is trivial and fully
understood. We begin by proposing a natural, simple, and obvious coloring algorithm
(which we call the UniMax greedy algorithm), but show that in the worst case it

1344 CHEN ET AL.

has poor performance. Specifically, the UniMax greedy algorithm may require Ω(
√
n)

colors in the worst case. We still do not have any nontrivial (i.e., sublinear) upper
bound on the performance of the algorithm.

The UniMax greedy algorithm is indeed greedy in nature, but there are several
different greedy approaches, and we briefly discuss another greedy alternative, about
which almost nothing is known.

We next remedy the situation by presenting two more efficient algorithms. We
describe a 2-stage deterministic variant of the UniMax greedy algorithm and show
that the maximum number of colors that it uses is Θ(log2 n). We also describe a ran-
domized version of the UniMax greedy algorithm which uses, with high probability,1

only O(log n) colors.

The best known general lower bound for this problem is Ω(logn), which holds
also for the static case (see [10, 13, 14]), so there still remains a gap between the
upper and lower bounds in the deterministic case.

Our randomized algorithm works against an oblivious adversary. That is, we
assume that the sequence of points is fixed by the adversary before starting to feed
them one by one to the online algorithm. The adversary cannot choose its next point
based on the actions or the random choices that the online algorithm has made so far.
The coloring that our algorithm produces is CF no matter which random choices it
makes. For further discussion on different kinds of adversaries in online computations,
see [4] for the general case and [2] for the specific case of online CF coloring.

Next, we return to the UniMax greedy algorithm, which can be inefficient in the
worst case, and analyze its performance when the points are inserted in a random
order. We reduce the problem to a certain stationary stochastic process, and present
partial analysis of its performance, as well as a fairly reasonable set of conjectures,
strongly supported by simulations, that indicate that the expected number of colors
that the simple algorithm uses in this case is only O(log n).

Finally, we consider the extension of the online version to point sets in the plane.
Unfortunately, we show that, in the simple case where the ranges that are required
to be CF are disks (or arbitrary radii), n colors may be needed in the worst case.
Nevertheless, (much) better solutions might still exist for random distributions of the
points, for other ranges, or for relaxed versions of the problem, in which each range
has a color that appears in it at least once and at most k times for some constant
k [14]. A recent follow-up study by Chen, Kaplan, and Sharir [6] (see also [5]) gives
randomized online CF coloring algorithms for points in the plane, with respect to half-
planes, unit disks, or nearly equal axis-parallel rectangles. The algorithms use O(log n)
colors with high probability. An even more recent result of Bar-Noy, Cheilaris, and
Smorodinsky [3] provides a general randomized online CF coloring algorithm, which
achieves the same performance as [6] in the special cases just mentioned.

There are many open problems that our study raises: Obtain, if possible, an
improved algorithm-independent deterministic lower bound for online CF coloring
for intervals; get a better understanding of the problem behavior in the plane and
in higher dimensions; design and analyze other strategies, and so on (see additional
problems posed throughout the paper). We note that CF coloring is closely related to
the problem of vertex ranking in graphs (see, e.g., [8]). Some of our algorithms, which
maintain the property that the maximum color in any interval is unique, actually per-

1This means that the probability of failure is at most 1/p(n), where p(n) is polynomial in n,
whose degree can be made arbitrarily large by adjusting the constants of proportionality in the
performance bound.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1345

form online vertex ranking in paths. Extending our analysis to online vertex ranking
in other kinds of graphs (trees, for example) raises yet another set of interesting open
problems.

2. The UniMax greedy coloring algorithm. Instead of the usual CF prop-
erty, we wish to maintain the following stronger unique maximum invariant (in which
we assume that the colors are positive integers):

At any given step t and for any interval I that contains points of
P (t), there is only one element of P (t)∩ I that attains the maximum
color in that set.

This invariant implies that the coloring of P (t) is CF at any time t. It is indeed
a stronger condition: CF coloring requires only that for each interval there exists a
color (not necessarily the maximum) that appears there only once.

We employ the following simple-minded algorithm for inserting a point p into the
current set P (t). In a nutshell, the rule is simply to assign to p the smallest possible
color that maintains the invariant. This rule is implemented as follows. We say that
the newly inserted point p sees a point x if all the colors of the points between p and
x (exclusive) are smaller than c(x). In this case we also say that p sees the color c(x).
We then give p the smallest color that it does not see. (Note that a color can be
seen from p either to the left or to the right, but not in both directions; see below.)
We refer to this algorithm as the Unique Maximum Greedy algorithm, or the UniMax
greedy algorithm, for short.

Below is an illustration of the coloring rule of the UniMax greedy algorithm. The
left column gives the colors (integers in the range 1, 2, . . . , 6) assigned to the points
in the current set P and the location of the next point to be inserted (indicated by a
period). The right column gives the colors “seen” by the new point. The colors seen
to the left precede the ·, and those seen to the right succeed the ·.

1· [1·]
1 · 2 [1 · 2]
1 · 32 [1 · 3]
12 · 32 [2 · 3]
121 · 32 [21 · 3]
121 · 432 [21 · 4]
121 · 3432 [21 · 34]
1215 · 3432 [5 · 34]
1215 · 13432 [5 · 134]
12152 · 13432 [52 · 134]
121526 · 13432 [6 · 134]

Correctness. The correctness of the algorithm is established by induction on the
insertion order. First, note that no color can be seen twice from p: This is obvious for
two points that lie both to the left or both to the right of p. If p sees the same color
at a point u to its left and at a point v to its right, then the interval [u, v], before
p is inserted, does not have a unique maximum color; thus this case is impossible,
too. Next, if p is assigned color c, any interval that contains p still has a unique
maximum color: This follows by induction when the maximum color is greater than
c. If the maximum color is c, then it cannot be shared by another point u in the
interval, because then p would have seen the nearest such point and thus would not
be assigned color c. It is also easy to see that the algorithm assigns to each newly
inserted point the smallest possible color that maintains the invariant of a unique

1346 CHEN ET AL.

maximum color in each interval. This makes the algorithm greedy with respect to the
unique maximum condition.

Special insertion orders. Denote by C(P (t)) the sequence of colors assigned to
the points of P (t), in left-to-right order along the line. Let cmax(P (t)) denote the
maximum color in C(P (t)).

The complete binary tree sequence Sk of order k is defined recursively as S1 = (1)
and Sk = Sk−1‖(k)‖Sk−1, for k > 1, where ‖ denotes concatenation. Clearly, |Sk| =
2k − 1.

For each pair of integers a < b, denote by C0(a, b) the following special sequence.
Let k be the integer satisfying 2k−1 ≤ b < 2k. Then C0(a, b) is the subsequence
of Sk from the ath place to the bth place (inclusive). For example, C0(5, 12) is the
subsequence (1, 2, 1, 4, 1, 2, 1, 3) of (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1).

Lemma 2.1. (a) If each point is inserted into P to the right of all preceding
points, then C(P (t)) = C0(1, t).

(b) If each point is inserted into P to the left of all preceding points, then C(P (t))
= C0(2

k − t, 2k − 1), where k satisfies 2k−1 ≤ t < 2k.
(c) If each point is inserted into P either from the left or from the right, then

C(P (t)) is some subsequence of the form C0(a, b), where b ≤ |P (t)|.
Proof. The proof is easy and therefore omitted.

2.1. Lower bound for the UniMax greedy algorithm.
Theorem 2.2. The UniMax greedy algorithm may require Ω(

√
n) colors in the

worst case for a set of n points.
Proof. For each integer k, define the sequence

Ck = (1, 2, 1, 3, 2, 1, . . . , k − 1, k − 2, . . . , 1, k, k − 1, . . . , 1).

Note that Ck is the concatenation of k sequences D1‖D2‖ · · · ‖Dk, where Dj =
(j, j − 1, . . . , 2, 1). Put nk = k(k + 1)/2. We prove the following property, from
which the assertion of the theorem is an immediate corollary.

(∗) There exists an insertion order of nk points for which the color sequence
produced by the UniMax greedy algorithm is Ck.

The proof proceeds by induction on k. We note that the claim easily holds for
k = 1, 2. Suppose that there is an insertion sequence Sk for which the UniMax greedy
algorithm produces the color sequence Ck. We insert the next point between Dk−1

and Dk and observe that it is assigned color k + 1. We then insert a point between
Dk−2 and Dk−1, which is assigned color k. Proceeding in this manner from right
to left, we insert k points between consecutive subsequences Dj−1, Dj . The color
sequence now becomes

D2‖D3‖D4‖ · · · ‖Dk‖Dk+1.

To complete the step, we insert one additional point to the left of the whole sequence,
which gets the color 1, thereby producing the color sequence Ck+1. This completes
the proof of (∗) and thus of the theorem.

Open problem. Obtain an upper bound for the maximum number of colors that
the algorithm uses for n inserted points. We conjecture that the bound is close to the
Ω(

√
n) lower bound. At the moment, we do not have any sublinear upper bound.

2.2. Related algorithms.
The First-Fit algorithm—another greedy strategy. The UniMax greedy algorithm

is greedy for maintaining the unique maximum invariant, namely, that in each interval

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1347

the maximum color appears exactly once. Perhaps it is more natural to consider a
greedy approach in which we want only to enforce the standard CF property. That
is, we want to assign to each newly inserted point the smallest color for which the CF
property continues to hold. There are cases where this First-Fit greedy algorithm uses
fewer colors than the UniMax greedy algorithm: Consider an insertion of five points
in the order (1 3 2 4 5). The UniMax greedy algorithm produces the color sequence
(1 3 2 1 4), whereas the First-Fit algorithm produces the coloring (1 3 2 1 2).

Very recently, after the original submission of this paper, Bar-Noy, Cheilaris, and
Smorodinsky [2] have shown that in the worst case the First-Fit algorithm uses about
n/2 colors. More precisely, there are sequences with 2i + 3 elements that force the
algorithm to use i + 3 colors, and this bound is tight.

CF coloring for unit intervals. Consider the special case where we want the CF
property to hold only for unit intervals. In this case, O(log n) colors suffice: Partition
the line into the unit intervals Ji = [i, i + 1) for i ∈ Z. Color the intervals Ji with
even i as white, and those with odd i as black. Note that any unit interval meets
only one white and one black interval. We color the points in each Ji independently,
using the same set of “light colors” for each white interval and the same set of “dark
colors” for each black interval. For each Ji, we color the points that it contains using
the UniMax greedy algorithm, except that new points inserted into Ji between two
previously inserted points get a special color, color 0. It is easily checked that the
resulting coloring is CF with respect to unit intervals. Since we effectively insert
points into any Ji only to the left or to the right of the previously inserted points,
Lemma 2.1(c) implies that the algorithm uses only O(log n) (light and dark) colors.
We remark that this algorithm satisfies the unique maximum color property for unit-
length intervals.

We note that, in contrast to the static case (which can always be solved with
O(1) colors), Ω(log n) colors may be needed in the worst case. Indeed, consider a
left-to-right insertion of n points into a sufficiently small interval. Each contiguous
subsequence σ of the points will be a suffix of the whole sequence at the time the
rightmost element of σ is inserted. Since such a suffix can be cut off the current set
by a unit interval, it must have a unique color. Hence, at the end of insertion, every
subsequence must have a unique color, which implies (see [10, 14]) that Ω(logn) colors
are needed.

3. An efficient deterministic algorithm. In this section we modify the Uni-
Max greedy algorithm into a deterministic 2-stage coloring scheme and show that it
uses only O(log2 n) colors. We refer to this algorithm as the leveled UniMax greedy
algorithm.

Let x be the point which we currently insert. We assign a color to x in two steps.
First we assign x to a level, denoted by �(x). Once x is assigned to level �(x) we give it
an actual color among the set of colors dedicated to �(x). We maintain the invariant
that each color is used by at most one level. Formally, the colors that we use are pairs
(�(x), c(x)) ∈ Z

2, where �(x) is the level of x and c(x) is its integer color within that
level.

Modifying the definition from the UniMax greedy algorithm, we say that point x
sees point y (or that point y is visible to x) if and only if for every point z between
x and y, �(z) < �(y). When x is inserted, we set �(x) to be the smallest level � such
that either to the left of x or to the right of x (or in both directions) there is no point
y visible to x at level �.

To give x a color, we now consider only the points of level �(x) that x can see.

1348 CHEN ET AL.

level

new point gets level 4

3

1
2

Fig. 3.1. Illustrating the 2-stage deterministic algorithm. An insertion order that realizes the
depicted assignment of levels to points is to first insert all level-1 points from left to right, then
insert the level-2 points from left to right, and then the level-3 points.

That is, we discard every point y such that �(y) �= �(x), and every point y such
that �(y) = �(x) and there is a point z between x and y such that �(z) > �(y). We
apply the UniMax greedy algorithm so as to color x with respect to the sequence Px

of the remaining points, using the colors of level �(x) only. That is, we give x the
color (�(x), c(x)), where c(x) is the smallest color that ensures that the coloring of
Px maintains the unique maximum color condition. This completes the description
of the algorithm. See Figure 3.1 for an illustration.

We begin the analysis of the algorithm by making a few observations on its per-
formance.

(a) Suppose that a point x is inserted and is assigned to level i > 1. Since x was
not assigned to any level j < i, it must see a point �j at level j that lies to its left, and
another such point rj that lies to its right. Let Ej(x) denote the interval [�j , rj]. Note
that, by definition, these intervals are nested, that is, Ej(x) ⊂ Ek(x) for j < k < i.
See Figure 3.1.

(b) We define a run at level i to be a maximal sequence of points x1 < x2 <
· · · < xk at level i, such that all points between x1 and xk that are distinct from
x2, x3, . . . , xk−1 are assigned to levels smaller than i. Whenever a new point x is
assigned to level i and is inserted into a run of that level, it is always inserted either
to the left or to the right of all points in the run. Moreover, the actual color that x gets
is determined solely from the colors of the points already in the run. See Figure 3.1.

(c) The runs keep evolving as new points are inserted. A run may either grow
when a new point of the same level is inserted at its left or right ends (note that other
points at smaller levels may separate the new point from the former end of the run)
or split into two runs when a point of a higher level is inserted somewhere between
its ends.

(d) As in observation (a), the points at level i define intervals, called i-intervals.
Any such interval E is a contiguous subsequence [x, y] of P , so that x and y are both
at level i and all the points between x and y have smaller levels. E is formed when
the second of its endpoints, say x, is inserted. We say that x closes the interval E
and refer to it as a closing point. Note that, by construction, x cannot close another
interval.

(e) Continuing observation (a), when x is inserted, it destroys the intervals Ej(x),
for j < i, into which it is inserted, and only these intervals. That is, each of these
intervals now contains a point with a level greater than that of its endpoints, so it
is no longer a valid interval. We charge x to the set of the closing endpoints of all
these intervals. Clearly, none of these points will ever be charged again by another
insertion (since it is the closing endpoint of only one interval, which is now destroyed).
We maintain a forest F , whose nodes are all the points of P . The leaves of F are all
the points at level 1. When a new point x is inserted, we make it a new root of F , and
the parent of all the closing points that it charges. Since these points have smaller

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1349

levels than x, and since none of these points becomes a child of another parent, it
follows that F is indeed a forest.

Note that the nonclosing points can only be roots of trees of F . Note also that a
node at level i has exactly i− 1 children, exactly one at each level j < i. Hence, each
tree of F is a binomial tree (see [7]); if its root has level i, then it has 2i nodes.

This implies that if m is the maximal level assigned after n points have been
inserted, then we must have 2m ≤ n, or m ≤ log n. That is, the algorithm uses at
most log n levels.

We next prove that our algorithm uses only O(log n) colors at each level. We
recall the way runs evolve: They grow by adding points at their right or left ends,
and split into prefix and suffix subruns, when a point with a larger level is inserted in
their middle.

Lemma 3.1. At any time during the insertion process, the colors assigned to
the points in a run form a sequence of the form C0(a, b) (as defined in section 2).
Moreover, when the jth smallest color of level i is given to a point x, the run to which
x is appended has at least 2j−2 + 1 elements (including x).

Proof. The proof proceeds by induction through the sequence of insertion steps
and is based on the following observation. Let σ be a contiguous subsequence of the
complete binary tree sequence Sk−1, and let x be a point added, say, to the left of σ.
If we assign to x color c(x), using the UniMax greedy algorithm, then (c(x))‖σ is a
contiguous subsequence of either Sk−1 or Sk. The latter happens only if σ contains
Sk−2‖(k − 1) as a prefix. Symmetric properties hold when x is inserted to the right
of σ. We omit the straightforward proof of this observation.

As a consequence, we obtain the following result.
Theorem 3.2. (a) The algorithm uses at most (2 + log n) log n colors.
(b) At any time, the coloring is CF.
(c) In the worst case the algorithm may be forced to use Ω(log2 n) colors after n

points are inserted.
Proof. (a) We have already argued that the number of levels is at most logn.

Within a level i, the kth smallest color is assigned when a run contains at least 2k−2

points. Hence 2k−2 ≤ n, or k ≤ 2 + log n, and (a) follows.
To show (b), consider an arbitrary interval I. Let � be the highest level of a point

in I. Let σ = (y1, y2, . . . , yj) be the sequence of the points in I of level �. Since � is
the highest level in I, σ is a contiguous subsequence of some run, and, by Lemma 3.1,
the sequence of the colors of its points is also of the form C0(a

′, b′). Hence, there is a
point yi ∈ σ which is uniquely colored among y1, y2, . . . , yj by a color of level �.

To show (c), we construct a sequence P so as to force its coloring to proceed
level by level. We first insert 2k−1 points from left to right, thereby making them
all be assigned to level 1 and colored with k different colors of that level. Let P1

denote the set of these points. We next insert a second batch of 2k−2 points from
left to right. The first point is inserted between the first and second points of P1, the
second point between the third and fourth points of P1, and so on, where the jth new
point is inserted between the (2j − 1)th and (2j)th points of P1. By construction, all
points in the second batch are assigned to level 2, and they are colored with k − 1
different colors of that level. Let P2 denote the set of all points inserted so far. P2

is the concatenation of 2k−2 triples, where the levels in each triple are (1, 2, 1). We
now insert a third batch of 2k−3 points from left to right. The first point is inserted
between the first and second triples of P2, the second point between the third and
fourth triples of P2, and so on, where the jth new point is inserted between the
(2j − 1)th and (2j)th triples of P2. By construction, all points in the third batch are

1350 CHEN ET AL.

assigned to level 3, and they are colored with k − 2 different colors of that level.
The construction is continued in this manner. Just before inserting the ith batch

of 2k−i points, we have a set Pi−1 of 2k−1 + · · ·+2k−i+1 points, which is the concate-
nation of 2k−i+1 tuples, where the sequences of levels in each of these tuples are all
identical and equal to the “complete binary tree sequence” C0(1, 2

i−1 − 1), as defined
in section 2 (whose elements now encode levels rather than colors). The points of the
ith batch are inserted from left to right, where the jth point is inserted between the
(2j−1)th and (2j)th tuples of Pi−1. By construction, all points in the ith batch are as-
signed to level i and are colored with k−i+1 different colors of that level. Proceeding
in this manner, we end the construction by inserting the (k−1)th batch, which consists
of a single point that is assigned to level k. Altogether we have inserted n = 2k − 1
points and forced the algorithm to use k + (k− 1) + · · ·+ 1 = k(k + 1)/2 = Ω(log2 n)
different colors.

Remark. One can modify the algorithm so that the set of colors that it uses
can be identified with (a subset of a prefix of) the integers, and so that it maintains
the property of the UniMax greedy algorithm: At any time t and for any interval I,
there is a unique point in I with maximum color. The modified algorithm also uses
O(log2 n) colors.

Specifically, we proceed as follows. Suppose first that n is known in advance.
Order the pairs (k, i) ∈ {1, . . . , log n}×{1, . . . , 2+logn} lexicographically, i.e., (k, i) <
(k′, i′) if k < k′ or (k = k′ and i < i′). Let f(k, i) be the rank of the pair (k, i) in this
lexicographic order. Then the set of numbers f(k(p), i(p)), where p ∈ P is assigned
level k(p) and the i(p)th color within that level, is (a subset of) a prefix of the integers,
and the unique maximum color property is satisfied.

If n is not known in advance, we apply the same strategy as the one discussed at
the end of the preceding section. That is, when the number of inserted points reaches
one of the values 22i

for i ≥ 0, we start coloring new points with a completely new
set of colors, which are mapped lexicographically onto integer values that are larger
than the largest integer color used so far.

4. An efficient randomized algorithm. We next modify the UniMax greedy
deterministic algorithm into the following randomized algorithm, which we call the
randomized UniMax greedy algorithm. The randomized UniMax greedy algorithm
does not partition the points into levels but assigns a color directly, using the following
randomized variant of the UniMax greedy strategy.

Let p be the next point inserted. Recall that p sees a point x (alternatively, the
color c(x)) if all the colors of points between p and x (exclusive) have color smaller
than c(x). We say that p is eligible for color m if p does not see m. To give p a color,
we scan all colors in increasing order. For each color i, if p is not eligible for color i,
we continue to color i + 1. Otherwise, if p is eligible for color i, we set c(p) = i with
probability 1/2 and continue to color i + 1 with probability 1/2.

By the same reasoning as for the UniMax greedy algorithm, the coloring produced
by the randomized UniMax greedy algorithm is CF at any stage. We next show that
it uses O(log n) colors with high probability.

Lemma 4.1. If the algorithm reaches color i when processing a point p, then p
gets the color i with probability at least 1/8. More formally, let Ci (resp., C≥i) be
the random variable which is equal to the set of points of color i (resp., of color ≥ i).
Then

Pr

{
p ∈ Ci | p ∈ C≥i

}
≥ 1

8
.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1351

Proof. Assume first that p is neither the leftmost nor the rightmost point at the
time of its insertion. Let Q be the set of points inserted before p. Fix a point p� ∈ Q
to the left of p, and a point pr ∈ Q to the right of p. Consider all random choices
(which we refer to as “executions”) of the randomized UniMax algorithm, in which
p�, p, and pr end up as three consecutive points in C≥i.

In at least 1/2 of these executions p� gets a color greater than i (either because it
is ineligible for color i or because the coin toss has moved it to color i+ 1); similarly,
in at least 1/2 of these executions pr gets a color greater than i. Since the coin tosses
of pr are independent of those of p�, both p� and pr get color greater than i in at least
1/4 of these executions. In these cases, p is eligible for color i and with probability 1/2
does get that color. Hence, in at least 1/8 of the above executions p gets color i. Since
this is true for every choice of p� and pr, the lemma follows.

If p is the leftmost or rightmost point, then it is eligible for color i (assuming
it has reached C≥i) with probability 1/2, and if p is the first inserted point, then it
is eligible for color i with probability 1. Hence, the preceding argument implies the
lemma in this case too.

Theorem 4.2. The randomized UniMax greedy algorithm uses O(log n) colors
with high probability.

Proof. Using the same notation as above, Lemma 4.1 implies that

E (|C≥i+1|) ≤
7

8
E (|C≥i|) .

Since |C≥1| = n, we have for i ≥ 1

E (|C≥i+1|) ≤
(

7

8

)i

n.

For i = c log8/7 n, we get that E (|C≥i+1|) ≤ 1/nc−1. Hence, by Markov’s inequality,

Pr

{
|C≥i+1| ≥ 1

}
≤ 1/nc−1,

from which the lemma follows.
Remark. We leave it as an open problem to determine whether a nonoblivious

adversary can cause the algorithm to use more than Θ(logn) colors.

5. Random insertion order. In this section we consider the special case where
the points are inserted in a random order, and where we color them by the UniMax
greedy algorithm of section 2. We have simulated the execution of the UniMax greedy
algorithm under such an insertion order. The results of the simulation strongly suggest
the following conjecture.

Conjecture 5.1. For each integer k ≥ 1, the expected frequency of the color k

in C(P (t)), as generated by the UniMax greedy algorithm, converges to 1
3

(
2
3

)k−1
as

t → ∞.
Assuming Conjecture 5.1, the following is an easy consequence.
Corollary 5.2. If each point is inserted into P at a random place, the expected

value of cmax(P (t)), under the UniMax greedy algorithm, is O(log t). This also holds
with high probability if the constant of proportionality is chosen sufficiently large.

Proof. Let P (n) be a set of n points inserted in a random order. Let Xk be
a random variable counting the number of points in P (n) that were colored with k

1352 CHEN ET AL.

by the UniMax greedy algorithm. Let Ik be the indicator variable for the color k to
appear at all.

We are interested in the number of colors used, that is, Y :=
∑

k Ik.
Assume that E(Xk) = 1

3 (2
3)k−1n. Then, using Markov’s inequality, E(Ik) =

Pr{Ik = 1} = Pr{Xk ≥ 1} ≤ E(Xk). Hence,

E(Y) = E

(∑
1≤k

Ik

)
= E

(∑
1≤k<1+log3/2 n

Ik

)
+ E

(∑
k≥1+log3/2 n

Ik

)

≤ 1 + log3/2 n +
∑

k≥1+log3/2 n

1

3

(
2

3

)k

n

≤ 1 + log3/2 n +
∑
i≥0

1

3

(
2

3

)i

= log3/2 n + 2.

Arguing as in the proof of Theorem 4.2, we also have

Pr

{
more than c log3/2 n colors are used

}
= Pr

{
I�c log3/2 n� = 1

}

≤ 1

3

(
2

3

)�c log3/2 n�−1

n ≤ 1

2nc−1
.

At this stage, we do not have a complete proof of Conjecture 5.1. We do have
some partial results that we now present. In particular, they show that Conjecture 5.1
holds for k = 1, 2, 3. Completing the proof is one of the major open problems raised
in this paper.

Lemma 5.3. The expected number of points assigned the color 1, after a random
insertion of t points, is t+1

3 for t ≥ 2.
Proof. Denote by Xi the random variable whose value is the number of 1’s after

the insertion of the first i points. Then Xi+1 = Xi + Yi, where Yi is an indicator
variable, equal to 1 if the (i+1)st point pi+1 is colored by 1, and to 0 otherwise. Note
that pi+1 is colored by 1 if and only if it is inserted at a place that is not adjacent
to any point colored 1. Each of the current Xi 1-colored points has two adjacent
insertion places, and all these places are distinct, because P (i) does not contain two
adjacent points colored 1. Hence, out of the i+1 available insertion places, i+1−2Xi

will cause pi+1 to be colored 1. Taking expectations, we obtain

E(Xi+1) = E(Xi) + E(Yi) = E(Xi) + E(E(Yi | Xi))

= E(Xi) + E

(
i + 1 − 2Xi

i + 1

)
= E(Xi) +

i + 1 − 2E(Xi)

i + 1
,

or E(Xi+1) = i−1
i+1E(Xi)+1, for i ≥ 2. The solution of this recurrence, with the initial

value E(X2) = 1, is easily seen to be E(Xt) = t+1
3 for t ≥ 2.

Analysis for k ≥ 2. We next present a framework for estimating the expected
number of points that are assigned the color k for k ≥ 2. We apply this framework
to get a complete solution for k = 2, 3. We fix k, and define a k-state to be any valid
contiguous sequence of colors in {1, . . . , k} that may show up in C(P (t)), delimited
on both sides by ∗, which designates a color greater than k. The validity of a state

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1353

means that it satisfies the unique maximum color invariant: Any contiguous nonempty
subsequence of s has a unique largest element. We refer to the portion of a state that
excludes the ∗’s as its core.

Denote by Sk the set of all k-states. For example, the set S2 consists of the
following states:

s1 = 〈∗∗〉, s2 = 〈∗1∗〉, s3 = 〈∗2∗〉, s4 = 〈∗12∗〉, s5 = 〈∗21∗〉, s6 = 〈∗121∗〉.
(5.1)

For example, the sequence C(P (t)) = (1 2 1 3 2 4 2 1 3 5 1 2 3) is decomposed into
the following sequence of 2-states:

(
〈∗121∗〉, 〈∗2∗〉, 〈∗21∗〉, 〈∗∗〉, 〈∗12∗〉, 〈∗∗〉

)
.

We denote by S+
k the subset of Sk consisting of those k-states that contain the

color k (necessarily at a unique location), and by S−
k the subset of those states that

do not contain k. We refer to states in S+
k (resp., S−

k) as major k-states (resp., minor
k-states). The size |s| of a k-state s is the length of its core plus 1; it designates the
number of places in s at which a new point can be inserted. For example, for 2-states
we have S−

2 = {s1, s2}, S+
2 = {s3, s4, s5, s6}. Also, we have |s1| = 1, |s2| = |s3| = 2,

|s4| = |s5| = 3, and |s6| = 4.
Let s ∈ S+

k . It has the form (∗ukv∗), where u and v can be regarded as the
cores of two respective (k − 1)-states, sL and sR. We refer to sL and sR as the left
wing and the right wing of s, respectively. We have |s| = |sL| + |sR|. Care should
be exercised in the treatment of sL and sR. Specifically, we will consider the actual
sequence of colors C(P (t)) as a concatenation of states, which depends on the choice
of k. We denote by C(k)(t) the (unique) partition of C(P (t)) into the concatenation
of k-states, and refer to it as the k-scenario. Then, for a major state s ∈ S+

k , its left
and right wings are not counted as separate states in the k-scenario but as states in
the (k − 1)-scenario.

We need one more notion. When we insert a new point into a k-state s, there
are two possible outcomes: (i) The point gets a color smaller than or equal to k, in
which case s is transformed to another, single state in Sk. (ii) The point gets a color
greater than k, in which case s is split into two new k-states. Note that, for case (ii)
to occur, s must be a major state (if s were minor, we could have assigned the color
k to the new point). Moreover, in this case one of the two new states, s′, must be a
major state, and the other, s′′, must be minor. We refer to this case by saying that
s spawns s′′ and is transformed into s′. (Note that not every insertion into a major
state necessarily causes a spawning.)

It is easy to show that the size |Sk| of Sk satisfies |Sk+1| = |Sk|+ |Sk|2; thus |Sk|
is doubly exponential in k. We have |S1| = 2, |S2| = 6, |S3| = 42, and |S4| = 1806.

Let k be fixed. For states s, r ∈ Sk, we denote by asr the expected change in the
number of states r that are generated by an insertion of a new point, conditioned on
having chosen an insertion place at a state s (within C(k)). For example, for k = 2
we have (see (5.1) for the notation)

as4s1 = as4s2 = as4s3 = as4s6 =
1

3
and as4s4 = −2

3

(in two of the three possible insertion places, s4 is destroyed by the insertion, and in
the third insertion it survives, so the net expected increase in the number of s4-states

1354 CHEN ET AL.

is 0 · 1
3 + (−1) · 2

3 = − 2
3). Put wsr = |s|asr, and let W denote the resulting matrix

(wsr).
We first provide some intuitive and informal derivation of the equations that

we will rigorously derive shortly. Let M
(t)
s denote the random variable equal to the

number of k-states s in C(P (t)). Define the frequency of state s at time t to be

X
(t)
s = M

(t)
s /(t + 1). Note that |s|X(t)

s is the frequency of the insertion places that

belong to occurrences of s in C(P (t)). In particular,
∑

s∈Sk
|s|X(t)

s = 1 for each t.
We also have

(t + 2)E(X(t+1)
r) = (t + 1)E(X(t)

r) +
∑
s∈Sk

|s|asrE(X(t)
s).(5.2)

Indeed, |s|X(t)
s is the probability that the next insertion place belongs to an occurrence

of state s in C(P (t)), and asr is the corresponding conditional expected change in

the number of occurrences of state r. Since M
(t)
r = (t + 1)X

(t)
r (resp., M

(t+1)
r =

(t + 2)X
(t+1)
r) is the number of occurrences of state r at time t (resp., t + 1), the

equality follows.
Letting t → ∞, applying an informal limit process to (5.2), and denoting the

limit of E(X
(t)
s) as Xs for s ∈ Sk, we arrive at the equations

Xr =
∑
s∈Sk

|s|asrXs =
∑
s∈Sk

wsrXs.

We now proceed to justify this process rigorously.
Existence of limiting frequencies. The random insertion order defines in a natural

way a multitype branching process (see [1]). We briefly review the ingredients of the
theory of branching processes that we need to apply. A (discrete) branching process
of this kind manipulates objects (referred to as “particles”) that can have a finite
number m of types. Each type i is associated with weights (ξi,J), where J is a
multiset of types. The weight ξi,J should be thought of as the relative frequency at
which a particle of type i gives birth to the multiset J (for each type j that appears
μ times in J , the particle generates μ new particles of type j). Each particle giving
birth dies immediately after doing so. Set ξi =

∑
J ξi,J . The process may then be

formally defined as follows. Let S(t) be the population at time t. Choose x ∈ S(t)
with probability ξi(x)/

∑
y∈S(t) ξi(y), where i(u) is the type of particle u. Then x gives

birth to the multiset J with probability ξi(x),J/ξi(x) and then dies.
In our case, the different particle types correspond to different state types in Sk. A

state s of length � has total weight �. If some insertions into s produce the single state
s′ (without spawning), then ξs,{s′} = j, where j is the number of places at which this
occurs. If some j insertions produce two states s′, s′′ (by spawning), then ξs,{s′,s′′} = j.
The entries of our transition matrix W are then defined as wsr =

∑
r∈J ξs,J for r �= s,

and wss =
(∑

r∈J ξs,J
)
− |s|. See pp. 200–202 in [1] for a similar construction of

a transition matrix for general multitype processes (where the matrix is called the
infinitesimal generator of a corresponding semigroup of mean matrices).

A standard trick in the theory of branching processes is to embed discrete branch-
ing processes of the kind described above into continuous-time branching processes,
in which particles give birth in continuous time. More specifically, S(t) evolves in
continuous time. For any fixed time t, we associate, with each x ∈ S(t) and each
multiset J , an exponential random variable with rate wi(x),J . We then take the one

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1355

with the smallest actual value—suppose this is the variable wi(x′),J ′ and that it has
the value h. Now the population at time t + h is obtained from the population at
time t by killing x′ and replacing it by J ′. We now obtain a new population S(t+ h)
and a new collection of exponential random variables, and the process continues.

If we extract from the continuous branching process only those times at which
new particles are born, we obtain exactly the same discrete process that we started
with (see [1] for details). In the terminology of the theory of branching processes,
the discrete and continuous processes are the same, up to a time change. The reason
for this roundabout reasoning is that the theory of the continuous-time branching
process is better developed and provides machinery for proving the existence of limit
frequencies and for analyzing their properties. In particular, the limiting frequencies
for the new continuous process (whose existence is established next) are identical to
those of the original discrete process.

It is easy to see that the (continuous) branching process just defined is supercritical
and satisfies the Z logZ moment condition (see, e.g., [1] for background and details).
It therefore follows (see, e.g., Theorem 2, p. 206, in [1]) that the limiting frequencies
exist almost surely. We let Xs denote the expected limit relative frequency of state s
in C(P (t)) when t → ∞, where the nonlimit frequencies are as defined above.

In addition, the just cited Theorem 2, p. 206, in [1] asserts that the limiting
distribution X = (Xs)s∈Sk

is given by the eigenvector of WT corresponding to the
largest eigenvalue. In our case, this does indeed coincide with our informal derivation
and means that X satisfies the linear system

(WTX)r =
∑
s∈Sk

wsrXs = Xr, r ∈ Sk.(5.3)

For example, for k = 2, the transition weights asr between the six states listed in
(5.1) are given in the following matrix A, where Aij = asisj (the fourth row of A has
already been discussed):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −1 0 1

2
1
2 0

0 0 −1 1
2

1
2 0

1
3

1
3

1
3 − 2

3 0 1
3

1
3

1
3

1
3 0 − 2

3
1
3

1
2

1
2 0 1

4
1
4 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −2 0 1 1 0
0 0 −2 1 1 0
1 1 1 −2 0 1
1 1 1 0 −2 1
2 2 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The system of equations for the limit distribution is WTX = X. To normalize X, we
extend it by the equation

∑
i

|si|Xi = X1 + 2X2 + 2X3 + 3X4 + 3X5 + 4X6 = 1,

1356 CHEN ET AL.

which expresses the fact that the sum of lengths of the 2-states that compose C(P (t))
is equal to |C(P (t))| (see above for a similar equation for the nonlimit frequencies

X
(t)
s). The solution of the extended system is

X =

(
1

9
,

1

9
,

2

45
,

1

15
,

1

15
,

2

45

)
.

In particular, the expected limit frequency of color 1 is X2 + X4 + X5 + 2X6 = 1
3

(in accordance with Lemma 5.3), and the expected limit frequency of color 2 is
X3 + X4 + X5 + X6 = 2

9 . We have thus verified Conjecture 5.1 for k = 2.
Lemma 5.4. The limit frequency of color 2 is 2/9.
Analysis of 3-states. The same machinery can be applied to the 42 states in S3.

The solution of (5.3) for k = 3 is presented in Table 5.1.
By adding up the frequencies of all major 3-states (those that contain the color 3),

we verify Conjecture 5.1 for k = 3.
Lemma 5.5. The limit frequency of color 3 is 4/27.
Open problem. Find closed-form expressions for the state frequencies for k = 3

(using the data in Table 5.1) and for k > 3. This may lead to a simple inductive proof
of Conjecture 5.1.

Further analysis of k-states. The system (5.3) becomes considerably harder to
solve explicitly for larger values of k, so we look for simpler relationships. Put

Nk =
∑
s∈S+

k

Xs, Zk =
∑
s∈S−

k

Xs.

Note that Nk is the expected frequency of color k. Recall that Conjecture 5.1 says

that Nk = 1
3

(
2
3

)k−1
.

Lemma 5.6. For each k ≥ 2 we have 2Nk + Zk = Nk−1 + Zk−1.
Proof. Let s be a state in S+

k , and let sL (resp., sR) denote the state obtained
by taking the portion of s to the left (resp., right) of (the unique) k and appending
∗ at the right (resp., left). If we repeat this splitting process to each state of S+

k in
C(P (t)) and add to the output all states in S−

k (which we leave intact), we obtain the
set of all states of Sk−1 that appear in C(P (t)). The sum of the frequencies of these
states is clearly Nk−1 + Zk−1. On the other hand, by our construction, this sum is
2Nk + Zk; thus the lemma follows.

The following conjecture is equivalent to Conjecture 5.1.
Conjecture 5.7. Nk = Zk for each k ≥ 1.
We verify the conjecture for k = 1, where N1 = Z1 = 1

3 ; for k = 2, where
N2 = Z2 = 2

9 ; and for k = 3, where N3 = Z3 = 4
27 (see Table 5.1).

Assuming that Conjecture 5.7 holds and combining it with Lemma 5.6, we obtain
3Nk = 2Nk−1, for k ≥ 2, and N1 = 1

3 . Hence

Nk =
1

3

(
2

3

)k−1

.

The converse direction is established in a similar manner: Conjecture 5.1 and Lemma
5.6 imply

Zk = Zk−1 + Nk−1 − 2Nk = Zk−1 −
1

9

(
2

3

)k−2

,

for k ≥ 2, and Z1 = 1
3 . The solution of this recurrence is Zk = 1

3

(
2
3

)k−1
= Nk, thus

showing that the two conjectures are indeed equivalent.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1357

Table 5.1

The frequencies of 3-states. The second column is the numerator of the frequency under the
common denominator 47628000 = 25355372.

State Frequency Numerator As a fraction With factored denominator

0 0.03704 1764000 1/27 1/33

1 0.03704 1764000 1/27 1/33

12 0.02222 1058400 1/45 1/3251

21 0.02222 1058400 1/45 1/3251

2 0.01481 705600 2/135 2/3351

121 0.01481 705600 2/135 2/3351

13 0.00800 381024 1/125 1/53

31 0.00800 381024 1/125 1/53

12321 0.00388 184800 11/2835 11/345171

3 0.00948 451584 32/3375 32/3353

131 0.00652 310464 22/3375 22/3353

123 0.00366 174440 89/24300 89/223552

321 0.00366 174440 89/24300 89/223552

1231 0.00737 350840 179/24300 179/223552

1321 0.00737 350840 179/24300 179/223552

32 0.00167 79576 203/121500 203/223553

23 0.00167 79576 203/121500 203/223553

132 0.00686 326536 833/121500 833/223553

231 0.00686 326536 833/121500 833/223553

213121 0.00156 74466 197/126000 197/24325371

121312 0.00156 74466 197/126000 197/24325371

2321 0.00233 111160 397/170100 397/22355271

1232 0.00233 111160 397/170100 397/22355271

232 0.00093 44464 397/425250 397/21355371

121321 0.00191 90755 2593/1360800 2593/25355271

123121 0.00191 90755 2593/1360800 2593/25355271

12312 0.00307 146405 4183/1360800 4183/25355271

21321 0.00307 146405 4183/1360800 4183/25355271

12131 0.00344 163928 20491/5953500 20491/22355372

13121 0.00344 163928 20491/5953500 20491/22355372

1312 0.00485 231208 28901/5953500 28901/22355372

2131 0.00485 231208 28901/5953500 28901/22355372

1213 0.00588 279848 34981/5953500 34981/22355372

3121 0.00588 279848 34981/5953500 34981/22355372

213 0.00835 397528 49691/5953500 49691/22355372

312 0.00835 397528 49691/5953500 49691/22355372

2132 0.00198 94467 31489/15876000 31489/25345372

2312 0.00198 94467 31489/15876000 31489/25345372

21312 0.00240 114326 57163/23814000 57163/24355372

1213121 0.00099 47206 23603/23814000 23603/24355372

12132 0.00104 49397 49397/47628000 49397/25355372

23121 0.00104 49397 49397/47628000 49397/25355372

6. Lower bound for online CF coloring in the plane. We finally show that
online CF coloring of points in the plane, with respect to disks (of arbitrary radii), may
require n colors in the worst case and is therefore quite impractical. (Nevertheless, as
mentioned in the introduction, the problem can be solved with many fewer colors for
other kinds of ranges; see [5, 6].)

Theorem 6.1. There exists a sequence P of n points in the plane, so that when
these points are inserted according to their order in P , any online CF coloring scheme
with respect to disks has to use n different colors.

Proof. We construct a sequence P = (p1, p2, . . . , pn) with the following property:
(*) For every t = 2, 3, . . . , n, the edges of the Delaunay triangu-
lation of the set {p1, p2, . . . , pt} include all the edges {pi, pt}, i =

1358 CHEN ET AL.

q1

qi

qn

o

pn
ε

Di

Fig. 6.1. The construction that requires n colors for the planar case with disk ranges.

1, 2, . . . , t− 1.
We prove the following stronger statement by induction on n:

For every n, every choice of distinct points q1, q2, . . . , qn on the unit
circle S

1, and every ε > 0, there exists a sequence (p1, p2, . . . , pn)
with the property (*) such that ‖pi−qi‖ ≤ ε and pi lies on the radius
oqi for every i.

For the induction step, given q1, . . . , qn and ε < 1
2 , let pn be obtained by moving qn

by ε towards the center o of S
1. We note that the Delaunay graph of {q1, q2, . . . , qn−1,

pn} contains all edges {qi, pn}, i = 1, 2, . . . , n. Indeed, there is a circle γi tangent to
S

1 from the inside at qi and passing through pn, and the closed disk Di bounded by
γi contains qi, pn, and no other qj . See Figure 6.1. Let δi > 0 denote the minimum
distance from any qj , j �= i, to Di.

We apply the induction hypothesis with q1, . . . , qn−1 and with ε∗ < min{ε, δ1, . . . ,
δn−1}, obtaining a sequence (p1, . . . , pn−1). We can now verify that, by construction,
for every i = 1, 2, . . . , n− 1, the disk Di contains pi and pn but no other pj .

7. Conclusion. The paper still leaves many open problems, some of which have
been listed earlier. Here are several concluding open problems.

(a) Theorem 6.1 and the initial encouraging results of Chen, Kaplan, and Sharir [6]
and of Bar-Noy, Cheilaris, and Smorodinsky [3], as reviewed in the introduction, raise
many interesting open problems, such as the following: (i) Obtain deterministic algo-
rithms with good performance for the cases studied in [6], viz. where the ranges are
half-planes, congruent disks, and nearly equal axis-parallel rectangles. (ii) Improve
further the performance of the algorithms of [6]. (iii) Find solutions with good per-
formance for other ranges, such as arbitrary axis-parallel rectangles. (iv) Extend the
results to d ≥ 3 dimensions.

(b) It is likely that the bound in Theorem 6.1 improves significantly if the points
are chosen from some random distribution, extending our conjectured bounds of sec-
tion 5.2 to two (and higher?) dimensions.

(c) Can one obtain better upper bounds for online k-CF coloring (k ≥ 2) of points
in the plane with respect to disks? Namely, online color the points so that, at any
given time t and for any disk D, there is at least one color that is assigned to at least
one but at most k points of P (t) ∩ D. For k = 1, this is the CF coloring problem,
where we have just shown a lower bound of n, but perhaps this can be improved when
k ≥ 2. See [14] for results concerning k-CF coloring in the static case.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1359

(d) Finally, can one obtain an efficient randomized algorithm, for the online CF
coloring problem on the line, that works against an adaptive adversary (that is, an
adversary that observes the actions of the randomized online algorithm and decides
where to insert the next point based on these actions)?

REFERENCES

[1] K. B. Athreya and P. E. Ney, Branching Processes, Grundlehren Math. Wiss. 196, Springer-
Verlag, New York, 1972.

[2] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky, Conflict-free coloring for intervals: From
offline to online, in Proceedings of the 18th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2006), 2006, pp. 128–137.

[3] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky, Online Conflict-Free Colorings for Hyper-
graphs, manuscript, 2006.

[4] A. Borodin and R. El Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, New York, 1998.

[5] K. Chen, How to play a coloring game against a color-blind adversary, in Proceedings of the
22nd Annual ACM Symposium on Computational Geometry, 2006, pp. 44–51.

[6] K. Chen, H. Kaplan, and M. Sharir, Online CF Coloring for Halfplanes, Congruent Disks,
and Axis-Parallel Rectangles, manuscript, 2006.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[8] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation
and other graphs, in STACS 94, Lecture Notes in Comput. Sci. 775, P. Enjalbert, E. W.
Mayr, and K. W. Wagner, eds., Springer-Verlag, Berlin, 1994, pp. 747–758.

[9] K. Elbassioni and N. Mustafa, Conflict-free colorings for rectangle ranges, in Proceedings of
the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS
2006), pp. 254–263.

[10] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geo-
metric regions with applications to frequency assignment in cellular networks, SIAM J.
Comput., 33 (2003), pp. 94–136.

[11] A. Fiat, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir, S. Smorodinsky, U.

Wagner, and E. Welzl, Online conflict-free coloring for intervals, in Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005, pp.
545–554.

[12] S. Har-Peled and S. Smorodinsky, On conflict-free coloring of points and simple regions in
the plane, Discrete Comput. Geom., 34 (2005), pp. 47–70.

[13] J. Pach and G. Tóth, Conflict-free colorings, in Discrete and Computational Geometry—The
Goodman–Pollack Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., Springer-
Verlag, Heidelberg, 2003, pp. 665–671.

[14] S. Smorodinsky, Combinatorial Problems in Computational Geometry, Ph.D. dissertation,
School of Computer Science, Tel-Aviv University, Tel-Aviv, 2003.

[15] S. Smorodinsky, On the chromatic number of some geometric hypergraphs, in Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, 2006,
pp. 316–323.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1360–1375

IMPROVED COMBINATORIAL GROUP TESTING ALGORITHMS
FOR REAL-WORLD PROBLEM SIZES∗

DAVID EPPSTEIN† , MICHAEL T. GOODRICH† , AND DANIEL S. HIRSCHBERG†

Abstract. We study practically efficient methods for performing combinatorial group testing.
We present efficient nonadaptive and two-stage combinatorial group testing algorithms, which iden-
tify the at most d items out of a given set of n items that are defective, using fewer tests for all
practical set sizes. For example, our two-stage algorithm matches the information-theoretic lower
bound for the number of tests in a combinatorial group testing regimen.

Key words. combinatorial group testing, Chinese remaindering, Bloom filters

AMS subject classification. 68Q25

DOI. 10.1137/050631847

1. Introduction. The problem of combinatorial group testing dates back to
World War II, for the problem of determining which in a group of n blood samples
contain the syphilis antigen (hence, are contaminated). Formally, in combinatorial
group testing, we are given a set of n items, at most d of which are defective (or
contaminated), and we are interested in identifying exactly which of the n items are
defective. In addition, items can be “sampled” and these samples can be “mixed”
together, and so tests for contamination can be applied to arbitrary subsets of these
items. The result of a test may be positive, indicating that at least one of the items
of that subset is defective, or negative, indicating that all items in that subset are
good. Example applications that fit this framework include the following:

• Screening blood samples for diseases. In this application, items are blood
samples and tests are disease detections done on mixtures taken from selected
samples.

• Screening vaccines for contamination. In this case, items are vaccines and
tests are cultures done on mixtures of samples taken from selected vaccines.

• Clone libraries for a DNA sequence. Here, the items are DNA subsequences
(called clones) and tests are done on pools of clones to determine which clones
contain a particular DNA sequence (called a probe) [10].

• Data forensics. In this case, items are documents and the tests are appli-
cations of one-way hash functions with known expected values applied to
selected collections of documents. The differences from the expected values
are then used to identify which, if any, of the documents have been altered.

The primary goal of a testing algorithm is to identify all defective items using as
few tests as possible. That is, we wish to minimize the following function:

• t(n, d): the number of tests needed to identify up to d defectives among n
items.

This minimization may be subject to possibly additional constraints, as well. For
example, we may wish to identify all the defective items in a single (nonadaptive)

∗Received by the editors May 18, 2005; accepted for publication (in revised form) June 7, 2006;
published electronically January 12, 2007. This work was supported in part by NSF grants CCR-
0312760, CCR-0311720, CCR-0225642, and CCR-0098068. The results of this paper were announced
in preliminary form in [9].

http://www.siam.org/journals/sicomp/36-5/63184.html
†Department of Computer Science, University of California, Irvine, Irvine, CA 92697-3425

(eppstein@ics.uci.edu, goodrich@ics.uci.edu, dan@ics.uci.edu).
1360

GROUP TESTING ALGORITHMS 1361

round of testing, we may wish to do this in two (partially-adaptive) rounds, or we may
wish to perform the tests sequentially one after the other in a fully adaptive fashion.

In this paper we are interested in efficient solutions to combinatorial group testing
problems for realistic problem sizes, which could be applied to solve the motivating
examples given above. That is, we wish for solutions that minimize t(n, d) for practical
values of n and d as well as asymptotically. Because of the inherent delays that are
built into fully adaptive, sequential solutions, we are interested only in solutions that
can be completed in one or two rounds. Moreover, we desire solutions that are efficient
not only in terms of the total number of tests performed but also for the following
measures:

• A(n, t): the analysis time needed to determine which items are defective.
• S(n, d): the sampling rate—the maximum number of tests any item may be

included in.
An analysis algorithm is said to be efficient if A(n, t) is O(tn), where n is the number
of items and t is the number of tests conducted. It is time-optimal if A(n, t) is O(t).
Likewise, we desire efficient sampling rates for our algorithms; that is, we desire that
S(n, d) be O(t(n, d)/d). Moreover, we are interested in this paper in solutions that
improve previous results, either asymptotically or by constant factors, for realistic
problem sizes. We do not define such “realistic” problem sizes formally, but we may
wish to consider as unrealistic a problem that is larger than the total memory capacity
(in bytes) of all CDs and DVDs in the world (< 1025), the number of atomic particles
in the earth (< 1050), or the number of atomic particles in the universe (< 1080).

Viewing testing regimens as matrices. A single round in a combinatorial group
testing algorithm consists of a test regimen and an analysis algorithm (which, in a
nonadaptive (one-stage) algorithm, must identify all the defectives). The test regimen
can be modeled by a t×n Boolean matrix, M . Each of the n columns of M corresponds
to one of the n items. Each of the t rows of M represents a test of items whose
corresponding column has a 1-entry in that row. All tests are conducted before the
results of any test are made available. The analysis algorithm uses the results of the
t tests to determine which of the n items are defective.

As described by Du and Hwang [6, p. 133], the matrix M is d-disjunct if the
Boolean sum of any d columns does not contain any other column. In the analysis
of a d-disjunct testing algorithm, items included in a test with negative outcome can
be identified as pure. Using a d-disjunct matrix enables the conclusion that if there
are d or fewer items that cannot be identified as pure in this manner, then all those
items must be defective and there are no other defective items. If more than d items
remain, then at least d + 1 of them are defective. Thus, using a d-disjunct matrix
enables an efficient analysis algorithm, with A(n, t) being O(tn).

M is d-separable (d-separable) if the Boolean sums of d (up to d) columns are all
distinct. The d-separable property implies that each selection of up to d defective
items induces a different set of tests with positive outcomes. Thus, it is possible to
identify which are the up to d defective items by checking, for each possible selection,
whether its induced positive test set is exactly the obtained positive outcomes. How-
ever, it might not be possible to detect that there are more than d defective items.
This analysis algorithm takes time Θ(nd) or requires a large table mapping t-subsets
to d-subsets.

Generally, d-separable matrices can be constructed with fewer rows than can
d-disjunct matrices having the same number of columns. Although the analysis al-
gorithm described above for d-separable matrices is not efficient, some d-separable
matrices that are not d-disjunct have an efficient analysis algorithm.

1362 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

Previous related work. Combinatorial group testing is a rich research area with
many applications to many other areas, including communications, cryptography, and
networking [3]. For an excellent discussion of this topic, the reader is referred to the
book by Du and Hwang [6]. For general d, Du and Hwang [6, p. 149] describe a
slight modification of the analysis of a construction due to Hwang and Sós [11] that

results in a t × n d-disjunct matrix, with n ≥ (2/3)3t/16d
2

, and so t ≤ 16d2(1 +
log3 2 + (log3 2) lg n). For two-stage testing, De Bonis, Gasieniec, and Vaccaro [5]
provide a scheme that achieves a number of tests within a factor of 7.54(1 + o(1)) of
the information-theoretic lower bound of d log(n/d). For d = 2, Kautz and Singleton
[12] construct a 2-disjunct matrix with t = 3q+1 and n = 32q

, for any positive integer
q. Macula and Reuter [13] describe a 2-separable matrix and a time-optimal analysis
algorithm with t = (q2 + 3q)/2 and n = 2q − 1, for any positive integer q. For d = 3,
Du and Hwang [6, p. 159] describe the construction of a 3-separable matrix (but do
not describe the analysis algorithm) with t = 4

(
3q
2

)
= 18q2 − 6q and n = 2q − 1, for

any positive integer q.
Our results. In this paper, we consider problems of identifying defectives using

nonadaptive or two-stage protocols with efficient analysis algorithms. We present sev-
eral such algorithms that require fewer tests than do previous algorithms for practical-
sized sets, although we omit the proofs of some supporting lemmas in this paper, due
to space constraints. Our general case algorithm, which is based on a method we call
the Chinese remainder sieve, improves the construction of Hwang and Sós [11] for all
values of d for real-world problem instances as well as for d ≥ n1/5 and n ≥ e10. Our
two-stage algorithm achieves a bound for t(n, d) that is within a factor of 4(1+o(1)) of
the information-theoretic lower bound. This bound improves the bound achieved by
De Bonis, Gasieniec, and Vaccaro [5] by almost a factor of 2. Likewise, our algorithm
for d = 2 improves on the number of tests required for all real-world problem sizes
and is time-optimal (that is, with A(n, t) ∈ O(t)). Our algorithm for d = 3 is the first
known time-optimal testing algorithm for that d-value. Moreover, our algorithms all
have efficient sampling rates.

2. The Chinese remainder sieve. In this section, we present a solution to the
problem for determining which items are defective when we know that there are at
most d < n defectives. Using a simple number-theoretic method, which we call the
Chinese remainder sieve method, we describe the construction of a d-disjunct matrix
with t = O(d2 log2 n/(log d+log logn)). As we will show, our bound is superior to that
of the method of Hwang and Sós [11] for all realistic instances of the combinatorial
group testing problem.

Suppose we are given n items, numbered 0, 1, . . . , n − 1, such that at most d <
n are defective. Let {pe11 , pe22 , . . . , pekk } be a sequence of powers of distinct primes,
multiplying to at least nd. That is,

∏
j p

ej
j ≥ nd. We construct a t× n matrix M as

the vertical concatenation of k submatrices, M1,M2, . . . ,Mk. Each submatrix Mj is

a tj × n testing matrix, where tj = p
ej
j ; hence, t =

∑k
j=1 p

ej
j . We form each row of

Mj by associating it with a nonnegative value x less than p
ej
j . Specifically, for each

x, 0 ≤ x < p
ej
j , we form a test in Mj consisting of the item indices (in the range

0, 1, . . . , n− 1) that equal x (mod p
ej
j). For example, if x = 2 and p

ej
j = 32, then the

row for x in Mj has a 1 only in columns 2, 11, 20, and so on.
The following lemma shows that the test matrix M is d-disjunct.
Lemma 1. If there are at most d defective items, and all tests in M are positive

for i, then i is defective.

GROUP TESTING ALGORITHMS 1363

Proof. If all k tests for i (one for each prime power p
ej
j) are positive, then there

exists at least one defective item. With each positive test that includes i (that is, it
has a 1 in column i), let p

ej
j be the modulus used for this test, and associate with j a

defective index ij that was included in that test (choosing ij arbitrarily in case test j
includes multiple defective indices). For any defective index i′, let

Pi′ =
∏

j s.t. ij=i′

p
ej
j .

That is, Pi′ is the product of all the prime powers such that i′ caused a positive test
that included i for that prime power. Since there are k tests that are positive for i, each
p
ej
j appears in exactly one of these products, Pi′ . So

∏
Pi′ =

∏
p
ej
j ≥ nd. Moreover,

there are at most d products, Pi′ . Therefore, maxi′ Pi′ ≥ (nd)1/d = n; hence, there
exists at least one defective index i′ for which Pi′ ≥ n. By construction, i′ is congruent
to the same values to which i is congruent, modulo each of the prime powers in Pi′ .
By the Chinese remainder theorem, the solution to these common congruences is
unique modulo the least common multiple of these prime powers, which is Pi′ itself.
Therefore, i is equal to i′ modulo a number that is at least n, and so i = i′; hence, i
is defective.

The important role of the Chinese remainder theorem in the proof of the above
lemma gives rise to our name for this construction—the Chinese remainder sieve.

Analysis. As mentioned above, the total number of tests, t(n, d), constructed in

the Chinese remainder sieve is
∑k

j=1 p
ej
j , where

∏
p
ej
j ≥ nd. If we let each ej = 1,

we can simplify our analysis to note that t(n, d) =
∑k

j=1 pj , where pj denotes the

jth prime number and k is chosen so that
∏k

j=1 pj ≥ nd. To produce a closed-form
upper bound for t(n, d), we make use of the prime counting function, π(x), which is
the number of primes less than or equal to x. We also use the well-known Chebyshev

function, θ(x) =
∑π(x)

j=1 ln pj . In addition, we make use of the following (less well-

known) prime summation function, σ(x) =
∑π(x)

j=1 pj . Using these functions, we bound
the number of tests in the Chinese remainder sieve method as t(n, d) ≤ σ(x), where x
is chosen so that θ(x) ≥ d lnn, since ln

∏
pj≤x pj = θ(x). For the Chebyshev function,

it can be shown [1] that θ(x) ≥ x/2 for x > 4 and that θ(x) ∼ x for large x. So if
we let x = �2d lnn�, then θ(x) ≥ d lnn. Thus, we can bound the number of tests in
our method as t(n, d) ≤ σ(�2d lnn�). To further bound t(n, d), we use the following
lemma, which may be of mild independent interest.

Lemma 2. For integer x ≥ 2,

σ(x) <
x2

2 lnx

(
1 +

1.2762

lnx

)
.

Proof. Let n = π(x). Dusart [7, 8] shows that, for n ≥ 799,

1

n

n∑
j=1

pj <
1

2
pn;

that is, the average of the first n primes is half the value of the nth prime. Thus,

σ(x) =

π(x)∑
j=1

pj <
π(x)

2
pn ≤ π(x)

2
x

1364 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

for integer x ≥ 6131 (the 799th prime). Dusart [7, 8] also shows that

π(x) <
x

lnx

(
1 +

1.2762

lnx

)

for x ≥ 2. Therefore, for integer x ≥ 6131,

σ(x) <
x2

lnx

(
1 +

1.2762

lnx

)
.

In addition, we have verified by an exhaustive computer search that this inequality
also holds for all integers 2 ≤ x < 6131. This completes the proof.

Thus, we can characterize the Chinese remainder sieve method as follows.
Theorem 1. Given a set of n items, at most d of which are defective, the Chinese

remainder sieve method can identify the defective items using a number of tests

t(n, d) <
�2d lnn�2

2 ln�2d lnn�

(
1 +

1.2762

ln�2d lnn�

)
.

The sample rate can be bounded by

S(n, d) <
�2d lnn�

2 ln�2d lnn�

(
1 +

1.2762

ln�2d lnn�

)
,

and the analysis time, A(n, t), is O(nt(n, d)).
By calculating the exact numbers of tests required by the Chinese remainder sieve

method for particular parameter values and comparing these numbers to the claimed
bounds for Hwang and Sós [11], we see that our algorithm is an improvement when

• d = 2 and n ≤ 1057 • d = 3 and n ≤ 1066

• d = 4 and n ≤ 1070 • d = 5 and n ≤ 1074

• d = 6 and n ≤ 1077 • d ≥ 7 and n ≤ 1080.
Of course, these are the most likely cases for any expected actual instance of the

combinatorial group testing problem. In addition, our analysis shows that our method
is superior to the claimed bounds of Hwang and Sós [11] for d ≥ n1/5 and n ≥ e10.
Less precisely, we can say that t(n, d) is O(d2 log2 n/(log d+log logn)), that S(n, d) is
O(d log n/(log d+ log logn), and that A(n, t) is O(tn), which is O(d2n log2 n/(log d+
log log n)).

Heuristic improvements. Although it will not reduce the asymptotic complexity
of t, we can reduce the number of tests by starting with a sequence of primes up to
some upper bound x and efficiently constructing a set of good prime powers from this
sequence. We can allow some powers, ej , to be zero (meaning that we do not use
this prime), while giving others values greater than one. The objective is to choose
carefully the values ej in order to minimize the number of tests while maintaining
the property that

∏
p
ej
j ≥ nd. This typically yields a savings of between five and ten

percent.
An example implementation in Python 2.3 is shown in the appendix in Fig-

ures A.1 and A.2. This implementation starts with the ej = 1 solution to determine
an initial suitable sequence of primes, pj , to use. It then does a backtracking search
to find the optimal set of ej for these pj , subject to the constraint that each p

ej
j is

not greater than the largest prime in the original solution (with each ej = 1). Since
the number of ej powers is sublogarithmic, and most of them must be 0 or 1, this
backtracking search takes time sublinear in n for fixed d.

GROUP TESTING ALGORITHMS 1365

Table 2.1

Comparing t(n) for d = 5 and d = 10.

(d = 5) 100 104 106 108 1010 1020 1030

Our bktrk 131 378 738 1176 1709 5737 11782
Our genl 160 440 791 1264 1851 6081 12339
HS 2329 4006 5683 7359 9036 17420 25803

(d = 10) 100 104 106 108 1010 1020 1030

Our bktrk 378 1176 2350 3896 5737 19681 41020
Our genl 440 1264 2584 4227 6081 20546 42468
HS 9316 16023 22730 29437 36144 69678 103213

Comparison of the number of tests required. Table 2.1 lists the number of tests
required by the Hwang–Sós (HS) algorithm, our general algorithm (using the initial
set of primes pj having exponents ej = 1), and our improved backtrack algorithm,
for some values of n. As can be seen, for moderate values of n our algorithms require
a small fraction of the number of tests required by the HS algorithm. However,
asymptotically for fixed d, the HS algorithm requires fewer tests.

3. A two-stage rake-and-winnow protocol. In this section, we present a
randomized construction for two-stage group testing. This two-stage method uses a
number of tests within a constant factor of the information-theoretic lower bound. It
improves previous upper bounds [5] by almost a factor of 2. In addition, it has an
efficient sampling rate, with S(n, d) being only O(log(n/d)). All the constant factors
“hiding” behind the big-ohs in these bounds are small.

Preliminaries. One of the important tools we use in our analysis is the follow-
ing lemma for bounding the tail of a certain distribution. It is a form of Chernoff
bound [14].

Lemma 3. Let X be the sum of n independent indicator random variables, such
that X =

∑n
i=1 Xi, where each Xi = 1 with probability pi, for i = 1, 2, . . . , n. If

E[X] =
∑n

i=1 pi ≤ μ̂ < 1, then, for any integer k > 0,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

.

Proof. Let μ = E[X] be the actual expected value of X. Then, by a well-known
Chernoff bound [14], for any δ > 0,

Pr[X ≥ (1 + δ)μ] ≤
[

eδ

(1 + δ)1+δ

]μ
.

(The bound in [14] is for strict inequality, but the same bound holds for nonstrict
inequality.) We are interested in the case when (1+δ)μ = k, that is, when 1+δ = k/μ.
Observing that δ < 1 + δ, we can therefore deduce that

Pr(X ≥ k) ≤
[

ek/μ

(k/μ)k/μ

]μ
=

ek

(k/μ)k
=

(eμ
k

)k

.

Finally, noting that μ ≤ μ̂,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

.

In addition to this lemma, we also use the following.

1366 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

Lemma 4. If d < n, then
(
n

d

)
<

(en
d

)d

.

Proof.
(
n

d

)
=

n!

(n− d)! d!

=
n(n− 1)(n− 2) · · · (n− d + 1)

d!

<
nd

d!
.

By Stirling’s approximation [4],

d! =
√

2πn

(
d

e

)d (
1 + θ

(
1

n

))
.

Thus, d! > (d/e)d. Therefore,

nd

d!
<

nd

(d/e)d
=

(en
d

)d

.

Identifying defective items in two stages. As with our Chinese remainder sieve
method, our randomized combinatorial group testing construction is based on the use
of a Boolean matrix M where columns correspond to items and rows correspond to
tests, so that if M [i, j] = 1, then item j is included in test j. Let C denote the set of
columns of M . Given a set D of d columns in M , and a specific column j ∈ C−D, we
say that j is distinguishable from D if there is a row i of M such that M [i, j] = 1 but
i contains a 0 in each of the columns in D. Such a property is useful in the context of
group testing, for the set D could correspond to the defective items, and if a column
j is distinguishable from the set D, then there would be a test in our regimen that
would determine that the item corresponding to column j is not defective.

An alternate and equivalent definition [6, p. 165] for a matrix M to be d-disjunct
is if, for any d-sized subset D of C, each column in C − D is distinguishable from
D. Such a matrix determines a powerful group testing regimen, but, unfortunately,
building such a matrix requires M to have Ω(d2 log n/ log d) rows, by a result of
Ruszinkó [15] (see also [6, p. 139]). The best known constructions have Θ(d2 log(n/d))
rows [6], which is a factor of d greater than information-theoretic lower bound, which
is Ω(d log(n/d)).

Instead of trying to use a matrix M to determine all the defectives immediately,
we will settle for a weaker property for M , which nevertheless is still powerful enough
to define a good group testing regimen. We say that M is (d, k)-resolvable if, for
any d-sized subset D of C, there are fewer than k columns in C − D that are not
distinguishable from D. Such a matrix defines a powerful group testing regimen, for
defining tests according to the rows of a d-resolvable matrix allows us to restrict the
set of defective items to a group D′ of smaller than d + k size. Given this set, we
can then perform an additional round of individual tests on all the items in D′. This
two-stage approach is sometimes called the trivial two-stage algorithm; we refer to
this two-stage algorithm as the rake-and-winnow approach.

GROUP TESTING ALGORITHMS 1367

Thus, a (d, k)-resolvable matrix determines a powerful group testing regimen. Of
course, a matrix is d-disjunct iff it is (d, 1)-resolvable. Unfortunately, as mentioned
above, constructing a (d, 1)-resolvable matrix requires that the number of rows (which
correspond to tests) be significantly greater than the information-theoretical lower
bound. Nevertheless, if we are willing to use a (d, k)-resolvable matrix, for a reasonably
small value of k, we can come within a constant factor of the information-theoretical
lower bound.

Our construction of a (d, k)-resolvable matrix is based on a simple, randomized
sample-injection strategy, which itself is based on the approach popularized by the
Bloom filter [2]. This novel approach also allows us to provide a strong worst-case
bound for the sample rate, S(n, d), of our method. Given a parameter t, which is
a multiple of d that will be set in the analysis, we construct a 2t × n matrix M
in a columnwise fashion. For each column j of M , we choose t/d rows at random
and set the values of these entries to 1. The other entries in column j are set to 0.
In other words, we “inject” the sample j into each of the t/d random tests we pick
for the corresponding column (since rows of M correspond to tests and the columns
correspond to samples). Note, then, that for any set of d defective samples, there
are at most t tests that will have positive outcomes and, therefore, at least t tests
that will have negative outcomes. The columns that correspond to samples that are
distinguishable from the defectives ones can be immediately identified. The remaining
issue, then, is to determine the value of t needed so that, for a given value of k, M is
a (d, k)-resolvable matrix with high probability.

Let D be a fixed set of d defectives samples. For each (column) item i in C−D, let
Xi denote the indicator random variable that is 1 if i is falsely identified as a positive
sample by M (that is, i is not included in the set of (negative) items distinguished
from those in D), and is 0 otherwise. Observe that the Xi’s are independent, since
Xi depends only on whether the choice of rows we picked for column i collide with
the at most t rows of M that we picked for the columns corresponding to items in
D. Furthermore, this observation implies that any Xi is 1 (a false positive) with
probability at most 2−t/d. Therefore, the expected value of X, E[X], is at most
μ̂ = n/2t/d. This fact allows us to apply Lemma 3 to bound the probability that
M does not satisfy the (d, k)-resolvable property for this particular choice, D, of d
defective samples. In particular,

Pr(X ≥ k) ≤
(
eμ̂

k

)k

=

(
en
k

)k
2(t/d)k

.

Note that this bound immediately implies that if k = 1 and t ≥ d(e+1) logn, then M
will be completely (d, 1)-resolvable with high probability (1− 1/n) for any particular
set of defective items, D.

We are interested, however, in a bound implying that for any subset D of d
defectives (of which there are

(
n
d

)
< (en/d)d, by Lemma 4), our matrix M is (d, k)-

resolvable with high probability, that is, probability at least 1− 1/n. That is, we are
interested in the value of t such that the above probability bound is (en/d)−d/n. From
the above probability bound, therefore, we are interested in a value of t such that

2(t/d)k

(
en
k

)k ≥
(en
d

)d

n.

That is, we would like

2(t/d)k ≥
(en
d

)d (en
k

)k

n.

1368 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

This bound will hold whenever

t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n.

Thus, we have the following.
Theorem 2. If t ≥ (d2/k) log(en/d) + d log(en/k) + (d/k) log n, then a 2t × n

random matrix M constructed by sample-injection is (d, k)-resolvable with high prob-
ability, that is, with probability at least 1 − 1/n.

Taking k = 1, therefore, we have an alternative method for constructing a d-
disjunct matrix M with high probability.

Corollary 1. If t ≥ d2 log(en/d) + d log en + d log n, then a 2t × n random
matrix M constructed by sample-injection is d-disjunct with high probability.

That is, we can construct a one-round group test based on sample-injection that
uses O(d2 log(n/d)) tests.

As mentioned above, a productive way of using the sample-injection construction
is to build a (d, k)-resolvable matrix M for a reasonably small value of k. We can then
use this matrix as the first round in a two-round rake-and-winnow testing strategy,
where the second round simply involves our individual testing of the at most d + k
samples left as potential positive samples from the first round.

Corollary 2. If t ≥ 2d log(en/d) + logn, then the 2t × n random matrix M
constructed by sample-injection is (d, d)-resolvable with high probability.

This corollary implies that we can construct a rake-and-winnow algorithm where
the first stage involves performing O(d log(n/d)) tests, which is within a (small) con-
stant factor of the information theoretic lower bound, and the second round involves
individually testing at most 2d samples.

4. Improved bounds for small d values. In this section, we consider efficient
algorithms for the special cases when d = 2 and d = 3. We present time-optimal
algorithms for these cases, that is, with A(n, t) being O(t). Our algorithm for d = 3
is the first known such algorithm.

Finding up to two defectives. Consider the problem of determining which items
are defective when we know that there are at most two defectives. We describe a
2-separable matrix and a time-optimal analysis algorithm with t = (q2 + 5q)/2 and
n = 3q, for any positive integer q.

Let the number of items be n = 3q, and let the item indices be expressed in radix
3. Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1, 2}.

Hereafter, X ranges over the item index numbers {0, . . . , n − 1}, p ranges over
the radix positions {0, . . . , q − 1}, and v ranges over the digit values {0, 1, 2}.

For our construction, matrix M is partitioned into submatrices B and C. Matrix
B is the submatrix of M consisting of its first 3q rows. Row 〈p, v〉 of B is associated
with radix position p and value v. B[〈p, v〉, X] = 1 iff Xp = v.

Matrix C is the submatrix of M consisting of its last
(
q
2

)
rows. Row 〈p, p′〉 of C

is associated with distinct radix positions p and p′, where p < p′. C[〈p, p′〉, X] = 1 iff
Xp = Xp′ .

Let testB(p, v) be the result (1 for positive, 0 for negative) of the test of items
having a 1-entry in row 〈p, v〉 in B. Similarly, let testC(p, p′) be the result of testing
row 〈p, p′〉 in C. Let test1(p) be the number of different values held by defectives in
radix position p. test1(p) can be computed by testB(p, 0) + testB(p, 1) + testB(p, 2).

The analysis algorithm is shown in the appendix in Figure A.3.
It is easy to determine how many defective items are present. There are no

defective items when test1(0) = 0. There is only one defective item when test1(p) = 1

GROUP TESTING ALGORITHMS 1369

for all p, since if there were two defective items, then there must be at least one
position p in which their indices differ and test1(p) would then have value 2. The one
defective item has index D = Dq−1 · · ·D0, where digit Dp is the value v for which
testB(p, v) = 1.

Otherwise, there must be two defective items, D = Dq−1 · · ·D0 and E = Eq−1 · · ·E0.
We iteratively determine the values of the digits of indices D and E.

For radix positions in which defective items exist for only one value of that digit,
both D and E must have that value for that digit. For each other radix position, two
distinct values for that digit occur in the defective items.

The first radix position in which D and E differ is recorded in the variable p∗ and
the value of that digit in D (respectively, E) is recorded in v∗1 (respectively, v∗2).

For any subsequent position p in which D and E differ, the digit values of the
defectives in that position are va and vb, which are two distinct values from {0, 1, 2},
as are v∗1 and v∗2 , and therefore there must be at least one value in common between
{va, vb} and {v∗1 , v∗2}.

Let a common value be va and, without loss of generality, let va = v∗1 .
Lemma 5. The digit assignment for position p is Dp = va and Ep = vb iff

testC(p∗, p) = 1.
Proof. We consider the two possibilities of which defective item has va as its digit

in position p.
Case 1. Dp = va.

We see that Dp = va = v∗1 . Accordingly, a defective (D) would be among the items
tested in testC(p∗, p). Therefore, testC(p∗, p) = 1.

Case 2. Ep = va.
We see that Dp �= v∗1 , because Dp �= Ep = va = v∗1 , and also that Ep �= v∗2 , because
Ep = va = v∗1 �= v∗2 . Accordingly, neither of the defective items would be among the
items tested in testC(p∗, p). Therefore, testC(p∗, p) = 0.

We have determined the values of defectives D and E for all positions—those where
they are the same and those where they differ. For each position, only a constant
amount of work is required to determine the assignment of digit values. Therefore,
we have proven the following theorem.

Theorem 3. A 2-separable matrix that has a time-optimal analysis algorithm
can be constructed with t = (q2 + 5q)/2 and n = 3q, for any positive integer q.

Comparison of the number of tests required for the d = 2 method. A 2-separable
or a 2-disjunct t× n matrix enables determination of up to two defective items from
among n or fewer items using t tests. An algorithm is more competitive at or just
below one of its breakpoints, values of n for which increasing n by one significantly
increases t. The Macula–Reuter (MR) algorithm has breakpoints at one under all
powers of 2, our (d=2) algorithm at all powers of 3, and the Kautz–Singleton (KS)
algorithm at only certain powers of 3. Our general-d algorithms do not have significant
breakpoints.

Table 4.1 lists the number of tests required by these algorithms for some small
values of n. For all n ≤ 363, our d = 2 algorithm uses the smallest number of tests. For
higher values of n ≤ 3130, the KS and our d = 2 and general (Chinese remainder sieve)
algorithms alternate being dominant. The alternations are illustrated in Table 4.2.
For all n ≥ 3131, the HS algorithm uses the fewest tests.

Finding up to three defectives. Consider the problem of determining which items
are defective when we know that there are at most three defectives. We describe
a 3-separable matrix and a time-optimal analysis algorithm with t = 2q2 − 2q and
n = 2q, for any positive integer q.

1370 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

Table 4.1

t(n) for small n (d = 2).

(d = 2) 15 100 103 104 105 106 108 1010 1020 1030

Our d = 2 12 25 42 63 88 117 187 273 987 2142
Our bktrk 19 36 60 89 131 168 268 378 1176 2350
Our genl 28 41 77 100 160 197 281 440 1264 2584
MR 14 35 65 119 170 230 405 629 2345 5150
KS 27 81 81 243 243 243 729 729 2187 2187
HS 373 507 641 775 909 1177 1446 2787 4129

Table 4.2

t(n) for large n (d = 2).

(d = 2) 363 364 3104 3112 3128 3130 3256

Our d = 2 2142 2208 5668 6552 8512 8775 33408
Our bktrk 2366 2424 5687 6454 8184 8394 28311
Our genl 2584 2584 6081 6870 8582 8893 29296
KS 2187 2187 6561 6561 6561 19683 19683
HS 4136 4200 6760 7272 8296 8424 16488

Let the number of items be n = 2q, and let the item indices be expressed in radix
2. Index X = Xq−1 · · ·X0, where each digit Xp ∈ {0, 1}.

Hereafter, X ranges over the item index numbers {0, . . . , n − 1}, p ranges over
the radix positions {0, . . . , q − 1}, and v ranges over the digit values {0, 1}.

Matrix M has 2q2 − 2q rows. Row 〈p, p′, v, v′〉 of M is associated with distinct
radix positions p and p′, where p < p′, and with values v and v′, each of which is in
{0,1}. M [〈p, p′, v, v′〉, X] = 1 iff Xp = v and Xp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for positive, 0 for negative) of testing items
having a 1-entry in row 〈p, p′, v, v′〉 in M . For p′ > p, define testM (p′, p, v′, v) =
testM (p, p′, v, v′).

The following three functions can be computed in terms of testM .
• testB(p, v) has value 1 (0) if there are (not) any defectives having value v in

radix position p, i.e., testB(0, v) = 0 if testM (0, 1, v, 0)+ testM (0, 1, v, 1) = 0,
and 1 otherwise. For p > 0, testB(p, v) = 0 if

testM (p, 0, v, 0) + testM (p, 0, v, 1) = 0,

and 1 otherwise.
• test1(p) is the number of different binary values held by defectives in radix

position p. Thus, test1(p) = testB(p, 0) + testB(p, 1).
• test2(p, p′) is the number of different ordered pairs of binary values held by

defectives in the designated ordered pair of radix positions. Therefore,

test2(p, p′) = testM (p, p′, 0, 0)+ testM (p, p′, 0, 1)+ testM (p, p′, 1, 0)+ testM (p, p′, 1, 1).

The analysis algorithm is shown in the appendix in Figure A.4.
We determine the number of defective items and the value of their digits. There

are no defective items when test1(0) = 0. Moreover, at each radix position p in which
test1(p) = 1, all defective items have the same value of that digit. If all defectives
agree on all digit values, then there is only one defective. Otherwise there are at least
two defectives, and we need to consider how to assign digit values for only the set of

GROUP TESTING ALGORITHMS 1371

positions P in which there is at least one defective having each of the two possible
binary digit values.

Lemma 6. There are only two defectives iff, for p, p′ ∈ P, test2(p, p′) = 2.
Proof. A defective item can contribute at most one new combination of values in

positions p, p′, and so test2(p, p′) ≤ the number of defectives. Accordingly, if there
are fewer than two defectives, then test2(p, p′) < 2.

If there are exactly two defectives, then test2(p, p′) ≤ 2. Since p ∈ P , both binary
values appear among defectives, and so test2(p, p′) ≥ 2, and therefore test2(p, p′) = 2.

Consider the case in which there are three defectives. In any position p1 in
which both binary values appear at that digit among the set of defectives, one of the
defectives (say, D) has one binary value (say, v1) and the other two defectives (E,F)
have the other binary value (v1). Since E and F are distinct, they must differ in value
at some other position p2. Therefore, there will be three different ordered pairs of
binary values held by defectives in positions p1 and p2, and so test2(p1, p2) = 3.

Accordingly, if there is no pair of positions for which test2 has value 3, we can
conclude that there are only two defectives. Otherwise, there are positions p1, p2 for
which test2(p1, p2) = 3, and one of the four combinations of two binary values will
not appear. Let that missing combination be v1, v2. Thus, while position p1 uniquely
identifies one defective, say D, as the only defective having value v1 at that position,
position p2 uniquely identifies one of the other defectives, say E, as having value v2.

Lemma 7. If the position p∗ uniquely identifies the defective X to have value v∗,
then the value of the defective X at any other position p will be that value v such that
testM (p∗, p, v∗, v) = 1.

Proof. If position p∗ uniquely identifies defective X as having value v∗, then
Xp∗ = v∗ and, for any other defective Y , Yp∗ �= v∗.

Let v = Xp for any p �= p∗. Then testM (p∗, p, v∗, v) = 1, since X is a defective
that has the required values at the required positions to be included in this test.

Also, testM (p∗, p, v∗, v) = 0, because none of the defectives is included in this
test. Defective X is not included, because Xp �= v. Any other defective, Y �= X, is
not included, because Yp∗ �= v∗.

Since we have positions that uniquely identify D and E, we can determine the
values of all their other digits, and the only remaining problem is to determine the
values of the digits of defective F .

Since position p1 uniquely identifies D, we know that Fp1 = v1. For any other
position p, after determining that Ep = v, we note that if testM (p1, p, v1, v) = 1, then
there must be at least one defective, X, for which Xp1 = v1 and Xp = v. Defective D
is ruled out, since Dp1 = v1, and defective E is ruled out, since Ep = v. Therefore, it
must be that Fp = v. Otherwise, if that testM = 0, then Fp = v, since Fp = v would
have caused testM = 1.

We have determined the values of defectives D, E, and F for all positions. For
each position, only a constant amount of work is required to determine the assignment
of digit values. Therefore, we have proven the following theorem.

Theorem 4. A 3-separable matrix that has a time-optimal analysis algorithm
can be constructed with t = 2q2 − 2q and n = 2q, for any positive integer q.

Comparison of the number of tests required for the d = 3 method. The general d
algorithm due to Hwang and Sós [11] requires fewer tests than does the Du–Hwang
(DH) algorithm for d = 3 suggested in [6]. For n < 1010, our (d = 3) algorithm
requires even fewer tests and our general (Chinese remainder sieve) algorithm the
fewest. However, asymptotically the algorithm of Hwang and Sós uses the fewest

1372 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

Table 4.3

Comparing t(n) for d = 3.

(d = 3) 100 104 106 108 1010 1020 1030

Our bktrk 60 168 321 513 738 2350 4777
Our genl 77 197 381 568 791 2584 5117
Our d = 3 84 364 760 1404 2244 8844 19800
HS 838 1442 2046 2649 3253 6271 9289
DH 840 3444 7080 12960 20604 80400 179400

tests. We note that, unlike these other efficient algorithms, our (d = 3) algorithm
is time-optimal. Table 4.3 lists the number of tests required by these algorithms for
some small values of n.

Appendix A. Pseudocode listings.

def eratosthenes():
”””Generate the sequence of prime numbers via the sieve of Eratosthenes.”””
D = {} # map composite integers to primes witnessing their compositeness
q = 2 # first integer to test for primality
while True:

if q not in D:
yield q # not marked composite, must be prime
D[q∗q] = [q] # first multiple of q not already marked

else:
for p in D[q]: # move each witness to its next multiple

D.setdefault(p+q,[]).append(p)
del D[q] # no longer need D[q], free memory

q += 1

def search(primes,maxpow,target):
”””
Backtracking search for exponents of prime powers, each at most maxpow,
so that the product of the powers is at least target and the sum of the
nonunit powers is minimized. Returns the pair [sum,list of exponents].
”””
if target <= 1: # all unit powers will work?

return [0,[0]∗ len(primes)]
elif not primes or maxpow∗∗len(primes) < target:

return None # no primes supplied, no solution exists
primes = list (primes) # list all but the last prime for recursive calls
p = primes.pop()
best = None # no solution found yet
i = 0
while p∗∗i <= maxpow: # loop through possible exponents of p

s = search(primes,maxpow,(target + p∗∗i − 1)//p∗∗i)
if s is not None:

s [0] += i and p∗∗i
s [1]. append(i)
best = min(best,s) or s

i += 1
return best

Fig. A.1. Subroutines for construction based on prime factorization.

GROUP TESTING ALGORITHMS 1373

def prime cgt(n,d):
”””Find a CGT for n and d and output a description of it to stdout.”””

collect primes until their total product is large enough
primes = []
product = 1
for p in eratosthenes ():

primes.append(p)
product ∗= p
if product > n∗∗d:

break

now find good collection of powers of those primes...
result = search(primes,primes[−1],n∗∗d)
powers = result[1]

output results
print ”n =”,n,”d =”,d,”:”,
for i in range(len(primes)):

if powers[i] == 1:
print primes[i],

elif powers[i] > 1:
print str(primes[i]) + ”ˆ” + str(powers[i]),

print ”total tests :”, sum([primes[i]∗∗powers[i] for i in range(len(primes))
if powers[i]])

if name == ” main ”:
for d in range(2,6):

for x in range(6,16):
prime cgt(1<<x,d)

print

Fig. A.2. Construct tests based on prime factorization.

if test1(0) = 0 then return there are no defective items
p∗ ← −1
for p ← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← the value v such that testB(p, v) = 1

else // test1(p) has value 2
Let v1, v2 be the two values of v such that testB(p, v) = 1
if p∗ < 0 then

p∗ ← p
v∗1 ← Dp ← v1

v∗2 ← Ep ← v2

else
if testC(p∗, p) = 1 and (v∗1 = v1 or v∗2 = v2) then

Dp ← v1

Ep ← v2

else
Dp ← v2

Ep ← v1

if p∗ < 0 then
return there is one defective item D

else
return there are two defective items D and E

Fig. A.3. Analysis algorithm for up to two defectives.

1374 D. EPPSTEIN, M. T. GOODRICH, AND D. S. HIRSCHBERG

if test1(0) = 0 then return there are no defective items
P ← ∅
for p ← 0 to q − 1 do

if test1(p) = 1 then
Dp ← Ep ← Fp ← the value v such that testB(p, v) = 1

else P ← P ∪ {p}
if P = ∅ then return there is one defective item D
if test2(p1, p2) = 2 for all p1, p2 ∈ P then

p∗ ← −1
for p ∈ P do

if p∗ < 0 then
p∗ ← p
v∗ ← Dp ← 0

else if testM (p∗, p, v∗, 0) = 1 then
Dp ← 0

else Dp ← 1
Ep ← 1 −Dp

return there are two defective items D,E
else

Let p1, p2 be positions such that test2(p1, p2) = 3
Let v1, v2 be values such that testM (p1, p2, v1, v2) = 0
Dp1 ← v1

Fp1 ← Ep1 ← 1 − v1

Ep2 ← v2

Fp2 ← Dp2 ← 1 − v2

for p ∈ P − {p1, p2} do
if testM (p1, p, v1, 0) = 1 then

Dp ← 0
else Dp ← 1
if testM (p2, p, v2, 0) = 1 then

Ep ← 0
else Ep ← 1
v ← Ep

if testM (p1, p, 1 − v1, 1 − v) = 1 then
Fp ← 1 − v

else Fp ← v
return there are three defective items D,E, and F

Fig. A.4. Analysis algorithm for up to three defectives.

Appendix B. We would like to thank George Lueker and Dennis Shasha for
several helpful discussions related to the topics of this paper.

REFERENCES

[1] E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT
Press, Cambridge, MA, 1996.

[2] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Comm. ACM, 13
(1970), pp. 422–426.

[3] C. J. Colbourn, J. H. Dinitz, and D. R. Stinson, Applications of combinatorial designs
to communications, cryptography, and networking, in Surveys in Combinatorics, 1993,
London Math. Soc. Lecture Note Ser. 187, J. D. Lamb and D. A. Preece, eds., Cambridge
University Press, Cambridge, UK, 1999, pp. 37–100..

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[5] A. De Bonis, L. Gasieniec, and U. Vaccaro, Generalized framework for selectors with appli-
cations in optimal group testing, in Proceedings of the 30th International Colloquium on
Automata, Languages and Programming (ICALP’03), Springer, Berlin, 2003, pp. 81–96.

GROUP TESTING ALGORITHMS 1375

[6] D.-Z. Du and F. K. Hwang, Combinatorial Group Testing and Its Applications, 2nd ed.,
World Scientific, River Edge, NJ, 2000.

[7] P. Dusart, Encadrements Effectifs des Fonctions de Chebyshev (Sharper Bounds for ψ, θ,
π, pk), Rapport 1998-06, Laboratoire d’Arithmétique, de Calcul formel et d’Optimisation,
Limoges, Cedex, France, http://www.unilim.fr/laco/rapports/1998/R1998 06.pdf (1998).

[8] P. Dusart, The kth prime is greater than k(ln k + ln ln k − 1) for k ≥ 2, Math. Comp., 68
(1999), pp. 411–415.

[9] D. Eppstein, M. T. Goodrich, and D. S. Hirschberg, Improved combinatorial group testing
for real-world problem sizes, in Algorithms and Data Structures, 9th International Work-
shop, WADS 2005, Lecture Notes Comput. Sci. 3608, Springer, Berlin, 2005, pp. 86–98.

[10] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan, Group testing problems with
sequences in experimental molecular biology, in SEQUENCES, IEEE Press, Washington,
DC, 1997, pp. 357–367.

[11] F. K. Hwang and V. T. Sós, Non-adaptive hypergeometric group testing, Studia Sci. Math.
Hungar., 22 (1987), pp. 257–263.

[12] W. H. Kautz and R. C. Singleton, Nonrandom binary superimposed codes, IEEE Trans.
Information Theory, 10 (1964), pp. 363–377.

[13] A. J. Macula and G. R. Reuter, Simplified searching for two defects, J. Statist. Plann.
Inference, 66 (1998), pp. 77–82.

[14] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, 1995.

[15] M. Ruszinkó, On the upper bound of the size of the r-cover-free families, J. Combin. Theory
Ser. A, 66 (1994), pp. 302–310.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1376–1386

THE HARDNESS OF METRIC LABELING∗

JULIA CHUZHOY† AND JOSEPH (SEFFI) NAOR‡

Abstract. The metric labeling problem is an elegant and powerful mathematical model captur-
ing a wide range of classification problems. The input to the problem consists of a set L of labels
and a weighted graph G = (V,E). Additionally, a metric distance function on the labels is defined,
and for each label and each vertex, an assignment cost is given. The goal is to find a minimum-cost
assignment of the vertices to the labels. The cost of the solution consists of two parts: the assignment
costs of the vertices and the separation costs of the edges (where each edge pays its weight times the
distance between the two labels to which its endpoints are assigned). Due to the simple structure
and the variety of applications, the problem and its special cases (with various distance functions on
the labels) have recently received much attention. Metric labeling is known to have a logarithmic
approximation, and it has been an open question for some time whether a constant approximation
exists. We refute this possibility and prove that no constant factor approximation algorithm exists
for metric labeling unless P=NP. Moreover, we prove that the problem is Ω((log |V |)1/2−δ)-hard to
approximate for any constant δ : 0 < δ < 1/2, unless NP has quasi-polynomial time algorithms.

Key words. metric labeling, hardness of approximation, classification

AMS subject classifications. 68Q15, 68Q17, 68Q25, 68W25

DOI. 10.1137/06065430X

1. Introduction. The metric labeling problem, first formulated by Kleinberg
and Tardos [18], captures a broad range of classification problems that arise in com-
puter vision and related fields. In such classification problems, the goal is to assign
labels to some given set of objects in a way consistent with observed data or some
other form of prior knowledge. Formally, the input to the metric labeling problem
consists of an n-vertex undirected graph G(V,E), with weights w on edges, and a
set L of labels with metric distance function d : L × L → R associated with them.
Additionally, for each vertex v ∈ V and label � ∈ L, an assignment cost c(v, �) is
specified. The problem output is an assignment f : V → L of the vertices to the
labels. Intuitively, the vertices are the objects we would like to classify, and the as-
signment function f provides such a classification. The prior knowledge is modeled
by the means of the vertex assignment costs c(v, �), which can be used to express an
estimate of how likely it is that � is the correct label for vertex v, and by the edge
weights, which define pairwise relations between the objects. The weights of the edges
express a prior estimate on how likely it is that the endpoints of the given edge should
be assigned to close or identical labels.

Given a solution f : V → L to the metric labeling problem, its cost Q(f) consists
of two components.

Vertex labeling cost : For each v ∈ V , this cost is c(v, f(v)).
Edge separation cost : For each edge e = (u, v) the cost is w(u, v) · d(f(u), f(v)).

∗Received by the editors March 14, 2006; accepted for publication (in revised form) September
11, 2006; published electronically January 12, 2007.

http://www.siam.org/journals/sicomp/36-5/65430.html
†School of Mathematics, IAS, 1 Einstein Drive, Princeton, NJ 08540 (cjulia@csail.mit.edu). This

work was done while this author was a graduate student at the Computer Science Department at
the Technion.

‡Computer Science Department, Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). This
author’s research was supported in part by US-Israel BSF grant 2002276 and by EU contract IST-
1999-14084 (APPOL II).

1376

THE HARDNESS OF METRIC LABELING 1377

Thus,

Q(f) =
∑
u∈V

c(u, f(u)) +
∑

(u,v)∈E

w(u, v) · d(f(u), f(v)),

and the goal is to find a labeling f : V → L minimizing Q(f).
Metric labeling has rich connections to some well-known problems in combinato-

rial optimization. A special case of metric labeling is the 0-extension problem, studied
by Karzanov [16, 17]. In this problem, there are no assignment costs. However, the
graph contains a set {t1, . . . , tk} of terminals, where the label of terminal ti is fixed
in advance to i, while the nonterminals are free to be assigned to any of the labels.
As in the metric labeling problem, a metric is defined on the set of labels. The cost
of an assignment consists only of the edge separation cost. The 0-extension problem
generalizes the well-studied multiway cut problem [9, 6, 14], which is defined exactly
like 0-extension except that the metric on the label set is the uniform metric.

The first approximation algorithm for the metric labeling problem was shown
by Kleinberg and Tardos [18]. This algorithm uses the probabilistic tree embedding
technique [4, 5], and its approximation factor is O(log k log log k), where k denotes
the number of labels in L. This bound was recently improved to O(log k) [11] and
it is currently the best known approximation factor for the metric labeling problem.
Some special cases of metric labeling, where the metric on the terminals belongs to
some restricted class of metrics, were shown to have better approximation factors
[18, 13, 8].

Chekuri et al. [8] proposed a natural linear programming formulation for the
general metric labeling problem. A solution to this linear program is an embedding
of the graph in a k-dimensional simplex, where the distance between points in the
simplex is defined by a special metric, the earth mover’s distance metric (EMD), and
not by the (standard) �1 metric. It was also shown in [8] that the integrality gap of
this formulation is at most the distortion of a probabilistic tree embedding of the given
metric d, i.e., O(log k) [11]. Archer et al. [1] presented an approximation algorithm
which is based on rounding the EMD solution to the linear program of [8] and achieves
an O(log |V |) approximation factor.

Călinescu, Karloff, and Rabani [7] considered approximation algorithms for the
0-extension problem via a metric relaxation, originally studied by Karzanov [16], and
obtained an O(log k)-approximation algorithm for general metrics. This result was
improved to O(log k/ log log k) by Fakcharoenphol et al. [10].

Our results. A question that has intrigued many researchers since the appear-
ance of [18] is whether there exists a constant factor approximation algorithm for
the metric labeling problem. We answer this question in the negative and prove an
Ω((log n)1/2−δ)-hardness of approximation for any constant δ : 0 < δ < 1/2, assuming
NP �⊆ DTIME(npoly(log n)). We also prove that there is no constant factor approxima-
tion algorithm for metric labeling unless P = NP. For the sake of simplicity, we focus
on a problem called restricted metric labeling, which was shown by Chekuri et al. [8]
to be equivalent to metric labeling. In the restricted metric labeling problem, the
assignment costs of the vertices are restricted to be either 0 or ∞, or equivalently
each vertex v ∈ V has a list of labels, L(v), to which it is allowed to be assigned. The
solution cost then consists only of the edge separation cost.

Following our work, Karloff et al. [15] showed that the 0-extension problem
is Ω((log n)1/4−ε)-hard to approximate for any constant ε, unless NP has quasi-
polynomial time algorithms. Their proof builds on ideas presented in this work.

1378 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Organization. We start in section 2 with some preliminaries, and we present in
section 3 a simple (3−δ)-hardness proof (for any constant 0 < δ < 1) for the restricted
metric labeling problem. This proof provides the intuition and motivation for the new
ideas needed to obtain the stronger hardness bounds shown in section 4.

2. Preliminaries. We prove our hardness results for the restricted metric label-
ing problem, defined as follows. The input consists of an undirected graph G(V,E)
with weights w on edges, and a set L of labels with distance function d : L× L → R.
Additionally, for each vertex v ∈ V , there is a subset L(v) ⊆ L of labels to which
v can be assigned. The goal is to find an assignment f : V → L such that for each
v ∈ V , f(v) ∈ L(v). The solution cost is the sum, over all edges e = (u, v), of the edge
separation cost w(e)d(f(u), f(v)). We notice that our hardness results work even for
the uniform weight function, i.e., for each edge e ∈ E, w(e) = 1.

We perform our reduction from the gap version of Max 3SAT(5). The input to
the problem is a conjunctive normal form (CNF) formula φ with n variables and 5n

3
clauses. Each clause consists of three literals, and each variable participates in five
clauses, appearing in each clause at most once.

Let ε : 0 < ε < 1 be a constant, and let φ be an instance of Max 3SAT(5). Then φ
is called a Yes-instance if there is an assignment that satisfies all the clauses, and it is
called a No-instance (with respect to ε) if any assignment satisfies at most a fraction
(1 − ε) of the clauses. Following is one of the several equivalent statements of the
probabilistically checkable proofs (PCP) theorem [2, 3].

Theorem 2.1. There is a constant ε, 0 < ε < 1, such that it is NP-hard to
distinguish between Yes-instances and No-instances of the Max 3SAT(5) problem.

In our reduction, we start from a 3SAT(5) formula φ and produce an instance of
the restricted metric labeling problem. Our first step is describing and analyzing a
(standard) two-prover protocol for the 3SAT(5) problem. This protocol will help us
translate 3SAT(5) instances into instances of restricted metric labeling, and analyze
the reduction.

The one-round two-prover protocol for 3SAT(5) is defined as follows. Given a
3SAT(5) formula φ on n variables, we have the following:

• The verifier randomly chooses a clause C from the formula φ and one of the
variables x belonging to C. Variable x is called the distinguished variable.

• Prover 1 receives clause C and is expected to return an assignment to all the
variables appearing in the clause. Prover 2 receives variable x and is expected
to return an assignment to x.

• After receiving the answers of the provers, the verifier checks that the an-
swer of prover 1 defines a satisfying assignment for clause C and that the
assignments of prover 1 and prover 2 to variable x are identical.

The following well-known theorem easily follows from Theorem 2.1.
Theorem 2.2. If φ is a Yes-instance, then there is a strategy of the provers such

that the verifier always accepts. If φ is a No-instance, then for any strategy of the
provers, the acceptance probability is at most (1 − ε

3).

3. A simple (3 − δ)-hardness. In this section we present a simple (3 − δ)-
hardness for the restricted metric labeling problem (for any constant 0 < δ < 1), and
also provide some intuition as to the new ideas needed to improve this bound.

We start by amplifying the soundness of the two-prover protocol presented above
by means of parallel repetitions, a usual practice in PCP reductions. The number of
repetitions is a sufficiently large constant l. The new protocol proceeds as follows:

THE HARDNESS OF METRIC LABELING 1379

• The verifier chooses, randomly and independently, l clauses C1, . . . , Cl from
the input formula φ. For each i, 1 ≤ i ≤ l, the verifier chooses, randomly and
independently, one variable xi belonging to Ci.

• Prover 1 receives clauses C1, . . . , Cl and is expected to return an assignment
to all the variables appearing in the clauses, such that all clauses are satisfied.
Prover 2 receives variables x1, . . . , xl and is expected to return an assignment
to these variables.

• After receiving the answers of the provers, the verifier checks that the answer
of prover 1 defines satisfying assignments for clauses C1, . . . , Cl and that the
assignments of prover 1 and prover 2 to variables x1, . . . , xl are identical.

The following theorem follows from the well-known Raz parallel repetition theo-
rem [19], which bounds the error probability of the above protocol.

Theorem 3.1. There is a constant α > 0 such that if φ is a Yes-instance, there
is a strategy of the provers for which the verifier always accepts, and if φ is a No-
instance, then for any strategy of the provers, the acceptance probability is at most
2−αl.

Let Q1 denote the set of all the possible queries to prover 1 (i.e., each query
q ∈ Q1 is an l-tuple of clauses). Given a query q1 ∈ Q1, let A(q1) denote the set of
all the assignments to the variables that appear in the clauses of q1 that satisfy these
clauses. Similarly, Q2 denotes the set of all the possible queries to prover 2 (each
query is an l-tuple of variables), and given q2 ∈ Q2, A(q2) is the set of all the possible
answers of prover 2 to query q2.

We assume that, at the beginning of the protocol, the verifier chooses a random
string r, which determines the choice of the clauses and the variables sent to the
provers. Let R denote the set of all the possible random strings. Given a random
string r ∈ R, let q1(r), q2(r) be the queries sent to prover 1 and prover 2, respectively,
when the verifier chooses r.

The set of labels is defined as follows. For every possible query of each one of the
two provers, and for every possible answer to this query, there is a label, i.e.,

L = {�(q,A) | q ∈ Q1 ∪Q2, A ∈ A(q)} .
In order to define the metric distance function on the labels, we construct a label

graph GL. The vertices of this graph are the labels, and the metric distance between
the labels is defined to be the length of the shortest path in this graph. We now
define the edges of graph GL. Consider some random string r of the verifier, and let
q1 = q1(r), q2 = q2(r). Let A1 ∈ A(q1), A2 ∈ A(q2) be any pair of consistent answers
to these queries. Then there is an edge of length 1 between �(q1, A1) and �(q2, A2)
in GL. Note that since each edge connects a label belonging to prover 1 and a label
belonging to prover 2, the graph is bipartite. Therefore, for any random string r, if
q1 = q1(r) and q2 = q2(r), and if A1 ∈ A(q1), A2 ∈ A(q2) are inconsistent answers to
these queries, then the distance between labels �(q1, A1) and �(q2, A2) in graph GL is
at least 3.

We now proceed to define the input graph. For every query q ∈ Q1 ∪ Q2, there
is a vertex v(q). This vertex can be assigned only to those labels that correspond to
query q, i.e.,

V = {v(q) | q ∈ Q1 ∪Q2} ,
L(v(q)) = {�(q,A) | A ∈ A(q)} .

The edge set is defined as follows. For each random string r of the verifier, there
is an edge connecting v(q1(r)) and v(q2(r)). All edges have unit weight.

1380 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Yes-instance. If φ is a Yes-instance, then there is a strategy of the provers such
that their answers are always accepted by the verifier. This strategy defines the
assignments of the vertices to the labels, namely, vertex v(q) for q ∈ Q1 ∪ Q2 is
assigned to label �(q,A), where A ∈ A(q) is the answer of the corresponding prover
to query q under the above strategy. Consider some random string r of the verifier
and the corresponding queries q1 = q1(r), q2 = q2(r). Let A1 ∈ A(q1), A2 ∈ A(q2) be
the answers of the provers according to the above strategy. Note that vertices v(q1),
v(q2) are assigned to labels �(q1, A1), �(q2, A2) and that the answers A1 and A2 of
the provers are consistent. Therefore, there is an edge in the label graph between
the labels �(q1, A1) and �(q2, A2), and thus the distance between the two labels (and
the cost incurred by the edge connecting v(q1) and v(q2)) is 1. The total cost of the
solution is therefore |R|, where R is the set of all the random strings of the verifier.

No-instance. Consider any solution to the problem. Note that the assignments
of the vertices to the labels define a strategy of the provers. (The assignment of
vertex v(q), q ∈ Q1 ∪ Q2, to label �(q,A), A ∈ A(q), implies that the answer of the
corresponding prover to query q is A.) Let R′ ⊆ R be the set of random strings of the
verifier for which the answers of the two provers are inconsistent. From Theorem 3.1,
|R′| ≥ (1 − 2−αl)|R|. Consider a random string r ∈ R′ and let q1 = q1(r), q2 = q2(r).
Let �(q1, A1), �(q2, A2) be the labels to which the vertices v(q1), v(q2) are assigned. As
the answers A1, A2 of the provers are inconsistent, the distance between the two labels
(and hence the separation cost paid by the edge between v(q1) and v(q2)) is at least
3. Therefore, the total cost of the solution is at least 3(1 − 2−αl)|R|) = 3(1 − δ)|R|,
where δ is an arbitrarily small constant.

It follows that the gap between the costs of Yes- and No-instances is 3(1− δ), and
since the size of the construction is polynomial in n, we have that restricted metric
labeling is 3(1 − δ)-hard to approximate for any constant δ, unless P=NP.

It is not hard to see that the analysis is tight. Consider some random string r and
the corresponding queries q1 = q1(r), q2 = q2(r). Let A1, A2 be a pair of inconsistent
answers to queries q1, q2. We show that there is a path of length 3 in the graph GL

between the pair of labels �(q1, A1), �(q2, A2). We denote q1 = (Ci1 , . . . , Cil) and
q2 = (xi1 , . . . , xil), and recall that for each j : 1 ≤ j ≤ l, xij is one of the variables
of clause Cij . Let x′

ij
and x′′

ij
denote the other two variables. The path of length

3 connecting the two labels starts at label �(q1, A1). The second label on this path
is �(q′2, A

′
2), where q′2 = (x′

i1
, . . . , x′

il
) and A′

2 contains assignments to (x′
i1
, . . . , x′

il
)

identical to those in A1. The third label is �(q1, A
′
1) (we define A′

1 below), and
the final fourth label is �(q2, A2). In order to define A′

1, fix some j : 1 ≤ j ≤ l,
and consider the jth entry of q1, a clause whose variables are xij , x

′
ij
, and x′′

ij
. We

need to specify the assignments to these variables in A′
1. The assignment to xij is

defined to be the same assignment that appears in A2, the assignment to x′
ij

is the

same as in A′
2, and the assignment to x′′

ij
is set in such a way that clause Cij is

satisfied.
Thus, even though the two answers A1 and A2 of the provers might be inconsistent

in many coordinates, there is still a short path between the two labels. In order to
improve the hardness bound, it would be helpful (and enough) to ensure that if two
answers are inconsistent in almost all the coordinates, then the length of the shortest
path between the two corresponding labels is Ω(l). This is the intuition behind the
construction and the k-prover protocol described in the next section.

4. The main hardness result. In this section we prove an Ω((log n)1/2−δ)-
hardness of restricted metric labeling, for any constant δ : 0 < δ < 1

2 . We start by

THE HARDNESS OF METRIC LABELING 1381

defining a new k-prover protocol for 3SAT(5). The protocol is then used in a way
which is similar to the construction in section 3 to obtain the stronger hardness result.

4.1. A new k-prover protocol. We define a new k-prover protocol, where the k
provers are denoted by P1, . . . , Pk, and k will be later set to poly(logn). This protocol
is based on the basic one-round two-prover protocol, and it proceeds as follows.

• The verifier sends one query to each prover. Each one of the queries has
(
k
2

)
entries, which are determined in the following way. For each pair (i, j) of
provers, where 1 ≤ i < j ≤ k, the verifier chooses, uniformly, independently
at random, a clause Cij and a distinguished variable xij belonging to this
clause. The entry (i, j) in the queries of the provers is then defined as follows.
In the query sent to prover Pi, this entry contains clause Cij . In the query
sent to prover Pj , this entry contains variable xij . For each other prover
Pa, where a �= i, j, the entry (i, j) of its query contains both clause Cij and
variable xij .
Thus, in general, for any prover Ph, 1 ≤ h ≤ k, coordinate (y, z) of its query
(where 1 ≤ y < z ≤ k), is defined as follows:

– if h = y, then the entry contains Cyz.
– if h = z, then the entry contains xyz.
– if h �= y, z, then the entry contains both Cyz and xyz.

• Each one of the provers responds with an assignment to all the variables
appearing in its query, both as parts of clauses and as distinguished variables.

• After receiving the answers of the provers, the verifier checks, for each coor-
dinate (i, j), 1 ≤ i < j ≤ k, that the answers of all the provers are consistent,
i.e., all the provers Pa, a �= j, return an identical assignment to the vari-
ables of Cij , and the assignment of prover Pj to variable xij matches the
assignments of all the other provers.

We note that our k-prover system departs from standard protocols in several
ways. First, we do not use the parallel repetitions theorem here, as there is no need
to amplify the soundness of the protocol. Observe also that for each prover Pa, for
each coordinate (i, j) : i, j �= a, the prover receives both the clause Cij and the distin-
guished variable xij . It may appear that some of the information the prover receives
is redundant. Indeed, in k-prover systems (e.g., [12]), the provers usually receive ei-
ther the clause or the distinguished variable, but not both. However, this sending of
redundant information to the provers is essential for our reduction. Intuitively, it will
ensure that if, for some random string r, the answers of the k provers are inconsistent
in many coordinates, then the distances between the corresponding labels are long.

We assume again that all the random choices of the verifier are made at the
beginning of the protocol, by choosing a random string r out of the set R of all the
possible random strings of the desired length. Given a random string r ∈ R, for each
i, 1 ≤ i ≤ k, let qi(r) be the query sent to prover Pi when the verifier chooses the
random string r, and let Qi be the set of all the possible queries of prover i. For each
i : 1 ≤ i ≤ k, for each qi ∈ Qi, let A(qi) denote the set of all the possible answers of
prover Pi to query qi, which satisfy all the clauses appearing in the query.

Definition 4.1. Consider a pair of provers Pi and Pj, 1 ≤ i < j ≤ k, and
let qi ∈ Qi, qj ∈ Qj be a pair of queries such that for some random string r ∈ R,
qi = qi(r), qj = qj(r). Let Ai and Aj denote the respective answers of the provers to
the queries. We say that the answers are weakly consistent if the assignments to Cij

and xij in Ai and Aj, respectively, are consistent. The answers are called strongly
consistent if they are also consistent in every other coordinate, i.e., for each (a, b),
1 ≤ a < b ≤ k, where (a, b) �= (i, j), the following hold:

1382 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

• If both entries qi(a, b) and qj(a, b) contain clause Cab and variable xab, then
the assignments to the variables of clause Cab in Ai and Aj are identical.

• If one of the entries qi(a, b) and qj(a, b) contains clause Cab and the other
contains clause Cab and variable xab, then the assignments to the variables
of the clause Cab in Ai and Aj are identical.

• If one of the entries qi(a, b) and qj(a, b) contains variable xab and the other
contains clause Cab and variable xab, then the assignments to the variables
of clause Cab and variable xa,b in Ai and Aj are consistent.

Theorem 4.2. If φ is a Yes-instance, then there is a strategy of the k provers
such that the verifier always accepts. If φ is a No-instance, then for any strategy of
the provers, for every pair of provers Pi and Pj, 1 ≤ i < j ≤ k, the probability that
their answers are weakly consistent is at most (1 − ε

3).
Proof. For the Yes-instance, the theorem follows immediately. We now prove

that the theorem holds for the No-Instance. Assume otherwise. Let Pi and Pj be a
pair of provers such that the probability that their answers are weakly consistent is
more than (1 − ε

3). We partition the set of random strings R into classes such that
within each class the random strings are identical except for the clause Cij and the
distinguished variable xij . Each such class (together with the corresponding queries
and answers to the queries) can be viewed as a two-prover protocol (while we ignore
all the coordinates of the queries and the answers except for (i, j)). As the probability
of obtaining a pair of weakly consistent answers is more than (1− ε

3), at least for one
of the classes, the probability that the verifier accepts is greater than (1 − ε

3). This
defines a strategy for the two-prover protocol in which the acceptance probability of
the verifier is greater than (1 − ε

3), contradicting Theorem 2.2.

4.2. The graph and the label set. In this section we construct an instance
of the restricted metric labeling problem from an input 3SAT(5) formula φ. Our
construction is based on the k-prover system described above.

The set of labels L consists of two subsets:
Query labels: For each prover Pi, 1 ≤ i ≤ k, for each query q ∈ Qi, and for each

answer A ∈ A(q) to the query q, there is a label �(Pi, q, A).
Constraint labels: Consider a random string r of the verifier. Let A1, . . . , Ak, be any

collection of possible answers of the provers to the queries q1(r), . . . , qk(r);
i.e., for each 1 ≤ i ≤ k, Ai ∈ A(qi(r)). Moreover, assume that these answers
are accepted by the verifier, (i.e., A1, . . . , Ak are strongly consistent). Then,
there is a label �(r,A1, A2, . . . , Ak).

We now define a graph GL(L,E′) on the label set. The metric on the label
set is implied by the shortest path distance function in the graph. The vertices of
GL are the labels, and the edges are defined as follows. Consider a constraint label
� = �(r,A1, A2, . . . , Ak), Then, for each i, 1 ≤ i ≤ k, there is an edge of length 1

2
between � and �(Pi, qi(r), Ai) (see Figure 4.1).

Thus, the graph is a collection of stars, while some stars share some of their leaves.
We now proceed to define graph G(V,E). The vertex set V is the union of two

vertex sets: a set of query vertices, denoted by V1, and a set of constraint vertices,
denoted by V2.
Query vertices: For each prover Pi, 1 ≤ i ≤ k, and for each query q ∈ Qi, there is a

vertex v(Pi, q). Thus,

V1 = {v(Pi, q) | 1 ≤ i ≤ k and q ∈ Qi} .

THE HARDNESS OF METRIC LABELING 1383

Fig. 4.1. Edges in the graph of labels incident to �(r,A1, . . . , Ak).

Fig. 4.2. Edges incident to v(r).

Vertex v(Pi, q) can be assigned only to the labels corresponding to (Pi, qi),
i.e.,

L(v(Pi, q)) = {�(Pi, q, A) | A ∈ A(q)} .

Note that assigning v(Pi, q) to a label in L(v(Pi, q)) defines an answer of
prover Pi to query q.

Constraint vertices: For each random string r, there is a vertex v(r), i.e.,

V2 = {v(r) | r ∈ R} .

Vertex v(r) can be assigned only to labels corresponding to r; i.e., L(v(r))
consists of labels �(r,Ai, . . . , Ak) such that ∀i, Ai ∈ A(qi(r)) and (A1, . . . , Ak)
are strongly consistent.

The edges of the graph are as follows. Every constraint vertex v(r) is connected
to every assignment vertex v(Pi, qi(r)) by a unit-weight edge (see Figure 4.2).

The graph is therefore a collection of stars that can have common leaves.

4.3. Hardness of approximation proof.

4.3.1. Yes-instances. Assume that the input 3SAT(5) formula φ is a Yes-
instance. Consider a strategy of the provers for which the acceptance probability
of the verifier is 1. For every prover Pi, 1 ≤ i ≤ k, for every query q ∈ Qi, let
f(q) ∈ A(q) be the answer of prover Pi to query q under this strategy. Note that for
each random string r, f(q1(r)), . . . , f(qk(r)) are strongly consistent. We define the
following labeling of the graph G (see Figure 4.3):

• For each random string r ∈ R, vertex v(r) is assigned to label �(r, f(q1(r)), . . . ,
f(qk(r))).

1384 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

Fig. 4.3. Yes-instance: the embedding of edges incident to v(r).

• For each i : 1 ≤ i ≤ k, q ∈ Qi, vertex v(Pi, q) is assigned to label �(Pi, q, f(q)).
Consider an edge in the graph G between v(r) and v(Pi, qi(r)), r ∈ R, 1 ≤ i ≤ k.
Vertex v(r) is assigned to label �(r, f(q1(r)), . . . , f(qk(r))), and vertex v(Pi, qi(r)) is
assigned to label �((Pi, qi(r), f(qi(r))). Thus, the separation cost of the edge is 1

2 ,
since the distance between the two labels is 1

2 . Hence, the total cost of the solution is
1
2 · k · |R|.

4.3.2. No-instances. Assume that the input 3SAT(5) formula φ is a No-instance.
We prove that the cost of any solution to the metric labeling instance is at least(
k
2

)
· ε

3 · |R|, and thus the gap between the Yes- and the No-instances is Ω(k). Observe
that the assignment of the query vertices to query labels defines a strategy of the
provers. We concentrate on this strategy and define the set T ⊆ R× [k] × [k].

Definition 4.3. For r ∈ R, 1 ≤ i < j ≤ k, (r, i, j) ∈ T if and only if the answers
of provers Pi and Pj to queries qi(r) and qj(r), respectively, are not weakly consistent
(under the above strategy).

The following proposition is a direct consequence of Theorem 4.2.
Proposition 4.4. |T | ≥

(
k
2

)
· ε

3 · |R|.
Consider an edge e ∈ E, and assume that the endpoints of the edge are assigned

to labels �1 and �2. We denote by Pe the shortest path between the labels �1 and �2
in the graph of labels GL. Note that the length of Pe is exactly the cost paid by edge
e, and the solution cost is

∑
e∈E |Pe|. We define the set T ′ ⊆ R× [k]× [k] as follows.

Consider a random string r ∈ R and a pair of provers Pi and Pj , 1 ≤ i, j ≤ k, i �= j.
Let e be the edge between v(r) and v(Pi, qi(r)). Then, (r, i, j) ∈ T ′ if and only if the
path Pe contains a label belonging to prover Pj (i.e., a label of the form �(Pj , q, A),
for some q ∈ Qj , A ∈ A(q)). Observe that the cost of the solution is at least |T ′|.

Lemma 4.5. For r ∈ R, suppose (r, i, j) ∈ T , where 1 ≤ i < j ≤ k. Then, either
(r, i, j) ∈ T ′ or (r, j, i) ∈ T ′.

Proof. Suppose that vertex v(r) is assigned to label �(r,A1, . . . , Ak), and sup-
pose vertices v(Pi, qi(r)) and v(Pj , qj(r)) are assigned to labels �(Pi, qi(r), A

′
i) and

�(Pj , qj(r), A
′
j), respectively. As (r, i, j) ∈ T , the answers A′

i and A′
j of provers Pi

and Pj cannot be weakly consistent. However, the answers Ai and Aj are strongly
consistent. Therefore, either the (i, j) coordinates in Ai and A′

i differ (recall that this
coordinate contains an assignment to a clause Cij), or the (i, j) coordinates in Aj

and A′
j differ (this coordinate contains an assignment to a distinguished variable xij).

Assume that the former is true (the other case is handled similarly).
Let e be the edge between v(r) and v(Pi, qi(r)). It is enough to show that the

path Pe contains a label corresponding to prover Pj . Suppose that this is not the
case. Let �(Pa, qa, A) and �(Pb, qb, A

′) be two consecutive query labels on the path.
As the two labels are at distance 1, there must be an r′ ∈ R such that qa = qa(r

′) and
qb = qb(r

′) and the answers A and A′ are strongly consistent. As a, b �= j, the (i, j)

THE HARDNESS OF METRIC LABELING 1385

coordinate in qa and in qb must contain some clause, and the two clauses are identical.
Moreover, coordinate (i, j) of A and A′ must contain an identical assignment to the
variables of this clause. Therefore, if path Pe starts at �(Pi, qi(r), A

′
i) and does not

pass through any label belonging to prover Pj , then for every query label �(Ps, qs, A)
appearing on the path, coordinate (i, j) of qs contains the same clause as that of qi(r),
and coordinates (i, j) in A and A′

i are identical. This is also true for the last query
label on the path, denoted by �(Pd, qd, Ad). But this label is connected by an edge to
label �(r,A1, . . . , Ak), and therefore coordinates (i, j) of Ad and Ai must be identical,
which is impossible.

It follows from the lemma that |T ′| ≥ |T |, yielding that the solution cost is at
least

(
k
2

)
· ε

3 · |R|.

4.3.3. The hardness factor. The gap between the cost of the Yes-instance
and the No-instance solutions is Ω(k). The size of the construction is dominated

by the number of labels. For each i, 1 ≤ i ≤ k, |Qi| ≤ (5n)k
2

, and for each q ∈ Qi,

|A(q)| ≤ 7k
2

, and therefore the number of query labels is at most k(5n)k
2 ·7k2

. The size

of R is at most (5n)k
2

and for each r ∈ R the number of k-tuples of consistent answers

is at most 7k
2

. Hence, the number of constraint labels is bounded by (5n)k
2 ·7k2

. The

construction size is therefore N = nO(k2). If k is a constant, then it is polynomial in n.
Choosing k = poly(logn), we get that k = (logN)

1
2−δ for arbitrarily small constant

δ > 0.
Thus, we have proved the following result.
Theorem 4.6. There is no efficient constant factor approximation algorithm for

the metric labeling problem, unless P=NP. Moreover, for any constant 0 < δ < 1/2,

there is no Ω((logN)
1
2−δ)-approximation algorithm for the problem, unless NP ⊆

DTIME(npoly(log n)).

Acknowledgment. The authors would like to thank Sanjeev Khanna for helpful
comments on the presentation of the paper.

REFERENCES

[1] A. Archer J. Fakcharoenphol, C. Harrelson, R. Krauthgamer, K. Talwar, and É.

Tardos, Approximate classification via earthmover metrics, in Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 2004, SIAM,
Philadelphia, 2004, pp. 1072–1080.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[3] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[4] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, in
Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, Burling-
ton, VT, 1996, IEEE Press, Piscataway, NJ, 1996, pp. 184–193.

[5] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the 30th
Annual ACM Symposium on Theory of Computing, Dallas, TX, 1998, ACM, New York,
1998, pp. 161–168.

[6] G. Călinescu, H. Karloff, and Y. Rabani, An improved approximation algorithm for mul-
tiway cut, J. Comput. System Sci., 60 (2000), pp. 564–574.

[7] G. Călinescu, H. Karloff, and Y. Rabani, Approximation algorithms for the 0-extension
problem, SIAM J. Comput., 34 (2005), pp. 358–372.

[8] C. Chekuri, S. Khanna, J. Naor, and L. Zosin, A linear programming formulation and
approximation algorithms for the metric labeling problem, SIAM J. Discrete Math., 18
(2005), pp. 608–625.

1386 JULIA CHUZHOY AND JOSEPH (SEFFI) NAOR

[9] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis,
The complexity of multiterminal cuts, SIAM J. Comput., 23 (1994), pp. 864–894.

[10] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar, An improved approximation
algorithm for the 0-extension problem, in Proceedings of the 14th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, Baltimore, MD, 2003, SIAM, Philadelphia, 2003, pp. 257–
265.

[11] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary
metrics by tree metrics, in Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, San Diego, CA, 2003, ACM, New York, 2003, pp. 448–455.

[12] U. Feige, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), pp. 634–652.
[13] A. Gupta and E. Tardos, A constant factor approximation algorithm for a class of classi-

fication problems, in Proceedings of the ACM Symposium on the Theory of Computing,
Portland, OR, 2000, ACM, New York, 2000, pp. 652–658.

[14] D. R. Karger, P. N. Klein, C. Stein, M. Thorup, and N. E. Young, Rounding algorithms
for a geometric embedding of minimum multiway cut, Math. Oper. Res., 29 (2004), pp. 436–
461.

[15] H. Karloff, S. Khot, A. Mehta, and Y. Rabani, On earthmover distance, metric label-
ing, and 0-extension, in Proceedings of the 38th Annual ACM symposium on Theory of
Computing, Seattle, WA, 2006, ACM, New York, 2006, pp. 547–556.

[16] A. Karzanov, Minimum 0-extension of graph metrics, European J. Combin., 19 (1998), pp. 71–
101.

[17] A. Karzanov, A combinatorial algorithm for the minimum (2, r)-metric problem and some
generalizations, Combinatorica, 18 (1999), pp. 549–569.

[18] J. Kleinberg and E. Tardos, Approximation algorithms for classification problems with pair-
wise relationships: Metric labeling and Markov random fields, J. ACM, 49 (2002), pp. 616–
630.

[19] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1387–1403

PSEUDORANDOM BITS FOR CONSTANT-DEPTH CIRCUITS
WITH FEW ARBITRARY SYMMETRIC GATES∗

EMANUELE VIOLA†

Abstract. We exhibit an explicitly computable pseudorandom generator stretching l bits into
m(l) = lΩ(log l) bits that look random to constant-depth circuits of size m(l) with logm(l) arbitrary
symmetric gates (e.g., PARITY, MAJORITY). This improves on a generator by Luby, Velickovic,
and Wigderson [Proceedings of the Second Israel Symposium on Theory of Computing Systems, 1993,
pp. 18–24] that achieves the same stretch but fools only circuits of depth 2 with one arbitrary sym-
metric gate at the top. Our generator fools a strictly richer class of circuits than Nisan’s generator for
constant-depth circuits (but Nisan’s generator has a much bigger stretch) [Combinatorica, 11 (1991),
pp. 63–70]. In particular, we conclude that every function computable by uniform poly(n)-size prob-

abilistic constant-depth circuits with O(logn) arbitrary symmetric gates is in TIME(2n
o(1)

). This
seems to be the richest probabilistic circuit class known to admit a subexponential derandomization.
Our generator is obtained by constructing an explicit function f : {0, 1}n → {0, 1} that is very hard
on average for constant-depth circuits of size s(n) = nΩ(log n) with log s(n) arbitrary symmetric
gates, and plugging it into the Nisan–Wigderson pseudorandom generator construction [J. Comput.
System Sci., 49 (1994), pp. 149–167]. The proof of the average-case hardness of this function is a
modification of arguments by Razborov and Wigderson [Inform. Process. Lett., 45 (1993), pp. 303–
307] and Hansen and Miltersen [Proceedings of the 29th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 3153, Springer-Verlag, Berlin,
2004, pp. 334–345] and combines H̊astad’s switching lemma [Computational Limitations of Small-
Depth Circuits, MIT Press, Cambridge, MA, 1987] with a multiparty communication complexity
lower bound by Babai, Nisan, and Szegedy [J. Comput. System Sci., 45 (1992), pp. 204–232].

Key words. pseudorandom generator, derandomization, constant-depth circuit, average-case
hardness, lower bound, symmetric gate, switching lemma, communication complexity

AMS subject classifications. 68Q01, 68Q10, 68Q15, 68Q17

DOI. 10.1137/050640941

1. Introduction. A pseudorandom generator G : {0, 1}l → {0, 1}m is an effi-
cient procedure that stretches l input bits into m � l output bits such that the output
distribution of the generator fools small circuits. That is, for every circuit C of size
m we have

∣∣∣ Pr
x∈{0,1}l

[C(G(x)) = 1] − Pr
x∈{0,1}m

[C(x) = 1]
∣∣∣ ≤ 1

m
.

Pseudorandom generators have found a striking variety of applications in com-
plexity theory, most notably to derandomize probabilistic algorithms.

Starting with the seminal work of Nisan and Wigderson [21], a series of results
(e.g., [3, 28, 26, 29]) show how to construct pseudorandom generators starting from
an explicit function that requires circuits of superpolynomial size. However, no such
function is known to exist.

∗Received by the editors September 21, 2005; accepted for publication (in revised form) July 31,
2006; published electronically January 22, 2007. An extended abstract of this paper appeared in
Proceedings of the 20th Annual IEEE Conference on Computational Complexity, 2005 [31]. This
research was done while the author was a Ph.D. student at Harvard University, supported by NSF
grant CCR-0133096, US-Israel BSF grant 2002246, and ONR grant N-00014-04-1-0478.

http://www.siam.org/journals/sicomp/36-5/64094.html
†Institute for Advanced Study, School of Mathematics, 1 Einstein Drive, Princeton, NJ 08540

(viola@ias.edu).

1387

1388 EMANUELE VIOLA

On the other hand, pseudorandom generators that fool restricted kinds of circuits,
such as constant-depth circuits with unbounded fan-in, are already very interesting.
They also have a large variety of applications (e.g., [21, 16]) and are central to under-
standing the power of randomness in restricted classes of algorithms. While there has
been exciting progress in constructing explicit functions that require superpolynomial-
size constant-depth circuits with certain kinds of gates (e.g., [14, 23, 27, 15, 22, 13]),
no explicit function is known to require superpolynomial-size constant-depth circuits
with MAJORITY gates (cf. [25]). This is an obstacle to constructing pseudorandom
generators, as most constructions need such a function. This need is due to the fact
that the reductions in the proofs of correctness of these constructions use (a polyno-
mial number of) MAJORITY gates (cf. [1], [30, section 10], and [32, Chapter 6]).

But when starting from an average-case hard function, the reduction in the proof
of correctness of the Nisan–Wigderson construction [21] does not require MAJORITY
gates. (A function f : {0, 1}n → {0, 1} is average-case hard if polynomial-size circuits
fail to compute f with probability at least 1/2 − 1/nω(1) over random input.) Thus,
one can plug average-case lower bounds into the Nisan–Wigderson construction to
get a generator that fools small constant-depth circuits. This approach is used in a
celebrated work by Nisan [20] (which actually predates the more general construction

in [21]) in which he exhibits a generator G : {0, 1}l → {0, 1}2lΩ(1)

that fools small
AC0 circuits (i.e., constant-depth circuits with AND and OR gates). This generator
is based on the fact that PARITY is very average-case hard for small AC0 circuits
[14].

Subsequently, Luby, Velickovic, and Wigderson (Theorem 2 in [19]) built a gen-

erator G : {0, 1}l → {0, 1}lΩ(log l)

that fools small SYM ◦ AND circuits, i.e., depth-2
circuits with one arbitrary symmetric gate at the top and AND gates at the bottom.
By arbitrary symmetric gate we mean a gate that computes an arbitrary function
whose value depends only on the number of input bits being 1, important examples
being PARITY and MAJORITY. This generator is based on the fact that the gener-
alized inner product function is average-case hard for small SYM ◦ AND circuits with
small bottom fan-in [4, 15].

The above two generators ([20] and Theorem 2 in [19]) fool two incomparable
classes of circuits (i.e., small AC0 circuits and small SYM ◦ AND circuits). In this
work we exhibit a generator that fools a class of circuits strictly richer than both of
them, namely, small constant-depth circuits with few arbitrary symmetric gates.

1.1. Our results. In this paper we exhibit the following generator.
Theorem 1. For every constant d there is a constant ε > 0 such that for every

l there is a generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such that for
every circuit C of size m and depth d with logm(l) arbitrary symmetric gates, we
have ∣∣∣∣ Pr

x∈{0,1}m
[C(x) = 1] − Pr

x∈{0,1}l
[C(G(x)) = 1]

∣∣∣∣ ≤ 1

m
,

and given x ∈ {0, 1}l, i ≤ m, we can compute the ith output bit of G(x) in time
poly(l).

The generator in Theorem 1 improves on the generator by Luby, Velickovic, and
Wigderson (Theorem 2 in [19]) that achieves the same stretch (up to a different
constant ε) but fools only circuits of depth 2 (as opposed to any constant depth) with
one symmetric gate at the top. We elaborate more on the difference between the two

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1389

generators in section 6. The generator in Theorem 1 also fools a strictly richer class
of circuits than Nisan’s generator, which fools constant-depth circuits [20]. However,

Nisan’s generator has a much bigger stretch: it stretches l bits to 2l
Ω(1)

bits, as opposed
to lΩ(log l) in Theorem 1.

As a standard consequence of Theorem 1 we obtain the following subexponen-
tial derandomization of probabilistic polynomial-size constant-depth circuits with a
logarithmic number of arbitrary symmetric gates. This seems to be the richest prob-
abilistic circuit class known to admit a subexponential derandomization. See [21] for
the connection between generators and derandomization.

Corollary 2. Let a function f be computed by a polynomial-time uniform family
of probabilistic poly(n)-size constant-depth circuits with O(log n) arbitrary symmetric

gates. Then f can be computed in deterministic time exp(2O(
√

logn)) = 2n
o(1)

.

1.2. Techniques. The generator in Theorem 1 is obtained by plugging into the
Nisan–Wigderson pseudorandom generator construction [21] a function that is very
hard on average for “small” constant-depth circuits with “few” arbitrary symmetric
gates (cf. Theorem 3).

Here a simple and crucial observation is that the reduction in the proof of cor-
rectness of the Nisan–Wigderson generator does not increase the number of arbitrary
symmetric gates.

Given our average-case hardness result (Theorem 3), the construction of our gen-
erator is simpler than the construction of the generator by Luby, Velickovic, and
Wigderson (Theorem 2 in [19]) that uses more involved combinatorial arguments
than those in [21]. These more involved combinatorial arguments were probably used
because the generator in [19] builds on a function that is hard on average for circuits
of depth 2 (as opposed to any constant depth), and thus one cannot use directly
the Nisan–Wigderson construction [21] since the reduction in its proof of correctness
increases the depth by 1.

We now state our average-case hardness result.
Theorem 3. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial

time such that for every constant d there is a constant ε > 0 such that for every n and
every circuit C of size nε·logn and depth d with ε log2 n arbitrary symmetric gates, the
following holds:

Pr
x∈{0,1}n

[C(x) �= f(x)] ≥ 1/2 − 1/nε·logn.

We now explain the techniques involved in proving Theorem 3.
To simplify the discussion we first focus on how to prove an average-case hardness

result for small constant-depth circuits with one arbitrary symmetric gate at the top,
i.e., small SYM ◦ AC0 circuits (Theorem 4). The extension to circuits with more
arbitrary symmetric gates is deferred to the later subsection on circuits with more
arbitrary symmetric gates.

We obtain our average-case hardness result for small SYM ◦ AC0 circuits through
a modification of previous lower bounds. We now discuss these previous lower bounds,
then discuss why they are not sufficient for our purposes, and then sketch the proof
of our average-case hardness result for small SYM ◦ AC0 circuits.

Previous lower bounds. Babai, Nisan, and Szegedy [4] proved that the generalized
inner product function (i.e., GIPn,s(x) :=

⊕
i≤n

∧
j≤s xi,j) is very hard on average for

multiparty communication complexity protocols among few parties that communicate
little.

1390 EMANUELE VIOLA

H̊astad and Goldmann [15] noticed that any function computed by a small depth-2
circuit with an arbitrary symmetric gate of unbounded fan-in at the top and (arbi-
trary) gates of small fan-in at the bottom can be computed by a multiparty commu-
nication complexity protocol among few parties communicating little.

Thus, by the above result [4], they obtain that GIP is average-case hard for that
class of circuits. Now, by the so-called ε-discriminator lemma1 of Hajnal et al. [12]
they conclude that GIP cannot be computed, in the worst case, by small depth-3
circuits with one majority gate of unbounded fan-in at the top, arbitrary symmetric
gates of unbounded fan-in in the middle, and (arbitrary) gates of small fan-in at the
bottom.

Razborov and Wigderson [22] eliminated the constraint on the bottom fan-in:
they exhibited a new function RW that cannot be computed, in the worst case, by
small depth-3 circuits with one majority gate at the top, symmetric gates in the
middle, and AND gates at the bottom, where all the gates have unbounded fan-in
(MAJ ◦ SYM ◦ AND circuits). Their function RW is obtained from GIP by replacing
each input variable with a parity function, i.e., RW (x) :=

⊕
i≤n

∧
j≤logn

⊕
k≤n xi,j,k.

To explain their argument we introduce restrictions [11]. A restriction on m
variables x1, x2, . . . , xm is a map ρ : {x1, x2, . . . , xm} → {0, 1, ∗}. For a circuit C we
denote by C|ρ the circuit we get by doing the substitutions prescribed by ρ, followed
by all obvious cancellations made possible by applying ρ. The input variables of C|ρ
are the variables which were given the value * by ρ.

The argument in [22] is as follows. Suppose that RW is computable by a small
MAJ ◦ SYM ◦ AND circuit C. Then there is a restriction ρ that accomplishes simul-
taneously two things: (1) C|ρ has small bottom fan-in and (2) C|ρ is still computing
GIP as a subfunction. Note that by definition of RW and by the nature of parity,
(2) happens whenever for every i, j there is k such that ρ(xi,j,k) = ∗. But (1) and (2)
contradict the above result by H̊astad and Goldmann.

Finally, Hansen and Miltersen [13] observed that RW actually cannot be com-
puted by small circuits of any constant depth with one majority gate at the top, and
one layer of arbitrary symmetric gates immediately below it, where all the gates have
unbounded fan-in (MAJ ◦ SYM ◦ AC0 circuits). The argument in [13] goes as follows.
Suppose that RW is computable by a small MAJ ◦ SYM ◦ AC0 circuit C. Then there
is a restriction ρ that accomplishes simultaneously two things: (1′) C|ρ is equivalent
to a small MAJ ◦ SYM ◦ AND circuit and (2′) C|ρ is still computing RW on an input
of polynomially related size. (1′) is obtained through H̊astad’s switching lemma [14],
and for (2′) they show that for every i, j there are many k such that ρ(xi,j,k) = ∗.
But (1′) and (2′) contradict the above result by Razborov and Wigderson.

Why previous lower bounds are not sufficient to our purposes. The main problem
with these previous lower bounds is that they give only a function that is worst-case
hard for SYM ◦ AC0 circuits, while as explained before we need a function that is
average-case hard. In fact, the choice of parameters in the definition of RW implies
that Prx[RW (x) = 0] = 1/2+Ω(1), and thus RW cannot be average-case hard (since
the constant-size circuit that always outputs 0 computes the function fairly well on
average). Moreover the choice of parameters for the restrictions in [22] does not
guarantee that the reduction holds with high probability, which is needed to establish
average-case hardness.

Proof sketch of our average-case hardness result for SYM ◦ AC0 circuits. We

1This lemma states that if a function is computed by a small circuit with a MAJORITY gate at
the top, then some input circuit to the MAJORITY gate computes the function well on average.

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1391

define a function f (similar to RW , but with a different choice of parameters), and
we show that f is average-case hard for SYM ◦ AC0 circuits. Our argument simplifies
the previous ones and goes as follows. Suppose that C is a small SYM ◦ AC0 circuit
computing f . We argue that with high probability

(
1 − n−Ω(log n)

)
over the choice of

a random restriction ρ, both of the following events happen:
• Event E1 := the function computed by C|ρ is computable by a multiparty

communication complexity protocol among few parties communicating little.
• Event E2 := C|ρ is computing GIP as a subfunction.

To show E1 we use H̊astad’s switching lemma to argue that with high probability
over ρ, C|ρ is equivalent to a small depth-2 circuit with a symmetric gate at the top
(of unbounded fan-in) and AND gates of small fan-in at the bottom, and then we
use H̊astad and Goldmann’s connection [15] between these circuits and multiparty
communication complexity protocols (cf. the subsection on previous lower bounds).
Now, when ρ satisfies both E1 and E2 we have that Pry[C|ρ(y) �= GIP(y)] ≥ 1/2 −
n−Ω(log n) by the multiparty communication complexity lower bound by Babai, Nisan,
and Szegedy [4]. Since we can think of a random input x as being generated by first
choosing a random restriction ρ and then choosing a random input y for the * of ρ
(so that C(x) = C|ρ(y)), we have that

Pr
x

[C(x) �= f(x)]

≥ Pr
y

[
C|ρ(y) �= GIP(y)

∣∣∣ ρ satisfies E1 and E2

]
· Pr

ρ

[
ρ satisfies E1 and E2

]

≥
(
1/2 − n−Ω(log n)

)
·
(
1 − n−Ω(log n)

)

= 1/2 − n−Ω(log n).

We show that the above argument goes through for SYM ◦ AC0 circuits C of size
nΩ(log n) and this proves our average-case hardness result for SYM ◦ AC0 circuits.

Circuits with more arbitrary symmetric gates. We now discuss how to extend our
techniques to obtain an average-case hardness result for constant-depth circuits of size
nε·logn with ε log2 n arbitrary symmetric gates (Theorem 3). The proof of this result
has the same structure of our result for SYM ◦ AC0 circuits discussed in the previous
subsection. The only difference is proving that if C is a small constant-depth circuit
with ε log2 n arbitrary symmetric gates, then with high probability over a random
restriction ρ the function computed by C|ρ is computable by a multiparty communi-
cation complexity protocol P among few parties communicating little (cf. event E1

in the previous subsection). The idea is to let the protocol P compute the outputs
of each arbitrary symmetric gate in order. Specifically, first fix a topological order of
the arbitrary symmetric gates. (The simple order induced by reading the gates level
by level from the inputs to the output node will do.) Now consider the SYM ◦ AC0

subcircuit C1 whose root is the first arbitrary symmetric gate in this order. We know
that with high probability over the restriction ρ, the function computed by C1|ρ is
computable by a multiparty communication complexity protocol P1 exchanging few
bits (cf. event E1 in the previous subsection). Our protocol P first simulates P1 to
determine the output b1 of C1|ρ. Then it considers the SYM ◦ AC0 circuit C2 whose
root is the second arbitrary symmetric gate, and where the first arbitrary symmetric
gate is replaced with the constant b1. Again, we argue that the function computed
by C2|ρ is computable by a multiparty communication complexity protocol P2 ex-
changing few bits. Our protocol P now simulates P2 to determine the output b2 of
C2|ρ. We continue in this way until all the arbitrary symmetric gates are computed.

1392 EMANUELE VIOLA

Assuming without loss of generality that the output gate of the circuit is included in
the arbitrary symmetric gates, the protocol P computes C|ρ.

Comparison with the work by Chattopadhyay and Hansen. The work described
in this paper proceeded at the same time as closely related work by Chattopadhyay
and Hansen. These next paragraphs give the chronology of the papers that led to the
current results, along with relevant citations. A similar discussion appears at the end
of section 1 in [10].

An earlier version of this work, (I, unpublished, 2005) proved an average-case
hardness result for constant-depth circuits with a constant number of arbitrary sym-
metric gates. This result was obtained by first proving an average-case hardness result
for constant-depth circuits with one arbitrary symmetric gate (Theorem 4) and then
combining this with a result by Beigel [6, Theorem 5.1] that shows that for every
circuit of size S and depth d with σ arbitrary symmetric gates there is another circuit
of size S2σ+1 and depth d+1 with one arbitrary symmetric gate at the top computing
the same function.

Independently of (I), Chattopadhyay and Hansen [10, Theorem 1] proved a worst-
case hardness result for constant-depth circuits of size nε·logn with ε log2 n arbitrary
symmetric gates. (Note that the results in [10, Theorem 1] and (I) are incomparable.)

Subsequent to (I), Chattopadhyay and Hansen (II, personal communication, 2005)
proved an average-case hardness result for constant-depth circuits of size nε·logn but
having only ε log n arbitrary symmetric gates. (Note that the average-case hardness
result of Chattopadhyay and Hansen (II) does not directly imply their worst-case
hardness result [10, Theorem 1], because it deals with a smaller number of arbitrary
symmetric gates.)

The current paper takes inspiration from the average-case hardness result of Chat-
topadhyay and Hansen (II) and proves an average-case hardness result for constant-
depth circuits of size nε·logn with ε log2 n arbitrary symmetric gates (Theorem 3);
thus we obtain results that are stronger than those of either (I) or (II).

1.3. Organization. This paper is organized as follows. In section 2 we fix some
notation. In section 3 we show how our average-case hardness result (Theorem 3)
implies our generator (Theorem 1). In section 4 we prove our average-case hardness
result for SYM ◦ AC0 circuits. In section 5 we extend this to our average-case hardness
result for constant-depth circuits with few arbitrary symmetric gates, thus proving
Theorem 3. In section 6 we elaborate on why our generator improves on the generator
by Luby, Velickovic, and Wigderson (Theorem 2 in [19]). In section 7 we discuss some
open problems.

2. Preliminaries. A symmetric gate is a gate that computes a symmetric func-
tion (i.e., a function whose value depends only on the number of input bits being 1,
such as PARITY or MAJORITY). Our theorems hold regardless of which symmetric
functions are computed by the gates; different functions can be used for circuits for
inputs of different lengths, or even for different gates within the same circuit. To
emphasize that our results hold no matter what symmetric functions are computed
by the gates, we call them arbitrary symmetric gates. We use standard definitions of
constant-depth circuits, which we now briefly recall. Constant-depth circuits consist
of AND, OR, and possibly other gates (e.g., arbitrary symmetric gates). It is intended
that all gates whose type is not specified are either AND or OR and that AND and
OR gates are not counted toward arbitrary symmetric gates. All circuit gates, unless
specified otherwise, have unbounded fan-in. Circuits take both input variables and
their negations as input. Bottom gates are the one adjacent to the input bits. The

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1393

top gate is the output gate. Levels are numbered from the bottom. So the input bits
are at level 0, the bottom gates at level 1, and so on. Gates at level i are connected to
gates at levels i−1 and i+1 only. The depth of a circuit is the longest path from any
input to the output. The size of a circuit is the number of gates in it. Multiple edges
between pairs of nodes in the circuit are not allowed (otherwise an arbitrary symmet-
ric gate can compute any function; this convention is standard in the literature, e.g.,
[15]).

3. From average-case hardness to pseudorandomness. In this section we
show how our average-case hardness result (Theorem 3) implies our generator (The-
orem 1). We restate the theorems for the reader’s convenience.

Theorem 1 (restated). For every constant d there is a constant ε > 0 such that
for every l there is a generator G : {0, 1}l → {0, 1}m, where m = m(l) := lε log l, such
that for every circuit C of size m and depth d with logm(l) arbitrary symmetric gates,
we have ∣∣∣∣ Pr

x∈{0,1}m
[C(x) = 1] − Pr

x∈{0,1}l
[C(G(x)) = 1]

∣∣∣∣ ≤ 1

m
,

and given x ∈ {0, 1}l, i ≤ m, we can compute the ith output bit of G(x) in time
poly(l).

Theorem 3 (restated). There is a function f : {0, 1}∗ → {0, 1} computable in
polynomial time such that for every constant d there is a constant ε > 0 such that
for every n and every circuit C of size nε·logn and depth d with ε log2 n arbitrary
symmetric gates, the following holds:

Pr
x∈{0,1}n

[C(x) �= f(x)] ≥ 1/2 − 1/nε·logn.

Proof of Theorem 1, assuming Theorem 3. The generator is obtained by plugging
the function from Theorem 3 into Nisan and Wigderson’s pseudorandom generator

construction [21]. Specifically, they show how given a function f : {0, 1}
√

l/2 → {0, 1}
and a parameter m (which we set to be m(l) := lε·log l) to construct a generator
G : {0, 1}l → {0, 1}m such that every circuit C for which

∣∣∣∣ Pr
x∈{0,1}m

[C(x) = 1] − Pr
x∈{0,1}l

[C(G(x)) = 1]

∣∣∣∣ > 1/m

can be transformed into another circuit C ′ of size |C| + poly(m) that computes the
function f correctly with probability (over random input) greater than 1/2+1/m2 =
1/2 + 1/l2ε log l.

As observed in [20, 21], C ′ is simply C with one more layer of AND (or OR)
gates at the bottom, and possibly negating the output. Adding one layer of AND (or
OR) gates at the bottom clearly does not increase the number of arbitrary symmetric
gates in C, and negations can be removed using De Morgan’s laws for AND and OR
gates and absorbing them in the arbitrary symmetric gates. Thus, if C is a circuit of
size m = m(l) = lε log l of depth d with logm(l) = ε log2 l arbitrary symmetric gates,
we obtain another circuit C ′ of size lO(ε log l) of depth d+ 1 with 1 + ε log2 l arbitrary

symmetric gates that computes f : {0, 1}
√

l/2 → {0, 1} with probability greater than
1/2 + 1/l2ε log l. This contradicts Theorem 3 for sufficiently small ε.

The complexity of the generator follows from the arguments in [20, 21] and the
fact that f is computable in time poly(l).

1394 EMANUELE VIOLA

4. Average-case hardness for SYM ◦ AC0 circuits. In this section we prove
our average-case hardness result for small constant-depth circuits with one arbitrary
symmetric gate at the top.

Theorem 4. There is a function f : {0, 1}∗ → {0, 1} computable in polynomial
time such that for every constant d there is a constant ε > 0 such that for every n
and every circuit C of size nε·logn and depth d with 1 arbitrary symmetric gate at the
top, the following holds:

Pr
x∈{0,1}n

[C(x) �= f(x)] ≥ 1/2 − 1/nε·logn.

In the rest of this section we prove Theorem 4. In the proof we use two results
which we describe in the following two subsections. The first is H̊astad’s switching
lemma [14], and the second is the multiparty communication complexity lower bound
for GIP by Babai, Nisan, and Szegedy [4].

4.1. Switching lemma. We now describe the switching lemma we use in the
proof of Theorem 4. As in [13], the crucial property that we need is that the DNF
obtained after applying the restriction is such that all the terms are mutually contra-
dictory, i.e., no input satisfies more than one term. This allows us to merge the top
OR gate of the DNF in the symmetric gate at the top (cf. Fact 6). That this property
holds for H̊astad’s switching lemma was noted by Boppana and H̊astad in [14] (inside
the proof of Lemma 8.3). A proof of this fact appears in [9]. In this paper we instead
use a version of H̊astad’s switching lemma which is due to Beame [5] and is inspired by
a proof given by Razborov [24]. We prefer to use this version because its proof [5, 24]
seems simpler than the proof in [14, 9]. A restriction on m variables x1, x2, . . . , xm is
a map ρ : {x1, x2, . . . , xm} → {0, 1, ∗}. For a function f : {0, 1}m → {0, 1} we denote
by f |ρ the function we get by doing the substitutions prescribed by ρ. f |ρ will be a
function of the variables that were given the value * by ρ. Similar conventions hold
for circuits. If ρ and ρ′ are restrictions, and ρ′ is defined on the variables mapped
to * by ρ, we write ρρ′ for the restriction obtained by combining ρ and ρ′, so that
f |ρρ′ = (f |ρ) |ρ′ . Let Rδ·m

m denote the uniform distribution on restrictions on m vari-
ables assigning exactly δm variables to ∗ and assigning random values to the others.
A decision tree on m variables is a labeled binary tree where edges and leaves are
labeled with 0 or 1 and internal nodes with variables. A decision tree computes a
function in the intuitive way, starting at the root and following the path according to
the values of the input variables and outputting the value at the reached leaf.

Lemma 5 (see [5]). Let ϕ be a DNF or a CNF formula in m variables with bottom
fan-in at most r. For every s ≥ 0, p < 1/7, the probability over ρ ∈ Rp·m

m that the
function computed by ϕ|ρ is not computable by a decision tree of height strictly less
than s is less than (7pr)s.

We will use Lemma 5 in combination with the following fact.
Fact 6. Let f be a symmetric function of S decision trees of height h. Then f is

computable by a depth-2 circuit of size S · 2h + 1 with a symmetric gate of unbounded
fan-in at the top and AND gates of fan-in h at the bottom.

Proof. Write each decision tree as a DNF with bottom fan-in h, where each term
corresponds to a path leading to 1. The number of terms in each DNF is at most 2h,
i.e., at most the number of paths in a decision tree of height h. Because every input
to a decision tree follows a unique path, each DNF we construct has the property that
every input satisfies at most one term. Thus we can merge the top OR gate of all these
DNFs with the top symmetric gate of the circuit. Specifically, if the original symmetric

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1395

gate was ψ(x1, x2, . . . , xS) = g(
∑

i≤S xi) for some arbitrary function g : [S] → {0, 1},
the new symmetric gate is simply ψ′(x1, x2, . . . , xS·2h) := g(

∑
i≤S·2h xi).

4.2. Multiparty communication complexity. In this section we describe
some results on communication complexity that will be used in the proof of our main
results. The model of interest is the multiparty communication complexity model. In
this model there are s parties, each having unlimited computational power, who wish
to collaboratively compute a certain function. The input bits to the function are
partitioned in s blocks, and the ith party knows all the input bits except those corre-
sponding to the ith block in the partition. The communication between the parties is
by “writing on a blackboard” (broadcast): any bit sent by any party is seen by all the
others. The parties exchange messages according to a fixed protocol. The measure of
interest is the number of bits exchanged by the parties. See the book by Kushilevitz
and Nisan [17] for background on this model.

Babai, Nisan, and Szegedy [4] proved a multiparty communication complexity
lower bound for the generalized inner product function GIPn,s : {0, 1}n·s → {0, 1},
which is defined as follows:

GIPn,s(x) :=

n⊕
i=1

s∧
j=1

xi,j .

Lemma 7 (see [4]). There is a partition of the inputs to GIPn,s in s blocks
such that the following holds. Let P be an s-party communication complexity protocol
exchanging at most 0.1 · (n/4s − log(1/γ)) bits of communication; then

Pr
x∈{0,1}n·s

[
P (x) �= GIPn,s(x)

]
≥ 1/2 − γ.

H̊astad and Goldmann [15] showed that the function computed by a small SYM ◦ AND
circuit with small bottom fan-in can be computed by a multiparty communication
complexity protocol among few parties exchanging few bits.

Lemma 8 (see [15]). Let C be a depth-2 circuit of size S with an arbitrary
symmetric gate (of unbounded fan-in) at the top and AND gates of fan-in strictly less
than s at the bottom. Then the function computed by C can be computed (under any
partition of the input) by an s-party communication complexity protocol exchanging
1 + s logS bits.

The idea in Lemma 8 is that since each bottom AND gate has fan-in strictly less
than s, then, for any partition of the input in s blocks, the input bits to each AND
can lie in at most s − 1 distinct blocks. Therefore we can assign each AND gate to
some party that knows all the input bits necessary to compute it. Now each party
broadcasts the number of AND gates assigned to him that evaluate to 1, which takes
at most logS bits. Since the top gate is symmetric this information is sufficient to
compute the output of the circuit.

Our next lemma combines the above observation by H̊astad and Goldmann with
the switching lemma results from the previous section to argue the following: for every
small SYM ◦ AC0 circuit, with high probability over a suitable restriction ρ, the func-
tion computed by C|ρ can be computed by a multiparty communication complexity
protocol among few parties exchanging few bits.

Lemma 9. For every constant d there is a constant ε > 0 such that the following
holds. Let C : {0, 1}n → {0, 1} be a circuit of size nε·logn and depth d with 1 arbitrary
symmetric gate at the top. Let ρ be a random restriction on the n input variables

1396 EMANUELE VIOLA

that assigns * to a subset of the variables of relative size 1/n0.1; i.e., let ρ ∈ R
n/n0.1

n .
Then with probability at least 1 − n−Ω(log n) over ρ, the function computed by C|ρ
is computable (under any partition of the input) by a 0.3 log n-party communication
complexity protocol exchanging log3 n bits of communication.

Proof. The proof amounts to a combination of the previous lemmas for some
specific setting of parameters.

Claim 10. With probability 1−n−Ω(log n) over ρ ∈ R
n/n0.1

n , the function computed
by C|ρ is computable by a depth-2 circuit of size |C| · 20.3 log n with a symmetric gate
(of unbounded fan-in) at the top and AND gates of fan-in strictly less than 0.3 log n
at the bottom.

The lemma follows by the above claim using Lemma 8, which implies that the
function computed by a depth-2 circuit of size S = |C| · 20.3 log n ≤ nlogn with a
symmetric gate (of unbounded fan-in) at the top and AND gates of fan-in strictly
less than 0.3 log n at the bottom is computable by a 0.3 log n-party communication
complexity protocol exchanging 1 + (0.3 log n) logS ≤ log3 n bits.

We now prove Claim 10. Similar calculations have already been done elsewhere
(e.g., Lemma 2 in [18]). However, we have not found the exact claim we need in the
literature.

Proof of Claim 10. We see the restriction ρ as d − 1 successive applications
of restrictions ρ1, ρ2, . . . , ρd−1 each mapping to * a subset of variables of relative size
1/nα of the (remaining) variables. Taking α = 0.1/(d−1) we have that, after applying
all d − 1 restrictions, the total number of variables mapped to * is n · (1/nα)d−1 =

n/n0.1, and so this distribution on restrictions is exactly R
n/n0.1

n .
For every i ∈ [d−1] let DT i be the event that, after applying the first i restrictions

ρ1, ρ2, . . . , ρi, the function computed by every gate at level i is computable by a
decision tree of height strictly less than 0.3 log n. We now bound Prρ[not DT d−1].
Note that it is at most

Pr
ρ1

[not DT 1] + Pr
ρ1,ρ2

[not DT 2|DT 1] + · · · + Pr
ρ1,ρ2,...,ρd−1

[not DT d−1|DT d−2].

We now bound each term. Fix any i ≤ d−1 and consider Prρ1,ρ2,...,ρi [not DT i|DT i−1].
(If i = 1, think of the input variables as functions computed by decision trees of depth
1, and define DT 0 := TRUE.) Fix any gate ϕ at level i. Without loss of generality,
assume ϕ is an OR gate (otherwise we can consider its negation, apply the same
reasoning, and then negate again). Since we are conditioning over DT i−1, all the
functions computed by gates at level i−1 can be computed by decision trees of height
(strictly) less than 0.3 log n. Write each such function as a DNF with terms of size at
most 0.3 log n (where each term corresponds to a path in the decision tree leading to
1). Merging the top OR gates of all these DNFs with ϕ we see that, given DT i−1,
the function computed by ϕ is a DNF with terms of size at most r = 0.3 log n. By
Lemma 5 the probability over the choice of the ith restriction ρi that the function
computed by ϕ|ρ1ρ2···ρi cannot be computed by a decision tree of depth strictly less
than s = 0.3 log n is at most

(7pr)s = (7 · (1/nα) · (0.3 log n))0.3 log n = n−Ω(log n).

Thus by a union bound we have that

Pr
ρ1,ρ2,...,ρi

[not DT i|DT i−1]

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1397

is at most n−Ω(log n) times the number of gates at level i. Therefore, if the circuit C
has size nε logn for sufficiently small ε we have

Pr
ρ

[not DT d−1] ≤ n−Ω(log n) · |C| = n−Ω(log n).

We have shown that with probability 1−n−Ω(log n) (over ρ) the function computed
by C|ρ is computable by a symmetric function of |C| decision trees of height strictly
less than 0.3 log n. By Fact 6 we can write each decision tree as a DNF and merge
the top OR gates of these DNFs into the top symmetric gate of C, thus proving the
claim.

4.3. Proof of Theorem 4. We now prove Theorem 4. We restate the theorem
for the reader’s convenience.

Theorem 4 (restated). There is a function f : {0, 1}∗ → {0, 1} computable in
polynomial time such that for every constant d there is a constant ε > 0 such that for
every n and every circuit C of size nε·logn and depth d with 1 arbitrary symmetric
gate at the top, the following holds:

Pr
x∈{0,1}n

[C(x) �= f(x)] ≥ 1/2 − 1/nε·logn.

Proof of Theorem 4. Similarly to [22], we consider the function obtained by
attaching PARITY gates on n bits at the bottom of GIPn,0.3 log n. That is, let fn :

{0, 1}n2(0.3 log n) → {0, 1} be defined as

fn(x) :=

n⊕
i=1

0.3 log n∧
j=1

n⊕
k=1

xi,j,k.

We will prove Theorem 4 with fn as the hard function. While fn is a function on
m = m(n) := n2(0.3 log n) bits, it will be convenient to parameterize it by n. Since
we will prove nΩ(log n) lower bounds for fn and the input length of fn is m = poly(n),
we also obtain mΩ(logm) lower bounds for fn (for a different hidden constant in the
Ω(·)).

It is easy to see that fn is computable in polynomial time.
Let C : {0, 1}m → {0, 1} be a circuit of size nε·logn and depth d with 1 arbitrary

symmetric gate at the top, for a sufficiently small constant ε. Let ρ be a random
restriction on the m input variables that assigns * to a subset of the variables of

relative size 1/m0.1; i.e., let ρ ∈ R
m/m0.1

m .
Consider the following two events:
• Event E1 := the function computed by C|ρ is computable (under every par-

tition of the input) by a 0.3 log n-party communication complexity protocol
exchanging n0.2 bits.

• Event E2 := for every i ∈ [n], j ∈ [0.3 log n] there is k ∈ [n] such that
ρ(xi,j,k) = ∗. (In other words, for each of the n · (0.3 log n) bottom parity
functions of fn, ρ maps some of its input variable to *.)

Claim 11. Pr
ρ∈R

m/m0.1
m

[E1 ∧ E2] ≥ 1 − n−Ω(log n).

Before proving Claim 11 let us see how we can use it to prove Theorem 4. Suppose

that some ρ ∈ R
m/m0.1

m satisfies both E1 and E2. Then

Pr
y∈{0,1}m/m0.1

[C|ρ(y) �= fn|ρ(y)] ≥ 1/2 − n−Ω(log n).(1)

1398 EMANUELE VIOLA

This holds by Lemma 7. Specifically, fix any restriction ρ′ taken on the variables
mapped to * by ρ, such that for every i ∈ [n], j ∈ [0.3 log n] there is exactly one
k ∈ [n] such that ρρ′(xi,j,k) = ∗. We then have that fn|ρρ′ equals GIPn,0.3 log n

(up to possibly negating some input variables). If the function computed by C|ρ is
computable by an s-party communication complexity protocol exchanging n0.2 bits,
then clearly the same holds for the function computed by C|ρρ′ . Therefore by the
multiparty communication complexity lower bound for GIP (Lemma 7) we obtain

(noticing that for s = 0.3 log n, γ = 2−n0.3

we have 0.1 · (n/4s − log(1/γ)) = Ω(n0.4 −
n0.3) > n0.2)

Pr
z∈{0,1}n(0.3 log n)

[C|ρρ′(z) �= fn|ρρ′(y)] ≥ 1/2 − 1/2n
Ω(1) ≥ 1/2 − n−Ω(log n).

Equation (1) follows, noticing that we can think of a random y as choosing first a
random ρ′ as above and then a random z ∈ {0, 1}n(0.3 log n) for the *’s of ρ′ (so that
C|ρ(y) = C|ρρ′(z)).

Thus we have

Pr
x

[C(x) �= fn(x)]

= Pr
ρ∈R

m/m0.1
m ,y∈{0,1}m/m0.1

[C|ρ(y) �= fn|ρ(y)]

≥ Pr
ρ∈R

m/m0.1
m ,y∈{0,1}m/m0.1

[C|ρ(x) �= fn|ρ(x)|E1 ∧ E2] · Pr
ρ∈R

m/m0.1
m

[E1 ∧ E2]

≥
(
1/2 − n−Ω(log n)

)
·
(
1 − n−Ω(log n)

)
(by (1) and Claim 11)

= 1/2 − n−Ω(log n),

which proves Theorem 4.
It is only left to prove Claim 11.
Proof of Claim 11. We show that E1 and E2 each do not happen with probability

at most n−Ω(log n).
The bound on Prρ[not E1] is given by Lemma 9. (The direct application of Lemma

9 gives communication complexity poly log(n) � n0.2 for circuits of size mε logm ≥
nε logn.)

We now bound Prρ[not E2]. Fix i ∈ [n], j ∈ [0.3 log n]. The probability that
for every k ∈ [n] we have ρ(xi,j,k) �= ∗ is the probability that a random subset
A ⊆ [m] of size m/m0.1 = m0.9 does not intersect a fixed subset B ⊆ [m] of size n.
This probability is at most the probability that m0.9 independent random elements
uniformly distributed in [m] all fall outside B. (To see this, think of choosing the
random subset A one element at a time, and note that when an element falls outside
B it is more likely for the next element to fall inside B.) This latter probability is

(
1 − n

m

)m0.9

≤ exp(−m0.9n/m) ≤ exp(−mΩ(1)) � n−Ω(log n),

where we used that m = n2 · (0.3 log n). By a union bound we have

Pr[not E2] ≤ n · (0.3 log n) · n−Ω(log n) = n−Ω(log n).

We point out that Theorem 4 is tight for the particular choice of

fn(x) =

n⊕
i=1

0.3 log n∧
j=1

n⊕
k=1

xi,j,k.

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1399

Namely, fn is computable by PARITY ◦ AND circuits of size nO(log n). This can be
seen by writing the function computed by each AND as a PARITY of nO(log n) ANDs
(cf. [22]).

5. Fooling circuits with more arbitrary symmetric gates. In this section
we prove our average-case hardness result for constant-depth circuits of size nε logn

with ε log2 n arbitrary symmetric gates (Theorem 3). The proof has the same struc-
ture as the proof of our average-case hardness result for circuits with one arbitrary
symmetric gate (Theorem 4). The only difference is that now we want to argue that
event E1 happens with high probability even for circuits with ε log2 n arbitrary sym-
metric gates; i.e., we want to show that with high probability over the restriction ρ,
the function computed by C|ρ is computable by a multiparty communication com-
plexity protocol among few parties exchanging few bits. Thus the proof of Theorem
3 follows from the next lemma.

Lemma 12. For every constant d there is a constant ε > 0 such that the following
holds. Let C : {0, 1}n → {0, 1} be a circuit of size nε·logn and depth d with ε log2 n
arbitrary symmetric gates. Let ρ be a random restriction on the n input variables

that assigns * to a subset of the variables of relative size 1/n0.1; i.e., let ρ ∈ R
n/n0.1

n .
Then with probability at least 1 − n−Ω(log n) over ρ, the function computed by C|ρ is
computable (under every partition of the input) by a 0.3 log n-party communication
complexity protocol exchanging log5 n bits of communication.

Proof. Assume without loss of generality that the output gate of the circuit C
is included in the arbitrary symmetric gates. Fix a topological order of the arbitrary
symmetric gates (the simple order induced by reading the gates level by level from the
inputs to the output node will do). For every i ∈ {1, . . . , ε log2 n}, z ∈ {0, 1}i−1, define
Ci,z as the subcircuit of C whose output gate is the ith arbitrary symmetric gate but
where the previous arbitrary symmetric gates are replaced with z (i.e., the jth gate
is replaced with the jth bit in z). Note that Ci,z is a SYM ◦ AC0 circuit.

Claim 13. For a sufficiently small constant ε > 0, with probability 1− n−Ω(log n)

over ρ ∈ R
n/n0.1

n we have that for every i ∈ {1, . . . , ε log2 n} and z ∈ {0, 1}i−1 the
function computed by Ci,z|ρ is computable (under every partition of the input) by a
0.3 log n-party communication complexity protocol Pi,z exchanging log3 n bits of com-
munication.

Proof. The claim follows by noting that the number of SYM ◦ AC0 circuits Ci,z

is at most (
ε log2 n

)
· 2ε log2 n ≤ n1+ε logn,

and then using a union bound and Lemma 9, which states that for each fixed circuit
Ci,z, with probability 1 − n−Ω(log n) over ρ, the function computed by Ci,z|ρ is com-
putable by a 0.3 log n-party communication complexity protocol exchanging log3 n
bits.

The lemma follows by noting that whenever ρ satisfies the conclusion of the
above claim we have (under any partition of the input bits) the following 0.3 log n-
party communication complexity protocol P for C|ρ. On input x compute C|ρ(x)
as follows. Simulate P1 to compute b1 = C1|ρ(x). Then simulate P2,b1 to compute
b2 = C2,b1 |ρ(x). Then simulate P3,b1◦b2 to compute b3 = C3,b1◦b2 |ρ(x). Continue in
this way until Cε log2 n,z(x) = C|ρ(x). (This last equality is easy to verify.)

Since each protocol Pi,z exchanges at most log3 n bits of communication, and we
simulate ε log2 n of these protocols, the total number of bits exchanged by the protocol
P is at most log5 n.

1400 EMANUELE VIOLA

It is perhaps interesting to note that, unlike the corresponding protocol in the
proof of Theorem 4, the protocol in the above lemma is not simultaneous; i.e., the
bits sent by a party in general depend on the bits previously sent by other parties
(cf. [17] for background on simultaneous protocols). Thus in our proof we are taking
advantage of the fact that the lower bound for GIP (Lemma 7) holds even for non-
simultaneous protocols. We do not know how to prove the same result starting from
a multiparty communication complexity lower bound for simultaneous protocols.

6. Our generator versus Luby, Velickovic, and Wigderson’s. In this sec-
tion we elaborate on why our generator (Theorem 1) improves on the generator by
Luby, Velickovic, and Wigderson (Theorem 2 in [19]). Recall that the generator in [19]
fools small depth-2 circuits with one arbitrary symmetric gate at the top (SYM ◦ AND
circuits). On the other hand, our generator fools small circuits of any constant depth
with few arbitrary symmetric gates.

We note that there are several results (e.g., [23, 27, 2, 33, 7, 8]) showing that
small circuits in certain rich constant-depth circuit classes can be converted into not-
too-big SYM ◦ AND circuits. Thus one may wonder whether we can use these results
to deduce that the generator in [19] is already powerful enough to give our main result
(Theorem 1), i.e., whether it can fool small constant-depth circuits with few arbitrary
symmetric gates.

The problem with this idea is that in all these conversion results, the blow-up
in the circuit size is bigger than the saving of the generator. More specifically, these
conversion results show how to convert, say, an AC0 circuit of size S into a SYM ◦ AND

circuit of size quasi -polynomial, i.e., SlogO(1) S , where the constant in the O(1) depends

on the depth of the original circuit. However, to fool a circuit of size SlogO(1) S , the
generator in [19] needs a seed of length at least S, and therefore it is of no use in this
particular setting.

It seems natural to ask whether the known conversion results are the best possible,
i.e., if the quasi-polynomial blow-up is inherent in the conversion. There are works
(e.g., [2, 22]) suggesting that this is indeed the case. We give another result of this
flavor.

Specifically, we show how to modify the lower bound in Theorem 4 to get a
function computable by polynomial-size PARITY ◦ AC0 circuits that is average-case
hard for superpolynomial-size SYM ◦ AND circuits. The idea is to change the fan-
in of the bottom parities of f so that they are computable by polynomial-size AC0

circuits (specifically, we change their fan-in from n to log3 n). While our lower bound
is only slightly superpolynomial (i.e., nΩ(log log n)), it shows that the parameters of
our generator (Theorem 1) cannot be obtained combining a conversion result with
Theorem 2 in [19], even if we only want to fool PARITY ◦ AC0 circuits.

Theorem 14. There is a function f : {0, 1}∗ → {0, 1} computable by polynomial-
time uniform polynomial-size PARITY ◦ AC0 circuits and a constant ε > 0 such that
for every n and every SYM ◦ AND circuit C of size nε·log log n, the following holds:

Pr
x∈{0,1}n

[C(x) �= f(x)] ≥ 1/2 − 1/nε·log log n.

Proof of Theorem 14. The proof follows closely the proof of Theorem 4. Let

gn : {0, 1}n(0.3 log n) log3 n → {0, 1}
be defined as

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1401

gn(x) :=

n⊕
i=1

0.3 log n∧
j=1

log3 n⊕
k=1

xi,j,k.

We will prove Theorem 14 with gn as the hard function. While gn is a function on
m = m(n) := n · (0.3 log n) · (log3 n) bits, it will be convenient to parameterize it by
n. Since we will prove nΩ(log log n) lower bounds for gn and the input length of gn is
m = n · poly logn, we also obtain mΩ(log logm) lower bounds for gn (for a different
hidden constant in the Ω(·)).

Note that gn is computable by a (uniform) polynomial-size circuit of depth 5 with
one PARITY gate at the top. To see this, note that each of the bottom parities in the
definition of gn is only on log3 n bits, and therefore it can be computed by a (uniform)
circuit of size poly(n) and depth 4 (see, e.g., [14, Theorem 2.2]).

Let C : {0, 1}m → {0, 1} be a SYM ◦ AND circuit of size nε·log log n for a suffi-
ciently small constant ε. Let ρ be a random restriction on the m input variables that

assigns * to a subset of the variables of relative size 1/ log(n); i.e., let ρ ∈ R
m/ log(n)
m .

Consider the following two events:
• Event E′

1 := the function computed by C|ρ is computable (under any par-
tition of the input) by a 0.3 log n-party communication complexity protocol
exchanging n0.2 bits.

• Event E′
2 := for every i ∈ [n], j ∈ [0.3 log n] there is k ∈ [log3 n] such that

ρ(xi,j,k) = ∗. (In other words, for each of the n · (0.3 log n) bottom parity
functions of fn, ρ maps some of its input variable to *.)

As before, Theorem 14 follows from the next claim (cf. the proof of Theorem
4).

Claim 15. Pr
ρ∈R

m/ log(n)
m

[E′
1 ∧ E′

2] ≥ 1 − n−Ω(log log n).

Proof. We show that E′
1 and E′

2 each do not happen with probability at most
n−Ω(log log n).

We now bound Prρ[not E′
1]. Analogously to the proof of Lemma 9, the main

step is proving the following claim: with high probability
(
1 − n−Ω(log log n)

)
over

ρ ∈ R
m/ log(n)
m , the function computed by C|ρ is computable by a depth-2 circuit of

size |C| · 20.3 log n = nε·log log n · 20.3 log n with a single symmetric gate (of unbounded
fan-in) at the top and AND gates of fan-in strictly less than 0.3 log n at the bottom.
While this probability can be bounded directly, similarly to what is done in [22], it
seems simpler to use again the switching lemma. Fix a bottom AND gate ϕ of C, and
think of the input variables to ϕ as clauses of size r = 1. By Lemma 5 the probability
over the choice of ρ that the function computed by ϕ|ρ cannot be computed by a
decision tree of depth strictly less than s = 0.3 log n is at most

(7pr)s = (7 · (1/ log(n)) · 1)0.3 log n = n−Ω(log log n).

Therefore if the circuit C has size nε log log n for sufficiently small ε we have, by a
union bound, that with probability 1 − n−Ω(log log n) (over ρ) the function computed
by C|ρ is computable by a symmetric function of |C| decision trees of height strictly
less than 0.3 log n. By Fact 6 we can write each decision tree as a DNF and merge
the top OR gates of these DNFs into the top symmetric gate of C, and thus E′

1

holds. We now bound Prρ[not E′
2]. Fix i ∈ [n], j ∈ [0.3 log n]. The probability that

for every k ∈ [log3 n] we have ρ(xi,j,k) �= ∗ is the probability that a random subset
A ⊆ [m] of size m/ log(n) does not intersect a fixed subset B ⊆ [m] of size log3 n. This
probability is at most the probability that m/ log(n) independent random elements
uniformly distributed in [m] all fall outside B. (To see this, think of choosing the

1402 EMANUELE VIOLA

random subset A one element at a time, and note that when an element falls outside
B it is more likely for the next element to fall inside B.) This latter probability is

(
1 − log3 n

m

)m/ log(n)

≤ exp(−Ω(log2 n)) � n−Ω(log log n).

By a union bound we have

Pr[not E′
2] ≤ n · (0.3 log n) · n−Ω(log log n) = n−Ω(log log n).

7. Open problems. Can we improve the stretch of our generator? We remark
that an explicitly computable generator G : {0, 1}l → {0, 1}m that fools circuits of
size m in some class C (e.g., C = SYM ◦ AC0) implies the existence of an explicit
function f : {0, 1}l+1 → {0, 1} that requires C circuits of size m (see, e.g., [21]). Thus,
improving the stretch of our generator requires establishing stronger lower bounds
on the size of circuits computing explicit functions, a notoriously difficult problem.
In particular, using a famous result by Yao [33] and Beigel and Tarui [8], we obtain

that improving the stretch of our generator to m(l) = llog
ω(1) l, even if we only want

to fool SYM ◦ AND circuits, would imply the existence of an explicit function that
cannot be computed by polynomial-size constant-depth circuits with MODa gates
for constant a (i.e., ACC0 circuits), thus answering a long-standing open question
(cf. [17, section 11.4]). We note that the size lower bound obtained with the approach
in [15, 22, 13] and in this paper is limited by the number of players in the known
multiparty communication complexity lower bounds (cf. [17, Problems 6.21]).

A direction that seems to have been investigated less is that of trying to increase
the number of arbitrary symmetric gates in our results, which is currently logarithmic
in the circuit size. Specifically, we ask whether the techniques in this paper can be
used to prove (average-case) hardness results for small constant-depth circuits with
ω(log2 n) arbitrary symmetric gates. Such a hardness result would follow from a pos-
itive answer to the following open question. Let C be a constant-depth circuit of size
nε logn with ω(log2 n) arbitrary symmetric gates, and let ρ be a restriction as in the
statement of Lemma 9. Is it true that with high probability over ρ the function com-
puted by C|ρ is computable by a 0.9 log n-party communication complexity protocol
exchanging n0.9 bits?

Acknowledgments. We thank Salil Vadhan for his helpful reading of this paper.
We thank Arkadev Chattopadhyay and Kristoffer Arnsfelt Hansen for sending us their
paper [10] and the anonymous referees for helpful comments.

REFERENCES

[1] M. Agrawal, Hard sets and pseudo-random generators for constant depth circuits, in Proceed-
ings of the 21st Annual Foundations of Software Technology and Theoretical Computer
Science, Bangalore, India, Springer-Verlag, Berlin, 2001, pp. 58–69.

[2] E. Allender and U. Hertrampf, Depth reduction for circuits of unbounded fan-in, Inform.
and Comput., 112 (1994), pp. 217–238.

[3] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential time simula-
tions unless EXPTIME has publishable proofs, Comput. Complexity, 3 (1993), pp. 307–318.

[4] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs, J. Comput. System Sci., 45 (1992), pp. 204–232.

[5] P. Beame, A Switching Lemma Primer, Technical report UW-CSE-95-07-01, Department of
Computer Science and Engineering, University of Washington, Seattle, WA, 1994; also
available online from http://www.cs.washington.edu/homes/beame/.

[6] R. Beigel, When do extra majority gates help? polylog(N) majority gates are equivalent to
one, Comput. Complexity, 4 (1994), pp. 314–324.

PSEUDORANDOM BITS FOR CIRCUITS WITH SYMMETRIC GATES 1403

[7] R. Beigel, N. Reingold, and D. A. Spielman, The perceptron strikes back, in Proceedings of
the Structure in Complexity Theory Conference, 1991, pp. 286–291.

[8] R. Beigel and J. Tarui, On ACC, Comput. Complexity, 4 (1994), pp. 350–366.
[9] C. Berg and S. Ulfberg, A lower bound for perceptrons and an oracle separation of the PPPH

hierarchy, J. Comput. System Sci., 56 (1998), pp. 263–271.
[10] A. Chattopadhyay and K. A. Hansen, Lower bounds for circuits with few modular and

symmetric gates, in Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP), Lisboa, Portugal, Lecture Notes in Comput. Sci. 3580,
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds., Springer-Verlag,
Berlin, 2005.

[11] M. L. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierarchy,
Math. Systems Theory, 17 (1984), pp. 13–27.

[12] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán, Threshold circuits of bounded
depth, J. Comput. System Sci., 46 (1993), pp. 129–154.

[13] K. A. Hansen and P. B. Miltersen, Some meet-in-the-middle circuit lower bounds, in Pro-
ceedings of the 29th International Symposium on Mathematical Foundations of Computer
Science (MFCS), Lecture Notes in Computer Science 3153, Springer-Verlag, Berlin, 2004,
pp. 334–345.

[14] J. Håstad, Computational Limitations of Small-Depth Circuits, MIT Press, Cambridge, MA,
1987.

[15] J. Håstad and M. Goldmann, On the power of small-depth threshold circuits, Comput. Com-
plexity, 1 (1991), pp. 113–129.

[16] A. Healy, S. P. Vadhan, and E. Viola, Using nondeterminism to amplify hardness, SIAM
J. Comput., 35 (2006), pp. 903–931.

[17] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press, Cam-
bridge, UK, 1997.

[18] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and
learnability, J. Assoc. Comput. Mach., 40 (1993), pp. 607–620.

[19] M. Luby, B. Velickovic, and A. Wigderson, Deterministic approximate counting of depth-2
circuits, in Proceedings of the Second Annual Israel Symposium on Theory of Computing
Systems (ISTCS), 1993, pp. 18–24.

[20] N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica, 11 (1991), pp. 63–70.
[21] N. Nisan and A. Wigderson, Hardness versus randomness, J. Comput. System Sci., 49 (1994),

pp. 149–167.
[22] A. Razborov and A. Wigderson, nΩ(log n) lower bounds on the size of depth-3 threshold

circuits with AND gates at the bottom, Inform. Process. Lett., 45 (1993), pp. 303–307.
[23] A. A. Razborov, Lower bounds on the dimension of schemes of bounded depth in a complete

basis containing the logical addition function, Mat. Zametki, 41 (1987), pp. 598–607, 623.
[24] A. A. Razborov, Bounded arithmetic and lower bounds in Boolean complexity, in Feasible

Mathematics, II, Progr. Comput. Sci. Appl. Logic 13, Birkhäuser Boston, Boston, 1995,
pp. 344–386.

[25] A. A. Razborov and S. Rudich, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24–35.
[26] R. Shaltiel and C. Umans, Simple extractors for all min-entropies and a new pseudorandom

generator, J. ACM, 52 (2005), pp. 172–216.
[27] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity,

in Proceedings of the 19th Annual ACM Symposium on Theory of Computing, New York,
1987, pp. 77–82.

[28] M. Sudan, L. Trevisan, and S. Vadhan, Pseudorandom generators without the XOR lemma,
J. Comput. System Sci., 62 (2001), pp. 236–266.

[29] C. Umans, Pseudo-random generators for all hardnesses, J. Comput. System Sci., 67 (2003),
pp. 419–440.

[30] E. Viola, The complexity of constructing pseudorandom generators from hard functions, Com-
put. Complexity, 13 (2004), pp. 147–188.

[31] E. Viola, Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates,
in Proceedings of the 20th Annual Conference on Computational Complexity, IEEE, 2005,
pp. 198–209.

[32] E. Viola, The Complexity of Hardness Amplification and Derandomization, Ph.D. thesis,
Harvard University, Cambridge, MA, 2006.

[33] A. C. Yao, On ACC and threshold circuits, in Proceedings of the 31st Annual IEEE Symposium
Foundation on Computer Science, 1990, pp. 619–627.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1404–1434

LOCALLY DECODABLE CODES WITH TWO QUERIES AND
POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS∗

ZEEV DVIR† AND AMIR SHPILKA‡

Abstract. In this work we study two, seemingly unrelated, notions. Locally decodable codes
(LDCs) are codes that allow the recovery of each message bit from a constant number of entries of
the codeword. Polynomial identity testing (PIT) is one of the fundamental problems of algebraic
complexity: we are given a circuit computing a multivariate polynomial and we have to determine
whether the polynomial is identically zero. We improve known results on LDCs and on polynomial
identity testing and show a relation between the two notions. In particular we obtain the following
results: (1) We show that if E : F

n �→ F
m is a linear LDC with two queries, then m = exp(Ω(n)).

Previously this was known only for fields of size � 2n [O. Goldreich et al., Comput. Complexity,
15 (2006), pp. 263–296]. (2) We show that from every depth 3 arithmetic circuit (ΣΠΣ circuit), C,
with a bounded (constant) top fan-in that computes the zero polynomial, one can construct an LDC.
More formally, assume that C is minimal (no subset of the multiplication gates sums to zero) and
simple (no linear function appears in all the multiplication gates). Denote by d the degree of the
polynomial computed by C and by r the rank of the linear functions appearing in C. Then we can
construct a linear LDC with two queries that encodes messages of length r/polylog(d) by codewords
of length O(d). (3) We prove a structural theorem for ΣΠΣ circuits, with a bounded top fan-in, that
compute the zero polynomial. In particular we show that if such a circuit is simple, minimal, and of
polynomial size, then its rank, r, is only polylogarithmic in the number of variables (a priori it could
have been linear). (4) We give new PIT algorithms for ΣΠΣ circuits with a bounded top fan-in:
(a) a deterministic algorithm that runs in quasipolynomial time, and (b) a randomized algorithm
that runs in polynomial time and uses only a polylogarithmic number of random bits. Moreover,
when the circuit is multilinear, our deterministic algorithm runs in polynomial time. Previously
deterministic subexponential time algorithms for PIT in bounded depth circuits were known only
for depth 2 circuits (in the black box model) [D. Grigoriev, M. Karpinski, and M. F. Singer, SIAM
J. Comput., 19 (1990), pp. 1059–1063; M. Ben-Or and P. Tiwari, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, ACM Press, New York, 1988, pp. 301–309; A. R. Klivans
and D. Spielman, Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, ACM
Press, New York, 2001, pp. 216–223]. In particular, for the special case of depth 3 circuits with three
multiplication gates our result resolves an open question asked by Klivans and Spielman.

Key words. derandomization, polynomial identity test, arithmetic circuits, depth 3, locally
decodable codes

AMS subject classifications. 68Q25, 94B65

DOI. 10.1137/05063605X

1. Introduction. Locally decodable codes (LDCs) are error correcting codes
that allow the recovery of each symbol of the message from a constant number of
entries of the codeword. Polynomial identity testing (PIT) is one of the fundamental
problems of algebraic complexity: we are given a circuit computing a multivariate
polynomial, and we have to determine whether the polynomial is identically zero. In
this paper we show a relation between these two notions—roughly, from every depth 3
circuit which is identically zero, one can construct an LDC. Using this relation and a
new lower bound on LDCs, we devise new PIT algorithms for depth 3 circuits.

∗Received by the editors March 14, 2006; accepted for publication (in revised form) July 14, 2006;
published electronically January 26, 2007.

http://www.siam.org/journals/sicomp/36-5/63605.html
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel (zeev.dvir@

weizmann.ac.il).
‡Faculty of Computer Science, Technion, Haifa, Israel (shpilka@cs.technion.ac.il).

1404

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1405

1.1. Locally decodable codes. LDCs are error correcting codes that allow the
recovery of each symbol of the message, from a corrupted codeword, by looking at
only a constant number of entries of the corrupted word. Roughly, a (q, δ, ε)-locally
decodable code encodes x ∈ F

n to E(x) ∈ F
m such that for each index i ∈ [n], xi

can be recovered from E(x) with probability1 > 1
|F| + ε by reading only q (random)

entries, even if E(x) was corrupted in δm positions.

LDCs have many applications—they are related to private information retrieval
(PIR) schemes [13, 26, 18], and they can be used for amplification of hardness [19, 20,
3] and for the construction of hard-core predicates for one-way permutations [30, 15].
(See [49] for a survey on LDCs.)

The notion of LDCs was explicitly discussed in [4] and explicitly defined in [26].
Implicit constructions of local decoders can be found in the context of random self-
reducibility and self-correcting computations (see, e.g., [32, 6, 16, 17, 15]). There
are two main questions related to LDCs: finding explicit constructions and proving
limits of such constructions (i.e., proving lower bounds on the length of the encoding).
Explicit constructions were given by [4, 7, 8]. The best current construction is due to
Beimel et al. [8], who gave an LDC with q queries of length m = exp(nO(log log q/q log q)).

The problem of proving lower bounds was first studied by Katz and Trevisan [26],
who proved that for every LDC with q queries, the length of the codeword, m, is at

least n1+ 1
q−1 . This is currently the best lower bound for general LDCs (see also [14]).

It is a very challenging open question to give tight lower bounds (or upper bounds)
on the length of LDCs. Due to the difficulty of the problem many works focused
on the case of codes with two queries (q = 2). Exponential lower bounds were first
proved for linear codes [18, 37] and then, by techniques from quantum computation,
for nonlinear codes over GF (2) [28]. The bound of Goldreich et al. [18] actually holds
for linear LDCs with two queries over any finite field, namely, that m is at least
2Ω(n)−log(|F|), where F is the underlined field. This result is (nearly) tight when the
field is of constant size; however, it gives no significant bound for infinite fields.

1.2. Polynomial identity testing. PIT is a fundamental problem in algebraic
complexity: we are given a multivariate polynomial (in some representation) over some
field F, and we have to determine whether it is identically zero.2 The importance of
this problem follows from its many applications: algorithms for primality testing [1, 2],
for deciding if a graph contains a perfect matching [33, 34, 11], and more, are based on
reductions to the PIT problem. (See the introduction of [31] for more applications.)

Determining the complexity of PIT is one of the greatest challenges of theoretical
computer science. It is one of a few problems (and in some sense PIT is the most
general problem) for which we have coRP algorithms but no deterministic subexpo-
nential time algorithms. Kabanets and Impagliazzo [25] suggested an explanation for
the lack of algorithms. They showed that efficient deterministic algorithms for PIT
imply that NEXP does not have polynomial size arithmetic circuits. Specifically, if
PIT has deterministic polynomial time algorithms, then either the permanent cannot
be computed by polynomial size arithmetic circuits or NEXP �⊂ P/poly.

The first randomized algorithm for PIT was discovered independently by Schwartz
[42] and Zippel [50]. Their well-known algorithm simply evaluates the polynomial at a
random point and accepts iff the polynomial vanishes at the point. If the polynomial

1If F is infinite, then the probability of success is > ε.
2Note that we want the polynomial to be identically zero and not just to be equal to the zero

function. For example, x2 − x is the zero function over GF (2) but not the zero polynomial.

1406 ZEEV DVIR AND AMIR SHPILKA

is of degree d and each variable is randomly chosen from a domain S, then the error
probability is bounded by d/|S|. Two kinds of works followed the Schwartz–Zippel al-
gorithm: randomized algorithms that use fewer random bits [12, 31, 1] and algorithms
for restricted models of arithmetic circuits. In [22, 9, 29] polynomial time determinis-
tic PIT algorithms for depth 2 arithmetic circuits were given. More recently, [41] gave
a polynomial time PIT algorithm for noncommutative formulas. All algorithms, with
the exception of [1, 41], are black box algorithms. That is, these algorithms do not
have access to a circuit computing the polynomial, and they can evaluate it only on
different inputs (as in the Schwartz–Zippel algorithm).

A result of a different nature was proved by Kabanets and Impagliazzo [25]. They
designed a deterministic quasi-polynomial time algorithm based on unproved hardness
assumptions. Namely, in Theorem 7.7 of [25] it is shown that if there is a family
{pn} of exponential time computable polynomials in n variables over Z such that the
arithmetic circuit complexity of pn is exp(nΩ(1)), then there is an exp(poly(logn)) time
algorithm for identity testing for any polynomial size arithmetic circuit that computes
polynomials with at most a polynomial degree and polynomial size coefficients.

1.3. Depth 3 arithmetic circuits. Proving lower bounds for general arith-
metic circuits is the greatest challenge of algebraic complexity. Unfortunately, except
for the lower bounds of Strassen [47] and Baur and Strassen [5], no lower bounds are
known for general arithmetic circuits. Due to the difficulty of the problem, research
focused on restricted models such as monotone circuits and bounded depth circuits.
Exponential lower bounds were proved on the size of monotone arithmetic circuits
[43, 24], and linear lower bounds were proved on their depth [44, 48]. However, unlike
the situation in the Boolean case, only weak lower bounds were proved for bounded
depth arithmetic circuits [38, 40]. Thus, a more restricted model was considered—the
model of depth 3 arithmetic circuits (also known as ΣΠΣ circuits). A ΣΠΣ circuit
computes a polynomial of the form

C =
k∑

i=1

di∏
j=1

Lij(x),(1)

where the Lij are linear functions. Grigoriev and Karpinski [21] and Grigoriev and
Razborov [23] proved exponential lower bounds on the size of ΣΠΣ circuits computing
the permanent and determinant over finite fields. Over infinite fields exponential lower
bounds are known only for the restricted models of multilinear3 ΣΠΣ circuits and for
homogeneous ΣΠΣ circuits [35, 36]. For general ΣΠΣ circuits over infinite fields only
the quadratic lower bound of [46] is known. Thus, proving exponential lower bounds
for ΣΠΣ circuits over C is a major open problem in arithmetic circuit complexity.

In this work we are interested in the problem of PIT for depth 3 circuits. As
mentioned earlier there are no efficient PIT algorithms for arithmetic circuits, even if
we just consider bounded depth circuits. Thus, finding efficient algorithms for PIT in
ΣΠΣ circuits seems like the first step toward proving more general results.

1.4. Our results. Lower bounds for linear LDCs with two queries. We
study linear LDCs with two queries over arbitrary fields and prove lower bounds on
their length. The first such lower bound was proved by Goldreich et al. [18], as follows.

3More accurately for pure multilinear ΣΠΣ circuits.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1407

Theorem 1.1 (Theorem 1.4 of [18]). Let δ, ε ∈ [0, 1], F be a field, and let
E : F

n → F
m be a linear (2, δ, ε)-LDC. Then

m ≥ 2
ε δ n
16 −1−log2 |F|.

Note that this result makes sense only when |F| is finite. We prove the following
theorem.

Theorem 1.2. Let δ, ε ∈ [0, 1], F be a field, and let E : F
n → F

m be a linear
(2, δ, ε)-LDC. Then

m ≥ 2
ε δ n

4 −1.

Compared with Theorem 1.4 of [18], our result removes the dependance on the
size of the field in the exponent and works for every field size, finite and infinite. The
idea of the proof is similar to the one in [18]—we show that, given a linear 2-LDC
over an arbitrary field F, we can construct from it a linear 2-LDC over GF (2), with
almost the same parameters, and then we use the lower bound of [18] for codes over
GF (2).

Relation between depth 3 circuits and LDCs. The main result of the paper is that
from every ΣΠΣ circuit that computes the zero polynomial, one can construct a linear
LDC with two queries. Relations between arithmetic circuits and error correcting
codes were known before [10, 45]; however, this is the first time that LDCs appear in
the context of arithmetic circuits. More formally, let C be a ΣΠΣ circuit, as in (1),
computing the zero polynomial. We say that C is minimal if no proper subset of the
multiplication gates sums to zero. We say that C is simple if there is no linear function
that appears in all the multiplication gates (up to a multiplicative constant). Denote
with r the rank of the linear functions appearing in C.

Theorem 1.3. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ
circuit of degree d, with k multiplication gates and n inputs. Let r = rank(C). Then
we can construct a linear (2, 1

12 ,
1
4)-LDC E : F

n1 → F
n2 with

r

2O(k2) log(d)k−3
≤ n1 and n2 ≤ k · d.

Thus, if k is a constant, then we can construct a linear (2, 1
12 ,

1
4)-LDC that encodes

messages of length r/polylog(d) by codewords of length O(d). As a corollary of
Theorems 1.2 and 1.3 we get the next theorem.

Theorem 1.4. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ
circuit of degree d with k multiplication gates and n inputs; then r ≤ 2O(k2) log(d)k−2.

Notice that the bound on r depends only on the degree and the number of mul-
tiplication gates and not on the number of variables! If the degree is polynomial in n
(i.e., the circuit is of polynomial size), then the rank is bounded by polylog(n), where
a priori the rank could have been n.

PIT algorithms for depth 3 circuits. We design algorithms for PIT of depth 3
circuits with a constant number of multiplication gates. In particular we get a de-
terministic quasi-polynomial time algorithm and a randomized polynomial time al-
gorithm that uses only polylog random bits. If the circuit is multilinear, i.e., every
multiplication gate computes a multilinear polynomial, then we give a deterministic
polynomial time algorithm for PIT. Our algorithms are non black box—all of them
use the circuit computing the polynomial. The basic idea is to look for a minimal zero
subcircuit and then, using Theorem 1.4, to write the linear functions in the circuit

1408 ZEEV DVIR AND AMIR SHPILKA

as linear functions in r ≤ 2O(k2) log(d)k−2 variables. Then we expand the monomials
computed by the circuit and verify in a brute force manner that the resulting poly-
nomial is zero. Thus the running time of our algorithm is the combined time that it
takes to go over all subcircuits and the time that it takes to write all the monomials of
a degree d polynomial in ≤ 2O(k2) log(d)k−2 variables. We thus obtain the following
result.

Theorem 1.5. Let C be a ΣΠΣ circuit of degree d, with k multiplication gates
and n inputs. Then we can check if C ≡ 0:

1. Deterministically, in time exp
(
2O(k2) logk−1(d)

)
. Thus, for a constant k the

running time is exp(polylog(d)).

2. Probabilistically, in time 2O(k) poly(d, 1
ε), using 2O(k2) logk−2(d) log(1/ε) ran-

dom bits, with error probability ε. For constant k the running time is poly(d, 1
ε),

and the number of random bits is polylog(d) log(1/ε).
3. If C is also multilinear, then we can check if C is identically zero determin-

istically in time exp(2O(k2)) · poly(d). For constant k the running time is
poly(d).

Prior to our work the only algorithms that were designed for bounded depth cir-
cuits were the deterministic algorithm of [41] for pure multilinear depth 3 circuits and
the black box algorithms of [22, 9, 29] for polynomials computed by depth 2 circuits
(also known as sparse polynomials). None of the algorithms for sparse polynomials
work in the case of depth 3 circuits, as such circuits can compute polynomials with
exponentially many monomials. In fact, Klivans and Spielman [29] ask whether one
could derandomize PIT for ΣΠΣ circuits with only three multiplication gates (k = 3
in our notation). We give a deterministic algorithm that runs in quasi-polynomial
time for this case, thus resolving the question of [29]. We note that a complete deran-
domization is to give a polynomial time algorithm for the problem, as was recently
achieved by Kayal and Saxena [27]. We discuss their result in the next subsection.

1.5. Recent results. Kayal and Saxena [27] managed to give a polynomial time
algorithm for PIT of depth 3 circuits with bounded top fan-in. Namely, they give an
algorithm that runs in time polynomial in dk, n, where k is the top fan-in, d is the
degree of the circuit, and n is the number of variables. This result gives a complete
derandomization of identity testing for depth 3 circuits with bounded top fan-in. In
addition Kayal and Saxena give constructions of identically zero depth 3 circuits over
F = GF (p) with k = p for odd p, and k = 3 for p = 2, of degree d and rank r = logp(d)
(see Theorem 1.4).

We note, however, that for multilinear depth 3 circuits we give a polynomial time
algorithm even when the top fan-in is O(

√
log log n) (Theorem 1.5, item 3), whereas

[27] is polynomial time only when the top fan-in is constant.

1.6. Organization. In section 2 we analyze linear LDCs and derive Theorem 1.2.
Section 3 is devoted to ΣΠΣ circuits and their properties and serves as an introduc-
tion to the main part of the paper. In section 4 we give the proof of Theorem 1.3 and
discuss the relation between ΣΠΣ circuits and LDCs. Finally, in sections 5 and 6 we
use our results to prove a structural theorem for zero ΣΠΣ circuits and devise PIT
algorithms based on this theorem.

2. Locally decodable codes. In this section we prove Theorem 1.2. We start
by formally defining LDCs.

For a natural number n, let [n] � {1, . . . , n}. Let F be a field. For a vector x ∈ F
n

we write xi for the ith coordinate of x. We denote by ei the ith unit vector. For two

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1409

vectors y, z ∈ F
m, denote by Δ(y, z) the number of coordinates in which y and z

differ.
Definition 2.1. Let δ, ε ∈ [0, 1], and let q be an integer. We say that E : F

n →
F
m is a (q, δ, ε)-locally decodable code if there exists a probabilistic oracle machine A

such that
• in every invocation, A makes at most q queries (nonadaptively);
• for every x ∈ F

n, for every y ∈ F
m with Δ(y,E(x)) < δm, and for every

i ∈ [n], we have

|F| < ∞ : Pr [Ay(i) = xi] ≥ 1
|F| + ε,

|F| = ∞ : Pr [Ay(i) = xi] ≥ ε,

where the probability is taken over the internal coin tosses of A.
We say that the code E is a linear code if E is a linear transformation between
F
n and F

m.
We are now ready to prove Theorem 1.2. We repeat its formulation here.
Theorem 1.2 (restated). Let δ, ε ∈ [0, 1], F be a field, and let E : F

n → F
m be a

linear (2, δ, ε)-LDC. Then

m ≥ 2
ε δ n

4 −1.

Our proof will build on the methods of [18], together with a novel reduction from
LDCs over arbitrary fields to LDCs over GF (2). We start by reviewing the results
of [18]. The first step of their proof, given by the following lemma, is a reduction
from the problem of proving lower bounds for LDCs to a graph-theoretic problem.
The first such reduction was given in [26], where it was used to prove lower bounds
on general LDCs. We note that in [18] the lemma was proved only over finite fields;
however, it is easy to modify the proof to work for infinite fields as well.

Lemma 2.2 (implicit in [18]). Let E : F
n → F

m be a linear (2, δ, ε)-LDC, and let
a1, . . . , am ∈ F

m be vectors such that

E(x) = (〈a1, x〉, . . . , 〈am, x〉)

(〈·, ·〉 denotes the standard inner product). Then, for every i ∈ [n], there exists a
set Mi ⊂ [m] × [m] of at least ε δ m

4 disjoint pairs such that for every (j1, j2) ∈ Mi,
ei ∈ Span{aj1 , aj2}.

From Lemma 2.2 we see that to prove lower bounds for two-query LDCs, it is
sufficient to deal with the more combinatorial setting in which a given multiset of
vectors contains many disjoint pairs spanning each unit vector.

The next step in the proof of [18] is a reduction from arbitrary finite fields to
GF (2). The next lemma summarizes the reduction given by [18].

Lemma 2.3 (implicit in [18]). Let F be a finite field, and let a1, . . . , am ∈ F
n.

For every i ∈ [n] let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that
ei ∈ Span{aj1 , aj2} for every (j1, j2) ∈ Mi. Then, there exist m′ vectors b1, . . . , bm′ ∈
{0, 1}n and n sets M ′

1, . . . ,M
′
n ⊂ [m′] × [m′] of disjoint pairs such that

1. for every (j1, j2) ∈ M ′
i , bj1 ⊕ bj2 = ei,

2. m′ = (|F| − 1)m, and
3.

∑n
i=1 |Mi| ≤ 2m + 2

|F|−1

∑n
i=1 |M ′

i |.
The third and final step in the proof of [18] is a lemma which bounds the size of

the matchings Mi, when the underlying field is GF (2).

1410 ZEEV DVIR AND AMIR SHPILKA

Lemma 2.4 (see [18]). Let a1, . . . , am be elements of {0, 1}n. For every i ∈ [n]
let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that ei = aj1 ⊕ aj2 for
every (j1, j2) ∈ Mi. Then

n∑
i=1

|Mi| ≤
1

2
m log(m).

Notice that by Lemma 2.3 we have that m = m′/|F|. Therefore, to get significant
bounds from the combination of Lemmas 2.2, 2.3, and 2.4, we need |F| to be much
smaller than 2n. Thus, for very large fields (in particular, infinite fields) we do not
get a significant result.

Our proof differs from that of [18] only in its second part—the reduction from F

to GF (2). Our reduction holds for any field, in particular for infinite F, and does not
involve the field size as a parameter.

Lemma 2.5. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈ [n] let

Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that ei ∈ Span{aj1 , aj2}
for every (j1, j2) ∈ Mi. Then, there exist m vectors b1, . . . , bm ∈ {0, 1}n, and n sets
M ′′

1 , . . . ,M
′′
n ⊂ [m] × [m] of disjoint pairs, such that

1. for every (j1, j2) ∈ M ′′
i , bj1 ⊕ bj2 = ei, and

2.
∑n

i=1 |Mi| ≤ 2
∑n

i=1 |M ′′
i | + m.

Before giving the proof of the lemma we combine Lemmas 2.2, 2.5, and 2.4 to
prove Theorem 1.2.

Proof of Theorem 1.2. Let a1, . . . , am ∈ F
n be vectors such that

E(x) = (〈a1, x〉, . . . , 〈am, x〉).

From Lemma 2.2, we know that there exist n sets, M1, . . . ,Mn ⊂ [m]× [m], of disjoint
pairs of indices, such that for every (j1, j2) ∈ Mi we have ei ∈ Span{aj1 , aj2}. We
also know that

∀ i ∈ [n], |Mi| ≥
ε δ m

4
.

Now, let b1, . . . , bm ∈ {0, 1}n and M ′′
1 , . . . ,M

′′
n ⊂ [m] × [m] be as in Lemma 2.5.

That is,
1. for every (j1, j2) ∈ M ′′

i , bj1 ⊕ bj2 = ei, and
2.

∑n
i=1 |Mi| ≤ 2

∑n
i=1 |M ′′

i | + m.
Using Lemma 2.4, we now have

n∑
i=1

|M ′′
i | ≤

1

2
m log(m).

This implies

n · ε δ m
4

≤
n∑

i=1

|Mi| ≤ 2

n∑
i=1

|M ′′
i | + m ≤ m log(m) + m,

which, after division by m, gives the bound stated by the theorem.
We now give the proof of Lemma 2.5.
Proof of Lemma 2.5. The proof will consist of two stages. First, we will remove

a relatively small number of “bad” pairs from the given matchings {Mi}; then we

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1411

will transform the vectors a1, . . . , am to vectors in {0, 1}n, while preserving a large
portion of the pairs spanning the unit vectors.

Let (j1, j2) be a pair in Mi for some i such that either aj1 or aj2 are parallel to the
unit vector ei. Without loss of generality (w.l.o.g.) assume aj1 = c ·ei. We replace this
pair with the pair (j1, j1). We do the same for all pairs containing a vector parallel
to the unit vector spanned by this pair. This change does not affect the parameters
of the lemma and is done only to simplify the analysis.

Next, we define a function θ : F
n\{0} → [n] by

θ(v) = min{i : vi �= 0}.

For the rest of the proof we assume w.l.o.g. that in each pair (j1, j2) we have θ(aj1) ≤
θ(aj2). (Note that we can assume w.l.o.g. that the vectors a1, . . . , am are all different
from zero.) We remove from each matching Mi all the pairs (j1, j2) in which θ(aj1) =
i. (This includes all pairs (j1, j1) described in the previous paragraph, and more.)
Denote the resulting matching by M ′

i . We claim that the total number of pairs
removed in this stage is at most m.

Claim 2.6.

n∑
i=1

|Mi| ≤
n∑

i=1

|M ′
i | + m.(2)

Proof. Let p1 = (j1, j2) and p2 = (k1, k2) be two removed pairs. If p1 and p2

were in the same matching Mi, then they would be disjoint, and so j1 �= k1. If the
pairs belonged to two different matchings, say, Mi1 and Mi2 , then θ(aj1) = i1 and
θ(ak1

) = i2, and again we get that j1 �= k1. It follows that every removed pair has
a distinct first element in the set [m]. Therefore, the total number of removed pairs
cannot exceed m.

In the following we assume w.l.o.g. that the first nonzero coordinate of each aj is
one. (We can assume that because we are allowed to use arbitrary linear combinations
of the aj when spanning the ei.) The next claim asserts an important property of the
matchings M ′

i .
Claim 2.7. For every i ∈ [n] and (j1, j2) ∈ M ′

i ,

ei ∈ Span{aj1 − aj2}.

Proof. Let u = aj1 , v = aj2 . We know that there exist two nonzero coefficients
α, β ∈ F such that αu + βv = ei. (Both coefficients are nonzero because we removed
from Mi all pairs containing a vector parallel to ei.) From this property it is clear that
θ(u) ≤ i (remember that θ(u) ≤ θ(v)). As we removed all pairs in which θ(aj1) = i
we conclude that θ(u) < i. This in turn implies that θ(u) = θ(v) < i, because
if θ(v) > θ(u), then the vector αu + βv = ei would have a nonzero coordinate in
position θ(u) < i. Now, since vθ(v) = uθ(u) = 1 we have that α+ β = (αu+ βv)θ(u) =
(ei)θ(u) = 0. Hence ei ∈ Span{aj1 − aj2}.

Let us now proceed to the second stage of the proof of Lemma 2.5, in which we
move from the field F to GF (2). We will use a probabilistic argument to show the
existence of a transformation that maps F to GF (2), while preserving a large portion
of the pairs that span a given unit vector.

For each i ∈ [n], let aji denote the ith coordinate of the vector aj . Let V =
{aji}j∈[m], i∈[n] be the set of all field elements appearing in one of the vectors a1, . . . , am.

1412 ZEEV DVIR AND AMIR SHPILKA

We pick a random function f : V → {0, 1} and apply f to all the coordinates in all
the vectors. Let

bj = (f(aj1), . . . , f(ajn))

be the vector in {0, 1}n obtained from aj after the transformation. We say that a pair
(j1, j2) ∈ M ′

i “survived” the transformation if ei = bj1 ⊕ bj2 .

Claim 2.8. The expected number of surviving pairs is 1
2

∑n
i=1 |M ′

i |.
Proof. Consider a pair (j1, j2) ∈ M ′

i . Since ei ∈ Span{aj1 − aj2} we know that
the vectors aj1 , aj2 are identical in all coordinates different from i. Hence, the vectors
bj1 , bj2 will also be identical in those coordinates. From this we see that ei = bj1 ⊕ bj2
iff bj1 and bj2 differ in their ith coordinate. This happens with probability of one-half.
By linearity of expectation we can conclude that the expected number of surviving
pairs is at least half the number of original pairs, which was

∑n
i=1 |M ′

i |.
From the above claim we can assert that there exists a function f for which the

number of surviving pairs is at least 1
2

∑n
i=1 |M ′

i |. Thus, we have shown that there
exist a set of vectors b1, . . . , bm ∈ {0, 1}n and matchings M ′′

i ⊂ [m] × [m] such that
for every (j1, j2) ∈ M ′′

i , we have ei = bj1 ⊕ bj2 . Furthermore, we can assume that

n∑
i=1

|M ′
i | ≤ 2

n∑
i=1

|M ′′
i |,(3)

which completes the proof of the lemma, since now

n∑
i=1

|Mi| ≤
n∑

i=1

|M ′
i | + m ≤ 2

n∑
i=1

|M ′′
i | + m.

The next corollary combines the results of Lemmas 2.5 and 2.4 in a compact form.
This corollary will be used in the proof given in section 4.

Corollary 2.9. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈

[n] let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices (j1, j2) such that ei ∈
Span{aj1 , aj2}. Then

n∑
i=1

|Mi| ≤ m log(m) + m.

3. ΣΠΣ circuits. In this section we give some definitions related to ΣΠΣ cir-
cuits and describe some elementary operations that can be preformed on them. These
definitions and operations will be used in the following sections.

3.1. Definitions. In the following we treat vectors in F
n also as linear forms in

F[x1, . . . , xn].

Definition 3.1. Let u ∈ F
n, u = (u1, . . . , un). Then

u(x) = u1x1 + u2x2 + · · · + unxn.

Definition 3.2. Let v, u ∈ F
n\{0}. We write u ∼ v if there exists c ∈ F such

that u = c · v.
We proceed to the main definition of this section.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1413

Definition 3.3. Let F be a field. A ΣΠΣ circuit, C, over F, with n inputs and
k multiplication gates (i.e., top fan-in is k), is the formal expression

C(x) =

k∑
i=1

ci

di∏
j=1

Lij(x),

where for each i ∈ [k], j ∈ [di], Lij is a nonconstant linear function,

Lij(x) = L0
ij + L1

ij · x1 + · · · + Ln
ij · xn,

and ci, L
t
ij ∈ F for all i, j, t.

For every i ∈ [k] define Ni to be the ith multiplication gate of C:

Ni(x) �
di∏
j=1

Lij(x).

For each i ∈ [k], di is the degree of Ni. The number k denotes the number of different
multiplication gates and is referred to as the top fan-in of the circuit. The total degree
of C is max{di}, and the size of C is

∑k
i=1 di. We denote with rank(C) the rank

of C:

rank(C) � dim(Span{Lij : i ∈ [k], j ∈ [di]}).

Remark. When dealing with ΣΠΣ circuits, we will always assume that all the
linear functions appearing in the circuit are different from zero.

We are interested in ΣΠΣ circuits that compute the zero polynomial in F[x1, . . . , xn].
If C is such a circuit, we write C ≡ 0. When dealing with circuits of this kind, it is
sufficient to consider circuits of limited structure. This notion is made precise by the
following definition and the lemma that follows.

Definition 3.4. Let k, d > 0 be integers. A ΣΠΣ circuit C is called a ΣΠΣ(k, d)
circuit if the following three conditions hold:

• the top fan-in of C is k;
• d1 = d2 = · · · = dk = d; and
• for every i ∈ [k] and j ∈ [d], Lij is a homogeneous linear form, that is,
Lij(x) = L1

ij · x1 + · · ·+Ln
ij · xn. (The free coefficient in each linear function

is zero.)
When dealing with ΣΠΣ(k, d) circuits we will treat the linear functions Lij also

as vectors in F
n, that is, Lij = (L1

ij , . . . , L
n
ij).

Lemma 3.5. There exists a polynomial time algorithm such that, given as input
a ΣΠΣ circuit C, with top fan-in k and total degree d > 0, it outputs a ΣΠΣ(k, d)
circuit C′ such that C ≡ 0 iff C′ ≡ 0. The circuit C′ is called the corresponding
ΣΠΣ(k, d) circuit of C.

Proof. We introduce a new variable y and define C′ to be a circuit with input
variables x1, . . . , xn, y. Let

Lij(x) = L0
ij +

n∑
t=1

Lt
ij · xt

be a linear function appearing in C. Define

L′
ij(x, y) = L0

ij · y +

n∑
t=1

Lt
ij · xt,

1414 ZEEV DVIR AND AMIR SHPILKA

and define C′ to be

C′(x, y) =

k∑
i=1

ci y
d−di

di∏
j=1

L′
ij(x, y).

Clearly, C′ is a ΣΠΣ(k, d) circuit and can be computed from C in time polynomial
in the size of C. Note that if we write

C(x) =

d∑
i=0

Pi(x),

where Pi(x) denotes the homogeneous part of degree i of C(x), then

C′(x, y) =

d∑
i=0

Pi(x)yd−i.

Therefore C ≡ 0 iff C′ ≡ 0.
Lemma 3.5 shows that to achieve our final goal, which is to derive PIT algorithms

for ΣΠΣ circuits, it is sufficient to consider ΣΠΣ(k, d) circuits. For the rest of the
paper we will deal only with ΣΠΣ(k, d) circuits, and we shall sometimes refer to them
simply as ΣΠΣ circuits, omitting the suffix (k, d) where it is not needed.

3.2. Identically zero ΣΠΣ circuits.

Simple circuits. It might be the case that there exists a linear function, L, that
appears (up to a constant) in all multiplication gates of C. In this case, we can divide
each multiplication gate by L and get a simpler circuit C′, whose degree is smaller
than that of C by one. Clearly C ≡ 0 iff C′ ≡ 0. The next two definitions deal with
this case in a more general way.

Definition 3.6. Let C be a ΣΠΣ circuit, and let N1, . . . , Nk be its multiplication
gates. Define4

gcd(C) � g.c.d.(N1(x), . . . , Nk(x)).

Since each multiplication gate is a product of linear forms, Ni(x) =
∏di

j=1 Lij(x), we
get that gcd(C) is the product of all the linear forms that appear in all the multiplication
gates (up to multiplication by constants). Note also that gcd(C) can be easily computed
from C.

It is clear that C ≡ 0 iff C
gcd(C) ≡ 0. This fact motivates the following definition.

Definition 3.7. A ΣΠΣ circuit C is called simple if gcd(C) = 1. Let us also
define sim(C) to be the simple circuit obtained from C by dividing each multiplication
gate by gcd(C). It is clear that sim(C) is always simple and that

C(x) = sim(C)(x) · gcd(C)(x).

Example 3.8. Let

C(x) = (x1 + 2x2 + x3 + 1)(2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (x1 + 2x2 + x3 + 1)(6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ (2x1 + 4x2 + 2x3 + 2)(4x2 + 1x3)(7x1 + 4x2 + 2x3).

4g.c.d. stands for greatest common divisor.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1415

Then

gcd(C) = x1 + 2x2 + x3 + 1,

and

sim(C)(x) = (2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ 2 · (4x2 + 1x3)(7x1 + 4x2 + 2x3).

Minimal circuits. Suppose we have two ΣΠΣ circuits C1 and C2, both of them
equal to zero. Let k1, k2 denote the top fan-in of C1 and of C2, respectively. We
can add C1 to C2 to create a new circuit C = C1 + C2, with top fan-in k1 + k2, that
will also be equal to zero. This new circuit C, however, can be broken down into two
smaller subcircuits that are zero. In the following we will be interested in circuits that
cannot be broken down into smaller subcircuits that are equal to zero. The next two
definitions deal with circuits of this type.

Definition 3.9. Let C be a ΣΠΣ circuit, and let ∅ �= T ⊆ [k]. Then CT is
defined to be the subcircuit of C composed of the multiplication gates whose indices
appear in T :

CT (x) �
∑
i∈T

ci

di∏
j=1

Lij(x) =
∑
i∈T

ciNi(x).

Definition 3.10. Let C ≡ 0 be a ΣΠΣ circuit. We say that C is minimal if for
every nonempty subset T ⊂ [k], apart from [k] itself, we have CT �≡ 0.

The following easy claim shows that most properties of a ΣΠΣ circuit C remain
when we move to the corresponding ΣΠΣ(k, d) circuit. The proof is immediate from
the proof of Lemma 3.5.

Claim 3.11. Let C be a ΣΠΣ circuit, and let C′ be the corresponding ΣΠΣ(k, d)
circuit (as defined in Lemma 3.5). Then we have the following:

• rank(C) ≤ rank(C′) ≤ rank(C) + 1.
• C is simple iff C′ is simple.
• C is minimal iff C′ is minimal.

Taking a linear transformation. We start with a simple operation of setting one
of the variables to zero. This operation can be looked at as projecting all the linear
functions in the circuit on a subspace of codimension 1.

Definition 3.12. Let C be a ΣΠΣ circuit, and let t ∈ [n]. Define C|xt=0 to be
the circuit obtained from C by setting the variable xt to zero. (This is the same as
changing the tth coordinate in each linear form Lij to zero.) The polynomial computed
by C|xt=0 is therefore

(C|xt=0)(x) = C(x1, . . . , xt−1, 0, xt+1, . . . , xn).

We can generalize the operation just defined by applying a general linear trans-
formation on the linear functions of the circuit.

Definition 3.13. Let

C(x) =

k∑
i=1

ci

d∏
j=1

Lij(x)

1416 ZEEV DVIR AND AMIR SHPILKA

be a ΣΠΣ(k, d) circuit on n variables, and let π : F
n → F

n be a linear transforma-
tion. Define π(C) to be the circuit obtained from C by applying π on all linear forms
appearing in the circuit.5 That is,

π(C)(x) =

k∑
i=1

ci

d∏
j=1

π(Lij)(x).

The following claim is easy to verify.
Claim 3.14. Let C be a ΣΠΣ(k, d) circuit, and let π : F

n → F
n be an invertible

linear transformation. Then
• C ≡ 0 iff π(C) ≡ 0,
• C is simple iff π(C) is simple,
• C is minimal iff π(C) is minimal, and
• rank(C) = rank(π(C)).

4. ΣΠΣ circuits and LDCs. In this section we prove Theorem 1.3, which is
the main result of the paper. This theorem shows the relation between ΣΠΣ circuits
and linear LDCs. It is more convenient to us to prove the theorem for ΣΠΣ(k, d)
circuits instead of general ΣΠΣ circuits. From Claim 3.11, we know that moving from
C to its corresponding ΣΠΣ(k, d) circuit does not affect any of the relevant properties
of C, so the following theorem is equivalent to Theorem 1.3.

Theorem 4.1. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal
ΣΠΣ(k, d) circuit, on n inputs, over a field F. Then, there exists a linear (2, 1

12 ,
1
4)-

LDC E : F
n1 → F

n2 , with

rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k2).

We prove Theorem 4.1 by induction on k. We devote section 4.1 to the base case
of k = 3 and give the proof of the inductive step in section 4.2.

Before moving on to the proof of Theorem 4.1 we should explain why we are
dealing only with circuits whose top fan-in is at least 3. The reason for this is that
the structure of a zero ΣΠΣ(k, d) circuit with k = 1, 2 is trivial. If C has only one
multiplication gate (k = 1), then it is zero iff one of the linear functions appearing in
it is the zero function. The case of k = 2 is equally trivial, as seen by the next claim.

Claim 4.2. Let C = c1N1(x) + c2N2(x) be a ΣΠΣ(2, d) circuit. Suppose C ≡ 0.
Then, the linear functions, appearing in the two multiplication gates N1 and N2, are
the same, up to an ordering and multiplication by constants.

Proof. Since C ≡ 0, we have that c1N1(x) ≡ −c2N2(x). Each multiplication
gate Ni is a product of linear functions. Since every polynomial can be written, in a
unique way, as a product of irreducible polynomials, and since every linear function
is irreducible, we have that the linear functions in the two gates must be the same
(up to an ordering and multiplication by constants).

4.1. Proof of Theorem 4.1 for k = 3. Let r = rank(C). Then there exist
r linearly independent functions L1, . . . , Lr in C. Using Claim 3.14, we can assume
w.l.o.g. that for every t ∈ [r], Lt(x) = xt (or in other words, Lt = et). Consider
the circuit C|xt=0 for some t ∈ [r]. Clearly C|xt=0 ≡ 0. From the fact that the
function Lt = et appears in one of the multiplication gates, we know that this gate

5Remember that we identify linear forms with vectors in F
n.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1417

will become zero in C|xt=0. The following claim assures us that neither of the other
two multiplication gates will become zero in C|xt=0.

Claim 4.3. Let L and L′ be two linear functions appearing in two different
multiplication gates of C. Then L �∼ L′.

Proof. Assume for a contradiction that L divides both N1 and N2. As c3N3(x) =
−c1N1(x)− c2N2(x) we get that N3(x) is also divisible by L. But C is simple, so this
is a contradiction.

How can a circuit with two nonzero multiplication gates be zero? From Claim 4.2,
this is possible only if the two gates contain the same linear functions, up to an
ordering and multiplication by constants.

We thus get that every variable xt, t ∈ [r], induces a matching on the linear
functions of the circuit. This matching contains d pairs of linear functions such that
for every pair (L,L′) in the matching, we have that L and L′ belong to two different
multiplication gates and that L|xt=0 ∼ L′|xt=0. Denote with Mt the matching induced
by xt. The next claim gives us more information about the pairs appearing in those
matchings.

Claim 4.4. Let t ∈ [n], and let L,L′ ∈ F
n such that L �∼ L′, and L|xt=0 ∼ L′

xt=0.
Then

et ∈ Span{L,L′}.
Proof. Let L = (a1, . . . , an), L′ = (b1, . . . , bn). Since L|xt=0 ∼ L′|xt=0, we know

that there exists a constant c ∈ F such that for all j �= t we have aj = c · bj . The fact
that L �∼ L′ implies that at �= c · bt. It follows that et ∼ L − c · L′. In particular we
get that et ∈ Span{L,L′}.

From Claim 4.4 we see that every pair (L,L′) ∈ Mt spans the vector et. We
also have that all the matchings {Mt}t∈r are contained in a set of 3d linear functions
and that each matching contains d pairs. We can now construct a linear LDC in the
following way. For each i ∈ [3], j ∈ [d], let lij ∈ F

r be the projection of Lij on the
first r coordinates. Define E : F

r → F
3d by

Eij(x) = lij(x).

To show that E is a (2, 1
12 ,

1
4)-LDC, we need to show a decoding algorithm for it.

For each t ∈ [r] we know that there are d disjoint pairs of code positions that span
et. (Note that taking the projection on the first r coordinates does not affect this
property.) To decode xt we simply pick a random pair, uniformly, among these d
pairs, and compute the linear combination giving et. Suppose we picked lij(x) and
li′j′(x). We know that there exist constants a, b ∈ F such that

a · lij + b · li′j′ = et.

Therefore

a · Ei,j(x) + b · Ei′,j′(x) = a · lij(x) + b · li′j′(x) = et(x) = xt.

If our codeword has at most 1
12 (3d) = d

4 corrupted positions, then at least 3
4 of

the d pairs are uncorrupted, and our algorithm will succeed with probability greater
than 3

4 .
In the notation of the theorem, we have n1 = r and n2 = 3d = kd. Let P (3) = 1;

then

n1 = r ≥ r

P (k) log(d)k−3
,

and the theorem follows for k = 3.

1418 ZEEV DVIR AND AMIR SHPILKA

4.2. Proof of Theorem 4.1 for k ≥ 4. The proof is by induction on k. The
idea behind the proof is the following. Assume that x1 appears as a linear function
in the circuit. A natural thing to do is to consider C|x1=0. This circuit contains fewer
multiplication gates, and so we would like to find an LDC in it by induction. A possible
problem is that the rank of every minimal subcircuit is low. We can overcome this
problem by showing that there are many variables x1, . . . , xm (m ≥ r/2k) such that
there exists I ⊂ [k] for which CI �≡ 0, but for every t ∈ [m], (CI)|xt=0 is identically zero
and minimal. In particular we show that this implies that the rank of CI is at least
m. We would like to construct a code from CI , so we consider, say, (CI)|x1=0. This
circuit is identically zero and minimal, but it is not necessarily simple. Therefore we
take sim((CI)|xt=0). However, it might be the case that the rank of this circuit is very
small, i.e., that we lost a lot of rank when we removed the g.c.d. We overcome this
difficulty by proving that there are relatively few (≈ log d) variables, say, x1, . . . , xlog d,
such that the span of the linear functions in sim((CI)|xt=0)t=1,...,log d contains almost
all the functions of CI . In particular, for some t, the rank of sim((CI)|xt=0) is relatively
high, so we can apply the induction hypothesis on this circuit. Proving the existence
of such t is the main technical difficulty of the proof (Claim 4.8). We now give the
formal proof.

Let k ≥ 4, and assume the correctness of Theorem 4.1 for all 3 ≤ k′ < k. Let

C(x) =
k∑

i=1

ci

d∏
j=1

Lij(x)

be a ΣΠΣ(k, d) circuit satisfying the conditions of the theorem. As in the proof for
k = 3, let r = rank(C), and w.l.o.g. assume that the circuit contains the first r unit
vectors e1, . . . , er. We can also assume that

r ≥ P (k) log(d)k−3,(4)

for otherwise the theorem is trivially true, since we can always construct a two-query
LDC whose message size is 1, satisfying the requirements of the theorem.

Claim 4.5. For every t ∈ [r] there exists a set It ⊂ [k] such that

1. 2 ≤ |It| ≤ k − 1 and
2. (C|xt=0)It is identically zero and minimal.

Proof. Let t ∈ [r]. Clearly C|xt=0 ≡ 0. Denote with k′ the number of multiplica-
tion gates in C that become zero when xt = 0. (These are exactly those multiplication
gates that contain a linear function parallel to et.) Since we assumed that C contains
et, we know that k′ ≥ 1. It is also easy to verify that k′ ≤ k − 2. (If k′ = k, then
C is not simple, and if k′ = k − 1, then C is not divisible by xt—as in Claim 4.3.)
Therefore, the circuit C|xt=0 is identically zero and contains at least two (and at most
k − 1) nonzero multiplication gates. Hence, we can decompose C|xt=0 into minimal
subcircuits, each of top fan-in at least two and at most k− 1. Take It to be the index
set of any one of these minimal subcircuits.

From Claim 4.5 we can conclude that there are m ≥ r
2k variables (w.l.o.g.

x1, . . . , xm) that have the same set It. Let I = I1 = · · · = Im, and define

Ĉ = sim(CI).

The next claim summarizes several facts we know about the circuit Ĉ.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1419

Claim 4.6.

1. Ĉ is a ΣΠΣ(k̂, d̂) circuit with 2 ≤ k̂ ≤ k − 1, 0 < d̂ ≤ d.
2. Ĉ is simple.
3. Ĉ �≡ 0.
4. For all t ∈ [m], Ĉ|xt=0 ≡ 0 and is minimal.
5. For all t ∈ [m], et does not appear in Ĉ.

Proof. Parts 1 and 2 follow from the definition of Ĉ (the fact that 0 < d̂ follows
from 3 and 4). Part 3 is true because we assumed that C is minimal. Part 4 follows
from the fact that Ĉ = sim(CI) and that (CI)|xt=0 ≡ 0 is minimal for all t ∈ [m].
Finally, 5 is a direct consequence of 4.

Let r̂ � rank(Ĉ). The next claim shows that the rank of our chosen subcircuit Ĉ
is not considerably smaller than the rank of C.

Claim 4.7. r̂ ≥ m (≥ r
2k).

Proof. To prove the claim, we will show that the linear functions of Ĉ span the unit
vectors e1, . . . , em. Suppose, on the contrary, that there exists an index t ∈ [m] for
which et is not spanned by the linear functions of Ĉ. Assume w.l.o.g. that t = 1. There
exists an invertible linear transformation π : F

n → F
n that satisfies the following two

constraints:
• π(e1) = e1.
• The variable x1 does not appear in the circuit π(Ĉ). (Equivalently, all the

linear functions in π(Ĉ) are orthogonal to e1.)

From Claim 4.6 we know that Ĉ �≡ 0 and that Ĉ|x1=0 ≡ 0. Hence Ĉ(x) can be
written as

Ĉ(x) ≡ x1 · g(x),

where g(x) is a nonzero polynomial. We can look at the transformation π as a linear
change of variables and denote with π(g) the polynomial obtained from g(x) after this
change. Thus,

π(Ĉ)(x) ≡ π(x1) · π(g)(x) ≡ x1 · π(g)(x).(5)

Now, since g(x) �≡ 0, and since π is invertible, Claim 3.14 implies6 that π(g)(x) �≡ 0.
From this and from (5) we see that π(Ĉ)(x) is a nonzero polynomial divisible by x1.
This is a contradiction, since we assumed that x1 does not appear in π(Ĉ).

We would like to use the inductive hypothesis on a well-chosen circuit among
Ĉ|x1=0, . . . , Ĉ|xm=0. However, there are two obstacles in the way. The first is that the
top fan-in of Ĉ might be equal to 2 (the theorem holds only for k ≥ 3). This case is
rather simple, since we can use the analysis given in section 4.1 to construct an LDC
satisfying the conditions of the theorem. (A detailed analysis of this special case is

deferred to the end of this section.) From now on we assume that k̂ ≥ 3. The second
obstacle is that these circuits are not necessarily simple. We overcome this obstacle
by using the inductive hypothesis on sim(Ĉ|xt=0) instead. The next claim, whose
proof is deferred to section 4.3, tells us which of these circuits we should pick.

For each t ∈ [m], let rt � rank(sim(Ĉ|xt=0)).
Claim 4.8. There exists t ∈ [m] such that

rt ≥
r̂

2k+1 log(d)
.

6It is easy to see that this part of Claim 3.14 holds also for general polynomials and not just
ΣΠΣ circuits.

1420 ZEEV DVIR AND AMIR SHPILKA

Claim 4.8 assures us that one of the rt is large (we assume w.l.o.g. that t = 1).
We get that

r1 ≥ r̂

2k+1 log(d)
.(6)

Our next step is to apply the induction hypothesis to the circuit sim(Ĉ|x1=0). How-
ever, to use Theorem 4.1, we require that the degree of the given circuit be at least
two. The next claim shows that the degree of sim(Ĉ|x1=0) is indeed at least two.

Claim 4.9. Let d1 denote the degree of sim(Ĉ|x1=0). Then d1 ≥ 2.

Proof. If d1 < 2, then r1 < k. (The number of linear functions is at most k̂ < k.)
By (6) we get that

r̂ ≤ k2k+1 log(d).

Now, using the fact that r̂ ≥ m ≥ r
2k (Claim 4.7), we conclude that

r ≤ 2kr̂ ≤ k22k+1 log(d),

contradicting (4), for an appropriate choice of P (k) = 2O(k2).
Therefore sim(Ĉ|x1=0) satisfies all the conditions of Theorem 4.1. The induction

hypothesis, applied on sim(Ĉ|x1=0), asserts that there exists a (2, 1
12 ,

1
4)-LDC, E :

F
n1 → F

n2 , with

n1 ≥ r1

P (k̂) log(d1)k̂−3
and n2 ≤ k̂ · d1 (≤ k · d).

Using (6) and the facts that k̂ ≤ k − 1 and r̂ ≥ m ≥ r
2k , we derive the following

inequalities:

n1 ≥ r1

P (k̂) log(d1)k̂−3

≥ r1
P (k − 1) log(d)k−4

≥ r̂

2k+1P (k − 1) log(d)k−3

≥ r

22k+1P (k − 1) log(d)k−3

≥ r

P (k) log(d)k−3

(for an appropriate choice of P (k) = 2O(k2)). This completes the proof of the inductive
step and of Theorem 4.1.

4.2.1. A special case: k̂ = 2. In this subsection we analyze a special case
of the proof of Theorem 4.1. This case is when k̂ (the top fan-in of the circuit Ĉ,
whose properties are detailed in Claim 4.6) is equal to 2. The analysis of this case

differs from the analysis of the general (k̂ ≥ 3) case because we cannot apply the
inductive hypothesis on Ĉ (or more precisely, on the circuits C|xt=0). We now show
how to complete the proof of the theorem (that is, to construct an LDC satisfying the
requirements of the thorem) in this case.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1421

Denote by N̂1 and N̂2 the two multiplication gates of Ĉ. We can write

Ĉ(x) ≡ c1N̂1(x) + c2N̂2(x).

Now, since Ĉ is simple and nonzero, we have

gcd(Ĉ) ≡ g.c.d.(N̂1(x), N̂2(x)) ≡ 1.

Next, let t ∈ [m], and consider what happens to Ĉ after we set xt to zero. We know
that Ĉ|xt=0 ≡ 0, and so

c1N̂1|xt=0 ≡ −c2N̂2|xt=0.

Now, since N̂1|xt=0 and N̂2|xt=0 are both nonzero (by Claim 4.6, e1, . . . , em do not
appear in Ĉ), we can deduce, as we did in section 4.1, that there exist m matchings

Mt, t ∈ [m], of size |Mt| = d̂, of linear functions appearing in Ĉ, such that for every
pair (L,L′) ∈ Mt, et ∈ Span{L,L′}. Projecting each linear function in Ĉ on the first
m coordinates, and using the construction from section 4.1, we see that there exists

a (2, 1
12 ,

1
4)-LDC,7 E : F

m → F
2d̂. In the notation of the theorem, we have

n2 = 2d̂ ≤ kd

and

n1 = m ≥ r

2k
≥ r

P (k) log(d)k−3
,

as required by the theorem.

4.3. Proof of Claim 4.8. In this section we prove Claim 4.8. The following
notation is required for the proof.

4.3.1. Notation. Let N̂1, . . . , N̂k̂ denote the multiplication gates of Ĉ. We will

treat Ĉ, N̂1, . . . , N̂k̂ also as sets of indices. We shall abuse notation and write

Ĉ = {(i, j) | i ∈ [k̂], j ∈ [d̂]},

N̂i = {(i, j) | j ∈ [d̂]}.

For a set H ⊂ Ĉ, we denote with rank(H) the dimension of the vector space spanned
by the linear functions whose indices appear in H. That is,

rank(H) � dim (Span{Lij : (i, j) ∈ H}) .

For the rest of the proof we will treat subsets of Ĉ interchangeably as sets of indices
and as (multi)sets of linear functions.

We would next like to define, for each t ∈ [m], certain subsets of Ĉ that capture
the structure of Ĉ|xt=0. Fix some t ∈ [m], and consider what happens to Ĉ when we
set xt to be zero. The resulting circuit Ĉ|xt=0 is generally not simple and can therefore
be partitioned (see Definition 3.7) into two disjoint sets: a set containing the indices
of the linear functions appearing in gcd(Ĉ|xt=0), and a set containing the indices of the

7We could have taken δ to be 1
8

instead of 1
12

, because the number of multiplication gates is two
and not three.

1422 ZEEV DVIR AND AMIR SHPILKA

remaining linear functions (these are the linear functions appearing in sim(Ĉ|xt=0)).
To be more precise, denote by δt the degree of gcd(Ĉ|xt=0). In every multiplication
gate N̂i, there are δt linear functions such that the restriction of their product to the
linear space defined by the equation xt = 0 is equal to gcd(Ĉ|xt=0). In other words,
the product of these δt linear functions is equal to gcd(Ĉ) under the restriction xt = 0.
Denote the set of indices of these functions by Gi

t, and let Ri
t � N̂i\Gi

t be the set
of indices of the remaining linear functions of this multiplication gate. We thus have
(for some choice of constants {ci})

sim(Ĉ|xt=0) =

k̂∑
i=1

ci
∏

(i,j)∈Ri
t

(Lij |xt=0)

and

∀i ∈ [k̂], gcd(Ĉ|xt=0) =
∏

(i,j)∈Gi
t

(Lij |xt=0).

We now define, for each t ∈ [m], the sets Rt �
⋃k̂

i=1 R
i
t and Gt �

⋃k̂
i=1 G

i
t. The

following claim summarizes some facts that we will later need.
Claim 4.10. For every t ∈ [m],
1. Rt ∩Gt = ∅.
2. Ĉ = Rt ∪Gt.
3. |Gi

t| = |Gi′

t | for all i, i′.

4. |Gt| = k̂ · deg(gcd(Ĉ|xt=0)) = k̂ · δt.
5. Rt contains the indices of the linear functions appearing in sim(Ĉ|xt=0).
6. rt = rank(sim(Ĉ|xt=0)) = rank(Rt).

Proof. Items 1 and 2 follow directly from the definition of Rt and Gt as Ri
t and

Gi
t give a partition of the indices in N̂i. Items 3 and 4 hold as the linear factors

of gcd(Ĉ|xt=0) belong to all the multiplication gates. By definition, Ri
t is the set of

linear functions in N̂i that belong to sim(Ĉ|xt=0), which implies item 5. Finally, by
definition, rt = rank(sim(Ĉ|xt=0)) and by item 5 we have that Rt is the set of linear
functions appearing in sim(Ĉ|xt=0).

4.3.2. The proof. We finally give the proof of Claim 4.8. For convenience we
restate it here.

Claim 4.8 (restated). There exists t ∈ [m] such that

rt ≥
r̂

2k+1 log(d)
.

We start by assuming that the claim is false. In other words, we assume that for
every t ∈ [m]

rt <
r̂

2k+1 log(d)
.(7)

Having defined, for each t ∈ [m], the sets Rt and Gt, we would now like to
show that there exist a small (∼ log(d)) number of sets Rt such that their union
covers almost all of Ĉ. As rank(Ĉ) is relatively high, and for each t, rt = rank(Rt) is
(assumed to be) relatively small, we will get a contradiction. We construct the cover
step by step, and in each step we will find an index t ∈ [m] such that the set Rt covers

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1423

at least half the linear functions not yet covered. This idea is made precise by the
following claim.

Claim 4.11. For every integer 1 ≤ q ≤ log(d̂) there exist q indices t1, . . . , tq ∈ [m]
for which

∣∣∣∣∣
q⋃

s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−q).

Proof. The proof proceeds by induction on q.
Base case q = 1. To prove the claim for q = 1, it is sufficient to show that there

exists t ∈ [m] for which |Rt| ≥ 1
2 k̂d̂. Suppose, on the contrary, that for all t ∈ [m],

|Rt| < 1
2 k̂d̂. Claim 4.10 implies that for all t ∈ [m], |Gt| ≥ 1

2 k̂d̂. This in turn implies
(by item 3 of Claim 4.10) that for all t ∈ [m]

|G1
t | ≥

1

2
d̂.(8)

The next lemma shows that, under the conditions just described, the linear func-
tions of Ĉ “contain” a two-query LDC. We will then apply our results on LDCs from
section 2 (namely, Corollary 2.9) to derive a contradiction. Lemma 4.12 is more gen-
eral than what is required at this point; however, we will need it in its full generality
when we handle q > 1.

Lemma 4.12. Let C be a simple ΣΠΣ(k, d) circuit with n inputs. Let t ∈ [n],
it ∈ [k]. Denote δt = deg(gcd(C|xt=0)). Suppose that the linear functions in Nit are
ordered such that

gcd(C|xt=0) = (Lit1|xt=0)(x) · (Lit2|xt=0)(x) · · · · · (Litδt |xt=0)(x).

Then, there exists a matching, M = {P1, . . . ,Pg} ⊆ C × C, consisting of δt disjoint
pairs of linear functions, such that for each j ∈ [δt],

• the two linear functions in Pj span et, and
• the first element of Pj is Litj.

Proof. As the linear factors of gcd(C|xt=0) belong to all the multiplication gates
(of C|xt=0) we can reorder the linear functions in each gate Ni, i �= it, such that

∀j ∈ [δt] : L1j |xt=0 ∼ L2j |xt=0 ∼ · · · ∼ Litj |xt=0 ∼ · · · ∼ Lkj |xt=0.

As C is simple, it cannot be the case that, for some j, Litj divides all the multi-
plication gates. Therefore, for every j ∈ [δt] there exists an index α(j) ∈ [k] such that
Litj �∼ Lα(j)j . From Claim 4.4 it follows that

∀j ∈ [δt] : et ∈ Span{Litj , Lα(j)j}.

For each j ∈ [δt] let Pj = (Litj , Lα(j)j). Set M = {P1, . . . ,Pδt}. It is clear that each
Pj satisfies the two conditions of the lemma and that the Pj are disjoint.

We continue with the proof of Claim 4.11. From (8) and Lemma 4.12 we conclude

that for each t ∈ [m] there exists a matching Mt ⊂ C×C, containing at least 1
2 d̂ disjoint

pairs of linear functions, such that every pair in Mt spans et. Corollary 2.9 implies
that

1

2
d̂m ≤

m∑
t=1

|Mt| ≤ k̂d̂ log(k̂d̂) + k̂d̂,

1424 ZEEV DVIR AND AMIR SHPILKA

which gives

m ≤ 2k̂ log(k̂d̂) + 2k̂ < log(d)k−3P (k)2−k

(for an appropriate choice of P (k) = 2O(k2)). Now, since m ≥ r
2k , we have that

r < log(d)k−3P (k),

contradicting (4). Therefore our initial assumption was wrong and we conclude that

there exists t1 with |Rt1 | ≥ 1
2 k̂d̂. This completes the proof of Claim 4.11 for the case

of q = 1.
Induction step. Let us now assume that we have found q−1 indices t1, . . . , tq−1 ∈

[m] for which

∣∣∣∣∣
q−1⋃
s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−(q−1)).

Let

R �
q−1⋃
s=1

Rts ,(9)

S � Ĉ\R.(10)

Then, by our assumption,

|S| ≤ k̂d̂2−(q−1).(11)

The proof goes along the same lines as the proof for q = 1: we show that there
exists an index t ∈ [m] such that Rt covers at least half of S. We will argue that if
such an index does not exist, then a contradiction to (4) can be derived. Our main
tools in doing so are Lemma 4.12 and Corollary 2.9.

Claim 4.13. There exists t ∈ [m] such that for all i ∈ [k̂],

|Gi
t ∩ S| < d̂2−q.

Roughly, the lemma states that there exists some variable, xt, such that most of
the linear functions in S do not belong to gcd(Ĉ|xt=0). In particular it implies that
Rt covers a large fraction of S, as needed.

Proof. Assume, on the contrary, that for every t ∈ [m] there exists it ∈ [k̂] for
which

|Git
t ∩ S| ≥ d̂2−q.

From Lemma 4.12 we get that, for every t ∈ [m], there exists a matching Mt,

consisting of d̂2−q disjoint pairs of linear functions, such that each pair spans et, and
that the first element in each pair is in Git

t ∩ S (from the lemma we actually get that
Mt contains deg(gcd(Ĉ|xt=0)) number of pairs, but we are interested only in the pairs
whose first element is in Git

t ∩ S).
We would now like to apply Corollary 2.9 on the matchings {Mt}t∈[m]; however,

for our needs, we would also like that all the linear functions in all the matchings
will belong to S. We achieve this by projecting all functions in R to zero. As the

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1425

dimension of the linear functions in R is small (by our assumption that each rts is
small) we can find a linear transformation that sends the linear functions in R to zero
but leaves many of the linear functions {xt} linearly independent. This is formalized
in the next claim.

Claim 4.14. There exists a subset A ⊂ [m] of size |A| ≥ m
2 and a linear trans-

formation π : F
n → F

n such that
• ker(π) = Span(R),
• for all t ∈ A, π(et) = et.

Proof. Calculating, we get that

rank(R) = rank

(
q−1⋃
s=1

Rts

)
≤

q−1∑
s=1

rank(Rts) =

q−1∑
s=1

rts

≤ (q − 1)
r̂

log(d)2k+1
≤ r

2k+1
≤ m

2
,(12)

where the second inequality follows from (7), the third inequality follows from the fact

that q ≤ log d̂ ≤ log d and r̂ ≤ r, and the last inequality follows from the fact that
r
2k ≤ m. Let m′ = m−rank(R). From (12) we get that m′ ≥ m/2. In particular, there
exists a subset A ⊂ [m], of size |A| = m′, such that Span({xt | t ∈ A}) ∩ Span(R) =
{0}. Hence, there exists a linear transformation π : F

n → F
n such that

• ker(π) = Span(R),
• for all t ∈ A, π(et) = et.

This completes the proof of Claim 4.14.
Let A be the set obtained from the above claim and π the corresponding linear

transformation. We assume, w.l.o.g., that A = [m′]. From here on, we consider only
variables xt such that t ∈ [m′] (i.e., t ∈ A). Fix such t ∈ [m′], and let M ′

t = π(Mt).
In other words, M ′

t = {(π(L), π(L′))}(L,L′)∈Mt
. Clearly,

|M ′
t | = |Mt| ≥ d̂2−q.(13)

Note that the pairs in M ′
t still span et, as for any pair (L.L′) ∈ Mt, with et =

αL + βL′, we have that

et = π(et) = π(αL + βL′) = απ(L) + βπ(L′).

Since all the linear functions appearing in R were projected to zero, we know that
all the pairs in each M ′

t are contained in the multiset8 S′ � {π(L) : L ∈ S}.
After this long preparation we apply Corollary 2.9 to the matchings M ′

t and derive
the following inequality:

m′∑
t=1

|M ′
t | ≤ |S′| log(|S′|) + |S′|.(14)

As |S′| = |S| (remember that S′ is a multiset), we get by (11) that

|S′| ≤ k̂d̂2−(q−1).(15)

8Note that, as in the proof of Lemma 2.5, we can replace each pair in M ′
t that contains the zero

vector with a singleton.

1426 ZEEV DVIR AND AMIR SHPILKA

By (13), (14), and (15), it follows that

m′ · (d̂2−q) ≤
m′∑
t=1

|M ′
t | ≤ |S′| log(|S′|) + |S′|

≤ k̂d̂2−(q−1) log(k̂d̂2−(q−1)) + k̂d̂2−(q−1).

From the fact that k ≥ 4 and m′ ≥ m/2 (and some simple manipulations), we see

that for an appropriate choice of P (k) = 2O(k2)

m < 2−kP (k) log(d)k−3.

As m ≥ r
2k , we get that

r < P (k) log(d)k−3,

contradicting (4). This completes the proof of Claim 4.13.
Let us now proceed with the proof of Claim 4.11. Take tq to be the index described

by Claim 4.13, that is,

∀i ∈ [k̂] : |Gi
tq ∩ S| < d̂2−q.

In particular,

|Gtq ∩ S| < k̂d̂2−q.

Notice that by (9) and (10) and by the fact that Rtq and Gtq give a partition of Ĉ,
we get that the complement of

⋃q
s=1 Rts is exactly Gtq ∩ S. From this we get that

adding Rtq to R gives

∣∣∣∣∣
q⋃

s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−q).

This completes the proof of Claim 4.11.
Having proved Claim 4.11, we are now just steps away from completing the proof

of Claim 4.8. Taking q to be �log(d̂)� in Claim 4.11, we get that there exist indices
t1, . . . , t�log(d̂)� ∈ [m] such that

∣∣∣∣∣∣
�log(d̂)�⋃

s=1

Rts

∣∣∣∣∣∣ ≥ k̂d̂− 2k̂

Thus

r̂ − 2k̂ ≤ rank

⎛
⎝�log(d̂)�⋃

s=1

Rts

⎞
⎠ ≤

�log(d̂)�∑
s=1

rts .

The last inequality tells us that there exists some t ∈ [m] for which

rt ≥
r̂ − 2k̂

�log(d̂)�
≥ r̂ − 2k̂

log(d)
.(16)

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1427

In order to finish the proof of Claim 4.8 we prove the following inequality.
Claim 4.15.

r̂ − 2k̂ ≥ r̂

2k+1
.

Proof. Using (4), we get

r̂ ≥ m ≥ 2−kr ≥ 2−kP (k) log(d)k−3.

Therefore we can choose P (k) = 2O(k2) such that

r̂ > 2k̂
2k+1

2k+1 − 1
.

This implies the inequality in the claim.
Combining Claim 4.15 with (16), we conclude that there exists t ∈ [m] for which

rt ≥
r̂

log(d)2k+1
,

which contradicts our initial assumption (7). This completes the proof of Claim 4.8.

5. A structural theorem for zero ΣΠΣ circuits. The main result of this
section is a structural theorem for ΣΠΣ circuits which are identically zero. The proof
is based on the results of section 4. To ease the notation we will prove our results only
for ΣΠΣ(k, d) circuits; however, from Claim 3.11 it will follow that all the results also
hold for ΣΠΣ circuits with k multiplication gates of degree d.

Theorem 5.1 (structural theorem). Let C ≡ 0 be a ΣΠΣ(k, d) circuit. Then,
there exists a partition of [k]: T1, . . . , Ts ⊂ [k] with the following properties:

• C =
∑s

i=1 CTi
=

∑s
i=1 gcd(CTi

) · sim(CTi
).

• For all i ∈ [s], sim(CTi) ≡ 0 and is simple and minimal.

• For all i ∈ [s], rank(sim(CTi
)) ≤ 2O(k2) log(d)k−2.

In other words, the theorem says that every zero ΣΠΣ circuit can be broken down
into zero subcircuits of low rank (ignoring the g.c.d.). This fact will be used in the
next section, in which we devise PIT algorithms for ΣΠΣ circuits.

Before giving the proof of the theorem we prove a lemma that bounds the rank
of a zero, simple, and minimal ΣΠΣ circuit. Note that Theorem 1.4 follows from this
lemma and Claim 3.11.

Lemma 5.2. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ(k, d)
circuit. Then

rank(C) ≤ 2O(k2) log(d)k−2.

Proof. From Theorem 4.1 we know that there exists a linear (2, 1
12 ,

1
4)-LDC E :

F
n1 → F

n2 with

rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k2).

Theorem 1.2 now tells us that

n2 ≥ 2
1
96n1−1.

1428 ZEEV DVIR AND AMIR SHPILKA

Combining the above inequalities, we get the required bound on rank(C).
We now use Lemma 5.2 to prove Theorem 5.1.
Proof of Theorem 5.1. Since C is equal to zero, we can find a partition T1, . . . , Ts ⊂

[k] such that the circuits CT1 , . . . , CTs are all zero and minimal. Thus, the circuits
sim(CT1), . . . , sim(CTs) are all zero, simple, and minimal. By Lemma 5.2 we get that
if |Ti| ≥ 3 and deg(sim(CTi

)) ≥ 2, then

rank(sim(CTi)) ≤ 2O(k2) log(d)k−2.

If |Ti| = 2, then by Claim 4.2 we get that deg(sim(CTi)) = 0 and so its rank is 1. If
deg(sim(CTi)) ≤ 1, then its rank is at most k. Thus, we have covered all the possible
cases, and the lemma follows.

6. PIT algorithms. In this section we use the structural theorem (Theorem
5.1), proved in the previous section, to devise the PIT algorithms of Theorem 1.5.
Again, to simplify the notation, we give algorithms for ΣΠΣ(k, d) circuits, which
work in the same manner also for ΣΠΣ circuits with k multiplication gates of degree
d. We state our results for a general k; however, our algorithms will be most applicable
when k is a constant.9

From Theorem 5.1 we know that every zero ΣΠΣ circuit can be broken down into
zero subcircuits whose ranks are small. The next two lemmas show that checking
whether these low-rank circuits are zero can be done efficiently.

Lemma 6.1. Let C be a ΣΠΣ(k, d) circuit with rank(C) = r. Then, there exists
a polynomial time algorithm, transforming C into a ΣΠΣ(k, d) circuit C′, such that

• C ≡ 0 iff C′ ≡ 0,
• C′ contains only r variables.

Proof. The proof is a direct consequence of Claim 3.14: we apply an invertible
linear transformation on C, taking a set of r linearly independent vectors to e1, . . . , er.
The transformed circuit will contain only the first r variables and will be zero iff C is
zero.

Lemma 6.2. Let C be a ΣΠΣ(k, d) circuit, and let r = rank(C), s = size(C).
Then we can check if C ≡ 0

1. deterministically, in time poly(s) · (r + d)r;
2. probabilistically, in time poly(s+ 1

ε), using r ·
(
log(d) + log(1

ε)
)

random bits,
with error probability ε.

Proof. Using Lemma 6.1, we can transform C into a circuit C′ with at most r
variables, such that C ≡ 0 iff C′ ≡ 0. Since C′ contains only r variables, the number
of different monomials in C′(x) is bounded by

(
r+d−1
r−1

)
< (r + d)r. We can thus check

if C′ ≡ 0 by computing the coefficients of all the monomials and seeing if they are
all zero. This can be done in time poly(s) · (r + d)r. For the second part of the
corollary, note that we can also check if C′ ≡ 0 probabilistically using the well-known
Schwartz–Zippel algorithm [42, 50].

We are now ready to describe our PIT algorithm for ΣΠΣ(k, d) circuits.
Theorem 6.3. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 1 will

check if C ≡ 0. Further, the algorithm will run in time poly(s)·exp
(
2O(k2) log(d)k−1

)
.

Proof. First, note that if C is nonzero, then the algorithm will never accept. (The
algorithm accepts only when a partition of C into zero subcircuits is found.) Assume
that C is zero. Then, by Theorem 5.1, there exists a partition, T1, . . . , Ts ⊂ [k], of

9Our methods give subexponential time (2o(n)) algorithms also if k = o(
√

logn).

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1429

Algorithm 1. Deterministic algorithm.

input: A ΣΠΣ(k, d) circuit C.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT)).

− (1.2) If rT ≤ 2O(k2) log(d)k−2, then:
− check if sim(CT) ≡ 0 using part 1 of Lemma 6.2.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the
partition sim(CT) ≡ 0, then accept. Otherwise reject.

[k] such that the circuits sim(CT1), . . . , sim(CTs) are all zero and that for all i ∈ [s]

the rank of sim(CTi) is bounded by 2O(k2) log(d)k−2. Therefore, for every CTi
we will

check whether sim(CTi) ≡ 0 in step (1.2) of the algorithm. Since we go over all subsets
of [k], we are bound to find the above partition and accept.

As for the running time of the algorithm, notice that we apply the algorithm from

Lemma 6.2 only on circuits whose rank is smaller than 2O(k2) log(d)k−2. Therefore,
by Lemma 6.2, the time spent in each invocation of step (1.2) is at most

poly(s) · exp
(
2O(k2) log(d)k−1

)
.

Step (1.2) is run at most 2k times, and so the total running time is also

poly(s) · exp
(
2O(k2) log(d)k−1

)
.

(The running times of all the other steps of the algorithm are “swallowed up” by the
running time of step (1.2).)

We can modify Algorithm 1 so that it will use a probabilistic check in step (1.2).
This will result in a probabilistic PIT algorithm for ΣΠΣ circuits, which uses fewer
random bits than previous algorithms.

Algorithm 2. Probabilistic algorithm.

input: A ΣΠΣ(k, d) circuit C. An error probability ε.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT)).

− (1.2) If rT ≤ 2O(k2) log(d)k−2, then: check if sim(CT) ≡ 0 probabilistically,
− using part 2 of Lemma 6.2, with error probability ε2−k.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the
partition sim(CT) ≡ 0, then accept. Otherwise reject.

Theorem 6.4. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 2

will check if C ≡ 0. Further, the algorithm will run in time poly
(
s + 2k

ε

)
, will

use 2O(k2) log(d)k−1 log(1
ε) random bits, and will make an error with probability less

than ε.
Proof. Using the same reasoning as in the proof of Theorem 6.3, we see that the

algorithm can make an error only if one of the checks in step (1.2) fails. By the union
bound, this happens with probability of at most ε.

1430 ZEEV DVIR AND AMIR SHPILKA

Each check in step (1.2) takes time poly
(
s+ 2k

ε

)
. And so the total running time

is

2k · poly

(
s +

2k

ε

)
= poly

(
s +

2k

ε

)
.

By part 2 of Lemma 6.2, the number of random bits used in step (1.2) is at
most rT ·

(
log(d) + log(1

ε)
)
. Since we run the probabilistic check only when rT ≤

2O(k2) log(d)k−2, it follows that the number of random bits used in each invocation

of step (1.2) is bounded by 2O(k2) log(d)k−1 log(1
ε). As we can use the same random

bits in all tests, this is also the total number of random bits needed.
We restate the last two theorems for the case when k is a constant.
Theorem 6.5. Let C be a ΣΠΣ(k, d) circuit, k a constant, s = size(C). Then

we can check if C ≡ 0
1. deterministically, in quasi-polynomial time,
2. probabilistically, in time poly(s+ 1

ε), using O
(
log(d)k−1 log(1

ε)
)

random bits,
with error probability ε.

Note that Theorems 6.3, 6.4, and 6.5 imply the first two claims of Theorem 1.5.

6.1. Multilinear circuits. This section deals with a special kind of ΣΠΣ cir-
cuit, described by the following definition.

Definition 6.6. A ΣΠΣ circuit C is multilinear if each of its multiplication
gates computes a multilinear polynomial. (A polynomial is multilinear if the degree of
every variable is at most one.)

Let

C(x) =
k∑

i=1

ci

di∏
j=1

Lij(x)

be a ΣΠΣ circuit. Denote by Vij ⊂ [n] the set of variables appearing in the linear
form Lij . From Definition 6.6 we see that C is multilinear iff for every i ∈ [k], and for
every j1 �= j2, we have

Vij1 ∩ Vij2 = ∅.

This condition implies that for every i ∈ [k] the linear functions {Lij}j∈[di] are linearly
independent. This leads to the following observation.

Observation 6.7. If C is a multilinear ΣΠΣ circuit of degree d, then rank(C) ≥ d.
Combining this observation and Theorem 1.4, we get the following theorem.
Theorem 6.8. Let C ≡ 0 be a multilinear ΣΠΣ circuit with k multiplication

gates (k ≥ 3), which is simple and minimal. Let d = deg(C); then

d ≤ 2O(k2) log(d)k−2.(17)

Corollary 6.9. There exists an integer function D(k) = 2O(k2) such that every
multilinear ΣΠΣ circuit C with k multiplication gates, which is simple and equal to
zero, and of degree d = deg(C) > D(k), is not minimal.

Proof. Fix k, and consider (17). This inequality holds only if d ≤ 2O(k2) = D(k).
Thus, if d > D(k), then the conditions of Theorem 6.8 are not satisfied. In particular,
if C ≡ 0 and is simple, then it is not minimal.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1431

We can use Corollary 6.9 to improve the algorithm given in section 6, in the case
that the given circuit is multilinear.

Theorem 6.10. Let C be a multilinear ΣΠΣ circuit, of size s, with k multipli-
cation gates. We can check if C ≡ 0 in time poly(s) · exp

(
2O(k2)

)
. Thus, if k is

constant, the algorithm runs in polynomial time.
Proof. The algorithm is the same as Algorithm 1. (It does not matter that our

circuit is not a ΣΠΣ(k, d) circuit.) The only difference is that by Corollary 6.9 we
only have to consider subcircuits CT such that the degree of sim(CT) is less than

D(|T |) = 2O(k2). The running time is computed in a similar fashion. In step (1) we

go over at most 2O(k2) partitions of [k]. Computing the rank of the subcircuit CT can
be done in polynomial time in s. Finally, by part 1 of Lemma 6.2, step (1.2) requires

time O
(
D(|T |)2O(k2))

= exp
(
2O(k2)

)
.

Theorem 6.10 implies the third claim of Theorem 1.5, thus completing the proof
of the theorem.

7. Conclusions and open problems. Finding efficient deterministic PIT al-
gorithms for general arithmetic circuits is a long-standing open problem. We made
the first step toward an efficient algorithm for PIT for depth 3 circuits by giving PIT
algorithms for depth 3 circuits with bounded top fan-in; however, the general case of
depth 3 circuits is still open. In view of [25] it is natural to look for algorithms for PIT
for restricted models of arithmetic circuits in which lower bounds are known. Raz [39]
proved a quasi-polynomial lower bound for multilinear arithmetic formulas comput-
ing the determinant and the permanent. Thus, giving PIT algorithms for multilinear
formulas is a very interesting, and maybe even a solvable, problem.

The key to our result is the relation we have found between LDCs and depth 3
circuits. Previously, relations between circuits and error correcting codes were known
only for bilinear circuits over finite fields [10, 45]. It should be very interesting to find
new relations between codes and arithmetic circuits. Another interesting question is
whether the relation that we have found is tight. In particular we believe that in
Theorem 1.3 one should be able to replace r/2O(k2) log(d)k−3 with O(r/k). A related
question regards how to improve Theorem 1.4. We believe that for minimal and
simple circuits over fields of characteristic zero the rank should be O(k). We have
found circuits that are minimal and simple, with r = 3k − 2, and we think that it
would be an interesting task to come up with (minimal and simple) circuits that have
larger rank. As mentioned in the introduction, [27] showed that over characteristic p
there are identically zero depth 3 circuits with top fan-in p for odd p (for p = 2 the
top fan-in is 3) whose rank is logp(d).

We conclude this section with a geometrical problem related to depth 3 circuits
with three multiplication gates. The famous Sylvester–Gallai theorem states that
every set of n points in the plane having the property that every line that contains
two points from the set also contains a third point from the set is contained in a line.
Consider the following generalization of the problem (colored version in the projective
plane): instead of one set of points we have three different sets. Each set is of size n.
The points in the sets correspond to vectors from the r-dimensional sphere, and every
two such vectors are linearly independent. The condition on the sets is that every
two-dimensional subspace that contains points from two different sets also contains
a point from the third set.10 What can be said about r in this case? Clearly the

10Alternatively, the points belong to the r-dimensional projective space, and every line that con-
tains points from two different sets also contains a point from the third set.

1432 ZEEV DVIR AND AMIR SHPILKA

r-dimensional sphere can be embedded into the (r+1)-dimensional sphere so we only
consider “irreducible” arrangements in which the vectors corresponding to the points
span the whole space. Using our lower bound on LDCs, we can show that r is at most
O(log n); however, we think that this can be improved. In particular we conjecture
that r is bounded (maybe even r = 2). If our conjecture is true, then it will serve as
evidence that for k = 3 the rank of every simple and minimal depth 3 circuit, which
is identically zero, is bounded.

We now give an example that shows the relation of the problem to identically
zero depth 3 circuits with three multiplication gates. Consider the following equality
xn

1 − xn
2 =

∏n−1
i=0 (x1 − wix2), where w is a primitive nth root of unity. We get that

k−1∑
i=1

n−1∏
j=0

(xi − wjxi+1) +

n−1∏
j=0

(xk − wjx1) = 0.

Notice that this is an identically zero depth 3 circuit with k multiplication gates. For
the special case of k = 3 we get that

n−1∏
j=0

(x1 − wjx2) +

n−1∏
j=0

(x2 − wjx3) +

n−1∏
j=0

(x3 − wjx1) = 0.

Each multiplication gate corresponds to a different set of points. We map each linear

function x1−wjx2 from the first gate to the point (1√
2
, −wj

√
2
, 0); similarly, we map the

functions of the second multiplication gate to {(0, 1√
2
, −wj

√
2

)}j=0,...,n−1, etc. Clearly

all the points belong to the two-dimensional sphere in C
3. It is easy to see that for

each point from the first set (i.e., points coming from the first multiplication gate)
and each point from the second set there is a unique point from the third set that
belongs to the same two-dimensional space (similarly if we pick the first and third
sets, etc.). Therefore this construction satisfies our requirements. Our question is,
Can such arrangements be found in higher dimensions?

Acknowledgments. The authors would like to thank Ran Raz and Avi Wigder-
son for helpful discussions during various stages of this work. A. S. would like to
thank Boaz Barak, Valentine Kabanets, and Salil Vadhan for useful conversations on
the topic of the work. We are grateful to Ran Raz for many valuable comments that
improved the presentation of the results.

REFERENCES

[1] M. Agrawal and S. Biswas, Primality and identity testing via Chinese remaindering, J. ACM,
50 (2003), pp. 429–443.

[2] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in p, Ann. of Math., 160 (2004), pp. 781–
793.

[3] A. Akavia, S. Goldwasser, and M. Safra, A unifying approach for proving hardcore predi-
cates using list decoding, in Proceedings of the 44th IEEE Symposium on Foundations of
Computer Science, Cambridge, MA, 2003, pp. 146–155.

[4] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, Checking computations in polylogarith-
mic time, in Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 1991, pp. 21–32.

[5] W. Baur and V. Strassen, The complexity of partial derivatives, Theoret. Comput. Sci., 22
(1983), pp. 317–330.

[6] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in Proceedings of the
Seventh Annual Symposium on Theoretical Aspects of Computer Science, Springer, New
York, 1990, pp. 37–48.

POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1433

[7] A. Beimel and Y. Ishai, Information-theoretic private information retrieval: A unified con-
struction, in Automata, Languages and Programming, Lecture Notes in Comput. Sci. 2076,
Springer, New York, 2001, pp. 912–926.

[8] A. Beimel, Y. Ishai, E. Kushilevitz, and J.-F. Raymond, Breaking the O(n1/2k−1) barrier
for information-theoretic private information retrieval, in Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science, 2002, pp. 261–270.

[9] M. Ben-Or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial in-
terpolation, in Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 1988, pp. 301–309.

[10] N. H. Bshouty, A lower bound for matrix multiplication, SIAM J. Comput., 18 (1989), pp.
759–765.

[11] S. Chari, P. Rohatgi, and A. Srinivasan, Randomness-optimal unique element isolation with
applications to perfect matching and related problems, SIAM J. Comput., 24 (1995), pp.
1036–1050.

[12] Z.-Z. Chen and M.-Y. Kao, Reducing randomness via irrational numbers, in Proceedings of
the 29th Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1997,
pp. 200–209.

[13] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, Private information retrieval, in
Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science,
1995, pp. 41–50.

[14] A. Deshpande, R. Jain, T. Kavitha, J. Radhakrishnan, and S. V. Lokam, Lower bounds for
adaptive locally decodable codes, Random Structures Algorithms, 27 (2005), pp. 358–378.

[15] J. Feigenbaum and L. Fortnow, Random-self-reducibility of complete sets, SIAM J. Comput.,
22 (1993), pp. 994–1005.

[16] P. Gemmell, R. J. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-testing/
correcting for polynomials and for approximate functions, in Proceedings of the 23rd An-
nual ACM Symposium on Theory of Computing, ACM Press, New York, 1991, pp. 33–42.

[17] P. Gemmell and M. Sudan, Highly resilient correctors for polynomials, Inform. Process. Lett.,
43 (1992), pp. 169–174.

[18] O. Goldreich, H. J. Karloff, L. J. Schulman, and L. Trevisan, Lower bounds for linear
locally decodable codes and private information retrieval, Comput. Complexity, 15 (2006),
pp. 263–296.

[19] O. Goldreich and L. A. Levin, A hard core predicate for all one way functions, in Proceedings
of the 21st ACM Symposium on Theory of Computing, Seattle, WA, 1989, pp. 25–32.

[20] O. Goldreich, R. Rubinfeld, and M. Sudan, Learning polynomials with queries: The highly
noisy case, SIAM J. Discrete Math., 13 (2000), pp. 535–570.

[21] D. Grigoriev and M. Karpinski, An exponential lower bound for depth 3 arithmetic circuits,
in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM Press,
New York, 1998, pp. 577–582.

[22] D. Grigoriev, M. Karpinski, and M. F. Singer, Fast parallel algorithms for sparse multivari-
ate polynomial interpolation over finite fields, SIAM J. Comput., 19 (1990), pp. 1059–1063.

[23] D. Grigoriev and A. A. Razborov, Exponential complexity lower bounds for depth 3 arith-
metic circuits in algebras of functions over finite fields, in Proceedings of the 39th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 1998, pp. 269–278.

[24] M. Jerrum and M. Snir, Some Exact Complexity Results for Straight-Line Computations
over Semi-Rings, Technical report CRS-58-80, University of Edinburgh, Edinburgh, UK,
1980.

[25] V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds, in Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, ACM Press, New York, 2003, pp. 355–364.

[26] J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-correcting
codes, in Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, ACM
Press, New York, 2000, pp. 80–86.

[27] N. Kayal and N. Saxena, Polynomial identity testing for depth 3 circuits, in Proceedings of
the 21st Annual IEEE Conference, 2006, pp. 9–17.

[28] I. Kerenidis and R. de Wolf, Exponential lower bound for 2-query locally decodable codes
via a quantum argument, in Proceedings of the 35th Annual ACM Symposium on Theory
of Computing, ACM Press, New York, 2003, pp. 106–115.

[29] A. R. Klivans and D. Spielman, Randomness efficient identity testing of multivariate poly-
nomials, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 2001, pp. 216–223.

[30] L. A. Levin, One–way functions and pseudorandom generators, Combinatorica, 7 (1987), pp.
357–363.

1434 ZEEV DVIR AND AMIR SHPILKA

[31] D. Lewin and S. Vadhan, Checking polynomial identities over any field: Towards a derandom-
ization?, in Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 1998, pp. 438–447.

[32] R. J. Lipton, Efficient checking of computations, in STACS 90: Proceedings of the 7th Annual
Symposium on Theoretical Aspects of Computer Science, C. Choffrut and T. Lengauer,
eds., Springer, Berlin, Heidelberg, 1990, pp. 207–215.

[33] L. Lovász, On determinants, matchings, and random algorithms, in Fundamentals of Comp-
tuation Theory: Proceedings of the Conference on Algebraic, Arithmetic, and Categorial
Methods in Computation Theory, Vol. 2, Akademie-Verlag, Berlin, 1979, pp. 565–574.

[34] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix inversion,
in Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing, ACM
Press, New York, 1987, pp. 345–354.

[35] N. Nisan, Lower bounds for noncommutative computation, in Proceedings of the 23rd Annual
ACM Symposium on Theory of Computing, ACM Press, New York, 1991, pp. 410–418.

[36] N. Nisan and A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives,
Comput. Complexity, 6 (1997), pp. 217–234.

[37] K. Obata, Optimal lower bounds for 2-query locally decodable linear codes, in Proceedings
of the Sixth International Workshop on Randomization and Approximation Techniques,
Springer, New York, 2002, pp. 39–50.

[38] P. Pudlak, Communication in bounded depth circuits, Combinatorica, 14 (1994), pp. 203–216.
[39] R. Raz, Multi-linear formulas for permanent and determinant are of super-polynomial size, in

Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM Press,
New York, 2004, pp. 633–641.

[40] R. Raz and A. Shpilka, Lower bounds for matrix product, in bounded depth circuits with arbi-
trary gates, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing,
ACM Press, New York, 2001, pp. 409–418.

[41] R. Raz and A. Shpilka, Deterministic polynomial identity testing in non-commutative models,
Comput. Complexity, 14 (2005), pp. 1–19.

[42] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM,
27 (1980), pp. 701–717.

[43] E. Shamir and M. Snir, Lower Bounds on the Number of Multiplications and the Number of
Additions in Monotone Computations, Research report RC6757, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1977.

[44] E. Shamir and M. Snir, On the depth complexity of formulas, Math. Systems Theory, 13
(1980), pp. 301–322.

[45] A. Shpilka, Lower bounds for matrix product, SIAM J. Comput., 32 (2003), pp. 1185–1200.
[46] A. Shpilka and A. Wigderson, Depth-3 arithmetic formulae over fields of characteristic zero,

in Proceedings of the 14th Annual IEEE Conference on Computational Complexity, IEEE
Computer Society, Piscataway, NJ, 1999, p. 87.

[47] V. Strassen, Die berechnungskomplexität von elementarsymmetrischen Funktionen und von
Interpolationskoeffizienten, Numer. Math., 20 (1972/73), pp. 238–251.

[48] P. Tiwari and M. Tompa, A direct version of Shamir and Snir’s lower bounds on monotone
circuit depth, Inform. Process. Lett., 49 (1994), pp. 243–248.

[49] L. Trevisan, Some applications of coding theory in computational complexity, Quad. Mat. 13
(2004), pp. 347–424.

[50] R. Zippel, Probabilistic algorithms for sparse polynomials, in Proceedings of the International
Symposium on Symbolic and Algebraic Computation, Springer, New York, 1979, pp. 216–
226.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1435–1452

THE PROBABILISTIC RELATIONSHIP BETWEEN THE
ASSIGNMENT AND ASYMMETRIC TRAVELING SALESMAN

PROBLEMS∗

ALAN FRIEZE† AND GREGORY B. SORKIN‡

Abstract. We consider the gap between the cost of an optimal assignment in a complete
bipartite graph with random edge weights, and the cost of an optimal traveling salesman tour in
a complete directed graph with the same edge weights. Using an improved “patching” heuristic,
we show that with high probability the gap is O((lnn)2/n), and that its expectation is Ω(1/n).
One of the underpinnings of this result is that the largest edge weight in an optimal assignment has

expectation Θ(lnn/n). A consequence of the small assignment–TSP gap is an eÕ(
√
n)-time algorithm

which, with high probability, exactly solves a random asymmetric traveling salesman instance. In
addition to the assignment–TSP gap, we also consider the expected gap between the optimal and
second-best assignments; it is at least Ω(1/n2) and at most O(lnn/n2).

Key words. assignment problem, asymmetric traveling salesman problem, average-case analysis
of algorithms, random assignment problem, matching, alternating path, patching heuristic, cycle
cover, permutation digraph, near-permutation digraph

AMS subject classifications. 90C27, 68Q25, 68W40, 05C80, 60C05

DOI. 10.1137/S0097539701391518

1. Introduction. The assignment problem (AP) is the problem of finding a
minimum-weight perfect matching in an edge-weighted bipartite graph. An instance
of the AP can be specified by an n × n matrix C = (C(i, j)); here C(i, j) represents
the weight (or “cost”) of the edge between i ∈ X and j ∈ Y , where X and Y are
disjoint copies of [n] = {1, 2, . . . , n} and X is the set of “left vertices” and Y is the
set of “right vertices” in the complete bipartite graph KX,Y . The AP can be stated
in terms of the matrix C as follows: Find a permutation π of [n] = {1, 2, . . . , n} that
minimizes

∑n
i=1 C(i, π(i)). Let AP(C) be the optimal value of the instance of the AP

specified by C.

The asymmetric traveling salesman problem (ATSP) is the problem of finding
a Hamiltonian circuit of minimum weight in an edge-weighted directed graph. An
instance of the ATSP can be specified by an n × n matrix C = (C(i, j)) in which
C(i, j) denotes the weight of edge (i, j). The ATSP can be stated in terms of the
matrix C as follows: Find a cyclic permutation π of [n] that minimizes

∑n
i=1 C(i, π(i));

here a cyclic permutation is one whose cycle structure consists of a single cycle. Let
ATSP(C) be the optimal value of the instance of the ATSP specified by C.

It is evident from the parallelism between the above two definitions that AP(C) ≤
ATSP(C). The ATSP is NP-hard, whereas the AP is solvable in time O(n3). Several
authors, e.g., Balas and Toth [5], have investigated whether the AP can be used
effectively in a branch-and-bound method to solve the ATSP and have observed that
the AP gives extremely good bounds on random instances.

∗Received by the editors June 25, 2001; accepted for publication (in revised form) July 21, 2006;
published electronically January 26, 2007.

http://www.siam.org/journals/sicomp/36-5/39151.html
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213 (alan@

random.math.cmu.edu). The research of this author was supported by NSF grant CCR-9818411.
‡Department of Mathematical Sciences, IBM T. J. Watson Research Center, Yorktown Heights,

NY 10598 (sorkin@watson.ibm.com).

1435

1436 ALAN FRIEZE AND GREGORY B. SORKIN

Karp was able to explain this in an important paper [14]. He assumed that
the entries of C were independent uniform [0,1] random variables and proved the
surprising result that

E(ATSP(C) − AP(C)) = o(1).(1)

Since whp1 AP(C) > 1 we see that this rigorously explains the quality of the as-
signment bound, a significant victory for probabilistic analysis. Karp proved (1)
constructively, analyzing an O(n3) patching heuristic that transformed an optimal
AP solution into a good TSP solution. Karp and Steele [15] simplified and sharpened

this analysis, and Dyer and Frieze [7] improved the error bound in (1) to O((lnn)4

n ln lnn).
Our first theorem sharpens this further.

Theorem 1. Over random cost matrices C,

ATSP(C) − AP(C) ≤ c1
(lnn)2

n
whp

and

E(ATSP(C) − AP(C)) ≥ c0
n
.

In this paper, c0, c1, . . . are positive absolute constants whose precise values are
not too important to us.

As in previous works, we will prove the upper bound in Theorem 1 by analyzing
an O(n3) heuristic which patches an optimal AP solution into a good ATSP solution.
We note a related discretized result of Frieze, Karp, and Reed [11], who consider
the C(i, j) to be random positive integers chosen from a range [0, L = L(n)], and
determine for what functions L(n) one has ATSP = AP whp.

Karp and Steele showed that whp the greatest cost of an edge used in the optimal

assignment was O((lnn)2

n); our next theorem improves upon this. Let Cmax = Cmax(C)
denote the maximum cost of an edge used in an optimal assignment.

Theorem 2. Whp over random cost matrices C,

(1 − o(1))
lnn

n
≤ Cmax ≤ c2

lnn

n
.

It is also of interest to estimate the expected difference Δ1 between the cheapest
and second-cheapest assignments. A better understanding of this difference may be
of use in studying the expected performance of branch-and-bound algorithms based
on the assignment relaxation.

Theorem 3. Over random cost matrices C,

1

n2
(1 − o(1)) ≤ E(Δ1) ≤ c3

lnn

n2
.

The algorithm with the best known worst-case time for solving the ATSP exactly
is the O(n22n) dynamic programming algorithm of Held and Karp [12]. The next
theorem describes a probabilistic improvement.

Theorem 4. Whp, a random instance of the ATSP can be solved exactly in time

eÕ(
√
n).
Here Õ is the standard notation for ignoring logarithmic factors.

1With high probability, i.e., with probability 1 − o(1) as n → ∞.

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1437

2. Analysis of the assignment problem. In this section we will prove Theo-
rem 2. The difficult part of the proof—showing that the longest edge in an optimal
assignment has length O(lnn/n)—has its essence in Lemma 5 below.

In this section we will exploit the fact that C can be considered to be the matrix
giving the edge weights of the complete bipartite graph KX,Y . In this interpretation
π corresponds to a perfect matching (i, π(i)), i ∈ X, π(i) ∈ Y .

Define the k-neighborhood of a vertex to be the k vertices nearest it, where
distance is given by the matrix C; let the k-neighborhood of a set be the union of the
k-neighborhoods of its vertices. In particular, for a complete bipartite graph KX,Y

and any S ⊆ X, T ⊆ Y ,

Nk(S)
.
= {y ∈ Y : ∃s ∈ S such that (s, y) is one of the k shortest arcs out of s},

(2)

Nk(T)
.
= {x ∈ X : ∃t ∈ T such that (x, t) is one of the k shortest arcs into t}.

(3)

Given the complete bipartite graph KX,Y , any permutation π : X → Y has an
associated matching Mπ = {(x, y) : x ∈ X, y ∈ Y , y = π(x)}. Given a cost matrix C
and permutation π, define the digraph

�D = �DC,π = (X ∪ Y, �E)(4)

consisting of backward matching edges and forward “short” edges:

(5) �E = {(y, x) : y ∈ Y, x ∈ X, y = π(x)} ∪ {(x, y) : x ∈ X, y ∈ N40(x)}
∪ {(x, y) : y ∈ Y, x ∈ N40(y)}.

We stress that �D is different from the complete weighted digraph Dn in which we
wish to find a minimum length tour.

The arcs of directed paths in �D are alternately forward X → Y and backward
Y → X and so they correspond to alternating paths with respect to the perfect
matching defined by π. Since “adding” an alternating circuit2 to a matching produces
a new matching, finding low-cost alternating paths is key to all our constructions. In
particular, an alternating path’s backward edges (from the old matching) will be
replaced by its forward ones, and so it helps to know (see Lemma 5 below) that given
x ∈ X, y ∈ Y we can find an alternating path from x to y with O(log n) edges. The
forward edges have expected length O(1/n), and we will be able to show (Lemma 7
below) that we can whp be guaranteed to find an alternating path from x to y in
which the difference in weight between forward and backward edges is O(log n/n). It
is then simple to prove the upper bound in Theorem 2. A long edge can be removed
by the use of such an alternating path.

Lemma 5. Whp over random cost matrices C, for every permutation π, the
(unweighted) diameter of �D = �DC,π is at most k0 = 	3 log4 n
.

Proof. For S ⊆ X, T ⊆ Y , let

N�D(S) = {y ∈ Y : ∃s ∈ S such that (s, y) ∈ �E},
N�D(T) = {x ∈ X : ∃t ∈ T such that (x, t) ∈ �E}.

2We use circuit to distinguish from the cycles of the permutations.

1438 ALAN FRIEZE AND GREGORY B. SORKIN

We first prove an expansion property: Whp, for all S ⊆ X with |S| ≤ 	n/5
,
|N�D(S)| ≥ 4|S|. (Note that only the cheap edges out of S, and not the backward
matching edges into it, are involved here. Thus N�D(S), N�D(T) do not depend on π.)

Pr(∃S : |S| ≤ 	n/5
 , |N�D(S)| < 4|S|) ≤
�n/5�∑
s=1

(
n

s

)(
n

4s

)((4s
40

)
(
n
40

)
)s

≤
�n/5�∑
s=1

(ne
s

)s (ne
4s

)4s
(

4s

n

)40s

=

�n/5�∑
s=1

(
e5436s35

n35

)s

= o(1).(6)

Explanation. Summing over all possible ways of choosing s vertices and 4s “tar-
gets,” we take the probability that for each of the s vertices, all 40 out-edges fall
among the 4s out of the n possibilities.

Similarly, whp, for all T ⊆ Y with |T | ≤ 	n/5
, |N�D(T)| ≥ 4|T |. (Again only the
cheap edges, not the matching edges, are involved.) Thus by the union bound, whp
both these events hold. In the remainder of this proof we assume that we are in this
“good” case, in which all small sets S and T have a large vertex expansion.

Now, choose an arbitrary x ∈ X, and define S0, S1, S2, . . . as the endpoints of all
cheap alternating paths starting from x and of lengths 0, 2, 4, That is,

S0 = {x} and Si = π−1(N�D(Si−1)).

Since we are in the good case, |Si| ≥ 4|Si−1| provided |Si−1| ≤ n/5, and so there exists
a smallest index iS such that |SiS−1| > n/5, and iS − 1 ≤ log4(n/5) ≤ log4 n − 1.
Arbitrarily discard vertices from SiS−1 to create a smaller set S′

iS−1 with |S′
iS−1| =

	n/5
, so that S′
iS

= N�D(S′
iS−1) has cardinality |S′

iS
| ≥ 4|S′

iS−1| ≥ 4n/5.

Similarly, for an arbitrary y ∈ Y , define T0, T1, . . . by

T0 = {y} and Ti = π(N�D(Ti−1)).

Again, we will find an index iT ≤ log4 n whose modified set has cardinality |T ′
iT
| ≥

4n/5.

With both |S′
iS
| and |T ′

iT
| larger than n/2, there must be some x′ ∈ S′

iS
for which

y′ = π(x′) ∈ T ′
iT

. This establishes the existence of an alternating walk and hence
(removing any circuits) an alternating path of length at most 2(iS + iT) ≤ 2 log4 n

from x to y in �D.

We have proved there is a short path from any x ∈ X to any y ∈ Y . A short
path from x to x′ both in X can be formed by finding a path from x to y = π(x′) and
appending the backward edge to x′; a path from y to x′ by starting with the backward
edge from y to x = π−1(y) and then pursuing a path to x′; and a path from y to y′

by taking a path from y to x′ = π−1(y′) and discarding its final backward edge.

Let the weight of a forward edge (x, y) be C(x, y) and the weight of a backward
edge (y, x) be −C(x, y).

We will need the following inequality, Lemma 4.2(b) of [10].

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1439

Lemma 6. Suppose that k1 +k2 + · · ·+kM ≤ a lnN , and Y1, Y2, . . . , YM are inde-
pendent random variables with Yi distributed as the kith minimum of N independent
uniform [0,1] random variables. If λ > 1, then

Pr

(
Y1 + · · · + YM ≥ λa lnN

N + 1

)
≤ Na(1+lnλ−λ).

Lemma 7. Whp over random C, for all π, the weighted diameter of �D = �DC,π is
≤ c2

lnn
n .

Proof. Let

Z1 = max

{
k∑

i=0

C(xi, yi) −
k−1∑
i=0

C(yi, xi+1)

}
,(7)

where the maximum is over sequences x0, y0, x1, . . . , xk, yk where (xi, yi) is one of the
40 shortest arcs leaving xi for i = 0, 1, . . . , k ≤ k0 = 	3 log4 n
, and (yi, xi+1) is a
backward matching edge.

We compute an upper bound on the probability that Z1 is large. For any ζ > 0
we have

Pr

(
Z1 ≥ ζ

lnn

n

)
≤

k0∑
k=0

n2k+2 1

(n− 1)k+1

×
∫ ∞

y=0

⎡
⎣ 1

(k − 1)!

(
y lnn

n

)k−1 ∑
ρ0+ρ1+···+ρk≤40(k+1)

q(ρ0, ρ1, . . . , ρk; ζ + y)

⎤
⎦ dy,

where

q(ρ0, ρ1, . . . , ρk; η) = Pr

(
X0 + X1 + · · · + Xk ≥ η

lnn

n

)
,

X0, X1, . . . , Xk are independent, and Xj is distributed as the ρjth minimum of n− 1

uniform [0,1] random variables. (When k = 0, there is no term 1
(k−1)! (

y lnn
n)k−1.)

Explanation. We have ≤ n2k+2 choices for the sequence x0, y0, x1, . . . , xk, yk.
The term 1

(k−1)! (
y lnn
n)k−1dy bounds the probability that the sum of k independent

uniforms, C(y0, x1) + · · · + C(yk−1, xk), is in lnn
n [y, y + dy]. (We approximate this

probability by the area of the simplex face {y1+y2+· · ·+yk = y lnn
n , y1, y2, . . . , yk ≥ 0}

multiplied by dy.) We integrate over y. 1
n−1 is the probability that (xi, yi) is the ρith

shortest edge leaving xi, and these events are independent for 0 ≤ i ≤ k. The final
summation bounds the probability that the associated edge lengths sum to at least
(ζ+y) lnn

n .

It follows from Lemma 6 that if ζ is sufficiently large, then for all y ≥ 0,
q(ρ1, . . . , ρk; ζ + y) ≤ n−(ζ+y)/2, and since the number of choices for ρ0, ρ1, . . . , ρk

1440 ALAN FRIEZE AND GREGORY B. SORKIN

is at most
(
41k+40

k

)
(the number of nonnegative integral solutions to x0 + x1 + · · · +

xk+1 = 40(k + 1)) we have

Pr

(
Z1 ≥ ζ

lnn

n

)
≤ 2n2−ζ/2

k0∑
k=0

(lnn)k−1

(k − 1)!

(
42k

k

)∫ ∞

y=0

yk−1n−y/2dy

≤ 2n2−ζ/2
k0∑
k=0

(lnn)k−1

(k − 1)!

(
42e

lnn

)k

Γ(k)

≤ 2n2−ζ/2(k0 + 1)(42e)k0+2

= o(n−2).

Similarly, whp Z2 ≤ ζ lnn
n , where Z2 is the maximum of the RHS of expression (7) over

sequences y0, x0, y1, . . . , yk, xk where (xi, yi+1) is one of the 40 shortest arcs leaving yi.
If x ∈ X and y ∈ Y , then Lemma 5 implies that whp there is a path of length at

most k0 from x to y, and by the above it will whp have length at most Z1 ≤ ζ lnn
n .

For paths from y ∈ Y to x ∈ X we bound the path length with Z2. For a path from
x ∈ X to x′ ∈ X we find a low weight path P ′ from x to y′ = π(x′) and extend it to
x′, at lower cost. (x′ cannot be on P ′; otherwise y′ appears at least twice on P ′.) For
a path between y ∈ Y and y′ ∈ Y we add (y, x) to a low weight path from x = π−1(y)
to y′.

We can now prove Theorem 2, repeated here for convenience.
Theorem 2. Whp over random cost matrices C,

(1 − o(1))
lnn

n
≤ Cmax ≤ c2

lnn

n
.

Proof. The lower bound follows easily from the fact that lnn
n is the threshold

probability for a random bipartite graph to have a perfect matching, as shown by
Erdős and Rényi [9].

For the upper bound, define �D = �DC,π as per (4) and (5). From the preceding
lemma, we can assume the existence of a cheap alternating path Px from any x to
π(x),

x = x0, y0, x1, y1, . . . , xk, yk = π(x), k ≤ k0 + 1,(8)

consisting of cheap forward edges and backward matching edges.
Suppose any edge in the optimal matching had cost C(x, π(x)) > c2 lnn

n . P (x),
followed by the backward edge (π(x), x), is an alternating circuit, which in this case
has cost ≤ c2 lnn

n −C(x, π(x)) < 0. “Adding” the alternating circuit to the matching
(adding its forward edges to the matching and deleting the backward ones from it)
results in a new matching of lower cost, contradicting the hypothesis that the original
matching was optimal.

3. Analysis of the traveling salesman problem. Our goal in this section is
to prove Theorem 1, recalled here for convenience.

Theorem 1. Over random cost matrices C,

ATSP(C) − AP(C) ≤ c1
(lnn)2

n
whp

and

E(ATSP(C) − AP(C)) ≥ c0
n
.

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1441

We prove the theorem’s first assertion in sections 3.1 through 3.3, and the second
in section 3.4.

If (i, π(i)), i ∈ X, is a perfect matching of KX,Y , then (i, π(i)) also defines a
permutation digraph (PD), i.e., a set of vertex-disjoint directed cycles which cover all

n vertices of the complete directed graph �Kn associated with KX,Y . The size |π| of
π is the number of cycles in the permutation.

Similarly, a near-perfect matching gives rise to a near-permutation digraph (NPD),
i.e., a digraph obtained from a PD by removing one edge. Thus an NPD Γ consists
of any number of directed cycles and a single directed path PATH(Γ).

The edges (i, j) will be colored: red for C(i, j) ∈ [0, c2
lnn
n]; blue for C(i, j) ∈

(c2
lnn
n , 2c2

lnn
n]; green for C(i, j) ∈ (2c2

lnn
n , 3c2

lnn
n]; and black otherwise.

We will use a three phase method as outlined below.
Phase 1. Solve the assignment problem to obtain an optimal assignment Π and

perfect matching Mπ in KX,Y ; whp, only red edges are used.

Phase 2. Whp, at cost O((lnn)2

n) we increase the minimum cycle length in the

PD to at least n0 =
⌈
n ln lnn

lnn

⌉
. We use red and blue edges.

Phase 3. Whp, at cost O((lnn)2

n) we convert the Phase 2 PD to a tour. We use
green edges.

The point is that each phase uses cheap edges that are essentially probabilistically
independent from those in earlier phases. Also, we need Phase 2 because it is hard to
cheaply patch together short cycles.

3.1. Phase 1. That whp only red edges are used in an optimal assignment is
immediate from Theorem 2. Furthermore, given the optimal assignment, and condi-
tioning upon its use only of red edges, the edges which are not red can be thought of
as having independent lengths, uniform in [c2

lnn
n , 1].

Also, whp, the optimal assignment π’s associated PD Π1 is of size |Π1| ≤ 2 lnn.
This holds because π is a random permutation; we will elaborate on this in Phase 2.

3.2. Phase 2. In this phase, to increase the minimum cycle length in the PD,
we will deal with each small cycle in turn. Let us describe the essence of how one
small cycle C of a PD is repaired, setting aside the combinatorial and probabilistic
issues. One edge (a, b) of the cycle is chosen. From vertex a, a path Pa = (x0 =
a, y0, x1, y1, . . . , xk) is grown, using red forward non-PD edges (starting with an edge
out of a) alternating with PD edges traversed backward (see Figure 1). Pa corresponds

to an alternating path in the bipartite digraph �D. From b a similar path Pb = (y′0 =
b, x′

0, y
′
1, x

′
1, . . . , y

′
l) is grown, alternating non-PD edges traversed backward (starting

with a nonmatching edge into b traversed backward) with PD edges traversed forward.
The a-path, followed by the edge joining its terminal xk to the terminal y′l of the b-
path, followed by the reversed b-path, followed by the edge (b, a), defines an alternating
circuit. The “sum” of this circuit and the original PD is a new PD. If the two paths,
and the edge (xk, y

′
l) bridging their endpoints, are cheap, the new PD is not much

more expensive than the old one. Furthermore, if done properly, we will have at least
one less small cycle.

It is important to see how these changes are viewed in the context of our PD.
Consider the sum of the original PD and the path Pa as this path grows. After
removing (a, b) alone we have an NPD which contains a path Q = C \ {(a, b)} from b
to a. As we grow Pa we change Q. It will always start at b, and at some stage suppose
its other endpoint is xi. Suppose now that the next yi lies on a PD cycle A which
is disjoint from Q. In this case xi+1 is the predecessor of yi on A, and Q grows by

1442 ALAN FRIEZE AND GREGORY B. SORKIN

X Y

1

1

1

2

2

2

3

3

3

4

4

4

5
5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

Fig. 1. In the left box is a bipartite graph with matching edges shown as horizontals (black or
grey). The right box shows the corresponding oriented cycle cover indicated by straight arrows (black
or grey), for example, the arrow 1 −→ 2 indicating that X vertex 1 is matched to Y vertex 2. We
imagine that only the pentagon is a “long” cycle, and all the others are short cycles needing repair.

Suppose that to repair the cycle 1, 2, 3, 4 we had selected edge (1, 2). In the bipartite graph
we find a path, rooted at 1, of cheap (red) forward edges (shown as slanted grey lines in the left
box) alternating with matching edges (horizontal solid lines), in this case the path x1, y6, x5, y12, x11.
The right box shows the NPD obtained from this alternating path—the light grey edges being removed
from the cycle cover and the bent edges added to it.

Suppose that in symmetry to the alternating path 1, 6, 5, 12, 11 we found a cheap alternating
path such as 2, 7, 8, this time taking nonmatching edges backward and matching edges forward.
Furthermore suppose the edge (11, 8) happened to be cheap (red or blue). Then taking the first path,
the edge (11, 8), the reversal of the second path, and the reversed edge (1, 2) gives a cheap alternating
cycle 1, 6, 5, 12, 11, 8, 7, 2.

Adding this alternating cycle to the PD repairs the short cycle 1, 2, 3, 4, yielding instead the
cycle 1, 6, 7, 2, 3, 4. In this case we also serendipitously repair the cycle 10, 11, 12, instead getting
the cycle 8, 9, 5, 12, 10, 11. The cycle 13, 14, 15 (like most cycles, most of the time) is uninvolved.

adding the path A \ {(xi+1, yi)}. On the other hand, if yi is a vertex of Q, then xi+1

will be the predecessor of yi on Q. In this case removing (xi+1, yi) leaves a shorter Q
plus a new cycle which has been “split off.”

When we construct Pb, we can think of starting with the NPD, and in particular
with the Q constructed from Pa, and now extending Q from the b end. As long as
no cycles split off are small, and either y0 or x′

0 is on a large cycle, the new cycle
containing a and b, and any other new cycles formed, will be large. We will try to
arrange for this to be the case, otherwise declaring the attempt a failure.

In fact we will construct this alternating path from a to b as the conjunction of a
path Pa directed out of a to some vertex z and a path Pb directed from some vertex
z′ into b, plus the edge (z, z′). We will require (z, z′) to be a blue edge. In order to
find such a pair z, z′ whp, we will have to produce many candidates for Pa, Pb.

If we fail to remedy a small cycle, then the entire algorithm fails. If we succeed,

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1443

we proceed to the next small cycle, until all small cycles are repaired.

Of course the “new” PD of one case becomes the “original” PD of the next
one, and the most difficult part of the analysis will be to handle conditioning that
might be introduced by this evolving cycle structure. (We will rely on the fact that
a PD is induced by a bipartite matching when the two sets of vertices are put into
correspondence by a labeling, and until that labeling is established, the PD and the
matching are in a sense independent.)

The reader will notice that we are using red edges twice, once to find the optimal
assignment π and again in Phase 2 to get rid of small cycles. Thus we have to be
very careful about conditioning. It would be much simpler to give up another logn
factor by using blue edges for this phase, but we feel that we are getting close to the
true upper bound and that the effort is worthwhile. As we will see, the crucial new
idea is to condition on the sizes of the cycles in the optimum PD for the assignment
problem.

The first detail is the construction of the cheap alternating paths out of vertices a
and b. Paths alternating with respect to a PD as described above are—equivalently—
alternating with respect to the corresponding bipartite matching. We begin by finding
a cheap “alternating tree” (really an alternating directed acyclic graph, or DAG),
rooted at a, containing many cheap alternating paths. After doing the same for b, we
hope to find a cheap edge between some a-leaf and some b-leaf, and we use the paths
determined by these leaves.

To define the trees, recall the definitions (2) and (3) of Nk(S) and Nk(T). For
the remainder of this section let K be a suitably large constant. Let EK = {(x, y) ∈
E(KX,Y) : y ∈ NK(x) or x ∈ NK(y)}.

Lemma 8. For any fixed K, whp over random matrices C, every set of s ≤ s∗ =
lnn

2 ln lnn vertices spans at most s edges from EK .

Proof. Since K is large, we know that whp every edge in EK has length at
most 2K lnn

n . (Chernoff bounds imply that whp there are at least K edges of length

≤ 2K lnn
n leaving and entering every vertex.) Starting with the o(1) failure probability

for that event, the probability there exists a small set S containing |S|+1 edges (even
counting loops) is at most

o(1) +

s∗∑
s=1

(
n

s

)(
s2

s + 1

)(
2K

lnn

n

)s+1

≤ o(1) +

s∗∑
s=1

(ne
s

)s(s2e

s + 1

)s+1(
2K

lnn

n

)s+1

≤ o(1) +

s∗∑
s=1

s

n
(2e2K lnn)s+1

= o(1)

(that is, the number of ways of choosing s vertices, the number of ways of choosing
s+1 edges from the s2 edge slots including loops, times the probability that all these
edge slots are realized by edges).

Lemma 9. Whp over random matrices C, for all S ⊆ X, T ⊆ Y , with |S|, |T | ≤ n3/4,

|NK(S)| ≥ (K − 2)|S| and NK(T)| ≥ (K − 2)|T |.(9)

1444 ALAN FRIEZE AND GREGORY B. SORKIN

Proof. Just as in deriving (6),

Pr(∃S or T : ¬(9))

≤ 2
n3/4∑
s=1

(
n

s

)(
n

(K − 2)s

)(((K−2)s
K

)
(
n
K

)
)s

≤ 2

n3/4∑
s=1

(ne
s

)s(ne

(K − 2)s

)(K−2)s(
(K − 2)s

n

)Ks

= 2

n3/4∑
s=1

(
eK−1(K − 2)2s

n

)s

= o(1).

We say that a cycle C of Π1 is small if |C| < n0; recall that we defined

n0 =

⌈
n ln lnn

lnn

⌉
.

Detailed analyses of random permutations have been performed by Arratia, Bar-
bour, and Tavaré [3], in which the joint distribution of counts ki of cycles of length i is
approximated by independent Poissons Zi ∼ Pois(1/i), and by Arratia and Tavaré [4],
who provide a tighter bound on the variation distance between the true distribution
and the Poisson approximation. From these (or more elementary analyses) we ob-
serve first that the expected number of vertices on small cycles is n0 − 1, and so with
probability 1 −O(n0/n),

there are less than 2n0 vertices on small cycles.(10)

(The distance between the true distribution and independent Poisson estimate dom-
inates the bound; the probability the Poissons exceed their expectation of n0 by a
factor of 2 is much smaller.) Assume from now on that π satisfies (10).

Let the small cycles of Π1 be C1, C2, . . . , Cλ. At the start of Phase 2, from each
small cycle C we choose an edge (a, b) of C. Let the chosen edges be (ai, bi), i =
1, 2, . . . , λ. We now describe how we try to remove a Ci without creating any new
small cycles. (See Figure 1.)

As before, we use expansion to create many short alternating paths. Let a bijec-
tion (matching) ρi between X and Y be given, and let one matching edge (ai, bi) be
specified. Define branching factors

r1 = 	K lnn
 and rt = K,

respectively, for a first generation, t = 1, and for all subsequent generations, t ≥ 2.
For each i we construct a pair of “trees” (actually DAGs), Si rooted at ai and Ti at
bi, which we will use to modify bijection ρ = ρi. Their depth-t nodes consist of the

sets S
(t)
i and T

(t)
i , respectively. The depth-0 node sets are the singletons

S
(0)
i = {ai} and T

(0)
i = {bi}.

Define

s0 =
lnn

12 ln lnn
,

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1445

and for 1 ≤ t ≤ s0 let

S
(t)
i = ρ−1(Nrt(S

(t−1)
i)) and T

(t)
i = ρ(Nrt(T

(t−1)
i)).

For t > s0 let

S
(t)
i = ρ−1(Nrt(S

(t−1)
i)) \

(
i−1⋃
i′=1

ln lnn⋃
u=1

S
(u)
i′ ∪

i−1⋃
i′=1

ln lnn⋃
u=1

ρ−1(T
(u)
i′)

)

T
(t)
i = ρ(Nrt(T

(t−1)
i)) \

(
i−1⋃
i′=1

ln lnn⋃
u=1

T
(u)
i′ ∪

i−1⋃
i′=1

ln lnn⋃
u=1

ρ(S
(u)
i′)

)
.

It is immediate that |S(1)
i | = |T (1)

i | = r1. For t ≥ 2 and (as will always be the case)

i < 4 lnn, it follows from Lemmas 8 and 9 that whp |S(t)
i | ≥ (K − 4)|S(t−1)

i | and

|T (t)
i | ≥ (K − 4)|T (t−1)

i | as long as both S
(t−1)
i and T

(t−1)
i are of size at most n3/4.

Indeed, Lemma 8 implies that whp for all i′ < i,

∣∣∣∣∣
s0⋃
t=1

S
(t)
i ∩

s0⋃
t=1

S
(t)
i′

∣∣∣∣∣ ≤ 2.(11)

(Otherwise, if the repeated points are x1, x2, x3, then the paths between ai, ai′ and
x1, x2, x3 form a bicyclic graph with at most 6s0 vertices, contradicting Lemma 8.)

Combining this with Lemma 9 means that for t ≤ s0, |S(t)
i | ≥ (K − 4)|S(t−1)

i |. For
generations t > s0, for each i′ the sets subtracted out are of size O(K ln lnn), and so
as long as i < 4 lnn, in all, the sets subtracted out are of size O(K ln lnn lnn), much

smaller than the size Ω((K − 4)s0) to which the set S
(t)
i has by then grown. By

throwing away vertices if necessary, we can assume that |S(t)
i | = (K − 4)|S(t−1)

i | and

|T (t)
i | = (K − 4)|T (t−1)

i |. Thus if

τ = 	1 + logK−4(n
3/4/	K lnn
)
,

then whp

∀i : n3/4 ≤ |S(τ)
i | = |T (τ)

i | ≤ Kn3/4.(12)

Each x ∈ S
(t)
i defines a walk from ai to x, of length 2t, which is alternating with

respect to the matching Mρ; prune it to define a path P [i, x]. Similarly, each y ∈ T
(t)
i

defines a path Q[i, y] from y to bi, of length at most 2t, which is alternating with
respect to Mρ.

Suppose that we have removed C1, C2, . . . , Ci−1 and that the original permutation
π has become ρ = ρi. Assume that we have not already serendipitously removed Ci

as well. Let (ai, bi) be the chosen edge of Ci.
Each alternating path P [i, x] starts with a “forward” edge which is one of the

K lnn shortest edges leaving ai (the first branching factor was r1 = K lnn), has up
to τ − 1 other forward edges,3 each of which is one of the K shortest edges leaving a
vertex, and has an additional up to τ “backward” matching edges (edges in Mρ). A
symmetric condition holds for Q[i, y].

3Fewer than τ − 1 if the path P [i, x] resulted from nontrivially pruning a (τ − 1)-long walk.

1446 ALAN FRIEZE AND GREGORY B. SORKIN

It follows from the proof of Lemma 7 that whp each of these paths is such that
the total length of its forward edges minus the total length of its backward edges is
bounded by c4

lnn
n .

We now see that if we find ξi ∈ S
(τ)
i and ηi ∈ T

(τ)
i such that (ξi, ηi) is red or

blue (recall the definition from the start of section 3) then it—together with the edge
(ai, bi) and the paths P [i, ξi] and Q[i, ηi]—defines an alternating cycle whose action on
the current perfect matching increases the matching’s cost by at most (2c4 +2c2)

lnn
n .

We now show that we can whp find at least one such alternating cycle whose action
does not create any new small cycles. Furthermore, if such a path contains an edge
of Ci′ , i

′ > i, then this alternating cycle will also remove the small cycle Ci′ .

Let φ be a random permutation of [n] associating the vertices of X to those of Y ,
and let matrix Ĉ be defined by Ĉ(i, j) = C(i, φ(j)). If ψ is the (with probability 1,
unique) minimum solution to the assignment problem with matrix Ĉ, then π = φψ
is the minimum solution to the original problem. We exploit the randomness of φ,
which produces a random permutation π from ψ. Instead of taking π as given, we
assume that ψ is given and π is to be obtained through a random permutation φ. We
condition on the cycle structure of π. Defining ki as the number of cycles of length
i in π, we assume that (i)

∑n0

i=1 iki ≤ 2n0 and that (ii) σ =
∑n

i=1 ki ≤ 2 lnn; these
conditions hold whp.

How do we sample a random permutation conditioned upon having a cycle struc-
ture dictated by k1, k2, . . . , i.e., dictated by the multiset {ki × i : i ∈ [n]} in which
cycle length i appears ki times? Let Π denote the set of permutations of X with
the given cycle structure. Let γ be any fixed permutation with the given cycle struc-
ture. (For example, if t1 = 0, tσ+1 = n, and the multisets {tj+1 − tj : j ∈ [σ]} and
{ki × i : i ∈ [n]} coincide, then we may define γ by the following: If x, y ∈ Cj and
y = x+1 mod tj+1 − tj , then γ(x) = y.) Then given a bijection f : X → X we define
a permutation πf on X by πf = f−1γf . Each permutation π ∈ Π appears precisely∏n

i=1 ki!i
ki times as πf . Thus choosing a random mapping f chooses a random πf

from Π. (This is equivalent to randomly choosing φ = f−1γfψ−1.)

The most natural way to look at this is to think of having oriented cycles on the
plane whose vertices are at points P1, P2, . . . , Pn and then randomly labeling these
points with X. Then if P ′ follows P on one of the cycles and P, P ′ are labeled x, x′

by f , then πf (x) = x′.

To give a concrete example, Figure 1 included a “canonical” digraph 4-cycle,
labeled 1, 2, 3, 4, arising from a corresponding canonically labeled structure in the
bipartite graph, the matching edges (x1, y2), (x2, y3), (x3, y4), (y4, x1). In a random
labeling dictated by a random permutation f , these matching edges would be labeled
(xf(1), yf(2)), (xf(2), yf(3)), (xf(3), yf(4)), (xf(4), yf(1)), and the digraph’s 4-cycle would
be labeled f(1), f(2), f(3), f(4).

As we proceed through Phase 2 we have to expose parts of f (equivalently φ). x
is clean if f(x) is unexposed (the label x has not yet been used) and dirty otherwise.
Thus imagine that we have cycles, mostly unlabeled, but with a few vertices labeled.
Let us use ˜ to denote a partially labeled graph.

We can now add the final layer to our description of how to eliminate the small
cycles. We proceed in order through the selected edges i ∈ [λ]. At stage i we should
have eliminated C1, C2, . . . , Cj−1 for some j, and have a current perfect matching
Mi, defining ρi. (Consider Mi to be fully revealed, but the labels on its vertices not
revealed except for the selected edges in short cycles; thus all that is revealed of ρi is
its cycle structure and labels on these few edges.)

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1447

We construct the trees Si and Ti and then seek red or blue edges between the

leaves S
(τ)
i of Si and T

(τ)
i of Ti. We will consider only vertices of S

(t)
i and T

(t)
i that

are clean and whose paths to their respective roots also contain only clean vertices;

call these vertices squeaky clean. We take the squeaky clean vertices v ∈ S
(τ)
i in some

fixed order. For each such vertex v we look, again in some fixed order, at each squeaky

clean vertex w ∈ T
(τ)
i . Each such edge (v, w) is either red or has length uniform in

[c2
lnn
n , 1]. Thus the probability that it is red or blue is at least c2

lnn
n . This lower

bound holds conditionally on the current history—see the comment at the beginning
of section 3.1. We assert that

whp there are ≥ n3/5 squeaky clean vertices in each of S
(τ)
i and T

(τ)
i ;(13)

this will be shown in the last paragraph in this subsection. Thus if we run through

n2/5 squeaky clean vertices v ∈ S
(τ)
i , the expected number of red or blue edges

to squeaky clean vertices w ∈ T
(τ)
i is ≥ c2

lnn
n · n2/5 · n3/5, and with probability

≥ 1 − e−c2 lnn = 1 − n−c2 , we find at least one red or blue edge. For a given v, if we
find no red or blue edge to any w, we move on to the next v. If we find a red or blue
edge (v, w), we test it for acceptability as described in the following paragraphs. If the
edge is acceptable, the cycle can be repaired and we move on to the next cycle i. If
the edge is not acceptable, v and w have been dirtied in the course of the testing, and
we move on to the next v. Because we find a red or blue edge after exploring about

n2/5 vertices from S
(τ)
i , and |S(τ)

i | ≥ n3/5, we can find at least n1/5 red or blue edges
to test; we will soon see that the failure probability is � n−1/5, so eventual success
is assured whp.

Now consider squeaky clean ξi ∈ S
(τ)
i , ηi ∈ T

(τ)
i such that (ξi, ηi) is red or blue. In

the bipartite graph, there is a squeaky clean alternating circuit C = P [i, ξi], (ξi, ηi),
Q[i, ηi], (bi, ai). (C may start life with vertices crossed multiple times, but we can
prune it down to a circuit containing (bi, ai).) We will define what it means for a cycle
to be “acceptable” and show that C is acceptable with probability at least (lnn)−α,
where

α = 7(lnK)−1 < 1/2.

For any x ∈ S
(t)
i , consider P [i, x] = (x0 = ai, y1, x1, y2, . . . , yt, xt = x), where yj =

ρi(xj) for j ≥ 1. P [i, x] defines a sequence M (0),M (1), . . . ,M (t) of near-perfect match-
ings (see Figure 2) M (s) = (M (s−1) ∪{(xs−1, ys)}) \ {(xs, ys)}. Let Γ(0),Γ(1), . . . ,Γ(t)

be the associated NPDs. We say that Γ(s) is acceptable if (i) |PATH(Γ(s))| ≥ n0 and
(ii) the small cycles of Γ(s) are a subset of {Ci+1, . . . , Cλ}. We say that x is acceptable
if Γ(0),Γ(1), . . . ,Γ(t) are all acceptable.

Going back to P [i, x = xt], let us estimate the probability that xt is acceptable,
given that it is clean and xt−1 is acceptable. Assume that we have revealed f(xt−1)

and that we have a partially labeled NPD Γ̃
(t−1)
i . We randomly choose f(xt) from

the unlabeled points and label it with xt. We then replace the arc (f(xt), ·) of Γ̃
(t−1)
i

with (f(xt−1), ·).4 When t = 1, x1 is acceptable unless f(x1) lies in a small cycle;
it follows from (10) that given the previous exposures, this has probability at most
p1 = 3 ln lnn

lnn . For t > 1, xt will be acceptable if f(xt) is not within n0 of an endpoint

4When dealing with the path from bi to ηi we randomly choose f(xt) and then replace the arc
(f(xt−1), ·) with (f(xt), ·).

1448 ALAN FRIEZE AND GREGORY B. SORKIN

M M0 M1 M2

x0 = ai

x1

x2

x3

bi

y0

y1

y2

Fig. 2. For t = 3, a perfect matching (dashed edges) and the sequence of near-perfect matchings
(dashed and solid edges) defined by an alternating path (x0 = ai, y1, x1, y2, . . . , xt = x) (the union
of all edges shown).

of PATH(Γ̃
(t−1)
i). We will see that

whp only O((lnn)2α) squeaky clean alternating circuits need to be checked

before an acceptable one is found.

Since each path has O(lnn) points, |S(τ)
i |, |T (τ)

i | = O(n3/4) (12), and we repeat for
O(lnn) cycles, in all, at most Õ(n3/4) values of f are exposed.5 So if xt is clean, it
will be unacceptable with probability at most p2 = 2n0

n−Õ(n3/4)
≤ 3 ln lnn

lnn conditional

on previous exposures. A similar analysis holds for the paths Q[i, y].

If all vertices on C are clean, then the probability that C is not acceptable is at

most p1 + 1 − (1 − p2)
2τ ≤ 3 ln lnn

lnn + 1 −
(
1 − 3 ln lnn

lnn

)2τ ≤ 1 − (lnn)−α. Thus if we
can find (lnn)2α clean cycles, then one of them will succeed, with probability at least

1 − (1 − (lnn)−α)(lnn)2α ≥ 1 − exp{−(lnn)α}. As remarked earlier, we can find far
more clean cycles than this—in fact around n1/5 of them—as long as there are around

n3/5 squeaky clean vertices in each of S
(τ)
i and T

(τ)
i ; this is all that remains to be

shown.

Let A
(t)
i denote the squeaky clean vertices of S

(t)
i , t = 1, 2, . . . , τ . It follows from

Lemmas 8 and 9 that |A(1)
i | ≥ K lnn− 4λ− (lnn)2α (λ is the number of small cycles)

and that |A(t)
i | ≥ (K − 4)|A(t−1)

i | − 4λ− (lnn)2α for 2 ≤ t ≤ ln lnn. Here we use (11)
to argue that for i′ < i, the first ln lnn levels of each Si′ , Ti′ dirty at most 2 vertices
of the first ln lnn levels of Si, giving the 4λ term. The (lnn)2α term comes from
vertices dirtied during failed acceptability tests for the current cycle i, one dirtied
vertex per level t per failed test. The higher levels of Si′ , Ti′ do not dirty any of the
lower levels of Si, by construction. In general, for t > ln lnn, Lemma 9 implies that

|A(t+1)
i | ≥ (K−4)|A(t)

i |−4λτ(lnn)2α. Thus, |A(τ)
i | ≥ n3/5. A similar argument holds

for squeaky clean vertices of T
(τ)
i , verifying assertion (13).

3.3. Phase 3. For Phase 3 we use the green edges. We can assert that whp at
the end of Phase 2, all cycles are of length at least n0 and so there are o(lnn) cycles.
Given two cycles C1, C2 each of length at least n0, the probability that we cannot
patch them together (delete edges (ai, bi) from Ci, i = 1, 2 and replace them with

red or blue or green edges (a1, b2), (a2, b1)) is at most (1 − c22(lnn)2

n2)n
2
0 ≤ e−c22(ln lnn)2 .

5Recall that Õ suppresses lnn factors.

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1449

Doing this o(lnn) times increases the cost by at most o((lnn)2

n) and so Phase 3 succeeds
whp.

This completes the proof of the high-probability upper bound on ATSP−AP.
We now consider the lower bound of Theorem 1.

3.4. Proof of the lower bound. The AP can be expressed as a linear program:

Minimize
∑
i,j

C(i, j)zi,j subject to
∑
i

zi,k =
∑
j

zk,j = 1,∀k, 0 ≤ zi,j ≤ 1,∀i, j.
(LP)

This has the dual linear program:

Maximize
∑
i

ui +
∑
j

vj subject to ui + vj ≤ C(i, j), ∀i, j.(DLP)

Remark 10 (condition on an optimal basis for (LP)). We may w.l.o.g. take u1 = 0
in (DLP), whereupon with probability 1 the other dual variables are uniquely deter-
mined. Furthermore, the reduced costs of the nonbasic variables C̄(i, j) = C(i, j)−ui−
vj are independently and uniformly distributed, with C̄(i, j) ∈unif [max {0,−ui − vj},
1 − ui − vj].

6

Proof. The 2n − 1 dual variables are unique with probability 1 because they
satisfy 2n − 1 linear equations. The only conditions on the nonbasic edge costs are
that C(i, j) ∈ [0, 1] (equivalently C̄(i, j) ∈ [−ui − vj , 1 − ui − vj]) and C̄(i, j) ≥ 0;
intersecting these intervals yields the last claim.

Lemma 11. Whp

max
i,j

{|ui|, |vj |} ≤ c5
lnn

n
.(14)

Proof. Optimal dual values ui, vj can be characterized as shortest distances, as
follows [1]. Consider a directed bipartite digraph Γ on X ∪ Y with “forward” edges
(xi, yj), i, j ∈ [n], j �= π(i), of length C(i, j); and “backward” edges (yj , xi), i, j ∈ [n],
j = π(i), of length −C(i, π(i)). If u1 = 0, then −ui is the shortest distance d(x1, xi)
from x1 to xi in Γ, and vj is the shortest distance from x1 to yj .

7

Lemma 7 implies that −ui, vi ≤ c6
lnn
n for i ∈ [n]. Furthermore, using the fact that

a cheapest path is also a cheapest walk (derived from the optimal assignment, Γ has
no negative-cost cycles), −uj = d(x1, xj) ≤ d(x1, xi)+d(xi, xj) ≤ −ui+c6

lnn
n implies

ui − uj ≤ c6
lnn
n . Immediately, |ui| ≤ c6

lnn
n and also, with ū =

∑
ui/n, |ū| ≤ c6

lnn
n .

Likewise, vi − vj ≤ c6
lnn
n , from which |vi − v̄| ≤ c6

lnn
n . But we know that whp the

optimal assignment cost satisfies (1 − ε)π2/6 <
∑

i ui +
∑

j vj < (1 + ε)π2/6 for any

fixed positive ε [2, 16], so v̄ ∈ (1.6/n− ū, 1.7/n− ū), giving |v̄| ≤ c6
lnn
n +O(1/n) and

finally |vj | ≤ c7
lnn
n . (While the tight assignment bounds from [2, 16] are elegant, for

our purposes older bounds from [8, 13] would suffice.)

6Do not be misled by the notation: −ui − vj can be (and often is) positive.
7It is easy to see this from the graph with edge costs C̄(i, j) = C(i, j) − ui − vj ≥ 0. This graph

includes a spanning tree of 0-cost edges, so all distances are 0. The C-cost of any path is almost the
same as its C̄-cost: Of the two directed edges leading into and out of any intermediate node, one has
a ui (or vj) added, and the other has the same quantity subtracted. The cancellation fails only at
the path’s source (but we defined u1 = 0) and at its terminal, resulting in C-distance −ui or +vj as
claimed.

1450 ALAN FRIEZE AND GREGORY B. SORKIN

Having solved (LP) we will have n basic variables zi,j , (i, j) ∈ I1, with value 1 and
n−1 basic variables zi,j , (i, j) ∈ I2, with value 0. The edges (xi, yj), (i, j) ∈ I = I1∪I2
form a tree T ∗ in KX,Y . We show that with probability at least c9 > 0 there exists
(i, i) ∈ I1 (a loop) such that (xi, yi) is a pendant edge in T ∗; w.l.o.g. suppose xi is its
leaf. In this case the optimal TSP tour, viewed as a bipartite matching, cannot use
the edge (xi, yi) (a loop), and must use some other edge (xi, yi′); since xi is a leaf in
T ∗, zi,i′ is not a basic LP variable. The expected value of the reduced cost of zi,i′ is
at least c10

n , and so E(ATSP−AP) ≥ c9c10
n and the lower bound follows.

To prove the existence of (i, i) we show that whp the optimal assignment ψ for Ĉ
of section 3 has at least c11n leaves L. After applying the random permutation φ, the
number of leaves giving rise to loops is, at least, a random variable whose distribution
is asymptotically Poisson with density c11; thus

Pr(∃ at least one leaf-loop) ≥ (1 − o(1))(1 − e−c11).

By taking a spanning tree T of KX,Y that contains a perfect matching M , and shrink-
ing the edges of M , we obtain a tree isomorphic to a spanning tree T ′ of Kn. Each T
arises from exactly 2n−1 trees T ′ because we have two choices as to how to configure
each non-M edge. (An (i, j) edge in T ′ can in T be expanded to (xi, yj) or to (xj , yi).)
Let b(T) = b(T ′) denote the number of branching nodes (degree ≥ 3) of T and T ′.
A tree T ′ is ε-bushy if b(T ′) ≤ εn. Bohman and Frieze used this concept in [6] and
showed that the number of ε-bushy trees is at most n!eθ(ε)n, where θ(ε) → 0 as ε → 0.
It follows that the number of ε-bushy trees of KX,Y which have a perfect matching
is at most eθ(ε)n2n−1n!. Observe that the number of leaves in T is at least b(T). We
complete the proof by showing that, for a sufficiently small constant ε,

Pr(T ∗ is ε-bushy) = o(1).(15)

For any tree T with a perfect matching, we can put u1 = 0 and then solve the
equations ui + vj = C(i, j) for (xi, yj) ∈ T to obtain the associated dual variables. T
is optimal if C̄(i, j) = C(i, j)−ui−vj ≥ 0 for all (xi, yj) /∈ T . Let ZT =

∑
i ui+

∑
j vj .

Now whp the optimal tree T ∗ satisfies ZT∗ ∈ [1.6, 1.7], because ZT∗ is the optimal
assignment cost, and it is known both that expectation is in the stated range [2] and
that the actual value is concentrated about the expectation [16]. Then if E denotes
the event {(14) and ZT ∈ [1.6, 1.7]}, for any tree T , over random matrices C(i, j),

Pr(ZT ∈ [1.6, 1.7] and (14) and C̄(i, j) ≥ 0 ∀(i, j) /∈ I)

≤ Pr(C̄(i, j) ≥ 0 ∀(i, j) /∈ T | E) × Pr(ZT ∈ [1.6, 1.7])

≤ 1.7n

n!
E

⎛
⎝ ∏

(xi,yj)/∈T

(1 − (ui + vj)
+) | E

⎞
⎠

≤ E

⎛
⎝exp

⎧⎨
⎩−

∑
(xi,yj) �∈T

(ui + vj)

⎫⎬
⎭ | E

⎞
⎠ 1.7n

n!

≤ E

⎛
⎝e−nZT exp

⎧⎨
⎩

∑
(xi,yj)∈T

(ui + vj)

⎫⎬
⎭ | E

⎞
⎠ 1.7n

n!

≤ e−1.6nn2c5
1.7n

n!
.

THE PROBABILISTIC RELATIONSHIP BETWEEN AP AND ATSP 1451

Explanation. 1.7n

n! bounds the probability that the sum of the lengths of the edges
in the perfect matching of T is at most 1.7. The product term is the probability that
each nonbasic reduced cost is nonnegative.

Thus

Pr(∃ an ε-bushy tree T : ZT ∈ [1.6, 1.7] and (14) and C̄(i, j) ≥ 0 ∀(i, j) /∈ I)

≤ n!2neθ(ε)n × e−1.6nn2c5
1.7n

n!
= o(1)

for ε sufficiently small. This implies (15).

Remark 12. The above proof of Theorem 1’s lower bound relies on there being
a positive probability that the optimal AP solution includes loops. However, loops
(unlike other cycles) can easily be excluded from an AP solution by changing the
weight matrix C to give weight 1 to each loop. Since this potentially increases the
AP cost but leaves the ATSP cost unchanged, it would be interesting to prove the
Theorem 1 lower bound for random cost matrices C with diagonal entries 1.

4. An enumerative algorithm. We can now prove Theorem 4, restated here
for convenience.

Theorem 4. Whp, a random instance of the ATSP can be solved exactly in time

eÕ(
√
n).

Proof. Let Ik denote the interval [2−kc1
(lnn)2

n , 2−(k−1)c1
(lnn)2

n] for k ≥ 1. It

follows from Remark 10 and Lemma 11 that whp (i) there are ≤ c12
−(k−1)n lnn

nonbasic variables zi,j whose reduced cost is in Ik, 1 ≤ k ≤ k0 = 1
2 log2 n, and (ii) there

are ≤ 2c1
√
n lnn nonbasic variables zi,j whose reduced cost is ≤ c1

(lnn)2

n3/2 .

We can search for an optimal solution to the ATSP by choosing a set of nonbasic
variables, setting them to 1 and then re-solving the AP. If we try all sets and choose
the best tour we find, then we will clearly solve the problem exactly. However, it
follows from Theorem 1 that whp we need only consider sets which contain ≤ 2k

variables with reduced costs in Ik and none with reduced cost ≥ c1
(lnn)2

n . Thus whp
we need only check at most

22c1
√
n lnn

k0∏
k=1

2k∑
t=1

(
c12

−(k−1)n lnn

t

)
≤ 22c1

√
n lnn

k0∏
k=1

(2(c12
−(k−1)n lnn)2

k

)

≤ 22c1
√
n lnn(2(c12

−(k0−1)n lnn)2
k0

)k0

= eÕ(
√
n)

sets, using the fact that (A/x)x is monotone increasing for x ≤ A/e.

5. Second-best assignment. We recall and prove Theorem 3, on the gap Δ1

between the costs of the cheapest and second-cheapest assignments.

Theorem 3. Over random cost matrices C,

1

n2
(1 − o(1)) ≤ E(Δ1) ≤ c3

lnn

n2
.

1452 ALAN FRIEZE AND GREGORY B. SORKIN

Proof. Δ1 is equal to the minimum nonbasic reduced cost.8 From Lemma 11 and∑
i ui +

∑
j vj > 1.6 whp, it follows that whp there are at least n1 = c7

n2

lnn pairs i, j
such that ui + vj > 0. Each such pair corresponds to a nonbasic variable C(i, j), and
it follows from Remark 10 that the minimum reduced cost among this set is at most

1
n1+1 in expectation, proving the upper bound.

For the lower bound, again from Remark 10, the n2 − 2n + 1 nonbasic reduced
costs C̄(i, j) are independent, with C̄(i, j) ∈unif [ai,j , bi,j], where each ai,j ≥ 0 and
(from Lemma 11) each bi,j ≥ 1 − 2c5 lnn/n. The minimum of this collection satisfies
E(min{C̄(i, j)}) ≥ 1

n2−2n (1 − 2c5 lnn/n) = 1
n2 (1 − o(1)).

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows Theory, Algorithms and
Applications, Prentice–Hall, Englewood Cliffs, NJ, 1993.

[2] D. Aldous, Asymptotics in the random assignment problem, Probab. Theory Related Fields,
93 (1992), pp. 507–534.

[3] R. Arratia, A. D. Barbour, and S. Tavaré, Poisson process approximations for the Ewens
sampling formula, Ann. Appl. Probab., 2 (1992), pp. 519–535.

[4] R. Arratia and S. Tavaré, The cycle structure of random permutations, Ann. Probab., 20
(1992), pp. 1567–1591.

[5] E. Balas and P. Toth, Branch and bound methods, in The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization, E. L. Lawler, J. K. Lenstra, A. H. Rinnooy
Kan, and D. B. Shmoys, eds., Wiley, New York, 1986, pp. 361–400.

[6] T. Bohman and A. M. Frieze, Avoiding a giant component, Random Structures Algorithms,
19 (2001), pp. 75–85.

[7] M. E. Dyer and A. M. Frieze, On patching algorithms for random asymmetric travelling
salesman problems, Math. Programming, 46 (1990), pp. 361–378.

[8] M. E. Dyer, A. M. Frieze, and C. McDiarmid, On linear programs with random costs, Math.
Programming, 35 (1986), pp. 3–16.

[9] P. Erdős and A. Rényi, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci., 8 (1964),
pp. 455–461.

[10] A. M. Frieze and G. R. Grimmett, The shortest path problem for graphs with random arc-
lengths, Discrete Appl. Math., 10 (1985), pp. 57–77.

[11] A. Frieze, R. M. Karp, and B. Reed, When is the assignment bound tight for the asymmetric
traveling-salesman problem?, SIAM J. Comput., 24 (1995), pp. 484–493.

[12] M. Held and R. M. Karp, A dynamic programming approach to sequencing problems, SIAM
J. Appl. Math., 10 (1962), pp. 196–210.

[13] R. M. Karp, An upper bound on the expected cost of an optimal assignment, in Discrete
Algorithms and Complexity: Proceedings of the Japan–U.S. Joint Seminar, D. Johnson
et al., eds., Academic Press, New York, 1987, pp. 1–4.

[14] R. M. Karp, A patching algorithm for the nonsymmetric traveling salesman problem, SIAM
J. Comput., 8 (1979), pp. 561–573.

[15] R. M. Karp and J. M. Steele, Probabilistic analysis of heuristics, in The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., Wiley, New York, 1985, pp. 181–206.

[16] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces,

Inst. Hautes Études Sci. Publ. Math., 81 (1995), pp. 73–205.

8From linear programming, Δ1 is at least the minimum nonbasic reduced cost. Also, Δ1 is no
more than this: For the assignment problem, edges corresponding to basic variables form a tree.
Adding any nonbasic edge creates an alternating cycle, whose symmetric difference with the optimal
matching gives a second matching. The cost increase is the cost of the cycle, which is the sum of its
(signed) edge costs. The sum of the signed costs of the edges around a cycle is equal to the same
sum of the reduced costs, because each ui, for example, is added twice, with opposite signs, to the
two edges incident on xi. The cycle in question contains only a single nonbasic edge, so the sum of
its reduced edge costs is just the cost of this edge.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1453–1471

THE WAKE-UP PROBLEM IN MULTIHOP RADIO NETWORKS∗

MAREK CHROBAK† , LESZEK GA̧SIENIEC‡ , AND DARIUSZ R. KOWALSKI‡

Abstract. We study the problem of waking up a collection of n processors connected by a
multihop ad hoc ratio network with unknown topology, no access to a global clock, and no collision
detection mechanism available. Each node in the network either wakes up spontaneously or gets
activated by receiving a wake-up signal from another node. All active nodes transmit the wake-up
signals according to a given protocol W. The running time of W is the number of steps counted from
the first spontaneous wake-up until all nodes become activated. We provide two protocols for this
problem. The first one is a deterministic protocol with running time O(n5/3 logn). Our protocol
is based on a novel concept of a shift-tolerant selector to which we refer as a (radio) synchronizer.
The second protocol is randomized, and its expected running time is O(D log2 n), where D is the
diameter of the network. Subsequently we show how to employ our wake-up protocols to solve two
other communication primitives: leader election and clock synchronization.

Key words. radio network, wake-up, gossiping, broadcasting, probabilistic method

AMS subject classifications. 68W15, 68Q25, 68505, 94A99

DOI. 10.1137/S0097539704442726

1. Introduction. We define an ad hoc multihop radio network as a directed
strongly connected graph with n nodes (also referred to as vertices or processors). The
nodes of this graph represent computing devices that can transmit and receive radio
signals. The directed edges represent transmission ranges of the nodes: if a signal
transmitted from u can be heard by a node v, then G contains the corresponding
edge (u, v). The execution time is divided into discrete time steps, the same for all
processors. We assume that each processor is assigned a unique integer label (or
identifier) from a range of size O(n). The processors know the range of the labels,
but they do not know the network’s topology.

We consider the fundamental problem of waking up the processors of an ad hoc
multihop radio network. Initially, all nodes are assumed to be asleep. Each node in
the network can wake up spontaneously, or it can be activated by receiving a wake-up
signal from another node. Once a node v is activated, it starts executing its wake-up
protocol W. This protocol dictates during which time steps v will transmit a wake-up
signal. In our model, the network does not have a global clock, so W depends only
on the local clock of v (the number of steps since activation) and possibly additional
information received earlier from other nodes. The wake-up signal from v is sent,
during the same time step, to all out-neighbors of v. However, an out-neighbor u of
v receives this signal only if no collision occurred, that is, if no other in-neighbor of u
transmitted at the same time. Furthermore, we do not assume any collision detection

∗Received by the editors April 6, 2004; accepted for publication (in revised form) September 5,
2006; published electronically January 26, 2007. A preliminary version of this paper appeared in the
Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA’04), New Orleans,
LA, 2004, SIAM, Philadelphia, pages 985–993.

http://www.siam.org/journals/sicomp/36-5/44272.html
†Department of Computer Science, University of California, Riverside, CA 92521 (marek@cs.

ucr.edu). The first author’s research was supported by NSF grants CCR-9988360 and CCR-0208856.
‡Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK (leszek@

csc.liv.ac.uk, darek@csu.liv.ac.uk). The second author’s research was supported by the EPSRC grant
GR/R84917/01. Part of the third author’s work was done when he was a postdoctoral researcher in
Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 6123 Saarbruecken, Germany.

1453

1454 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

capability, so if u does not receive a signal at time t, it has no way to decide whether
a collision occurred or none of its neighbors transmitted. The running time of W is
the number of time steps, counting from the first spontaneous wake-up until all nodes
become activated.

While other important communication primitives, such as broadcasting (one-to-all
communication), gossiping (all-to-all communication), and multicast (some-to-some
communication) have been explored extensively in the context of ad hoc multihop
radio networks (e.g., see [5, 7, 8, 9, 10, 12, 14, 15, 16, 17, 21, 24, 25, 26, 30]), the
wake-up and synchronization problems were studied primarily for one-hop networks
(i.e., in the presence of a complete graph of connections). For one-hop networks,
Ga̧sieniec, Pelc, and Peleg [20] presented a deterministic protocol with running time
O(n2 log n). They also gave a probabilistic argument showing that there exists a wake-
up protocol with running time O(n log2 n). Later, Indyk [21] showed that the same
proof can be turned into a constructive argument, with only a slight increase in the
running time. In the randomized case, in [20] one can find an algorithm that, for any
given ε > 0, completes the wake-up process in time O(n log(1/ε)) with probability at
least 1− ε. This result was subsequently improved by Jurdziński and Stachowiak [23],
who gave a protocol with running time O(log n log(1/ε)).

Note that broadcasting can be reduced to wake-up, in the following sense. Given
a wake-up protocol W, we can use it to perform broadcasting by waking up only the
node s that wants to initiate the broadcast, and then using the transmissions of W to
transmit the broadcast message instead of the wake-up signal. Therefore the wake-up
problem can be thought of as a generalization of broadcasting.

Our results. We study the wake-up problem in ad hoc multihop radio networks
when the network has an arbitrary topology—a more general setting than the one
considered in [20, 23]. Further, we assume that this topology is not known to the
algorithm. We provide two protocols for this problem.

First, we give a probabilistic construction of a deterministic wake-up protocol
with running time O(n5/3 log n). Our construction works in several stages. In the
first stage, we construct certain combinatorial structures called (radio) synchronizers.
Later, we take a random protocol P that consists of a synchronizer followed by a
random sequence of transmissions, where each transmission is executed with proba-
bility 1/n. We prove that, with very high probability, this random protocol completes
the wake-up task in time O(n5/3 log n) in so-called path graphs. This implies, via the
probabilistic method, that there exists a deterministic protocol D for path graphs
with the same running time. Finally, we prove that D works, in fact, for arbitrary
strongly connected graphs.

As our second result, we give a randomized wake-up protocol R whose expected
running time is O(D log2 n), where D is the diameter of the network. (Unlike in the
deterministic case, this randomized protocol does not use node labels.)

We subsequently study two other communication primitives: leader election and
clock synchronization. In the leader election problem, we want to designate one node,
typically the one with minimum label, as the leader. All nodes have to be informed
about the leader identity (label). In the clock synchronization problem, we require
that, after the completion of the protocol, all nodes agree on some integer value
(typically, the local time of one selected node) as the current global time. Assuming
that all node labels are integers drawn from an O(n)-size range, we show that both
tasks, leader election and clock synchronization, can be achieved deterministically in
time O(n5/3 log2 n), and in expected time O(D log3 n) with randomization.

WAKE-UP IN RADIO NETWORKS 1455

Other related work. Recall that in our model all nodes are identified by unique
labels of size O(n). A comprehensive discussion of the wake-up problem in one-hop
networks with unbounded labels can be found in [20, 23].

Zheng, Hou, and Sha [31] study a similar wake-up problem in ad hoc symmet-
ric wireless networks, with the main focus on energy efficiency. They also provide
an extensive discussion of existing wake-up mechanisms and related practical and
theoretical issues.

The problem of waking up a collection of processing units is not specific to radio
networks. In fact, one can formulate analogous problems for other distributed com-
puting models. The general idea is that we have a number of agents that are initially
in arbitrary unpredictable states (including clock values), and the goal is to achieve
some degree of synchronization sufficient to perform communication or parallel com-
putation, while minimizing resources like time, memory, etc. One such variant of the
wake-up problem in the asynchronous shared memory model in the presence of faults
was introduced by Fischer et al. [19]. On the more practical side, challenges similar
to those in the wake-up problem arise, for example, after crashes or malicious attacks
in distributed systems.

An unrelated, although similar in spirit, offline problem called the freeze-tag prob-
lem was studied by Arkin et al. [2]. Here, the goal is to design an optimal wake-up
schedule for a swarm of robots.

The leader election problem has been, of course, widely studied in the area of
distributed computing; see, e.g., [28]. In the context of radio networks, leader election
has been studied mainly for one-hop networks. For example, Jurdziński, Kuty�lowski,
and Zatopiański [22] investigated the energy-efficient randomized algorithms for this
problem. (See [22] for more references to work on this case.) To our knowledge,
the only work on leader election in multihop radio networks is that by Bar-Yehuda,
Goldreich, and Itai [6], who proposed an efficient algorithm for undirected networks.

Finally, Awerbuch et al. [4] considered synchronization-like problems in an asyn-
chronous message-passing distributed system. We also point out that the term “syn-
chronizer” was used in other contexts in distributed computing (see [3]). However, our
definition of synchronizers is different than those used in the setting of asynchronous
distributed message-passing systems.

Comments about the model. Concluding the introduction, we offer a few
general comments about our model in relation to past and contemporary network
technologies.

In addition to the initial lack of synchronization, discussed above, any wake-up
protocol in our model needs to overcome three other obstacles: lack of information
about the topology, unidirectionality of links, and channel contention (transmission
collisions.)

In today’s wireless ad hoc networks, it would be unrealistic to assume that the
nodes have accurate information about the network’s topology. Our model of a com-
pletely unknown topology, although rather extreme in this respect, allows us to focus
on the fundamental principles of communication in such networks, and, to our knowl-
edge, it has been studied only from the theoretical perspective.

Networks with shared communication channels have been widely used since 1970s,
starting with Abramson’s pioneering work [1] on radio-based Aloha. (The version
called Slotted Aloha allows communication to take place only at discrete time steps,
thus bearing some resemblance to our model.) The ideas behind Aloha were adapted
to Ethernet local area networks [29], in which communication takes place over a

1456 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

common bus (wire). The use of shared channels is, in fact, still common in today’s
wireless networks.

Reliable communications over a random-access shared channel typically employ
some control mechanism that detects collisions and subsequently retransmits the lost
messages. Unlike in our model, protocols used in practice are based on symmetric
connections, where collision detection can be implemented through a feedback mech-
anism that allows the sending node to detect whether its transmission was successful.
(In Aloha, this is accomplished with message acknowledgements and a timeout mech-
anism, while in Ethernet by sensing the signal level on the shared channel.) To deal
with potential instability due to retransmission of lost messages, appropriate backoff
protocols are employed. The exponential backoff mechanism used in Ethernet de-
creases the frequency of retransmissions by doubling the expected waiting time after
each collision. (The backoff mechanism was not specified in Aloha.) We find it some-
what intriguing that our randomized protocol in section 5 does exactly the opposite,
as it exponentially increases the transmission frequency over time.

2. Radio networks. A radio network is modeled as a directed strongly con-
nected graph G with n nodes (also called vertices or processors). The nodes of G
represent transmitting/receiving devices, and directed edges represent their ranges: if
a node v is within the range of a node u, then G contains an edge (u, v).

If there is an edge from u to v, then we say that v is an out-neighbor of u and
that u is an in-neighbor of v. The set of all in-neighbors of v is denoted by NG(v), or
simply N(v) if G is understood from context.

To simplify presentation, throughout the paper we assume, without loss of gen-
erality, that n is a power of 2. Further, we often use other functions of n, say n1/3,
n5/3, etc., as if their values were integer. All the calculations can be easily formalized
by using the appropriately rounded values instead, say �n1/3�, �n1/3�, etc., although
we choose not to do it in order to avoid clutter.

Each node v is assigned a unique label �v, also called an identifier. The labels are
integer numbers from an interval {�min, . . . , �max}, where �max − �min = O(n). Initially,
each node knows only its label and the bounds �min, �max. In the paper we assume
that �min = 0, since otherwise a node v instead of label �v can use an auxiliary label
�v−�min for execution. In the construction of synchronizers and wake-up protocols, we
further simplify the notation by assuming, without loss of generality, that the label
set is V = {0, 1, . . . , n− 1}, so that we can identify nodes by consecutive integers.
(Note that we cannot make this assumption in the leader election and synchronization
protocols, because then node 0 could be always selected as the leader, making both
problems trivial.)

The execution time is divided into discrete time steps. For the sake of clarity, we
make a distinction between the terms “time” and “time step.” A time t is the point
t on the time axis. A time step t is the unit time interval (t, t + 1]. Any actions
(activations, transmissions, etc.) take place during time steps. Properties of the
network (for example, the set of active nodes) are observed at time points. If some
action takes place at time step t, its effect will be reflected by the change of the state
of the network from time t to t + 1.

Since our focus is on communication, we assume that processors have unlim-
ited computing power and can perform arbitrary computations within one time step.
However, only one transmission or message receipt is allowed in one time step. Each
processor has its own local clock whose initial value, at the time of activation, is 0.
All local clocks run at the same speed.

WAKE-UP IN RADIO NETWORKS 1457

By a wake-up schedule we mean any vector ω = (ωx)x∈V , where ωx denotes the
time step in which x wakes up spontaneously. For any set X ⊆ V , by ωX we denote
the earliest wake-up time step in X; that is, ωX = minx∈X ωx. For our convenience,
we will be assuming that ωV = minx∈V ωx = 0. A node v with ωv = 0 is referred
to as a start node. Note that there may be several start nodes present. A node x is
called active at time t if it either awakened spontaneously or was activated by another
active node u by receiving its wake-up signal in some time step t′ ≤ t− 1.

A wake-up protocol W is a function that, for each label � and for each τ =
1, 2, 3, . . . , given all past messages received by the node v with label �v = �, specifies
whether v will transmit the wake-up signal in time step τ (since its activation.)

A message M transmitted in step t from a node v is sent instantly to all its
out-neighbors. However, an out-neighbor u of v receives M in time step t only if no
collision occurred, i.e., if the other in-neighbors of u do not transmit in step t at all.
Further, collisions cannot be distinguished from the background noise. If u does not
receive any message in step t, it knows that either none of its in-neighbors transmitted
in step t, or that at least two did, but it does not know which of these two events
occurred.

Given a network G and a wake-up schedule ω, by a wake-up network we will mean
the pair 〈G,ω〉. The wake-up network, together with a (deterministic) wake-up proto-
col W, fully determines the state of the network at each time. Let acttimev(W, G, ω)
denote the activation time step of node v, that is, either ωv or the time step when v re-
ceived a wake-up message, whichever comes first. Note that, by the definition of active
nodes, v is active for the first time at time acttimev(W, G, ω)+1. By ActSett(W, G, ω)
we denote the set of all active nodes at time t. We will often simplify this notation
and omit the arguments that are well understood from context, writing acttimev(ω),
ActSett, etc.

The running time of a wake-up protocol W is the smallest T such that, for any
wake-up network 〈G,ω〉 with vertex set V , all nodes are activated by time T ; that
is, ActSetT (W, G, ω) = V . Note that according to this definition some nodes may
continue transmissions after time T . However, without loss of generality we can
assume that each node stops transmitting after T steps from its activation (any further
transmissions are redundant.) Then the total termination time—from the first wake-
up until all nodes complete their transmissions—is at most 2T .

Protocols for leader election and synchronization, as well as their running times,
are defined in an analogous manner. We remark here, however, that in our wake-up
and leader election protocols, nodes transmit only wake-up signals to their neighbors;
no other messages are used. For clock synchronization, messages include numerical
values representing the global time.

3. Synchronizers. The notion of selectors was introduced in the context of time
efficient distributed communication protocols in synchronized radio networks [14], and
later studied by DeBonis, Ga̧sieniec, and Vaccaro [18] as a tool in weakly adaptive
combinatorial group testing. In particular, an (n, k,m)-selector T is defined in [18]
as follows: T = {T x}x∈V , where each T x is a 0-1 sequence of length m, and for
each subset X ⊆ V of size k there exists a position 1 ≤ t ≤ m such that exactly
one sequence T x has 1 on position t. In radio network applications, T represents a
transmission protocol for the network, where a node x transmits at time t if the tth
bit of T x is 1. The main intuition behind the condition on T is that if a set X = N(v)
of k nodes follows this protocol, then within at most m steps a successful (that is,
collision-free) transmission from X to v will occur.

1458 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

The selectors as defined in [14] are not sufficient for the wake-up problem, due to
the lack of clock synchronization. Intuitively, as the nodes wake up at different times
and start transmitting, their transmission sequences may be shifted with respect to
each other. To deal with this difficulty, we now introduce a new type of selector-
like structures called radio synchronizers (or synchronizers, for short), that tolerate
arbitrary shifts.

Formally, let S = {Sx}x∈V , where each Sx = Sx
1S

x
2 . . . Sx

m is a 0-1 sequence
of length m. We say that S is a (n, k,m)-synchronizer if it satisfies the following
property:
(∗) For any nonempty set X ⊆ V of cardinality at most k, and for any wake-up

schedule ω, there exists t, where ωX < t ≤ ωX + m, such that∑
x∈X

Sx
t−ωx

= 1.

We assume here that Sx
i = 0, for i ≤ 0.

As explained earlier, we will interpret S as a transmission protocol, where Sx
i = 1

indicates that node x transmits in step ωx + i. Thus the condition (∗) states that, in
at most m steps after the first node in X wakes-up, there will be a time step when
exactly one node in X transmits.

Lemma 1. Let C ≥ 31 be an integer constant. For each n and k ≤ n, there exists
an (n, k,m)-synchronizer with m = Ck2 log n.

Proof. We use here a probabilistic argument. Without loss of generality, we can
assume that n ≥ k ≥ 2. For all x ∈ V and i = 1, . . . ,m, independently, assign Sx

i = 1
with probability 1/k, and 0 otherwise. We show that, with very high probability,
S = {Sx}x∈V is an (n, k,m)-synchronizer.

Initially, we fix a set of nodes X with 1 ≤ |X| ≤ k and a wake-up schedule ω.
Let z ∈ X be the node with the earliest wake-up time in X, which is ωz = ωX . Fix a
time t ∈ (ωX , ωX + m], and let X ′ = {x ∈ X : ωx < t} be the set of nodes in X that
are “awakened” at time t. The probability that Sx

t−ωx
= 1 for exactly one x ∈ X is

not smaller than the probability that z is the only one with Sz
t−ωz

= 1. Using this
inequality, the independence of the random variables Sx

t , for x ∈ X, and some routine
calculations, we get

Pr

[∑
x∈X

Sx
t−ωx

= 1

]
≥ Pr

[
Sz
t−ωz

= 1 &
∑

x∈X′−{z}
Sx
t−ωx

= 0

]

=
1

k

(
1 − 1

k

)|X′|−1

≥ 1

k − 1

(
1 − 1

k

)k

≥ 1

4k
,

where the last inequality holds because (1 − 1/k)k ≥ 1
4 for k ≥ 2.

For different times t, the events “
∑

x∈X Sx
t−ωx

= 1” are independent. Therefore,
using the bound above, we get that the probability that no such time step exists is

Pr

[∑
x∈X

Sx
t−ωx

= 1 ∀t ∈ (ωX , ωX + m]

]
≤

(
1 − 1

4k

)m

≤ βm/k

for β = e−1/4 < 1.

WAKE-UP IN RADIO NETWORKS 1459

The probability that S violates the definition of the (n, k,m)-synchronizer for
a fixed X can be estimated by multiplying the above probability by the number of
choices of ω. It is sufficient to count only those wake-up schedules ω that satisfy
ωX ≤ ωx ≤ ωX + m for x ∈ X, and ωx = ωX for x /∈ X. This is because, given an
arbitrary ω, we can define another wake-up schedule ω′ as ω′

x = min {ωx, ωX + m}
for x ∈ X, and ω′

x = ωX for x /∈ X. Then S satisfies (∗) for X and ω iff S satisfies
(∗) for X and ω′. The number of such relevant wake-up schedules is not greater than
(m+1)|X| ≤ (2m)k, so the probability that S violates (∗) for X is at most (2m)kβm/k.

Now, to estimate the probability that S is not an (n, k,m)-synchronizer, we can
multiply the above probability by the number of ways in which X can be chosen,
which is at most

∑k
j=1

(
n
j

)
≤

∑k
j=1 n

j ≤ n2k. Thus

Pr[S is not a (n, k,m)-synchronizer] ≤ n2k(2m)kβm/k

≤ n2k(2Ck2 log n)kβCk log n

≤
[
n6+logC+C log β

]k
< 1,

as long as C ≥ 31. Since this probability is smaller than 1, there exists an (n, k,m)-
synchronizer S with m = Ck2 log n.

4. A deterministic wake-up protocol. In this section we propose a wake-up
protocol based on synchronizers and random transmission patterns. We also show
later (using the probabilistic method) the existence of a deterministic protocol that
completes the wake-up task in n-vertex directed graphs in time O(n5/3 log n). We
proceed in four steps:
(1) We define a random protocol P and a class of graphs that we call path graphs. We

also define a slightly different communication model for those graphs, which
we call the restricted model.

(2) We show that, with probability exponentially close to 1, P will complete the
wake-up task in time O(n5/3 log n), according to the restricted model, for an
arbitrary n-vertex path graph and a wake-up schedule.

(3) Using the bound on the failure probability in (2), we show that there exists a
deterministic protocol D for path graphs with running time O(n5/3 log n), in
the restricted model.

(4) Finally, we prove that (3) implies that our protocol D works in fact also in
arbitrary directed graphs, with running time O(n5/3 log n).

We point out here that applying the probabilistic method to path graphs, rather than
directly to arbitrary graphs, is crucial, since the number of path graphs is substantially
smaller than the number of arbitrary directed graphs—roughly nn instead of 2n(n−1).

Random protocol. We now define our random protocol P (that is, a proba-
bility distribution on deterministic protocols.) Let S = {Sx}x∈V be an (n, k,m)-

synchronizer with k = n1/3 and m = Cn2/3 log n, where C = 31. The existence of S
has been established in Lemma 1. For each x ∈ V, we define a random 0-1 sequence
Px as

Px = SxUx,

where Ux is a random 0-1 sequence of length O(n5/3 log n) in which each bit is chosen,
independently, to be 1 with probability 1/n and 0 with probability 1−1/n. (The exact
length of Ux will be determined later in this section.) Then P = {Px}x∈V is a random

1460 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

protocol, where the 1’s in Px indicate the times when node x transmits the wake-up
signal. We refer to the sequence Sx as the S-stage and Ux as the U-stage of Px.
We emphasize that for any given node x, its S-stage transmissions are fixed; only the
transmissions in its U-stage vary randomly.

Path graphs and restricted executions. A directed graph H is called a path
graph if it has the following structure: the nodes of H can be partitioned into sets
Li, i = 0, . . . , D, called layers, each with a distinguished node vi ∈ Li. The edges of
H are of the form (v, vi+1), where 0 ≤ i < D and v ∈ Li. We refer to D as the depth
of H. The path π = v0, v1, . . . , vD is called the main path of H. Node v0 is the start
node and vD is the target node (see the figure below). We assume that LD = {vD}.
If H is a path graph and μ is a wake-up schedule, we refer to the pair 〈H,μ〉 as a path
wake-up network.

2

v3

L1
L2 L3 L4

v4

L0

start 0
v1

v
targetv

In path wake-up networks, we consider only wake-up schedules μ with v0 as the
start node, that is, μv0 = 0 and μv ≥ 0 for v = v0. The wake-up task is also different:
our objective is to wake up only the target node vD, and not necessarily all nodes.

We will consider a restricted communication model for path graphs, which differs
slightly from the standard model described in section 2. Let H be a path graph and μ
a wake-up schedule. Assume that the sets of active nodes are already defined for
times 1, . . . , t. (As in a standard radio wake-up execution, if a node becomes active,
it remains active through the end of the execution.) We denote by ht the greatest
index i of an active layer Li (that is, a layer with at least one active node) at time t.
We refer to Lht as the head layer at time t. A nonactive node v becomes activated
in step t either if v wakes up spontaneously, or if v is on the main in the layer right
after the head layer and is activated by some in-neighbor from the active layer. More
formally,
(Act1) μv = t, or
(Act2) v = vht+1 and exactly one node in Lht transmits in step t.

Thus the difference between the standard and restricted models in path graphs is that
the nodes vi, for i ≤ ht, cannot be activated by their in-neighbors in H even if exactly
one of these in-neighbors transmits. (Nodes vi, for i > ht + 1, cannot be activated by
their in-neighbors in either model, by the choice of ht.) Given a protocol P, we refer to
the execution of P on 〈H,μ〉 under the restricted model as a restricted execution. By
acttime∗u(D, H, μ) and ActSet∗t (D, H, μ), respectively, we denote the activation time
step of u and the set of active notes at time t in the restricted execution of D on
〈H,μ〉 (with the asterisk indicating a restricted execution).

Recall that m = Cn2/3 log n is the length of our synchronizer, where C = 31 is
the constant from Lemma 1.

WAKE-UP IN RADIO NETWORKS 1461

Lemma 2. Let B ≥ 15 be an integer constant. Consider the restricted execution
of protocol P on a path wake-up network 〈H,μ〉 with vertices from V . The probability
that P does not activate the target node of H in time T = (B + C)n5/3 log n is at

most n− 1
16Bn.

Proof. Let L0, . . . , LD be the layers of H and π = v0, . . . , vD be the main path.
The activation time step of a layer Li is a random variable that is equal to t either if
t = μLi

, or if ht = i− 1 and vi receives the wake-up signal from Li−1 in time step t,
whichever comes first.

Whenever the head index ht increases, we call it an advance. Recall that v0 is
assumed to wake up at time step 0. We want to bound the probability of failure, i.e.,
that vD is still not awakened at time T = (B + C)n5/3 log n or, equivalently, that
hT < D.

Given some fixed execution of P (that is, with fixed random choices), we group
all time steps t in this execution into two categories:
S-steps: time steps t when at least one node in a head layer Lht

executes its S-stage,
and

U-steps: time steps t when all active nodes in Lht
execute their U-stage.

Suppose that layer Li was activated in this execution at time step t′. If the
number of active nodes in Li at time t′ + m is at most n1/3, then we say that Li is
fast. Otherwise, we call Li slow. (We emphasize that the notions of fast and slow
layers are relative to a particular execution of P; the same layer can be slow or fast,
depending on the outcomes of random choices before t′.)

We now make two important observations. First, if Li is fast, then, since S is an
(n, k,m)-synchronizer with k = n1/3, an advance to Li+1 will occur during the time
period [t′ + 1, t′ +m] with probability 1 (unless some nodes in layers after Li+1 wake
up spontaneously, in which case we advance even further). The second observation,
following from the previous one, is that U-steps occur only when the head layer is
slow and thus has size at least n1/3.

Now we look at the execution of P on 〈H,μ〉 globally. The total number of S-steps
is at most nm = Cn5/3 log n. During these S-steps, P will complete advances from
all fast layers in its execution with probability 1.

Since each slow layer has size at least n1/3, the number of slow layers in any

execution cannot exceed n2/3. The total number of U-steps is at least J
def
= T −

Cn5/3 log n = Bn5/3 log n. Let Xi be a random variable such that Xi = 1 if there is
an advance in the ith U-step, and 0 otherwise. Thus, it is sufficient to prove that

Pr

[
J∑

i=1

Xi < n2/3

]
≤ n− 1

16Bn.(1)

Consider one U-step, say the ith one, for some fixed execution history Ψ (that is,
all random choices up to this point). At this step, the head layer has x ≥ n1/3

active nodes, and all these nodes transmit with probability 1/n. The probability of
an advance is the probability that exactly one of them transmits, so

Pr[Xi = 1 | Ψ] = x · 1

n
·
(
1 − 1

n

)x−1

≥ 1
4n

−2/3 def
= p.(2)

The last inequality holds because it is true for x = n1/3 and x(1 − 1/n)x−1 is a
nondecreasing function for x < n. (Recall that n ≥ 2.) Therefore Pr[Xi = 1] ≥ p.

The idea behind the proof of (1) is this: we can think of the Xi’s as a sequence
of Bernoulli trials in which the probability of a success (an advance) is p. Then the

1462 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

probability that in this process the number of advances in J U-steps is less than n2/3

can be bounded by n−Ω(n) using an appropriate tail inequality.
The flaw in the above argument is that the advance events (variables Xi) are

not fully independent, and thus this is not truly a Bernoulli process. To make the
argument more rigorous, we introduce independent random variables Yi ∈ {0, 1},
where Pr[Yi = 1] = p. For these variables, the Chernoff bound (see [27], for example),

states that Pr[
∑J

i=1 Yi < K] ≤ exp
[
− 1

2Jp(1 −K/(Jp))2
]
, for any 0 ≤ K < Jp. For

K = n2/3 and B ≥ 15 we have

(
1 − n2/3

Jp

)2

=

(
1 − 4

Bn1/3 log n

)2

≥
(

1 − 4

B

)2

≥ 1

2
.

Therefore

Pr

[
J∑

i=1

Yi < n2/3

]
≤ e−

1
2Jp(1−n2/3/(Jp))2

≤ e−
1
16Bn logn

≤ n− 1
16Bn.

To complete the proof it is now sufficient to show that

Pr

[
J∑

i=1

Xi < K

]
≤ Pr

[
J∑

i=1

Yi < K

]
(3)

for each K. To show (3), we introduce new random variables Zi ∈ {0, 1}, i = 1, . . . , J ,
where, for each history Ψ (the random choices up to before the ith U-step), we define

Pr[Zi = 1 | Ψ & Yi = 1] = 0,

Pr[Zi = 1 | Ψ & Yi = 0] =
Pr[Xi = 1|Ψ] − p

1 − p
.

Then processes {Xi} and {Yi + Zi} are stochastically equivalent. More precisely, for
i = 1, . . . , J and any history Ψ,

Pr[Yi + Zi = 1 | Ψ] = Pr[Yi = 1 &Zi = 0 | Ψ] + Pr[Yi = 0 &Zi = 1 | Ψ]

= p + (1 − p) · Pr[Xi = 1 | Ψ] − p

1 − p

= Pr[Xi = 1 | Ψ],

and thus Pr[Yi + Zi = 1] = Pr[Xi = 1] as well. Therefore

Pr

[
J∑

i=1

Xi < K

]
= Pr

[
J∑

i=1

(Yi + Zi) < K

]
≤ Pr

[
M∑
i=1

Yi < K

]
,

completing the proof of (3). This also completes the proof of (1) and the whole
lemma.

Lemma 3. There exists a deterministic protocol D that, under the restricted
model, for any path wake-up network 〈H,μ〉 with at most n nodes, activates the target
node of H in time O(n5/3 log n).

WAKE-UP IN RADIO NETWORKS 1463

Proof. Let T = (B + C)n5/3 log n be the running time from Lemma 2, where
C = 31 and B ≥ 15. Each path graph has out-degree 1, so the number of (labeled)
n-vertex path graphs is at most nn. We need to be concerned only with wake-up
schedules μ that satisfy 0 ≤ μv ≤ T + 1 ≤ 2T for all v and μv0 = 0 (where v0 is the
start node). There are at most (2T)n such wake-up schedules. Thus, by Lemma 2,
the probability that P does not complete the wake-up during a restricted execution
on some n-vertex path graph and some wake-up schedule is at most

n− 1
16Bn · nn(2T)n ≤

[
n− 1

16B · n · 2(B + C)n5/3 log n
]n

≤
[
n− 1

16B+log(B+C)+5
]n

< 1,

as long as B ≥ 15 and − 1
16B + log(B + C) + 5 < 0. Any B ≥ 207 satisfies these

conditions. This implies that there exists a deterministic protocol D that, for any
n-vertex path graph and any wake-up schedule, completes the wake-up task (under
the restricted model) in time O(n5/3 log n).

Theorem 1. There exists a deterministic protocol that completes the wake-up
process in each n-vertex strongly connected directed graph in time O(n5/3 log n).

Proof. We prove that protocol D from Lemma 3 satisfies the theorem. Let
T = O(n5/3 log n) be the running time of protocol D from Lemma 3, in the restricted
model, on any path wake-up network 〈H,μ〉, where the vertex set of H is a subset of
V . We show that D completes the wake-up in any graph with vertex set V under any
wake-up schedule in time T = O(n5/3 log n).

Fix a wake-up network 〈G,ω〉, and denote by v0 the start node, where ωv0 = 0
and ωu ≥ 0 for all u ∈ G. Let v be some arbitrary but fixed target node v ∈ G, and let
π = v0, v1, . . . , vd = v be the shortest path from v0 to v. We define a subgraph Hv of
G as follows: the vertices of Hv are all nodes v0, . . . , vd and all in-neighbors of nodes
v1, . . . , vd. The edges of Hv are all edges (u, vi) in G such that u ∈ Hv and (u, vj) /∈ G
for j > i. Clearly, Hv is a path graph with main path π = v0, v1, . . . , vd = v. As
usual, we denote the layers of Hv by L0, . . . , Ld. (See Figure 1.)

Define a wake-up schedule μ for nodes u ∈ Hv by μu = acttimeu(D, G, ω), the
activation time of u in G under protocol D and wake-up schedule ω. We compare the
two following executions of D:
(i) the execution of D on G with wake-up schedule ω, and
(ii) the restricted execution of D on Hv with wake-up schedule μ.

The difficulty we need to address is that the nodes vi may have different neighborhoods
in G and in Hv. All in-neighbors of vi in Hv are in Li−1, while in G, vi may also have
in-neighbors in layers Li, . . . , Ld. Nevertheless, we claim that the following invariant
holds at each time t = 0, 1, . . . , T :

∀ u ∈ Hv : u ∈ ActSett(D, G, ω) iff u ∈ ActSet∗t (D, Hv, μ).(4)

If (4) holds, then the activation times of each node (in particular, the target node)
in both executions are the same. Since v was chosen arbitrarily, the theorem follows
from Lemma 3. Thus, to complete the proof of the theorem, it is sufficient to prove
(4).

The proof of invariant (4) is by induction on times t = 0, . . . , T . For t = 0, (4)
holds by the very definition of μ. Suppose that (4) is satisfied up to time t. We show
that it is also satisfied at time t + 1.

1464 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

ActSet (D,G,)

v0
v1

v2

v3

L1L0
L2 L3 L4

graph H

ActSet (D,H ,)

4v = vstart
target

v0
v1

v2

v3

4v = vstart

graph G

target

ωt

v

*t μv

Fig. 1. An illustration of the construction of Hv. The main path in G is shown with thick
arrows. Vertices that belong to Hv are represented with filled circles.

Note first that for each node u ∈ Hv − π, its activation times in both executions
are the same, acttime∗u(D, Hv, μ) = acttimeu(D, G, ω) = μu. Thus (4) holds for nodes
u ∈ H −π. The implication (⇒) is also immediate from the definition of μ. It is thus
sufficient to prove the only implication (⇐) for u ∈ π.

It follows directly from invariant (4) applied to times 1, . . . , t that the activation
time steps (up to step t − 1) of active nodes in Hv are the same in both executions
of D, the execution on 〈G,ω〉, and the restricted execution on 〈Hv, μ〉. Consequently,
any u ∈ ActSet∗t (D, Hv, μ) performs the same action in step t in both executions.
(This is because Du does not depend on whether u woke up spontaneously or was
activated by another node.)

As before, let ht be the head layer of 〈Hv, μ〉 at time t. For any node vi, where
i = ht + 1, it follows directly from the definition of Hv and the rules of the restricted
model that vi is activated in step t of the execution of D on 〈G,ω〉 iff it is activated
in step t of the restricted execution of D on 〈Hv, μ〉.

Consider vi, for i = ht + 1, and suppose that vi is activated in Hv at time step
t ≤ μvi . It is sufficient to prove that t < μvi is not possible. Toward contradiction,
suppose t < μvi

, that is, vi was activated at step t using rule (Act2) by a wake-up
signal from some node in Li−1. Then, by the definitions of Hv and ht, and also
by invariant (4), we have NG(vi) ∩ ActSett(D, G, ω) = NHv (vi) ∩ ActSet∗t (D, Hv, μ),
and all nodes in this set are in the same state in both executions. It follows that vi
would have received the same message in G in step t as well—a contradiction with
the assumption that μi > t. This implies that (4) holds at time t+ 1, completing the
proof.

We emphasize that the above proof is not valid for arbitrary protocols, as we
strongly use the fact that in our protocol D the active nodes do not use any information
about how they have been activated (spontaneously or by a wake-up signal).

WAKE-UP IN RADIO NETWORKS 1465

Recall that in this section we made a simplifying assumption that the node labels
are consecutive integers 1, 2, . . . , n. Theorem 1 remains valid, however, if the node
labels are chosen from a range �min, . . . , �max, where �max−�min ≤ An, for some constant
A, for in this case we can simply use a protocol for auxiliary labels 0, 1, . . . , An (that
is, a node with label � uses label � − �min to identify itself). This will not affect the
asymptotic performance of the protocol.

5. A randomized wake-up protocol. In [23], the authors presented a random-
ized wake-up protocol for complete graphs. We now give a randomized Monte-Carlo
wake-up protocol R for general multihop radio networks (even without node labels.)
R receives on input a parameter ε > 0, which is the desired bound on the probability
of failure.

Protocol R. The pseudocode of the protocol for an arbitrary node v is

for s← 0, 1, . . . , log n− 1 do
repeat b = 22 log(n/ε) times // stage s starts

Transmit with probability 2s/n

We start with the following technical lemma from [23].
Lemma 4 (see [23]). Suppose we have k numbers, p1, p2, . . . , pk ∈ (0, 1

2], such

that 1
2 ≤

∑k
i=1 pi ≤ 2. Then

k∑
i=1

pi

k∏
j=1
j �=i

(1 − pj) ≥
1

32
.

Theorem 2. Let ε > 0 and let 〈G,ω〉 be any wake-up network with n nodes and
diameter D. With probability at least 1 − ε, R completes wake-up in 〈G,ω〉 in time
O(D log n log(n/ε)).

Proof. We divide the execution of R into logn stages, where stage s is simply the
s-th iteration of the for loop. Recall that b = 22 log(n/ε) is the number of iterations
of the inner repeat loop. By B = b log n we denote the total execution time of R
(for a single node).

Fix a wake-up network 〈G,ω〉, and consider an execution of R on 〈G,ω〉. Let v0

be the start node (the one that wakes up first). For any node v, let tv = acttimev and
t̄v = minu∈Nv

acttimeu. Thus tv − t̄v is the time (a random variable) it takes for v to
become activated after the time when the first of its in-neighbors gets activated.

Call a node v an obstruction during an execution of R if t̄v < ∞ but tv > t̄v +B.
If there is no obstruction, then, clearly, the execution of R completes after at most
DB = O(D log n log(n/ε)) steps. Thus it remains to prove that the probability that
there exists an obstruction during an execution of R is at most ε.

Consider some fixed node v, and fix some value of t̄v. To simplify notation, we can
in fact assume that t̄v = 0. If ωv < B, then v is not an obstruction with probability
1, and we are done, so we can assume that ωv ≥ B. We now need to estimate the
probability that v will receive a wake-up signal from Nv in at most B steps.

For u ∈ Nv, let pu,t be the probability that u transmits at time step t (that is,
pu,t = 2s/n if u is in stage s at time t), and let πt =

∑
u∈Nv

pu,t. We have π0 = 0,

πB−b+1 ≥ 1
2 , and πt is nondecreasing. By the definition of R, for any t = 1, . . . , B−b,

we have πt+b ≤ 2πt + 1, since in b steps the active nodes will double their probability
of transmission, and each other node contributes at most 1/n to πt+b. Choose the
largest t′ for which πt′−1 < 1

2 . Then πt′ ≥ 1
2 and πt′+b−1 ≤ 2πt′−1 + 1 ≤ 2. We

1466 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

conclude that

1
2 ≤ πt ≤ 2 for t = t′, t′ + 1, . . . , t′ + b− 1.(5)

Thus, by Lemma 4, for each time t = t′, t′ + 1, . . . , t′ + b − 1, the probability that v
receives a wake-up signal from Nv at time t is

∑
u∈Nv

pu,t
∏

z∈Nv\{u}
(1 − pz,t) ≥

1

32
.

Then the probability that v will not receive a wake-up signal in steps 1, 2, . . . , B is at
most (31

32)b. We conclude that the probability that v is an obstruction is bounded by
(31
32)b as well. Therefore the probability that there exists an obstruction node during

the execution of R is at most

n

(
31

32

)b

= n

(
31

32

)22 log(n/ε)

≤ n

(
1

2

)log(n/ε)

≤ ε,

completing the proof.
We can modify R to obtain a Las Vegas protocol with low expected running

time. Let R0 be R with ε = n−3, so that the running time of R0 is T0 = O(D log2 n).
Let T = O(n5/3 log n) be the running time of the deterministic protocol D from the
previous section. In this Las Vegas protocol R′, each node executes the following
steps: (1) run R0, and then suspend itself for time T0, (2) repeat n times: run D
and then suspend itself for time T . At least one run of D will complete without
interference from nodes that wake up spontaneously and execute R0. Thus R′ will
wake up all nodes in time T0 with probability at least 1− ε, and in time O(n8/3 log n)
with probability 1. By the choice of ε, its expected running time will be O(D log2 n).

Theorem 3. Let 〈G,ω〉 be any wake-up network with n nodes. Protocol R′

described above completes wake-up in 〈G,ω〉 in expected time O(D log2 n).

6. Leader election and clock synchronization. In the leader election prob-
lem, we want to designate one node as the leader, and to announce its identity to all
nodes in the network. In the clock synchronization problem, upon the completion of
the protocol, all nodes must agree on a common global time. In this section we show
that any wake-up protocol W (deterministic or randomized) can be transformed into
a leader election protocol or a clock synchronization protocol with only a logarithmic
overhead.

Let W be a wake-up protocol. For any node v, let Wv be the instance of W
executed by node v. (Formally, the execution of W depends on the label, but, for
simplicity of notation, we write Wv instead of W�v .) Fix n, and by w = w(n) denote
the running time of W if all node labels are drawn from the range �min, . . . , �max, where
�max−�min ≤ An, for some constant A. We can assume, without loss of generality, that
in protocol W each node transmits only for at most w time steps since activation. Note
that our wake-up protocols described earlier in the paper satisfy this requirement.

Recall that, without loss of generality, we assume that �min = 0. We can then
think of the labels as binary strings of length log(An), and by �v[i, . . . , j] we denote
the string consisting of the bits of �v on positions i, i+ 1, . . . , j, counting from left to
right (that is, highest bits first).

6.1. Leader election. The leader election protocol consists of two stages: the
wake-up stage and the election stage. We first describe both stages informally, and
then give a pseudocode for the complete protocol.

WAKE-UP IN RADIO NETWORKS 1467

Wake-up stage. In this stage all nodes become activated. Each node v, once it
wakes up, starts executing its wake-up protocol Wv. After completing this protocol,
v suspends itself for w time steps. The purpose of this suspension period is to ensure
that the wake-up stage does not overlap with the election stage that follows.

Election stage. In this stage, all nodes in the network select the leader to be
the node v̂ that possesses the smallest label. The selection process is performed in
log(An) rounds, where in round r, for r = 0, 1, . . . , log(An) − 1, the ith highest bit
of �v̂ is announced. At the beginning of round r all nodes know the top r bits of �v̂.
Let min label = �v̂[0, . . . , r − 1] be the string consisting of these bits. Nodes v for
which �v[0, . . . , r − 1] = min label are potential candidates for the leader. If such a
candidate node v also has a 0 on the rth bit, it informs other nodes about its existence
by initiating a wake-up process. If no wake-up process is initiated in round r, by the
end of the round all nodes conclude that the ith most significant bit in �v̂ is 1.

The difficulty that we need to overcome is that, due to lack of synchronization,
the division into consecutive rounds must be based on the local clocks. This means
that very likely there will be some time overlaps (of size at most w—the maximum
offset between the activation times of any two nodes) between neighboring rounds of
different nodes. In order to avoid simultaneous transmissions of signals belonging to
two different rounds, we will pad each round with two wait periods of length w, one
at the beginning and one at the end. More specifically, every round is split into four
subrounds, each of length w. If a node v is a candidate for the leader and initiates
the transmission process by itself, this is always done in the beginning of the second
subround. On the other hand, v can be activated to start its wake-up process by
another node u at any time during the first, second, or third subround.

Leader election protocol E. Below, we give a pseudocode for the protocol
Ev executed by a node v. We use small capitals font, Start, Execute, etc., for
commands related to timing. Variable clock measures the local time of a node. The
scopes of compound statements are indicated by indentation. The chosen leader v̂ is
the node whose local variable am leader has value true after the protocol is complete.

SleepUntil wake up signal (spontaneous or external)
Start clock← 0
Execute Wv (w steps)
WaitUntil clock = 2w
min label← [] // empty string

for r← 0, 1, . . . , log(An) − 1 do
bit← 1 // round r starts, local time is clock = (4r + 2)w

if �v[0, . . . , r] = min label ◦ 0 then
bit← 0
WaitUntil wake up signal or clock = (4r + 3)w

else
WaitUntil wake up signal or clock = (4r + 5)w
if wake up signal then bit← 0

if bit = 0 then Execute W v (w steps)
min label←min label ◦ bit
WaitUntil clock = (4r + 6)w

am leader← (�v = min label)

One detail that we should clarify is that, when we simulate W in protocol E
during the election stage, all nodes “pretend” to be asleep during the wait periods,

1468 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

and nodes that initiate wake-up “pretend” to be awakened spontaneously. During the
simulation of a wake-up process, each node uses an auxiliary clock to simulate a local
clock used by W.

To justify correctness, it is sufficient to show that there will be no interference
between wake-up processes from different rounds. The crucial property used in the
argument is that the (global) activation times (in the wake-up phase) of any two nodes
differ by at most w. This implies, in particular, that two rounds of different nodes
can overlap only if they are consecutive, and if so, they can overlap on at most w time
steps. More specifically, the only possible overlap is when the fourth subround of a
node in round r overlaps the first subround of another node that is in round r + 1.
(In our argument, to avoid dealing separately with the wake-up phase, we can treat
the wake-up phase as round −1 of the election phase.)

If a wake-up process in round r is initiated at a (global) time t, then all nodes will
be activated by time t+w, and they will have completed their transmissions at time
t + 2w. Since wake-ups are initiated at the beginning of the second subround, and
the local times are shifted by at most w, it follows that, in each round r, each node
will be activated no later than at the end of its third subround and thus complete its
transmissions by the end of its round r.

Fix a node v that is first to execute its transmission from round r+1. This means
that v initiates a wake-up process, and it starts transmitting in the first step of its
second subround. But, again, using the fact that the offset between different rounds is
at most w, by that time all other nodes completed their transmissions from round r.

Thus we obtain the following result.
Theorem 4. (a) Suppose that W is a deterministic wake-up protocol with running

time w(n). Then W can be converted into a leader election protocol E with running
time O(w(n) log n).

(b) Suppose that W is a randomized wake-up protocol that completes the wake-
up task in time wε(n) with probability at least 1 − ε. Then W can be converted
into a randomized leader election protocol E that completes the election task in time
O(wε(n) log n) with probability at least 1 −O(ε log n).

6.2. Clock cynchronization. It is not difficult to extend the leader election
protocol E from the previous subsection to perform clock synchronization. We first
run E . Once the leader v̂ has been elected, v̂ waits for w steps and then broadcasts
its local time to all other nodes using some broadcasting protocol B (see, for example
[14]). When the nodes perform B, they increment their global time counter at each
step, to make sure that the correct value is transmitted. (A similar idea appeared in
[30].) As explained in the introduction, broadcasting can be reduced to wake-up, so
we can assume that the running time of B is at most w(n).

Thus we obtain the following result.
Theorem 5. (a) Suppose that W is a deterministic wake-up protocol with run-

ning time w(n). Then W can be converted into a deterministic clock synchronization
protocol C with running time O(w(n) log n).

(b) Suppose that W is a randomized wake-up protocol that completes the wake-up
task in time wε(n) with probability at least 1 − ε. Then W can be converted into a
randomized clock synchronization protocol C that completes the election task in time
O(wε(n) log n) with probability at least 1 −O(ε log n).

6.3. New protocols. Recall that our deterministic wake-up protocol D runs in
time O(n5/3 log n), our Monte Carlo protocol R in time O(D log n log(n/ε)) and with
failure probability ε, and our Las Vegas protocol R′ runs in expected time O(D log2 n).

WAKE-UP IN RADIO NETWORKS 1469

For broadcasting, we can use protocols from [14] or [24, 17], and any randomized
broadcasting protocol in [5, 25, 17], or, alternatively, we can adapt wake-up protocols
from our paper. Summarizing the results in this section, we obtain the following
corollary.

Corollary 1. There exist protocols for leader election and clock synchronization
in radio networks with the following performance in n-node networks:
(a) a deterministic protocol with running time O(n5/3 log2 n),
(b) a Monte Carlo protocol with running time O(D log n log(n/ε)) and failure prob-

ability at most ε for any ε > 0,
(c) a Las Vegas protocol with expected running time O(D log3 n).

Results in Corollary 1(a) and (b) are straightforward from Theorems 1, 2, 4,
5. (To obtain part (b), choose the error probability of W in Theorem 5(b) to be
ε′ = Aε/ log n, for some sufficiently small constant A > 0.)

The randomized Las Vegas protocols in Corollary 1(c) are obtained in the sim-
ilar way as was the algorithm Las Vegas for the wake-up problem: by taking the
corresponding Monte Carlo protocol with sufficiently small failure probability, say
ε = n−3, followed by n repetitions of a deterministic protocol. These algorithms suc-
ceed in time O(D log3 n) with probability at least 1−ε log n, and in time O(n8/3 log n)
with probability 1, so their expected running time will be O(D log3 n).

7. Final comments. In this paper, we initiated the study of wake-up protocols
in a general model of multihop radio networks without collision detection, where the
topology of the network is unknown.

In our model we assume that all nodes know n (the number of nodes) and that
the labels are integers not greater than O(n) (except for the randomized wake-up
protocol that does not use labels at all). Some of these assumptions can be relaxed.
For example, it is not necessary that n be known, for otherwise the protocols can
employ the standard doubling technique: the computation is divided into phases,
where in phase i = 1, 2, . . . we run the protocol for n = 2i, with appropriate waiting
periods to take into account lack of initial synchronization. (See the discussion in [14].)
These modified algorithms still work correctly, in fact, when the labels are unique but
unbounded, although then the running time depends on the maximum label value.

Since the lower bounds for radio broadcasting (see, e.g., [8, 15, 16, 26]) apply to the
wake-up problem, no randomized wake-up protocol can be faster than Ω(D log(n/D)).
Thus our randomized protocol is within a polylogarithmic factor from the optimum.
However, in the deterministic case, our results still leave a substantial gap between
the lower bound of Ω(n log n) and the upper bound O(n5/3 log n) achieved by our
protocol D.

Subsequent to the submission of this paper, new work has appeared where this
gap has been significantly reduced. First, in [13], Chlebus and Kowalski improved
the upper bound to O(n3/2 log n). More recently, Chlebus et al. [11] designed a
deterministic protocol with running time Ω(n log2 n)—within only an O(log n)-factor
from the optimum.

The optimum complexity of the wake-up problem (as well as a seemingly sim-
pler broadcasting problem), in both deterministic and randomized cases, remains
unknown.

Acknowledgments. We wish to express our gratitude to the anonymous referees
whose numerous and insightful comments helped us improve presentation and correct
some inaccuracies in the earlier version of this paper. We also would like to thank
Mart Molle for useful discussions on network protocols.

1470 M. CHROBAK, L. GA̧SIENIEC, AND D. R. KOWALSKI

REFERENCES

[1] N. Abramson, The ALOHA System, in Computer Networks, N. Abramson and F. Kuo, eds.,
Prentice–Hall, Englewood Cliffs, NJ, 1973, pp. 501–518.

[2] E. Arkin, M. Bender, D. Ge, S. He, and J. Mitchell, Improved approximation algorithms
for the freeze-tag problem, in Proceedings of the 15th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA’03), San Diego, CA, 2003, ACM, New York, pp. 295–
303.

[3] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823.
[4] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, Time optimal

self-stabilizing synchronization, in Proceedings of the 25th ACM Symposium on Theory of
Computing (STOC’93), San Diego, CA, 1993, ACM, New York, pp. 6526–6561.

[5] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time complexity of broadcast in radio
networks: An exponential gap between determinism and randomization, J. Comput. System
Sci., 45 (1992), pp. 104–126.

[6] R. Bar-Yehuda, O. Goldreich, and A. Itai, Efficient emulation of single-hop radio network
with collision detection on multi-hop radio network with no collision detection, Distrib.
Comput., 5 (1991), pp. 67–71.

[7] R. Bar-Yehuda, A. Israeli, and A. Itai, Multiple communication in multihop radio networks,
SIAM J. Comput., 22 (1993), pp. 875–887.

[8] D. Bruschi and M. Del Pinto, Lower bounds for the broadcast problem in mobile radio
networks, Distrib. Comput., 10 (1997), pp. 129–135.

[9] I. Chlamtac and O. Weinstein, The wave expansion approach to broadcasting in multihop
radio networks, IEEE Trans. Commun., 39 (1991), pp. 426–433.

[10] B. S. Chlebus, L. Ga̧sieniec, A. Gibbons, A. Pelc, and W. Rytter, Deterministic broad-
casting in unknown radio networks, Distrib. Comput., 15 (2002), pp. 27–38.

[11] B. S. Chlebus, L. Ga̧sieniec, D. R. Kowalski, and T. Radzik, On the wake-up problem in
radio networks, in Proceedings of the 32nd International Colloquium on Automata, Lan-
guages and Programming (ICALP’05), Lisbon, Portugal, 2005, Lecture Notes in Comput.
Sci. 3580, Springer, New York, 2005, pp. 347–359.

[12] B. S. Chlebus, L. Ga̧sieniec, A. Östlin, and J. M. Robson, Deterministic radio broad-
casting, in Proceedings of the 27th International Colloquium on Automata, Languages and
Programming (ICALP’00), Lecture Notes in Comput. Sci. 1853, Springer, New York, 2000,
pp. 717–728.

[13] B. S. Chlebus and D. R. Kowalski, A better wake-up in radio networks, in Proceedings of the
23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’04), St. John’s, NF, 2004, ACM, New York, pp. 266–274.

[14] M. Chrobak, L. Ga̧sieniec, and W. Rytter, Fast broadcasting and gossiping in radio net-
works, J. Algorithms, 46 (2003), pp. 1–20.

[15] A. E. F. Clementi, A. Monti, and R. Silvestri, Selective families, superimposed codes, and
broadcasting on unknown radio networks, in Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’01), Washington, DC, 2001, SIAM, Philadel-
phia, pp. 709–718.

[16] A. Clementi, A. Monti, and R. Silvestri, Distributed broadcast in radio networks of un-
known topology, Theoret. Comput. Sci., 302 (2003), pp. 337–364.

[17] A. Czumaj and W. Rytter, Broadcasting algorithms in radio networks with unknown topology,
J. Algorithms, 60 (2006), pp. 115–143.

[18] A. DeBonis, L. Ga̧sieniec, and U. Vaccaro, Optimal two-stage algorithms for group testing
problems, SIAM J. Comput., 34 (2005), pp. 1253–1270.

[19] M. J. Fischer, S. Moran, S. Rudich, and G. Taubenfeld, The wakeup problem, SIAM J.
Comput., 25 (1996), pp. 1332–1357.

[20] L. Ga̧sieniec, A. Pelc, and D. Peleg, The wakeup problem in synchronous broadcast systems,
SIAM J. Discrete Math., 14 (2001), pp. 207–222.

[21] P. Indyk, Explicit constructions of selectors and related combinatorial structures, with applica-
tions, in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’02), San Francisco, CA, 2002, SIAM, Philadelphia, pp. 697–704.

[22] T. Jurdziński, M. Kuty�lowski, and J. Zatopiański, Efficient algorithms for leader election
in radio networks, in Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC’02), Monterey, CA, 2002, ACM, New York, pp. 51–57.

[23] T. Jurdziński and G. Stachowiak, Probabilistic algorithms for the wakeup problem in single-
hop radio networks, Theory Comput. Syst., 38 (2005), pp. 347–367.

[24] D. R. Kowalski and A. Pelc, Faster deterministic broadcasting in ad hoc radio networks,
SIAM J. Discrete Math., 18 (2004), pp. 332–346.

WAKE-UP IN RADIO NETWORKS 1471

[25] D. R.Kowalski and A. Pelc, Broadcasting in undirected ad hoc radio networks, Distrib.
Comput., 18 (2005), pp. 43–57.

[26] E. Kushilevitz and Y. Mansour, An Ω(D log(N/D)) lower bound for broadcast in radio
networks, SIAM J. Comput., 27 (1998), pp. 702–712.

[27] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, UK, 1995.

[28] N. Lynch, Distributed Algorithms, Morgan-Kauffman, San Francisco, 1997.
[29] R. M. Metcalfe and D. R. Boggs, Ethernet: Distributed packet switching for local computer

networks, ACM Communications, 19 (1976), pp. 395–404.
[30] D. Peleg, Deterministic Radio Broadcast with No Topological Knowledge, unpublished

manuscript, 2000.
[31] R. Zheng, J. C. Hou, and L. Sha, Asynchronous wakeup in ad hoc networks, in Proceedings of

the 4th ACM Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC’03),
Annapolis, MD, 2003, ACM, New York, pp. 35–45.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1472–1493

QUANTUM AND CLASSICAL STRONG DIRECT PRODUCT
THEOREMS AND OPTIMAL TIME-SPACE TRADEOFFS∗

HARTMUT KLAUCK† , ROBERT ŠPALEK‡ , AND RONALD DE WOLF‡

Abstract. A strong direct product theorem says that if we want to compute k independent
instances of a function, using less than k times the resources needed for one instance, then our
overall success probability will be exponentially small in k. We establish such theorems for the
classical as well as quantum query complexity of the OR-function. This implies slightly weaker
direct product results for all total functions. We prove a similar result for quantum communication
protocols computing k instances of the disjointness function. Our direct product theorems imply a
time-space tradeoff T 2S = Ω

(
N3

)
for sorting N items on a quantum computer, which is optimal up

to polylog factors. They also give several tight time-space and communication-space tradeoffs for
the problems of Boolean matrix-vector multiplication and matrix multiplication.

Key words. complexity theory, quantum computing, lower bounds, decision trees, communica-
tion complexity

AMS subject classifications. 03D15, 68Q10, 81P68, 68Q17, 68Q05

DOI. 10.1137/05063235X

1. Introduction.

1.1. Direct product theorems. For every reasonable model of computation
one can ask the following fundamental question:

How do the resources that we need for computing k independent
instances of f scale with the resources needed for one instance and
with k?

Here the notion of “resource” needs to be specified. It could refer to time, space,
queries, or communication. Similarly we need to define what we mean by “computing
f ,” for instance, whether we allow the algorithm some probability of error and whether
this probability of error is average-case or worst-case.

In this paper we consider two kinds of resources, queries and communication,
and allow our algorithms some error probability. An algorithm is given k inputs
x1, . . . , xk and has to output the vector of k answers f(x1), . . . , f(xk). The issue is
how the algorithm can optimally distribute its resources among the k instances it
needs to compute. We focus on the relation between the total amount T of resources
available and the best-achievable success probability σ (which could be average-case or
worst-case). Intuitively, if every algorithm with t resources must have some constant
error probability when computing one instance of f , then for computing k instances
we expect a constant error on each instance and hence an exponentially small success

∗Received by the editors May 25, 2005; accepted for publication (in revised form) May 11, 2006;
published electronically February 5, 2007. A preliminary version of this paper appeared in Proceed-
ings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 12–21.

http://www.siam.org/journals/sicomp/36-5/63235.html
†Institut for Informatik, Goethe Universität Frankfurt, Frankfurt 60054, Germany (klauck@

thi.informatik.uni-frankfurt.de). The work of this author was supported by Canada’s NSERC and
MITACS, and by DFG grant KL 1470/1.

‡CWI, Kruislaan 413, Amsterdam 1098 SJ, The Netherlands (sr@cwi.nl, rdewolf@cwi.nl). The
work of the second author was partially supported by the European Commission under projects
RESQ, IST-2001-37559 and QAP, IST-2005-015848. The work of the third author was partially
supported by a Veni grant from the Netherlands Organization for Scientific Research (NWO), and
by the European Commission under projects RESQ, IST-2001-37559 and QAP, IST-2005-015848.

1472

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1473

probability for the k-vector as a whole. Such a statement is known as a weak direct
product theorem:

If T ≈ t, then σ = 2−Ω(k).

Here “T ≈ t” informally means that T is not much smaller than t. However, even
if we give our algorithm roughly kt resources, on average it still has only t resources
available per instance. So even here we expect a constant error per instance and an
exponentially small success probability overall. Such a statement is known as a strong
direct product theorem:

If T ≈ kt, then σ = 2−Ω(k).

Strong direct product theorems (SDPTs), though intuitively very plausible, are gen-
erally hard to prove and sometimes not even true. Shaltiel [Sha01] exhibits a general
class of examples where SDPTs fail. This applies, for instance, to query complexity,
communication complexity, and circuit complexity. In his examples, success proba-
bility is taken under the uniform probability distribution on inputs. The function is
chosen such that for most inputs, most of the k instances can be computed quickly
and without any error probability. This leaves enough resources to solve the few hard
instances with high success probability. Hence for his functions, with T ≈ tk, one can
achieve average success probability close to 1.

Accordingly, we can establish direct product theorems only in special cases. Ex-
amples are the SDPT for “decision forests” by Nisan, Rudich, and Saks [NRS94], the
direct product theorem for “forests” of communication protocols by Parnafes, Raz,
and Wigderson [PRW97], and Shaltiel’s SDPT for “fair” decision trees and his discrep-
ancy bound for communication complexity [Sha01]. Shaltiel’s result for discrepancy
was recently strengthened to an SDPT for the “corruption” measure under product
distributions on the inputs by Beame et al. [BPSW05]. There also has been recent
progress on the related issue of direct sum results; see, e.g., [CSWY01, BJKS02b,
BJKS02a] and the references therein. A direct sum theorem states that computing k
instances with overall error ε requires roughly k times as many resources as comput-
ing one instance with error ε. Clearly, SDPTs always imply direct sum results, since
they state the same resource lower bounds even for algorithms whose overall error is
allowed to be exponentially close to 1, rather than at most ε.

In the quantum case, much less work has been done. Aaronson [Aar04, Theo-
rem 10] established a direct product result for the unordered search problem that
lies between the weak and the strong theorems: Every T -query quantum algorithm
for searching k marked items among N = kn input bits will have success probability

σ ≤ O
(
T 2/N

)k
. In particular, if T �

√
N =

√
kn, then σ = 2−Ω(k).

Our main contributions in this paper are SDPTs for the OR-function in various
settings. First consider the case of classical randomized algorithms. Let ORn denote
the n-bit OR-function, and let f (k) denote k independent instances of a function f .
Any randomized algorithm with fewer than, say, n/2 queries will have a constant error
probability when computing ORn. Hence we expect an exponentially small success
probability when computing OR(k)

n using � kn queries. We prove the following in
section 3:

SDPT for classical query complexity. Every randomized algorithm
that computes OR(k)

n using T ≤ αkn queries has worst-case success
probability σ = 2−Ω(k) (for α > 0 a sufficiently small constant).

For simplicity we have stated this result with σ being worst-case success probability,
but the statement is also valid for the average success probability under a hard k-fold
product distribution that is implicit in our proof.

1474 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

This statement for OR actually implies a somewhat weaker strong product theo-
rem for all total functions f , via the notion of block sensitivity bs(f). Using techniques
of Nisan and Szegedy [NS94], we can embed ORbs(f) in f (with the promise that the
weight of the OR’s input is 0 or 1), while on the other hand we know that the classical
bounded-error query complexity R2(f) is upper bounded by bs(f)3 [BBC+01]. This
implies the following:

Every randomized algorithm that computes f (k) using T ≤ αkR2(f)1/3

queries has worst-case success probability σ = 2−Ω(k) (for α > 0 a
sufficiently small constant).

This theorem falls short of being a true SDPT in having R
1/3
2 (f) instead of R2(f) in

the resource bound. However, the other two main aspects of an SDPT remain valid:
the linear dependence of the resources on k and the exponential decay of the success
probability.

Next we turn our attention to quantum algorithms. Buhrman et al. [BNRW05]
actually proved that roughly k times the resources for one instance suffices to compute
f (k) with success probability close to 1 rather than exponentially small: Q2(f

(k)) =
O(kQ2(f)), where Q2(f) denotes the quantum bounded-error query complexity of f
(such a result is not known to hold in the classical world). For instance, Q2(ORn) =
Θ(

√
n) by Grover’s search algorithm; thus O(k

√
n) quantum queries suffice to compute

OR(k)
n with high success probability. In section 4 we show that if we make the number

of queries slightly smaller, the best-achievable success probability suddenly becomes
exponentially small:

SDPT for quantum query complexity. Every quantum algorithm that
computes OR(k)

n using T ≤ αk
√
n queries has worst-case success

probability σ = 2−Ω(k) (for α > 0 a sufficiently small constant).

Our proof uses the polynomial method [BBC+01] and is completely different from
the classical proof. The polynomial method was also used by Aaronson [Aar04] in his
proof of a weaker quantum direct product theorem for the search problem, mentioned
above. Our proof takes its starting point from his proof, analyzing the degree of a
single-variate polynomial that is 0 on {0, . . . , k−1}, at least σ on k, and between 0 and
1 on {0, . . . , kn}. The difference between his proof and ours is that we partially factor
this polynomial, which gives us some nice extra properties over Aaronson’s approach
of differentiating the polynomial, and that we use a strong result of Coppersmith and
Rivlin [CR92]. In both cases (different) extremal properties of Chebyshev polynomials
finish the proofs.

Again, using block sensitivity we can obtain a weaker result for all total functions:

Every quantum algorithm that computes f (k) using T ≤ αkQ2(f)1/6

queries has worst-case success probability σ = 2−Ω(k).

The third and last setting where we establish an SDPT is quantum communication
complexity. Suppose Alice has an n-bit input x and Bob has an n-bit input y. These
x and y represent sets, and DISJn(x, y) = 1 if and only if those sets are disjoint.
Note that DISJn is the negation of ORn(x ∧ y), where x ∧ y is the n-bit string
obtained by bitwise AND-ing x and y. In many ways, DISJn has the same central
role in communication complexity as ORn has in query complexity. In particular, it
is “co-NP complete” [BFS86]. The communication complexity of DISJn has been well
studied: It takes Θ(n) bits of communication in the classical world [KS92, Raz92] and
Θ(

√
n) in the quantum world [BCW98, HW02, AA03, Raz03]. For the case where

Alice and Bob want to compute k instances of disjointness, we establish the following
SDPT in section 5:

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1475

SDPT for quantum communication complexity. Every quantum pro-
tocol that computes DISJ(k)

n using T ≤ αk
√
n qubits of communi-

cation has worst-case success probability σ = 2−Ω(k) (for α > 0 a
sufficiently small constant).

Our proof uses Razborov’s lower bound technique [Raz03] to translate the quantum
protocol to a polynomial, at which point the polynomial results established for the
quantum query SDPT take over. We can obtain similar results for other symmetric
predicates. The same bound was obtained independently by Beame et al. [BPSW05,
Corollary 9] for classical protocols under a specific input distribution, as a corollary
of their SDPT for corruption.1 We conjecture that the optimal result in the classical
case has a communication bound of αkn rather than αk

√
n, but cannot prove this.

One may also consider algorithms that compute the parity of the k outcomes
instead of the vector of k outcomes. This issue has been well studied, particularly
in circuit complexity, and generally goes under the name of XOR lemmas [Yao82,
GNW95]. In this paper we focus mostly on the vector version but can prove similar
strong bounds for the parity version. In particular, we state a classical strong XOR
lemma in section 3.3 and can get similar strong XOR lemmas for the quantum case
using the technique of Cleve et al. [CDNT98, section 3]. They show how the ability
to compute the parity of any subset of k bits with probability 1/2 + ε suffices to
compute the full k-vector with probability 4ε2. Hence our strong quantum direct
product theorems imply strong quantum XOR lemmas.

1.2. Time-space and communication-space tradeoffs. Apart from answer-
ing a fundamental question about the computational models of (quantum) query
complexity and communication complexity, our direct product theorems also imply a
number of new and optimal time-space tradeoffs.

First, we consider the tradeoff between the time T and space S that a quantum
circuit needs for sorting N numbers. Classically, it is well known that TS = Ω

(
N2

)
and that this tradeoff is achievable [Bea91]. In the quantum case, Klauck [Kla03] con-
structed a bounded-error quantum algorithm that runs in time T = O((N logN)3/2/√
S) for all (logN)3 ≤ S ≤ N/ logN . He also claimed a lower bound TS = Ω

(
N3/2

)
,

which would be close to optimal for small S but not for large S. Unfortunately there
is an error in the proof presented in [Kla03] (Lemma 5 appears to be wrong). Here we
use our SDPT to prove the tradeoff T 2S = Ω

(
N3

)
. This is tight up to polylogarithmic

factors.
Secondly, we consider time-space and communication-space tradeoffs for the

problems of Boolean matrix-vector product and Boolean matrix product. In the first
problem there are an N ×N matrix A and a vector b of dimension N , and the goal is
to compute the vector c = Ab, where ci = ∨N

j=1 (A[i, j] ∧ bj). In the setting of time-
space tradeoffs, the matrix A is fixed and the input is the vector b. In the problem
of matrix multiplication, two matrices have to be multiplied with the same type of
Boolean product, and both are inputs.

Time-space tradeoffs for Boolean matrix-vector multiplication have been analyzed
in an average-case scenario by Abrahamson [Abr90], whose results give a worst-case
lower bound of TS = Ω

(
N3/2

)
for classical algorithms. He conjectured that a worst-

case lower bound of TS = Ω
(
N2

)
holds. Using our classical direct product result we

are able to confirm this; i.e., there is a matrix A, such that computing Ab requires

1We proved our result in February 2004 and published it on the quant-ph preprint server in the
same month (http://www.arxiv.org/abs/quant-ph/0402123), while they proved theirs in the summer
of 2004, unaware of our paper (personal communication with Paul Beame).

1476 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

TS = Ω
(
N2

)
. We also show a lower bound of T 2S = Ω

(
N3

)
for this problem in

the quantum case. Both bounds are tight (the second within a logarithmic factor)
if T is taken to be the number of queries to the inputs. We also get a lower bound
of T 2S = Ω

(
N5

)
for the problem of multiplying two matrices in the quantum case.

This bound is close to optimal for small S; it is open whether it is close to optimal
for large S.

Research on communication-space tradeoffs in the classical setting has been ini-
tiated by Lam, Tiwari, and Tompa [LTT92] in a restricted setting and by Beame,
Tompa, and Yan [BTY94] in a general model of space-bounded communication com-
plexity. In the setting of communication-space tradeoffs, players Alice and Bob are
modeled as space-bounded circuits, and we are interested in the communication cost
when given particular space bounds. For the problem of computing the matrix-vector
product Alice receives the matrix A (now an input) and Bob receives the vector b.
Beame, Tompa, and Yan gave tight lower bounds, e.g., for the matrix-vector product
and matrix product over GF(2), but stated the complexity of Boolean matrix-vector
multiplication as an open problem. Using our direct product result for quantum
communication complexity, we are able to show that any quantum protocol for this
problem satisfies C2S = Ω

(
N3

)
. This is tight within a polylogarithmic factor. We

also get a lower bound of C2S = Ω
(
N5

)
for computing the product of two matrices,

which again is tight.
Note that no classical lower bounds for these problems were known previously and

that finding better classical lower bounds than these remains open. The ability to
show good quantum bounds comes from the deep relation between quantum protocols
and polynomials implicit in Razborov’s lower bound technique [Raz03].

2. Preliminaries.

2.1. Quantum query algorithms. We assume familiarity with quantum com-
puting [NC00] and sketch the model of quantum query complexity, referring to [BW02]
for more details, including details on the close relation between query complexity and
degrees of multivariate polynomials. Suppose we want to compute some function f .
For input x ∈ {0, 1}N , a query gives us access to the input bits. It corresponds to the
unitary transformation

O : |i, b, z〉
→ |i, b⊕ xi, z〉.

Here i ∈ [N] = {1, . . . , N} and b ∈ {0, 1}; the z-part corresponds to the workspace,
which is not affected by the query. We assume the input can be accessed only via
such queries. A T -query quantum algorithm has the form A = UTOUT−1 · · ·OU1OU0,
where the Uk are fixed unitary transformations, independent of x. This A depends on
x via the T applications of O. The algorithm starts in initial S-qubit state |0〉, and
its output is the result of measuring a dedicated part of the final state A|0〉. For a
Boolean function f , the output of A is obtained by observing the leftmost qubit of the
final superposition A|0〉, and its acceptance probability on input x is its probability of
outputting 1.

One of the most interesting quantum query algorithms is Grover’s search algo-
rithm [Gro96, BBHT98]. It can find an index of a 1-bit in an n-bit input in expected
number of O(

√
n/(|x| + 1)) queries, where |x| is the Hamming weight (number of 1’s)

in the input. If we know that |x| ≤ 1, we can solve the search problem exactly using
π

4

√
n� queries [BHMT02].
For investigating time-space tradeoffs we use the circuit model. A circuit accesses

its input via an oracle such as a query algorithm. Time corresponds to the number

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1477

of gates in the circuit. We will, however, usually consider the number of queries to
the input, which is obviously a lower bound on time. A quantum circuit uses space
S if it works with S qubits only. We require that the outputs are made at predefined
gates in the circuit, by writing their value to some extra qubits that may not be used
later on. Similar definitions are made for classical circuits.

2.2. Communicating quantum circuits. In the model of quantum commu-
nication complexity, two players Alice and Bob compute a function f on distributed
inputs x and y. The complexity measure of interest in this setting is the amount of
communication. The players follow some predefined protocol that consists of local
unitary operations and the exchange of qubits. The communication cost of a protocol
is the maximal number of qubits exchanged for any input. In the standard model of
communication complexity, Alice and Bob are computationally unbounded entities,
but we are also interested in what happens if they have bounded memory, i.e., they
work with a bounded number of qubits. To this end we model Alice and Bob as
communicating quantum circuits, following Yao [Yao93].

A pair of communicating quantum circuits is actually a single quantum circuit
partitioned into two parts. The allowed operations are local unitary operations and
access to the inputs that are given by oracles. Alice’s part of the circuit may use
oracle gates to read single bits from her input, and Bob’s part of the circuit may do
so for his input. The communication C between the two parties is simply the number
of wires carrying qubits that cross between the two parts of the circuit. A pair of
communicating quantum circuits uses space S if the whole circuit works on S qubits.

In the problems we consider, the number of outputs is much larger than the mem-
ory of the players. Therefore we use the following output convention: The player who
computes the value of an output sends this value to the other player at a predeter-
mined point in the protocol. In order to make the models as general as possible, we
furthermore allow the players to do local measurements and to throw qubits away as
well as pick up some fresh qubits. The space requirement demands only that at any
given time no more than S qubits are in use in the whole circuit.

A final comment regarding upper bounds: Buhrman, Cleve, and Wigderson
[BCW98] showed how to run a query algorithm in a distributed fashion with small
overhead in the communication. In particular, if there is a T -query quantum algo-
rithm computing N -bit function f , then there is a pair of communicating quantum
circuits with O(T logN) communication that computes f(x ∧ y) with the same suc-
cess probability. We refer to the book of Kushilevitz and Nisan [KN97] for more on
communication complexity in general and to the surveys [Kla00, Buh00, Wol02] for
more on its quantum variety.

3. Strong direct product theorem for classical queries. In this section
we prove an SDPT for classical randomized algorithms computing k independent
instances of ORn. By Yao’s principle, it is sufficient to prove it for deterministic
algorithms under a fixed hard input distribution.

3.1. Nonadaptive algorithms. We first establish an SDPT for nonadaptive
algorithms. We call an algorithm nonadaptive if, for each of the k input blocks, the
maximum number of queries in that block is fixed before the first query. Note that
this definition is nonstandard in fixing only the number of queries in each block rather
than fixing all queried indices in advance. Let Suct,μ(f) be the success probability of
the best algorithm for f under μ that queries at most t input bits.

1478 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Lemma 1. Let f : {0, 1}n → {0, 1}, and let μ be an input distribution. Every
nonadaptive deterministic algorithm for f (k) under μk with T ≤ kt queries has success
probability σ ≤ Suct,μ(f)k.

Proof. The proof has two steps. First, we prove by induction that nonadaptive
algorithms for f (k) under general product distribution μ1 × · · · × μk that spend ti
queries in the ith input xi have success probability ≤

∏k
i=1 Sucti,μi

(f). Second, we
argue that, when μi = μ, the value is maximal for ti = t.

Following [Sha01, Lemma 7], we prove the first part by induction on T = t1 +
· · · + tk. If T = 0, then the algorithm has to guess k independent random variables
xi ∼ μi. The probability of success is equal to the product of the individual success
probabilities, i.e.,

∏k
i=1 Suc0,μi(f).

For the induction step T ⇒ T + 1, pick some ti �= 0 and consider two in-
put distributions μ′

i,0 and μ′
i,1 obtained from μi by fixing the queried bit xi

j (the
jth bit in the ith input). By the induction hypothesis, for each value b ∈ {0, 1},
there is an optimal nonadaptive algorithm Ab that achieves the success probability
Sucti−1,μ′

i,b
(f) ·

∏
j �=i Suctj ,μj (f). We construct a new algorithm A that calls Ab as a

subroutine after it has queried xi
j with b as an outcome. A is optimal and has success

probability(
1∑

b=0

Prμi [x
i
j = b] · Sucti−1,μ′

i,b
(f)

)
·
∏
j �=i

Suctj ,μj (f) =

k∏
i=1

Sucti,μi
(f).

Since we are dealing with nonadaptive algorithms here, symmetry reasons imply
that if all k instances xi are independent and identically distributed, then the optimal
distribution of queries t1 + · · · + tk = kt is uniform, i.e., ti = t. (Note that counter-
examples to the analogous property for the general nonadaptive case, like those given
by Shaltiel [Sha01], do not apply here.) In such a case, the algorithm achieves the
success probability Suct,μ(f)k.

3.2. Adaptive algorithms. In this section we prove a similar statement also
for adaptive algorithms.

Remark. The SDPT is not always true for adaptive algorithms. Following [Sha01],
define h(x) = x1 ∨ (x2 ⊕ · · · ⊕ xn). Clearly Suc 2

3n,μ
(h) = 3/4 for μ uniform. By a

Chernoff bound, Suc 2
3nk,μ

k(h(k)) = 1 − 2−Ω(k), because approximately half of the
blocks can be solved using just 1 query and the unused queries can be used to answer
exactly also the other half of the blocks.

However, the SDPT is valid for OR(k)
n under νk, where ν(0n) = 1/2 and ν(ei) =

1/2n for ei an n-bit string that contains a 1 only at the ith position. It is simple to

prove that Sucαn,ν(ORn) = α+1
2 . Nonadaptive algorithms for OR(k)

n under νk with

αkn queries thus have σ ≤ (α+1
2)k = 2− log(2

α+1)k. We can achieve any γ < 1 by
choosing α sufficiently small. We prove that adaptive algorithms cannot be much
better. Without loss of generality, we assume the following:

1. The adaptive algorithm is deterministic. By Yao’s principle [Yao77], if there
exists a randomized algorithm with success probability σ under some input
distribution, then there exists a deterministic algorithm with success proba-
bility σ under that distribution.

2. Whenever the algorithm finds a 1 in some input block, it stops querying that
block.

3. The algorithm spends the same number of queries in all blocks where it does
not find a 1. This is optimal due to the symmetry between the blocks (we

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1479

omit the straightforward calculation that justifies this). It implies that the
algorithm spends at least as many queries in each “empty” input block as in
each “nonempty” block.

Lemma 2. If there is an adaptive T -query algorithm A computing OR(k)
n un-

der νk with success probability σ, then there is a nonadaptive 3T -query algorithm A′

computing OR(k)
n with success probability σ − 2−Ω(k).

Proof. Let Z be the number of empty blocks. E[Z] = k/2, and, by a Chernoff
bound, δ = Pr [Z < k/3] = 2−Ω(k). If Z ≥ k/3, then A spends at most 3T/k queries
in each empty block. Define nonadaptive A′ that spends 3T/k queries in each block.
Then A′ queries all the positions that A queries and maybe some more. Compare the
overall success probabilities of A and A′:

σA = Pr [Z < k/3] · Pr [A succeeds | Z < k/3]

+ Pr [Z ≥ k/3] · Pr [A succeeds | Z ≥ k/3]

≤ δ · 1 + Pr [Z ≥ k/3] · Pr [A′ succeeds | Z ≥ k/3]

≤ δ + σA′ .

We conclude that σA′ ≥ σA − δ. (Remark. By replacing the k/3-bound on Z by a
βk-bound for some β > 0, we can obtain arbitrary γ < 1 in the exponent δ = 2−γk,
while the number of queries of A′ becomes T/β.)

Combining the two lemmas establishes the following theorem.
Theorem 3 (SDPT for OR). For every 0 < γ < 1, there exists an α > 0

such that every randomized algorithm for OR(k)
n with T ≤ αkn queries has success

probability σ ≤ 2−γk.

3.3. A bound for the parity instead of the vector of results. Here we
give an SDPT for the parity of k independent instances of ORn. The parity is a
Boolean variable; hence we can always guess it with probability at least 1

2 . However,
we prove that the advantage (instead of the success probability) of our guess must be
exponentially small.

Let X be a random bit with Pr [X = 1] = p. We define the advantage of X by
Adv(X) = |2p − 1|. Note that a uniformly distributed random bit has advantage 0
and a bit known with certainty has advantage 1. It is well known that if X1, . . . , Xk

are independent random bits, then Adv(X1 ⊕ · · · ⊕ Xk) =
∏k

i=1 Adv(Xi). Com-
pare this with the fact that the probability of correctly guessing the complete vector
(X1, . . . , Xk) is the product of the individual probabilities.

We have proved a lower bound for the computation of OR(k)
n (vector of ORs). By

the same technique, replacing the success probability by the advantage in all claims
and proofs, we can also prove a lower bound for the computation of OR⊕k

n (parity of
ORs).

Theorem 4 (SDPT for parity of ORs). For every 0 < γ < 1, there exists an
α > 0 such that every randomized algorithm for OR⊕k

n with T ≤ αkn queries has
advantage τ ≤ 2−γk.

3.4. A bound for all functions. Here we show that the SDPT for OR actually
implies a weaker direct product theorem for all functions. In this weaker version, the
success probability of computing k instances still goes down exponentially with k, but
we need to start from a polynomially smaller bound on the overall number of queries.

Definition 5. For x ∈ {0, 1}n and S ⊆ [n], we use xS to denote the n-bit
string obtained from x by flipping the bits in S. Consider a (possibly partial) function

1480 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

f : D → Z, with D ⊆ {0, 1}n. The block sensitivity bsx(f) of x ∈ D is the maximal
b for which there are disjoint sets S1, . . . , Sb such that f(x) �= f(xSi). The block
sensitivity of f is maxx∈D bsx(f).

Block sensitivity is closely related to deterministic and bounded-error classical
query complexity as shown in the following theorem.

Theorem 6 (see [Nis91, BBC+01]). R2(f) = Ω(bs(f)) for all f , and D(f) ≤
bs(f)3 for all total Boolean f .

Nisan and Szegedy [NS94] showed how to embed a bs(f)-bit OR-function (with
the promise that the input has weight ≤ 1) into f . Combined with our SDPT for OR,
this implies the following direct product theorem for all functions in terms of their
block sensitivity.

Theorem 7. For every 0 < γ < 1, there exists an α > 0 such that for every
f , every classical algorithm for f (k) with T ≤ αkbs(f) queries has success probability
σ ≤ 2−γk.

This is optimal whenever R2(f) = Θ(bs(f)), which is the case for most functions.
For total functions, the gap between R2(f) and bs(f) is not more than cubic; hence,
we have the following corollary.

Corollary 8. For every 0 < γ < 1, there exists an α > 0 such that for every
total Boolean f , every classical algorithm for f (k) with T ≤ αkR2(f)1/3 queries has
success probability σ ≤ 2−γk.

4. Strong direct product theorem for quantum queries. In this section
we prove an SDPT for quantum algorithms computing k independent instances of
OR. Our proof relies on the polynomial method of [BBC+01].

4.1. Bounds on polynomials. We use three results about polynomials, also
used in [BCWZ99]. The first is by Coppersmith and Rivlin [CR92, p. 980] and gives
a general bound for polynomials bounded by 1 at integer points.

Theorem 9 (see Coppersmith and Rivlin [CR92]). Every polynomial p of degree
d ≤ n that has absolute value

|p(i)| ≤ 1 for all integers i ∈ [0, n]

satisfies

|p(x)| < aebd
2/n for all real x ∈ [0, n],

where a, b > 0 are universal constants (no explicit values for a and b are given
in [CR92]).

The other two results concern the Chebyshev polynomials Td, defined by (see,
e.g., [Riv90]):

Td(x) =
1

2

((
x +

√
x2 − 1

)d

+
(
x−

√
x2 − 1

)d
)
.

Td has degree d, and its absolute value |Td(x)| is bounded by 1 if x ∈ [−1, 1]. On the
interval [1,∞), Td exceeds all other polynomials with those two properties ([Riv90,
p. 108] and [Pat92, Fact 2]).

Theorem 10. If q is a polynomial of degree d such that |q(x)| ≤ 1 for all
x ∈ [−1, 1] then |q(x)| ≤ |Td(x)| for all x ≥ 1.

Paturi [Pat92, before Fact 2] proved the following lemma.

Lemma 11 (see Paturi [Pat92]). Td(1 + μ) ≤ e2d
√

2μ+μ2
for all μ ≥ 0.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1481

Proof. For x = 1 + μ, Td(x) ≤ (x +
√

x2 − 1)d = (1 + μ +
√

2μ + μ2)d ≤
(1 + 2

√
2μ + μ2)d ≤ e2d

√
2μ+μ2

(using that 1 + z ≤ ez for all real z).
The following key lemma is the basis for all our direct product theorems.
Lemma 12. Suppose p is a degree-D polynomial such that for some δ ≥ 0

−δ ≤ p(i) ≤ δ for all i ∈ {0, . . . , k − 1},
p(k) = σ,

p(i) ∈ [−δ, 1 + δ] for all i ∈ {0, . . . , N}.
Then for every integer 1 ≤ C < N − k and μ = 2C/(N − k − C) we have

σ ≤ a

(
1 + δ +

δ(2N)k

(k − 1)!

)

· exp

(
b(D − k)2

(N − k − C)
+ 2(D − k)

√
2μ + μ2 − k ln(C/k)

)
+ δk2k−1,

where a, b are the constants given by Theorem 9.
Before establishing this gruesome bound, let us reassure the reader by noting

that we will apply this lemma with δ either 0 or negligibly small, D = α
√
kN for

sufficiently small α, and C = keγ+1, giving

σ ≤ exp
(
(bα2 + 4αeγ/2+1/2 − 1 − γ)k

)
≤ e−γk ≤ 2−γk.

Proof of Lemma 12. Divide p with remainder by
∏k−1

j=0 (x− j) to obtain

p(x) = q(x)
k−1∏
j=0

(x− j) + r(x),

where d = deg(q) = D − k and deg(r) ≤ k − 1. We know that r(x) = p(x) ∈ [−δ, δ]
for all x ∈ {0, . . . , k − 1}. Decompose r as a linear combination of polynomials ei,
where ei(i) = 1 and ei(x) = 0 for x ∈ {0, . . . , k − 1} − {i}:

r(x) =

k−1∑
i=0

p(i)ei(x) =

k−1∑
i=0

p(i)

k−1∏
j=0
j �=i

x− j

i− j
.

We bound the values of r for all real x ∈ [0, N] by

|r(x)| ≤
k−1∑
i=0

|p(i)|
i!(k − 1 − i)!

k−1∏
j=0
j �=i

|x− j|

≤ δ

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
Nk ≤ δ(2N)k

(k − 1)!
,

|r(k)| ≤ δk2k−1.

This implies the following about the values of the polynomial q:

|q(k)| ≥ (σ − δk2k−1)/k!

|q(i)| ≤ (i− k)!

i!

(
1 + δ +

δ(2N)k

(k − 1)!

)
for i ∈ {k, . . . , N}.

1482 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

In particular,

|q(i)| ≤ C−k

(
1 + δ +

δ(2N)k

(k − 1)!

)
= A for i ∈ {k + C, . . . , N}.

Theorem 9 implies that there are constants a, b > 0 such that

|q(x)| ≤ A · aebd2/(N−k−C) = B for all real x ∈ [k + C,N].

We now divide q by B to normalize it and rescale the interval [k +C,N] to [1,−1] to
get a degree-d polynomial t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1],

t(1 + μ) = q(k)/B for μ = 2C/(N − k − C).

Since t cannot grow faster than the degree-d Chebyshev polynomial, we get

t(1 + μ) ≤ Td(1 + μ) ≤ e2d
√

2μ+μ2
.

Combining our upper and lower bounds on t(1 + μ), we obtain

(σ − δk2k−1)/k!

C−k (1 + δ + (δ(2N)k/(k − 1)!))aebd2/(N−k−C)
≤ e2d

√
2μ+μ2

.

Rearranging gives the bound.

4.2. Consequences for quantum algorithms. The previous result about
polynomials implies a strong tradeoff between queries and success probability for
quantum algorithms that have to find k 1’s in an N -bit input. A k-threshold algo-
rithm with success probability σ is an algorithm on N -bit input x that outputs 0 with
certainty if |x| < k, and outputs 1 with probability at least σ if |x| = k.

Theorem 13. For every γ > 0, there exists an α > 0 such that every quantum
k-threshold algorithm with T ≤ α

√
kN queries has success probability σ ≤ 2−γk.

Proof. Fix γ > 0 and consider a T -query k-threshold algorithm. By [BBC+01],

its acceptance probability is an N -variate polynomial of degree D ≤ 2T ≤ 2α
√
kN

and can be symmetrized to a single-variate polynomial p with the properties
p(i) = 0 if i ∈ {0, . . . , k − 1},
p(k) ≥ σ,
p(i) ∈ [0, 1] for all i ∈ {0, . . . , N},

Choosing α > 0 sufficiently small and δ = 0, the result follows from Lemma 12.
This implies an SDPT for k instances of the n-bit search problem. For each such

instance, the goal is to find the index of a 1-bit among the n input bits of the instance
(or to report that none exists).

Theorem 14 (SQDPT for Search). For every γ > 0, there exists an α > 0

such that every quantum algorithm for Search(k)
n with T ≤ αk

√
n queries has success

probability σ ≤ 2−γk.
Proof. Set N = kn, and fix a γ > 0 and a T -query algorithm A for Search(k)

n with
success probability σ. Now consider the following algorithm that acts on an N -bit
input x:

1. Apply a random permutation π to x.
2. Run A on π(x).

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1483

3. Query each of the k positions that A outputs, and return 1 if and only if at
least k/2 of those bits are 1.

This uses T + k queries. We will show that it is a k/2-threshold algorithm. First, if
|x| < k/2, it always outputs 0. Second, consider the case |x| = k/2. The probability
that π puts all k/2 1’s in distinct n-bit blocks is

N

N
· N − n

N − 1
· · ·

N − k
2n

N − k
2

≥
(
N − k

2n

N

)k/2

= 2−k/2.

Hence our algorithm outputs 1 with probability at least σ2−k/2. Choosing α suffi-
ciently small, the previous theorem implies σ2−k/2 ≤ 2−(γ+1/2)k; hence σ ≤ 2−γk.

Our bounds are quite precise for α � 1. We can choose γ = 2 ln(1/α) − O(1)
and ignore some lower-order terms to get roughly σ ≤ α2k. On the other hand, it is
known that Grover’s search algorithm with α

√
n queries on an n-bit input has success

probability roughly α2 [BBHT98]. Doing such a search on all k instances gives overall
success probability α2k.

Theorem 15 (SQDPT for OR). There exist α, γ > 0 such that every quantum

algorithm for OR(k)
n with T ≤ αk

√
n queries has success probability σ ≤ 2−γk.

Proof. An algorithm A for OR(k)
n with success probability σ can be used to build

an algorithm A′ for Search(k)
n with slightly worse success probability:

1. Run A on the original input and remember which blocks contain a 1.
2. Run simultaneously (at most k) binary searches on the nonzero blocks. Iterate

this s = 2 log(1/α) times. Each iteration is computed by running A on the
parts of the blocks that are known to contain a 1, halving the remaining
instance size each time.

3. Run the exact version of Grover’s algorithm on each of the remaining parts
of the instances to look for a 1 there (each remaining part has size n/2s).

This new algorithm A′ uses (s+ 1)T + π
4 k

√
n/2s = O(α log(1/α)k

√
n) queries. With

probability at least σs+1, A succeeds in all iterations, in which case A′ solves Search(k)
n .

By the previous theorem, for every γ′ > 0 of our choice we can choose α > 0 such
that

σs+1 ≤ 2−γ′k,

which implies the theorem with γ = γ′/(s + 1).
Choosing our parameters carefully, we can actually show that for every γ < 1

there is an α > 0 such that αk
√
n queries give success probability σ ≤ 2−γk. Clearly,

σ = 2−k is achievable without any queries by random guessing.

4.3. A bound for all functions. As in section 3.4, we can extend the SDPT
for OR to a slightly weaker theorem for all total functions. Block sensitivity is closely
related to bounded-error quantum query complexity as shown in the following theo-
rem.

Theorem 16 (see [BBC+01]). Q2(f) = Ω(
√

bs(f)) for all f , and D(f) ≤ bs(f)3

for all total Boolean f .
By embedding an OR of size bs(f) in f , we obtain the following theorem.
Theorem 17. There exist α, γ > 0 such that for every f , every quantum algo-

rithm for f (k) with T ≤ αk
√

bs(f) queries has success probability σ ≤ 2−γk.

This is close to optimal whenever Q2(f) = Θ(
√

bs(f)). For total functions, the

gap between Q2(f) and
√

bs(f) is no more than a 6th power; hence the following
corollary holds.

1484 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Corollary 18. There exist α, γ > 0 such that for every total Boolean f , every
quantum algorithm for f (k) with T ≤ αkQ2(f)1/6 queries has success probability σ ≤
2−γk.

5. Strong direct product theorem for quantum communication. In this
section we establish an SDPT for quantum communication complexity, specifically
for protocols that compute k independent instances of the disjointness problem. Our
proof relies crucially on the beautiful technique that Razborov introduced to estab-
lish a lower bound on the quantum communication complexity of (one instance of)
disjointness [Raz03]. It allows us to translate a quantum communication protocol to a
single-variate polynomial that represents, roughly speaking, the protocol’s acceptance
probability as a function of the size of the intersection of x and y. Once we have this
polynomial, the results from section 4.1 suffice to establish an SDPT.

5.1. Razborov’s technique. Razborov’s technique relies on the following linear
algebraic notions. The operator norm ‖ A ‖ of a matrix A is its largest singular
value σ1. The trace inner product (also known as Hilbert–Schmidt inner product)
between A and B is 〈A,B〉 = Tr(A∗B). The trace norm is ‖ A ‖tr = max{|〈A,B〉| :
‖ B ‖ = 1} =

∑
i σi, the sum of all singular values of A. The Frobenius norm is

‖ A ‖F =
√∑

ij |Aij |2 =
√∑

i σ
2
i . The following lemma is implicit in Razborov’s

paper.
Lemma 19. Consider a Q-qubit quantum communication protocol on N -bit inputs

x and y, with acceptance probabilities denoted by P (x, y). Define

P (i) = E|x|=|y|=N/4,|x∧y|=i|[P (x, y)],

where the expectation is taken uniformly over all x, y that each have weight N/4 and
that have intersection i. For every d ≤ N/4 there exists a degree-d polynomial q such
that |P (i) − q(i)| ≤ 2−d/4+2Q for all i ∈ {0, . . . , N/8}.

Proof. We only consider the N =
(

N
N/4

)
strings of weight N/4. Let P denote the

N × N matrix of the acceptance probabilities on these inputs. We know from Yao
and Kremer [Yao93, Kre95] that we can decompose P as a matrix product P = AB,
where A is an N × 22Q−2 matrix with each entry at most 1 in absolute value, and
similarly for B. Note that ‖ A ‖F , ‖ B ‖F ≤

√
N22Q−2. Using Hölder’s inequality we

have

‖ P ‖tr ≤ ‖ A ‖F · ‖ B ‖F ≤ N22Q−2.

Let μi denote the N × N matrix corresponding to the uniform probability distri-
bution on {(x, y) : |x ∧ y| = i}. These “combinatorial matrices” have been well
studied [Knu03]. Note that 〈P, μi〉 is the expected acceptance probability P (i) of the
protocol under that distribution. One can show that the different μi commute; thus
they have the same eigenspaces E0, . . . , EN/4 and can be simultaneously diagonalized
by some orthogonal matrix U . For t ∈ {0, . . . , N/4}, let (UPUT)t denote the block
of UPUT corresponding to Et, and let at = Tr((UPUT)t) be its trace. Then we have

N/4∑
t=0

|at| ≤
N∑
j=1

∣∣(UPUT)jj
∣∣ ≤ ‖ UPUT ‖tr = ‖ P ‖tr ≤ N22Q−2,

where the second inequality is a property of the trace norm.
Let λit be the eigenvalue of μi in eigenspace Et. It is known [Raz03, sec-

tion 5.3] that λit is a degree-t polynomial in i, and that |λit| ≤ 2−t/4/N for i ≤ N/8

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1485

(the factor 1/4 in the exponent is implicit in Razborov’s paper). Consider the high-
degree polynomial p defined by

p(i) =

N/4∑
t=0

atλit.

This satisfies

p(i) =

N/4∑
t=0

Tr((UPUT)t)λit = 〈UPUT , UμiU
T 〉 = 〈P, μi〉 = P (i).

Let q be the degree-d polynomial obtained by removing the high-degree parts of p:

q(i) =

d∑
t=0

atλit.

Then P and q are close on all integers i between 0 and N/8:

|P (i) − q(i)| = |p(i) − q(i)| =

∣∣∣∣∣∣
N/4∑

t=d+1

atλit

∣∣∣∣∣∣ ≤
2−d/4

N

N/4∑
t=0

|at| ≤ 2−d/4+2Q.

5.2. Consequences for quantum protocols. Combining Razborov’s tech-
nique with our polynomial bounds, we can prove the following theorem.

Theorem 20 (SQDPT for disjointness). There exist α, γ > 0 such that every

quantum protocol for DISJ(k)
n with Q ≤ αk

√
n qubits of communication has success

probability p ≤ 2−γk.
Proof sketch. By doing the same trick with s = 2 log(1/α) rounds of binary search

as for Theorem 15, we can tweak a protocol for DISJ(k)
n to a protocol that satisfies,

with P (i) defined as in Lemma 19, N = kn and σ = ps+1:
P (i) = 0 if i ∈ {0, . . . , k − 1},
P (k) ≥ σ,
P (i) ∈ [0, 1] for all i ∈ {0, . . . , N}

(a subtlety: instead of exact Grover we use an exact version of the O(
√
n)-qubit

disjointness protocol of [AA03]; the [BCW98]-protocol would lose a logn-factor).
Lemma 19, using d = 12Q, then gives a degree-d polynomial q that differs from
P by at most δ ≤ 2−Q on all i ∈ {0, . . . , N/8}. This δ is sufficiently small to apply
Lemma 12, which in turn upper bounds σ and hence p.

This technique also gives SDPTs for symmetric predicates other than DISJn. As
mentioned in the introduction, the same bound was obtained independently by Beame
et al. [BPSW05, Corollary 9] for classical protocols.

6. Time-space tradeoff for quantum sorting. We will now use our SDPT to
get near-optimal time-space tradeoffs for quantum circuits for sorting. In our model,
the numbers a1, . . . , aN that we want to sort can be accessed by means of queries, and
the number of queries lower bounds the actual time taken by the circuit. The circuit
has N output gates and in the course of its computation outputs the N numbers in
sorted (say, descending) order, with success probability at least 2/3.

Theorem 21. Every bounded-error quantum circuit for sorting N numbers that
uses T queries and S qubits of workspace satisfies T 2S = Ω

(
N3

)
.

1486 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Proof. We “slice” the circuit along the time-axis into L = T/α
√
SN slices, each

containing T/L = α
√
SN queries. Each such slice has a number of output gates.

Consider any slice. Suppose it contains output gates i, i+1, . . . , i+k−1 for i ≤ N/2,
so that it is supposed to output the ith up to (i+k−1)th largest elements of its input.
We want to show that k = O(S). If k ≤ S, then we are done, so assume k > S. We
can use the slice as a k-threshold algorithm on N/2 bits, as follows. For an N/2-bit
input x, construct a sorting input by taking i − 1 copies of the number 2, the N/2
bits in x, and N/2 − i + 1 copies of the number 0, and append their position behind
the numbers.

Consider the behavior of the sorting circuit on this input. The first part of the
circuit has to output the i− 1 largest numbers, which all start with 2. We condition
on the event that the circuit succeeds in this. It then passes on an S-qubit state
(possibly mixed) as the starting state of the particular slice we are considering. This
slice then outputs the k largest numbers in x with probability at least 2/3. Now,
consider an algorithm that runs just this slice, starting with the completely mixed
state on S-qubits, and that outputs 1 if it finds k numbers starting with 1, and
outputs 0 otherwise. If |x| < k, this new algorithm always outputs 0 (note that it
can verify finding a 1 since its position is appended), but if |x| = k, then it outputs
1 with probability at least σ ≥ 2

3 · 2−S , because the completely mixed state has
“overlap” 2−S with the “good” S-qubit state that would have been the starting state
of the slice in the run of the sorting circuit. On the other hand, the slice has only
α
√
SN < α

√
kN queries, so by choosing α sufficiently small, Theorem 13 implies

σ ≤ 2−Ω(k). Combining our upper and lower bounds on σ gives k = O(S). Thus we
need L = Ω(N/S) slices, so T = Lα

√
SN = Ω(N3/2/

√
S).

As mentioned, our tradeoff is achievable up to polylog factors [Kla03]. Interest-
ingly, the near-optimal algorithm uses only a polylogarithmic number of qubits and
otherwise just classical memory. For simplicity we have shown the lower bound for
the case when the outputs have to be made in their natural ordering only, but we can
show, using a slightly different proof, the same lower bound for any ordering of the
outputs that does not depend on the input.

7. Time-space tradeoffs for Boolean matrix products. First we show a
lower bound on the time-space tradeoff for Boolean matrix-vector multiplication on
classical machines.

Theorem 22. There is an N × N matrix A such that every classical bounded-
error circuit that computes the Boolean matrix-vector product Ab with T queries and
space S = o(N/ logN) satisfies TS = Ω

(
N2

)
.

The bound is tight if T measures queries to the input.
Proof. Fix k = O(S) large enough. First we have to find a hard matrix A. We

pick A randomly by setting N/(2k) random positions in each row to 1. We want to
show that with positive probability for all sets of k rows A[i1], . . . , A[ik] many of the
rows A[ij] contain at least N/(6k) 1’s that are not 1’s in any of the k− 1 other rows.

This probability can be bounded as follows. We will treat the rows as subsets of
{1, . . . , N}. A row A[j] is called bad with respect to k−1 other rows A[i1], . . . , A[ik−1]
if |A[j] − ∪�A[i�]| ≤ N/(6k). For fixed i1, . . . , ik−1, the probability that some A[j]
is bad with respect to the k − 1 other rows is at most e−Ω(N/k) by the Chernoff
bound and the fact that k rows can together contain at most N/2 elements. Since
k = o(N/ logN) we may assume this probability is at most 1/N10.

Now fix any set I = {i1, . . . , ik}. The probability that for j ∈ I it holds that
A[j] is bad with respect to the other rows is at most 1/N10, and this also holds if we

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1487

condition on the event that some other rows are bad, since this condition makes it
only less probable that another row is also bad. So for any fixed J ⊂ I of size k/2
the probability that all rows in J are bad is at most N−5k, and the probability that
there exists such J is at most (

k

k/2

)
N−5k.

Furthermore, the probability that there is a set I of k rows for which k/2 are bad is
at most (

N

k

)(
k

k/2

)
N−5k < 1.

So there is an A as required and we may fix such an A.
Now suppose we are given a circuit with space S that computes the Boolean

product between the rows of A and b in some order. We again proceed by “slicing”
the circuit into L = T/αN slices, each containing T/L = αN queries. Each such slice
has a number of output gates. Consider any slice. Suppose it contains output gates
i1 < · · · < ik ≤ N/2; thus it is supposed to output ∨N

�=1 (A[ij , �] ∧ b�) for all ij with
1 ≤ j ≤ k.

Such a slice starts on a classical value of the “memory” of the circuit, which
is in general a probability distribution on S bits (if the circuit is randomized). We
replace this probability distribution by the uniform distribution on the possible values
of S bits. If the original circuit succeeds in computing the function correctly with
probability at least 1/2, then so does the circuit slice with its outputs, and replacing
the initial value of the memory by a uniformly random value decreases the success
probability to no less than (1/2) · 1/2S .

If we now show that any classical circuit with αN queries that produces the
outputs i1, . . . , ik can succeed only with exponentially small probability in k, we get
that k = O(S), and hence (T/αN) · O(S) ≥ N , which gives the claimed lower bound
for the time-space tradeoff.

Each set of k outputs corresponds to k rows of A, which contain N/(2k) 1’s each.
Thanks to the construction of A, there are k/2 rows among these, such that N/(6k)
of the 1’s in each such row are in a position where none of the other contains a 1.
So we get k/2 sets of N/(6k) positions that are unique to each of the k/2 rows.
The inputs for b will be restricted to contain 1’s only at these positions, and so the
algorithm naturally has to solve k/2 independent OR problems on n = N/(6k) bits
each. By Theorem 3, this is only possible with αN queries if the success probability
is exponentially small in k.

An absolutely analogous construction can be done in the quantum case. Using
circuit slices of length α

√
NS, we can prove the following theorem.

Theorem 23. There is an N × N matrix A such that every quantum bounded-
error circuit that computes the Boolean matrix-vector product Ab with T queries and
space S = o(N/ logN) satisfies T 2S = Ω

(
N3

)
.

Note that this is tight within a logarithmic factor (needed to improve the success
probability of Grover’s search).

Theorem 24. Every classical bounded-error circuit that computes the N × N
Boolean matrix product AB with T queries and space S satisfies TS = Ω

(
N3

)
.

While this is near-optimal for small S, it is probably not tight for large S, a
likely tight tradeoff being T 2S = Ω

(
N6

)
. It is also no improvement compared to

Abrahamson’s average-case bounds [Abr90].

1488 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Proof. Suppose that S = o(N); otherwise the bound is trivial, since time N2 is
always needed. We can proceed in a manner similar to that of the proof of Theorem 22.
We slice the circuit so that each slice has only αN queries. Suppose a slice makes
k outputs. We are going to restrict the inputs to get a direct product problem with
k instances of size N/k each; hence a slice with αN queries has exponentially small
success probability in k and thus can produce only O(S) outputs. Since the overall
number of outputs is N2, we get the tradeoff TS = Ω

(
N3

)
.

Suppose a circuit slice makes k outputs, where an output labeled (i, j) needs to
produce the vector product of the ith row A[i] of A and the jth column B[j] of B.
We may partition the set {1, . . . , N} into k mutually disjoint subsets U(i, j) of size
N/k, each associated to an output (i, j).

Assume that there are � outputs (i, j1), . . . , (i, j�) involving A[i]. Each such output
is associated to a subset U(i, jt), and we set A[i] to zero on all positions that are not
in any of these subsets, and to 1 on all positions that are in one of these subsets.
When there are � outputs (i1, j), . . . , (i�, j) involving B[j], we set B[j] to zero on all
positions that are not in any of the corresponding subsets, and allow the inputs to be
arbitrary on the other positions.

If the circuit computes on these restricted inputs, it actually has to compute k
instances of OR of size n = N/k in B, for it is true that A[i] and B[j] contain a single
block of size N/k in which A[i] contains only 1’s, and B[j] “free” input bits, if and
only if (i, j) is one of the k outputs. Hence the SDPT is applicable.

The application to the quantum case is analogous.
Theorem 25. Every quantum bounded-error circuit that computes the N × N

Boolean matrix product AB with T queries and space S satisfies T 2S = Ω
(
N5

)
.

If S = O(logN), then N2 applications of Grover can compute AB with T =
O
(
N2.5 logN

)
. Hence our tradeoff is near-optimal for small S. We do not know

whether it is optimal for large S.

8. Quantum communication-space tradeoffs for matrix products. In
this section we use the strong direct product result for quantum communication (The-
orem 20) to prove communication-space tradeoffs. We later show that these are close
to optimal.

Theorem 26. Every quantum bounded-error protocol in which Alice and Bob
have bounded space S and that computes the N -dimensional Boolean matrix-vector
product satisfies C2S = Ω

(
N3

)
.

Proof. In a protocol, Alice receives a matrix A, and Bob receives a vector b as
inputs. Given a circuit that multiplies these with communication C and space S, we
again proceed to slice it. This time, however, a slice contains a limited amount of
communication. Recall that in communicating quantum circuits the communication
corresponds to wires carrying qubits that cross between Alice’s and Bob’s circuits.
Hence we may cut the circuit after α

√
NS qubits have been communicated and so

on. Overall there are C/α
√
NS circuit slices. Each starts with an initial state that

may be replaced by the completely mixed state at the cost of decreasing the success
probability to (1/2)·1/2S . We want to employ the direct product theorem for quantum
communication complexity to show that a protocol with the given communication has
success probability at most exponentially small in the number of outputs it produces
and thus that a slice can produce at most O(S) outputs. Combining these bounds
with the fact that N outputs have to be produced gives the tradeoff.

To use the direct product theorem we restrict the inputs in the following way:
Suppose a protocol makes k outputs. We partition the vector b into k blocks of size

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1489

N/k, and each block is assigned to one of the k rows of A for which an output is
made. This row is made to contain zeros outside of the positions belonging to its
block, and hence we arrive at a problem where disjointness has to be computed on k
instances of size N/k. With communication α

√
kN , the success probability must be

exponentially small in k due to Theorem 20. Hence k = O(S) is an upper bound on
the number of outputs produced.

Theorem 27. Every quantum bounded-error protocol in which Alice and Bob
have bounded space S and that computes the N -dimensional Boolean matrix product
satisfies C2S = Ω

(
N5

)
.

Proof. The proof uses the same slicing approach as in the other tradeoff results.
Note that we can assume that S = o(N), since otherwise the bound is trivial. Each
slice contains communication α

√
NS, and as before a direct product result showing

that k outputs can be computed only with success probability exponentially small
in k leads to the conclusion that a slice can compute only O(S) outputs. Therefore
(C/α

√
NS) · O(S) ≥ N2, and we are done.

Consider a protocol with α
√
NS qubits of communication. We partition the

universe {1, . . . , N} of the disjointness problems to be computed into k mutually
disjoint subsets U(i, j) of size N/k, each associated to an output (i, j), which in turn
corresponds to a row/column pair A[i], B[j] in the input matrices A and B. Assume
that there are � outputs (i, j1), . . . , (i, j�) involving A[i]. Each output is associated to
a subset of the universe U(i, jt), and we set A[i] to zero on all positions that are not
in one of these subsets. Then we proceed analogously with the columns of B.

If the protocol computes on these restricted inputs, it has to solve k instances of
disjointness of size n = N/k each, since A[i] and B[j] contain a single block of size
N/k in which both are not set to 0 if and only if (i, j) is one of the k outputs. Hence
Theorem 20 is applicable.

We now want to show that these tradeoffs are not too far from optimal.

Theorem 28. There is a quantum bounded-error protocol with space S that
computes the Boolean product between an N×N matrix and an N -dimensional vector
within communication C = O((N3/2 log2 N)/

√
S).

There is a quantum bounded-error protocol with space S that computes the Boolean
product between two N×N matrices within communication C = O((N5/2 log2 N)/

√
S).

Proof. We begin by showing a protocol for the following scenario: Alice gets S
N -bit vectors x1, . . . , xS , Bob gets an N -bit vector y, and they want to compute the
S Boolean inner products between these vectors. The protocol uses space O(S).

In the following, we interpret Boolean vectors as sets. The main idea is that
Alice can use the union z of the xi and then Alice and Bob can find an element in
the intersection of z and y using the protocol for the disjointness problem described
in [BCW98]. Alice then marks all xi that contain this element and removes them
from z.

A problem with this approach is that Alice cannot store z explicitly, since it might
contain many more than S elements. Alice may, however, store in an array of length
S the indices of those sets xi for which an element in the intersection of xi and y has
already been found. This array and the input given as an oracle work as an implicit
representation of z.

Now suppose at some point during the protocol that the intersection of z and
y has size k. Then Alice and Bob can find one element in this intersection within
O(

√
N/k) rounds of communication, in each of which O(logN) qubits are exchanged.

Furthermore, in O(
√
Nk) rounds all elements in the intersection can be found. So if

1490 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

k ≤ S, then all elements are found within communication O(
√
NS logN), and the

problem can be solved completely. On the other hand, if k ≥ S, finding one element
costs O(

√
N/S logN), but finding such an element removes at least one xi from z,

and hence this has to be done at most S times, giving the same overall communication
bound.

It is not hard to see that this process can be implemented with space O(S).
The protocol from [BCW98] is a distributed Grover’s search that uses only space
O(logN). Bob can work as in this protocol. For each search, Alice has to start with
a superposition over all indices in z. This superposition can be computed from her
oracle and her array. In each step she has to apply the Grover iteration. This can
also be implemented from these two resources.

To get a protocol for the matrix-vector product, the above procedure is repeated
N/S times; hence the communication is O((N/S) ·

√
NS log2 N), where one logarith-

mic factor stems from improving success probability to 1/poly(N).

For the product of two matrices, the matrix-vector protocol may be repeated N
times.

These near-optimal protocols use only O(logN) qubits, and apart from that S
bits of classical memory.

9. Open problems. We mention some open problems. The first is to determine
tight time-space tradeoffs for the Boolean matrix product on both classical and quan-
tum computers. Second, regarding communication-space tradeoffs for the Boolean
matrix-vector and matrix product, we did not prove any classical bounds that were
better than our quantum bounds. Klauck [Kla04] recently proved classical tradeoffs
CS2 = Ω

(
N3

)
and CS2 = Ω

(
N2

)
for the Boolean matrix product and matrix-vector

product, respectively, by means of a weak direct product theorem for disjointness. A
classical strong direct product theorem for disjointness (with communication bound
αkn instead of our current αk

√
n) would imply optimal tradeoffs, but we do not

know how to prove this at the moment. Third, we would like to know whether an
SDPT holds in the query and communication setting for all Boolean functions if we
consider worst-case error probability (Shaltiel [Sha01] disproved this for average-case
error probability). Finally, it would be interesting to get any lower bounds on time-
space or communication-space tradeoffs for decision problems in the quantum case,
for example, for element distinctness [BDH+01, Amb04] or the verification of matrix
multiplication [BŠ06].

Acknowledgments. Many thanks to Scott Aaronson for email discussions about
the evolving results in his work [Aar04] that motivated some of our proofs, Harry
Buhrman for useful discussions, Paul Beame for communication about [BPSW05],
and the anonymous referees for comments that improved the presentation of the
paper.

REFERENCES

[AA03] S. Aaronson and A. Ambainis, Quantum search of spatial regions, in Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
2003, pp. 200–209; available online from http://www.arxiv.org/abs/quant-ph/
0303041.

[Aar04] S. Aaronson, Limitations of quantum advice and one-way communication, in Proceed-
ings of the 19th Annual IEEE Conference on Computational Complexity, 2004, pp.
320–332; available online from http://www.arxiv.org/abs/quant-ph/0402095.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1491

[Abr90] K. Abrahamson, A time-space tradeoff for Boolean matrix multiplication, in Pro-
ceedings of the 31st Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1990, pp. 412–419; available online from http://www.arxiv.org/abs/quant-
ph/0303041.

[Amb04] A. Ambainis, Quantum walk algorithm for element distinctness, in Proceedings of the
45st Annual IEEE Symposium on Foundations of Computer Science, 2004, pp.
22–31; available online from http://www.arxiv.org/abs/quant-ph/0311001.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower
bounds by polynomials, J. ACM, 48 (2001), pp. 778–797.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum search-
ing, Fortschr. Phys., 46 (1998), pp. 493–505.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson, Quantum versus classical com-
munication and computation, in Proceedings of the 30th Annual ACM Sym-
posium on Theory of Computing, 1998, pp. 63–68; available online from
http://www.arxiv.org/abs/quant-ph/9802040.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka, Bounds for small-error and
zero-error quantum algorithms, in Proceedings of the 40th Annual IEEE Sym-
posium on Foundations of Computer Science, 1999, pp. 358–368; available online
from http://www.arxiv.org/abs/cs.CC/9904019.

[BDH+01] H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and

R. de Wolf, Quantum algorithms for element distinctness, in Proceedings of the
16th Annual IEEE Conference on Computational Complexity, 2001, pp. 131–137;
available online from http://www.arxiv.org/abs/quant-ph/0007016.

[Bea91] P. Beame, A general sequential time-space tradeoff for finding unique elements, SIAM
J. Comput., 20 (1991), pp. 270–277.

[BFS86] L. Babai, P. Frankl, and J. Simon, Complexity classes in communication complexity
theory, in Proceedings of the 27th Annual IEEE Symposium on Foundations of
Computer Science, 1986, pp. 337–347.

[BHMT02] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplifi-
cation and estimation, in Quantum Computation and Quantum Information: A
Millennium Volume, Contemp. Math. 305, AMS, Providence, RI, 2002, pp. 53–74;
available online from http://www.arxiv.org/abs/quant-ph/0005055.

[BJKS02a] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, An information statis-
tics approach to data stream and communication complexity, in Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp.
209–218.

[BJKS02b] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, Information theory
methods in communication complexity, in Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, 2002, pp. 93–102.

[BNRW05] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf, Robust polynomials and
quantum algorithms, in Proceedings of the 22nd Annual Symposium on The-
oretical Aspects of Computer Science (STACS 2005), Lecture Notes in Com-
put. Sci. 3404, Springer, Berlin, 2005, pp. 593–604; available online from
http://www.arxiv.org/abs/quant-ph/0309220.

[BPSW05] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson, A strong direct product
lemma for corruption and the multiparty NOF communication complexity of dis-
jointness, in Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, 2005, pp. 52–66.

[BŠ06] H. Buhrman and R. Špalek, Quantum verification of matrix products, in Proceed-
ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
Miami, 2006; available online from http://www.arxiv.org/abs/quant-ph/0409035.

[BTY94] P. Beame, M. Tompa, and P. Yan, Communication-space tradeoffs for unrestricted
protocols, SIAM J. Comput., 23 (1994), pp. 652–661.

[Buh00] H. Buhrman, Quantum computing and communication complexity, Bull. Eur. Assoc.
Theor. Comput. Sci., 70 (2000), pp. 131–141.

[BW02] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A
survey, Theoret. Comput. Sci., 288 (2002), pp. 21–43.

[CDNT98] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Quantum entanglement and the
communication complexity of the inner product function, in Quantum Computing
and Quantum Communications, Lecture Notes in Comput. Sci. 1509, Springer,
Berlin, 1998, pp. 61–74; available online from http://www.arxiv.org/abs/quant-
ph/9708019.

1492 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

[CR92] D. Coppersmith and T. J. Rivlin, The growth of polynomials bounded at equally
spaced points, SIAM J. Math. Anal., 23 (1992), pp. 970–983.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao, Informational complexity and the
direct sum problem for simultaneous message complexity, in Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp.
270–278.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson, On Yao’s XOR Lemma, Techni-
cal report TR–95–050, ECCC, 1995; available online at http://www.eccc.uni-
trier.de/eccc/.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceed-
ings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp.
212–219; available online from http://www.arxiv.org/abs/quant-ph/9605043.

[HW02] P. Høyer and R. de Wolf, Improved quantum communication complexity bounds
for disjointness and equality, in Proceedings of the 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2002), Lecture Notes in
Comput. Sci. 2285, Springer, Berlin, 2002, pp. 299–310; available online from
http://www.arxiv.org/abs/quant-ph/0109068.

[Kla00] H. Klauck, Quantum communication complexity, in Proceedings of Workshop on
Boolean Functions and Applications at the 27th Annual International Colloquium
on Automata, Languages and Programming, 2000, pp. 241–252; available online
from http://www.arxiv.org/abs/quant-ph/0005032.

[Kla03] H. Klauck, Quantum time-space tradeoffs for sorting, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003, pp. 69–76; available
online from http://www.arxiv.org/abs/quant-ph/0211174.

[Kla04] H. Klauck, Quantum and classical communication-space tradeoffs from rectangle
bounds, in FSTTCS 2004: Foundations of Software Technology and Theoretical
Computer Science, 24th International Conference, Lecture Notes in Comput. Sci.
3328, Springer, Berlin, 2004, pp. 384–395.

[KN97] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University
Press, Cambridge, UK, 1997.

[Knu03] D. E. Knuth, Combinatorial matrices, in Selected Papers on Discrete Mathematics,
CSLI Lecture Notes 106, Stanford University, Stanford, CA, 2003, pp. 177–188.

[Kre95] I. Kremer, Quantum Communication, Master’s thesis, Computer Science Department,
The Hebrew University of Jerusalem, Jerusalem, 1995.

[KS92] B. Kalyanasundaram and G. Schnitger, The probabilistic communication complex-
ity of set intersection, SIAM J. Discrete Math., 5 (1992), pp. 545–557.

[LTT92] T. W. Lam, P. Tiwari, and M. Tompa, Trade-offs between communication and space,
J. Comput. System Sci., 45 (1992), pp. 296–315.

[NC00] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge, UK, 2000.

[Nis91] N. Nisan, CREW PRAMs and decision trees, SIAM J. Comput., 20 (1991), pp. 999–
1007.

[NRS94] N. Nisan, S. Rudich, and M. Saks, Products and help bits in decision trees, in Pro-
ceedings of the 35th Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1994, pp. 318–329.

[NS94] N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials,
Comput. Complexity, 4 (1994), pp. 301–313.

[Pat92] R. Paturi, On the degree of polynomials that approximate symmetric Boolean func-
tions, in Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, 1992, pp. 468–474.

[PRW97] I. Parnafes, R. Raz, and A. Wigderson, Direct product results and the GCD prob-
lem, in old and new communication models, in Proceedings of 29th ACM Sympo-
sium on Theory of Computing, 1997, pp. 363–372.

[Raz92] A. Razborov, On the distributional complexity of disjointness, Theoret. Comput. Sci.,
106 (1992), pp. 385–390.

[Raz03] A. Razborov, Quantum communication complexity of symmetric predicates, Izv.
Ross. Akad. Nauk. Ser. Mat., 67 (2003), pp. 159–176; available online from
http://www.arxiv.org/abs/quant-ph/0204025. %pagebreak

[Riv90] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory, 2nd ed., Wiley-Interscience, New York, 1990.

[Sha01] R. Shaltiel, Towards proving strong direct product theorems, in Proceedings of the
16th Annual IEEE Conference on Computational Complexity, 2001, pp. 107–119.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1493

[Wol02] R. de Wolf, Quantum communication and complexity, Theoret. Comput. Sci., 287
(2002), pp. 337–353.

[Yao77] A. C-C. Yao, Probabilistic computations: Toward a unified measure of complexity, in
Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer
Science, 1977, pp. 222–227.

[Yao82] A. C-C. Yao, Theory and applications of trapdoor functions, in Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp.
80–91.

[Yao93] A. C-C. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science, 1993, pp. 352–360.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1494–1511

INTEGRALITY RATIO FOR GROUP STEINER TREES AND
DIRECTED STEINER TREES∗

ERAN HALPERIN† , GUY KORTSARZ‡ , ROBERT KRAUTHGAMER§ ,

ARAVIND SRINIVASAN¶, AND NAN WANG‖

Abstract. The natural relaxation for the group Steiner tree problem, as well as for its general-
ization, the directed Steiner tree problem, is a flow-based linear programming relaxation. We prove
new lower bounds on the integrality ratio of this relaxation. For the group Steiner tree problem, we
show that the integrality ratio is Ω(log2 k), where k denotes the number of groups; this holds even for
input graphs that are hierarchically well-separated trees, introduced by Bartal [in Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, 1996, pp. 184–193], in which
case this lower bound is tight. This also applies for the directed Steiner tree problem. In terms

of the number n of vertices, our results for the directed Steiner problem imply an Ω(log2 n
(log log n)2

)

integrality ratio. For both problems, these are the first lower bounds on the integrality ratio that
are superlogarithmic in the input size. This exhibits, for the first time, a relaxation of a natural
optimization problem whose integrality ratio is known to be superlogarithmic but subpolynomial.
Our results and techniques have been used by Halperin and Krauthgamer [in Proceedings of the
35th Annual ACM Symposium on Theory of Computing, 2003, pp. 585–594] to show comparable
inapproximability results, assuming that NP has no quasi-polynomial Las Vegas algorithms. We also
show algorithmically that the integrality ratio for the group Steiner tree problem is much better for
certain families of instances, which helps pinpoint the types of instances (parametrized by optimal
solutions to their flow-based relaxations) that appear to be most difficult to approximate.

Key words. group Steiner tree, directed Steiner tree, flow-based relaxation, linear programming
relaxation, integrality ratio, approximation algorithms

AMS subject classifications. 05C05, 05C80, 60C05, 68W25, 90C05, 90C10, 90C27

DOI. 10.1137/S0097539704445718

1. Introduction. Group-Steiner-Tree is a network design problem that gen-
eralizes both Set-Cover and Steiner-Tree. Directed-Steiner-Tree is a fur-
ther generalization of Group-Steiner-Tree. The natural relaxation for these two
problems is a flow-based linear programming (LP) relaxation. We show a polyloga-
rithmic (about log squared) lower bound on the integrality ratio of this relaxation.

∗Received by the editors August 18, 2004; accepted for publication (in revised form) July 17, 2006;
published electronically February 5, 2007. A preliminary version of this work appeared in Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 275–284.

http://www.siam.org/journals/sicomp/36-5/44571.html
†International Computer Science Institute, 1947 Center St., Suite 600, Berkeley, CA 94704

(heran@icsi.berkeley.edu). This work was done while this author was also affiliated with the Com-
puter Science Division of the University of California at Berkeley, supported in part by NSF grants
CCR-9820951 and CCR-0121555 and DARPA cooperative agreement F30602-00-2-0601.

‡Department of Computer Sciences, Rutgers University, Camden, NJ 08102 (guyk@camden.
rutgers.edu).

§IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (robi@almaden.ibm.com).
This work was done while this author was with the International Computer Science Institute and
with the Computer Science Division of the University of California at Berkeley, supported in part by
NSF grants CCR-9820951 and CCR-0121555 and DARPA cooperative agreement F30602-00-2-0601.

¶Department of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742 (srin@cs.umd.edu). This author’s work was supported in part
by NSF awards CCR-0208005 and CNS-0426683.

‖Morgan Stanley, Inc., 1220 Avenue of the Americas, New York, NY 10020. This work was done
while this author was at the Department of Computer Science, University of Maryland, College
Park, MD 20742 (nwang@cs.umd.edu). This author’s work was supported in part by NSF awards
CCR-0208005 and CNS-0426683.

1494

INTEGRALITY RATIO FOR GROUP STEINER TREES 1495

For both problems, these are the first such lower bounds that are superlogarith-
mic in the input size, and our bounds are, in fact, nearly tight in the important
special case of input graphs which are tree networks. Let n be the number of ver-
tices and k the number of groups. Our probabilistic approach and our analysis have
been used in [HK03] to show that for every fixed ε > 0, Group-Steiner-Tree and
Directed-Steiner-Tree admit no efficient Ω(log2−ε k) and Ω(log2−ε n) approxima-
tions, respectively, unless NP has quasi-polynomial time Las Vegas algorithms. We
also present improved approximation algorithms for certain families of instances of
Group-Steiner-Tree, shedding light on the type of instances that appear to be
most difficult for the flow-based relaxation.

1.1. The group Steiner tree problem. The (undirected) group Steiner tree
problem is as follows. Given an undirected graph G = (V,E), a collection of subsets
(called groups) g1, g2, . . . , gk of V , and a weight we ≥ 0 for each edge e ∈ E, the
problem is to construct a minimum-weight tree in G that spans at least one vertex from
each group. We can assume without loss of generality that there is a distinguished
vertex r ∈ V (called the root) that must be included in the output tree. The case
where |gi| = 1 for all i is just the classical Steiner tree problem; the case where G is
a star can be used to model Set-Cover (cf. [GKR00]).

A natural flow-based relaxation for this problem is as follows. Find a capacity
xe ∈ [0, 1] for each edge e ∈ E so that the capacities can support one unit of flow from
r to gi, separately for each gi (as opposed to supporting a unit flow simultaneously
for all gi). Subject to this constraint, we want to minimize

∑
e wexe. It is easy to

check that the feasible solutions which satisfy xe ∈ {0, 1} for all e exactly correspond
to feasible solutions for the group Steiner tree problem; hence, the above flow-based
relaxation is indeed a valid LP relaxation for the problem. This is a natural relaxation
for this problem (and for some of its generalizations) and is the main subject of
investigation in this paper.

We start with a useful definition from [Bar96].

Definition 1.1. Let c > 1. A c-hierarchically well-separated tree (c-HST) is a
rooted weighted tree such that (i) all leaves are at the same distance from the root,
(ii) the edges in the same level are equal-weighted, and (iii) the weight of an edge is
exactly 1/c times the weight of its parent edge.

(Remark. Item (ii) is slightly stronger than the original definition from [Bar96],
but can be assumed without loss of generality due to the analyses of [Bar96, Bar98,
KRS01].)

We simply say “HST” when referring to a c-HST for an arbitrary constant c > 1.

The first polylogarithmic approximation algorithm for Group-Steiner-Tree

was achieved in the elegant work of Garg, Konjevod, and Ravi [GKR00]. A brief
sketch of their O(log n log log n logN log k)-approximation algorithm, where n = |V |
and N = maxi |gi|, is as follows. First, the powerful results of [Bar98] are used to
reduce the problem to the case where G is a tree T , with an O(log n log log n) factor
loss in the approximation ratio. Furthermore, T can be assumed to be a c-HST for
any desired constant c > 1. Next, solve the flow-based LP relaxation on T and round
the fractional solution into an integral solution for T by applying a novel randomized
rounding approach that is developed in [GKR00]. It is established in [GKR00] that
for any tree T , this randomized rounding leads to an O(logN log k)-approximation.
Thus, for the input graph G, we get an O(log n log log n logN log k)-approximation.
From a technical viewpoint, one of the main difficulties in [GKR00] is that a nontrivial
analysis of the randomized process is required. The analysis uses Janson’s inequality

1496 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

[Jan90] in an interesting way. The work of [GKR00] has been extended and expanded
in several ways: Their algorithm was derandomized in [CCGG98, Sri01]; an alterna-
tive (combinatorial) algorithm is devised in [CEK06]; and the loss incurred by the
reduction to an HST is improved to O(log n) in [FRT04].

Since the first appearance of a polylogarithmic approximation for Group-Steiner-

Tree (in the conference version of [GKR00] in 1998), there has been much interest
in whether the approximation ratio can be improved. One concrete notable question
in this regard has been the following: Can we achieve an approximation ratio bet-
ter than O(logN log k) for trees? This is interesting for at least two reasons. First,
since [GKR00] shows a reduction to the case of trees as seen above, an improved
approximation for trees (or even for the case of c-HSTs for some constant c > 1)
would lead directly to an improved approximation for general graphs. Further, even
the case where G is a star (which is a tree) captures Set-Cover, for which o(log k)-
approximation is hard [LY94, Fei98, RS97]; thus there is an intriguing gap even on
trees.

Our main technical result is that the integrality ratio of the flow-based relaxation
for HSTs is Ω(log2 k). This bound is, in fact, tight—an O(log2 k) bound on the
integrality ratio holds for HSTs, as we show in section 2.7. Both bounds hold for
c-HSTs where c > 1 is any fixed constant. Recall that the upper bound of [GKR00]
for trees in general is O(logN log k); our methods show an Ω(logN log k/ log logN)
lower bound on the integrality ratio, even for a class of HSTs. The same lower bounds
also hold for trees where all weights are the same (i.e., unit-weight trees). Finally,
we show randomized rounding algorithms for the flow-based relaxation that lead to
improved approximation algorithms for certain special families of HSTs; this sheds
light on the type of instances that are most difficult to approximate.

A log-squared lower bound on the integrality ratio for trees was conjectured circa
1998 by Uri Feige. The specific (randomly constructed) instance he suggested for this
purpose (see section 2 for more details) has proved to be quite difficult to analyze.
Our lower bound is shown via a slightly different random instance, which eliminates
one source of correlation in the random choices, and makes the construction more
amenable to analysis. Nevertheless, we are required to do intricate estimates that
delve into low-order terms, in particular when crafting the precise induction hypothesis
lying at the heart of the proof.

1.2. The directed Steiner tree problem. This is the directed version of the
(undirected) Steiner tree problem. Given an edge-weighted directed graph G = (V,E)
that specifies a root vertex r and k terminal nodes v1, v2, . . . , vk, the goal is to con-
struct a minimum-weight outbranching rooted at r, which spans all the terminals.
This problem is easily seen to generalize the undirected Group-Steiner-Tree, as
well as to be equivalent to the directed Group-Steiner-Tree. Aside from intrinsic
interest, this problem is also of current interest, e.g., in the context of multicasting
in the Internet (where internode distances are often not symmetric). The polynomial
time approximation ratio currently known for this problem is kε for any constant
ε > 0 [CCC+99]; their algorithm extends to a polylogarithmic approximation ratio in
quasi-polynomial running time. The flow-based relaxation here is similar: Install for
every edge e ∈ E a capacity xe ∈ [0, 1], so that a unit of flow can be shipped from r to
vi, separately for any given i. Intriguingly, it was recently shown in [ZK02] that this
relaxation has an integrality ratio of Ω(

√
k), precluding a polylog(k)-approximation

algorithm based on this relaxation. However, the examples constructed in [ZK02]

have k = Θ(log2 n
(log log n)2); hence, the result of [ZK02] does not exclude an O(log n)

INTEGRALITY RATIO FOR GROUP STEINER TREES 1497

integrality ratio. Our Group-Steiner-Tree lower-bound result above also proves

an Ω(log2 n
(log log n)2) lower bound on the integrality gap for Directed-Steiner-Tree.

The only lower bound known previously for Directed-Steiner-Tree was Ω(log n),
since this problem generalizes Set-Cover.

As mentioned above, our results have paved the way to the improved hardness
of approximation results of [HK03], which show that, for any fixed ε > 0, Group-

Steiner-Tree cannot be approximated within ratio log2−ε k, and Directed-Steiner-

Tree cannot be approximated within ratio log2−ε n, unless NP has quasi-polynomial
time Las Vegas algorithms. The influence of our work on these hardness results is
threefold. First, our lower bounds on the integrality ratio have motivated working
on a hardness of approximation result. Second, the insights our analysis provides
regarding the (edge-weight) structure of instances that are difficult to approximate
inspired specific details of the hardness reduction. Third, our main technical lemma
(whose proof is rather nontrivial) is, in fact, crucial to [HK03].

Organization. Our lower bounds on the integrality ratio of Group-Steiner-

Tree and Directed-Steiner-Tree are shown in section 2. We then prove algo-
rithmically that the integrality ratio of the former problem is much better for certain
families of instances in section 3; this pinpoints the type of instances that appear
difficult for this relaxation. Finally, concluding remarks are made in section 4.

2. Lower bounds on the integrality ratio. In this section we prove a lower
bound of Ω(log2 k) on the integrality ratio of the flow-based relaxation of Group-

Steiner-Tree even on HSTs. In terms of n, the gap is Ω(log2 n
(log log n)2). We start (sec-

tion 2.1) by describing the LP relaxation and constructing a family of
2-HST instances, accompanied by an overview of the analysis; then, the main techni-
cal parts (sections 2.2 and 2.3) analyze the fractional and the integral solutions of this
linear program. We also show how simple modifications to this construction extend
the integrality ratio to unit-weight trees (section 2.4) and to c-HSTs for an arbitrary
constant c > 1 (section 2.5). We further point out how this immediately leads to a

lower bound of Ω(log2 n
(log log n)2) on the integrality ratio for Directed-Steiner-Tree

(section 2.6). Finally, the lower bound of Ω(log2 k) is shown to be tight (in section 2.7).

2.1. The relaxation and the instance. The cut-based relaxation (that is
equivalent to the flow-based relaxation) for Group-Steiner-Tree is as follows (here,
δ(S) is the set of edges with exactly one endpoint in S ⊂ V):

Minimize
∑
e∈E

wexe,

∑
e∈δ(S)

xe ≥ 1 ∀S ⊆ V s.t. r ∈ S and S ∩ gj = ∅ for some group gj ,

0 ≤ xe ≤ 1 ∀e ∈ E.

(1)

Let Tn be a 2-HST tree with n nodes defined by the following random process.
Let the collection of groups be G = {g1, g2, . . . , gk}. The groups are defined by a
random process. The value of k, as well as those of two other parameters H and d,
will be defined shortly (in terms of n). The height (i.e., depth) of Tn is H, and every
nonleaf vertex has d children. The root of Tn is denoted r. The level of a vertex is
its depth; r is at level 0, and there are H + 1 levels. An edge is said to be at level

1498 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

i if and only if it connects a vertex at level i − 1 to a vertex at level i. Each edge
at level i has weight 1/2i; thus, for instance, edges incident at r have weight 1/2.
Each group gj is a subset of the leaves, described as follows. We shall associate a
subset A(�) ⊆ G of the groups with each leaf � and define each group gj to be the
set of leaves � for which gj ∈ A(�). Thus, a solution that reaches a leaf � by a path
from r covers all groups in A(�). To define A(�) for each leaf �, we now recursively
and randomly define a set A(v) for every node v in the tree (including nonleaf nodes)
as follows. Proceed independently for each group gj as follows. We start by letting
gj ∈ A(r) with probability 1. In general, if gj ∈ A(u) for some nonleaf node u, then
for each child v of u, we independently put gj in A(v) with probability 1/2. Thus, this
random process goes top-down in the tree, independently for each group. Note that
the number of vertices in Tn is n � dH , where H is the height of the tree. Clearly,
the expected size of every group is dH/2H .

Parameters and notation. We set d = c0 log n for some universal constant c0 > 0;
this will be used in some Chernoff bound arguments in section 2.2. It then fol-
lows that H = logn

log d = Θ(logn/ log log n). We further set k = 22H ; thus, log k =

Θ(log n/ log log n). Throughout, with high probability means with probability that is
at least, say, 1 − 1/n. All probabilities refer to the randomness in constructing the
instance Tn.

Feige’s instance. The construction suggested by Feige circa 1998 is the follow-
ing: Take a complete tree of arity 4 (i.e., every nonleaf vertex has four children) and
height log2 k; now generate k groups, each containing k leaves, by an independent
randomized branching process that starts from the root and randomly picks two out
of four children until the leaves are reached. This random instance differs from Tn in
its degree, which is constant rather than logarithmic, and in that the choices made
(when generating a single group) at each child of a vertex are correlated (rather than
independent).

Overview of the analysis. We first show (section 2.2) that with high probability
the instance Tn has a feasible fractional solution of cost O(H). In this solution, all
edges e in the same level of the tree are assigned the same value xe, and this value
is chosen so that the total cost of every level in the tree is the same, namely, O(1).
The feasibility of this solution is shown by employing a sequence of Chernoff bound
arguments, and this is the reason why the degree d of the tree must be (at least)
logarithmic. This is in contrast to Feige’s instance, where the feasibility (of a similar
fractional solution) is guaranteed by construction, i.e., with probability 1, and thus
the tree can have a constant degree.

We then show (section 2.3) that with high probability the cost of any integral
solution for Tn is lower bounded by Ω(H2 log k). At a high level, we imitate the ar-
gument known for Set-Cover; we show that for any single low-cost integral solution
(i.e., subtree of Tn), with high probability over the randomness in constructing the
groups, this solution is infeasible (i.e., does not cover all the groups), and then we
take a union bound over all possible integral solutions. In fact, any single vertex of
Tn together with its children is essentially a “standard” Set-Cover instance with
integrality ratio Ω(log k).

The main technical work is to estimate the probability that an arbitrary (but fixed
in advance) integral solution is feasible. Unlike in the Set-Cover scenario, where
this is a straightforward calculation, in the Group-Steiner-Tree instance Tn the
solution’s structure comes into play. For instance, the integral solution might not be a
regular subtree of Tn, and its cost need not be split evenly among the different levels
(of Tn). We prove some upper bound on the probability that this solution for Tn is

INTEGRALITY RATIO FOR GROUP STEINER TREES 1499

feasible. Our analysis shows that to maximize this upper bound on the probability,
it is essentially best to have an even “split” of the cost used under a vertex v (i.e.,
the edges of the solution that belong to the subtree rooted at v). While we do not
claim that this is the worst case for the exact probability of feasibility, our upper
bound gives a good enough estimate. However, the analysis does not specify how
many children of v should have a nonzero cost under them; in fact, this value is very
sensitive to lower-order tradeoffs between different levels in the tree.

The main difficulty in the analysis is to distill the effect of H, the height of the
tree, on the feasibility probability. Our proof is by induction on the height of the tree
and uncovers a very delicate tradeoff between the height of a subtree and its cost. This
tradeoff eventually translates to the cost of the integral solution for Tn having, on
top of the log k term which comes from Set-Cover (i.e., a single level), also a linear
dependence on the height H. Due to seemingly technical limitations this proof works
only for H ≤ 1

2 log k, but we show in section 2.7 that this is unavoidable. Interestingly,
there is an analogy with the approximation algorithm of [GKR00], whose rounding
procedure pays, at some intermediate stage, an O(H log k) factor, and then shows
that, in effect, H can be upper bounded by O(logN).

2.2. The fractional solution. Recall that d = c0 log n. We start with a couple
of propositions which show that if the constant c0 is sufficiently large, then certain
quantities related to our randomly chosen groups stay close to their mean. Henceforth,
the phrase “with high probability” will mean “with a probability of 1 − o(1).”

Proposition 2.1. Let c0 be a sufficiently large constant. Then, with high prob-
ability, all groups have size at least (d/2)H/3.

Proof. Fix j. We now show that if c0 is large enough, then Pr
[
|gj | < (d/2)H/3

]
≤

1/n2. We may then apply the union bound over all j to conclude the proof.
Let δ = 1/4. Let X1 be the number of vertices u at level 1 (i.e., children of r)

such that gj ∈ A(u). Then X1 has binomial distribution X1 ∼ B(d, 1/2), so by a
Chernoff bound on the lower-tail (see, e.g., [MR95]),

Pr

[
X1 ≤ (1 − δ)

d

2

]
≤ e−

1
2 δ

2· d2 .

Let X2 be the number of vertices u at level 2 such that gj ∈ A(u). Then X2 has
binomial distribution X2 ∼ B(X1 ·d, 1/2). Suppose that X1 > (1−δ)E[X1] = (1−δ)d2 .

Then, it is immediate that X2 | (X1 > (1 − δ)d2) stochastically dominates a random

variable X ′
2 ∼ B((1− δ)d2 · d, 1/2), i.e., Pr[X2 ≤ t] ≤ Pr[X ′

2 ≤ t] for all t. By applying
the Chernoff bound on X ′

2 we get

Pr

[
X ′

2 ≤
(

1 − δ

2

)
(1 − δ)

(
d

2

)2
]
≤ e−

1
2 (δ

2)2·(1−δ)(d
2)2 .

Continue similarly for i = 3, . . . , H by defining Xi to be the number of vertices u at
level i such that gj ∈ A(u), and by assuming that Xi−1 > (1− δ

2i−2) · . . . · (1− δ
2)(1−

δ)(d2)i. We get by the Chernoff bound that

Pr

[
X ′

i ≤
(
1− δ

2i−1

)
· . . . ·

(
1− δ

2

)
(1 − δ)

(
d

2

)i
]
≤e−

1
2 (δ

2i−1)2·(1− δ
2i−2)·...·(1− δ

2)(1−δ)(d
2)i .

(2)

1500 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

For any 0 < δ′ ≤ 1
2 we have 1−δ′ ≥ 1

1+2δ′ ≥ e−2δ′ . Thus, (1− δ
2i−1)·. . .·(1− δ

2)(1−δ) ≥
e−

δ
2i−2 −...−δ−2δ ≥ e−4δ > 1

3 . It follows that the tail bound obtained in the right-hand

side of (2) is at most e−Ω((d/8)i). Applying the union bound on these H events, we
get that with high probability none of them happens (if the constant c0 is sufficiently
large), and in particular, XH ≥ (1 − δ

2H−1) · . . . · (1 − δ
2)(1 − δ)(d2)H ≥ 1

3 (d2)H . This
concludes the proof of Proposition 2.1.

The following proposition has a similar proof; the main difference is that we will
now employ Chernoff bounds on the upper-tail.

Proposition 2.2. Suppose that the constant c0 is large enough. Then with high
probability, the following holds for every level i and every group gj: If a vertex u at
level i is such that gj ∈ A(u), then the number of leaves � in the subtree rooted at u
which satisfy gj ∈ A(�) is at most 3(d/2)H−i.

Proof. Fix a pair (i, j) and a vertex u at level i such that gj ∈ A(u). Let L(u) be
the set of leaves of the subtree rooted at u. We now show that if c0 is large enough,
then Pr

[
|gj

⋂
L(u)| > 3(d/2)H−i

]
≤ 1/n3. We then apply a union bound over all

(i, j, u) to conclude the proof.
Let δ = 1/4 < ln 3

2 . Let X1 be the number of vertices v at level 1 of the subtree
rooted at u (i.e., children of u) such that gj ∈ A(v). Then X1 has binomial distribution
X1 ∼ B(d, 1/2), so by a Chernoff bound on the upper-tail (see, e.g., [MR95]),

Pr

[
X1 ≥ (1 + δ)

d

2

]
≤ e−

δ2

3 · d2 .

Let X2 be the number of vertices v at level 2 of the subtree rooted at u such that
gj ∈ A(v). Then X2 has binomial distribution X2 ∼ B(X1 · d, 1/2). Suppose that
X1 < (1 + δ)E[X1] = (1 + δ)d2 . Then, it is immediate that X2 | (X1 < (1 + δ)d2)

is stochastically dominated by a random variable X ′
2 ∼ B((1 + δ)d2 · d, 1/2); i.e.,

Pr[X2 ≥ t] ≤ Pr[X ′
2 ≥ t] for all t. By applying the Chernoff bound on X ′

2 we get

Pr

[
X ′

2 ≥
(

1 +
δ

2

)
(1 + δ)

(
d

2

)2
]
≤ e−

1
3 (δ

2)2·(1+δ)(d
2)2 .

Continue similarly for l = 3, . . . , H − i by defining Xl to be the number of vertices
v at level l of the subtree rooted at u such that gj ∈ A(v), and by assuming that
Xl < (1 + δ

2l−1) · . . . · (1 + δ
2)(1 + δ)(d2)l. We get by the Chernoff bound that

Pr

[
X ′

l ≥
(
1 +

δ

2l−1

)
· . . . ·

(
1 +

δ

2

)
(1 + δ)

(
d

2

)l
]
≤ e−

1
3 (δ

2l−1)2·(1+ δ

2l−2)·...·(1+ δ
2)(1+δ)(d

2)l .

(3)

The tail bound obtained in the right-hand side of (3) is clearly at most e−Ω((d/8)l).
Applying the union bound on these H− i ≤ H events, we get that with probability at
least 1 − 1/n3 none of these events happens if the constant c0 is sufficiently large; in
particular, XH−i ≤ (1+ δ

2H−i−1)·. . .·(1+ δ
2)(1+δ)(d2)H−i ≤ 3(d2)H−i. (This is because

of the following. For any δ′ we have 1+δ′ ≤ eδ
′
. Thus, (1+ δ

2l−1) · . . . · (1+ δ
2)(1+δ) ≤

e
δ

2l−1 +...+ δ
2+δ ≤ e2δ < 3.) This concludes the proof of Proposition 2.2.

We now upper bound the value of LP (1) for the tree Tn by exhibiting a feasible
solution for it: Let each edge e at each level i have value x̂e = 9 · (2/d)i.

INTEGRALITY RATIO FOR GROUP STEINER TREES 1501

Lemma 2.3. With high probability, x̂ is a feasible solution to LP (1). Its value is
9H.

Proof. Observe that x̂ satisfies the constraints of LP (1) if (see also [GKR00]), for
every group gj , every cut (S, S̄) separating r from all the vertices of gj has capacity
at least 1, where the capacity of each edge e is x̂e. By the (single-source) max-flow
min-cut theorem (or, say, weak duality) it suffices to show that for every group gj ,
a unit of flow can be shipped from the root r to the vertices of gj while obeying the
“capacity” x̂e of each edge e. To this end, fix a group gj and define the flow f as
follows. For every vertex v in gj (i.e., for every leaf v such that gj ∈ A(v)), ship
3 · (2/d)H units of flow along the unique simple path from r to v. By Proposition 2.1,
the total flow shipped to gj is at least |gj | ·3 · (2/d)H ≥ 1 with high probability. Next,
consider an edge connecting a node u at some level i to its parent. If gj /∈ A(u), no
flow is shipped through this edge; if gj ∈ A(u), the total flow shipped through this
edge (i.e., through u) is, by Proposition 2.2, at most 3(d/2)H−i · 3(2/d)H = 9(2/d)i

with high probability. In both cases, the flow along the edge obeys the edge’s capacity.
We conclude that with high probability x̂ is a feasible solution to LP (1).

The value of the solution x̂ is
∑H

i=1 d
i · 1/2i · 9(2/d)i = 9H since each level i

contains di edges of weight 1/2i.

2.3. The integral solution. We now show that with probability 1− o(1) (over
the random choice of the groups), all integral solutions have value Ω(H2 log k). When-
ever we say that some T ′ is a subtree of Tn, we allow T ′ to be an arbitrary connected
subgraph of Tn. Since Tn is rooted, any subtree T ′ of Tn is also thought of as rooted
in the obvious way: the node in T ′ of the smallest depth is the root of T ′ (and is
denoted root(T ′)). Also, when we say that some T ′ is a subtree of Tn with root u, we
allow T ′ to be an arbitrary connected subgraph of Tn with root u.

Let M(c) be the number of subtrees of Tn which are rooted at r and have total
weight at most c. Fix gj ∈ G. For any given subtree T ′ of Tn, let pj(T

′) be the
probability that no leaf of T ′ belongs to the group gj , conditioned on the event that
gj ∈ A(root(T ′)). Since by symmetry pj(T

′) = pi(T
′) for all i, j, we will simply denote

it by p(T ′). We now define a key value f(H, i, c) as follows. Choose an arbitrary vertex
u at level i. Then f(H, i, c) is the minimum value of p(T ′), taken over all possible
subtrees T ′ that are rooted at u and have total weight at most c. (If there is no such
T ′, then f(H, i, c) = 1. Also, it is easy to see by symmetry that f(H, i, c) does not
depend upon the choice of j or u.) Let Pc be the probability that there exists an
integral solution of weight c. We wish to show that Pc = o(1) for c that is smaller
than a certain threshold of the order H2 log k. Using the independence between the
different groups and applying a union bound over all possible subtrees rooted at r
that have total weight c, we obtain

Pc ≤ M(c)(1 − f(H, 0, c))k.(4)

We now have to lower bound f and upper bound M . We employ the following crude
bound on M(c). Note that it suffices to count only subtrees of Tn that span distinct
sets of leaves (since the groups gi contain only leaves). Observing that Tn has dH

leaves, and a subtree of total weight at most c spans at most c2H leaves (since each
spanned leaf requires a distinct edge at level H), we get that

M(c) ≤
(
dH

c2H

)
≤ dcH2H

.(5)

1502 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

Our goal in the next subsection is to prove the following key lemma.
Lemma 2.4. For H ≤ 1

2 log k and a constant γ > 0 that is sufficiently large,

we have f(H, 0, c) ≥ e−γc/H2

. Thus Pc ≤ M(c)(1 − f(H, 0, c))k ≤ M(c) · exp{−k ·
e−γc/H2}.

2.3.1. Bounding f(H, 0, c). We start with some preliminaries. The main tech-
nical result is Lemma 2.7. It gives a more general bound for f than that stated in
Lemma 2.4, and hence the proof of Lemma 2.4 would follow quite easily.

Proposition 2.5. Let l ≥ 2 and β > 0. The minimum of
∑

S⊆{1,...,l}
∏

i∈S e−βxi

over all (x1, . . . , xl) with a given
∑l

i=1 xi is then attained when all xi are equal.
Proof. The minimum is clearly attained at some point (x1, . . . , xl), so assume

to the contrary that at this point not all xi are equal, say without loss of generality
that x1 >

∑
i xi/l > x2. We will show that changing both x1 and x2 to x1+x2

2
decreases the above sum while maintaining

∑
i xi, which contradicts the assumption

that (x1, . . . , xl) is a minimum point. Actually, it suffices to prove that

∑
S′⊆{1,2}

∏
i∈S′

e−βxi >
∑

S′⊆{1,2}

∏
i∈S′

e−β· x1+x2
2 ,(6)

since multiplying (6) by
∏

i∈S′′ e−βxi and summing over all S′′ ⊆ {3, . . . , l} shows
that changing x1, x2 indeed decreases the abovementioned sum. To prove (6), observe
that it simplifies to

e−βx1 + e−βx2 > 2e−β(x1+x2)/2,

which follows from the arithmetic mean-geometric mean inequality since x1 = x2.
This completes the proof of Proposition 2.5.

It is easy to check (by considering higher derivatives) that for all B ≥ 0,

e−B ≥ 1 −B +
B2

2
− B3

6
.(7)

Proposition 2.6. For all B0 > 0 there exists δ > 0 such that for all B ≥ B0 we

have 1+e−B

2 ≥ e−
B

2+δ .
Proof. Fix B0 > 0. We first make sure that the inequality holds at B0. By the

arithmetic mean-geometric mean inequality 1+e−B0

2 > e−B0/2 (since B0 > 0), so a

sufficiently small δ > 0 satisfies 1+e−B0

2 > e−B0/(2+δ). It now suffices to make sure
that for all B ≥ B0 the derivative of the left-hand side is at least that of the right-
hand side, i.e., that − 1

2e
−B ≥ − 1

2+δ e
−B/(2+δ). This holds for any 0 < δ < B0 since

2+δ
2 = 1 + δ/2 ≤ 1 + B0/2 ≤ eB0/2 ≤ eB/2 ≤ eB−B/(2+δ), completing the proof of

Proposition 2.6.

Lemma 2.7. Let γ be a sufficiently large constant. Then f(H,h, c) ≥ exp(− γc2h

(H−h)2)

for all c > 0 and all 0 ≤ h ≤ H − 1.
Proof. Fix B0 to be an arbitrary positive constant, and let δ > 0 be the corre-

sponding constant from Proposition 2.6.
The proof is by backward induction on h; i.e., we assume that the claim holds for

h+1 and prove it for h, where h ≤ H−2. We will consider the base case, which is the
case that h ≥ H−1− 6

δ , later on. In order to bound f , we derive a recurrence relation
for f(H,h, c). Recall the definition of f(H,h, c): fix an arbitrary vertex u at level h,
and take the minimum value of p(T ′) over all possible subtrees T ′ rooted at u such that

INTEGRALITY RATIO FOR GROUP STEINER TREES 1503

the total weight of T ′ is at most c. We bound f(H,h, c) by considering all possibilities
of u having l = 1, 2, . . . , d children and all possible partitions �x(l) = (x1, x2, . . . , xl) of
the weight c to (the subtrees under) these l children; since the edge from u to each of

its children has weight 1
2h+1 , we get that

∑l
i=1 xi = c− l

2h+1 . We then get that

f(H,h, c) ≥ min
1≤l≤d

⎧⎨
⎩ min

�x(l):xi≥0,
∑

i xi=c− l

2h+1

⎧⎨
⎩

1

2l

∑
S⊆{1,...,l}

∏
i∈S

f(H,h + 1, xi)

⎫⎬
⎭
⎫⎬
⎭ ;

since once the l children of u are chosen, we need only consider the subset S of all
children with gj in their A(·) set. (Each such set S occurs with probability 1/2l.)
Plugging in the induction hypothesis, we get that

f(H,h, c)(8)

≥ min
1≤l≤d

⎧⎨
⎩ min

�x(l):xi≥0,
∑

xi=c− l

2h+1

⎧⎨
⎩

1

2l

∑
S⊆{1,...,l}

∏
i∈S

exp

(
− γxi2

h+1

(H − h− 1)2

)⎫⎬
⎭
⎫⎬
⎭ .

For any l, we have by Proposition 2.5 that the right-hand side of (8) is minimized
when all xi are equal to c

l −
1

2h+1 . We thus get that

f(H,h, c) ≥ min
1≤l≤d

1

2l

∑
S⊆{1,...,l}

(
exp

(
−
γ(cl −

1
2h+1)2h+1

(H − h− 1)2

))|S|

= min
1≤l≤d

1

2l

l∑
i=0

(
l

i

)(
exp

(
−
γ(cl −

1
2h+1)2h+1

(H − h− 1)2

))i

= min
1≤l≤d

⎛
⎜⎜⎝

1 + exp

(
−γ(c

l −
1

2h+1)2h+1

(H−h−1)2

)

2

⎞
⎟⎟⎠

l

.

Fix l arbitrarily such that 1 ≤ l ≤ d. Let B =
(
γ(cl −

1
2h+1)2h+1

)
/
(
(H − h− 1)2

)
and C =

(
γ c

l 2
h
)
/
(
(H − h)2

)
. To complete the induction, we want to prove that(

1+e−B

2

)l ≥ e−Cl, i.e., that

1 + e−B

2
≥ e−C .(9)

We have four cases.
Case 1. In this case we assume that C ≥ B

2 . By the arithmetic mean-geometric

mean inequality we have that 1+e−B

2 ≥ e−B/2 ≥ e−C , which proves (9).

Case 2. In this case we assume that B ≥ B0 and B
2+δ ≤ C ≤ B

2 ; recall that
δ is the constant from Proposition 2.6. Then we have from Proposition 2.6 that
1+e−B

2 ≥ e−
B

2+δ ≥ e−C , which proves (9).

Case 3. In this case we assume that C ≤ B
2 and B < B0. Then by (7) we

have 1+e−B

2 ≥ 1 − B
2 + B2

4 − B3

12 . Since C ≥ 0, we have (by Taylor’s theorem) that

e−C ≤ 1 − C + C2

2 . Thus, it suffices to prove that

1 − B

2
+

B2

4
− B3

12
≥ 1 − C +

C2

2
.

1504 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

Since B < B0 ≤ 1
2 we have that B3

12 ≤ B2

24 , and then since 2C ≤ B, we have that
B2

4 − B3

12 ≥ 5B2

24 ≥ 5C2

6 . It therefore suffices to prove that

C +
C2

3
≥ B

2
.

Note that

B

2
− C ≤

γ2h+1 c
l

(H − h− 1)2(H − h)
− γ

2(H − h− 1)2
.

Plugging in the values of B and C and simplifying, we get that it suffices to prove
that

γ2h+1 c
l

(H − h− 1)2(H − h)
≤ γ

2(H − h− 1)2
+

γ2 c2

l2 22h

3(H − h)4
.

If
2h+2 c

l

H−h ≤ 1, then the desired inequality indeed holds since
γ2h+1 c

l

(H−h−1)2(H−h) ≤ γ
2(H−h−1)2 .

Otherwise, the inequality holds for any γ ≥ 96, since then,

γ2 c2

l2 22h

3(H − h)4
=

γ

6
·
2h+2 c

l

H − h
·
γ c

l 2
h−1

(H − h)3
≥ 16

γ c
l 2

h−1

(H − h)3
≥

γ2h+1 c
l

(H − h− 1)2(H − h)
.

Case 4. In this case we assume that C < B
2+δ . Note that for h ≤ H − 2,

2 + δ ≤ B

C
= 2

c
l −

1
2h+1

c
l

· (H − h)2

(H − h− 1)2
≤ 2

(H − h)2

(H − h− 1)2
≤ 2 +

6

H − h− 1
.

Thus, h ≥ H − 1 − 6
δ . Since δ > 0 is a constant, this is really the base case of the

induction, which we shall prove directly. Consider a subtree T ′ of weight at most c that
is rooted at a vertex u at level h. Since u has at most c2h+1 children in T ′, each not
having the group gj in its A(·) set independently with probability 1/2, with probability

at least 2−c2h+1

the subtree T ′ does not cover gj . Thus, f(H,h, c) ≥ e−c2h+1

. Choosing
a constant γ ≥ 2(1 + 6

δ)2, we get that γ ≥ 2(H − h)2, and thus

f(H,h, c) ≥ e−c2h+1 ≥ exp

(
− c2h · γ

(H − h)2

)
.

This concludes the proof of Lemma 2.7.
Proof of Lemma 2.4. Lemma 2.7 implies that f(H, 0, c) ≥ e−γc/H2

. Plugging this
into (4), we get that

Pc ≤ M(c)(1 − f(H, 0, c))k ≤ M(c) · exp{−k · e−γc/H2}.

2.3.2. Bounding the weight of an integral solution. By Lemma 2.4 in
conjunction with (5), we have

Pc ≤ exp{cH2H log d− ke−γ c
H2 }.

Now, suppose that c ≤ 1
4γH

2 ln k. Then cH2H = O(2HH3 log k). Recalling that

H = 1
2 log k, we have

Pc ≤ exp{Õ(
√
k) − Ω(k3/4)} = o(1).

INTEGRALITY RATIO FOR GROUP STEINER TREES 1505

We conclude that with high probability no subtree of weight at most 1
4γH

2 log k

covers all groups, and thus an optimal integral solution has value at least Ω(H2 log k).
Since LP (1) has a fractional feasible solution of value 9H, we get the following
theorem.

Theorem 2.8. The integrality ratio of the relaxation (1) for Group-Steiner-

Tree is Ω(log2 k). In terms of N, k, the integrality gap is Ω(log k logN/ log logN)

and in terms of n it is Ω
(

log2 n
(log log n)2

)
.

2.4. Integrality ratio for unit-weight trees. The above analysis gives a lower
bound on the integrality gap for Group-Steiner-Tree in HSTs. A consequent
interesting question is whether the LP is tighter for unit-weight trees. We show
that a slight modification of the trees described above gives the same integrality
ratio lower bounds for unit-weight trees. The idea is very simple—recall that in
our random construction Tn, edges at level i had weight 1/2i; replacing each such
edge by a path of 2H−i unit-weight edges does not really change our integrality ratio
argument, because the resulting instance T

′
n is essentially equivalent to the instance

Tn with edge weights scaled up by a factor of 2H . Formally, it is easy to verify that
our fractional solution for Tn naturally yields a fractional solution for T

′
n with value

9H2H , and that an optimal integral solution for T
′
n with value OPT′ corresponds to

an integral solution with value OPT′/2H for Tn. Since we know the latter value is at
least Ω(H2 log k), we conclude that OPT′ = Ω(H22H log k), and the integrality ratio
of T

′
n is Ω(H log k) = Ω(log2 k) = Ω(log k logN/ log logN). Furthermore, the total

number of vertices in T
′
n is at most 2Hn = O(n2), and hence the integrality ratio is

also Ω(log2 n
(log log n)2) in terms of the number of vertices in T

′
n.

2.5. Integrality ratio for c-HSTs. Straightforward modifications of our in-
tegrality ratio proof for Group-Steiner-Tree in 2-HSTs lead to the same lower
bounds for c-HSTs, for arbitrary constant c > 1. Here, we take an alternative ap-
proach; instead of going through the whole proof, we show that our lower bounds for
2-HSTs imply (in a black-box manner) similar bounds for c-HSTs, where c > 1 is an
arbitrary constant. We first consider the case c > 2 and then use it to handle the case
1 < c < 2.

An arbitrary constant c > 2. In this case our 2-HST instance Tn can be modified
into a c-HST instance T

′
n as follows. The set of vertices of T

′
n is a subset of the

vertices of Tn. For every j = 0, 1, 2, . . . iteratively (up to about logc 2H), let i = i(j)
be the (unique) integer such that 2i ≤ cj < 2i+1, and include all the level i vertices of
Tn as the level j vertices in T

′
n. For example, at j = 0, we include the root of Tn as

the root of T
′
n because 1 ≤ c0 < 2. We may assume that the height of Tn is chosen so

that at some iteration j0, we include in T
′
n the leaves of Tn (i.e., i(j0) = H), at which

point the iterations are stopped. With this assumption (and since all the groups in
Tn contain only leaves), we also get that Tn and T

′
n have exactly the same k groups.

Finally, two vertices at two consecutive levels j − 1, j in T
′
n are connected by an edge

of weight 1/cj whenever, in Tn, one of the two vertices is an ancestor of the other.
For example, the edges incident at the root of T

′
n have weight 1/c. Notice that T

′
n is

a c-HST with height j0 � logc 2H = H/ log2 c.
A fractional solution LP for Tn, of value lp, say, naturally induces a fractional

solution to T
′
n with value at most lp. Indeed, we let the fractional value of an edge

connecting a vertex u to its parent v′ in T
′
n be equal to the fractional value of the edge

connecting (the same vertex) u to its parent v in Tn. It is easy to see that whenever
this fractional solution for T

′
n pays (fractionally) 1/cj for an edge, the solution LP

1506 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

pays 1/2i for the corresponding edge in Tn, with 1/cj ≤ 1/2i. Since the corresponding
edges in Tn are distinct, the value of the constructed solution for T

′
n is at most lp.

An optimal integral solution OPT′ for T
′
n, of value opt

′, say, naturally induces
an integral solution INT for Tn with value at most O(c) · opt

′. Indeed, simply take
in Tn the (minimal) subtree that spans exactly the same leaves (that are spanned
by the solution for T

′
n). It is easy to see that whenever OPT′ pays 1/cj for an edge

connecting a vertex u to its parent v′ in T
′
n, the solution INT has to pay for the

path between u and its ancestor v′ in Tn. The total weight of this path is at most
1/2i

′
+ 1/2i

′−1 + · · · + 1/2i = O(1/2i
′
) = O(c) · 1/2i = O(c) · 1/cj . We thus get an

integral solution for Tn with value O(c) · opt
′.

Combining these arguments with our bounds on the fractional and integral solu-
tions for Tn yields a lower bound of Ω(1

cH log k) on the integrality ratio in c-HSTs.
Notice also that the number of vertices in T

′
n is similar to that in Tn because they

have the same leaves. For fixed c > 2, we thus get the same integrality ratio lower
bounds in c-HSTs as in 2-HSTs, namely, Ω(log2 k) = Ω(log k logN/ log logN) and

also Ω(log2 n
(log log n)2) in terms of the number of vertices in T

′
n.

An arbitrary constant 1 < c < 2. Let t be the smallest integer such that ct > 2,
and define q = 1 + c + c2 + · · · + ct−1. The above construction then yields a ct-
HST instance T

′
n. Now replace every edge of weight 1/(ct)j in T

′
n with a path of t

edges having weights 1/(qctj−(t−1)), 1/(qctj−(t−2)), . . . , 1/(qctj). Clearly, the resulting
instance T

′′
n is a c-HST. Notice further that the total weight of the above t-path in

T
′′
n is (ct−1 + ct−2 + · · · + 1)/(qctj) = 1/ctj , i.e., equal to the edge in T

′
n it replaced.

Hence, any fractional solution for T
′
n yields a fractional solution for T

′′
n with the same

value, and also an optimal integral solution in T
′
n yields an integral solution for T

′′
n

with the same value. Since the number of vertices in T
′′
n is larger than that in T

′
n

by only a constant factor of t ≤ logc 4 = O(1
c−1), we get the same integrality ratio

lower bounds in c-HSTs as in 2-HSTs, namely, Ω(log2 k) = Ω(log k logN/ log logN)

and also Ω(log2 n
(log log n)2) in terms of the number of vertices in T

′
n.

2.6. Integrality ratio for directed Steiner tree. The above results immedi-

ately lead to a lower bound of Ω(log2 n
(log log n)2) on the integrality ratio for Directed-

Steiner-Tree. Let Tn be an instance as described above with Ω(log2 n
(log log n)2) inte-

grality ratio for Group-Steiner-Tree, and construct a Directed-Steiner-Tree

instance as follows. Orient all the edges of Tn away from the root r. Then introduce
new nodes v1, v2, . . . , vk, and for each j and each u ∈ gj , introduce a zero-weight arc
from u to vj . This defines a Directed-Steiner-Tree instance I which is essentially
the same as I: fractional solutions for the two problems map bijectively, with iden-
tical total weights, and the same holds also for integral solutions. Observe that the
number of vertices in the resulting graph is n + k ≤ 2n, and thus the lower bound of

Ω(log2 n
(log log n)2) on the integrality ratio for Tn holds also for I.

2.7. An O(log2 k)-approximation for the group Steiner tree problem
in HSTs. We now show a tight O(log2 k)-approximation algorithm for Group-

Steiner-Tree on HSTs. This was obtained jointly with Anupam Gupta and R. Ravi,
and we thank them for allowing us to include this algorithm here.

Our algorithm uses the rounding procedure of [GKR00] as a subroutine and takes
advantage of the geometrically-decreasing-weights property of HSTs. Let T be the
HST instance of Group-Steiner-Tree. We assume this tree is a 2-HST; i.e., the
weight of each edge in the (i + 1)st level equals half the weight of its parent edge in

INTEGRALITY RATIO FOR GROUP STEINER TREES 1507

the ith level, and each edge in the first level has weight exactly one; the algorithm
extends in a simple way to c-HSTs. We also assume that the height of the tree is
H > log k; otherwise, the approximation ratio O(H log k) in [GKR00] already implies
the O(log2 k) upper bound. It is not difficult to arrange that all members of each group
are at the leaves of the HST (with only a constant factor increase in the optimum
value). Our algorithm is as follows:

1. Create a new tree T ′ consisting of only the first H ′ = log k levels of T . For
each leaf �′ in T ′ find its corresponding node � in level log k of T , and assign
to �′ all groups that appear in the subtree rooted at � in T .

2. Run the approximation algorithm of [GKR00] on the Group-Steiner-Tree

instance T ′. Let SOL′ be the value of the solution obtained and let OPT′ be
the value of the optimal solution in T ′. The analysis of [GKR00] shows that
SOL′ = O(H ′ log k · OPT′) = O(log2 k · OPT′).

3. From the solution SOL′ (which is a subtree of T ′), we construct a solution
SOL for T as follows:
(a) Find the subtree S in T that corresponds to SOL′, and include S in

SOL.
(b) For each group g ∈ G, repeat the following steps. Find a leaf �′ in SOL′

that belongs to g (there must be such a leaf since SOL′ covers g), and
let � be the level H ′ vertex in T corresponding to �′. Now find in the
subtree under � in T a leaf u that belongs to g (there must be such a
leaf because of the way we assigned groups in T ′), and add to SOL the
path that connects � to its descendant u.

It is easy to verify that the above procedure produces a valid solution SOL to
the 2-HST instance T . We claim that SOL = O(log2 k · OPT), where OPT is the
optimum solution value in T . Indeed, SOL consists of SOL′ and at most k paths (one
path per group) added in step 3(b). Because T is an HST, each of these paths has
total weight O(1/k) (since its edges have geometrically decreasing weights), and thus,
SOL = SOL′ + O(1). Since the optimal solution must contain at least one edge in
the first level (and thus having weight one), we get that OPT ≥ 1. It is also obvious
that OPT′ ≤ OPT and, therefore, SOL = SOL′ + O(1) = O(log2 k · OPT′) + O(1) =
O(log2 k · OPT).

3. Improved approximations for certain families of trees. To better un-
derstand the approximability of Group-Steiner-Tree, one may consider the fol-
lowing question: What are the instances (in particular, trees) that are difficult to
approximate better than within ratio O(log k logN)? We partially answer this ques-
tion by presenting a significantly better approximation ratio for a certain family of
trees, which differs from the trees constructed in section 2 in a crucial way.

This improved approximation also sheds light on the instances Tn constructed
in section 2. For example, it may be tempting to believe, at first glance, that the
edge weights pose an unnecessary complication to Tn. Notice that the uniform weight
version of Tn (i.e., a tree similar to Tn, except that all its edges have the same weight)
has the same fractional solutions as Tn. Furthermore, it can be verified that for both
Tn and its uniform weight version, the fractional solution presented in section 2.2 is,
with high probability, near-optimal, and that applying to it the rounding procedure of
[GKR00] yields an integral solution with value larger by a Θ(log k logN) factor than
the relaxation value. However, in the uniform weight version of Tn, the contribution of
level-i edges to the relaxation value increases significantly with i, and as we shall soon
see, this implies that an approximation ratio better than O(log k logN) is possible.

1508 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

This explains why the weights in Tn are necessary—they make every level have the
same contribution to the relaxation value. This also elucidates the disparity between
the performance of a rounding procedure for a relaxation and the integrality ratio of
the relaxation—the uniform weight version of Tn exhibits a large ratio according
to the former measure, but a significantly smaller ratio according to the latter.

Technically, fix a Group-Steiner-Tree instance T on a tree of height H, and
an optimal solution xe to its flow-based relaxation LP (1). Define z∗i to be the total
contribution of the edges at level i (of T) to the objective function of the relaxation.
We show that the relationship between the different z∗i plays a crucial role in the
strength/weakness of the LP: If for some constant α > 1 we have z∗i+1 ≥ αz∗i for
all i, then we can achieve an O(log k · log log(kN)/ logα) = O(log k · log log(kN))-
approximation. This may suggest that instances with z∗i � z∗i+1 for all or most i are
among the worst cases for the relaxation.

The following lemma proves the improved approximation ratio for the case where
α = 2. The argument easily extends to any constant factor α > 1. We sometimes
refer to a valid integral solution simply as a cover.

Lemma 3.1. If z∗i+1 ≥ 2z∗i for all i, then we can find an integral solution of value

O(z∗ · log k · log log(kN)), where z∗ =
∑H

i=1 z
∗
i denotes the optimal LP value.

Before getting into the formal proof, let us outline the main ideas. We separate the
tree T into a lower part that contains the lowest Θ(log log(kN)) levels of the tree and
an upper part that contains the rest of the tree. Let z∗(U), z∗(L) be the contributions
of the upper and lower parts to the fractional solution value z∗. Notice that z∗(U) ≤
z∗/polylog(kN) since z∗i+1 ≥ 2z∗i for all i. We can thus take care of the upper part
as follows. We use the same randomized rounding as in [GKR00] for the upper part,
only now we repeat the process about O(logN) more times (multiplicatively)—this
results in a solution that is considerably more expensive with respect to z∗(U) but is
still not too much with respect to the total fractional solution z∗. Since we repeat
the rounding procedure more times, we cover each group more “times” (in a way
that is formalized in the proof). Now every leaf of the upper part that we managed
to cover can be regarded, in the lower part, as the root of a subtree. This allows
us to apply the algorithm of [GKR00] to some of the subtrees in the lower part,
namely, to those subtrees whose root was covered by our upper part solution. By the
analysis of [GKR00] we need only pay proportionally to the height of the lower part
(times O(log k)); i.e., the lower part solution has value O(z∗(L) log k log log(kN)).
In the case where z∗i+1 ≥ αz∗i for all i, we define the lower part to be the lowest
Θ(log log(kN)/ logα) levels of the tree.

Proof. We may assume that all groups contain only leaves of T , by adding zero
weight edges. Let Li be the set of edges at level i. Let h = 2 log log(kN). Let
U = {e : e ∈ Li for i ≤ H − h} and L = {e : e ∈ Li for i > H − h}. For every e ∈ U ,
let ye be xe rounded upwards to the nearest power of 2, increasing the LP value by a
factor of at most 2.

We first find a cover of U , as follows. Let c1 > 0 be a suitably large constant. For
every e ∈ U , assign x̂e = min{1, xe · c1 log k log2(kN)}, and use one iteration of the
rounding scheme presented in [GKR00] (with respect to x̂e) to solve the problem in
U . The expected total weight of this solution is at most O(z∗(U) log k log2(kN)) ≤
O(z∗ log k), where z∗(U) =

∑H−h
i=1 z∗i is the total contribution to z∗ of the edges in U .

Using arguments similar to those in [GKR00], we now wish to show that from
the perspective of U , every group g is covered “sufficiently many times,” with high
probability. Let e1, . . . , em be the leaves of (the subtree induced on) U that “lead” to g

INTEGRALITY RATIO FOR GROUP STEINER TREES 1509

(i.e., g contains at least one of their descendants in T ′). A unit amount of flow can be
shipped in T from the root to g, under the LP values xe (as capacities), because xe is
a feasible solution. Let f1, . . . , fm be the corresponding flows on the edges e1, . . . , em.
Clearly,

∑
j fj = 1. Partition the m flows, letting Ai = {j : 1

2i < fj ≤ 1
2i−1 }. Let

B(g) = {i : i ≤ 2 logN and
∑

j∈Ai
fj > 1/4 logN}. It is easy to see that the flow in

the remaining sets Ai is at most (2
N2 + 2

2N2 + · · ·) + (2 logN) 1
4 logN < 3/4, and thus∑

i∈B(g)

∑
j∈Ai

fj ≥ 1/4. We can therefore ignore the remaining sets and focus on

the flows in B(g). Fix i ∈ B(g) and let Vi be the set of leaves (of U) ej , for j ∈ Ai,
that are chosen by the [GKR00] procedure in U according to x̂e.

For the sake of upper bounding the lower-tail of |Vi|, we may assume that the
capacity xe on every edge e equals the total flow shipped along the edge e (since
a larger capacity xe just increases |Vi|). Thus, the expectation of |Vi| is μi =∑

j∈Ai
min{1, fj · c1 log k log2(kN)}. If c1

2i · log k log2(kN) ≥ 1, then |Vi| = |Ai| = μi

with probability 1. Otherwise, μi ≥
∑

j∈Ai

c1fj
2 · log k log2(kN) ≥ c1 log k log(kN)

8 , and
by Janson’s inequality [Jan90],

Pr[|Vi| ≤ μi/2] ≤ e
−Ω(

μi
2+Δi/μi

)
,

where Δi =
∑

e∼e′ Pr[e and e′ are chosen]; here, the sum is over pairs of distinct edges
e ∈ Ai and e′ ∈ Ai whose events of being chosen are not independent. By the proofs
in [GKR00, KRS02], it is easy to see that Δi ≤ O(μi log k), where the constant in the
“O(·)” is an absolute constant that is independent of c1. Thus,

Pr[|Vi| ≤ μi/2] ≤ e−Ω(μi/ log k) ≤ e−Ω(c1 log(kN)),

where the constants in the “Ω(·)” are absolute constants that are independent of c1.
There are only k groups, and for each one |B(g)| ≤ O(logN). Thus, by choosing c1
sufficiently large, we get by the union bound (over a polynomial in kN number of
Vi’s) that with high probability, for every group g and every i ∈ B(g), |Vi| ≥ μi/2.
Recall that at least 1/4 of the total flow in f1, . . . , fm is shipped through sets Ai with
i ∈ B(g) and that the flows among each such set Ai are all equal up to a constant
factor. Hence, at least Ω(1) of the unit amount of flow into g must be shipped using
the leaves of U chosen by the [GKR00] procedure.

We next apply the rounding algorithm of [GKR00] to L with the values xe, start-
ing from every chosen vertex of U . Since we know from above that one can ship to any
group g an Ω(1) amount of flow from the level H − h vertices chosen in the solution
for U , we get that xe satisfies the LP constraints up to a constant factor. It is proved
in [GKR00] that after O(h log k) iterations of the rounding scheme, with high proba-
bility all the groups are covered. We now claim that the expected cost of each such
iteration is at most z∗. Indeed, the probability to choose an edge e is proportional to
its fractional value xe, and the claim follows by the linearity of expectation.

Therefore, the expected cost of this solution is O(z∗h log k+z∗ log k) = z∗·O(log k·
log log(kN)).

4. Discussion. Our results improve the current understanding of the integral-
ity ratio of the flow-based relaxation for the group Steiner tree problem, but some
very intriguing gaps still remain. Although for HSTs our Ω(log2 k) lower bound is
tight, for general trees there is a slight slack between our Ω(log k logN/ log logN)
lower bound and the O(log k logN) upper bound of [GKR00]. Interestingly, an
O(log2(kN)/ log log(kN))-approximation by a quasi-polynomial time algorithm is

1510 HALPERIN, KORTSARZ, KRAUTHGAMER, SRINIVASAN, WANG

devised in [CEK06]; their algorithm is combinatorial (i.e., not LP-based). Does their
algorithm hint that the known upper bound on the integrality ratio in trees is not
tight? Or perhaps there is a separation between polynomial and quasi-polynomial
(approximation) algorithms? A possible step toward closing this small gap (in the
integrality ratio on trees) is to analyze the random instance suggested by Feige (see
our description in section 2).

For general graphs, there is an even bigger slack, as the known upper bound is
O(log n log k logN) [GKR00, FRT04] and the lower bound is just the lower bound for
trees described above. It is worth noting that a significantly better upper bound can
be achieved in (general) graphs of small diameter. In particular, an O(log k) upper
bound for expander graphs is shown in [BM04]; this bound is tight since expanders
contain a large star metric. We therefore set forth the following question, which
was formulated together with Yair Bartal: What is the integrality ratio of Group-

Steiner-Tree on the (say two-dimensional) grid graph?
The shortest-path metric of a grid contains, up to constant distortion, an HST

which is a complete regular tree (see, e.g., [BBM01]). This tree is similar to our tree
Tn (and to Feige’s tree described above), but differs in parameters like arity and edge
weight; thus, one may suspect that the integrality ratio in grids is at least as large as in
HSTs. In comparison, the best upper bound that we are aware of for two-dimensional
grids is the one known for general graphs.

A broader message of our paper is that in some cases the study of inapproximabil-
ity lower bounds is well served by proving a preliminary integrality gap result. If for
no other reason, the proof of an integrality gap might be somewhat easier. Recall that
in our case, the hardness of approximation result of [HK03] uses our integrality gap
as a “gadget.” Recently, in yet another breakthrough along these lines (an integral-
ity gap result that was strengthened into an inapproximability result), an Ω(log∗ n)
hardness was obtained for Asymmetric k-Center [CGH+05]. It would be nice to
see how far this paradigm can be taken.

On the other hand, if a proof of integrality gap does not seem to be possible,
one should perhaps try to improve the approximation algorithm. For example, for
Covering-Steiner (another generalization of Group-Steiner-Tree), a logarith-
mic term appearing in the approximation ratio of [KRS02] was not known to have a
counterpart in the integrality ratio. Recently it turned out that this term is spurious—
the approximation algorithm is improved in [GS06] by designing a better rounding
procedure.

Acknowledgments. Our work has been influenced by discussions with several
people. We thank Moses Charikar, Chandra Chekuri, Uri Feige, Anupam Gupta,
Sanjeev Khanna, Adam Meyerson, Seffi Naor, R. Ravi, and Leonid Zosin for very
helpful conversations. We also thank the conference and journal reviewers for their
very helpful comments.

REFERENCES

[Bar96] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic appli-
cations, in Proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, 1996, pp. 184–193.

[Bar98] Y. Bartal, On approximating arbitrary metrics by tree metrics, in Proceedings of the
30th Annual ACM Symposium on Theory of Computing, 1998, pp. 161–168.

[BBM01] Y. Bartal, B. Bollobás, and M. Mendel, A Ramsey-type theorem for metric spaces
and its applications for metrical task systems and related problems, in Proceedings
of the 42nd Annual IEEE Symposium on Foundations of Computer Science, 2001,
pp. 396–405.

INTEGRALITY RATIO FOR GROUP STEINER TREES 1511

[BM04] Y. Bartal and M. Mendel, Multiembedding of metric spaces, SIAM J. Comput., 34
(2004), pp. 248–259.

[CCC+99] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li,
Approximation algorithms for directed Steiner problems, J. Algorithms, 33 (1999),
pp. 73–91.

[CCGG98] M. Charikar, C. Chekuri, A. Goel, and S. Guha, Rounding via trees: Deterministic
approximation algorithms for group Steiner trees and k-median, in Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 114–123.

[CEK06] C. Chekuri, G. Even, and G. Kortsarz, A greedy approximation algorithm for the
Group Steiner problem, Discrete Appl. Math., 154 (2006), pp. 15–34.

[CGH+05] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer,

and J. Naor, Asymmetric k-center is log∗ n-hard to approximate, J. ACM, 52
(2005), pp. 538–551.

[Fei98] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp.
634–652.

[FRT04] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbi-
trary metrics by tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[GKR00] N. Garg, G. Konjevod, and R. Ravi, A polylogarithmic approximation algorithm for
the Group Steiner tree problem, J. Algorithms, 37 (2000), pp. 66–84.

[GS06] A. Gupta and A. Srinivasan, An improved approximation ratio for the covering
Steiner problem, Theory of Computing, 2 (2006), pp. 53–64.

[HK03] E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability, in Proceed-
ings of the 35th Annual ACM Symposium on Theory of Computing, 2003, pp.
585–594.

[Jan90] S. Janson, Poisson approximations for large deviations, Random Structures Algo-
rithms, 1 (1990), pp. 221–230.

[KRS01] G. Konjevod, R. Ravi, and F. S. Salman, On approximating planar metrics by tree
metrics, Inform. Process. Lett., 80 (2001), pp. 213–219.

[KRS02] G. Konjevod, R. Ravi, and A. Srinivasan, Approximation algorithms for the cover-
ing Steiner problem, Random Structures Algorithms, 20 (2002), pp. 465–482.

[LY94] C. Lund and M. Yannakakis, On the hardness of approximating minimization prob-
lems, J. ACM, 41 (1994), pp. 960–981.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[RS97] R. Raz and S. Safra, A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP, in Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, 1997, pp. 475–484.

[Sri01] A. Srinivasan, New approaches to covering and packing problems, in Proceedings of
the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, pp.
567–576.

[ZK02] L. Zosin and S. Khuller, On directed Steiner trees, in Proceedings of the Thirteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp. 59–63.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1513–1543

ZAPS AND THEIR APPLICATIONS∗

CYNTHIA DWORK† AND MONI NAOR‡

Abstract. A zap is a 2-round, public coin witness-indistinguishable protocol in which the first
round, consisting of a message from the verifier to the prover, can be fixed “once and for all” and
applied to any instance. We present a zap for every language in NP, based on the existence of
noninteractive zero-knowledge proofs in the shared random string model. The zap is in the standard
model and hence requires no common guaranteed random string. We present several applications for
zaps, including 3-round concurrent zero-knowledge and 2-round concurrent deniable authentication,
in the timing model of Dwork, Naor, and Sahai [J. ACM, 51 (2004), pp. 851–898], using moderately
hard functions. We also characterize the existence of zaps in terms of a primitive called verifiable
pseudorandom bit generators.

Key words. zero-knowledge, nonmalleable cryptosystems

AMS subject classifications. 94A60, 03D15, 68P25, 38Q10, 68Q15

DOI. 10.1137/S0097539703426817

1. Introduction. The concept of zero-knowledge, introduced in the ground-
breaking paper of Goldwasser, Micali, and Rackoff [36], has proved to be an invaluable
tool in the design of cryptographic primitives and protocols. For example, consider an
identification protocol based on pseudorandom function evaluation: I am identified
by my ability to evaluate a function fs, where only I know the seed s and there is
some form of public commitment to fs. Given a challenge x, I produce y and prove
that y = fs(x) critically without revealing any information about s.

An appealing and frequently useful relaxation of zero-knowledge, called witness-
indistinguishability, was proposed by Feige and Shamir [28]. Roughly speaking, in
the context of NP, the difference is as follows: an interactive proof system is zero-
knowledge if a prover, knowing a witness for membership of a string x in an NP lan-
guage L, can correctly “convince” a verifier to accept x while revealing no information
whatsoever about the witness. If there are two witnesses for x ∈ L, a proof system is
witness-indistinguishable if the verifier cannot tell which of the two witnesses is being
used by the prover to carry out the proof, even if the verifier knows both witnesses.
We restrict our attention to NP because we are interested in the realistic setting in
which parties are restricted to probabilistic polynomial-time computations.1

In this work we obtain surprising results on the number of rounds needed to
achieve zero-knowledge and witness-indistinguishability. For this purpose we intro-
duce and investigate zaps. A zap is a 2-round witness-indistinguishable protocol in
which

(i) the first round, consisting of a message from the verifier to the prover, can be

∗Received by the editors April 20, 2003; accepted for publication (in revised form) July 5, 2006;
published electronically February 9, 2007.

http://www.siam.org/journals/sicomp/36-6/42681.html
†Microsoft Corporation, 1065 L’Avenida, Mountain View, CA 94043 (dwork@microsoft.com).

Most of this work was performed while this author was at the IBM Almaden Research Center.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot 76100, Israel (moni.naor@weizmann.ac.il). Some of this work was performed while the
author was at the IBM Almaden Research Center and at Stanford University. This author was
supported in part by a grant from the Israel Science Foundation and ONR grant N00014-97-1-0505.

1The literature on these subjects is extensive. See in particular the papers [18, 27, 33], the lecture
notes [19], and the textbooks [29, 43].

1513

1514 CYNTHIA DWORK AND MONI NAOR

fixed “once and for all” and applied to any instance, and
(ii) the verifier uses only public coins.

That is, the system remains sound and witness-indistinguishable even if the statements
to be proved are chosen after the first-round message is fixed. Thus, if we think of
the participating parties as families of nonuniform, rather than uniform, probabilistic
polynomial-time-bounded Turing machines, the existence of a zap for a language L
implies the existence of a 1-message witness-indistinguishable proof system for L.

Throughout the paper we distinguish between the shared random string model,
in which the parties have access to a common guaranteed random string, and what
we call the standard model, in which no such assumption is made. Whenever we refer
to noninteractive zero-knowledge proofs (NIZKs), we mean in the shared random
string model (the definition of NIZK forces a shared object). We present zaps for
every language L ∈ NP based on the existence of a NIZK system for L in the shared
random string model. The zap is in the standard model and hence requires no common
guaranteed-random string. Using current NIZK technology, this means that zaps can
be based on any family of enhanced certified trapdoor permutation [30].

Not only can zaps be constructed from NIZKs, but the converse holds as well: if
every language in NP has a zap and one-way functions exist, then every language in
NP has a NIZK. In fact, the NIZKs we obtain from zaps are zero-knowledge against
adaptive selection of the theorem to be proved. This yields a proof that if NIZKs
secure against nonadaptive selection exist and one-way functions exist, then adaptive
NIZKs exist.

This result (and its proof) gives a somewhat formal view of zaps but yields little
intuition for why zaps and NIZKs exist at all. Indeed, our first constructions of zaps
were not based on NIZKs, but relied on the new notion of a verifiable pseudorandom
bit generator (VPRG). Roughly speaking, a pseudorandom sequence is verifiable if
a party knowing the pseudorandom seed can construct verifiable proofs of the bits
of the pseudorandom sequence. Moreover, a VPRG with some number k of output
bits passes what we call the ith bit test for all 1 ≤ i ≤ k: given proofs of the values
of all but the ith bit in the sequence, it is computationally infeasible to guess the
ith bit with a nonnegligible advantage over 1/2. Thus, VPRGs can be viewed as a
special case of the verifiable pseudorandom functions (VPRFs) of Micali, Rabin, and
Vadhan [45], in which the domain is very small. We give constructions for VPRGs
and a relaxation, approximate VPRGs.

The importance of VPRGs is this: Zaps (and NIZKs) exist if and only if ap-
proximate VPRGs exist in the standard model. In this paper we construct VPRGs
using multiple certified trapdoor permutations with a common domain; this yields
the first NIZK construction for which the trapdoor permutations need not be en-
hanced. In addition, recent constructions of VPRFs based on assumptions on bilinear
maps [44, 16, 17] also necessarily yield NIZKs (and zaps).

1.1. Applications of zaps. We present applications of zaps in several models.
Specifically, we construct faster implementations of important cryptographic primi-
tives in each of the standard, timing-based, and resettable models. Although in some
cases the absolute improvement in rounds may be modest, the number of rounds that
we achieve in each case is within one of the best possible. For example, all previous
witness-indistinguishable proof systems require at least three rounds of communica-
tion, while zaps achieve witness-indistinguishability in two rounds. The fact that
zaps also yield nonuniform 1-round witness-indistinguishability suggests that proving
a lower bound of two rounds is unlikely. (See also the recent work of Barak, Ong, and
Vadhan [3].)

ZAPS AND THEIR APPLICATIONS 1515

An interesting set of applications for zaps is in the timing model of Dwork,
Naor, and Sahai [23], where, using moderately hard functions [20] and timed com-
mitments [11], we obtain 3-round concurrent black-box2 zero-knowledge proofs of
knowledge for all of NP. A 3-round black-box zero-knowledge protocol with timing
(even without concurrency) is interesting in its own right: it is known that in the
standard model (no timing) this is impossible to achieve (with negligible soundness
error assuming NP �⊂ BPP) [32], while the possibility of concurrency implies that at
least Ω(log n/ log log n) rounds are required [14]; thus, adding timing allows us to go
well below the lower bounds in the standard model. Recently, using zaps, Dwork and
Stockmeyer obtained 2-round timing-based black-box (concurrent) zero-knowledge in-
teractive proofs under the assumption that certain functions have no fast auditors;
they also provide a prover-advice–based variant for which soundness is absolute (in this
variant the prover can have arbitrary computation time) [25]. We note that even in the
timing-based model, zero-knowledge proof systems for languages outside of BPP re-
quire two rounds of interaction. No such result is known for the bounded-advice model.

Still more recently, Barak and Pass obtained 1-round weak zero-knowledge ar-
guments, under (less) nonstandard assumptions [4]. Under the weakened definition,
soundness holds only against uniform probabilistic polynomial-time cheating provers,
and the zero-knowledge condition is obtained using a simulator that runs in quasi-
polynomial (rather than polynomial) time.

We also use zaps to construct 2-round deniable authentication protocols [18, 21,
23, 24]. Intuitively, deniable authentication is like a signature scheme in that it permits
one party to authenticate messages to another party, based on a public key; however,
unlike in the case of digital signatures, the authenticating conversation leaves no trace,
for example, it may be simulatable and hence can be effectively repudiated.

The relative ease with which we are able to reduce the amount of interaction
provides further motivation for the timing model of [23]—in our opinion a more re-
alistic one than the shared guaranteed random string model (see, e.g., [15])—and a
complexity theory of moderately hard functions [20].

Using zaps and timed commitments we also obtain a different type of improvement
on the results in [23, 24]. The timing model requires a mild (α, β) assumption about
the relative rates of the clocks of nonfaulty processors, and the protocols in [23]
require processors (typically, the prover), to wait until an interval of at least β ≥ α
time has elapsed (as measured on the processor’s own clock). α and β are chosen so
as to tolerate actual system and communication delays. The proofs in [23, 24] require
the parameters to be set according to the slowest nonfaulty processors. Our new
techniques permit flexibility in this respect: fast verifiers with good communication
links to the prover are not forced to suffer delays due to slower concurrent verifiers.

In the standard model, without timing assumptions, we give a 2-round oblivious
transfer protocol based on the quadratic residuousity assumption and using public
keys; without previously established public keys the protocol requires three rounds.

Finally, we consider a model of computation in which the prover’s use of random-
ness is severely restricted, as, for example, in the case of a smart card, in which the
prover may have a short embedded truly random seed and read-only memory. Canetti
et al. [13] give one formalization, termed resettable zero-knowledge (rZK). Informally,
a protocol protects a witness (either in the zero-knowledge sense or in the indistin-

2A protocol is black-box zero-knowledge if there is a universal simulator, which when given
“black-box” access to any verifier strategy is able to simulate an interaction of that verifier with the
prover. Virtually all zero-knowledge proofs until very recently were black-box (but see [1] for an
example of a protocol which does not fit this category).

1516 CYNTHIA DWORK AND MONI NAOR

guishability sense) in the resettable model if the protection holds even if the prover
may be restarted (reset) many times and forced to repeatedly use the same random
tape. (The prover may also be restarted using a different, but still random, tape.)

Using zaps and timed commitments, we construct a 3-round timing-based rZK
proof system for any language in NP. As noted in [13], rZK proofs cannot be proofs
of knowledge, so, despite the connections between the smart-card setting as described
above, resettable, and concurrent zero-knowledge [13, 38], this result is incomparable
with our 3-round concurrent-ZK proofs of knowledge.

We also observe that 2-round (and even nonconstructive 1-round) resettable
witness-indistinguishability is easily obtained from a zap, simply by having the prover’s
random bits in the zap be a pseudorandom function of the verifier’s initial message
and the input. This improves (both in conceptual and round complexity) upon the
5-round resettable witness-indistinguishability results in [13].

In all our protocols that employ timing, only the verifier needs access to a (local)
clock. This is particularly appealing in the resettable case, in which the prover may
be a smart card, since the card may not be equipped with a clock.

1.2. Outline. In section 2 we review the definitions of known cryptographic
primitives. A formal definition of a zap is given in section 3. In section 4 we prove
the existential equivalence of zaps (in the standard model) and NIZKs (in the shared
random string model). Section 5 defines and constructs VPRGs and approximate
VPRGs, together with a proof that zaps (and hence, by the above-mentioned result,
NIZKs) exist if and only if approximate VPRGs exist in the standard model. Sec-
tion 6 contains our zap-based oblivious transfer protocol. In section 7 we discuss the
timing-based applications (3-round concurrent zero-knowledge and 2-round deniable
authentication). In section 8 we discuss uses of zaps in the resettable model of [13].
Finally, open questions are discussed in section 9.

2. Brief review of cryptographic primitives. We now review the crypto-
graphic primitives used in this paper. For the standard ones we follow Goldreich
[29]. Throughout this paper, unless otherwise noted, all “good” parties (the non-
faulty prover and verifier) are uniform probabilistic polynomial-time Turing machines.
However, our protocols remain sound regardless of the computational power of the
prover, and we achieve zero-knowledge against nonuniform probabilistic polynomial
time cheating verifiers. (This is assuming the classical underlying primitives are se-
cure against nonuniform adversaries. Security against nonuniform adversaries is not
essential to our work and we chose to express it this way for simplicity.)

In general we will be using n as our security parameter and the input length,
but in some places we will also be using ks to denote the length of the input to
a cryptographic primitive which is sufficient for obtaining hardness, for instance, a
one-way function or a trapdoor permutation. In general n and ks are polynomially
related. While we do not emphasize efficiency in this paper (rather our aim is to point
out feasibility of various constructions), we prefer to have two parameters for future
comparisons. Let ν(n) denote a function that grows more slowly than the inverse of
any polynomial, i.e., for all c > 0 there is an n0 such that ν(n) < 1/nc for all n ≥ n0.
We say such a ν(·) is negligible. We use the term with overwhelming probability to
mean with probability that is at least 1 − ν(n) for negligible ν.

2.1. Witness-indistinguishability. The concept of witness-indistinguishability
was proposed by Feige and Shamir [28] as a relaxation of zero-knowledge. Unlike the
case with zero-knowledge, witness-indistinguishability is closed under parallel and

ZAPS AND THEIR APPLICATIONS 1517

concurrent composition. Let L be an NP language accepted by a nondeterministic
polynomial-time Turing machine ML. A computation path is a sequence of nonde-
terministic choices made by ML. The set of accepting computation paths on input
x ∈ L is the witness set of x, denoted w(x).

Definition 2.1 (witness-indistinguishability). A proof system (P, V) for lan-
guage L is witness-indistinguishable if for any polynomial time V ′, for all x ∈ L, for
all w1, w2 ∈ w(x), and for all auxiliary inputs z to V ′, the distribution on the views of
V ′ following an execution (P, V ′)(x,w1, z) is indistinguishable from the distribution
on the views of V ′ following an execution (P, V ′)(x,w2, z) to a nonuniform proba-
bilistic polynomial-time distinguisher receiving one of the above transcripts as well as
(x,w1, w2, z).

Note that the auxiliary input z can even be the two witnesses w1, w2. Thus, even
knowing both witnesses, V ′ should not be able to distinguish which witness is being
used by P .

Theorem 2.2 (see [28]). Every zero-knowledge protocol is witness-indistinguish-
able.

Theorem 2.3 (see [28]). Witness-indistinguishability is preserved under parallel
and concurrent composition of protocols.

2.2. Noninteractive zero-knowledge proof systems. The following discus-
sion is based on [18, 27, 49]: a (single-theorem) noninteractive proof system for a
language L allows one party P to prove membership in L to another party V for
any x ∈ L. P and V initially share a string σ, of length polynomial in the security
parameter n, which is trusted to have been chosen at random. To prove membership
of a string x in Ln = L ∩ {0, 1}n, P sends a message π as a proof of membership.
V decides whether to accept or to reject the proof π as function of x and σ. Non-
interactive zero-knowledge proof systems were introduced in [8, 7]. Noninteractive
zero-knowledge schemes for proving membership in any language in NP may be based
on any enhanced certified trapdoor permutation. (See [27, 40] and [30] for a discussion
of enhancement.) As for the complexity of the NIZKs, assuming a trapdoor permu-
tation on ks bits, the length of a proof of a satisfiable circuit of size M (and the size
of the shared random string) is O(Mk2

s).
We assume that the shared string σ is generated according to the uniform dis-

tribution on strings of length polynomial in the security parameter n, where the
polynomial depends on the particular protocol. The running time of the verifier is
also polynomial in n.

Let L be in NP and for any x ∈ L, n = |x|, let w(x) be the set of strings that
witness the membership of x in L, as described above. For the proof system to be of
any use, P must be able to operate in polynomial in n time if it is given a witness
w ∈ w(x). We call this the tractability assumption for P . In general w is not available
to V .

Let PN(x,w, σ) be the distribution of the proofs generated by P on input x,
witness w, and shared string σ. Suppose that P sends V a proof π when the shared
random string is σ. Then the pair (σ, π) is called the conversation. Any x ∈ L and
w ∈ w(x) induces a probability distribution CONV (x,w) on conversations (σ, π),
where σ is a shared string and π ∈ PN(x,w, σ) is a proof.

For the system to be zero-knowledge, there must exist a simulator Sim which,
on input x, generates a conversation (σ, p). Let Sim(x) be the distribution on the
conversations that Sim generates on input x, let SimU (x) = SimU be the distribution
on the σ part of the conversation, and let SimP (x) be the distribution on the proof

1518 CYNTHIA DWORK AND MONI NAOR

component. In the definitions of [7, 27] the simulator has two steps: it first outputs
SimU without knowing x, and then, given x, it outputs SimP (x).

Definition 2.4. A pair of probabilistic polynomial-time machines (P, V) with
shared random string σ is a noninteractive zero-knowledge proof system for the lan-
guage L ∈ NP if

• Completeness: For all x ∈ Ln, for all w ∈ w(x) and for random σ, with
overwhelming probability over π ∈R PN(x,w, σ), we have that V accepts on
input (σ, x, π). The probability is over the choice of the shared string σ and
the internal coin flips of P .

• Soundness: For all y �∈ L we have that Prσ[∃π′ ∈ {0, 1}∗ such that (s.t.) V
accepts (σ, y, π′)] is negligible. Note that the probability is only over the
choices of the shared string σ.

• Zero-knowledge: There is a probabilistic polynomial-time machine Sim which
is a simulator for the system: for all nonuniform polynomial time distin-
guishers T , for all nonnegligible ν(·), for all sufficiently large x ∈ L, and
w ∈ w(x),

∣∣Pr[T (s, x, w) = 1|s ∈R Sim(x)] − Pr[T (s, x, w) = 1|s ∈R CONV(x,w)]
∣∣ ≤ ν(n),

where the probability space is taken over the random choices of σ and over
the random choices of the Sim and P.

Remark 2.5. This definition of NIZK does not require that the system be sound if
the instance x is adaptively chosen, that is, selected after the public random string is
known. Nevertheless, it is sufficiently strong for our purposes; also it is easy to reduce
the soundness error in NIZK by parallel repetition. Similarly, we do not assume zero-
knowledge against adaptive choice of x. As we will see in Corollary 4.4, going through
zaps allows us to transform any NIZK satisfying Definition 2.4 into one that allows
adaptive selection of x.

As shown in [27], any NIZK satisfying Definition 2.4 is also general witness-
indistinguishable in the following sense.

Claim 2.1 (see [27]). Any NIZK for a language L in NP is general witness-
indistinguishable; that is, for all polynomial distinguishers T for a random string
σ, for any (nonadaptively chosen3) sequence {(xi, w

1
i , w

2
i)}mi=1 chosen by T , where

xi ∈ Ln and w1
i , w

2
i ∈ w(xi) for all 1 ≤ i ≤ m, we have

∣∣Pr[T (π1
1 , π

1
2 , . . . , π

1
m) = 1] − Pr[T (π2

1 , π
2
2 , . . . , π

2
m) = 1]

∣∣ < ν(n),

where for all 1 ≤ i ≤ m and b ∈ {0, 1} we let πb
i ∈R PN(xi, w

b
i , σ). The probability

space is over P’s and T ’s random coins and the choice of σ.
Note that general witness-indistinguishability implies witness-indistinguishability

even if x1 = · · · = xm, which will be the case of interest here.

2.3. Deniable authentication. A public key authentication scheme permits an
authenticator AP to convince a second party V , only having access to AP’s public
key, that AP is willing to authenticate a message m. However, unlike in the case
of digital signatures, deniable authentication does not permit V to convince a third
party that AP has authenticated m—there is no “paper trail” of the conversation
(say, other than what could be produced by V alone). Thus, deniable authentication

3If the NIZK is nonadaptive, then the claim refers to nonadaptively chosen sequences; if the
NIZK is adaptive, then the claim also holds for adaptively chosen sequences. In our case, we have
assumed the weaker NIZK.

ZAPS AND THEIR APPLICATIONS 1519

is incomparable with digital signatures. Deniable authentication first appeared in [18,
21] and was formalized in [23] (see also [24]). Several 4-round timed concurrent
deniable authentication protocols are given in [23, 24].

The authentication protocol should satisfy the following.
• Completeness: For any message m, if the prover and verifier follow the pro-

tocol for authenticating m, then the verifier accepts.
• Soundness—existential unforgeability against concurrent chosen message at-

tack: Suppose that the copies of AP are willing to authenticate any polyno-
mial number of messages m1,m2, . . . , which may be chosen adaptively and in
a concurrent manner by an adversary A who also controls the verifier V ′. We
say that A successfully attacks the scheme if a forger C, under control of A
and pretending to be AP, succeeds in authenticating to a third-party D (run-
ning the protocol of the original verifier V) a message m �= mi, i = 1, 2,
The soundness requirement is that all probabilistic polynomial-time A will
succeed with at most negligible probability.

• Zero-knowledge—deniability: Consider an adversary A as above and suppose
that the copies of AP are willing to authenticate any polynomial number of
messages. Then for each A there exists a polynomial-time simulator that
outputs an indistinguishable transcript from the one A produces from its
interaction with AP.
Two natural variants are (1) the distinguisher has access to the secret au-
thentication key and (2) the distinguisher does not have access to the secret
authentication key. The first best captures our intuitive notion of deniable au-
thentication, since even obtaining access to the key, say, via legal compulsion,
will not destroy the deniability.

2.4. Security of encryption. We will need public-key cryptosystems for two of
our applications: resettable zero-knowledge (section 8.2) and deniable authentication
(section 7.2). The security requirements of these two applications are different. To
specify the security of an encryption scheme, one must describe the power of the at-
tacker in terms of access to the system (chosen plaintext, chosen ciphertext) and what
it means to break the system (semantic-security, nonmalleability). See [18] or [5] for
a discussion of notions of security. The deniable authentication application requires a
system that is nonmalleable against chosen-ciphertext attacks in the postprocessing
mode (called CCA-2 in [5]). The resettable zero-knowledge application requires se-
mantic security against chosen plaintext attacks. (There are some other requirements
from the encryption scheme which transcend security.)

2.5. Using time in the design of protocols. Dwork, Naor, and Sahai [23]
have shown the power of time in the design of zero-knowledge protocols through the
use of an (α, β) assumption. This says that all good parties are assumed to have
clocks that satisfy the (α, β)-constraint (where α ≤ β): for any two (possibly the
same) nonfaulty parties P1 and P2, if P1 measures α elapsed time on its local clock
and P2 measures β elapsed time on its local clock, and P2 begins its measurement in
real time after P1 begins, then P2 will finish after P1 does.

The protocols in [23, 24] use time in two explicit ways: (i) delays—one party must
delay the sending of some message until at least some specified time β has elapsed
on its local clock; (ii) time-outs—one party requires that the other deliver its next
message before some specified time α has elapsed on its (first party’s) local clock. In
this work we are able to eliminate the use of delays; the protocols use only time-outs.
Furthermore, we do not require a global (α, β)-constraint, rather each instantiation of

1520 CYNTHIA DWORK AND MONI NAOR

the protocol can fix its own values based on the local characteristics of the network.
An essential ingredient of our protocols is the implicit use of time via moderately
hard functions [20]. In particular, we use timed commitments with verifiable recovery,
described next.

Timed commitment. A string commitment protocol allows a sender to commit, to
a receiver, to some value. The protocol has two phases. At the end of the commit phase
the receiver has gained no information about the committed value, while after the
reveal phase the receiver is assured that the revealed value is indeed the one to which
the sender originally committed. Timed commitments, defined and constructed by
Boneh and Naor [11], are an extension of the standard notion of commitments in which
there is a potential forced opening phase permitting the receiver, by computation of
some moderately hard function, to recover the committed value without the help of
the committer. The price paid in terms of security is that the committed value is
hidden for only a limited amount of time.

Definition 2.6. A (T, t, ε) timed commitment scheme for a string y ∈R {0, 1}n
enables Alice to give Bob a commitment C to the string. At a later time, Alice can
prove to Bob that C represents a commitment to the value y. However, if Alice refuses
to reveal the value of C, then Bob can spend time T to forcibly retrieve this value.
Alice is assured that within time t on a parallel machine with polynomially many
processors, where t < T , Bob will succeed in obtaining y with probability at most ε.
Formally, a (T, t, ε) timed commitment scheme consists of three phases:

• Commit phase: To commit to a string y ∈ {0, 1}n Alice and Bob execute a
protocol whose outcome is a commitment string C = TC(y) which is given to
Bob.

• Open phase: At a later time Alice may reveal the string y to Bob. They
execute a protocol so that at the end of the protocol Bob has a proof that y is
the committed value.

• Forced open phase: Suppose Alice refuses to execute the open phase and does
not reveal y. Then there exists an algorithm, called forced-open, that takes
the commitment string C as input and outputs y and a proof that y is the
committed value. The algorithm’s running time is at most T .

The commitment scheme must satisfy a number of security constraints:
• Binding: During the open phase Alice cannot convince Bob that C is a com-

mitment to y′ �= y. That is, binding is absolute, independent of computational
power: there is at most one “de-commitment,” y, consistent with TC(y).

• Soundness: At the end of the commit phase Bob is convinced that, given C,
the forced-open algorithm will produce the committed string y in time T .

• Privacy: Every PRAM algorithm A whose running time is at most t for
t < T on polynomially many processors will succeed in distinguishing y from
a random string, given the transcript of the commit protocol as input, with
advantage at most ε. In other words,

∣∣∣∣Pr[A(transcript, y) = “yes”] − Pr[A(transcript, R) = “yes”]

∣∣∣∣ < ε,

where the probability is over the random choice of y and R and the random
bits used to create C from y during the commit phase.

The important requirements of timed commitments are (i) the future recoverabil-
ity of the committed value is verifiable: if the commit phase ends successfully, then
the receiver is correctly convinced that forced opening will yield the value; (ii) forcibly

ZAPS AND THEIR APPLICATIONS 1521

recovered values and decommitments are verifiable: the receiver obtains not only the
value but also a proof of its validity, so that anyone who has the commitment (or the
transcript of the commit phase) can verify the value without going through a recov-
ery process, i.e., in fixed amount of time; (iii) the commitment is immune to parallel
attacks, i.e., even if the receiver has much more computing power than assumed, it
cannot recover the value substantially more quickly than a single-processor receiver.
We denote by T the bound on the time below which it is safe to assume that the timed
commitment cannot be broken with nonnegligible probability, even by a PRAM.

Specifically, we are interested in timed commitment schemes with the following
structure. The committer sends to the receiver a string ζ, which constitutes the
commitment. For every “valid” commitment ζ, it is possible, through moderately
hard computation, to recover a pair (y, π) such that π is an easily checked witness to
the fact that ζ is a commitment to y. The set of valid commitments is in NP: for every
valid commitment ζ there is a witness to the statement “ζ is a valid commitment to a
string that can be recovered through the forced recovery process.” Finally, the forced
recovery time is relatively large compared to the time of all other operations in the
protocol (such as constructing ζ, verifying a correctly decommitted value, verifying
future recoverability, etc.). Thus, we think of all other operations as “easy” while
recovery is “moderately hard.” The scheme in [11] has this structure and properties,
albeit based on a nonstandard assumption regarding the computation of number of

the form g2k

mod N for composites N without knowing the factorization of N .

2.6. Oblivious transfer. In a 1-out-of-2 oblivious transfer (OT) protocol, one
party, the sender, has two strings (M1,M2) as its input, and the second party, the
chooser, has a bit b. The chooser should learn Mb and nothing regarding M1−b, while
the sender should gain no information about b. 1-out-of-2 OT was suggested by Even,
Goldreich, and Lempel [26] as a generalization of Rabin’s “oblivious transfer” [50].

3. Formal definition of a zap. A zap is a 2-round (2-message) protocol for
proving membership of x ∈ L, where L is a language in NP. Let the first-round (verifier
to prover) message be denoted ρ and the second-round (prover to verifier) response
be denoted π satisfying the following conditions:

• Public coins: There is a polynomial k(·) such that the first-round messages
form a distribution on strings of length k(n) which depends only on the length
n of x. The verifier’s decision whether to accept or reject is a polynomial-time
function of x, ρ, and π only.

• Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover,
running in time polynomial in |x|, can generate a proof π that will be accepted
by the verifier. Note that this is perfect completeness. We can relax this
requirement and ask the prover to succeed with overwhelming probability
over the choices made by the prover and the verifier.

• Soundness: With overwhelming probability over the choice of ρ, there exists
no x′ /∈ L and second-round message π such that the verifier accepts (x′, ρ, π).

• Witness-indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then for all ρ, the
distribution on π when the prover has input (x,w) and the distribution on π
when the prover has input (x,w′) are nonuniform probabilistic polynomial-
time (in n = |x|) indistinguishable, even given both witnesses w,w′.

It follows immediately from the definitions that every zap yields a nonconstructive
nonuniform single-round witness-indistinguishable protocol; that is, the first-round
message can be fixed once and for all. Also since we require unconditional soundness

1522 CYNTHIA DWORK AND MONI NAOR

(soundness against unbounded provers) the private coins versus secret coins really
does not show up.

Claim 3.1. Every zap yields a nonconstructive nonuniform single round witness-
indistinguishable protocol: for each n, there exists a string ρ̂n such that, letting Ln =
L ∩ {0, 1}n, the following hold:

1. Given x ∈ Ln and a witness w ∈ w(x), the prover can generate a proof π that
will be accepted by the verifier. Moreover, the verifier’s decision whether to
accept or reject is a polynomial-time function of x, ρ̂n, and π.

2. There exists no x′ /∈ Ln and message π such that the verifier accepts (x′, ρ̂n, π).
3. For all x ∈ Ln and all w,w′ ∈ w(x), the distributions P(x,w, ρ̂n) and

P(x,w′, ρ̂n) are indistinguishable by any nonuniform probabilistic polynomial-
time distinguisher.

Comparison with NIZKs. Zaps differ from NIZKs in two respects, making the
two concepts incomparable. On the one hand, zaps do not require that the prover
and verifier have access to a common guaranteed random string. On the other hand,
NIZKs provide more provable protection of the witness than do zaps, since NIZKs
can be simulated without access to the witness while zaps provide no such guarantee.

4. The NIZK-based construction. Assume we have a NIZK system (in the
shared string model) satisfying Definition 2.4 for a language L. We will construct
a zap for L (in the standard model). We will first provide some intuition for the
construction. Consider a NIZK in the shared string model; we try to convert it into
a zap by somehow generating the shared string σ. Suppose we let the verifier choose
a string B and fix σ = B. The danger with this approach is that there may be “bad”
choices for σ that leak information about the witness, and the verifier might choose B
to be one of them, thus harming the witness protection. If, to compensate, we have
the prover choose its own random string C and we set σ = B ⊕ C (that is, σ is the
bitwise exclusive-OR of B with C), then the danger is that the prover will use the
simulator to come up with a σ′ that “proves” that x ∈ L (that is, causing V to accept
x), even for x �∈ L. The prover could then set C = σ′ ⊕B, violating soundness.

The actual protocol strikes a balance between these two ideas: a NIZK is repeated
many times in parallel, but not quite independently, as follows. The jth instance has
common string σj , defined to be the bitwise exclusive-OR of two strings, one chosen
by the prover and the other chosen by the verifier. The verifier’s choice for the jth
instance may be any string Bj ; however, the prover may choose only a single string
C that is used in all instances. This sort of idea can be called reverse randomization
and has been previously used in the bit commitment protocol of Naor [46] and can be
traced back to Lautemann’s proof that BPP is in the second level of the hierarchy [42];
it has since been applied by Dwork, Naor, and Reingold [22] for removing decryption
errors.

Choice of parameters (general construction). We now specify the parameters we
need. Note that in general it is possible to reduce the soundness error of a NIZK by
repetition (with a fresh part of the shared random string for each repetition) without
hurting the zero-knowledge properties. Note that parallel repetition reduces the error
in a straightforward manner here, since it is combinatorial. The price of course is in
the string and proof length.

Assume that we have a NIZK for L which, for proving membership of strings of
length |x|, with security parameter n, uses a common shared string of length
 =

(n, |x|). Assume further that on any input y �∈ L of length |x| the NIZK errs with
probability at most q = q(n) over the choice of the common random string σ. In (4.1),

ZAPS AND THEIR APPLICATIONS 1523

k = k(n, |x|) = |ρ|, the number of random bits sent by the verifier in the first-round
message. The number of copies m = m(n, |x|) of the NIZK will be k/
. To achieve
soundness guarantee δ for the zap (that is, a cheating prover should succeed with
probability at most δ), we choose k satisfying

qk/� <
δ

2|x|+�
.(4.1)

4.1. Protocol Z: A zap. To achieve soundness against an arbitrarily powerful
prover and yet to require only feasible computation from the “good” prover, we must
assume the existence of a NIZK with these properties, such as the systems in [27, 40].

Let x ∈ L be an NP-statement to be proved to the verifier. We do not need x to
be fixed before execution of the protocol begins. Let w be the witness to x ∈ L known
by the prover, let n be the security parameter, and let PN(x,w, σ) be the distribution
on messages sent in the NIZK by a (noncheating) prover when the common random
string is σ of length
(n, |x|). For simplicity, in the remainder of this discussion we
assume n and |x| are related by some fixed polynomial so that it suffices to think of

(n, |x|) as a function solely of n. Let k = k(n) and m = m(n) satisfy (4.1).

First round: V −→ P . The verifier sends to the prover a random k-bit string
ρ = b1 . . . bk, which is interpreted as B1 . . . Bm, where Bj denotes the jth block of

consecutive bits and
 is the length of the common random string used by the NIZK.

Second round: P −→ V . The prover responds as follows. First, it chooses
a random
-bit string C = c1 . . . c�. For j = 1 . . .m define σj to be the bitwise
exclusive-OR of Bj and C:

σj = Bj ⊕ C.

Then the prover sends to the verifier x, C, and the m noninteractive proofs

{πj ∈R PN(x,w, σj)}j=1...m.

Final check. The verifier V checks that each of the m NIZKs π1, π2, . . . , πm with
common strings σ1, σ2, . . . , σm, where σj = C⊕Bj results in acceptance; if so, then the
verifier accepts the zap; otherwise the verifier rejects. This completes the description
of Protocol Z.

Lemma 4.1. Protocol Z is sound; moreover, for all n, there exists a choice
ρ̂n = b̂1 . . . b̂k(n) for the first-round message that yields perfect soundness: for all
x /∈ Ln for all π V (x, ρ̂n, π) rejects.

Proof. Let
 =
(n) and k = k(n). Fix an x /∈ L and random bit string C =
c1 . . . c�. Recall that in a NIZK the faulty prover’s probability of succeeding on an
x /∈ L is a function of the common random string only, and this probability is at most
q. We will show that with overwhelming probability, over the choice of b1, . . . , bk,
the prover will fail to convince the verifier to accept x. The key point is that once
everything but the b has been fixed, the σj are truly random—because the Bj are.
Therefore each copy of the NIZK proof has probability at most q of failing to cause
rejection. Since each proof is independent (because the random bi used in each copy
of the NIZK proof are independent), the overall probability that all m = k/
 copies
fail to reject is at most qm.

The number of possible assignments to pairs (c, x) where c ∈ {0, 1}� and x �∈ L is
at most 2�+|x|. Hence, as long as

2�+|x|qm = 2�+|x|qk/� ≤ δ

1524 CYNTHIA DWORK AND MONI NAOR

(which is guaranteed by our choice of k in (4.1)), the probability over b1, . . . , bk that
there even exists a “bad” choice of c1 . . . c�, an x /∈ L, and a zap π that erroneously
causes the verifier to accept x is at most δ (cf. the soundness requirement in Defini-

tion 2.4). Since δ < 1, there must exist some ρ̂n = b̂1 . . . b̂k that provides soundness
against all x /∈ Ln: for all x /∈ Ln for all π V (x, ρ̂n, π) rejects.

Lemma 4.2. Protocol Z is witness-indistinguishable.
Proof. We prove witness-indistinguishability for every ρ. We will be using only

the witness-indistinguishability property of the proof system (Theorem 2.2). Thus,
fix an arbitrary ρ for the entire proof. We will carry out a standard hybrid argument
with the following steps along the chain. Let w and w′ be two witnesses that x ∈ L,
and let n = |x|. At one extreme of the chain the witness w is used in each of the m
NIZKs; at the other extreme the witness w′ is used in every copy. At each step along
the chain we increase by one the number of copies of the NIZK in which w′ is used
(and decrease the number in which w is used).

Let 〈w,w′, i〉 denote the distribution on transcripts in which the first i copies of
the NIZK are constructed using w and the remaining m − i copies are constructed
using w′. The transcripts also include x,w,w′. The distribution is over random
choices made by the prover (since ρ is fixed). Let T be a nonuniform polynomial-time
test that takes as input a transcript and outputs a single bit. We write T (〈w,w′, i〉)
to denote T ’s behavior on a transcript chosen uniformly from 〈w,w′, i〉.

Assume for the sake of contradiction that there exists a probabilistic polynomial-
time test T and 1 ≤ j ≤ m such that for some fixed a and infinitely many n

Pr[T (〈w,w′, j − 1〉) = 1] − Pr[T (〈w,w′, j〉) = 1] ≥ 1

na
.

The probability space is over the choices made by the prover and the randomness of T .
We will show that this contradicts the witness-indistinguishability of the underlying
NIZK.

Let (P̂ , V̂) be the underlying NIZK protocol (running in the shared random string
model). Let τ be a truly random string of
 bits. Choose u ∈R {w,w′} and give u

to P̂ . Let P̂ generate a proof π ∈R PN(x, u, τ). By the witness-indistinguishability
of the NIZK, with overwhelming probability over choice of τ , no nonuniform proba-
bilistic polynomial-time machine, even given w and w′, has nonnegligible advantage
of guessing the value of u from π. We will show how to use T to violate this indistin-
guishability.

Using w and w′, construct a simulated transcript of Protocol Z as follows. Break
ρ = b1, . . . , bk into m = k/
 blocks B1, . . . , Bm. Set C = τ⊕Bj , so that σj = Bj⊕C =
τ , which is truly random by assumption. For all i < j, construct πi ∈R PN(x,w, σi).
For all i > j, construct πi ∈R PN(x,w′, σi). Set πj = π, which, by assumption, is a
uniformly chosen element of PN(x, u, τ). Let Π denote the resulting transcript.

Run T on Π. Since τ is truly random and uniformly distributed, C is uniformly
distributed as well, so the resulting transcript of m NIZKs is a uniformly chosen
element of either 〈w,w′, j−1〉 (if u = w′) or 〈w,w′, j〉 (if u = w). We can therefore use
T ’s assumed ability to distinguish these two cases to obtain a nonnegligible advantage
in guessing whether u = w or u = w′.

Theorem 4.3. Protocol Z is a zap.
Proof. Soundness and witness-indistinguishability have been argued. If the un-

derlying NIZK has perfect completeness, then the resulting zap inherits this property.
Otherwise, if the underlying NIZK has negligible chance of failure, then completeness
for Protocol Z follows from the fact that for any ρ̂, since C is random, the probability

ZAPS AND THEIR APPLICATIONS 1525

that there is some block B̂i such that π ∈R PN(x,w, B̂i ⊕ C) but V ∗(B̂i ⊕ C, x, π)
does not accept is negligible. (Here, as earlier, B̂i is the ith consecutive block of
 bits
in ρ̂.) In fact, by resampling C, the prover can actually achieve perfect completeness
even if the underlying NIZK has negligible chance of failure.

Our main conclusion is therefore the following corollary.
Corollary 4.4. Let L ∈ NP be arbitrary.
1. If there exists a NIZK for L in the common guaranteed-random string model,

then there exists a zap for L in the standard model.
2. If there exist zaps in the standard model for every language in NP, and if

there exist nonuniform one-way functions, then there is a NIZK for L in the
common guaranteed-random string model. Furthermore, this NIZK remains
zero-knowledge under an adaptive selection of x, that is, when x may depend
on σ.

Proof. The first claim is immediate from the construction and correctness of
Protocol Z.

For the second claim we directly apply the idea of Feige, Lapidot, and Shamir [27]
of transforming the proof of the statement x ∈ L into a witness-indistinguishable proof
for the statement, “The common shared random string σ is pseudorandom OR x ∈ L.”
As we will explain, to carry out this approach it is sufficient to have

• a pseudorandom generator G that, say, doubles the length of the seed (in this
case a random string is unlikely to be the output of the generator for any
seed), and

• a zap for the language L′ = {(x, σ)|x ∈ L or ∃s σ = G(s)}.
The desired pseudorandom generators exist if and only if nonuniform one-way func-
tions exist [37]; moreover, since L′ is clearly in NP, it has a zap by the hypothesis.
We assume for simplicity (and without loss of generality) that the verifier’s message
in the zap is chosen uniformly at random.

Recall that we are trying to show that if one-way functions and zaps exist, then
there exists a NIZK in the shared random string model. Given a shared random
string, treat it as (σ, ρ), where ρ is the verifier’s first-round message in the zap for
the language L′. The prover simply transforms its witness for x ∈ L to a witness for
(x, σ) ∈ L′. Soundness follows from the fact that most σ are not equal to G(s) for
any s (this holds because G is length-doubling and σ is truly random).

The system is zero-knowledge since, critically, the simulator for a NIZK is per-
mitted to choose the common string and may in particular choose it to be G(s) for
some random s. Then for a random ρ it uses s as the witness for (x,G(s)) ∈ L′. The
nonuniform probabilistic polynomial-time indistinguishability of outputs of G from
truly random strings, and the witness-indistinguishability of the zaps for L′, imply
that the output of the simulator is indistinguishable from a real transcript.

Note that since a zap maintains its witness-indistinguishability even when x is
chosen after the first-round message is known, we get that the zero-knowledge is
maintained even if x is selected in an adaptive manner.

5. Zaps and verifiable pseudorandom bit generators. In this section we
characterize zaps in terms of a new cryptographic primitive: the VPRG, which is
inspired by the definition of VPRF [45] (but note the differences). A VPRG is a
pseudorandom generator where the holder of the seed can generate proofs of con-
sistency for some parts of the sequence without hurting the unpredictability of the
remaining bits. In the standard model we will exhibit a construction of zaps from
VPRGs (Protocol VZ below). As we will see, the construction works even if the

1526 CYNTHIA DWORK AND MONI NAOR

VPRG is approximate, in that the proofs of the bit values are occasionally incorrectly
accepted, so it is possible to cheat a little (this “little” need not be polynomial).
We will also show that if zaps exist, then so do approximate VPRGs. Very roughly,
approximate VPRGs can be designed to have multiple witnesses, so zaps, with their
witness-indistinguishability, are sufficiently strong to yield the necessary proofs π of
consistency with some member of the set of vectors related to the public verification
string (denoted S(VK)). In contrast, we do not know how to design strict VPRGs to
have multiple witnesses.

The following summarizes the relationships between zaps, VPRGs, and NIZKs,
both in the standard model and in the common guaranteed-random string model.

Summary 5.1.

1. NIZKs exist in the common guaranteed-random string model if and only if
VPRGs exist in the common guaranteed-random string model (Theorem 5.10).

2. NIZKs exist in the common guaranteed-random string model if and only if
zaps exist in the standard model (Theorem 4.3 and Corollary 4.4).

3. Zaps exists in the standard model if and only if approximate VPRGs (with cer-
tain parameters) exist in the standard model (Corollary 5.7 and Theorem 5.8).

Definition 5.2. An (s, k) VPRG is a pseudorandom sequence generator which,
for security parameter 1n, maps a random seed v of length s(n) to an output sequence
a1, . . . , ak of length k = k(n) and a verification key VK where s(n) and k(n) and
the length of VK are fixed polynomials. The mapping should satisfy the following
requirements:

• Verifiability: For any subset I ⊆ {1, . . . , k} of indices, given the seed v ∈
{0, 1}s(n) it is possible to construct a proof π of the consistency, with VK,
of the values of {ai}i∈I . We call this a proof for {ai}i∈I . The construction
takes polynomial time and the proof is of polynomial length. Given VK, the
verifier can check the proof π in polynomial time. The generation of π may
be randomized.

• Binding: The public verification key VK binds the sequence. That is, for each
VK there is at most one associated sequence a1, a2, . . . , ak:

1. This sequence is in the range of the generator on input a seed of length
s(n).

2. For all subsets I ⊆ {1, . . . , k}, if the verifier accepts a proof π of values
{bi}i∈I , then there exists a sequence a1, . . . , ak associated with VK and
bi = ai for all i ∈ I. (There can be two different seeds v and v′ that
yield that same VK; in this case they will yield the same a1, a2, . . . , ak.)

• Passing the ith bit test: For all 1 ≤ i ≤ k and nonuniform polynomial-time
adversaries T the following holds. Suppose that T receives for a random
v ∈ {0, 1}s(n) the verification key VK and

a1, a2, . . . , ai−1, ai+1, . . . , ak.

The adversary T selects I ⊂ {1, . . . , k} such that i �∈ I and receives a ran-
domly generated proof π for {aj}j∈I . It then attempts to guess ai. The
probability, over the choice of the seed, the random choices in the construc-
tion of the proof π, and the random choices by T , that T guesses ai correctly
is negligibly in n close to 1/2.

Remark 5.3. Consider a subset test, i.e., instead of a single 1 ≤ i ≤ k there is
a missing subset of indices and the distinguisher gets the values of ai′ at all other
locations plus candidate values for the missing locations. It can then ask to see a

ZAPS AND THEIR APPLICATIONS 1527

proof of consistency for any subset I not including any of the missing indices and
then has to guess if the candidate values are correct or just random. This test is
equivalent to the ith bit test, just as the distinguishing test and the next bit test
are equivalent for regular pseudorandom generators. Note that in the case of VPRF
such an equivalence is not clear. The relation between VPRGs and VPRFs is further
discussed in sections 5.2 and 9.

We also use a relaxation of VPRGs, which we call d(n)-approximate VPRGs. The
differences are as follows:

• Relaxed binding: Intuitively, for any VK, there are at most d(n) values for the
revealed string that are accepted as consistent with VK. Rigorously, for each
seed v (of length s(n)) there are at most d(n) associated sequences of length
k, Sv = {a1,a2, . . . ,ad(n)} such that for all subsets I ⊆ {1, . . . , k}, if the
verifier accepts a proof π of values {bi}i∈I , then there exists a 1 ≤ j ≤ d(n)
such that {bi}i∈I is consistent with aj (same j for all the i ∈ I). In addition,
for each “claimed” VK (including those for which there is no corresponding
seed) there exists at most one consistent S, and this S is in fact Sv for some
v ∈ {0, 1}s(n).

• Two-round communication: The proof of consistency may be “zap-like.” On
a first round the verifier sends a public-coins message ρ and only then VK and
the subset to be proven are chosen. The binding and verifiability conditions
hold with high probability over the choice of message of the first round.

Finally, for completeness, we also consider VPRGs in the shared random string
model. The binding and verifiability conditions hold with high probability over the
choice of the shared string.

5.1. Zaps based on VPRG.
Proofs based on hidden random strings. We find the following “physical” intuition

helpful for describing certain types of proofs of membership. The prover is dealt a
sequence of
 binary cards, where each card has value 1 with probability 1/2. The
prover knows the values of the cards and can choose any subset to reveal to the verifier.
The verifier learns absolutely nothing about the values of cards that are not explicitly
revealed. The prover has no control over the values of the cards. The sequence of
cards is a hidden random string (HRS).

To prove that x ∈ L, the prover, holding witness w ∈ w(x), can choose any subset
of the hidden bits to reveal to the verifier (cards to turn over). Let α be the locations
and values of the revealed bits in the HRS. In addition to α, the prover may send
extra information, β, to the verifier. The verifier decides whether to accept or reject
x as a function of α, β, and x.

The soundness requirement is that for some q < 1 such that 1− q is nonnegligible
(that is, q is nonnegligibly far from 1), the probability (over the values of the hidden
random bits) that the prover can cause the verifier to accept an x /∈ L is at most q,
even if the prover is arbitrarily powerful. That is, with nonnegligible probability 1−q
there is no triple (x, α, β) such that x �∈ L and the verifier accepts (x, α, β).

The witness protection requirement is that there exist a simulator that on input
x ∈ L (but without a witnesses to x ∈ L),

1. can create (α, β) identically distributed to the (α, β) pairs created in real
executions of the proof;

2. given α, β, and any witness w∗ to x ∈ L, can generate an assignment to the
remaining cards so that the distribution on extended transcripts, that is, the
hidden cards, the revealed cards α, and β, is identical to the distribution on

1528 CYNTHIA DWORK AND MONI NAOR

extended transcripts in real executions by a prover holding witness w∗. We
call this “completing the simulation with w∗,” or “forming a completion with
w∗.”

Again, α and β are chosen without access to a witness; then, given any witness
w∗ ∈ w(x), the simulator can create a completion with w∗, that is, an assignment to
all the cards, hidden and exposed, so that the distribution on triples containing α,
β, and the values for all the cards is exactly the distribution on these values in real
executions with witness w∗.

The concept of an HRS-based proof is exemplified by the noninteractive zero-
knowledge proof systems of Feige, Lapidot, and Shamir [27] and of Kilian and Petrank
[40]. The idea is to implement the HRS using the output of the VPRG and the opening
using the proof capabilities of the VPRG (in contrast to the reliance on the trapdoor
properties in [27, 40]). We do not provide new HRS-based proofs in this paper. Our
results work with any (existing or future) HRS-based scheme.

Note that although an implementation of an HRS-based proof may be crypto-
graphic, an HRS-based proof is itself a combinatorial, and hence unconditional, ob-
ject.

Protocol VZ: A VPRG-based zap. The choice of parameters for VPRG-
based zaps differs slightly from the choice in the case of NIZK-based zaps. This is
because in the case of the VPRG we have less freedom: k = k(n) (the length of ρ) is
tied to the parameters of the VPRG.

Choice of parameters. Assume we have an HRS-based proof that for string x and
security parameter n polynomially related to |x| uses
(n) cards, and on any input
x errs with probability at most q. Let s = s(n) be the length of a seed permitting
the VPRG to output k = k(n, |x|) bits. To achieve soundness guarantee δ (that is, a
cheating prover should succeed with probability at most δ), we require that k(n, |x|)
will sufficiently expand the input: it should satisfy

qk(n,|x|)/�(n) <
δ

2n+s(n)+�(n)
.

The protocol. Let m = k/
. The HRS proof will be repeated m times. The verifier
sends to the prover random bits ρ = b1, . . . , bk.

The prover chooses
 random bits C = c1, . . . , c� and a random seed v ∈ {0, 1}s
for the VPRG. Let VK and a1, a2, . . . , ak be the output of the VPRG on v. The ith
bit of the HRS is defined to be

ai ⊕ bi ⊕ c(i−1mod�)+1.

The prover sends to the verifier: VK, c1, . . . , c�, and m HRS-based proofs that
x ∈ L, where the jth proof uses the jth block of
 bits of the HRS. For all revealed
cards 1 ≤ i ≤ k the prover provides ai and a proof π for the consistency of the revealed
values.

Let (αj , βj) be the values of the revealed cards and additional information in the
jth copy of the HRS-based proof, for j = 1, . . . ,m. For the revealed cards the verifier,
using VK, checks that the value revealed is the correct one. If not, the verifier rejects;
otherwise the verifier accepts if and only if, for all m instances of the HRS-based
proof, the HRS-based verifier accepts.

Lemma 5.4. Protocol VZ is witness-indistinguishable.
Proof. The proof involves a pair of nested hybrid arguments. The outer hybrid

moves from a case in which all copies of the NIZK use one witness (w) to a case in which

ZAPS AND THEIR APPLICATIONS 1529

all copies use the other witness (w′). Once a distinguishing gap has been identified,
the inner hybrid is over proof strings: one extreme has completion γ consistent with
w, and the other has completion γ′ consistent with w′.

Let w and w′ be two witnesses that x ∈ L. Assume there exists a sequence
b∗1, . . . , b

∗
k and a distinguisher T that, given (x,w,w′) and a transcript consisting of

b∗1, . . . , b
∗
k followed by the responses of the m HRS-based proofs of x ∈ L, succeeds

with nonnegligible advantage ε to guess which witness, w or w′, was used by the
prover in generating the response.

By the pigeonhole argument used in hybrid argument, for some 1 ≤ j ≤ m there
exists a distinguisher for the following two types of transcripts that distinguishes
between them with advantage at least ε/m:

1. The prover uses witness w for the first j − 1 copies of the HRS-based proof
and w′ for copies j . . .m.

2. The prover uses witness w for the first j copies of the HRS-based proof and
w′ for copies j + 1 . . .m.

Let us fix such a j for the remainder of the proof.
We first use the simulator, whose existence is guaranteed by the definition of an

HRS-based proof, to choose α and β for the jth copy of the HRS-based proof. For a
given seed v to the VPRG, for the positions 1 ≤ i ≤
 indicated by α, we choose ci so
that the value a(j−1)�+i ⊕ b(j−1)�+i ⊕ ci opened is the value indicated by α.

By the definition of witness-indistinguishability for an HRS-based proof, the sim-
ulator, now given w and w′, can efficiently find a completion (choices for the unopened
values) γ corresponding to the case in which the witness used is w, as well as a com-
pletion γ′, corresponding to the case in which the witness used is w′. Together with
the seed v, the completions γ and γ′ determine, respectively, the values of the bits ci
for each position i that is not indicated by α. (The values for the positions indicated
by α were fixed above and will remain unchanged throughout the rest of the proof.)
Let r = |γ| = |γ′|. For 0 ≤ d ≤ r, we denote by c(γ, γ′)[d] values for the c not indicated
by α that agree with γ in positions 1, . . . , d and agree with γ′ in positions d+1, . . . , r.
Thus, when d = 0 the values all agree with γ′, while when d = r the values all agree
with γ.

We will now form a hybrid chain on proof strings. In every element in the chain,
the seed v remains unchanged, as do the b∗ and the values for the c in the positions
indicated by α. Only the c not indicated by α will change as we move from one element
in the chain to the next. The first element in the chain has values c(γ, γ′)[r] for the c
not indicated by α. Thus, these values all agree with γ, where the witness is w. Having
fixed all the c for this element of the chain, we can complete the description of the first
element of the chain. The first j − 1 blocks are HRS-based proofs constructed with
witness w, and blocks j + 1 through m are constructed with witness w′. Moreover,
by choice of the c, the jth block has been completed with w.

The next element in the chain has values c(γ, γ′)[r−1] for the c not indicated by
α. Everything else remains the same: the values for the remaining c that were fixed
in the description of the first element in the chain are again used here. Then, having
again fixed all the c, the first j − 1 blocks are HRS-based proofs constructed with
witness w, and blocks j+1 through m are constructed with witness w′. Note that the
jth block might not really be something that could have been generated by the prover,
since it is not completely consistent with a proof constructed using either w or w′.

In general, for 0 ≤ d ≤ r, the d+ 1th element in the chain has values c(γ, γ′)[r−d]

for the c not indicated by α, for 0 ≤ d ≤ r. The last element in the chain has values
c(γ, γ′)[0], that is, it agrees completely with γ′.

1530 CYNTHIA DWORK AND MONI NAOR

We note that the chain is nonempty, since otherwise the behavior of the prover
on witnesses w and w′ is identical and therefore yields no possibility of distinguishing
between the two witnesses. Thus, the number of steps in the γ → γ′ hybrid chain
is 1 ≤ r ≤
 (including the endpoints, the chain has r + 1 elements). We assumed
an ε/m advantage in distinguishing the two endpoints of the chain, hence there is an
i ≤
 + 1 where the adversary has advantage at least ε/(m
) to distinguish between
the i− 1 and ith elements in the chain. The pseudorandomness of the VPRG can be
broken at this location. The subset I is the one determined by α and the HRS proofs
used in the other m− 1 blocks.

Lemma 5.5. Protocol VZ is sound; moreover, the first round can be fixed nonuni-
formly.

Proof. Let x /∈ L, c1, . . . , c�, and let the VPRG verification key VK be fixed. We
will show that with overwhelming probability, over the choice of b1, . . . , bk, the prover
will fail to convince the verifier to accept x. The key point is that once everything but
the b has been fixed, the hidden random string is truly random—because b1, . . . , bk
have not been chosen yet and are to be chosen at random. Therefore each copy of the
HRS-based proof has probability at most q of failing to cause rejection. Since each
proof is independent (because the bi used in each copy of the HRS-based proof are
independent), the overall probability that all m = k/
 copies fail is at most qm.

The number of possible assignments to the c, VK,4 and x /∈ L is at most 2�+s+|x|.
Hence, as long as

2�+s+|x|qm ≤ δ

for a random b1, . . . , bk, the probability that there even exists a “bad” choice of
c1, . . . , c�, VK, and x that erroneously causes the verifier to accept is at most δ.
Therefore, not only is the protocol sound, but also the first message (the b) can be
fixed nonuniformly.

Theorem 5.6. Given an HRS proof system for a language L using
 cards and
with probability of error at most q and given a VPRG mapping a seed s to k bits, if

qk/� <
δ

2|x|+s+�
,

then protocol VZ is a zap for L.
Note that if instead of a VPRG we use a d(n)-approximate VPRG, then we can

obtain a similar result by adjusting the counting argument to accommodate the d(n)
possible openings consistent with VK; see the next corollary.

Corollary 5.7. Given an HRS proof system for L using
 cards and with
probability of error at most q and given a d(n)-approximate VPRG mapping a seed s
to k bits, if

qk/� <
1

d(n)

δ

2|x|+s+�
,

then protocol VZ is a zap for L.
As we show next, the converse holds as well and we can use zaps to obtain

approximate VPRGs.

4Note that we should count only the number of seeds v ∈ {0, 1}s and not the various possible
public commitment strings, since what matters is the value a1, a2, . . . , ak of the sequence associated
with VK, and this sequence, by Definition 5.2, must correspond to one in the range of the generator
on input (seed) of length s(n).

ZAPS AND THEIR APPLICATIONS 1531

Theorem 5.8. Let
(n) be any polynomial. Fix m ≥ 2. Let G be any pseudo-
random generator taking a seed of length s(n) and producing an output of length

(n). Then, assuming every language L ∈ NP has a zap, one can construct a
d(n)-approximate VPRG expanding a seed of length m · s(n) to a string of length
k(n) = m ·
(n), where d(n) = m2�(n).

Note that the expansion is arbitrary, since
(n) is an arbitrary polynomial and
pseudorandom generators exist for any polynomial expansion, based on any one-way
function.

Proof. We use the commitment scheme of [46]. (In this scheme, the receiver
sends an initial message, which can be fixed nonuniformly.) The prover commits to
m seeds of length s(n); VK is the concatenation of the m commitments. Using the
pseudorandom generator, each seed yields a block of length
(n), for a total output
length of m ·
(n). For any set I of indices, the prover can reveal the values of the
pseudorandom bits {ai}i∈I and can prove using a zap that the revealed bits in at least
m− 1 of the blocks are consistent with VK. (This is certainly in NP, so it has a zap
by assumption.)

Verifiability is immediate from the zap. Relaxed binding is also simple, since given
VK, the number of possible strings the prover can convince the verifier to accept is
m2�(n) = d(n). (The prover has freedom to choose one of m blocks on which he can
cheat and which of 2�(n) values to plug in there.)

It remains to show passing of the ith bit test. Suppose the construction fails this
test with some bias δ. We will use the block B containing i to distinguish pairs of the
form (C(v), τ) from (C(v), G(v)), where C(v) is a commitment to a seed v of length
s(n) and τ is random of length k(n). Given a pair (C(v), μ), construct a key VK as
follows. Choose m−1 seeds v1, . . . , vm−1, and arrange commitments to these seeds and
the commitment C(v) so that C(v) is the commitment to the supposed seed for block
B. Open the values for all positions other than i, and provide a zap of approximate
consistency with VK, using the chosen seeds v1, . . . , vm−1 as the witnesses to the fact
that the revealed bits in at least m− 1 of the blocks are consistent with VK.

If μ is pseudorandom with seed v, then by the witness-indistinguishability of the
zap, the advantage in guessing the ith bit is close to δ. (The witness-indistinguish-
ability may introduce a negligible error, so we don’t get exact advantage δ.) On the
other hand, if μ is truly random, then there can be no bias. Therefore we have a
distinguisher for (C(v), τ) from (C(v), G(v)).

Remark 5.9. In the case of ordinary pseudorandom generators, it is known that
the ability to expand by even one bit can be used to obtain arbitrary expansion. Is the
same true of (approximate) verifiable pseudorandom generators? From Corollary 4.4,
Theorem 5.10, and Corollary 5.7 we have only a higher threshold: if any polynomial
expansion is possible (from n to n1+ε for fixed ε), then we can build zaps and hence
arbitrary expansion. See more open problems in section 9.

5.2. Construction of VPRGs. A nontrivial VPRG, with a given desired (poly-
nomial) expansion from seed to output, can be constructed from any VPRF. The idea
is simply that a VPRG is a VPRF with a small domain. This is almost true, except
for some technical issues, which we describe next.

There is a difference in the binding requirement for a VPRF, according to the
definition in [45], and the binding requirement for a VPRG (Definition 5.2): a VPRF
allows the total number of “legitimate” functions (accepted by the verifier) to be
proportional to the number of public keys, whereas a VPRG counts them according
to the seeds. We can take the domain of the VPRG to be any polynomial that we

1532 CYNTHIA DWORK AND MONI NAOR

wish. We therefore take it to be larger than the length of the public key of the VPRF
plus the security parameter n. We must ensure that for any public key of the VPRF
accepted by the verifier (of both the VPRF and the VPRG), there is a corresponding
seed mapping to this public key. We therefore modify the mapping of VPRG seeds
to VPRG public keys to allow any public key of the VPRF. Specifically, the new seed
is of length n + the maximum of the seed length of the VPRF and the length of
the public key of the VPRF. The VPRG is now as follows: If the first n bits are all
0, then map the suffix (or as many bits as the public key needs) to the public key;
otherwise operate as in our original VPRG construction. Note that the event that the
leading bits are all 0 occurs with negligible probability, so the security of the VPRF
is preserved.

However, such a construction is overkill; moreover, the only known constructions
we have of VPRFs require specific assumptions such as the strong-RSA assumption
[45] or various Diffie–Hellman assumptions for groups with bilinear mappings [44, 16,
17].5

The goal of this section is to provide an alternate construction of VPRGs, based on
general trapdoor permutations. We do not require the “enhanced” property, as defined
in [30]. The construction follows along the lines of the trapdoor-based synthesizer
construction of Naor and Reingold [48]. To obtain (nonapproximate) VPRGs we
require that the trapdoor permutation be certified (see [6]).

We assume the existence of a family Fn of certified trapdoor permutations with
common domain Dn, together with a hard-core predicate (n is a security parameter).
The VPRG output is given as a binary matrix (say, in row-major order). The matrix
has r rows and c columns, where rc = k. Choose r functions f1, . . . , fr from F (one
for each row) and c random y (one for each column) in the common range of all
the trapdoor permutations, Dn. The (i, j) entry of the matrix will be the hard-core
predicate of f−1

i (yj).
Let VK = f1, . . . , fr, y1, . . . , yc. To prove the value of the (i, j) entry, reveal

f−1
i (yj). Verification is immediate using VK and the fact that each fi is a permutation

that is easy to compute in the forward direction.
The length of the seed s is r log |Fn| + c log |Dn|. As n is fixed and k grows,

the expansion is roughly quadratic. This completes the description of our VPRG
construction. The proof that it satisfies the ith bit test closely follows the proof
in [48].

An alternative to trapdoor permutations is to use Diffie–Hellman in groups with
efficient bilinear mappings where the computational Diffie–Hellman is assumed to be
hard [10, 39]. The easiness of the decisional Diffie–Hellman problem in these groups
yields a simple method for verification. (These are less stringent requirements than
in the existing constructions of VPRFs in [44, 16, 17].)

The standard example of a certifiable trapdoor function is RSA with a prime
public exponent e satisfying e > N . This assures that e and φ(N) are relatively prime.
If we relax the perfect binding requirement and instead aim for an approximate VPRG,
then we can use certain uncertified trapdoor permutations, as in the next example,
which is inspired by Shamir’s pseudorandom generator [52].

Consider RSA with small exponent. Choose a random RSA modulus N and
y1, . . . , yc ∈ ZN∗ . These form the verification key. Associate with the ith row the

ith smallest prime. The (i, j)th output bit is the hard-core bit of y
1/pi

j mod N . The

5In light of Corollary 4.4 and Theorem 5.6, we therefore get zaps and NIZKs based on the same
assumptions.

ZAPS AND THEIR APPLICATIONS 1533

possible problem is that pi may divide φ(N). In this case yj may have multiple
pith roots, possibly with different hard-core bits, and the owner of the generator can
cheat. However, even if the key is incorrectly chosen, so that N is not a product of two
primes, there can be at most logN/ log logN such primes, and hence we get relaxed
binding. (Note that if N is not a product of two primes, then presumably the output
sequence is not even close to that of a legal (two prime modulus) output; but this can
be resolved by allowing a small probability of any N being chosen, which does not
affect the pseudorandomness property.) We can take this into account in setting the
parameters.

5.3. Shared string VPRGs and NIZKs.
Theorem 5.10. VPRGs in the shared random string model exist if and only

if NIZKs exist in the shared random string model. Moreover, in the shared random
string model NIZKs imply VPRGs of arbitrary expansion.

Proof sketch. To construct VPRGs from NIZKs in the shared random string
model, commit (say, using the protocol of [46], taking the first several bits of the
common random string to be the first-round message of the receiver) to the seed of a
pseudorandom sequence and use a NIZK to prove that the revealed value is the correct
one. For the converse, given a VPRG in the common random string model, construct
essentially the NIZK of Feige, Lapidot, and Shamir [27], in which the bits of the
hidden random string (see more about them above) are the bits of the VPRG.

6. Oblivious transfer in the standard model. Although there are many
protocols under various assumptions for oblivious transfer, to date no 3-round protocol
has been shown secure, without resorting to a random oracle model. We provide a
protocol for 1-out-of-2 OT for which we are able to prove that the chooser’s privacy
is protected by the quadratic residuousity assumption (QRA) [35], and the sender’s
privacy is protected statistically (that is, with overwhelming probability over choices
made by the sender, at most one value is transmitted to the chooser).6 The protocol
is not known to ensure correctness, that is, the sender may choose what to send as a
function of the chooser’s message.

For simplicity, we describe the protocol for the case in which the sender’s two
inputs are bits b0, b1. The first round of the protocol, described next, can be eliminated
if the sender has a public key. In this case, the public key is chosen to be a random
first-round message ρ for zaps.

1. If the sender has no public key, then it chooses a first-round message ρ for a
zap and sends it to the chooser. (If the sender instead has a public key, then
this round is not needed.)

2. Let i ∈ {0, 1} be the chooser’s input. The chooser chooses a random 2-prime
modulus N and two random strings y0, y1 in Z

∗
N such that y1−i is a quadratic

residue modulo N and yi is a nonresidue with Jacobi symbol 1. Using ρ, the
chooser gives a zap π of the statement: “y0 is a QR modN OR y1 is a QR
mod N .”

3. The sender verifies the zap (ρ, π) and, if verification fails, the sender aborts. If
verification succeeds, the sender chooses x0, x1 ∈R Z

∗
N and sends the following

two values to the chooser in any order: {yb0b0x
2
0 mod N, yb1b1x

2
1 mod N}.

We now give a proof sketch of correctness of the protocol. Assume first that both
parties are following the protocol correctly. Let yi be the unique quadratic nonresidue
modulo N among y0, y1. Then ybii x2

i is a quadratic residue modulo N if and only if

6Previous applications of QRA to OT appear, for example, in [12, 41].

1534 CYNTHIA DWORK AND MONI NAOR

bi = 0. On the other hand, since y1−i is a quadratic residue modulo N , so is y
b1−i

1−i x
2
1−i,

independent of the value of b1−i. Thus, the ability of the chooser to compute quadratic
residuousity yields only and exactly the value of bi.

Now assume the sender follows the protocol correctly but the chooser does not.
The soundness of the zap ensures that at least one of y0, y1 is a quadratic residue

modulo N . Assume then that yj is a quadratic residue modulo N . Then y
bj
j x2

j mod N
is always a quadratic residue, independent of bj , and independent of how N is chosen.
Thus, the chooser can learn at most one of b0, b1. Finally, by the QRA and the way
in which a good chooser constructs N, y0, y1, the sender cannot distinguish which of
y0, y1 is the quadratic residue. In particular, the (polynomial-time bounded) sender
cannot distinguish among the following four distributions (N, y0, y1, (ρ, π)), where ρ
is fixed in step 1, N is chosen according to the protocol, and the other elements are
chosen as follows:

1. y0 is a random quadratic residue modulo N , y1 is a random nonresidue with
Jacobi symbol 1, and y0 is the witness used in constructing π;

2. y0 and y1 are both quadratic residues modulo N and y0 is the witness used
in constructing π;

3. y0 and y1 are both quadratic residues modulo N and y1 is the witness used
in constructing π; and

4. y1 is a random quadratic residue modulo N , y0 is a random nonresidue with
Jacobi symbol 1, and y1 is the witness used in constructing π.

Distributions 2 and 3 are indistinguishable by the witness-indistinguishability of the
zap. Distributions 1 and 2 (and, similarly, distributions 3 and 4) are indistinguishable
by the QRA. Thus, distributions 1 and 4 are computationally indistinguishable, so
the sender does not learn which of b0, b1 has been transferred to the chooser.

Remark 6.1. Naor and Pinkas [47] were able to modify this approach to produce a
different protocol with similar security properties; their protocol is based on decisional
Diffie–Hellman and does not explicitly use zaps.

7. Timing-based applications. In this section we describe two delay-free timing-
based (see section 2.5) applications for zaps:

• 3-round concurrent zero-knowledge proofs of knowledge for any language L ∈
NP, and

• 2-round deniable authentication.

7.1. 3-round concurrent zero-knowledge proofs of knowledge. At a high
level, the protocol consists of two steps. Let x ∈ L be the statement to be proved.
First, the verifier chooses a statement S and proves, using a zap, that S is true.
Second, the prover gives a proof of knowledge of a witness to the statement “x ∈
L ∨ S.” Intuitively, soundness comes from the fact that the verifier’s proof does not
reveal a witness to S. This is achieved by constructing S to be the logical-OR of
two independent statements—in such a case witness-indistinguishability is known to
imply witness-hiding [28]. A single preprocessing step is needed for both the proof of
knowledge and to provide the first-round ρ for the verifier’s zap of S.

In a little more detail, the statement S is a claim that of two given timed commit-
ments to two random strings, at least one is valid—forced recovery of the committed
value is possible (see the discussion in section 2.5). Verifiable recovery implies the ex-
istence of a knowledge extractor. The extractor is used in constructing the simulator
for proving zero-knowledge.

Let f be a one-way function. Let f (k)(s) be the kth iterate of f applied to s.

ZAPS AND THEIR APPLICATIONS 1535

Associated with any randomly chosen s, there is a k-bit pseudorandom string B
consisting of the hard-core bits of

s, f(s), f (2)(s), . . . , f (k−1)(s),

respectively (this is the Blum–Micali [9] generator). The basic technique for prov-
ing knowledge of a witness w ∈ w(x) is to commit to B0 and B1 by giving a pair
f (k)(s0), f (k)(s1). The verifier then chooses one of the two blocks, say, Bi, to be
revealed. The prover releases si and gives w ⊕B1−i, together with a proof of consis-
tency with the initial commitment f (k)(s1−i). Because this gives only a probability
1/2 of detecting cheating, the process is repeated p many times in parallel. (Choose p,
the number of parallel repetitions, according to the required probability of soundness
error.) The preprocessing step (step 1 in the protocol) is just the transmission of suf-
ficiently many pairs of the form f (k)(s0), f (k)(s1), together with a ρ for the verifier’s
zap in step 2.

3-round timed concurrent ZK POK for L ∈ NP. Common input x ∈ L, input to
prover w ∈ w(x).

1. (a) Let f be a fixed one-way permutation (f is part of the protocol, known to
both parties). The prover sends to the verifier 2p pairs (f (k)(s0

1), f
(k)(s1

1),
. . . , (f (k)(s0

2p), f
(k)(s1

2p))) for randomly chosen sji , i = 1, . . . , 2p, and
j = 0, 1.

(b) The prover also sends to the verifier ρ, a round-one message for a zap.
2. (a) The verifier selects a random 2p-bit string c1 . . . c2p.

(b) The verifier chooses two random values y0 and y1 of length p and con-
structs from them two commitment strings ζ0 ∈R TC(y0) and ζ1 ∈R

TC(y1) using the timed commitment protocol. Using ρ, the verifier
sends π, proving that at least one of the ζi is valid ((ρ, π) constitutes a
zap).

(c) The verifier sends to the prover a new round-one message ρ′.
3. (a) For each 1 ≤ i ≤ p, the prover sends to the verifier scii . For each such i

the prover also computes Bi, the pseudorandom k-bit string consisting
of the hard-core bits of

s1−ci
i , f(s1−ci

i), f (2)(s1−ci
i), . . . , f (k−1)(s1−ci

i).

(b) The prover checks the zap (ζ0, ζ1, ρ, π). If the proof is invalid, the prover
terminates the protocol.

(c) The prover chooses z at random.
(d) Using B1, . . . , Bp the prover commits to z and w. Specifically, it sends

z⊕B1, . . . , z⊕Bp; similarly it commits to w, using blocks Bp+1 . . . B2p.
We call the commitments to z the first group, and the commitments
to w the second group. Using ρ′, the prover constructs a proof π′ that
at least one of the following two statements holds: (1) there exists z
consistent with all of the commitments in the first group and z is the
value committed to in one of the timed commitments ζ0 or ζ1; or (2)
there exists w consistent with all of the commitments in the second group
and w ∈ w(x). The witness used for constructing the zap is the set of

strings {s1−cp+1

p+1 , . . . , s
1−c2p
2p }.

Timing constraints: V accepts P ’s round-three message only if it arrives within
time α on V ’s local clock from the time at which V sent its round-two message. α and
β (for the timing assumption) should be chosen to satisfy α ≤ β and 2β+γ < t, where

1536 CYNTHIA DWORK AND MONI NAOR

the value t is the time below which it is safe to assume that the timed commitment
cannot be broken, even by a PRAM, and γ is an upper bound on the time it takes
to create a zap by a program that is given a witness. For completeness, α must
be sufficiently large to permit the necessary computations by P and the round-trip
message delay.

The protocol is concurrent zero-knowledge because it is straight-line simulatable
via the forced openings: every interaction can be simulated without rewinding the
prover [24]. To see this, consider a single interaction. The simulator generates a
real round-one message, which is given to the verifier. The verifier constructs its
timed commitments and their proof π. The simulator checks π and, if it is correct,
continues with the protocol. The clocks are frozen and the simulator computes the
forced opening of the timed commitments, obtaining y, the decommitment of one of
ζ0 and ζ1. The clocks are started again, the simulator sets z = y, commits to z and
a random string (instead of w), and constructs π′ using the commitment to z as the
witness. When the adversarial scheduler schedules P ’s next message, the simulator
sends π′.

Now consider four classes of transcripts: they differ according to the value com-
mitted to in the first block (random or z = y), the value committed to in the second
block (w or random), and which witness is used in creating the zap π′ (w or z). Only
four of the eight possibilities are relevant:

1. First block: random; second block: w; witness is w.
2. First block: z = y; second block: random; witness is y.
3. First block: z = y; second block: w; witness is w.
4. First block: z = y; second block: w; witness is y.

The real transcripts are the first class. The simulator outputs the second class.
Classes 1 and 3 are computationally indistinguishable by the one-wayness of f and
the properties of hard-core bits. Classes 2 and 4 are indistinguishable for the same
reason. Classes 3 and 4 are indistinguishable by the witness-indistinguishability of
zaps. Hence, classes 1 and 2 are computationally indistinguishable.

We now argue that the interaction is sound and a proof of knowledge. If the prover
completes the proof with probability δ, then standard extraction techniques, i.e.,
forcing P to explore two computational paths, can be used to obtain a witness (strings
s1−ci
i for the appropriate set of indices i) with probability negligibly close to δ2.

Suppose x /∈ L, and that a cheating prover succeeds with nonnegligible probability
δ to cause the verifier to accept. Then the timed commitment scheme can be broken
with probability negligibly close to δ2/2, as follows. Consider a (possibly fictitious)
nonfaulty process running a perfect clock. By the (α, β) assumption, if V is nonfaulty
and measures time at most α on its own clock between the time at which it sent its
round-two message and the time at which it received P ’s round-three reply, at most
β real time has elapsed.

Assume we are given a timed commitment ξ1 ∈R TC(y). Run the cheating prover
for one step. Choose c1 . . . cp at random. Choose y′ and give ξ1 ∈R TC(y′); then,
using the witness based on y′, act as the verifier and in step 2 give a zap that at least
one of ξ1 and ξ2 is valid. By definition, such a zap can be constructed within time γ.
If the prover responds (which it will do with probability at least δ), repeat steps 2
and 3, using the same timed commitments and zap in step 2, but with a new random
string c′1, . . . , c

′
p. If the prover responds again, use the revealed sc′i to obtain at least

one of y, y′, w ∈ w(x). Since x /∈ L, the value obtained is either y or y′. By the
witness-indistinguishability of the verifier’s zap, the value will be y with probability

ZAPS AND THEIR APPLICATIONS 1537

1/2. The total time required for extraction is at most 2β + γ < t, contradicting the
assumption that breaking the timed commitment requires time at least t < T . Thus,
the system is sound. That the system is a proof of knowledge is immediate from the
extraction procedure described above.

Theorem 7.1. If TC is a timed commitment protocol satisfying the requirements
of section 2.5, then the protocol described above is a 3-round timed concurrent zero-
knowledge proof of knowledge system for any language L in NP.

Remark 7.2. The straight-line simulability also permits the prover to use differing
(α, β) pairs for the different verifiers.

7.2. Timed 2-round deniable authentication. We now describe a 2-round
timed concurrent deniable authentication protocol (see section 2.3 for definition and
discussion), based on zaps and timed commitments.

The AP has a public key 〈E1, E2, ρ〉, where E1 and E2 are public encryption keys
chosen according to a public-key cryptosystem generator that is nonmalleable against
chosen-ciphertext attacks in the postprocessing mode, and ρ is a first-round message
for a zap.

1. The verifier chooses random strings y0, y1, r and sends to the prover c ∈R

E1(m ◦ r) and timed commitments ζ0 ∈R TC(y0) and ζ1 ∈R TC(y1). In
addition, using ρ, the verifier gives a zap that at least one of the ζi is valid.
Finally, the verifier also sends to the prover a first-round message ρ′ for a zap.

2. The prover checks the zap (ρ, π) and aborts if verification fails. Otherwise,
the prover sends to the verifier η ∈R E1(r), δ ∈R E2(s) for a randomly chosen
s. Using ρ′, the prover sends a zap π′ that at least one of the following holds:
η ∈ E1(r) or s ∈ {y0, y1}. (More specifically, π′ is a proof that η is an
encryption under E1 of the suffix of the message encrypted by ciphertext c
OR δ is an encryption under E2 of one of the values committed to by ζ1, ζ2.)
The witness used in creating π′ is the set of random bits in creating η or δ.
In a regular execution η is used.

V accepts if and only if both (1) the zap (ρ′, π′) is accepted and (2) P ’s response is
received in a timely fashion, as specified in the timing constraints.

Timing constraints. P ’s round-two message must arrive within time α on V ’s
local clock from the time at which V sent its round-one message. α and β are chosen
to satisfy α ≤ β and β + γ < t, where the value t is the time below which it is safe to
assume that the timed commitment cannot be broken, even by a PRAM, and γ is an
upper bound on the time it takes to create a zap by a program that is given a witness.
For completeness, α must be sufficiently large to permit the necessary computations
by P and the round-trip message delay.

This completes the description of the deniable authentication protocol.
Theorem 7.3. If TC is a timed commitment protocol satisfying the requirements

of section 2.5, then the 2-round protocol is sound and deniable to a distinguisher that
has access to the public key of AP.

Proof. We first argue unforgeability. Suppose that the adversary is trying to
forge message m and is given by the verifier the “challenge” E(m ◦ r). Then by the
nonmalleability of E1 it cannot produce E1(r), even if it has access to a decrypting
oracle for E1 on all messages with prefix different than m.7 Therefore, given that the

7Actually it seems that we do not need E1 to resist any chosen-ciphertext attacks and it is
enough that it is nonmalleable against chosen-plaintext attacks. The reason is that we can give the
adversary an encryption of a random string instead of E1(r) and use the forced opening of the timed
commitment to obtain a zap in the second step.

1538 CYNTHIA DWORK AND MONI NAOR

adversary provides a zap at step 2, it must be the case that s = yi for some i ∈ {0, 1}.
In this case, the real prover, who knows D2, and the adversary together can be used
to break the timed commitment scheme with probability 1/2: given TC(y), choose y′

at random and give TC(y′); then, using the witness based on y′, give a zap that at
least one of TC(y) or TC(y′) (in random order) is recoverable. By definition, such a
zap can be constructed within time γ. If the forger gives back s = y within time α,
then TC has been broken in time at most β + γ < T .

We now argue deniability. The simulator extracts from TC(y0) and TC(y1) either
y0 or y1 (for at least one of them this should be possible). It then creates η = E1(r

′) for
a random r′ and creates δ = E2(yi) and uses it as a witness to a zap that η ∈ E1(r) or
s = yi. The proof of indistinguishability of simulated and real transcripts is analogous
to the proof of Theorem 7.1 and relies on the indistinguishability of encryptions of E1

and E2.
Note that there is no real need to choose E2 different from E1.
The need to add ρ to the public key of the authenticator may increase its size

significantly. However, ρ is used only to show the recoverability of TC. If we are
equipped with a timed commitment where recoverability is self-evident, then there
is no need to have it at all and we can use any public key of a sufficiently strong
encryption.

Deniability when the distinguisher has the private keys of AP. We now describe
a protocol that is deniable even for a distinguisher who has the private keys of AP,
based on the (not deniable) authentication protocol given in [18]. The AP has a
public key 〈E, σ〉, where E is a public encryption key chosen according to a public-
key cryptosystem generator that is nonmalleable against chosen-ciphertext attacks in
the postprocessing mode, and σ is a random string to be used in a NIZK of a language
defined below:

1. The verifier chooses a random string r and sends to the prover c ∈R E1(m◦r)
and timed commitment ζ ∈R TC(r). In addition, using σ, the verifier gives
a NIZK proof π that ζ is valid and the committed value equals the suffix of
the plaintext of c.

2. The prover checks the proof (σ, π) and aborts if verification fails. Otherwise,
the prover decrypts c and obtains m and r and sends to the verifier r in
the clear (of course only if the decrypted m equals the value it wishes to
authenticate).

V accepts if and only if both (1) the received r′ equals the value r he selected and (2)
P ’s response is received in a timely fashion, as specified in the timing constraints.

Timing constraints. P ’s round-two message must arrive within time α on V ’s
local clock from the time at which V sent its round-one message. α and β are chosen
to satisfy α ≤ β and β < t, where the value t is the time below which it is safe
to assume that the timed commitment cannot be broken, even by a PRAM. For
completeness, α must be sufficiently large to permit the necessary computations by
P and the round-trip message delay.

Theorem 7.4. If TC is a timed commitment protocol satisfying the requirements
of section 2.5, then the 2-round protocol is sound and deniable to a distinguisher that
has access to the public and private keys of AP.

Proof. Unforgeability follows along the lines of the unforgeability in [18], the zero-
knowledge property of (σ, π), and the timing requirements. We now argue deniability.
The simulator extracts from ζ = TC(r) the value r and by the soundness of the
NIZK proof system this is the same r as in the ciphertext. It then adds r to the
transcript.

ZAPS AND THEIR APPLICATIONS 1539

8. Witness protection in the resettable model.

8.1. Resettable witness-indistinguishability. For a formal definition of re-
settable witness-indistinguishability, see [13]. We will motivate the definition infor-
mally by focusing on smart cards. Intuitively, a smart card is loaded with x, w ∈ w(x),
and a seed s for a pseudorandom function, at the time it is created. This seed is the
only source of randomness the card has; furthermore, we assume that the card is state-
less, i.e., does not change its internal memory between sessions (so it cannot store a
counter and use it in conjunction with the seed to define the randomness of the current
session). Our interest is in protecting the prover from a verifier V ∗ that runs the prover
many times on the same x,w, s. Let us use the notation (P (x,w, s), V ∗(x, z)) to denote
the transcript of exactly this kind of attack where z is auxiliary information known
to V ∗ (in particular, we may even have z = w,w′). Letting w,w′ ∈ w(x), a proof that
x ∈ L is resettable witness-indistinguishable if for all probabilistic polynomial-time
T, V ∗, and z

∣∣Pr(V ∗,s)[T (P (x,w, s)V ∗(x, z))] − Pr(V ∗,s′)[T (P (x,w′, s′)V ∗(x, z))]
∣∣ ≤ ν(n).

Every zap for a language L ∈ NP yields a 2-round resettable witness-indistin-
guishable proof system for L as follows. On input ρ, the prover computes R = fs(x, ρ),
where fs is a pseudorandom function with seed s. It then uses the bits R as the random
bits in computing the zap response π.

Soundness holds because the round-one message ρ is not needed for unpredicta-
bility—indeed, soundness holds even if some ρ̂ is fixed nonuniformly and before x is
chosen. As for witness-indistinguishability, from the WI of the zap it follows that an
assumed distinguisher for the resettable system can be used to distinguish the output
of the pseudorandom function from truly random, a contradiction.

8.2. Resettable zero-knowledge. We first present our 3-round timing-based
rZK protocol for any L ∈ NP and then compare it to previous results.

Let (E,D) be the encryption and decryption algorithms of a semantically secure
against chosen-plaintext attack (CPA) encryption method. The scheme need not be
public-key, but there should be a public description pd of the encryption key with the
following two properties: (1) it is easy to verify that decryption is unique, that is,
given ciphertext c and a public description pd there should be at most one p satisfying
c ∈ E(p); and (2) given pd it is easy to verify that there exists decryption key dk such
that given c ∈ E(p) we have Ddk(c) = p.

An example of such an encryption scheme can be based on RSA with large pub-
lic exponent, as in section 5.2. That is, the public key is (e,N), in which the ex-
ponent e is prime and sufficiently large (so that e cannot possibly divide φ(N)),
pd = (e,N) in this case, and the actual encryption is done using the hard-core pred-
icate of the exponentiation with e function. Alternatively, E could be a pseudo-
random permutation cipher, which can be turned into a semantically secure against
CPA encryption scheme using random padding, and where pd is a (perfectly binding)
commitment to the seed. The fact that E is a permutation assures unique decryp-
tion.

For this application, we require that the timed commitment scheme be secure
nonuniformly, i.e., that there does not exist a PRAM with fixed advice tape that
can break the commitment scheme with nonnegligible probability in time less than t.
This is one of the cases where security against nonuniform adversaries is used in an
essential way.

1540 CYNTHIA DWORK AND MONI NAOR

3-round timing-based rZK for L ∈ NP .
1. The prover chooses pd (the public description of the encryption key of E) and

a random string ρ and sends both to the verifier.
2. The verifier checks that encryptions under E are uniquely decryptable (as

discussed above) and if not, rejects. Assuming E passes the test, the verifier
chooses random strings y0, y1 and sends to the prover timed commitments
ζ0 ∈R TC(y0), ζ1 ∈R TC(y1) and, using ρ, a zap π that at least one of the
two timed commitments is valid. The verifier also sends a string ρ′ to the
prover.

3. The prover checks (π, ρ). If it is accepted, then the prover uses the random
bits defined by an application of its pseudorandom function on the message
sent by the verifier to generate a ∈R E(w) and b ∈R E(z), where w ∈ w(x)
and z is random. Using ρ′ and part of the output of the pseudorandom
function the prover also generates a zap π′ that w ∈ w(x) OR z ∈ {y0, y1}.
The witness used consists of the random bits used in generating a. a, b, and
π′ are sent.

The verifier checks that (ρ′, π′) is accepted, that b has unique decryption, and that
the prover’s response was timely, as defined by the timing constraints, accepting if
and only if all conditions are satisfied.

Timing constraints. P ’s round-two message must arrive within time α on V ’s
local clock from the time at which V sent its round-one message. α and β (from the
timing assumption) are chosen to satisfy α ≤ β and β+γ < t, where the value t is the
time below which it is safe to assume that the timed commitment cannot be broken,
even by a PRAM, and γ is an upper bound on the time it takes to create a zap by
a program that is given a witness. For completeness, α must be sufficiently large to
permit the necessary computations by P and the round-trip message delay.

Note that the only party that has to measure time is V , which is considered more
resourceful than the prover (who may be a smart card with no independent clock) in
the resettable setting.

Theorem 8.1. If TC is a timed commitment protocol satisfying the requirements
of section 2.5, then for any L ∈ NP the above protocol is rZK.

Proof. A straight-line simulator can be constructed in a similar fashion to the
construction in the proof of Theorem 7.1, thus settling the zero-knowledge issue. For
soundness we use the existence of a decryption algorithm D with decryption key dk. If
the protocol is not sound, then this key can be used to break the timed commitment in
exactly the same way as the proof of knowledge was used in the proof of Theorem 7.1,
violating the assumed nonuniform security of the timed commitment.

The properties of the encryption and decryption algorithms (E,D) assure us that
given pd a decryption key dk exists (or the verifier will reject in step 2). Suppose now
that there is a soundness adversary, succeeding on infinitely many sizes to make the
verifier accept nontrue statements. For each such size we can have a slightly different
prover, one that sends for size n the same key pdn, the key that maximizes his chance
of proving a false statement. This prover has at least as high a chance of proving
false statements than the original adversary. Let dkn be the decryption key of pdn.
Since the zaps generally prove true statements, the prover’s chance of giving a false
proof is only if b ∈R E(z) (uniquely) corresponds to a z ∈ {y0, y1}. Given dkn as the
advice for size n, it is possible to obtain z ∈ {y0, y1} and guess the value of the timed
commitments. So the nonuniform advice for breaking the timed commitments is dn,
contradicting the assumption that it is secure against nonuniform adversaries.

ZAPS AND THEIR APPLICATIONS 1541

We therefore have a nonconstructive reduction: given an algorithm for providing
false proofs for L we know that there exists an algorithm for breaking the timed com-
mitment; however, the reduction does not yield an effective method for the conversion
(since there is no effective way of finding dk).

Note that a proof of security which does not yield an effective procedure to break
the underlying assumptions is rare.

9. Open questions. One vein of open problems induced by this work is with
respect to the new primitive VPRG: can VPRGs be composed “á la GGM,” as can or-
dinary pseudorandom generators? This is related to the issue of constructing VPRGs
with better expansion as well as to the question whether there is a general construc-
tion of VPRFs from VPRGs. A different issue is whether VPRGs can be based on an
assumption weaker than trapdoor permutations. For example, is it possible to base
VPRGs on the Diffie–Hellman assumption (either computational or the decisional
version, for groups without a bilinear mapping)?

What is the relationship between NIZKs in the public parameters model and
NIZKs in the public random string model? The answer to this will clarify the rela-
tionship between VPRGs and NIZKs in the public parameters model.

A second vein of questions deals with efficiency and practicality. We have used
general NIZKs; thus any proof must go through a reduction to an NP-complete prob-
lem. It would be useful to have more efficient, special-purpose zaps, for instance, a
zap that one of x and y is a quadratic residue modulo N . Another concrete question
regarding zaps is to construct one in conjunction with a timed commitment, so that
it will be simple to prove consistency.

A third vein of questions deals with round efficiency: in which cases are our
protocols round-optimal? It is not hard to argue that 2-round (non-black-box) zero-
knowledge proofs of knowledge are impossible, even using timing. It is also known that,
assuming P �= NP , there is no 2-round proof system with perfect completeness for NP-
hard languages either with [34] or without [2] auxiliary input. As mentioned earlier, 2-
round and 1-round argument systems do exist under nonstandard assumptions [24, 4].

Acknowledgment. We thank the anonymous referees for their zealous reading
of the paper and helpful suggestions.

REFERENCES

[1] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the 42nd
Annual IEEE Symposium on Foundation of Computer Science, 2001, pp. 106–115.

[2] B. Barak, Y. Lindell, and S. Vadhan, Lower bounds for non-black-box zero knowledge, in
Proceedings of the 44th Annual IEEE Symposium on Foundation of Computer Science,
2003, pp. 384–393.

[3] B. Barak, S. J. Ong, and S. P. Vadhan, Derandomization in Cryptography, in Advances in
Cryptology—CRYPTO 2003, Lecture Notes in Comput. Sci. 2729, Springer, New York,
2003, pp. 299–315.

[4] B. Barak and R. Pass, On the possibility of one-message weak zero-knowledge, in Proceedings
of the First Annual Theory of Cryptography Conference, TCC 2004, Lecture Notes in
Comput. Sci. 2951, Springer, New York, 2004, pp. 121–132.

[5] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, Relations among notions of secu-
rity for public-key encryption schemes, in Advances in Cryptology—CRYPTO’98, Lecture
Notes in Comput. Sci. 1462, Springer, New York, 1998, pp. 26–45.

[6] M. Bellare and M. Yung, Certifying permutations: Noninteractive zero-knowledge based on
any trapdoor permutation, J. Cryptology, 9 (1996), pp. 149–166.

[7] M. Blum, A. De Santis, S. Micali, and G. Persiano, Noninteractive zero-knowledge, SIAM
J. Comput., 20 (1991), pp. 1084–1118.

1542 CYNTHIA DWORK AND MONI NAOR

[8] M. Blum, P. Feldman, and S. Micali, NonInteractive zero-knowledge proof systems, in Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, 1988,
pp. 103–112.

[9] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random
bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[10] D. Boneh and M. Franklin, Identity based encryption from the Weil pairing, SIAM J. Com-
put., 32 (2003), pp. 586–615.

[11] D. Boneh and M. Naor, Timed commitments, in Advances in Cryptology—CRYPTO’2000
Proceedings, Lecture Notes in Comput. Sci. 1880, Springer, New York, 2000, pp. 236–254.

[12] G. Brassard, C. Crepeau, and J. M. Roberts, All-or-nothing disclosure of secrets, in Ad-
vances in Cryptology—CRYPTO ’86, Lecture Notes in Comput. Sci. 263, Springer, New
York, 1987, pp. 234–238.

[13] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali, Resettable zero-knowledge, in
Proceedings of the 32nd ACM Symposium on Theory of Computing, 2000, pp. 235–244.

[14] R. Canetti, J. Kilian, E. Petrank, and A. Rosen, Concurrent zero-knowledge requires
Ω̃(logn) rounds, SIAM J. Comput., 32 (2002), pp. 1–47.

[15] I. Damg̊ard, Efficient concurrent zero-knowledge in the auxiliary string model, in Advances
in Cryptology—EUROCRYPT 2000, Lecture Notes in Comput. Sci. 1807, Springer, New
York, 2000, pp. 418–430.

[16] Y. Dodis, Efficient construction of (distributed) verifiable random functions, in Public Key
Cryptography—PKC 2003 Proceedings, Lecture Notes in Comput. Sci. 2567, Springer,
New York, 2003, pp. 1–17.

[17] Y. Dodis and A. Yampolskiy, A verifiable random function with short proofs and keys, in
Public Key Cryptography—PKC 2005 Proceedings, Lecture Notes in Comput. Sci. 3386,
Springer, New York, 2005, pp. 416–431.

[18] D. Dolev, C. Dwork, and M. Naor, Nonmalleable cryptography, SIAM J. Comput., 30
(2000), pp. 391–437.

[19] C. Dwork, The Nonmalleability Lectures, CS 359 Course Notes, Stanford University, 1999,
http://theory.stanford.edu/˜gdurf/cs359-s99.

[20] C. Dwork and M. Naor, Pricing via processing-or-combatting junk mail, in Advances in
Cryptology—CRYPTO’92, Lecture Notes in Comput. Sci. 740, Springer, New York, 1993,
pp. 139–147.

[21] C. Dwork and M. Naor, Method for Message Authentication from Nonmalleable Crypto
Systems, US Patent 05539826, 1996.

[22] C. Dwork, M. Naor, and O. Reingold, Immunizing encryption schemes from decryption er-
rors, in Advances in Cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci. 3027,
Springer, New York, 2004, pp. 342–360.

[23] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, J. ACM, 51 (2004), pp.
851–898.

[24] C. Dwork and A. Sahai, Concurrent zero-knowledge: Reducing the need for timing con-
straints, in Advances in cryptology—CRYPTO ’98, Lecture Notes in Comput. Sci. 462,
Springer, New York, 1998, pp. 442–457.

[25] C. Dwork and L. J. Stockmeyer, 2-round zero knowledge and proof auditors, in Proceedings
of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 322–331.

[26] S. Even, O. Goldreich, and A. Lempel, A Randomized protocol for signing contracts, Com-
mun. ACM, 28 (1985), pp. 637–647.

[27] U. Feige, D. Lapidot, and A. Shamir, Multiple noninteractive zero knowledge proofs under
general assumptions, SIAM J. Comput., 29 (1999), pp. 1–28.

[28] U. Feige and A. Shamir, Witness indistinguishable and witness hiding protocols, in Proceed-
ings of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 416–426.

[29] O. Goldreich, Foundations of Cryptography Volume 1: Basic Tools, Cambridge University
Press, Cambridge, UK, 2001.

[30] O. Goldreich, Foundations of Cryptography Volume 2: Applications, Cambridge University
Press, Cambridge, UK, 2004.

[31] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, J. ACM,
33 (1986), pp. 792–807.

[32] O. Goldreich and H. Krawczyk, On the composition of zero knowledge proof systems, SIAM
J. Comput., 25 (1996), pp. 169–192.

[33] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity,
and a methodology of cryptographic protocol design, J. ACM, 38 (1991), pp. 691–729.

[34] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems, J.
Cryptology, 7 (1994), pp. 1–32.

ZAPS AND THEIR APPLICATIONS 1543

[35] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270–299.

[36] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[37] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[38] R. Impagliazzo, M. Naor, O. Reingold, and A. Shamir, personal communication, 1998.
[39] A. Joux and K. Nguyen, Separating decision Diffie–Hellman from computational Diffie–

Hellman in cryptographic groups, J. Cryptology, 16 (2003), pp. 239–247.
[40] J. Kilian and E. Petrank, An efficient noninteractive zero-knowledge proof system for NP

with general assumptions, J. Cryptology, 11 (1998), pp. 1–27.
[41] E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database, computation-

ally-private information retrieval, in Proceedings of the 38th Annual IEEE Symposium on
Foundations of Computer Science, 1997, pp. 364–373.

[42] C. Lautemann, BPP and the polynomial time hierarchy, Inform. Process. Lett., 17 (1983), pp.
215–217.

[43] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton University Press,
Princeton, NJ, 1996.

[44] A. Lysyanskaya, Unique signatures and verifiable random functions from the DH-DDH sepa-
ration, in Advances in Cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci. 2442,
Springer, New York, 2002, pp. 597–612.

[45] S. Micali, M. Rabin, and S. Vadhan, Verifiable random functions, in Proceedings of the 40th
IEEE Symposium on Foundations of Computer Science, 1999, pp. 120–130.

[46] M. Naor, Bit commitment using pseudo-randomness, J. Cryptology, 4 (1991), pp. 151–158.
[47] M. Naor and B. Pinkas, Efficient oblivious transfer protocols, in Proceedings of the Twelfth

Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 2001, pp.
448–457.

[48] M. Naor and O. Reingold, Synthesizers and their application to the parallel construction of
pseudo-random functions, J. Comput. Systems Sci., 58 (1999), pp. 336-375.

[49] M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen ciphertext
attacks, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, 1990, pp. 427–437.

[50] M. O. Rabin, How to Exchange Secrets by Oblivious Transfer, Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard University, Cambridge, MA, 1981.

[51] A. Rosen, A note on the round-complexity of concurrent zero-knowledge, in Advances in
Cryptology—CRYPTO’2000 Proceedings, Lecture Notes in Comput. Sci. 1880, Springer,
New York, 2000, pp. 451–468.

[52] A. Shamir, On the generation of cryptographically strong pseudorandom sequences, ACM
Trans. Comput. Systems, 1 (1983), pp. 38–44.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1544–1569

COMPLEXITY OF SELF-ASSEMBLED SHAPES∗

DAVID SOLOVEICHIK† AND ERIK WINFREE†

Abstract. The connection between self-assembly and computation suggests that a shape can be
considered the output of a self-assembly “program,” a set of tiles that fit together to create a shape. It
seems plausible that the size of the smallest self-assembly program that builds a shape and the shape’s
descriptional (Kolmogorov) complexity should be related. We show that when using a notion of a
shape that is independent of scale, this is indeed so: in the tile assembly model, the minimal number
of distinct tile types necessary to self-assemble a shape, at some scale, can be bounded both above and
below in terms of the shape’s Kolmogorov complexity. As part of the proof, we develop a universal
constructor for this model of self-assembly that can execute an arbitrary Turing machine program
specifying how to grow a shape. Our result implies, somewhat counterintuitively, that self-assembly
of a scaled-up version of a shape often requires fewer tile types. Furthermore, the independence of
scale in self-assembly theory appears to play the same crucial role as the independence of running time
in the theory of computability. This leads to an elegant formulation of languages of shapes generated
by self-assembly. Considering functions from bit strings to shapes, we show that the running-time
complexity, with respect to Turing machines, is polynomially equivalent to the scale complexity of
the same function implemented via self-assembly by a finite set of tile types. Our results also hold
for shapes defined by Wang tiling—where there is no sense of a self-assembly process—except that
here time complexity must be measured with respect to nondeterministic Turing machines.

Key words. Kolmogorov complexity, scaled shapes, self-assembly, Wang tiles, universal con-
structor

AMS subject classifications. 68Q30, 68Q05, 52C20, 52C45

DOI. 10.1137/S0097539704446712

1. Introduction. Self-assembly is the process by which an organized structure
can spontaneously form from simple parts. The tile assembly model [22, 21], based on
Wang tiling [20], formalizes the two-dimensional self-assembly of square units called
“tiles” using a physically plausible abstraction of crystal growth. In this model, a new
tile can adsorb to a growing complex if it binds strongly enough. Each of the four
sides of a tile has an associated bond type that interacts with a certain strength with
matching sides of other tiles. The process of self-assembly is initiated by a single seed
tile and proceeds via the sequential addition of new tiles. Confirming the physical
plausibility and relevance of the abstraction, simple self-assembling systems of tiles
have been built out of certain types of DNA molecules [23, 15, 14, 12, 10]. The
possibility of using self-assembly for nanofabrication of complex components such as
circuits has been suggested as a promising application [6].

The view that the “shape” of a self-assembled complex can be considered the
output of a computational process [2] has inspired recent interest [11, 1, 3, 9, 4]. While
it was shown through specific examples that self-assembly can be used to construct
interesting shapes and patterns, it was not known in general which shapes could be
self-assembled from a small number of tile types. Understanding the complexity of

∗Received by the editors December 21, 2004; accepted for publication (in revised form) June
30, 2006; published electronically February 9, 2007. An extended abstract version of this work was
previously published as Complexity of self-assembled shapes, in DNA Computing, Lecture Notes in
Comput. Sci. 3384, Springer, Berlin, 2005, pp. 344–354. This work was supported by NSF CAREER
grant 0093486.

http://www.siam.org/journals/sicomp/36-6/44671.html
†California Institute of Technology, Pasadena, CA 91125 (dsolov@caltech.edu, winfree@caltech.

edu).

1544

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1545

shapes is facilitated by an appropriate definition of shape. In our model, a tile system
generates a particular shape if it produces any scaled version of that shape (section
3). This definition may be thought to formalize the idea that a structure can be
made up of arbitrarily small pieces, but more importantly this leads to an elegant
theory that is impossible to achieve without ignoring scale. Computationally, it is
analogous to disregarding computation time and is thus more appropriate as a notion
of output of a universal computation process.1 Using this definition of shape, we
show (section 4) that for any shape S̃, if Ksa(S̃) is the minimal number of distinct tile
types necessary to self-assemble it, then Ksa(S̃) logKsa(S̃) is within multiplicative
and additive constants (independent of S̃) of the shape’s Kolmogorov complexity.
This theorem is proved by developing a universal constructor [19] for self-assembly
which uses a program that outputs a fixed size shape as a list of locations to make a
scaled version of the shape (section 5). This construction, together with a new proof
technique for showing that a tile set produces a unique assembly (local determinism),
might be of independent interest. Our result ties the computation of a shape and
its self-assembly and, somewhat counterintuitively, implies that it may often require
fewer tile types to self-assemble a larger instance of a shape than a smaller instance
thereof. Another consequence of the theorem is that the minimal number of tile types
necessary to self-assemble an arbitrary scaling of a shape is uncomputable. Answering
the same question about shapes of a fixed size is computable but NP-complete [1].

The tight correspondence between computation (ignoring time) and self-assembly
(ignoring scale) suggests that complexity measures based on time (for computation)
and on scale (for self-assembly) could also be related. To establish this result, we
consider “programmable” tile sets that will grow a particular member of a family
of shapes, dependent upon input information present in an initial seed assembly.
We show that, as a function of the length of the input information, the number
of tiles present in the shape (a measure of its scale) is polynomially related to the
time required for a Turing machine (TM) to produce a representation of the same
shape. Furthermore, we discuss the relationship between complexities for Wang tilings
(in which the existence of a tiling rather than its creation by self-assembly is of
relevance) and for self-assembly, and we show that while the Kolmogorov complexity
is unchanged, the scale complexity for Wang tilings is polynomially related to the
time for nondeterministic TMs. These results are presented in section 6.

2. The tile assembly model. We present a description of the tile assembly
model based on Rothemund and Winfree [11] and Rothemund [9]. We will be working
on a Z × Z grid of unit square locations. The directions D = {N,E, S,W} are used
to indicate relative positions in the grid. Formally, they are functions Z×Z → Z×Z:
N(i, j) = (i, j + 1), E(i, j) = (i + 1, j), S(i, j) = (i, j − 1), and W (i, j) = (i − 1, j).
The inverse directions are defined naturally: N−1(i, j) = S(i, j), etc. Let Σ be a
set of bond types. A tile type t is a 4-tuple (σN , σE , σS , σW) ∈ Σ4 indicating the
associated bond types on the north, east, south, and west sides. Note that tile types
are oriented; thus a rotated version of a tile type is considered to be a different
tile type. A special bond type null represents the lack of an interaction, and the

1The production of a shape of a fixed size cannot be considered the output of a universal com-
putation process. Whether a universal process will output a given shape is an undecidable question,
whereas this can be determined by exhaustive enumeration in the tile assembly model. Thus it
is clear that the connection between Kolmogorov complexity and the number of tile types we ob-
tain in our main result (section 4) cannot be achieved for fixed-scale shapes: this would violate the
uncomputability of Kolmogorov complexity.

1546 DAVID SOLOVEICHIK AND ERIK WINFREE

special tile type empty = (null, null, null, null) represents an empty space. If T is
a set of tile types, a tile is a pair (t, (i, j)) ∈ T × Z

2 indicating that location (i, j)
contains the tile type t . Given the tile t = (t, (i, j)), type(t) = t and pos(t) = (i, j).
Further, bondD(t), where D ∈ D, is the bond type of the respective side of t , and
bondD(t) = bondD(type(t)). A configuration is a set of nonempty tiles, with types
from T , such that there is no more than one tile in every location (i, j) ∈ Z × Z. For
any configuration A, we write A(i, j) to indicate the tile at location (i, j) or the tile
(empty, (i, j)) if there is no tile in A at this location.

A strength function g : Σ × Σ → Z, where null ∈ Σ, defines the interactions
between adjacent tiles: we say that a tile t1 interacts with its neighbor t2 with strength
Γ(t1, t2) = g(σ, σ′), where σ is the bond type of tile t1 that is adjacent to the bond
type σ′ of tile t2.

2 The null bond has a zero interaction strength (i.e., ∀σ ∈ Σ,
g(null, σ) = 0). We say that a strength function is diagonal if it is nonzero only for
g(σ, σ′) such that σ = σ′. Unless otherwise noted, a tile system is assumed to have
a diagonal strength function. Our constructions use diagonal strength functions with
the range {0, 1, 2}. We say that a bond type σ has strength g(σ, σ). Two tiles are
bonded if they interact with a positive strength. For a configuration A, we use the
notation ΓA

D(t) = Γ(t, A(D(pos(t)))).3 For L ⊆ D we define ΓA
L (t) =

∑
D∈L ΓA

D(t).

A tile system T is a quadruple (T, ts, g, τ) where T is a finite set of nonempty tile
types, ts is a special seed tile4 with type(ts) ∈ T , g is a strength function, and τ is the
threshold parameter. Self-assembly is defined by a relation between configurations.
Suppose A and B are two configurations, and t is a tile such that A = B except at
pos(t) and A(pos(t)) = null but B(pos(t)) = t. Then we write A →T B if ΓA

D(t) ≥ τ .
This means that a tile can be added to a configuration if and only if the sum of its
interaction strengths with its neighbors reaches or exceeds τ . The relation →∗

T is the
reflexive transitive closure of →T.

Whereas a configuration can be any arrangement of tiles (not necessarily con-
nected), we are interested in the subclass of configurations that can result from a
self-assembly process. Formally, the tile system and the relation →∗

T define the par-
tially ordered set of assemblies, Prod(T) = {A such that (s.t.) {ts} →∗

T A}, and the
set of terminal assemblies, Term(T) = {A ∈ Prod(T) and � ∃B �= A s.t. A →∗

T B}.
A tile system T uniquely produces A if ∀B ∈ Prod(T), B →∗

T A (which implies
Term(T) = {A}).

An assembly sequence �A of T is a sequence of pairs (An, tn), where A0 = {t0} =
{ts} and An−1 →T An = An−1 ∪ {tn}. Here we will exclusively consider finite

assembly sequences. If a finite assembly sequence �A is implicit, A indicates the last
assembly in the sequence.

The tile systems used in our constructions have τ = 2 with the strength function
ranging over {0, 1, 2}. It is known that τ = 1 systems with strength function ranging
over {0, 1} are rather limited [11, 9]. In our drawings, the bond type σ may be

2More formally,

Γ(t1, t2) =

{
g(bondD−1 (t1), bondD(t2)) if ∃D ∈ D s.t. pos(t1) = D(pos(t2)),
0 otherwise.

3Note that t �= A(pos(t)) is a valid choice. In that case ΓA
D(t) tells us how t would bind if it were

in A.
4While having a single seed tile is appropriate to the complexity discussion of the main part of

this paper, it is useful to consider whole seed assemblies (made up of tiles not necessarily in T) when
considering tile systems capable of producing multiple shapes (section 6.5).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1547

illustrated by a combination of shading, various graphics, and symbols. Strength-2
bond types will always contain two dots in their representation. All markings must
match for two bond types to be considered identical. For example, the north bond
type of the following tile has strength 2, and the others have strength 1.

σN

σE

σS

σW

� �

The constructions in this paper do not use strength-0 bond types (other than in
empty tiles); thus, there is no confusion between strength-1 and strength-0 bond
types. Strength-0 interactions due to mismatches between adjacent tiles do occur in
our constructions.

2.1. Guaranteeing unique production. When describing tile systems that
produce a desired assembly, we would like an easy method for showing that this as-
sembly is uniquely produced. While it might be easy to find an assembly sequence
that leads to a particular assembly, there might be many other assembly sequences
that lead elsewhere. Here we present a property of an assembly sequence that guar-
antees that the assembly it produces is indeed the uniquely produced assembly of the
tile system.

Rothemund [9] describes the deterministic-RC property of an assembly that guar-
antees its unique production and is very easy to check. However, this property is
satisfied only by convex (in the sense of polyaminos) assemblies and thus cannot be
directly invoked when making arbitrary shapes.5 A more general poly-time test for
unique production was also shown by Rothemund [9], but it can be difficult to prove
that a particular assembly would satisfy this test. On the other hand, the notion
of locally deterministic assembly sequences introduced here is easily checkable and
sufficient for the constructions in this paper.

Definition 2.1. For an assembly sequence �A we define the following sets of
directions for ∀i, j ∈ Z, letting t = A(i, j):

• inputsides
�A(t) = {D ∈ D s.t. t = tn and ΓAn

D (tn) > 0},
• propsides

�A(t) = {D ∈ D s.t. D−1 ∈ inputsides
�A(A(D(pos(t))))}, and

• termsides
�A(t) = D − inputsides

�A(t) − propsides
�A(t).

Intuitively, inputsides are the sides with which the tile initially binds in the process
of self-assembly; these sides determine its identity. propsides propagate information
by being the sides to which neighboring tiles bind. termsides are sides that do neither.
Note that by definition empty tiles have four termsides.

Definition 2.2. A finite assembly sequence �A of T = (T, ts, g, τ) is called locally
deterministic if ∀i, j ∈ Z, letting t = A(i, j),

(1) ΓA

inputsides
�A(t)

(t) ≤ τ , and

(2) ∀t′ s.t. type(t′) ∈ T , pos(t′) = pos(t) but type(t′) �= type(t),

ΓA

D−propsides
�A(t)

(t′) < τ.

We allow the possibility of < in property (1) in order to account for the seed
and empty tiles. Intuitively, the first property says that when a new tile binds to

5Additionally, assemblies satisfying the deterministic-RC property must have no strength-0 inter-
actions between neighboring nonempty tiles. However, such interactions are used in our construction.

1548 DAVID SOLOVEICHIK AND ERIK WINFREE

a growing assembly, it binds “just barely.” The second property says that nothing
can grow from nonpropagating sides except “as desired.” We say that T is locally
deterministic if there exists a locally deterministic assembly sequence for it.

It is clear that if �A is a locally deterministic assembly sequence of T, then A ∈
Term(T). Otherwise, the empty tile in the position where a new (nonempty) tile can
be added to A would violate the second property. However, the existence of a locally
deterministic assembly sequence leads to the following much stronger conclusion.

Theorem 2.3. If there exists a locally deterministic assembly sequence �A of T,
then T uniquely produces A.

Proof. See Appendix A.

3. Arbitrarily scaled shapes and their complexity. In this section, we in-
troduce the model for the output of the self-assembly process used in this paper. Let
S be a finite set of locations on Z × Z. The adjacency graph G(S) is the graph on
S defined by the adjacency relation where two locations are considered adjacent if
they are directly north/south or east/west of one another. We say that S is a coor-
dinated shape if G(S) is connected.6 The coordinated shape of assembly A is the set
SA = {pos(t) s.t. t ∈ A}. Note that SA is a coordinated shape because A constitutes
a single connected component.

For any set of locations S, and any c ∈ Z
+, we define a c-scaling of S as

Sc = {(i, j) s.t. (�i/c�, �j/c�) ∈ S} .

Geometrically, this represents a “magnification” of S by a factor c. Note that a scaling
of a coordinated shape is itself a coordinated shape: every node of G(S) gets mapped
to a c2-node connected subgraph of G(Sc), and the relative connectivity of the sub-
graphs is the same as the connectivity of the nodes of G(S). A parallel argument
shows that if Sc is a coordinated shape, then so is S. We say that coordinated shapes
S1 and S2 are scale-equivalent if Sc

1 = Sd
2 for some c, d ∈ Z

+. Two coordinated shapes
are translation-equivalent if they can be made identical by translation. We write
S1

∼= S2 if Sc
1 is translation-equivalent to Sd

2 for some c, d ∈ Z
+. Scale-equivalence,

translation-equivalence, and ∼= are equivalence relations (see Appendix B). This de-
fines the equivalence classes of coordinated shapes under ∼=. The equivalence class
containing S is denoted S̃ and we refer to it as the shape S̃. We say that S̃ is the shape
of assembly A if SA ∈ S̃. The view of computation performed by the self-assembly
process espoused here is the production of a shape as the “output” of the self-assembly
process, with the understanding that the scale of the shape is irrelevant. Physically,
this view may be appropriate to the extent that a physical object can be constructed
from arbitrarily small pieces. However, the primary reason for this view is that there
does not seem to be a comprehensive theory of complexity of coordinated shapes akin
to the theory we develop here for shapes ignoring scale.

Having defined the notion of shapes, we turn to their descriptional complexity.
As usual, the Kolmogorov complexity of a binary string x with respect to a universal
TM U is KU (x) = min {|p| s.t. U(p) = x}. (See the exposition of Li and Vitanyi [13]
for an in-depth discussion of Kolmogorov complexity.) Let us fix some “standard”
universal machine U . We call the Kolmogorov complexity of a coordinated shape S

6We say “coordinated” to make explicit that a fixed coordinate system is used. We reserve the
unqualified term “shape” for when we ignore scale and translation.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1549

to be the size of the smallest program outputting it as a list of locations:7,8

K(S) = min {|s| s.t. U(s) = 〈S〉}.

The Kolmogorov complexity of a shape S̃ is

K(S̃) = min
{
|s| s.t. U(s) = 〈S〉 for some S ∈ S̃

}
.

We define the tile-complexity of a coordinated shape S and shape S̃, respectively,
as

Ksa(S) = min

{
n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S is the coordinated shape of A

}
,

Ksa(S̃) = min

{
n s.t. ∃ a tile system T of n tile types that uniquely produces
assembly A and S̃ is the shape of A

}
.

4. Relating tile-complexity and Kolmogorov complexity. The essential
result of this paper is the description of the relationship between the Kolmogorov
complexity of any shape and the number of tile types necessary to self-assemble it.

Theorem 4.1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Ksa(S̃) logKsa(S̃) ≤ a1K(S̃) + b1.(4.1)

Note that since any tile system of n tile types can be described by O(n log n)
bits, the theorem implies that there is a way to construct a tiling system such that
asymptotically at least a constant fraction of these bits is used to “describe” the shape
rather than any other aspect of the tiling system.

Proof of Theorem 4.1. To see that a0K(S̃) + b0 ≤ Ksa(S̃) logKsa(S̃), realize
that there exists a constant size program psa that, given a binary description of
a tile system, simulates its self-assembly, making arbitrary choices where multiple
tile additions are possible. If the self-assembly process terminates, psa outputs the
coordinated shape of the terminal assembly as the binary encoding of the list of
locations in it. Any tile system T of n tile types with any diagonal strength function
and any threshold τ can be represented9 by a string dT of 4n�log 4n� + 16n bits: for
each tile type, the first of which is assumed to be the seed, specify the bond types
on its four sides. There are no more than 4n bond types. In addition, for each tile
type t specify for which of the 16 subsets L ⊆ D,

∑
D∈L g(bondD(t)) ≥ τ . If T is a

tile system uniquely producing an assembly that has shape S̃, then K(S̃) ≤ |psadT|.
The left inequality in (4.1) follows with the multiplicative constant a0 = 1/4 − ε for
arbitrary ε > 0.

We prove the right inequality in (4.1) by developing a construction (section 5)
showing how, for any program s s.t. U(s) = 〈S〉, we can build a tile system T of

7Note that K(S) is within an additive constant of KU (x) where x is some other effective descrip-
tion of S, such as a computable characteristic function or a matrix. Since our results are asymptotic,
they are independent of the specific representation choice. One might also consider invoking a two-
dimensional computing machine, but it is not fundamentally different for the same reason.

8Notation 〈·〉 indicates some standard binary encoding of the object(s) in the brackets. In the
case of coordinated shapes, it means an explicit binary encoding of the set of locations. Integers,
tuples, or other data structures are similarly given simple explicit encodings.

9Note that this representation could also be used in the case that negative bond strengths are
allowed so long as the strength function is diagonal.

1550 DAVID SOLOVEICHIK AND ERIK WINFREE

15 |p|
log |p| + b tile types, where b is a constant and p is a string consisting of a fixed

program psb and s (i.e., |p| = |psb| + |s|), that uniquely produces an assembly whose
shape is S̃. Program psb and constant b are both independent of S. The right
inequality in (4.1) follows with the multiplicative constant a1 = 15 + ε for arbitrary
ε > 0.

Our result can be used to show that the tile-complexity of shapes is uncomputable.
Corollary 4.2. Ksa of shapes is uncomputable. In other words, the following

language is undecidable: L̃ = {(l, n) s.t. l = 〈S〉 for some S and Ksa(S̃) ≤ n}.
Language L̃ should be contrasted with L = {(l, n) s.t. l = 〈S〉 and Ksa(S) ≤ n}

which is decidable (but hard to compute in the sense of NP-completeness [1]).
Proof of Corollary 4.2. We essentially parallel the proof that Kolmogorov

complexity is uncomputable. If L̃ were decidable, then we could make a program
that computes Ksa(S̃) and subsequently uses Theorem 4.1 to compute an effective

lower bound for K(S̃). Then we can construct a program p that, given n, outputs
some coordinated shape S (as a list of locations) such that K(S̃) ≥ n by enumerating
shapes and testing with the lower bound, which we know must eventually exceed n.
But this results in a contradiction since p〈n〉 is a program outputting S ∈ S̃ and so
K(S̃) ≤ |p| + �log n�. But for large enough n, |p| + �log n� < n.

5. The programmable block construction.

5.1. Overview. The uniquely produced terminal assembly A of our tile system
logically will consist of square “blocks” of c× c tiles. There will be one block for each
location in S. Consider the coordinated shape in Figure 5.1(a). An example assembly
A is graphically represented in Figure 5.1(b), where each square represents a block
containing c2 tiles. Self-assembly initiates in the seed block, which contains the seed
tile, and proceeds according to the arrows illustrated between blocks. Thus if there
is an arrow from one block to another, it indicates that the growth of the second
block (a growth block) is initiated from the first. A terminated arrow indicates that
the block does not initiate the self-assembly of an adjacent block in that direction—
in fact, the boundary between such blocks consists of strength-0 interactions (i.e.,
mismatches). Figure 5.1(c) describes our nomenclature: an arrow comes into a block
on its input side, arrows exit on propagating output sides, and terminated arrows
indicate terminating output sides. The seed block has four output sides, which can
be either propagating or terminating. Each growth block has one input and three
output sides, which are also either propagating or terminating. The overall pattern
of bonding of the finished target assembly A is as follows. Tiles on terminal output
sides are not bound to the tiles on the adjacent terminal output side (i.e., there is
no bonding along the dotted lines in Figure 5.8(a)), but all other neighboring tiles
are bound. We will program the growth such that terminating output sides abut
only other terminating output sides or empty tiles, and input sides exclusively abut
propagating output sides, and vice versa.

The input/output connections of the blocks form a spanning tree rooted at the
seed block. During the progress of the self-assembly of the seed block, a computational
process determines the input/output relationships of the rest of the blocks in the
assembly. This information is propagated from block to block during self-assembly
(along the arrows in Figure 5.1(b)) and describes the shape of the assembly. By
following the instructions each growth block receives in its input, the block decides
where to start the growth of the next block and what information to pass to it in
turn. The scaling factor c is set by the size of the seed block. The computation in

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1551

a) b) c)

(0,0)

seed block

Terminating output side

Te
rm

in
at

in
g

ou
tp

ut
 s

id
e

Propagating output side Input side

Fig. 5.1. Forming a shape out of blocks: (a) A coordinated shape S. (b) An assembly composed
of c× c blocks that grow according to transmitted instructions such that the shape of the final assembly
is S̃ (not drawn to scale). Arrows indicate information flow and order of assembly. The seed
block and the circled growth block are schematically expanded in Figure 5.2. (c) The nomenclature
describing the types of block sides.

a) b)

halt

computation

…011S01...
input

output
…

01S
01…ou

tp
ut

no
 "

S"

output
no "S"

second phase:
prism

first phase:
T

M
 sim

ulation

halt

computation

…011S01...
output

output
…

01S
01…ou

tp
ut

...
00

1S
01

...

output
no "S"

co
m

pu
ta

tio
n com

putation

computation

unpacking

seed frame
unpacking

un
pa

ck
in

g unpacking

ha
lt

halt

halt

Fig. 5.2. Internal structure of a growth block (a) and seed block (b).

the seed block ensures that c is large enough so that there is enough space to do the
necessary computation within the other blocks.

We present a general construction that represents a Turing-universal way of guid-
ing large-scale self-assembly of blocks based on an input program p. In the following
section, we describe the architecture of seed and growth blocks on which arbitrary
programs can be executed. In section 5.3 we describe how program p can be encoded
using few tile types. In section 5.4 we discuss the programming of p that is required
to grow the blocks in the form of a specific shape and bound the scaling factor c. In
section 5.5 we demonstrate that the target assembly A is uniquely produced.

5.2. Architecture of the blocks.

5.2.1. Growth blocks. There are four types of growth blocks depending upon
where the input side is, which will be labeled by ↑, →, ↓, or ←. The internal structure
of a ↑ growth block is schematically illustrated in Figure 5.2(a). The other three types
of growth block are rotated versions of the ↑ block. The specific tile types used for a

1552 DAVID SOLOVEICHIK AND ERIK WINFREE

↑ growth block are shown in Figure 5.3, and a simple example is presented in Figure
5.4. The first part is a TM simulation, which is based on [18, 11]. The machine
simulated is a universal TM that takes its input from the propagating output side
of the previous block. This TM has an output alphabet {0, 1, S}3

and an input
alphabet {(000), (111)} on a two-way tape (with λ used as the blank symbol). The
output of the simulation, as 3-tuples, is propagated until the diagonal. The diagonal
propagates each member of the 3-tuples crossing it to one of the three output sides, like
a prism separating the colors of the spectrum. This allows the single TM simulation
to produce three separate strings targeted for the three output sides. The “S” symbol
in the output of the TM simulation is propagated like the other symbols. However, it
acts in a special way when it crosses the boundary tiles at the three output sides of
the block, where it starts a new block. The output sides that receive the “S” symbol
become propagating output sides, and the output sides that do not receive it become
terminating output sides. In this way, the TM simulation decides which among the
three output sides will become propagating output sides, and what information they
should contain, by outputting appropriate tuples. Subsequent blocks will use this
information as a program, as discussed in section 5.4.

5.2.2. Seed block. The internal structure of the seed block is schematically
shown in Figure 5.2(b). It consists of a small square containing all the information
pertaining to the shape to be built (the seed frame), a larger square in which this
information is unpacked into usable form, and finally four TM simulations whose
computations determine the size of the seed block and the information transmitted
to the growth blocks. For simplicity we first present a construction without the
unpacking process (the simple seed block) and then explain the unpacking process
separately and show how it can be used to create the full construction. The tile
types used for the simple seed block are presented in Figure 5.5, and an example
is given in Figure 5.6. While growth blocks contain a single TM simulation that
outputs a different string to each of the three output sides, the seed block contains
four identical TM simulations that output different strings to each of the four output
sides. This is possible because the border tile types transmit information selectively:
the computation in the seed block is performed using 4-tuples as the alphabet in a
manner similar to that of the growth blocks, but on each side of the seed block only
one of the elements of the 4-tuple traverses the border. As with growth blocks, if the
transmitted symbol is “S,” the outside edge initiates the assembly of the adjoining
block. The point of having four identical TM simulations is to ensure that the seed
block is square: while a growth block uses the length of its input side to set the length
of its output sides (via the diagonal), the seed block does not have any input sides.
(Remember that it is the seed block that sets the size of all the blocks.)

The initiation of the TM simulations in the seed block is done by tile types
encoding the program p that guides the block construction. The natural approach
to providing this input is using four rows (one for each TM) of unique tiles encoding
one bit per tile, as illustrated in Figures 5.5 and 5.6. However, this method does not
result in an asymptotically optimal encoding.

5.3. The unpacking process. To encode bits much more effectively we follow
Adleman et al. [3] and encode on the order of logn/ log log n bits per tile, where n is
the length of the input. This representation is then unpacked into a one-bit-per-tile
representation used by the TM simulation. The method of Adleman et al. requires
O(n/ log n) tiles to encode n bits, leading to the asymptotically optimal result of
Theorem 4.1.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1553

Fig. 5.3. Growth block ↑ tile types. All bond types in which a block type symbol is omitted
have the block type symbol “↑” to prevent inadvertent incorporation of tiles from a different block
type. We assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet
(xxx). The tile types for other growth block types are formed by 90◦, 180◦, and 270◦ rotations of the
tile types of the ↑ block where the block type symbols {↑, ↓,←,→} are replaced by a corresponding

90◦, 180◦, and 270◦ rotation of the symbol: i.e.,

B↑
B→

B↑
B↑ (↑ growth block) ⇒

B→
B→

B↓
B→ (→ growth block).

Looking at the border tile types, note that external sides of tiles on output sides of blocks have block
type symbols compatible with the tiles on an input side of a block. However, tiles on output sides
cannot bind to the tiles on an adjacent output side because of mismatching block type symbols.

1554 DAVID SOLOVEICHIK AND ERIK WINFREE

B↑

B

B

B←

λ↑

B

λ

B

0↑

B

0

B

0↑

B

0

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

λ↑

B

λ

B

B↑
B→

B

B

B
λ

B

λ←

λ

λ

λ
λ

0

λ

0

λ

0

λ

0

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

1

B

1←

λ
1

λ

1

0

1

101

1

0

1

0

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

λ

1

B
1→

B

1
...

B

1

B

1←

λ

1

λ

1
101

1

101

1

0

S

10S

1

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

λ

S

B
S→

B

S

B→
q0λ
→

B→

S→

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ
10S

λ

10S

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ
...

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ
λ

λ
λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ

101

λ

101

λ

10S

λ

10S

λ

λ

λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ
λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B

λ

B

λ←

λ

λ

λ

λ H

101

λ
q10

λ

10S

λ

10S

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ
λ

λ
D3

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e C

q10
e

q10

e
10S

e

10S

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D3

D2

λ

e
λ

D1

λ

D2

λ

λ
D0

D1

λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e R

q10
q1

0

e W

10S
e

q0λ

q1

λ
e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D0

λ
D3

e
λ

λ

λ

λ

λ

λ

λ

λ

B
λ→

B

λ

B
e

B

λ←

λ
e

λ

e
0

e

0

e C

q0λ
e

q0λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
λ

e

λ

e
D3

D2

λ

e
λ

D1

λ

D2

λ

δ

λ

D1

B
λ→

B
δ

B

B
B↑

B←

λ

B
λ↑

B

0

B
0↑

B

q0λ

B
S↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B

λ

B
λ↑

B
B

B→
B↑

B

B↑ λ↑ 0↑ S↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ λ↑ B↑

...
...

...
...

...
...

...
...

...
...

...
...

...

first p
h
ase: T

M
 sim

u
latio

n
seco

n
d
 p

h
ase: p

rism

Propagating output side of adjacent block

P
ro

p
ag

atin
g
 o

u
tp

u
t sid

e

Terminating output side

T
er

m
in

at
in

g
 o

u
tp

u
t

si
d
e

Fig. 5.4. A trivial example of a ↑ growth block. Here, the TM makes one state transition and
halts. All bond types in which a block type symbol is omitted have the block type symbol “↑.” We
assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet (xxx).
The natural assembly sequence to consider is adding tiles row by row from the south side (in which
a new row is started by the strength-2 bond).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1555

Fig. 5.5. Seed block tile types without unpacking. All bond types in which a block type symbol is

omitted have the block type symbol “ ” to prevent inadvertent incorporation of tiles from a different
block type. We assume that in bond types above, a single symbol x ∈ {0, 1, S, λ} is the same as the
tuplet (xxxx). Note that as with output sides of growth blocks, the external sides of seed block border
tiles have block type symbols compatible with the tiles on an input side of a growth block. The three
other TM simulations consist of tile types that are rotated versions of the north TM simulation
shown. The halting tile types propagate one of the members of the tuple on which the TM halts,
analogous to the border tile types. The bond types of TM tile types have a symbol from D which
indicates which simulation they belong to (omitted above).

1556 DAVID SOLOVEICHIK AND ERIK WINFREE

B↑
B

B

B←
λ↑

B

λ

B

λ↑
B

λ

B

λ↑
B

λ

B H

0↑
B

q10
B

� �

0↑
B

010S

B

λ↑
B

λ

B

λ↑
B

λ

B

λ↑
B

λ

B

B↑
B→

B

B

B

λ

B

λ←
λ

e

e
λ

λ
e

λ

e
λ

e

λ

e R

q10
q1

0

e

� �

W

010S
e

q0λ

q1

� �

λ
e

λ

e
λ

e

λ

e
λ

λ
e

e
B

λ→
B

λ

B

λ

B

λ←
λ

e

e
λ

λ
e

λ

e
0

e

0

e
q0λ

e

U

e

� �

� �

λ
e

λ

e
λ

λ
e

e
B

λ→
B

λ

...
B

λ

B

λ← ts

λ

2

0

λ
�

�

� �

0

1

	
2

�

�

�

� U

0

	
1

� �

�

�

�

� λ

λ

2

0
�

� B
λ→

B

λ

B←
S←

B

q0λ←
�

� B

010S

B

S←
�

� ...
...

0

	
1

U

� �

� �
�

� 	
	

	
	

	
	

	
	

2

0

1

	
...

... H

B
0→

B

q1
0
�

�

... H

B
q1
0

B

1←
�

� ...
...

1

	
2

0

� �

� �

	
	

	
	

	
	

	
	

1

U

0

	
�

� ...
...

B
1→

B

010S

B

λ

B

λ←
2

0

λ

λ

� �
	

1

U

0

� �

	
2

0

1

0

λ

λ

2

B
λ→

B

λ

B

λ

B

λ←

e

e

λ

λ · · · · · ·
e

λ

λ

e
B

λ→
B

λ

B

λ

B

λ←

e

e

λ

λ · · · · · ·
e

λ

λ

e
B

λ→
B

λ

B

B
B↓

B←
λ

B
λ↓

B

λ

B
λ↓

B

λ

B
λ↓

B

010S

B
0↓

B H

q10

B
1↓

B

� �

λ

B
λ↓

B

λ

B
λ↓

B

λ

B
λ↓

B

B
B→

B↓
B

Fig. 5.6. A simple seed block without unpacking showing the north TM simulation and the
selective transmission of information through the borders. As shown, only the west side is a prop-
agating output side; the other three sides are terminating output sides. All bond types in which a

block type symbol is omitted have the block type symbol “ .” We assume that in bond types above,
a single symbol x ∈ {0, 1, S, λ} is the same as the tuplet (xxxx). The natural assembly sequence
to consider is growing the seed frame first band and then adding tiles row by row from the center
(where a new row is started by the strength-2 bond).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1557

Our way of encoding information is based on Adleman et al. [3] but modified
to work in a τ = 2 tile system (with strength function ranging over {0, 1, 2}) and
to fit our construction in its geometry. We express a length-n binary string using a
concatenation of �n/k� binary substrings of length k, padding with 0’s if necessary.10

We choose k such that it is the least integer satisfying n
logn ≤ 2k. Clearly, 2k < 2n

logn .

See Figure 5.7 for the tile types used in the unpacking for the north TM simulation
and for a simple unpacking example (which for the sake of illustration uses k = 4).

Let us consider the number of tile types used to encode and unpack the n-bit
input string for a single TM simulation (i.e., north). There are 2�n/k� ≤ 2� n

log n
log n

� =

2� n
logn−log log n� unique tile types in each seed row. This implies that there exists a

constant h such that 2�n/k� ≤ 3n
logn +h for all n. We need at most 2k+2k−1+· · ·+4 <

2k+1 “extract bit” tile types and 2k−1+2k−2+· · ·+4 < 2k “copy remainder” tile types.
To initiate the unpacking of new substrings we need 2k tile types. To keep on copying
substrings that are not yet unpacked we need 2(2k) tile types. The quantity of the
other tile types is independent of n, k. Thus, in total, to unpack the n-bit input string
for a single TM simulation we need no more than 3n

logn +h+2k+1 +2k +2k +2(2k) ≤
15 n

logn +O(1) tile types. Since there are 4 TM simulations in the seed block, we need

60 n
logn + O(1) tile types to encode and unpack the n-bit input string.

If the seed block requires only one propagating output side, then a reduced con-
struction using fewer tile types can be used: only one side of the seed frame is specified,
and only one direction of unpacking tiles are used. A constant number of additional
tile types are used to fill out the remaining three sides of the square. These additional
tile types must perform two functions. First, they must properly extend the diagonal
on either side of the unpacking and TM simulation regions. In the absence of the
other three unpacking and TM simulation processes, this requires adding strength-2
bonds that allow the diagonal to grow to the next layer. Second, the rest of the square
must be filled in to the correct size. This can be accomplished by adding tiles that
extend one diagonal to the other side of the seed frame (using the same logic as a
construction in [11]). Altogether, a seed block with only one propagating output side
requires only 15 n

logn + O(1) tile types. We will see in the next section that this is
sufficient for growing any shape.

5.4. Programming blocks and the value of the scaling factor c. In order
for our tile system to produce some assembly whose shape is S̃, instructions encoded
in p must guide the construction of the blocks by deciding on which side of which
block a new block begins to grow and what is encoded on the edge of each block. For
our purposes, we take p = psb〈s〉 (i.e., psb takes s as input), where s is a program
that outputs the list of locations in the shape S. psb runs s to obtain this list and
plans out a spanning tree t over these locations (it can just do a depth-first search)
starting from some arbitrarily chosen location that will correspond to the seed block.11

The information passed along the arrows in Figure 5.1(b) is pgb〈t, (i, j)〉, which is
the concatenation of a program pgb to be executed within each growth block, and
an encoding of the tree t and the location (i, j) of the block into which the arrow is
heading. When executed, pgb〈t, (i, j)〉 evaluates to a 3-tuple encoding of pgb〈t,D(i, j)〉
together with symbol “S” for each propagating output side D. Thus, each growth

10We can assume that our universal TM U treats trailing 0’s just as λ’s.
11We can opt to always choose a leaf, in which case the seed block requires only one propagating

output side. In this case the multiplicative factor a1 is 15 + ε, although the tile set used will depend
upon the direction of growth from the leaf.

1558 DAVID SOLOVEICHIK AND ERIK WINFREE

Fig. 5.7. The unpacking for the north side of the seed frame. (a) The tile types used. (b)
An example showing the unpacking of the string 01100101 if k = 4 for a seed block with up to four
propagating output sides. Note that the unpacking process can be inserted immediately prior to the
TM simulation without modifying other tile types. The inset shows the internal structure of a seed
block with only one propagating output side.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1559

block passes pgb〈t,D(i, j)〉 to its Dth propagating output side as directed by t. Note
that program psb in the seed tile must also run long enough to ensure that c is large
enough that the computation in the growth blocks has enough space to finish without
running into the sides of the block or into the diagonal. Nevertheless, the scaling
factor c is dominated by the building of t in the seed block, as the computation in
the growth blocks takes only poly(|S|).12 Since the building of t is dominated by the
running time of s, we have c = poly(time(s)).

5.5. Uniqueness of the terminal assembly. By Theorem 2.3 it is enough to
demonstrate a locally deterministic assembly sequence ending in our target terminal
assembly to be assured that this terminal assembly is uniquely produced. Consider
the assembly sequence �A in which the assembly is constructed block by block such that
every block is finished before the next one is started and each block is constructed by
the natural assembly sequence described in the captions of Figures 5.4 and 5.6. It is
enough to confirm that in this natural assembly sequence every tile addition satisfies
the definition of local determinism (Definition 2.2). It is easy to confirm that every
tile not adjacent to a terminal output side of a block indeed satisfies these conditions.
Other than on a terminal output side of a block (and on null tiles) there are no term-
sides: every side is either an inputside or a propside. In our construction, each new tile
binds through either a single strength-2 bond or two strength-1 bonds (thus condition
1 is satisfied since τ = 2) such that no other tile type can bind through these inputsides
(condition 2 is satisfied if the tile has no termsides). Note that inadvertent binding
of a tile type from a different block type is prevented by the block type symbols.

Now let us consider termsides around the terminal output sides of blocks (Figure
5.8(a)). Here block type symbols come to the rescue again and prevent inadvertent
binding. Let t ∈ A be a tile with a termside (t can be null). We claim that ∀t′ s.t.
type(t′) ∈ T and pos(t′) = pos(t), if ΓA

termsides
�A(t)

(t′) > 0, then ΓA

D−propsides
�A(t)

(t′) <

τ = 2. In other words, if t′ binds on a termside of t, then it cannot bind strongly
enough to violate local determinism, implying we can ignore termsides. Figure 5.8(a)
shows in dotted lines the termsides that could potentially be involved in bonding.
These termsides cannot have a strength-2 bond because symbol “S” is not propagated
to terminal output sides of blocks. Thus t′ binding only on a single termside of t is
not enough. Can t′ bind on two termsides of t? To do so, it must be in a corner
between two blocks, binding two terminal output sides of different blocks. But to
bind in this way would require t′ to bond to the block type symbol pattern13 shown
in Figure 5.8(b) (or its rotation), which none of the tile types in our tile system can
do. Can t′ bind on one termside and one inputside of t? Say the termside of t that
t′ binds on is the west side (Figure 5.8(c)). The tile to the west of t must be on the
east terminal output side of a block, and thus it has symbol “→” on its east side. So
t′ must have “→” on the west, and depending on the type of block t is in, one of the
other block type symbols as shown in Figure 5.8(c). But again none of the tile types
in our tile system has the necessary block type symbol pattern.

12Note that fewer than n rows are necessary to unpack a string of length n (section 5.3). Since
we can presume that psb reads its entire input and the universal TM needs to read the entire input
program to execute it, the number of rows required for the unpacking process can be ignored with
respect to the asymptotics of the scaling factor c.

13The block type symbol pattern of a tile type consists of the block type symbols among its four

bond types. For instance, the tile type

λ↑
λ↑

D3↑
λ↑

� �

has block type symbol pattern

↑
↑

↑
↑ . If two bond

types do not have matching block type symbols, then obviously they cannot bind.

1560 DAVID SOLOVEICHIK AND ERIK WINFREE

Fig. 5.8. (a) The target terminal assembly with the dotted lines indicating the edges that have
termsides with nonnull bonds. (b) The block type symbols of adjacent tiles on two termsides of t
(west and south in this case). (c) The block type symbols of adjacent tiles on a termside (west side
in this case) and an inputside of t. If t is in the seed block or ← growth block, then the north, east,
and south sides may be the inputsides. If t is in a ↑ block, then the east and south sides may be the
inputsides. If t is in a ↓ block, then the north and east sides may be the inputsides.

6. Generalizations of shape complexity. In this work we have established
both upper and lower bounds relating the descriptional complexity of a shape to the
number of tile types needed to self-assemble the shape within the standard tile assem-
bly model. The relationship is dependent upon a particular definition of shape that
ignores its size. Disregarding scale in self-assembly appears to play a role similar to
that of disregarding time in theories of computability and decidability. Those theories
earned their universal standing by being shown to be identical for all “reasonable”
models of computation. To what extent do our results depend on the particular model
of self-assembly? Can one define a complexity theory for families of shapes in which
the absolute scale is the critical resource being measured? In this section we discuss
the generality and limitations of our result.

6.1. Optimizing the main result (section 4). Since the Kolmogorov com-
plexity of a string depends on the universal TM chosen, the complexity community
adopted a notion of additive equivalence, where additive constants are ignored. How-
ever, Theorem 4.1 includes multiplicative constants as well, which are not customarily
discounted. It might be possible to use a more clever method of unpacking (section
5.2) and a seed block construction that reduces the multiplicative constant a1 of The-
orem 4.1. Correspondingly, there might be a more efficient way to encode any tile
system than that described in the proof of the theorem, and thereby increase a0.

Recall that s is the program for U producing the target coordinated shape S
as a list of locations. For cases where our results are of interest, the scaling factor
c = poly(time(s)) is extremely large since |S| is presumably enormous and s must
output every location in S. The program s′ that, given (i, j), outputs 0/1, indicating
whether S contains that location, may run much faster than s for large shapes. Can

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1561

our construction be adapted to use s′ in each block rather than s in the seed block
to obtain smaller scale? The problem with doing this directly is that the scale of the
blocks, which sets the maximum allowed running time of computation in each block,
must be set in the seed block. As a result, there must be some computable time bound
on s′ that is given to the seed block.

For any particular shape, there must be a range of achievable parameters: the
number of tile types and the scaling factor. We know that we can obtain scaling factor
1 by using a unique tile type for each location. On the other extreme is our block
construction which allows us to obtain an asymptotically optimal number of tile types
at the expense of an enormous scaling factor. Presumably there is a gradual tradeoff
between the number of tile types and the scale that can be achieved by a range of tile
systems. The characterization of this tradeoff is a topic for future study.

In this vein, an important open problem remains of determining lower bounds on
the scales of shapes produced by tile systems with an asymptotically optimal number
of tile types. As an initial result of this kind, consider the following proof that an
arbitrarily large scaling factor may need to be used if we stick to asymptotically
optimal tile systems. Consider the coordinated shape that is a rectangle of width m
and height 1. Clearly, it is an instance of the following shape S̃: a long, thin rectangle
that is m times as long as it is high. According to Aggarwal et al. [4], the number of
tile types required to self-assemble a long, thin rectangle that is n tiles long and k tiles

high is Ω(n
1/k

k). This implies that to produce any coordinated instance of S̃ at scale

c requires |T | = Ω((mc)1/c

c) tile types. Now we can define what an asymptotically
optimal tile system means for us by choosing a1, b1 and requiring that the number of
tile types |T | satisfies |T | log |T | ≤ a1K(S̃) + b1. Since K(S̃) = O(logm), it follows
through simple algebra that no matter what a1, b1 are, for large enough m, the scaling
factor c needs to get arbitrarily large to avoid a contradiction.

6.2. Strength functions. In most previous works on self-assembly, as in this
work, strength functions are restricted by the following properties: (1) the effect that
one tile has on another is equal to the effect that the other has on the first (i.e.,
g is symmetric: g(σ, σ′) = g(σ′, σ)); (2) the lack of an interaction is normalized to
zero (i.e., g(σ, null) = 0); (3) there are no “adverse” interactions counteracting other
interactions (i.e., g is nonnegative); (4) only sides with matching bond types interact
(i.e., g is diagonal : g(σ, σ′) = 0 if σ �= σ′).

Properties 1 and 2 seem natural enough. Our results are independent of property
3 because the encoding used for the lower bound of Theorem 4.1 is valid for strength
functions taking on negative values. Property 4, which reflects the roots of the tile
assembly model in the Wang tiling model, is essential for the quantitative relationship
expressed in Theorem 4.1: recent work by Aggarwal et al. [4] shows that permitting
nondiagonal strength functions allows information to be encoded more compactly.
Indeed, if property 4 is relaxed, then replacing our unpacking process with the method
of encoding used in that work and using the lower bound of Aggarwal et al. leads to
the following form of Theorem 4.1: assuming the maximum threshold τ is bounded
by a constant, there exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤
(
Knd

sa (S̃)
)2

≤ a1K(S̃) + b1,

where Knd
sa is the tile-complexity when nondiagonal strength functions are allowed. It

is an open question whether the constant bound on τ can be relaxed.

1562 DAVID SOLOVEICHIK AND ERIK WINFREE

6.3. Wang tiling versus self-assembly of shapes. Suppose one is solely con-
cerned with the existence of a configuration in which all sides match, and not with
the process of assembly. This is the view of classical tiling theory [7]. Since finite tile
sets can enforce uncomputable tilings of the plane [8, 16], one might expect greater
computational power when the existence, rather than production, of a tiling is used
to specify shapes. In this section we develop the notion of shapes in the Wang tile
model [20] and show that results almost identical to the tile assembly model hold.
One conclusion of this analysis is that making a shape “practically constructible”
(i.e., in the sense of the tile assembly model) does not necessitate an increase in
tile-complexity.

We translate the classic notion of the origin-restricted Wang tiling problem14 as
follows. An (origin-restricted) Wang tiling system is a pair (T, ts), where T is a set
of tile types and ts is a seed tile with type(ts) ∈ T . A configuration A is a valid
tiling if all sides match and it contains the seed tile. Formally, A is a valid tiling
if ∀(i, j) ∈ Z

2, D ∈ D, (1) type(A(i, j)) ∈ T , (2) ts ∈ A, and (3) bondD(A(i, j)) =
bondD−1(A(D(i, j))).

Since valid tilings are infinite objects, how can they define finite coordinated
shapes? For tile sets containing the empty tile type, we can define shapes analogously
to the tile assembly model. However, we cannot simply define the coordinated shape
of a valid tiling to be the set of locations of nonempty tiles. For one thing, the set
of nonempty tiles can be disconnected, unlike in self-assembly where any produced
assembly is a single connected component. So we take the coordinated shape SA of
a valid tiling A to be the smallest region of nonempty tiles containing ts that can
be extended to infinity by empty tiles. Formally, SA is the coordinated shape of the
smallest subset of A that is a valid tiling containing ts. If SA is finite, then it is
the coordinated shape of valid tiling A.15 Shape S̃ is the shape of a valid tiling A if
SA ∈ S̃.

Produced assemblies of a tile system (T, ts, g, τ) are not necessarily valid tilings of
Wang tiling system (T, ts) because the tile assembly model allows mismatching sides.
Further, valid tilings of (T, ts) are not necessarily produced assemblies of (T, ts, g, τ).
Even if one considers only valid tilings that are connected components, there might not
be any sequence of legal tile additions that assembles these configurations. Nonethe-
less, if a tile system uniquely produces a valid tiling A, then all valid tilings of the cor-
responding Wang tile system agree with A and have the same coordinated shape as A.

Lemma 6.1. If empty ∈ T and the tile system T = (T, ts, g, τ) uniquely produces
assembly A such that A is a valid tiling of the Wang tiling system (T, ts), then for
all valid tilings A′, it holds that (1) ∀(i, j) ∈ Z

2, type(A(i, j)) �= empty ⇒ A′(i, j) =
A′(i, j), and (2) SA′ = SA.

Proof. Consider an assembly sequence �A of T ending in assembly A and let A′ be
a valid tiling of (T, ts). Suppose tn is the first tile added in this sequence such that
t′ = A′(pos(tn)) �= tn. Since A′ is a valid tiling, t′ must match on all sides, including

inputsides
�A(tn). But this implies that two different tiles can be added in the same

location in �A, which means that A is not uniquely produced. This implies part (1) of
the lemma. Now, to be a valid tiling, all exposed sides of assembly A must be null.
Thus if A′ and A agree on all places where A is nonempty, then SA′ = SA, and part
(2) of the lemma follows.

14The unrestricted Wang tile model does not have a seed tile [20, 5, 18].
15SA can be finite only if empty ∈ T because otherwise no configuration containing an empty tile

can be a valid tiling.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1563

Define the tile-complexity Kwt of a shape S̃ in the origin-restricted Wang tiling
model as the minimal number of tile types in a Wang tiling system with the property
that a valid tiling exists and there is a coordinated shape S ∈ S̃ such that for every
valid tiling A, SA = S.

Theorem 6.1. There exist constants a0, b0, a1, b1 such that for any shape S̃,

a0K(S̃) + b0 ≤ Kwt(S̃) logKwt(S̃) ≤ a1K(S̃) + b1.

Proof sketch. The left inequality follows in a manner similar to the proof of
Theorem 4.1. Suppose every valid tiling of our Wang tile system has coordinated shape
S. Any Wang tiling system of n tile types can be represented using O(n log n) bits.
Making use of this information as input, we can use a constant-size program to find,
through exhaustive search, the smallest region containing ts surrounded by null bond
types in some valid tiling. Thus, O(n log n) bits are enough to compute an instance of
S̃. To prove the right inequality, our original block construction almost works, except
that there are mismatches between a terminal output side of a block and the abutting
terminal output side of the adjacent block or the surrounding empty tiles (i.e., along
the dotted lines in Figure 5.8(a)). Consequently, the original construction does not
yield a valid tiling. Nonetheless, a minor variant of our construction overcomes this
problem. Instead of relying on mismatching bond type symbols to prevent inadvertent
binding to terminal output sides of blocks, we can add an explicit capping layer that
covers the terminal output sides with null bond types but propagates information
through propagating output sides. This way, the terminal output sides of blocks
are covered by null bond types and match the terminal output sides of the adjacent
block and empty tiles. These modifications can be made preserving local determinism,
which, by Lemma 6.1, establishes that the coordinated shape of any valid tiling is an
instance of S̃.

There may still be differences in the computational power between Wang tilings
and self-assembly processes. For example, consider the smallest Wang tiling system
and the smallest self-assembly tile system that produce instances of S̃. The instance
produced by the Wang tiling system might be much smaller than the instance pro-
duced by self-assembly. Likewise, there might be coordinated shapes that can be
produced with significantly fewer tile types by a Wang tiling system than by a self-
assembly system.

Keep in mind that the definition we use for saying when a Wang tiling system pro-
duces a shape was chosen as a natural parallel to the definition used for self-assembly,
but alternative definitions may highlight other interesting phenomena specific to Wang
tilings. For example, one might partition tiles into two subsets, “solution” and “sub-
stance” tiles, and declare shapes to be connected components of substance tiles within
valid tilings. In such tilings—reminiscent of “vicinal water” in chemistry—the solu-
tion potentially can have a significant (even computational) influence that restricts
possible shapes of the substance, and hence the size of produced shapes need not be
so large as to contain the full computation required to specify the shape.

6.4. Sets of shapes. Any coordinated shape S can be trivially produced by a
self-assembly tile system or by a Wang tiling of |S| tile types. Interesting behavior
occurs only when the number of tile types is somehow restricted and the system is
forced to perform some nontrivial computation to produce a shape. Previously in this
paper, we restricted the number of tile types in the sense that we ask what is the
minimal number of tile types that can produce a given shape. We saw that ignoring
scale in this setting allows for an elegant theory. In the following two sections the
restriction on the number of tile types is provided by the infinity of shapes they must

1564 DAVID SOLOVEICHIK AND ERIK WINFREE

be able to produce. Here we will see as well that ignoring scale allows for an elegant
theory.

Adleman [2] asks, “What are the ‘assemblable [sic] shapes’ - (analogous to what
are the ‘computable functions’)?” While this is still an open question for coordinated
shapes, our definition of a shape ignoring scale and translation leads to an elegant
answer. A set of binary strings L̃ is a language of shapes if it consists of (standard
binary) encodings of lists of locations that are coordinated shapes in some set of
shapes: L̃ = {〈S〉 s.t. S ∈ S̃ and S̃ ∈ R} for some set of shapes R. Note that
every instance of every shape in R is in this language. The language of shapes L̃ is
recursively enumerable if there exists a TM that halts upon receiving 〈S〉 ∈ L̃ and
does not halt otherwise. We say a tile system T produces the language of shapes L̃
if L̃ = {〈S〉 s.t. S ∈ S̃A for some A ∈ Term(T)}. We may want L̃ to be uniquely
produced in the sense that the A ∈ Term(T) is unique for each shape. Further,
to prevent infinite spurious growth we may also require T to satisfy the following
noncancerous property: ∀B ∈ Prod(T), ∃A ∈ Term(T) s.t. B →∗

T A. The following
lemma is valid whether or not these restrictions are made.

Lemma 6.2. A language of shapes L̃ is recursively enumerable if and only if it is
(uniquely) produced by a (noncancerous) tile system.

Proof sketch. First of all, for any tile system T we can make a TM that, given
a coordinated shape S as a list of locations, starts simulating all possible assembly
sequences of T and halts if and only if it finds a terminal assembly that has shape
S̃. Therefore, if L̃ is produced by a tile system, L̃ is recursively enumerable. In
the other direction, if L̃ is recursively enumerable, then there is a program p that,
given n, outputs the nth shape from L̃ (in some order) without repetitions. Our
programmable block construction can be modified to execute a nondeterministic uni-
versal TM in the seed block by having multiple possible state transitions. We make a
program that nondeterministically guesses n, feeds it to p, and proceeds to build the
returned shape. Note that since every computation path terminates, this tile system
is noncancerous, and since p enumerates without repetitions, the language of shapes
is uniquely produced.

Note that the above lemma does not hold for languages of coordinated shapes,
defined analogously. Many simple recursively enumerable languages of coordinated
shapes cannot be produced by any tile system. For example, consider the language of
equilateral width-1 crosses centered at (0, 0). No tile system produces this language.
Scale-equivalence is crucial because it allows arbitrary amounts of information to be
passed between different parts of a shape; otherwise, the amount of information is
limited by the width of a shape.

The same lemma can be attained for the Wang tiling model in an analogous
manner using the construction from section 6.3. Let us say a Wang tiling system
(T, ts) produces the language of shapes L̃ if L̃ = {〈S〉 s.t. S ∈ S̃A for some valid tiling
A of (T, ts)}. Analogously to tile systems, we may require the unique production
property that there is exactly one such A for each shape. Likewise, corresponding to
the noncancerous property of tile systems, we may also require the tiling system to
have the noncancerous property that every valid tiling has a coordinated shape (i.e., is
finite). Again, the following lemma is true whether or not these restrictions are made.

Lemma 6.3. A language of shapes L̃ is recursively enumerable if and only if it is
(uniquely) produced by a (noncancerous) Wang tiling system.

6.5. Scale complexity of shape functions. Expanding upon the notion of a
shape being the output of a universal computation process as mentioned in the in-

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1565

troduction, let us consider tile systems effectively computing a function from binary
strings to shapes. The universal “programmable block” constructor presented in sec-
tion 5 may be taken as an example of such a tile set if the full seed block is considered
as an initial seed assembly rather than as part of the tile set per se. In this case, the
remaining tile set is of constant size and will construct an arbitrary algorithmic shape
when presented with a seed assembly containing the relevant program. The universal
constructor tile set’s efficiency, then, can be measured in terms of the scale of the
produced shape. Similarly, other “programmable” tile sets may produce a limited set
of shapes, but potentially with greater efficiency. (Such tile sets can be thought to
produce a language of shapes (section 6.4) such that the choice of the produced shape
can be deterministically specified.) For tile systems outputting shapes in this manner,
we can show that the total number of tiles (not tile types) in the produced shape is
closely connected to the time complexity of the corresponding function from binary
strings to shapes in terms of TMs. The equivalent connection can be made between
nondeterministic TMs and the size of valid tilings in the Wang tiling model.

Let f be a function from binary strings to shapes. We say that a TM M computes
this function if for all x, f(x) = S̃ ⇔ ∃S ∈ S̃ s.t. M(x) = 〈S〉. The standard notion of
time complexity applies: f ∈ TIMETM (t(n)) if there is a TM computing it running
in time bounded by t(n), where n is the size of the input. In section 5.2.2 we saw how
binary input can be provided to a tile system via a seed frame wherein all four sides
of a square present the bit string. Let us apply this convention here.16 Extending
the notion of the seed in self-assembly to the entire seed frame and using this as the
input for a computation [17], we say a tile system computes f if the following holds:
[starting with the seed frame encoding x the tile system uniquely produces an assem-
bly of shape S̃] if and only if f(x) = S̃. We say that f ∈ TILESSA(t(n)) if there is a
tile system computing it and the size of coordinated shapes produced (in terms of the
number of nonempty locations) for inputs of size n is upper bounded by t(n). Similar
definitions can be made for nondeterministic TMs (NDTMs) and Wang tiling systems.
We say that an NDTM N computes f if the following holds: [every computation path
of N on input x ending in an accept state (as opposed to a reject state) outputs 〈S〉
for some S ∈ S̃] if and only if f(x) = S̃. For NDTMs, f ∈ TIMENDTM (t(n)) if there
is an NDTM computing f such that every computation path halts after t(n) steps.
Extending the notion of the seed for Wang tilings to the entire seed frame as well,
we say a Wang tiling system computes f if all valid tilings containing the seed frame
have a coordinated shape and this coordinated shape is the same for all such valid
tilings, and it is an instance of the shape f(x). We say that f ∈ TILESWT (t(n)) if
there is a tiling system computing it and the size of coordinated shapes produced for
inputs of size n is upper bounded by t(n).

Theorem 6.4.

(a) If f ∈ TILESSA(t(n)), then f ∈ TIMETM (O(t(n)4)).
(b) If f ∈ TIMETM (t(n)), then f ∈ TILESSA(O(t(n)3)).
(c) If f ∈ TILESWT (t(n)), then f ∈ TIMENDTM (O(t(n)4)).
(d) If f ∈ TIMENDTM (t(n)), then f ∈ TILESWT (O(t(n)3)).
Proof sketch. (a) Let T be a tile system computing f such that the total number of

tiles used on an input of size n is t(n). A TM with a two-dimensional tape can simulate
the self-assembly process of T with an input of size n in O(t(n)2) time: for each of
the t(n) tile additions, it needs to search O(t(n)) locations for the next addition. This

16Any other similar method would do. For the purposes of this section, it does not matter whether
we use the one-bit-per-tile encoding or the encoding requiring unpacking (section 5.3).

1566 DAVID SOLOVEICHIK AND ERIK WINFREE

two-dimensional TM can be simulated by a regular TM with a quadratic slowdown.17

(b) Let M be a deterministic TM that computes f and runs in time t(n). Instead
of simulating a universal TM in the block construction, we simulate a TM M ′ which
runs M on input x encoded in the seed frame and acts as program psb in section
5.4. Then the scale of each block is O(t(n)), which implies that each block consists
of O(t(n)2) tiles. Now the total number of blocks cannot be more than the running
time of M since M outputs every location that corresponds to a block. Thus the total
number of tiles is O(t(n)3).

(c) An argument similar to (a) applies to the Wang tiling system with the following
exception. A Wang tiling system can simulate an NDTM and still be able to output a
unique shape. The tiling system can be designed such that if a reject state is reached,
the tiling cannot be a valid tiling. For example, the tile representing the reject state
can have a bond type that no other tile matches. Thus all valid tilings correspond to
accepting computations.

(d) Simulation of Wang tiling systems can, in turn, be done by an NDTM as
follows. Suppose every valid tiling of our Wang tile system has coordinated shape
S. The simulating NDTM acts in a manner similar to that of the TM simulating
self-assembly above, except that every time two or more different tiles can be added
in the same location, it nondeterministically chooses one. If the NDTM finds a region
containing the seed frame surrounded by null bond types, it outputs the shape of
the smallest such region and enters an accept state. Otherwise, at some point no
compatible tile can be added, and the NDTM enters a reject state. The running time
of accepting computations is O(t(n)2) via the same argument as for (b).

If, as is widely believed, NDTMs can compute some functions in polynomial time
that require exponential time on a TM, then it follows that there exist functions from
binary strings to shapes that can be computed much more efficiently by Wang tiling
systems than by self-assembly, where efficiency is defined in terms of the size of the
coordinated shape produced.

The above relationship between TIME and TILES may not be the tightest pos-
sible. As an alternative approach, very small-scale shapes can be created as Wang
tilings by using an NDTM that recognizes tuples (i, j, x), rather than one that gener-
ates the full shape. This will often yield a compact construction. As a simple example,
this approach can be applied to generating circles with radius x at scale O(n2), where
n = O(log x). It remains an open question how efficiently circles can be generated by
self-assembly.

6.6. Other uses of programmable growth. The programmable block con-
struction is a general way of guiding the large-scale growth of the self-assembly process
and may have applications beyond those explored so far. For instance, instead of con-
structing shapes, the block construction can be used to simulate other tile systems in
a scaled manner using fewer tile types. It is easy to reprogram it to simulate, using
few tile types, a large deterministic τ = 1 tile system for which a short algorithmic
description of the tile set exists. We expect that a slightly extended version of the

17The rectangular region of the two-dimensional tape previously visited by the two-dimensional
head (the arena) is represented row by row on a one-dimensional tape separated by special markers.
The current position of the two-dimensional head is also represented by a special marker. If the
arena is l × m, a single move of the two-dimensional machines which does not escape the current
arena requires at most O(m2) steps, while a move that escapes it in the worst case requires an extra
O(ml2) steps to increase the arena size. We have m, l = O(t(n)), and the number of times the arena
has to be expanded is at most O(t(n)).

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1567

block construction can also be used to provide compact tile sets that simulate other
τ = 2 tile systems that have short algorithmic descriptions.

To self-assemble a circuit, it may be that the shape of the produced complex is
not the correct notion. Rather one may consider finite patterns, where each location
in a shape is “colored” (e.g., resistor, transistor, wire). Further, assemblies that can
grow arbitrarily large may be related to infinite patterns. What is the natural way to
define the self-assembly complexity of such patterns? Do our results (section 4) still
hold?

Appendix A. Local determinism guarantees unique production: Proof
of Theorem 2.3.

Lemma A.1. If �A is a locally deterministic assembly sequence of T, then for
every assembly sequence �A′ of T and for every tile t′ = t′n added in �A′, the following
conditions hold, where t = A(pos(t′)):

(i) inputsides
�A′

(t′) = inputsides
�A(t).

(ii) t′ = t.
Proof. Suppose t′ = t′n is the first tile added that fails to satisfy one of the above

conditions. Consider any D ∈ inputsides
�A′

(t′). Tile tD = A′(D(pos(t′))) must have

been added before t′ in �A′ and so D−1 �∈ inputsides
�A′

(tD) = inputsides
�A(tD). This

implies D �∈ propsides
�A(t) and thus,

inputsides
�A′

(t′) ∩ propsides
�A(t) = ∅.(A.1)

Now, ∀D, Γ
A′

n

D (t′) ≤ ΓA
D (t′) because A′

n has no more tiles than A and except at pos(t)
they all agree. Equation (A.1) implies

ΓA

inputsides
�A′

(t′)
(t′) ≤ ΓA

D−propsides
�A(t)

(t′) .

Therefore,

Γ
A′

n

inputsides
�A′

(t′)
(t′) ≤ ΓA

D−propsides
�A(t)

(t′) .

So by property (2) of Definition 2.2, no tile of type �= type(t) could have been suffi-

ciently bound here by inputsides
�A′

(t′) and thus t′ = t. Therefore, t′ cannot fail the
second condition (ii).

Now, suppose t′ fails the first condition (i). Because of property (1) of Defi-

nition 2.2, this can happen only if ∃D ∈ inputsides
�A′

(t′) − inputsides
�A(t′). Since

D �∈ inputsides
�A(t′), tD must have been added after t′ in �A. So since tD binds t′,

D−1 ∈ inputsides
�A(tD), and so D ∈ propsides

�A(t). But by (A.1) this is impossible.
Thus we conclude A′ ⊆ A.

Lemma A.1 directly implies that if there exists a locally deterministic assembly
sequence �A of T, then ∀A′ ∈ Prod(T), A′ ⊆ A. Theorem 2.3 immediately follows:

if there exists a locally deterministic assembly sequence �A of T, then T uniquely
produces A.

Since local determinism is a property of the inputsides classification of tiles in a
terminal assembly, Lemma A.1 also implies the following corollary.

Corollary A.2. If there exists a locally deterministic assembly sequence �A of
T, then every assembly sequence ending in A is locally deterministic.

1568 DAVID SOLOVEICHIK AND ERIK WINFREE

Appendix B. Scale-equivalence and “∼=” are equivalence relations. Trans-

lation-equivalence is clearly an equivalence relation. Let us write S0
tr
= S1 if the two

coordinated shapes are translation-equivalent.
Lemma B.1. If S = Sd

0 and S0 = Sk
m, then S = Sdk

m .
Proof. S(i, j) = S0(�i/d�, �j/d�) = Sm(��i/d�/k�, ��j/d�/k�) = Sm(�i/dk�,

�j/dk�).
Lemma B.2. If S0

tr
= S1, then Sd

0
tr
= Sd

1 .
Proof. Sd

0 (i, j) = S0(�i/d�, �j/d�) = S1(�i/d� + Δi, �j/d� + Δj) = S1(� i+dΔi
d �,

� j+dΔj
d �) = Sd

1 (i + dΔi, j + dΔj).

To show that scale-equivalence is an equivalence relation, the only nontrivial
property is transitivity. Suppose Sc

0 = Sd
1 and Sd′

1 = Sc′

2 for some c, c′, d, d′ ∈ Z
+.

(Sd
1)d

′
= (Sd′

1)d = Sd′d
1 by Lemma B.1. Thus, Sd′d

1 = (Sc
0)

d′
= (Sc′

2)d, and by

Lemma B.1, Scd′

0 = Sc′d
2 .

To show that “∼=” is an equivalence relation, again only transitivity is nontrivial.

Suppose S0
∼= S1 and S1

∼= S2. In other words, Sc
0

tr
= Sd

1 and Sd′

1
tr
= Sc′

2 for some

c, c′, d, d′ ∈ Z
+. By Lemma B.2, (Sc

0)
d′ tr

= (Sd
1)d

′
and (Sd′

1)d
tr
= (Sc′

2)d. Then by

Lemma B.1, Scd′

0
tr
= Sd′d

1 and Sd′d
1

tr
= Sc′d

2 , which implies Scd′

0
tr
= Sc′d

2 by the transitivity
of translation-equivalence. In other words, S0

∼= S2.

Acknowledgments. We thank Len Adleman, members of his group, Ashish
Goel, and Paul Rothemund for fruitful discussions and suggestions. We also thank
Rebecca Schulman and David Zhang for useful and entertaining conversations about
descriptional complexity of tile systems, and an anonymous reviewer for a very careful
reading of this paper and helpful comments.

REFERENCES

[1] L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. Moisset de Espanes, and

P. W. K. Rothemund, Combinatorial optimization problems in self-assembly, in Pro-
ceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM,
New York, 2002, pp. 23–32.

[2] L. M. Adleman, Toward a Mathematical Theory of Self-Assembly (extended abstract), Tech-
nical report, University of Southern California, Los Angeles, 1999.

[3] L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, Running time and program size for
self-assembled squares, in Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, ACM, New York, 2001, pp. 740–748.

[4] G. Aggarwal, Q. Cheng, M. H. Goldwasser, M.-Y. Kao, P. Moisset de Espanes, and

R. T. Schweller, Complexities for generalized models of self-assembly, SIAM J. Comput.,
34 (2005), pp. 1493–1515.

[5] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc., 66 (1966).
[6] M. Cook, P. W. K. Rothemund, and E. Winfree, Self-assembled circuit patterns, in

DNA Computing, Lecture Notes in Comput. Sci. 2943, Springer-Verlag, Berlin, 2004,
pp. 91–107.

[7] B. Grunbaum and G. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1986.
[8] W. Hanf, Nonrecursive tilings of the plane I, J. Symbolic Logic, 39 (1974), pp. 283–285.
[9] P. W. K. Rothemund, Theory and Experiments in Algorithmic Self-Assembly, Ph.D. thesis,

University of Southern California, Los Angeles, 2001.
[10] P. W. K. Rothemund, N. Papadakis, and E. Winfree, Algorithmic self-assembly of DNA

Sierpinski triangles, PLoS Biology, 2 (2004), e424.
[11] P. W. K. Rothemund and E. Winfree, The program-size complexity of self-assembled

squares, in Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting, ACM, New York, 2000, pp. 459–468.

[12] T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. Seeman,
Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes, J.
Am. Chem. Soc., 122 (2000), pp. 1848–1860.

COMPLEXITY OF SELF-ASSEMBLED SHAPES 1569

[13] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications,
2nd ed., Springer, New York, 1997.

[14] C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules, Nature, 407 (2000), pp. 493–496.

[15] C. Mao, W. Sun, and N. C. Seeman, Designed two-dimensional DNA Holliday junction arrays
visualized by atomic force microscopy, J. Am. Chem. Soc., 121 (1999), pp. 5437–5443.

[16] D. Myers, Nonrecursive tilings of the plane II, J. Symbolic Logic, 39 (1974), pp. 286–294.
[17] J. H. Reif, Local parallel biomolecular computation, in DNA-Based Computers III, DIMACS

Ser. Discrete Math. Theoret. Comput. Sci. 48, AMS, Providence, RI, 1999, pp. 217–254.
[18] R. M. Robinson, Undecidability and nonperiodicity of tilings of the plane, Invent. Math., 12

(1971), pp. 177–209.
[19] J. von Neumann, The Theory of Self-Reproducing Automata, A. W. Burks, ed., University of

Illinois Press, Urbana, IL, 1966.
[20] H. Wang, Proving theorems by pattern recognition. II, Bell Sys. Tech. J., 40 (1961), pp. 1–41.
[21] E. Winfree, Simulations of Computing by Self-Assembly, Caltech CS Technical report,

1998.22, California Institute of Technology, Pasadena, CA.
[22] E. Winfree, Algorithmic Self-Assembly of DNA, Ph.D. thesis, California Institute of Technol-

ogy, Pasadena, CA, 1998.
[23] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two

dimensional DNA crystals, Nature, 394 (1998), pp. 539–544.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1570–1599

FIRST-ORDER LANGUAGES EXPRESSING CONSTRUCTIBLE
SPATIAL DATABASE QUERIES∗

BART KUIJPERS† , GABRIEL KUPER‡ , JAN PAREDAENS§ , AND LUC VANDEURZEN†

Abstract. The research presented in this paper is situated in the framework of constraint
databases introduced by Kanellakis, Kuper, and Revesz in their seminal paper of 1990, specifically,
the language with real polynomial constraints (FO + poly). For reasons of efficiency, this model
is implemented with only linear polynomial constraints, but this limitation to linear polynomial
constraints has severe implications on the expressive power of the query language. In particular,
when used for modeling spatial data, important queries that involve Euclidean distance are not
expressible. The aim of this paper is to identify a class of two-dimensional constraint databases
and a query language within the constraint model that go beyond the linear model and allow the
expression of queries concerning distance. We seek inspiration in the Euclidean constructions, i.e.,
constructions by ruler and compass. We first present a programming language that captures exactly
the first-order ruler-and-compass constructions that are expressible in a first-order language with real
polynomial constraints. If this language is extended with a while operator, we obtain a language that
is complete for all ruler-and-compass constructions in the plane. We then transform this language in
a natural way into a query language on finite point databases, but this language turns out to have
the same expressive power as FO + poly and is therefore too powerful for our purposes. We then
consider a safe fragment of this language and use this to construct a query language that allows the
expression of Euclidean distance without having the full power of FO + poly.

Key words. constraint databases, real algebraic geometry, first-order logic, query languages,
ruler-and-compass constructions

AMS subject classifications. 03B70, 14P10, 51M04, 57R05, 68P15

DOI. 10.1137/S0097539702407199

1. Introduction and motivation. Kanellakis, Kuper, and Revesz [28, 29] (see
also [30]) introduced the framework of constraint databases which provides a rather
general model for spatial databases [32]. Spatial database systems [1, 7, 10, 21, 22, 37]
are concerned with the representation and manipulation of data that have a geomet-
rical or topological interpretation. In the context of the constraint model, a spatial
database, although conceptually viewed as a possibly infinite set of points in the real
space, is represented as a finite union of systems of polynomial equations and inequal-
ities. For example, the spatial database consisting of the set of points on the northern
hemisphere together with the points on the equator of the unit sphere in the three-
dimensional space R3 can be represented by the formula x2 +y2 +z2 = 1∧z ≥ 0. The
set {(x, y) | (y−x2)(x2 − y+1/2) > 0} of points in the real plane lying strictly above
the parabola y = x2 and strictly below the parabola y = x2 + 1/2 is an example of
a two-dimensional database in the constraint model. These are called semi-algebraic
sets [6].

Several query languages on databases using the constraint model have been stud-

∗Received by the editors May 7, 2002; accepted for publication (in revised form) August 28, 2006;
published electronically February 20, 2007.

http://www.siam.org/journals/sicomp/36-6/40719.html
†Theoretical Computer Science Group, Hasselt University and Transnational University of Lim-

burg, B-3590 Diepenbeek, Belgium (bart.kuijpers@uhasselt.be, luc.vandeurzen@groept.be).
‡Dipartimento Informatica e Telecommunicazioni, Università di Trento, I-38050 Povo, Trento,

Italy (kuper@acm.org).
§Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1,

B-2020 Antwerp, Belgium (jan.paredaens@ua.ac.be).

1570

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1571

ied. One such query language is obtained by extending the relational calculus with
polynomial inequalities [32]. This language is usually referred to as FO + poly. The
query deciding whether the two-dimensional database S is a straight line, for instance,
can be expressed in this language by the sentence

∃a∃b∃c
(
¬(a = 0 ∧ b = 0) ∧ ∀x∀y(S(x, y) ↔ ax + by + c = 0)

)
.

Although variables in such expressions range over the real numbers, queries expressed
in this calculus can still be computed effectively. In particular, the closure property
holds: Any FO + poly query, when evaluated on a spatial database in the constraint
model, yields a spatial database in the constraint model. This follows immediately
from Tarski’s quantifier-elimination procedure for the first-order theory of real closed
fields [38].

However, Tarski’s quantifier-elimination procedure is computationally very expen-
sive. Since the 1970s various more efficient algorithms have been proposed, including
Cylindrical Algebraic Decomposition [8, 9], which are still unsuitable for practice.
The best known algorithms were proposed in the 1990s [4, 34], and, by the use of
alternative data structures [14], in the best case, quantifier elimination is exponential
in the number of quantifier blocks. (A recent textbook on this matter is [36], and for
a discussion on the influence of data structures we refer the reader to [25]). Due to
this complexity it seems to be infeasible for real spatial database applications to rely
on quantifier elimination (we discuss this further below). In existing implementations
of the constraint model, such as the DEDALE system [15, 16, 17], the constraints are
restricted to linear polynomial constraints, and the sets definable in this restricted
model are called semi-linear. It is argued that linear polynomial constraints provide
a sufficiently general framework for spatial database applications [17, 40]. Indeed, in
one of the main application domains, geographical information systems, linear ap-
proximations are used to model geometrical objects (for an overview of this field since
the early ’90s, see [1, 7, 10, 21, 22, 37]).

When we extend the relational calculus with linear polynomial inequalities, we
obtain an effective language which has the same closure property as above but this
time with respect to linear databases. We refer to this language as FO + lin, and
therefore an FO + lin query evaluated on a linear constraint database yields a linear
constraint database.

We return to the complexity of query evaluation by quantifier elimination. Al-
though for both FO + poly and FO + lin the cost of quantifier elimination grows ex-
ponentially with the number of blocks of quantifiers to be eliminated, an argument
in favor of the language FO + lin is that there exists a conceptually “easier” way
(Fourier’s method [27, 31]) to eliminate quantifiers for this language which makes an
effective implementation feasible [15, 16, 17]. This algorithm has the same asymptotic
complexity as the quantifier-elimination procedure for FO + poly, though there is a
slight gain in data complexity: Grumbach and Su have shown that the data com-
plexity for FO + lin is NC1, while it is NC for FO + poly (for certain restrictions of
FO + lin, namely �-bounded instances, an AC0 bound is obtained) [19]. From the prac-
tical point of view, a more significant advantage of the linear model is the existence
of numerous efficient algorithms for geometrical operations [33].

There are, however, a number of serious disadvantages to the restriction to linear
polynomial constraints, related to the limited expressive power of the query language
FO + lin. The expressive power of the language FO + lin has been extensively studied
(see, e.g., [2, 3, 18, 20, 40, 41] and references therein). Among the limitations of

1572 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

FO + lin, one of the most important is that the language is incapable of expressing
queries that involve Euclidean distance, betweenness, and collinearity. A query like
“Return all cities in Belgium that are further than 100 km away from Brussels” is,
however, a query that is of importance in spatial database applications. The goal
of this paper is to overcome these limitations of FO + lin for the special case of two-
dimensional spatial databases.

We note that languages whose expressive power on semi-linear databases is strictly
between that of FO + lin and FO + poly have already been studied. Vandeurzen,
Gyssens, and Van Gucht [40, 41] have shown that, even though FO + lin extended
with a primitive for collinearity yields a language with the complete expressive power
of FO + poly, a “careful” extension with a collinearity operator yields a language
whose expressive power is strictly between that of FO + lin and that of FO + poly on
semi-linear databases. However, even this extension does not allow the expression of
queries involving distance.

In this paper, we define a new query language, SafeEuQL↑, and a class of two-
dimensional constraint databases on which this language is closed, called semi-circular
databases. The language SafeEuQL↑ allows the expression of queries concerning dis-
tance, betweenness, and collinearity. The class of semi-circular databases obviously is
a strict superclass of the class of linear databases, since SafeEuQL↑ allows for the defi-
nition of data by means of distance. Semi-circular databases are describable by means
of polynomial equalities, inequalities that involve linear polynomials, and polynomi-
als that define circles. The language SafeEuQL↑ is strictly more powerful on linear
databases than FO + lin, and on semi-circular databases is strictly less powerful than
FO + poly.

To define this language, we have turned, for inspiration, to the Euclidean con-
structions, i.e., the constructions by ruler and compass that we know from high-school
geometry. These constructions were first described in the 4th century B.C. by Euclid
of Alexandria in the 13 books of his Elements [24]. Of the 465 propositions to be
found in these volumes only 60 are concerned with ruler-and-compass constructions.
Most of these constructions belong to the mathematical folklore and are known to all
of us. “Construct the perpendicular from a given point on a given line” or “construct
a regular pentagon” are well-known examples. Since the 19th century, we also know
that a certain number of constructions are not performable by ruler and compass, e.g.,
the trisection of an arbitrary angle or the squaring of the circle. For a 20th century
description of these constructions and the main results concerning them, we refer the
reader to [26].

An alternative to considering languages based on ruler and compass construc-
tions would be to use a constraint language based on the field of the constructible real
numbers. It follows from a result by Ziegler that this theory is undecidable [42], how-
ever. Ziegler showed, among other results, that any finitely axiomatizable subtheory
of the reals with addition, multiplication, and order is undecidable (as conjectured by
Tarski).

We define and study in the current paper three languages for ruler-and-compass
constructions.

First, we define a programming language that describes Euclidean constructions.
We will refer to this procedural language as EuPL (short for Euclidean Programming
Language). Engeler [11, 12] studied a similar programming language in the ’60s, but
his language contains a while-loop and therefore goes beyond first-order logic-based
languages. His language also differs from ours in that EuPL also contains a choice

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1573

statement. This statement corresponds to choosing arbitrary points, which satisfy
some conditions, in the plane, something that is often done in constructions with ruler
and compass on paper. We claim that EuPL captures exactly the planar geometrical
constructions, i.e., the first-order expressible ruler-and-compass constructions. We
show that the choice statement, at least for deterministic programs, can be omitted.
We also prove a number of useful decidability properties of EuPL programs: that
equivalence and satisfiability of EuPL programs are decidable, and that it is decidable
whether a program is deterministic.

We then transform the programming language EuPL into a query language for
finite point databases, called EuQL (short for Euclidean Query Language). It turns
out that this calculus can express nonconstructible queries—in fact, we show that
EuQL has the same expressive power on finite point databases as FO + poly. It is
therefore too powerful for our purposes.

We then study a safe fragment of EuQL, in which all queries are constructible. In
particular, a SafeEuQL query returns constructible finite point relations from given
finite point relations.

SafeEuQL is the key ingredient in our query language SafeEuQL↑ for semi-circular
databases. Since SafeEuQL works on finite point databases, we interpret these queries
to work on intensional representations of semi-circular databases. We then give
FO + poly-definable mappings from databases to their representation and back. Using
these mappings, we can “lift” SafeEuQL to a query language on semi-circular data-
bases. This “lifting” technique has also been used by Benedikt and Libkin [5] and
Gyssens, Vandeurzen, and Van Gucht [23].

We then compare the expressive power of SafeEuQL↑ with the expressive power
of FO + poly on semi-circular databases, and show that on semi-linear databases
FO + poly is more expressive than SafeEuQL↑. Finally, we compare the expressive
power of SafeEuQL↑ and FO + lin on semi-linear databases.

Overview of the query languages. The following scheme gives an overview
of the different languages. A horizontal arrow indicates that a language is closed on
the given class of databases. A subscheme of the form

B
L1 � B

A
L2 �

�

�

A

means that on databases in the class A, the language L1, mapping databases in class A
to databases in class A, is more expressive than the language L2, mapping databases
in class B to databases in class B (where B is a larger class of databases than A). The
top part of Figure 1, for instance, expresses that SafeEuQL↑ is strictly more expressive
than FO + poly on semi-circular databases.

Organization of the paper. In the next section, we define FO + poly and
FO + lin. In section 3, we introduce the class of semi-circular databases and describe
a complete and lossless representation of them by means of finite point databases.
We devote the next three sections to the study of the three languages for ruler-and-
compass constructions: EuPL, EuQL, and SafeEuQL. The query language for semi-
circular databases is given in section 7, where we show that it is closed and compare
its expressive power with that of FO + lin on semi-linear databases and FO + poly on
semi-circular databases.

1574 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

{semi-algebraic databases} FO + poly � {semi-algebraic databases}

{semi-circular databases} SafeEuQL↑
�

�

�

{semi-circular databases}

{semi-linear databases} FO + lin �

�

�

{semi-linear databases}

{finite point databases} EuQL,SafeEuQL�

�

�

{finite point databases}

Fig. 1. Comparison of the expressive power of the different languages.

2. Constraint-based database models. In this section, we provide the nec-
essary background for the polynomial and linear constraint database models and for-
mally define two query languages, FO + poly and FO + lin, for the polynomial and the
linear database model, respectively. Since the linear database model is a submodel
of the polynomial database model, we start with the latter. We denote the set of the
real numbers by R.

2.1. The polynomial database model. A polynomial formula is a well-formed
first-order logic formula over the theory of the real numbers, i.e., over (+,×, <, 0, 1).
In other words, a polynomial formula is built with the logical connectives ∧, ∨, and
¬ and the quantifiers ∃ and ∀ from atomic formulas of the form p(x1, . . . , xn) > 0,
where p(x1, . . . , xn) is a polynomial with real algebraic coefficients and real variables
x1, . . . , xn.

Every polynomial formula ϕ(x1, . . . , xn) with n free variables x1, . . . , xn defines a
point set

{(x1, . . . , xn) ∈ Rn | ϕ(x1, . . . , xn)}

in the n-dimensional Euclidean space Rn in the standard manner. Point sets defined
by a polynomial formula are called semi-algebraic sets. We shall also refer to them
as semi-algebraic relations, since they can be seen as n-ary relations over the real
numbers.

We remark that, by the quantifier-elimination theorem of Tarski [38], it is always
possible to represent a semi-algebraic set by a quantifier-free formula. The same the-
orem also guarantees the decidability of the equivalence of two polynomial formulas.

A polynomial database is a finite set of semi-algebraic relations, and a query in the
polynomial database model is a computable mapping from m-tuples of semi-algebraic
relations to a semi-algebraic relation.

The most natural query language for the polynomial data model is the relational

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1575

calculus augmented with polynomial equalities and inequalities, i.e., the first-order
language which contains as atomic formulas polynomial inequalities and formulas of
the form Ri(y1, . . . , yn), where Ri (i = 1, . . . ,m) are semi-algebraic relation names for
the input parameters of the query, and y1, . . . , yn are real variables. In the literature,
this query language is commonly referred to as FO + poly [30].

Example 2.1. The FO + poly formula

R(x, y) ∧ ∀ε(ε ≤ 0 ∨ ∃v∃w(¬R(v, w) ∧ (x− v)2 + (y − w)2 < ε))

has x and y as free variables. For a given binary semi-algebraic relation R, it computes
the set of points with coordinates (x, y) that belong to the intersection of R and its
topological border.

Tarski’s quantifier-elimination procedure ensures that every FO + poly query is ef-
fectively computable and yields a polynomial database as result [28, 29] (this property
is commonly referred to as “closure”).

2.2. The linear database model. Polynomial formulas built from atomic for-
mulas that contain only linear polynomials with real algebraic coefficients are called
linear formulas. Point sets defined by linear formulas are called semi-linear sets or
semi-linear relations.

We remark that there is also a quantifier-elimination property for the linear
model: Any linear formula that contains quantifiers can be converted to an equiv-
alent quantifier-free linear formula. There is a conceptually easy algorithm, usually
referred to as Fourier’s method, for eliminating quantifiers in the linear model (this
method is described in [27, 31]).

A linear database is a finite set of semi-linear relations. As in the polynomial
model, queries in the linear model are defined as mappings from m-tuples of semi-
linear relations to a semi-linear relation. A very appealing query language for the
semi-linear data model, called FO + lin, is obtained by restricting the polynomial
formulas in FO + poly to contain only linear polynomials. Using algebraic computation
techniques for the elimination of variables, one can see that the result of every FO + lin
query is a semi-linear relation [27, 31, 30].

Example 2.2. The FO + lin formula

R(x, y) ∧ ∀ε(ε ≤ 0 ∨ ∃v∃w(¬R(v, w) ∧ x− ε < v < x + ε ∧ y − ε < w < y + ε))

has two free variables: x and y. For a given binary semi-linear relation R, it computes
the set of points with coordinates (x, y) that belong to the intersection of R and its
topological border. In fact, this formula is equivalent to the one in Example 2.1, even
though it makes use of a different metric to compute the topological border. It should
be clear that not every FO + poly formula has an equivalent FO + lin formula.

3. Semi-circular relations. We now describe a class of planar relations in the
constraint model that can be described by linear polynomials and those quadratic
polynomials that describe circles, and then describe an encoding of these relations
as finite relations of points. This encoding will be complete, meaning that every
such relation has an encoding, and lossless, meaning that the original relation can be
recovered from the encoding (even in FO + poly).

Definition 3.1. We call a subset of R2 a semi-circular set or semi-circular
relation if and only if it can be defined as a Boolean combination of sets of the form

{(x, y) | ax + by + c θ 0},

1576 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

(a) (b)

p1

p2

p3
p4

p5

p6

p7p8

p9

p10

p11

p12

p13 p14

p15
p16

p17

p18
p19

p20

p21

Fig. 2. A semi-circular relation (a) and its carrier (b).

where a, b, and c are real algebraic numbers with a
= 0 or b
= 0, and θ is either ≥ or
>; or

{(x, y) | (x− a)2 + (y − b)2 θ c2} ,

where a, b, and c are real algebraic numbers with c
= 0, and θ is either ≥ or >.
As far as planar figures are concerned, the class of semi-circular relations clearly

contains the class of semi-linear relations.
Example 3.1. Figure 2(a) shows an example of a semi-circular relation. It is the

set

{(x, y) | x2 + y2 ≤ 1 ∨ (y = 0 ∧ 1 ≤ x < 2) ∨ (x > 2 ∧ ¬y = 0)} .

Given such a semi-circular database, we consider all of the sets of the form {(x, y) |
p(x, y) = 0} for each polynomial p(x, y) that occurs in the definition of the semi-
circular relation.

For the semi-circular relation of Figure 2(a), these sets are shown in Figure 2(b)
and are defined by the equations x2 + y2 − 1 = 0, y = 0, x − 1 = 0, and x − 2 = 0.
We refer to these lines and circles as a carrier of the semi-circular relation (or as
the carrier of a particular representation of the semi-circular relation). The carrier
in Figure 2(b) partitions the plane R2 into 21 classes, each of which belongs either
entirely to the semi-circular relation or to its complement. In general, these partition
classes can be disconnected. We then pick a representative of each of these classes,
illustrated by points p1, . . . , p21 in Figure 2(b). We can then represent a semi-circular
relation R by a finite point database1 that consists of three relations, L, P , and C,
as follows:

1. L contains, for each line in the carrier of R, a pair of its points;
2. C contains, for each circle in the carrier of R, its center and one of its points;
3. P contains a representative of each class in the partition induced by the

carrier of R that belongs to R.
The sets L and C are binary relations of points in the plane, while the set P is a

unary relation of points.

1These points can be represented explicitly by their real algebraic coordinates, or implicitly by a
real polynomial formula. Equality of such points can therefore be decided by Tarski’s theorem [38].

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1577

We refer to such a finite representation of a semi-circular relation as an inten-
sional LPC-representation. Clearly, a semi-circular relation can have more than one
intensional LPC -representation, for example, because there may be more than one
constraint formula describing it.

For the semi-circular database of Figure 2(a) we can have the following finite
representation: L consists of the tuples (p7, p8), (p11, p12), and (p16, p17); C consists
of the single tuple (p3, p5); and P consists of the points p2, p3, p4, p5, p7, p9, p10, p12,
p19, and p21.

The complete plane R2 can be represented by L = ∅, C = ∅, and P = {p} for
any point p in R2.

We remark that an intensional LPC -representation of a semi-circular relation is
lossless in the sense that the semi-circular relation can be reconstructed from the repre-
sentation. In section 7, we show how to compute in FO + poly an LPC -representation
of a semi-circular relation and how to reconstruct, also in FO + poly, the semi-circular
relation from its LPC -representation.

As an immediate consequence of the existence of quantifier-elimination algorithms
for the real closed field, we get the following property.

Proposition 3.1. It is decidable whether two LPC-representations of semi-
circular relations represent the same semi-circular relation.

4. The language EuPL. We now define our first programming language, EuPL,
for expressing Euclidean constructions. This language is modeled after the language of
Engeler [11], with two key differences. The language of Engeler uses iteration, but we
are interested only in first-order database query languages. We therefore first explore
the consequences of defining a Euclidean programming language without iteration. An
additional feature of EuPL is that it includes a nondeterministic choice operator. We
decided to include this operator as it is used frequently in the Euclidean constructions
that we want to model, but we shall show that this choice operator is redundant, since,
under appropriate assumptions, it can be simulated by other operations.

EuPL has one basic type 〈var〉 which ranges over points in the Euclidean plane.
We use p, q, . . . to denote variables. There is no basic notion of lines and circles,
since lines are represented by pairs of points (p1, p2) and circles by triples (p1, p2, p3),
where (p1, p2) represents the line through the points p1 and p2 (assuming p1 and p2

are distinct) and (p1, p2, p3) (assuming p2 and p3 are distinct) represents the circle
with center p1 and radius equal to d(p2, p3), the distance between p2 and p3.

2

Our language corresponds to one view of Euclidean constructions, as it is known
that all ruler-and-compass constructions can be carried out on lines and circles that
are represented by points (see [13]). The main reason that we have chosen to use a
point representation in EuPL is to make the language similar to the database languages
in the following sections, where such an encoding really is necessary. As far as EuPL is
concerned, however, we could have defined a similar language with lines and circles as
primitive notions—all of the results in the current section, apart from Theorem 4.2,
would still hold.

The basic predicates in EuPL are as follows:

1. defined(p),
2. p1 = p2,
3. (i) p1 is on line (p2, p3),

2We could also represent circles by pairs (p1, p2), where p1 is the center and p2 a point on the
circle, or in other ways. Our choice is arbitrary, but tends to make actual constructions simpler.

1578 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

p2

p1

p3

p4

p1

p2

p3

p4

Fig. 3. The two orientations for c-order(p1, p2, p3, p4).

(ii) p1 is on circle (p2, p3, p4),
(iii) p1 is in circle (p2, p3, p4),
(iv) p1 is on the same side as p2 of line (p3, p4),

4. (i) l-order(p1, p2, p3),
(ii) c-order(p1, p2, p3, p4).

The first condition means that the variable p represents a point. Such a test is
needed, as a variable may be undefined if it is the result of an intersection of two
disjoint objects, such as parallel lines.

Given our encoding of lines and circles, the meaning of the predicates in 3(a–d)
should be clear. For example, p1 is in circle (p2, p3, p4) means that p1 is in the circle
with center p2 and radius d(p3, p4). The predicates in 4(a), 4(b) are order relations.
The predicate l-order(p1, p2, p3) (line-order) means that p1, p2, and p3 are on the
same line, and that p2 is between p1 and p3. c-order(p1, p2, p3, p4) (circle-order)
means that p1, p2, p3, and p4 are all on the same circle, in this order, in either
the clockwise or the counterclockwise direction (see Figure 3). Note that whenever
pairs (respectively, triples) of points do not define lines (respectively, circles), the
corresponding predicates are false.

The basic operations in EuPL to compute intersections of objects correspond to
the combinations line/line, line/circle, and circle/circle.

1. q := l-l-crossing(p1, p2, p3, p4);
2. q1, q2 := l-c-crossing(p1, p2, p3, p4, p5);
3. q1, q2 := c-c-crossing(p1, p2, p3, p4, p5, p6).

The semantics of these operators in most cases should be clear, except that the choice
of which intersection point to assign to q1 and which to q2 is arbitrary.3 In the case
of the intersection of two parallel lines (identical or not), q is undefined, and similarly
for the intersection of two disjoint circles, or for the intersection of a disjoint circle
and line. In the case of a line tangent to a circle or two circles that meet in a single
point, q1 and q2 will be identical.

The choice operator, whose syntax is

choose p such that 〈condition〉 ,

assigns to p, in a nondeterministic manner, a point p that satisfies the given condition.
When 〈condition〉 is unsatisfiable, p is undefined.

3This actually introduces an additional nondeterminism into the language. This can be handled
by straightforward modifications of the proofs that follow and will be ignored from now on.

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1579

p2p1 r
q

p = p4

p′ s

p3

Fig. 4. Construction of the perpendicular.

The language also has a conditional statement if C then S1 else S2 with the
usual semantics. A formal specification of the language appears in the appendix. The
basic notion is that of a multifunction with n input variables and m output variables,
representing points in the plane. Each multifunction is defined by a sequence of
assignment statements and conditional statements, without looping, and its result is
returned by a result statement.

We illustrate the language by several examples, showing how to express several
Euclidean constructions in EuPL.

Example 4.1. Given a line (p1, p2) and a point p not on the line, construct the
perpendicular (p, p′) to the given line from p (see Figure 4).

multifunction perp(p, p1, p2) = (p′);
begin
choose q such that not(q is on the same side as p of line (p1, p2));

r, s := l-c-crossing(p1, p2, p, p, q);
p3, p4 := c-c-crossing(r, r, p, s, s, p);
p′ := l-l-crossing(p1, p2, p3, p4);
result(p′);

end

For another example, we show how to construct an arbitrary point on an ellipse.
Given collinear points a, b, p, and q, we construct, for each r between a and b, points
r′ and r′′ “corresponding” to r such that (a) r′ and r′′ are on the ellipse through a
and b with foci p and q and (b) as r ranges from a to b all the points on this ellipse are
constructed. Note that the ellipse itself is not constructible with ruler and compass
and therefore, as we shall see in Theorem 4.3, cannot be defined by an EuPL program.

Example 4.2. Given the collinear points a, b, p, and q, with d(a, p) = d(b, q), p
between a and q, and q between p and b, r′ is constructed as follows (see Figure 5):

multifunction put-ellipse(a, b, p, q) = (r′);
begin
choose r such that l-order(a, r, b);

1580 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

a bqrp

r′

r′′

Fig. 5. Construction of a point on an ellipse.

r′, r′′ := c-c-crossing(p, a, r, q, b, r);
result(r′);

end

The point r′ is on the ellipse with foci p and q and major axis d(a, b) since d(p, r′) +
d(q, r′) = d(a, r) + d(r, b) = d(p, a) + d(q, a) = d(p, b) + d(q, b).

4.1. Consequences of quantifier elimination: Representation indepen-
dence. As pointed out above, EuPL is at least as powerful as a language with lines
and circles as primitives. But EuPL is actually more powerful than desired. For ex-
ample, if we are given a line represented by points (p1, p2), the EuPL program that
returns p1 would have no natural geometric interpretation.

This leads to the following problem: Given an EuPL program, does the result
depend on the representation of the input lines and circles or not? The inputs and
outputs of an EuPL program are just points, with no indication as to what they
“really” represent. We therefore first need to impose an interpretation on these points,
i.e., specify which of these points represent lines or circles.

For example, given a program with inputs (p1, p2, p3, p4, p5) and outputs (q1, q2),
we could interpret (p1, p2) as a line, (p3, p4, p5) as a circle, and (q1, q2) as a line. Other
interpretations of the inputs and outputs of the program are also possible: Given a
specific interpretation we shall refer to P as an interpreted EuPL program.

The formal definition of an interpreted program is very simple. As objects (points,
lines, or circles) are represented by 1, 2, or 3 points, respectively, all we need are two
equivalence relations on the input and output.

Definition 4.1. An interpretation of an EuPL program P is a pair of equivalence
relations Ei and Eo on the input and output variables of P , such that each equivalence
class has between 1 and 3 elements.

Remark. Note that all of the language primitives are well defined, regardless of the
interpretations of the variables. For example, q is in circle (p1, p2, p3) is well defined
even if (p1, p2) represents a line and (p3, q) another line, though it is unlikely to have
an intuitive result or be representation-independent. This means that we do not need
to address the issue of an interpretation of the internal variables of a program.

We now address the issue of whether an EuPL program P is representation-
dependent or not. It turns out that, given an interpretation of P , this is decidable.

First, we define representation dependence.

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1581

Definition 4.2. Let P be an EuPL program with input parameters (p1, . . . , pn)
and output parameters (q1, . . . , qm) for which an interpretation is fixed. We call P
representation-independent if for any two inputs values (a1, . . . , an) and (a′1, . . . , a

′
n)

that represent the same points, lines, and circles in the plane (taking into account
the fixed interpretation), P returns outputs (b1, . . . , bm) and (b′1, . . . , b

′
m), respectively,

that also represent the same points, lines, and circles in the plane (taking into account
the fixed interpretation).

The following theorem follows from the fact that the input-output transformations
in EuPL can be expressed in first-order logic over the reals and from the fact that the
truth of sentences in this logic can be decided (via quantifier elimination) [38].

Theorem 4.1. It is decidable whether the output of an interpreted EuPL program
depends on the representation of its inputs or not.

Proof. Let P be an EuPL multifunction, with inputs �p = (p1, . . . , pn) and outputs
�q = (q1, . . . , qm). We shall write (px, py) for the x- and y-coordinates of a point p, and
shall also write expressions such as tp = q and d(p, q) = t for (tpx = qx ∧ tpy = qy)
and (px − qx)2 + (py − qy)2 = t2 ∧ t ≥ 0, respectively.

We define two formulas, φP (�p, �q,�r) and ψP (�p, �q,�r), over the theory of real closed
fields, where �r is the list of internal variables of P . Intuitively, φP describes how �q
depends on �p, given �r as the results of the choice operations, while ψP describes the
conditions that �r and �q must satisfy. In what follows, whenever ψS is not defined
explicitly, it will be a tautology. The separation between φ and ψ is not really needed
for the current theorem, but will be used later in Theorem 4.2. The basic idea is that
for each intersection operation we add a conjunct that says when the corresponding
objects are defined and have an intersection, while for each choice operation we add
a conjunct that says that the condition is satisfiable. The construction of φ and ψ is
by induction on the rules defining P . We omit some of the straightforward cases. As
a first step, rename variables if needed, to ensure they are not assigned a value more
than once.

1. P is the sequence of statements S1; S2; . . . ; Sk. φP is defined as φS1∧· · ·∧φSk

and ψP as ψS1 ∧ · · · ∧ ψSk
.

2. Assignment statements:
(i) S is q := l-l-crossing(p1, p2, p3, p4). φS can be informally given as

∃!t∃!t′(q = tp1 + (1 − t)p2 ∧ q = t′p3 + (1 − t′)p4).

Note that this formula is unsatisfiable whenever q is undefined.
(ii) S is q, q′ := l-c-crossing(p1, p2, p3, p4, p5). Let φ′

S(q, p1, p2, p3, p4, p5)
be

∃t(q = tp1 + (1 − t)p2 ∧ d(q, p3) = d(p4, p5)),

which means that q is one of the intersection points. Then φS is

φ′
S(q, p1, p2, p3, p4, p5) ∧ φ′

S(q′, p1, p2, p3, p4, p5)

∧(q
= q′ ∨ (q = q′ ∧ ¬∃q′′(φ′
S(q′′, p1, p2, p3, p4, p5) ∧ q′′
= q)));

i.e., q and q′ are distinct intersection points if such exist, and both are
equal to the unique intersection point if only one exists.

(iii) S is q, q′ := c-c-crossing(p1, p2, p3, p4, p5, p6). This is similar to the
previous case.

1582 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

3. S is the conditional

if C then S1 else S2 end.

φS is

φC → φS1 ∧ φnot C → φS2 ,

and ψS is

φC → ψS1 ∧ φnot C → ψS2
.

4. S is the choice statement

choose v such that C.

φS is a tautology, and ψS is equal to φC .
5. Conditionals. Most of the conditionals, such as p1 is on line (p2, p3) are han-

dled in a similar way to assignments. The most complicated one is when
C is c-order(p1, p2, p3, p4). Here φC first computes the center of the cir-
cle through p1, p2, and p3 and tests whether p4 is on this circle. If so,
c-order(p1, p2, p3, p4) is true when p2 and p4 are not on the same side of the
line through p1 and p3.

6. C is defined (〈var〉). φC is defined as the appropriate Boolean value.
Assume now that �p and �p′ are two inputs to P that are equivalent with respect to

the given interpretation. Let �q and �q′ be the outputs of P on these inputs. From the
definition of φP and the semantics of P , it follows that ∃�r(φP (�p, �q,�r) ∧ ψP (�p, �q,�r))
and ∃�r′(φP (�p′, �q′,�r′) ∧ ψP (�p′, �q′,�r′)) hold.

Given the interpretation (Ei, Eo) we write formulas ξi(�p, �p
′) and ξo(�q, �q

′) that
specify when the inputs and outputs are equivalent. For example, if {p1, p2} is an
equivalence class in Ei, then

φ
p′
1 is on line(p1,p2)

∧ φ
p′
2 is on line(p1,p2)

∧ p′1 = p′2

is a conjunct in ξi, whereas if {q1, q2, q3} is in Eo, then

q′1 = q1 ∧ d(q′2, q
′
3) = d(q2, q3)

is a conjunct in ξo.
The output of P is then independent of the representation if and only if the

formula

∀�p∀�p′∀�q∀�q′∃�r∃�r′((ξi(�p, �p′) ∧ φP (�p, �q,�r) ∧ ψP (�p, �q,�r)

∧φP (�p′, �q′,�r′) ∧ ψP (�p′, �q′,�r′)) → ξo(�q, �q
′))

holds in the real numbers.
As this is a first-order formula over the theory of real closed fields, the result

follows from Tarski’s theorem.
Using the formulas φP and ψP , given in the proof of Theorem 4.1, it is clear that

we can write an FO + poly-sentence that expresses that two programs have the same
input-output behavior. Therefore, we have the following corollary.

Corollary 4.1. Equivalence of EuPL programs is decidable.

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1583

Note that there were two different ways we could have interpreted the choice op-
erator in the above theorem. Either, for equivalent inputs, we make the same choices,
obtaining equivalent outputs, or we make different choices for both inputs, resulting in
equivalent outputs. We have chosen the first approach above, but modifying the proof
to use the latter approach is trivial. As discussed below, “good” programs should be
choice-independent anyway, so that the distinction is not very important.

The result of the program in Example 4.1 (computation of a perpendicular) does
not depend on the choice made by the choice operator. This is true for the classic
Euclidean constructions as well as for all other “reasonable” EuPL programs. As with
representation independence, the question whether the result of a program depends
on the results of the choice operators is decidable.

The following result holds both for interpreted and for uninterpreted EuPL pro-
grams.

Corollary 4.2. It is decidable whether the result of an EuPL program depends
on the choices made by choose operators.

Corollary 4.3. It is decidable whether the result of an interpreted EuPL program
depends on the representation of its inputs and on the results of the choice operations.

We now show that given two fixed points and a representation- and choice-
independent program P , the use of choice is actually redundant. This means that
P can be converted (effectively) into an equivalent deterministic program.

We now consider a variant EuPL2c of EuPL, which is just EuPL with two additional
distinct constant points p0 and p′0.

Theorem 4.2. Every representation- and choice-independent EuPL2c program P
is equivalent to a program P ′ which does not use the choose operator.

Proof. Let P be an EuPL2c program that is representation- and choice-indepen-
dent. The choice independence of P implies that the outcome of the program does
not depend on the particular value of p that is chosen in any expression

choose p such that ψ(p, p1, . . . , pn)

appearing in P . Therefore, any expression choose p such that ψ(p, p1, . . . , pn) ap-
pearing in P may be replaced by a series of EuPL2c statements, among which there is
no choice statement, provided that the result is a point p satisfying ψ(p, p1, . . . , pn).
We shall now construct such a sequence.

Note first that ψ(p, p1, . . . , pn) is a Boolean combination of basic choice predicates
in EuPL2c. We now show that there exists a formula ψ′(p, p1, . . . , pn), equivalent to
ψ(p, p1, . . . , pn), such that ψ′ is a Boolean combination of atomic predicates in all
of which the variable p is the first variable. It will then follow that p belongs to
an equivalence class of the plane determined by the lines and circles in these atomic
predicates, as these predicates describe how p is located with respect to certain lines
and circles determined by the points p1, . . . , pn.

We show how to move the variable p to the first position for one specific case; the
treatment of the other cases is similar. Consider the predicate

p1 is on the same side as p2 of line (p, p3).

For points p, p1, p2, and p3 that form a quadrangle, this expression is equivalent to
¬((ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2)), where ϕ1 and ϕ2 are, respectively,

p is on the same side as p1 of line (p2, p3)

1584 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

and

p is on the same side as p2 of line (p1, p3).

We now define an EuPL2c program that produces a set Sψ′ containing at least
one representative point of each of the equivalence classes of the plane determined by
the lines and circles in the formula ψ′(p, p1, . . . , pn). We then replace

choose p such that ψ(p, p1, . . . , pn)

by a formula that computes these representative points, checks for each of them
whether the condition ψ′(p, p1, . . . , pn) holds, and returns the first such point.

To start with, let Sψ′ be the set {p1, . . . , pn}. Then for each predicate
c-order(p, pi, pj , pk) in ψ′, construct the center of the circle through pi, pj , and pk,
and add it to Sψ′ . For each circle appearing in ψ′ such that no point of Sψ′ occurs
in the circle, take the intersections of the circle and the line that connects the center
to the fixed points p0 or p′0, and them to Sψ′ . Next, construct all of the intersection
points of the circles and lines in the formula and add them to Sψ′ . This deals with
all equivalence classes that are single points.

Next, for every pair of points in Sψ′ add their midpoints to Sψ′ ; for all pairs of
points on a circle then add the midpoints of the arc segments between them, and for
each unbounded line segment add the intersection of this segment and a circle whose
center is the start of the segment and whose radius is the distance between p0 and p′0.
This deals with the one-dimensional equivalence classes.

Finally, for all triples of points in Sψ′ , add their centroids to Sψ′ This deals with
the two-dimensional equivalence classes and completes the proof.

All of the languages that we shall discuss from now on are deterministic. We
should point out that the discussion of choice operators in this section is designed to
motivate the subsequent sections, not to apply directly to them. We have illustrated
why a language without choice operators is appropriate as a language for modeling
Euclidean constructions. This will still be the case for the database languages below,
even though some of our current results (such as decidability) no longer hold in the
presence of a database.

4.2. Euclidean constructions. We now compare the expressiveness of EuPL
with the Euclidean constructions it is intended to model. Our first result in this
direction follows directly from the definitions.

Theorem 4.3. All EuPL multifunctions are constructible with ruler and com-
pass.

What about the converse? The converse does not hold because our language
models first-order ruler-and-compass constructions. For an example of a non–first-
order ruler-and-compass construction, consider the following.

Example 4.3. Let p, q, r, and s be four different points as in Figure 6. Consider
the following construction: First we construct the point q1 on the line through p and
q such that d(q1, q) = d(q, p) such that q1
= p. Then we repeat this construction until
we get to the other side of the line through r and s. The result will be the first point
to the right of the vertical line (qn with n = 10 in Figure 6).

The computation of this point requires iteration, as stated in the following lemma.
Lemma 4.1. The above construction cannot be expressed by an EuPL program.
Proof. From the proof of Theorem 4.1 it follows that any EuPL program can be

expressed in FO + poly. If the construction from Example 4.3 would be expressible

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1585

p q1 qnq

s

r

q2

Fig. 6. Non–first-order construction.

by an EuPL-program, it would therefore be possible in FO + poly to test whether
the distance from p to the vertical through r and s is a multiple of d(p, q), which
would allow integers to be definable in FO + poly. Results in [35] would imply the
undecidability of FO + poly, a contradiction.

5. The language EuQL. Our goal is to define a database query language for
Euclidean geometry. In this section we describe an initial attempt, EuQL, at defining
such a language. EuQL should be a declarative database language, so assignment
statements are replaced by predicates. For example, the crossing-point operators
become predicates rather than assignments. In addition, the defined predicate is not
needed, as existential quantifiers can be used instead.

The relations of the input database are finite two-dimensional point relations,
i.e., finite tuples of two-dimensional points, represented by real polynomial formulas.
The relation Ri, of arity mi, is an mi-ary finite two-dimensional point relation, i.e., a
2mi-ary relation over the reals. An EuQL query over a schema R1, . . . , Rn is of the
form

Q(R1, . . . , Rn) = {(v1, . . . , vm) | ϕ(R1, . . . , Rn, v1, . . . , vm)} ,

where ϕ is a formula in the first-order logic with equality, database predicates, all
constant points with real algebraic coordinates, and the following predicates:

1. 〈var〉 is on line (〈var〉 , 〈var〉),
2. 〈var〉 is on circle (〈var〉 , 〈var〉 , 〈var〉),
3. 〈var〉 is in circle (〈var〉 , 〈var〉 , 〈var〉),
4. 〈var〉 is on the same side as 〈var〉 of line (〈var〉 , 〈var〉),
5. l-order(〈var〉 , 〈var〉 , 〈var〉),
6. c-order(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
7. 〈var〉 is l-l-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
8. 〈var〉 is l-c-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),
9. 〈var〉 is c-c-crossing point of (〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉),

EuQL has three constant points o, e1, and e2, with (o, e1) perpendicular to (o, e2).
We shall refer to the line through o and e1 as the x-axis and to the line through o
and e2 as the y-axis.

The semantics of EuQL are defined as a function

S(Q) : R1 × · · · × Rn → R ,

where Ri is the type of relation Ri and R the type of the result relation of Q.
The interpretations of variables, logical connectives, etc., are standard. The other
predicates are interpreted in the natural way.

For example, we have the following:

1586 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

1. S(v1 is on line (v2, v3))(r1, . . . , rn) is the set of those tuples (av1
, av2

, av3
) for

which av2 and av3 are distinct and av1 , av2 , and av3 are collinear.
2. S(v1 is on circle (v2, v3, v4))(r1, . . . , rn) is the set of those tuples (av1 , av2 ,

av3 , av4) for which av1 is on the circle with center av2 and radius d(av3 , av4)
and av3 and av4 are distinct.

The three special points are interpreted as a coordinate system.

Example 5.1. Given a binary relation R that consists of pairs of points, return
the unary relation with the midpoints of each tuple of R:

{(p) | ∃p1∃p2((R(p1, p2) ∧ p1 = p2 ∧ p = p1)

∨ (R(p1, p2) ∧ ¬(p1 = p2) ∧ p is on line (p1, p2)

∧ ∃p3∃p4(p3 is on circle (p1, p1, p2)

∧ p3 is on circle (p2, p2, p1)

∧ p4 is on circle (p1, p1, p2)

∧ p4 is on circle (p2, p2, p1)

∧¬(p3 = p4) ∧ p is on line (p3, p4))))}.

Unfortunately, it turns out that EuQL is too powerful. To show why, we define
a query that constructs an ellipse, and thus show that EuQL expresses more than
just the Euclidean constructions. The construction is similar to the construction of
an arbitrary point on an ellipse in EuPL, but by using first-order quantifiers we can
essentially simulate choice operators and iterate over all possible choices.

Example 5.2. Given a 4-ary relation of points, for each tuple t return the ellipse
with foci t1 and t2, and major axis equal to d(t3, t4):

{(p) | ∃t1∃t2∃t3∃t4∃q
(R(t1, t2, t3, t4) ∧ t2 is on circle (t4, t1, t3) ∧ l-order(t3, t1, t2)

∧ l-order(t1, t2, t4) ∧ ¬(t3 = t4) ∧ l-order(t3, q, t4)

∧ p is on circle (t1, t3, q) ∧ p is on circle (t2, t4, q))}.

Theorem 5.1. EuQL can express queries that are not constructible in Euclidean
geometry.

While this shows that EuQL does not match the intuition we had in mind, one
might hope that it would still serve as a language between FO + lin and FO + poly.
This is not the case, however, as the following result shows.

From Euclid, we know that multiplication can be performed with ruler and com-
pass, and so the following theorem holds.

Theorem 5.2. On finite point databases,4 EuQL has the same expressive power 5

as FO + poly.

In order to obtain the desired language, we shall now restrict EuQL in an appro-
priate way.

4We define finite point databases as database instances over some database schema R1, . . . , Rn

in which the interpretation of each relation Ri is a finite set of points in R2.
5Let can be the canonical bijection mapping a point p of R2 to the pair (px, py) of its real

coordinates. An EuQL query Q over an input schema R1, . . . , Rn has the same expressive power as
an FO + poly query Q′ over the schema R′

1, . . . , R
′
n, where the arity of R′

i is double the arity of Ri

if for any instance A1, . . . , An over R1, . . . , Rn, can(Q(A1, . . . , An)) = Q′(can(A1), . . . , can(An)).

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1587

6. The language SafeEuQL. In this section we define a subset of EuQL, called
SafeEuQL, that consists of queries whose results, on finite databases, are constructible
in Euclidean geometry. This subset consists of those EuQL queries that satisfy a
syntactically defined safety condition, whose intuition is to restrict the domain over
which variables range to be finite, as soon as the input database is finite.

A 〈disjunction〉 is defined as a disjunction of 〈conjunction〉’s, and a 〈conjunction〉
is a conjunction of 〈factor〉’s. A 〈factor〉 is a 〈term〉 or a ¬ 〈term〉. Finally, a 〈term〉
is either ∃ 〈var〉 (〈disjunction〉) or is an EuQL primitive, including the three constant
points. We say that an EuQL expression is in safe-range normal form if it can be
defined as a 〈disjunction〉.

We now define the set of variables which are safe in an EuQL expression in safe-
range normal form. Let R be a relation with attributes of type point. Denote the set
of safe variables of an expression ϕ, with ϕ in safe-range normal form, by Sv(ϕ). The
set Sv(ϕ) then is defined as follows:

1. Sv(R(v1, . . . , vp)) equals {v1, . . . , vp}.
2. For each of the EuQL primitives ϕ, Sv(ϕ) equals the empty set.
3. Sv(∃vϕ) equals Sv(ϕ) − {v}.
4. Sv(¬ϕ) equals the empty set.
5. Sv(ϕ1 ∧ ϕ2) equals the smallest set S, with respect to ⊆, such that the

following properties hold:
(i) if ϕi is the expression “v1 = v2” with v1 or v2 in S, then both v1 and v2

are in S;
(ii) if ϕi is the expression “v1 is l-l-crossing point of (v2, v3, v4, v5)” and

the variables v2, . . . , v5 are in S, then v1 is in S;
(iii) if ϕi is the expression “v1 is l-c-crossing point of (v2, v3, v4, v5, v6)”

and the variables v2, . . . , v6 are in S, then v1 is in S;
(iv) if ϕi is the expression “v1 is c-c-crossing point of (v2, v3, v4, v5, v6,

v7)” and the variables v2, . . . , v7 are in S, then v1 is in S; and
(v) Sv(ϕ1) ∪ Sv(ϕ2) is a subset of S.

All the above cases also hold for the appropriate variables when the remaining
variables are constants. Showing existence of the set S is straightforward.

6. Sv(ϕ1 ∨ ϕ2) equals Sv(ϕ1) ∩ Sv(ϕ2).
Definition 6.1. An EuQL query {(v1, . . . , vm) | ϕ(R1, . . . , Rn, v1, . . . , vm)}, with

ϕ in safe-range normal form, is called safe if
1. for each subformula of ϕ of the form ∃vψ, it is the case that v ∈ Sv(ψ), and
2. every free variable vi of ϕ is in Sv(ϕ).

Example 6.1. Consider again the query which computes the midpoints of all
tuples of a binary relation R. This query can be expressed with a safe EuQL query as
follows:

{(p) | ∃p1∃p2(p1 = p2 ∧R(p1, p2) ∧ p = p1)
∨∃p1∃p2∃p3∃p4(¬(p1 = p2) ∧ ¬(p3 = p4) ∧R(p1, p2)
∧ p3 is c-c-crossing point of (p1, p1, p2, p2, p1, p2)
∧ p4 is c-c-crossing point of (p1, p1, p2, p2, p1, p2)
∧ p is l-l-crossing point of (p1, p2, p3, p4))}.

The variables p1 and p2 are safe in both parts of the disjunction because of the
EuQL term R(p1, p2). The variables p3 and p4 in the second part of the disjunction
are safe since they are the two intersection points of circles defined in terms of the
safe variables p1 and p2. Finally, p is safe because it denotes the intersection point of
two lines defined by safe variables.

1588 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

To show that safety of an EuQL query is a syntactical requirement, consider the
query that computes the midpoint of two points as given in Example 5.1. This time,
the formula is not safe because p3, p4, and p are not safe.

The set of all safe EuQL queries will be called SafeEuQL. The following closure
property holds.

Theorem 6.1. A SafeEuQL query applied to a finite point database yields a finite
point database which can be constructed by ruler and compass from the input.

Proof. Let B be a finite point database and ϕ a SafeEuQL expression. We show
that, when ϕ is applied to B, every variable v in Sv(ϕ) ranges over a finite domain.

First, let ϕ be quantifier-free. We prove the claim on the safe variable v in ϕ by
induction on the length of ϕ, i.e., on the number of propositional connectives in ϕ.

For the basis, observe that the only SafeEuQL expressions with v as a safe variable
are those of the form R(. . . , v, . . .), v = c1, v is l-l-crossing point of (c1, c2, c3, c4),
v is l-c-crossing point of (c1, c2, c3, c4, c5), or v is c-c-crossing point of (c1, c2,
c3, c4, c5, c6) with c1, . . . , c6 safe. By assumption the relation R is finite, and thus the
claim holds.

Now assume that the claim holds for safe variables in quantifier-free SafeEuQL
expressions of length at most k. Let v be a safe variable in the quantifier-free SafeEuQL
expression ϕ of length k + 1. There are two cases:

1. ϕ ≡ ψ1 ∨ψ2. From the definition of safety it follows that v is safe in both ψ1

and ψ2. By the induction hypotheses, we know that for ψ1 and ψ2 applied to
B, v ranges over finite domains, say D1 and D2. Then when ϕ is applied to
B, v must range over a domain contained in D1 ∪D2.

2. ϕ ≡ ψ1∧ψ2. Denote by S the union of Sv(ψ1) and Sv(ψ2). By the induction
hypothesis, when ψ1 and ψ2 are applied to B, each variable of S ranges over a
finite domain. Let D be the union of all these domains. Repeat the following
process until v is in S. Consider every SafeEuQL primitive in ϕ which does
not occur in any ¬ψ, where ¬ψ is a subformula of ψ1 or ψ2.
If the primitive is of the form v1 = v2 with v1 ∈ S, then add v2 to S. If the
primitive has the form v1 is l-l-crossing point of (v2, v3, v4, v5), v1 is l-c-
crossing point of (v2, v3, v4, v5, v6), or v1 is c-c-crossing point of (v2, v3,
v4, v5, v6, v7), where the points v2, . . . , v7 are all in S, then add v1 to S and let
D′ be the finite set of crossing-points obtained by letting the variables v2, . . . ,
v7 range over the points of D. Add the points in D′ to D. The resulting set
is still finite, and every variable of S ranges over at most the points in D.
Since, by assumption, v is safe in ϕ, it follows that this process terminates
after a finite number of steps. Thus, for ϕ applied on B, v ranges over a finite
set of points.

Note that the case ϕ ≡ ¬ψ cannot occur because it has no safe variables.

Next, consider a SafeEuQL term of the form ∃vψ with ψ quantifier-free. By the
definition of safety, v must be safe in ψ. As a consequence of the first part of the
proof, when ψ is applied on B, v ranges over a finite domain, say Dv. Replace the
formula ∃vψ in ϕ by Dv(v)∧ψ, which results in a SafeEuQL expression with the same
result on B as ϕ. Since ϕ has only a finite number of quantifiers, we can repeat this
process until we obtain a quantifier-free SafeEuQL expression with the same result as
ϕ on the finite point database B. All (free) variables in this expression range over a
finite domain, and thus the result of the expression will also be finite.

Finally, observe that every EuQL primitive can be simulated with ruler and com-
pass. Since every variable in a SafeEuQL expression applied to a finite point database

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1589

ranges over a finite set of points, there exists a finite sequence of ruler-and-compass
constructions which yields the same set of points as the SafeEuQL expression. Thus,
for every SafeEuQL expression, the finite output database can be constructed with
ruler and compass from the input database, which concludes the proof.

Theorem 6.2. SafeEuQL has full arithmetical power on the coordinates of safe
variables; i.e., we can subtract, add, multiply, and divide coordinates of such vari-
ables.

Proof. Assume that p and q are safe variables. Using the three fixed points as a
coordinate system, we write SafeEuQL queries to compute the points with coordinates
(p1, 0), (0, p2), (q1, 0), and (0, q2), where p1, p2, q1, and q2 are the coordinates of the
points p and q, respectively. Without loss of generality, we can therefore assume that
p and q are safe variables with coordinates of the form (p1, 0) and (q1, 0). If we
then consider the well-known ruler-and-compass constructions for multiplication and
division, it is easy to see that they can be expressed as SafeEuQL queries. This
concludes the proof.

7. The main results. We now define two query languages which are closed on
semi-circular relations. The first, SafeEuQL↑, captures those first-order geometrical
constructions that can be described by ruler and compass. The second captures
all FO + poly expressible queries that map semi-circular relations to semi-circular
relations.

To define these languages, we lift the query language SafeEuQL, which is defined
on finite point databases, to a language called SafeEuQL↑, which is defined on semi-
circular databases. This is done by interpreting these SafeEuQL↑ queries to work on
the intensional representations of semi-circular databases defined in section 3.

We use the following convention: Rpoly refers to a two-dimensional semi-algebraic
relation, Rcirc to a semi-circular relation, and Rlin to a two-dimensional semi-linear
relation.

Given an LPC -database which, by definition, consists of finite relations of points
in the plane, there exists a database consisting of three relations containing the coor-
dinates of the points in the relations L, P , and C, respectively. Indeed, for every point
appearing in the relations L, P , or C, we can compute the coordinates of that point
with respect to the coordinate system defined by the constant points o, e1, and e2,
by constructing parallel lines with the line oe2 (respectively, oe1) through the points
in the finite relations, and then taking the intersection of these lines with the line oe1

(respectively, oe2).
In the following, we shall not distinguish between the point and coordinate rep-

resentation of an LPC -database; i.e., given L, P , and C relations, we will interpret
them as points or coordinates depending on the context in which they are used.

7.1. The query language SafeEuQL↑. Before defining SafeEuQL↑, we need
two lemmas. The first is straightforward.

Lemma 7.1. There exists an FO + poly query Q(L,P,C)→Rcirc
that maps the co-

ordinate representation of every intensional LPC-representation of a semi-circular
relation to the semi-circular relation it represents.

Lemma 7.2. There exists an FO + poly query

QRcirc→(L,P,C)

that maps any semi-circular relation to the coordinate representation of an intensional
LPC-representation of this relation.

1590 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

(L, P,C) (L, P,C)
SafeEuQL

Rcirc Rcirc

ψRcirc→(L,P,C) ψ(L,P,C)→Rcirc

Fig. 7. The query language SafeEuQL↑ is closed on semi-circular relations.

Proof. Let S be a semi-circular set. It is well known that the topological boundary
of S, ∂S can be expressed in FO + poly (e.g., using the first-order definition of ε-
environments of points). The same is obviously true for the complement of S, Sc and
therefore also for the boundary of the complement of S, ∂Sc.

Consider the following sets. Let LS be the set of all triples (a, b, c) of R3 such that
the line ax+by+c = 0 has infinitely many points in common with ∂S or with ∂Sc. Let
CS be the set of all triples (a, b, r) of R3 such that the circle (x−a)2+(y−b)2−r2 = 0
has infinitely many points in common with ∂S or with ∂Sc. Next, let us denote by
∂2S the set consisting of all isolated points of ∂S and of ∂Sc and of all end points of
half-lines, line segments, and circle segments on ∂S or ∂Sc (a point p is said to be an
end point of a line segment l with carrier c if there exists an ε > 0 and a point q such
that d(p, q) < ε and q ∈ c \ l; and end point of a circle segment is defined in a similar
way). Let IS be the set of all triples (1, 0,−a) and (0, 1,−b) of R3 such that (a, b)
are the coordinates of a point of ∂2S.

It is clear that all lines and circles in a carrier of S are appearing in LS ∪ IS ,
respectively CS , albeit multiple times (except for the lines given by IS). We can
consider the first-order definable equivalence relation ∼L on LS ∪ IS , defined as
(a, b, c) ∼L (a′, b′, c′) if and only if the equations ax+by+c = 0 and a′x+b′y+c′ = 0 de-
fine the same line (i.e., if and only if ac′ = a′c and bc′ = b′c). We can also consider the
first-order definable equivalence relation ∼C on CS , defined as (a, b, r) ∼L (a′, b′, r′) if
and only if the equations (x−a)2 +(y− b)2− r2 = 0 and (x−a′)2 +(y− b′)2− r′2 = 0
define the same circle (i.e., if and only if a = a′, b = b′, and r = ±r′). By the definable
choice property (see, e.g., Property 1.2 in Chapter 6 of [39]), representatives of each
equivalence class can be first-order defined. Once this is done it is easy to obtain
two representative points on each line in the L relation of S and the center and a
representative point on each circle in the C relation of S.

It remains to be shown that also the P relation of S can be first-order defined.
The sets LS ∪ IS and CS partition R2 according to the following first-order definable
equivalence relation ∼S : (x, y) ∼S (x′, y′) if and only if for all (a, b, c) ∈ LS ∪ IS ,
ax + by + c and ax′ + by′ + c have the same sign (= 0, < 0, or > 0) and for all
(a, b, r) ∈ CS , (x − a)2 + (y − b)2 − r2 and (x′ − a)2 + (y′ − b)2 − r2 have the same
sign.

Since ∼S is first-order definable, again by the definable choice property, represen-
tatives of each equivalence class of ∼S can be first-order defined and added to the P
relation of S whenever these representatives belong to S.

Definition 7.1. SafeEuQL↑ is the set of all queries Q of the form

Q(L,P,C)→Rcirc
◦QSafeEuQL ◦QRcirc→(L,P,C),

where QSafeEuQL is a SafeEuQL query (see Figure 7).

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1591

Qlin

QSafeEuQL

(L, P,C)

Rlin

QSafeEuQL
(L, P,C)

Rlin

Qlin

QRlin→(L,P,C) Q(L,P,C)→Rlin

Fig. 8. Any FO + lin query on semi-linear relations can be simulated in SafeEuQL on the
intensional level. The two arrows at the left denote the property that any semi-linear relation can
be defined in the language FO + lin and that any LPC-database can be defined in SafeEuQL.

A SafeEuQL↑ query is therefore a composition of three queries. First, the query
maps a semi-circular relation to its LPC -representation. The point representation
of this LPC -database then is the input of a SafeEuQL query which produces an-
other LPC -database. Finally, the coordinate representation of this LPC -database is
mapped to the semi-circular relation it represents. (A similar “lifting” idea is used in
[5].)

The language SafeEuQL↑ is closed on the class of semi-circular relations. This is
illustrated in Figure 7. We thus have a syntactically defined subclass of FO + poly
that is closed on semi-circular relations.

7.2. On semi-linear relations the language SafeEuQL↑ is more expressive
than FO + lin. As discussed in section 3 and Lemma 7.2, every two-dimensional semi-
linear relation can be intensionally represented as a finite LPC -database. We will
show that every FO + lin query on semi-linear relations can be simulated in SafeEuQL
on the intensional level. Therefore, we can conclude that SafeEuQL↑, on semi-linear
databases, can express every FO + lin query. On the other hand, it is clear that
SafeEuQL↑ is more expressive than FO + lin on linear inputs, simply because the latter
can output linear databases only, while the former can also produce semi-circular ones.

This is illustrated in Figure 8 and stated more precisely in the following theorem,
whose proof follows later in this section.

Theorem 7.1. There exist FO + poly queries QRlin→(L,P,C) : Rlin �→ (L,P,C)
and Q(L,P,C)→Rlin

: (L,P,C) �→ Rlin such that, for every FO + lin query Qlin : Rlin �→
Rlin, there exists a SafeEuQL query QSafeEuQL : (L,P,C) �→ (L,P,C) such that

Qlin = Q(L,P,C)→Rlin
◦QSafeEuQL ◦QRlin→(L,P,C).

The main difficulty is to prove the existence of the SafeEuQL query which sim-
ulates a given FO + lin query. From Lemmas 7.1 and 7.2, it follows that there exist
FO + poly queries which translate a linear relation into the coordinate representa-
tion of a corresponding LPC -database, and vice versa. Moreover, an examination of
the proofs of Lemmas 7.1 and 7.2 shows that the corresponding LPC -database for
a linear relation has an empty C-relation; we shall refer to such an encoding as an
LP -database.

1592 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

The main difficulty in simulating an FO + lin expression by a SafeEuQL expression
is that, in general, subformulas of FO + lin expressions operate in a higher dimensional
space, due to the quantifiers that may be present in the expression. Therefore, the
LP -representation technique for two-dimensional linear relations has to be generalized
to allow the representation of higher dimensional linear relations. For any semi-linear
set of Rn, there exist a finite number of n-dimensional hyperplanes which partition Rn

into topologically open, convex cells, such that a finite number of these cells constitute
the given semi-linear set. These (n − 1)-dimensional hyperplanes are finitely repre-
sented with n linearly independent points. An n-dimensional point p can be repre-
sented within SafeEuQL as a tuple of n two-dimensional points as ((p1, 0), . . . , (pn, 0)),
where pi is the ith coordinate of p. Based on this, each n-dimensional semi-linear set
is represented in SafeEuQL by a pair of relations (Hn, Pn), where Hn is a 2n2-ary
relation containing the representation of a finite number of (n − 1)-dimensional hy-
perplanes, and where Pn is a 2n-ary relation containing the representations of the
representatives of the partition classes that constitute the semi-linear set. More pre-
cisely, the hyperplane in Rn through the points pi = (pi,1, . . . , pi,n) ∈ Rn, 1 ≤ i ≤ n, is
stored in Hn by the 2n2-ary tuple (((p1,1, 0) . . . , (p1,n, 0)), . . . , ((pn,1, 0) . . . , (pn,n, 0))).
As an example, the semi-linear subset {(x, y, z) ∈ R3 | z > 0 ∧ y > 0} of R3 could
be given by (H3, P 3), with H3 = {((0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (1, 0),
(0, 0), (0, 0), (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0), (0, 0), (1, 0))} and P3 = {((1, 0), (1, 0),
(1, 0))}.

Before giving the proof of Theorem 7.1, we prove two lemmas.

The first follows immediately from the fact that we can do arithmetic with Eu-
clidean constructions.

Lemma 7.3. Denote by Hn the 2n2-ary point relation containing the representa-
tion of a finite number of hyperplanes of the n-dimensional space. Assume that x and
y are safe variables. There exists a SafeEuQL expression SameSide(Hn; p, q) which
decides whether the two n-dimensional points p and q are on the same side of each
hyperplane of Hn.

Lemma 7.4. Denote by Hn the 2n2-ary point relation containing the represen-
tation of a finite number of hyperplanes of the n-dimensional space. There exists a
SafeEuQL expression which computes the relation Pn that contains at least one rep-
resentative point for every partition class induced by the hyperplanes of Hn.

Proof. First, add the representation of every coordinate-plane of the n-dimensional
space to the relation Hn. The partition induced by the hyperplanes of this new rela-
tion Hn is a refinement of the partition induced by the old relation Hn. Therefore, a
finite set of representatives of this new partition is also a set of representatives of the
old partition.

Next, take n hyperplanes from the relation Hn which are linearly independent,
i.e., if no pair is either parallel or equal. We can test this in SafeEuQL as follows. Let
p be an arbitrary point on the first hyperplane and q on the second. If, for each point
r on the first hyperplane, the point as r+ q− p belongs to the second hyperplane, the
two hyperplanes are equal or parallel. Since p, q, and r have to be in Hn, they must be
safe variables, and by Theorem 6.2 we obtain a SafeEuQL expression which computes
r + q − p. From Lemma 7.3 we can test in SafeEuQL whether a point belongs to a
given hyperplane, and so we can test linear independence of hyperplanes in SafeEuQL.

Every set of n linearly independent hyperplanes of the n-dimensional space in-
tersects in exactly one point. Using Theorem 6.2 again, we construct a SafeEuQL
expression for computing this intersection point. Denote by I the set of all of inter-

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1593

section points of all sets of n linearly independent hyperplanes of Hn. (I cannot be
empty since each hyperplane of Hn intersects at least n − 1 coordinate planes and
therefore contributes at least one point to I.)

We now compute representative points of the bounded partition classes induced
by the hyperplanes of Hn. Each bounded partition class is convex, since it is the
intersection of a finite number of open half-planes. Therefore, the topological closure
of a partition class can be written as the convex hull of a finite number of points, the
corner points, which must be in I, and the barycenter of these corner points can be
taken as a representative, which can be expressed in SafeEuQL.

For unbounded partition classes, the set I may not suffice to compute the rep-
resentative points. To handle this case we use a “bounding box”: Each partition
class will have a nonempty intersection with this bounding box, and we can choose a
representative of the intersection of the partition class with the bounding box.

We now show how to construct this bounding box. For each coordinate plane
of the n-dimensional space, we compute, in SafeEuQL, two hyperplanes parallel with
this coordinate plane such that all points of I are between these hyperplanes.

Denote by HB the resulting set of 2n, and let B be the open n-dimensional
bounding box defined by the hyperplanes of HB . We claim that B has a nonempty
intersection with each partition class induced by the hyperplanes of Hn. Indeed, each
unbounded partition class has at least one corner point: It intersects at least n − 1
coordinate planes which were added to Hn. This corner point was obtained from
intersections of hyperplanes of Hn and is therefore contained in B. Since B is open,
there exists a neighborhood of the corner point which is completely contained within
B. The corner point, however, is also in the topological closure of its partition class,
and therefore, this neighborhood has a nonempty intersection with the partition class.
Therefore B has a nonempty intersection with the partition class. Finally, bounded
partition classes are completely contained within B, since their topological closure
can be written as the convex hull of points of I.

Let I ′ be the set of all intersection points of n linearly independent hyperplanes of
Hn∪HB , which can be computed in SafeEuQL. The finite set of points Pn containing
the barycenter of each n-tuple of points from I ′ contains, for each partition class
induced by the hyperplanes of Hn, a representative of the intersection of that partition
class with B. Since each partition class has a nonempty intersection with B, the set
Pn contains a representative for each partition class induced by the hyperplanes of
Hn.

Proof of Theorem 7.1. Assume that Qlin is an FO + lin query defined by a formula
ϕ of FO + lin. Let Ilin be an arbitrary two-dimensional linear relation, and let Olin

be the result of Qlin applied on Ilin .

Denote the LP -representations for Ilin and Olin by IL, IP and OL, OP , re-
spectively, which can be computed in FO + poly (see Lemma 7.2). We now con-
struct SafeEuQL queries QL and QP such that for any input relation Ilin with LP -
representation IL and IP , QL(IL, IP) = OL and QP (IL, IP) = OP , where OL and OP

are an LP -representation of the output Olin = Qlin(Ilin).

We prove this by induction on the structure of ϕ. For each subformula of ϕ with
n free variables, we construct two SafeEuQL queries that construct the relations Hn

and Pn, corresponding to the two parts of the LP -representation of the result.

1. Atomic formula of the form Ilin(x, y). For each tuple (p, q) of IL, H2 should
contain a tuple of the form ((px, 0), (py, 0), (qx, 0), (qy, 0)), where px, py, qx,
qy are the coordinates of p and q. For each tuple (p) of IP , PI should contain

1594 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

a tuple ((px, 0), (py, 0)). This can easily be expressed in SafeEuQL.
2. Atomic formula of the form

∑n
i=1 aixi θ 0, with θ ∈ {=, <,>}. There exist

n linearly independent points p1, . . . , pn such that the smallest affine space
containing p1, . . . , pn is precisely the hyperplane given by

∑n
i=1 aixi = 0,

and there also exists a point p satisfying
∑n

i=1 aixi θ 0. Furthermore, the
coordinates of these points can be computed in SafeEuQL. From this, it
follows immediately that Hn and Pn can be expressed in SafeEuQL.

3. ϕ1(x1, . . . , xm) ∨ ϕ2(x1, . . . , xn). If m
= n, assume without loss of generality
that m < n. Assume that we have already computed the sets (Hm

1 , Pm
1)

and (Hm
2 , Pm

2) in SafeEuQL. We first convert (Hn
1 , P

n
1) to a representation

of the formula ϕ1(x1, . . . , xm, . . . , xn) in n-dimensional space by padding the
representation of each point with n−m zeros.
The representation (Hn, Pn) of ϕ1(x1, . . . , xn) ∨ ϕ2(x1, . . . , xn) is then com-
puted as follows. Hn is the union of Hn

1 and Hn
2 . Let P be a set of repre-

sentatives of all the partition cells induced by the hyperplanes represented by
Hn. The set Pn is then obtained from P as

{x | P (x)∧∃y((Pm
1 (y)∧SameSide(Hm

1 ;x, y))∨(Pm
2 (y)∧SameSide(Hm

2 ;x, y)))} .

4. ¬ϕ1(x1, . . . , xm). In this case, Hm = Hm
1 and Pm = {x | P (x)∧¬∃y(Pm

1 (y)∧
SameSide(Hm

1 ;x, y))}.
5. ∃xiϕ1(x1, . . . , xm). Let Hm and Pm be the representation of ϕ1. For every

two hyperplanes of Hm, compute a finite representation of their intersection,
and project this representation onto the appropriate m−1 dimensions. If the
projection of two points coincides, introduce an arbitrary new point, so that
we obtain (m − 1) linearly independent points denoting a hyperplane in the
ith coordinate plane, and add a tuple with these (m − 1) points to Hm−1.
To compute Pm−1, let P be the set of all representatives of the partition
induced by the hyperplanes in Hm−1. Let p be a point of P and q a point
of Pm. Compute the intersection point r of the perpendicular to the ith
coordinate plane through p with the hyperplane through q parallel with the
ith coordinate plane. If q and r belong to the same partition class induced by
the hyperplanes of Hm, add p to Pm−1. It is straightforward to verify that
this can be computed in SafeEuQL.

We have obtained two SafeEuQL queries that compute the relations

{((p1, 0), (p2, 0), (q1, 0), (q2, 0)) | OL((p1, p2), (q1, q2))}

and

{((p1, 0), (p2, 0)) | OP ((p1, p2))}.

From these, computing OL and OP is trivial.

7.3. On both semi-circular and semi-linear relations, FO + poly is more
expressive than SafeEuQL↑. We define the fragment of FO + poly that maps semi-
circular relations to semi-circular relations. Later on, we will show that this language
also allows for the formulation of “nonconstructible” queries and therefore is more
powerful than SafeEuQL↑.

Definition 7.2. Let FO + polycirc be the set of FO + poly queries that map semi-
circular relations to semi-circular relations.

The following result follows immediately from Lemma 7.5 below.

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1595

QSafeEuQL

Qcirc

Rcirc

(L, P,C)

Qcirc
Rcirc

(L, P,C)
QSafeEuQL

Q(L,P,C)→Rcirc QRcirc→(L,P,C)

Fig. 9. The query languages SafeEuQL↑ and FO + polycirc. Again, the arrows at the left denote
which relations and databases can be defined in the respective languages.

Theorem 7.2. SafeEuQL↑ is a strict subset of FO + polycirc.

Lemma 7.5 (Figure 9). For every SafeEuQL query, there exists an FO + polycirc

query Qcirc : Rcirc �→ Rcirc such that

QSafeEuQL = QRcirc→(L,P,C) ◦Qcirc ◦Q(L,P,C)→Rcirc
,

but not conversely.

Proof. First, we show the existence of the FO + polycirc query Qcirc. From Theo-
rem 5.2, it follows that every query expressible in EuQL can be simulated in FO + poly.
The same holds for SafeEuQL, since it is a sublanguage of EuQL. Let Q̃circ be the
FO + poly query which simulates the SafeEuQL query QSafeEuQL; i.e., Q̃circ applied to
the coordinate representation of an LPC -database has the same result as QSafeEuql

applied to the LPC -database. Then let Qcirc be the query Q(L,P,C)→Rcirc
◦ Q̃circ ◦

QRcirc→(L,P,C). Clearly, Qcirc is an FO + polycirc query which satisfies the above con-
ditions.

For the second part, consider the query that maps a semi-circular relation con-
sisting of a line segment qr and a point p that is not collinear with q and r to the same
relation augmented with two line segments ps and pt such that the angles ∠pqs, ∠pst,
and ∠ptr are equal. This query is expressible in FO + poly. Since the query maps
every semi-circular relation to a semi-circular relation, it belongs to FO + polycirc.
However, it is not expressible in SafeEuQL↑, since the trisection of an angle cannot be
done with ruler and compass, and is therefore not expressible in SafeEuQL.

We conclude with a remark on FO + poly, which is defined on Rpoly relations. The
richer class of 2-dimensional figures on which FO + poly is defined allows us to express,
for example, the construction of an ellipse. Once restricted to semi-circular relations,
however, it follows immediately from the definitions that FO + poly and FO + polycirc

have the same expressive power.

8. Conclusion. Figure 10 summarizes our results.

1. On the bottom level of Figure 10, we have FO + lin as a query language
on semi-linear relations. Recall that queries concerning Euclidean distance
are not expressible in this language. Not only does the data model only

1596 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

FO + poly

FO + lin

(L, P,C)

Rlin

FO + lin
Rlin

⋃

‖

SafeEuQL

(L, P,C)
SafeEuQL

FO + polycirc

FO + poly

RpolyRpoly

⋃

‖

FO + polycirc
Rcirc Rcirc

⋃

‖

Fig. 10. Comparison of the different query languages.

allow semi-linear relations, but, moreover, there are FO + poly queries map-
ping semi-linear relations to semi-linear relations that are not expressible in
FO + lin, for example, the transformation of a relation into its convex hull
[41].

2. On the next level, we have more expressive power on (the intensional rep-
resentation of) semi-linear relations. We can also express queries that in-
volve Euclidean distance. The data model also supports a larger class of
relations than the semi-linear ones. All queries expressible in SafeEuQL are
constructible by ruler and compass. So, the trisection of a given angle, for
instance, is not expressible in SafeEuQL.

3. In FO + polycirc, we gain in expressive power compared to the previous level.
For example, trisection of an angle is expressible in this language. The lan-
guage FO + polycirc has the same expressive power as FO + poly on semi-
circular relations.

4. On the top level, we have FO + poly. Here, the data model supports all
relations definable with polynomial constraints, including queries (e.g., con-
struction of an ellipse) that are not expressible in FO + polycirc.

Appendix. Formal specification of EuPL. The formal specification of EuPL
is as follows. The basic notion is that of a “multifunction,” a function that takes a
fixed number of input points and constructs a fixed (possibly more than one) number

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1597

of output points.
〈multifunction 〉 →

multifunction 〈name〉 ’(’ 〈var〉 (, 〈var〉) ∗ ’)’
= ’(’ 〈type〉 (, 〈type〉) ∗ ’)’;

begin
〈statement〉 (; 〈statement〉)∗

end

〈choice-condition 〉 →
true | false |
〈var〉 = 〈var〉 |
〈var〉 is on line ’(’ 〈var〉 , 〈var〉 ’)’ |
〈var〉 is on circle ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈var〉 is in circle ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈var〉 is on the same side as 〈var〉 of line ’(’ 〈var〉 , 〈var〉 ’)’ |
l-order ’(’ 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
c-order ’(’ 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 ’)’ |
〈choice-condition〉 and 〈choice-condition〉 |
〈choice-condition〉 or 〈choice-condition〉 |
not 〈choice-condition〉 |

Eu-conditions are those used in if clauses. They are slightly more general than
the conditions used in choice statements.
〈eu-condition 〉 →

〈choice-condition〉 |
defined (〈var〉) |
〈eu-condition〉 and〈eu-condition〉 |
〈eu-condition〉 or〈eu-condition〉 |
not〈eu-condition〉〈 statement 〉 →
〈empty statement〉 |
〈assignment〉 |
〈conditional statement〉 |
〈choice〉 |
〈result〉

〈empty statement 〉 →
〈assignment 〉 →

〈var〉 := l-l-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |
〈var〉 , 〈var〉 := l-c-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |
〈var〉 , 〈var〉 := c-c-crossing(〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉 , 〈var〉) |

〈conditional statement 〉 →
if〈eu-condition〉
then〈statement〉(;〈statement〉)*
else〈statement〉(;〈statement〉)*
end

〈choice 〉 →
choose 〈var〉such that 〈choice-condition〉

〈 result 〉 →
result〈var〉 (, 〈var〉)∗

1598 KUIJPERS, KUPER, PAREDAENS, AND VANDEURZEN

REFERENCES

[1] D. Abel and B. C. Ooi, eds., Proceedings of the Third International Symposium on Spatial
Databases, Lecture Notes in Comput. Sci. 692, Springer-Verlag, Berlin, 1993.

[2] F. Afrati, T. Andronikos, and T. Kavalieros, On the expressiveness of first-order con-
straint languages, in Proceedings of the First Workshop on Constraint Databases and
Their Applications, Lecture Notes in Comput. Sci. 1034, G. Kuper and M. Wallace, eds.,
Springer-Verlag, Berlin, 1995, pp. 22–39.

[3] F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper, Linear versus polynomial con-
straints in database query languages, in Proceedings of the Second International Workshop
on Principles and Practice of Constraint Programming, Lecture Notes in Comput. Sci. 874,
A. Borning, ed., Springer-Verlag, Berlin, 1994, pp. 181–192.

[4] S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of
quantifier elimination, J. ACM, 43 (1996), pp. 1002–1046.

[5] M. Benedikt and L. Libkin, Safe constraint queries, SIAM J. Comput., 29 (2000), pp. 1652–
1682.

[6] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag, Berlin,
1998.

[7] A. Buchmann, ed., Proceedings of the First International Symposium on Spatial Databases,
Lecture Notes in Comput. Sci. 409, Springer-Verlag, Berlin, 1989.

[8] B. F. Caviness and J. R. Johnson, eds., Quantifier Elimination and Cylindrical Algebraic
Decomposition, Springer-Verlag, Wien, New York, 1998.

[9] G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompo-
sition, in Automata Theory and Formal Languages, Lecture Notes in Comput. Sci. 33,
H. Brakhage, ed., Springer-Verlag, Berlin, 1975, pp. 134–183.

[10] M. J. Egenhofer and J. R. Herring, eds., Proceedings of the Fourth International Sympo-
sium on Spatial Databases, Lecture Notes in Comput. Sci. 951, Springer-Verlag, Berlin,
1995.

[11] E. Engeler, Remarks on the theory of geometrical constructions, in The Syntax and Semantics
of Infinitary Languages, Lecture Notes in Math. 72, A. Dold and B. Echraun, eds., Springer-
Verlag, Berlin, 1968, pp. 64–76.

[12] E. Engeler, Foundations of Mathematics, Springer-Verlag, Berlin, 1992.
[13] H. Eves, College Geometry, Jones and Barlett, Boston, 1995.
[14] M. Giusti, J. Heintz, J. E. Morais, J. Morgenstern, and L. M. Pardo, Straight-line

programs in geometric elimination theory, J. Pure Appl. Algebra, 124 (1998), pp. 101–146.
[15] S. Grumbach, Implementing linear constraint databases, in Proceedings of the Second Work-

shop on Constraint Databases and Applications, Lecture Notes in Comput. Sci. 1191,
V. Gaede, A. Brodsky, O. Günther, D. Srivastava, V. Vianu, and M. Wallace, eds., Springer-
Verlag, Berlin, 1997, pp. 105–115.

[16] S. Grumbach, P. Rigaux, M. Scholl, and L. Segoufin, DEDALE, a spatial constraint
database, in Proceedings of the Sixth International Workshop on Database Programming
Languages, Lecture Notes in Comput. Sci. 1369, Springer-Verlag, Berlin, 1998, pp. 124–135.

[17] S. Grumbach and J. Su, Towards practical constraint databases, in Proceedings of the 15th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM
Press, New York, 1996, pp. 28–39.

[18] S. Grumbach and J. Su, Finitely representable databases, J. Comput. System Sci., 55 (1997),
pp. 273–298.

[19] S. Grumbach and J. Su, Queries with arithmetical constraints, Theoret. Comput. Sci., 173
(1997), pp. 151–181.

[20] S. Grumbach, J. Su, and C. Tollu, Linear constraint query languages: Expressive power and
complexity, in Proceedings of the Logic and Computational Complexity Workshop, Lecture
Notes in Comput. Sci. 960, D. Leivant, ed., Springer-Verlag, Berlin, 1994, pp. 426–446.

[21] O. Günther and H.-J. Schek, eds., Proceedings of the Second International Symposium on
Spatial Databases, Lecture Notes in Comput. Sci. 525, Springer-Verlag, Berlin, 1991.

[22] R. H. Güting, ed., Advances in Spatial Databases—6th International Symposium (SSD ’99),
Lecture Notes in Comput. Sci. 1651, Springer-Verlag, Berlin, 1999.

[23] M. Gyssens, L. Vandeurzen, and D. Van Gucht, An expressive language for linear spatial
database queries, in Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, ACM Press, New York, 1998, pp. 109–118.

[24] T. Heath, The Thirteen Books of Euclid’s Elements, Dover, New York, 1956.

FIRST-ORDER CONSTRUCTIBLE SPATIAL QUERY LANGUAGES 1599

[25] J. Heintz and B. Kuijpers, Constraint databases, data structures and efficient query evalu-
ation, in Proceedings of the First International Symposium on Applications of Constraint
Databases (CDB’04), Lecture Notes in Comput. Sci. 3074, B. Kuijpers and P. Revesz, eds.,
Springer-Verlag, Berlin, 2004, pp. 1–24.

[26] D. Hilbert, Grundlagen der Geometrie, Teubner, Leipzig, 1899.
[27] J. E. Hopcroft and J. D Ullman, Introduction to Automata Theory, Languages, and Com-

putation, Addison–Wesley, Reading, MA, 1979.
[28] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, Constraint query languages, in Proceed-

ings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Nashville, TN, 1990, pp. 299–213.

[29] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz, Constraint query languages, J. Comput.
System Sci., 51 (1995), pp. 26–52.

[30] G. Kuper, L. Libkin, and J. Paredaens, eds., Constraint Databases, Springer-Verlag, Berlin,
2000.

[31] J. L. Lassez, Querying constraints, in Proceedings of the Ninth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ACM Press, New York, 1990,
pp. 288–298.

[32] J. Paredaens, J. Van den Bussche, and D. Van Gucht, Towards a theory of spatial data-
base queries, in Proceedings of the 13th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, ACM Press, New York, 1994, pp. 279–288.

[33] M. F. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[34] J. Renegar, On the computational complexity and geometry of the first-order theory of the
reals, J. Symbolic Comput., 13 (1989), pp. 255–352.

[35] J. Robinson, Definability and decision problems in arithmetic, J. Symbolic Logic, 14 (1949),
pp. 98–114.

[36] M.-F. Roy, S. Basu, and R. Pollack, Algorithms in Real Algebraic Geometry, Algorithms
Comput. Math. 10, Springer-Verlag, Berlin, 2003.

[37] M. Scholl and A. Voisard, eds., Proceedings of the Fifth International Symposium on Spatial
Databases, Lecture Notes in Comput. Sci. 1262, Springer-Verlag, Berlin, 1997.

[38] A. Tarski, A Decision Method for Elementary Algebra and Geometry, University of California
Press, Berkeley, CA, 1951.

[39] L. van den Dries, Tame Topology and O-minimal Structures, Cambridge University Press,
Cambridge, UK, 1998.

[40] L. Vandeurzen, M. Gyssens, and D. Van Gucht, On the desirability and limitations of linear
spatial query languages, in Proceedings of the Fourth International Symposium on Spatial
Databases, Lecture Notes in Comput. Sci. 951, M. J. Egenhofer and J. R. Herring, eds.,
Springer-Verlag, Berlin, 1995, pp. 14–28.

[41] L. Vandeurzen, M. Gyssens, and D. Van Gucht, On query languages for linear queries
definable with polynomial constraints, in Proceedings of the Second International Confer-
ence on Principles and Practice of Constraint Programming, Lecture Notes in Comput.
Sci. 1118, E. C. Freuder, ed., Springer-Verlag, Berlin, 1996, pp. 468–481.

[42] M. Ziegler, Einige unentscheidbare Körpertheorien, Enseign. Math. (2), 28 (1982), pp. 269–
280.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1600–1630

QUICKEST FLOWS OVER TIME∗

LISA FLEISCHER† AND MARTIN SKUTELLA‡

Abstract. Flows over time (also called dynamic flows) generalize standard network flows by
introducing an element of time. They naturally model problems where travel and transmission are
not instantaneous. Traditionally, flows over time are solved in time-expanded networks that contain
one copy of the original network for each discrete time step. While this method makes available
the whole algorithmic toolbox developed for static flows, its main and often fatal drawback is the
enormous size of the time-expanded network. We present several approaches for coping with this diffi-
culty. First, inspired by the work of Ford and Fulkerson on maximal s-t-flows over time (or “maximal
dynamic s-t-flows”), we show that static length-bounded flows lead to provably good multicommodity
flows over time. Second, we investigate “condensed” time-expanded networks which rely on a rougher
discretization of time. We prove that a solution of arbitrary precision can be computed in polyno-
mial time through an appropriate discretization leading to a condensed time-expanded network of
polynomial size. In particular, our approach yields fully polynomial-time approximation schemes for
the NP-hard quickest min-cost and multicommodity flow problems. For single commodity problems,
we show that storage of flow at intermediate nodes is unnecessary, and our approximation schemes
do not use any.

Key words. network flows, flows over time, dynamic flows, quickest flows, earliest arrival flows,
approximation algorithms

AMS subject classifications. 90B06, 90B10, 90B20, 90C27, 90C35, 90C59, 68Q25, 68W25

DOI. 10.1137/S0097539703427215

1. Introduction. While standard network flows are useful to model a variety of
optimization problems, they fail to capture a crucial element of many routing prob-
lems: routing occurs over time. In their seminal paper on the subject, Ford and
Fulkerson [12, 13] introduced flows with transit times to remedy this and described a
polynomial-time algorithm to solve the maximum flow over time, also called the max-
imum dynamic flow problem.1 In addition to the normal input for classical network
flow problems, each arc also has a transit time. The transit time is the amount of

∗Received by the editors May 7, 2003; accepted for publication (in revised form) July 21, 2006;
published electronically February 20, 2007. Different parts of this work have appeared in a prelimi-
nary form in The quickest multicommodity flow problem, in Integer Programming and Combinatorial
Optimization, Lecture Notes in Comput. Sci. 2337, W. J. Cook and A. S. Schulz, eds., Springer,
Berlin, 2002, pp. 36–53, and in Minimum cost flows over time without intermediate storage, in Pro-
ceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms, Baltimore, MD, 2003,
pp. 66–75.

http://www.siam.org/journals/sicomp/36-6/42721.html
†Department of Computer Science, 6211 Sudikoff, Dartmouth College, Hanover, NH 03755 (lkf@

cs.dartmouth.edu). The work of this author was supported in part by IBM and by the NSF through
grants CCR-0049071 and INT-8902663.

‡Universität Dortmund, Fachbereich Mathematik, 44221 Dortmund, Germany (martin.skutella@
uni-dortmund.de). The work of this author was supported in part by the EU Thematic Networks
APPOL I+II, Approximation and Online Algorithms, IST-1999-14084 and IST-2001-30012, and
by the DFG Focus Program 1126, “Algorithmic Aspects of Large and Complex Networks,” grants
SK 58/4-1 and SK 58/5-3.

1Earlier work on this topic referred to the problems as dynamic flow problems. Recently the
term dynamic has been used in many algorithmic settings to refer to problems with input data that
arrives online or changes over time, and the goal of the algorithms described is to modify the current
solution quickly to handle the slightly modified input. For the problem of dynamic flows, the input
data is available at the start. The solution to the problem involves describing how the optimal flow
changes over time. For these reasons, we use the term “flows over time” instead of “dynamic flows”
to refer to these problems.

1600

QUICKEST FLOWS OVER TIME 1601

time it takes for the flow to travel from the tail to the head of that arc. In contrast
to the classical case of static flows, a flow over time in such a network specifies a flow
rate entering an arc for each point in time. In this setting, the capacity of an arc
limits the rate of flow into the arc at each point in time. In order to get an intuitive
understanding of flows over time, one can associate arcs of the network with pipes in
a pipeline system for transporting some kind of fluid.2 The length of each pipeline
determines the transit time of the corresponding arc while the width determines its
capacity. A precise definition of flows over time is given later in section 2.

Flows over time may be applied to various areas of operations research and have
many real-world applications such as traffic control, evacuation plans, production
systems, communication networks (e.g., the Internet), and financial flows. Examples
and further applications can be found in the survey articles of Aronson [2] and Powell,
Jaillet, and Odoni [33]. However, flows over time are most likely significantly harder
than their standard flow counterparts. For example, both minimum cost flows over
time and fractional multicommodity flows over time are NP-hard [19, 25], even for
very simple series-parallel networks.

1.1. Results from the literature.

Maximum flows over time. Ford and Fulkerson [12, 13] consider the problem
of sending the maximal possible amount of flow from a source node s to a sink node t
within a given time T . This problem can be solved efficiently using one min-cost flow
computation on the given network. Ford and Fulkerson show that an optimal solution
to this min-cost flow problem can be turned into a maximal flow over time by first
decomposing it into flows on paths. The corresponding flow over time starts to send
flow on each path at time zero and continues to send flow on each path so long as
there is enough time left in the T time units for the flow along the path to arrive at
the sink. A flow over time featuring this structure is called temporally repeated.

Quickest flows. A problem closely related to the problem of computing a max-
imal s-t-flow over time is the quickest s-t-flow problem: Send a given amount of flow
from the source to the sink in the shortest possible time. This problem can be solved
in polynomial time by incorporating the algorithm of Ford and Fulkerson in a bi-
nary search framework. Using Megiddo’s method of parametric search [27], Burkard,
Dlaska, and Klinz [3] present a faster algorithm which solves the quickest s-t-flow
problem in strongly polynomial time.

Earliest arrival flows. An earliest arrival flow is an s-t-flow over time which
simultaneously maximizes the amount of flow arriving at the sink before time θ for
all θ ∈ [0, T). Gale [14] observes that these flows exist, and Wilkinson [35] and
Minieka [28] give equivalent pseudo-polynomial-time algorithms to find them. These
algorithms essentially use the successive shortest path algorithm (where the transit
times are interpreted as arc lengths) in order to find a static flow which is then turned
into a flow over time similar to Ford and Fulkerson’s algorithm. The resulting solution
is also a latest departure flow, i.e., a flow over time which simultaneously maximizes
the amount of flow departing from the source after time θ for all θ ∈ [0, T) (subject to
the constraint that the flow is finished by time T). A flow over time which is both an
earliest arrival flow and a latest departure flow is called universally maximal flow over
time. Hoppe and Tardos [23, 22] describe a polynomial-time approximation scheme
for the universally maximal flow problem that routes a 1−ε fraction of the maximum

2We take a purely macroscopic point of view which does not involve any fluid dynamics.

1602 LISA FLEISCHER AND MARTIN SKUTELLA

possible flow that can reach the sink t by time θ for all 0 ≤ θ < T . Problems with
time-dependent arc capacities have been considered by Ogier [29] and Fleischer [10].

Flows over time with costs. Natural generalization of the quickest flows and
maximum flows over time can be defined on networks with costs on the arcs. The
problem can be to find either a minimum cost flow with a given time horizon or a
quickest flow within a given cost budget. Klinz and Woeginger [25] show that the
search for a quickest or a maximum s-t-flow over time with minimal cost cannot be
restricted to the class of temporally repeated flows. In fact, adding costs has also a
considerable impact on the complexity of these problems. Klinz and Woeginger prove
NP-hardness results even for the special case of series parallel graphs. Moreover,
they show that the problem of computing a maximal temporally repeated flow with
minimal cost is strongly NP-hard.

Orlin [30] describes a polynomial-time algorithm to compute an infinite horizon,
minimum cost flow over time that maximizes throughput. The infinite horizon prob-
lem does not have specified demand and is not concerned with computing how a flow
starts and stops, issues that are crucial when flow demands are changing over time.

Quickest transshipments. Another generalization of quickest flows is the quick-
est transshipment problem: Given a vector of supplies and demands at the nodes, the
task is to find a flow over time that satisfies all supplies and demands within minimal
time. Unlike the situation for standard (static) network flow problems, this multi-
ple source, multiple sink, single commodity flow over time problem is not equivalent
to an s-t maximum flow over time problem. Hoppe and Tardos describe the first
polynomial-time algorithm to solve this problem [24, 22]. They introduce the use
of chain decomposable flows which generalize the class of temporally repeated flows
and can also be compactly encoded as a collection of paths. However, in contrast to
temporally repeated flows, these paths may also contain backward arcs. Therefore, a
careful analysis is necessary to show feasibility of the resulting flows over time. More-
over, the algorithm of Hoppe and Tardos is not practical as it requires a submodular
function minimization oracle for a subroutine.

Quickest multicommodity flows over time. In many applications, there are
several commodities that must be routed through the same network. While there is
substantial literature on the static multicommodity flow problem, hardly any results
on multicommodity flows over time are known. Only recently, Hall, Hippler, and
Skutella [19] showed that, already in the setting without costs, multicommodity flows
over time are NP-hard. Indeed, it is not known if there always exists an optimal
solution that can be described in polynomial space.

Discrete vs. continuous time model. All results mentioned so far were orig-
inally developed for a discrete time model, i.e., time is discretized into steps of unit
length. In each step, flow can be sent from a node v through an arc (v, w) to the
adjacent node w, where it arrives τ(v,w) time steps later; here, τ(v,w) denotes the given
integral transit time of arc (v, w). In particular, the time-dependent flow on an arc
is represented by a time-indexed vector in this model. In contrast to this, in the
continuous time model the flow on an arc e is a function fe : R

+ → R
+. Fleischer and

Tardos [11] point out a strong connection between the two models. They show that
many results and algorithms which have been developed for the discrete time model
can be carried over to the continuous time model. Since in this paper we mainly
concentrate on the continuous time model, we give a more detailed discussion of the
interrelation of the two models in section 4.1.

QUICKEST FLOWS OVER TIME 1603

Time-expanded networks. In the discrete time model, flows over time can be
described and computed in time-expanded networks which were introduced by Ford
and Fulkerson [12, 13]. Here we assume that all transit times are integral. A time-
expanded network contains a copy of the node set of the underlying “static” network
for every discrete time step. Moreover, for every arc e in the static network with
transit time τe, there is a copy between each pair of time layers with distance τe in
the time-expanded network. A precise description of time-expanded networks is given
in section 4.1. Unfortunately, due to the time expansion, the size of the resulting
network grows linearly in T . In the worst case, T is exponential in the input size of
the problem. This difficulty has already been pointed out by Ford and Fulkerson.

On the other hand, the advantage of this approach is that it turns the problem of
determining an optimal flow over time into a classical static network flow problem on
the time-expanded network. This problem can then be solved by well-known network
flow algorithms, an approach which is also used in practice to solve flow over time
problems. Due to the linear dependency of the size of the time-expanded network on T ,
such algorithms are termed “pseudopolynomial” since the run time of the algorithm
depends on T and not log T . In general, the size of these networks makes the problem
solution prohibitively expensive.

1.2. Contributions of this paper. We describe approximation algorithms for
flow over time problems. All of our algorithms approximate the minimum time horizon
of an optimal flow. Thus an α-approximate solution is a flow that solves the original
problem and requires at most α times the optimal time horizon to complete. Different
parts of this work have appeared in a preliminary form in [6, 7].

Temporally repeated solutions. Inspired by the work of Ford and Fulkerson,
we show in section 3 that static, length-bounded flows in the underlying static net-
work lead to provably good multicommodity flows over time that can also be computed
efficiently. The resulting approximation algorithm computes temporally repeated so-
lutions and has performance ratio 2. For the more general problem with bounded
cost, this approach yields a (2 + ε)-approximation algorithm. In this context it is in-
teresting to remember that the problem of computing a quickest temporally repeated
flow with bounded cost is strongly NP-hard [25] and therefore does not allow a fully
polynomial-time approximation scheme (FPTAS), unless P=NP. The same hardness
result holds for quickest multicommodity flows without intermediate node storage and
simple flow paths [19]. Finally, since a temporally repeated flow does not use inter-
mediate node storage, our result implies a bound of 2 on the “power of intermediate
node storage,” i.e., the makespan of a quickest multicommodity flow without inter-
mediate node storage is at most twice as long as the makespan of a quickest flow that
is allowed to store flow at intermediate nodes.

Approximation schemes. Another main contribution of this paper is to show
that problems that can be solved exactly in the time-expanded network can be solved
close to optimally by a static flow computation in a network with polynomial size. A
straightforward idea is to reduce the size of time-expanded networks by replacing the
time steps of unit length by larger steps. In other words, applying a sufficiently rough
discretization of time leads to a condensed time-expanded network of polynomial size.
However, there is a tradeoff between the necessity to reduce the size of the time-
expanded network and the desire to limit the loss of precision of the resulting flow
model since the latter results in a loss of quality of achievable solutions.

In section 4 we show that there is a satisfactory solution to this tradeoff prob-
lem. An appropriate choice of the step length leads to a condensed time-expanded

1604 LISA FLEISCHER AND MARTIN SKUTELLA

network of polynomial size that permits a solution completing within (1 + ε) times
the completion of a comparable flow in the continuous-time model, any ε > 0. More
precisely, a condensed time-expanded network achieving this precision has n/ε2 time
layers where n is the number of nodes in the given network. One can thus say that
the cost of (1 + ε)-approximate temporal dynamics for network flow problems is a
factor of n/ε2 in the size of the network.

This observation has potential applications for many problems involving flows over
time. In particular, it yields an FPTAS for the NP-hard quickest multicommodity
flow problem. Since costs can easily be incorporated into time-expanded networks,
our approach can be generalized to yield FPTASs for quickest multicommodity flow
problems with cost constraints. Notice that already quickest s-t-flows with bounded
cost are NP-hard.

Apart from NP-hard problems, we believe that our result is also of interest for
flow problems, like the quickest transshipment problem, which are known to be solv-
able in polynomial time. While the algorithm of Hoppe and Tardos [24, 22] for the
quickest transshipment problem relies on submodular function minimization, the use
of condensed time-expanded networks leads to an FPTAS which simply consists of a
series of max-flow computations.

No storage. Flows over time raise issues that do not arise in standard network
flows. One issue is storage at intermediate nodes. In most applications (such as,
e.g., traffic routing, evacuation planning, and telecommunications), storage is limited,
undesired, or even prohibited at intermediate nodes. For single commodity prob-
lems, most generally the transportation problem with costs, we prove that storage is
unnecessary, and our FPTAS does not use any.

Earliest arrival flows. Finally, in section 5 we discuss a variant of time-expanded
networks which are suitable for approximating earliest arrival flows. We address the
following problem: Given a set of sources with supplies and a single sink, send the
supplies to the sink so that the amount of flow arriving at the sink by time θ is D∗

t (θ),
the maximum possible, for all 0 ≤ θ. Instead of using a uniform discretization of
time, we introduce “geometrically condensed time-expanded networks” which rely on
geometrically increasing time steps. We use this network to obtain a flow that sends
D∗

t (θ) units of flow to the sink by time θ(1 + ε) for all 0 ≤ θ.

2. Preliminaries. We consider routing problems on a network N = (V,A)
with n := |V | nodes and m := |A| arcs. Each arc e ∈ A has an associated inte-
gral transit time or length τe and a capacity ue. In the setting with costs, each arc e
also has a cost coefficient ce, which determines the per unit cost for sending flow
through the arc. An arc e from node v to node w is sometimes also denoted (v, w);
in this case, we write head(e) = w and tail(e) = v.

2.1. Static flows. We start with the definition of single-commodity flows: Let
S ⊆ V be a set of terminals which can be partitioned into a subset of sources S+ and
sinks S−. Every source node v ∈ S+ has a supply Dv ≥ 0 and every sink v ∈ S− has
a demand Dv ≤ 0 such that

∑
v∈S Dv = 0. We often consider the case with only one

source s ∈ V and one sink t ∈ V . In this case, we let d := Ds = −Dt.
A static flow x on N assigns every arc e a nonnegative flow value xe such that

the flow conservation constraints
∑

e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0 for all v ∈ V \ S

QUICKEST FLOWS OVER TIME 1605

are obeyed. Here, δ+(v) and δ−(v) denote the set of arcs e leaving node v (tail(e) = v)
and entering node v (head(e) = v), respectively. The static flow x satisfies the supplies
and demands if

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = Dv for all v ∈ S.

For the case of a single source s and a single sink t we also use the term s-t-flow. An
s-t-flow x satisfying supply d = Ds = −Dt has value |x| = d. Finally, a flow x is
called feasible if it obeys the capacity constraints xe ≤ ue for all e ∈ A. The cost of a
static flow x is defined as

c(x) :=
∑
e∈A

ce xe.

In the multiple-commodity setting, there is a set of commodities K = {1, . . . , k},
each of which is defined by a set of terminals Si = S+

i ∪ S−
i ⊆ V and demands and

supplies Dv,i for v ∈ Si and i ∈ K. A static multicommodity flow x on N assigns
every arc-commodity pair (e, i) a nonnegative flow value xi

e such that xi := (xi
e)e∈A is

a single-commodity flow as defined above for all i ∈ K. The multicommodity flow x
satisfies the demands and supplies if xi satisfies the demands and supplies Dv,i for v ∈
Si. Finally, x is called feasible if it obeys the capacity constraints xe :=

∑
i∈K xi

e ≤ ue

for all e ∈ A. In the setting with costs, the cost of a static multicommodity flow x is
defined as

c(x) :=
∑
e∈A

∑
i∈K

ce,i x
i
e,(1)

where ce,i is the cost coefficient associated with arc e and commodity i.

2.2. Flows over time. In many applications of flow problems, static routing of
flow as discussed in section 2.1 does not satisfactorily capture the real structure of
the problem since not only the amount of flow to be transmitted but also the time
needed for the transmission plays an essential role.

A (multicommodity) flow over time f on N with time horizon T is given by
a collection of Lebesgue-measurable functions fe,i : [0, T) → R

+, where fe,i(θ) de-
termines the rate of flow (per time unit) of commodity i entering arc e at time θ.
Transit times are fixed throughout so that flow on arc e progresses at a uniform
rate. In particular, the flow fe,i(θ) of commodity i entering arc e at time θ arrives
at head(e) at time θ + τe. Thus, in order to obey the time horizon T , we require
that fe,i(θ) = 0 for θ ∈ [T − τe, T). In order to simplify notation, we sometimes
use fe,i(θ) for θ /∈ [0, T), implicitly assuming that fe,i(θ) = 0 in this case.

With respect to flow conservation, there are two different models of flows over
time. In the model with storage of flow at intermediate nodes, it is possible to hold
inventory at a node which is neither a source nor a sink before sending it onward.
Thus, the flow conservation constraints are integrated over time to prohibit deficit at
any node:

∫ ξ

0

(∑
e∈δ+(v)

fe,i(θ) −
∑

e∈δ−(v)

fe,i(θ − τe)

)
dθ ≤ 0(2)

for all i ∈ K, ξ ∈ [0, T), v ∈ V \ S+
i . Moreover, we require that equality holds

in (2) for i ∈ K, ξ = T , and v ∈ V \ Si, meaning that no flow should remain in the

1606 LISA FLEISCHER AND MARTIN SKUTELLA

s t

v

τ(s,v) = 3; u(s,v) = 2 τ(v,t) = 2; u(v,t) = 1

Fig. 1. An instance of s-t-flows over time given by a network with transit times and capacities
on the arcs.

network after time T . In the model without storage of flow at intermediate nodes we
additionally require that equality holds in (2) for all i ∈ K, ξ ∈ [0, T), and v ∈ V \Si.

The flow over time f satisfies the supplies and demands if by time T the net flow
out of each terminal v ∈ Si of commodity i equals its supply Dv,i:

∫ T

0

(∑
e∈δ+(v)

fe,i(θ) −
∑

e∈δ−(v)

fe,i(θ − τe)

)
dθ = Dv,i(3)

for all i ∈ K and v ∈ Si. An s-t-flow over time is a single commodity flow from a single
source s to a single sink t. An s-t-flow over time satisfying supply d = Ds = −Dt has
value |f | = d.

A flow over time f is feasible if it obeys the capacity constraints. Here, capacity ue

is interpreted as an upper bound on the rate of flow entering arc e, i.e., a capacity per
time unit. Thus, the capacity constraints are fe(θ) ≤ ue for all θ ∈ [0, T) and e ∈ A,
where fe(θ) :=

∑
i∈K fe,i(θ) is the total flow into arc e at time θ.

In the setting with costs, the cost of a flow over time f is defined as

c(f) :=
∑
e∈A

∑
i∈K

∫ T

0

ce,i fe,i(θ) dθ.(4)

Notice that we overload notation here since c(x) is already used to denote the cost of
a static flow x. This should not lead to any confusion in the following.

In Figure 1 we give a small illustrating example of s-t-flows over time. In order
to send 2 units of flow from s to t in minimum time in the depicted network, one can
choose between several alternatives. One is to send flow at rate 2 into the first arc
during the time interval [0, 1). Since the transit time of the first arc is 3, the two units
of flow will arrive at the intermediate node v during the time interval [3, 4). Thus, one
can start to send flow at rate 1 into the second arc at time 3, and it will take 2 time
units until time 5 before everything has been sent into the arc. Then, the flow finally
arrives at the sink t within the time interval [5, 7). The optimal time horizon is 7.
Notice that in this solution flow is stored at the intermediate node v. An alternate
solution also with time horizon 7 which avoids storing flow at v can be obtained by
sending flow at rate 1 into the first arc during the time interval [0, 2).

2.3. Maximum flows over time and quickest flows. Ford and Fulkerson [12,
13] show how to compute a maximum s-t-flow over time by reducing this problem to
a static min-cost flow problem. More precisely, one can turn an optimal solution x to
the static s-t-flow problem with objective function3

maxT |x| −
∑
e

τe xe(5)

3The objective function considered by Ford and Fulkerson is slightly different from (5) since T
is replaced by T + 1. In contrast to our work, Ford and Fulkerson consider a discrete time setting
where time horizon T means that flow can be sent at T + 1 discrete points in time 0, 1, 2, . . . , T . For
more details on the relation between the two models we refer to [11].

QUICKEST FLOWS OVER TIME 1607

into a maximal s-t-flow over time: It is a well-known result from network flow theory
that any static flow x in N can be decomposed into a sum of flows xP on simple
paths P ∈ P and flow on cycles. Without loss of generality, flow on cycles is neglected
(i.e., canceled) such that x can be written as a sum of path-flows: xe =

∑
P∈P : e∈P xP

for all e ∈ A. The resulting temporally repeated flow f sends flow at rate xP into each
path P ∈ P during the time interval [0, T − τ(P)), where τ(P) :=

∑
e∈P τe. In other

words, f is the sum of path-flows over time fP with fP (θ) = xP for θ ∈ [0, T − τ(P))
and fP (θ) = 0 otherwise. Feasibility of f immediately follows from feasibility of x.
Moreover, the flow value is

|f | =
∑
P∈P

(T − τ(P))xP = T |x| −
∑
e

τe xe.(6)

The second equality follows since (xP)P∈P is a path-decomposition of x.
For flows over time, a natural objective is to minimize the makespan, also called

time horizon: the time T necessary to satisfy all demands. The quickest s-t-flow prob-
lem asks for an s-t-flow over time with given value d and minimum time horizon T .
This problem can be generalized to the setting with bounded flow cost and multi-
ple sources and sinks (quickest transshipment problem) and to the case of multiple
commodities.

The most general problem that we consider here is the quickest (multicommodity)
transshipment problem (with bounded cost) which is defined as follows.

Quickest multicommodity transshipment problem with bounded cost

Given: A network (digraph) with capacities, costs, and transit times on the arcs;
k commodities, each specified by a set of sources and sinks with supplies
and demands; and a cost budget C.

Task: Find a multicommodity flow over time satisfying all supplies and demands
with cost at most C and with minimal time horizon T .

Since this problem is NP-hard, we will mostly deal with finding approximate quickest
flow. A natural variant of the stated problem is to bound the cost for every single
commodity i by a budget Ci, i.e.,

∑
e∈A

ce,i

∫ T

0

fe,i(θ) dθ ≤ Ci

for all i ∈ K. All of our results also apply to problems with these additional cost
constraints.

A note on time and size bounds. Our time bounds are sometimes expressed
in terms of T ∗, the optimal makespan. Since capacities and transit times are integers,
we can assume that at every moment of time some flow is either progressing towards
a sink or arriving at the sink. Thus, we obtain a gross upper bound on the optimal
makespan: T ∗ ≤

∑
i di +

∑
e τe. As long as the dependency on T ∗ is polylogarithmic,

the resulting bound is polynomial in size of the input.

3. A simple two-approximation algorithm. In this section we generalize the
basic approach of Ford and Fulkerson [12, 13] to the case of multiple commodities (with
multiple sources and sinks each) and costs. However, in contrast to the algorithm
of Ford and Fulkerson which is based on a (static) min-cost flow computation, the
method we propose employs length-bounded static flows.

1608 LISA FLEISCHER AND MARTIN SKUTELLA

3.1. Length-bounded static flows. While static flows are not defined with
reference to transit times, we are interested in static flows that suggest reasonable
routes with respect to transit times. To account for this, we consider decompositions
of static flows into paths. We denote the set of all paths starting at some source of
commodity i and leading to one of its sinks by Pi. A static (multicommodity) flow x is
called T -length-bounded if the flow of each commodity i ∈ K can be decomposed into
the sum of flows xi

P on paths P ∈ Pi such that the length τ(P) of any path P ∈ Pi

with xi
P > 0 is at most T .

While the problem of computing a feasible static flow that satisfies the multicom-
modity demands can be solved efficiently, it is NP-hard to find such a flow which is
in addition T -length-bounded, even for the special case of a single commodity. This
follows by a straightforward reduction from the NP-complete Partition problem.
On the other hand, the length-bounded flow problem can be approximated within
arbitrary precision in polynomial time.

Lemma 3.1. If there exists a feasible T -length-bounded static flow x which satisfies
the multicommodity demands, then for any ε > 0, a feasible (1 + ε)T -length-bounded
static flow x′ of cost c(x′) ≤ c(x) satisfying all demands can be computed in time
polynomial in the input size and 1/ε.

Proof. We first formulate the problem of finding a feasible T -length-bounded
static flow as a linear program in path-variables. We assume without loss of generality
that each commodity i ∈ K has exactly one source si and one sink ti with supply
and demand di := Dsi = −Dti ; the general case with several sources and sinks can be
handled by introducing one supersource and one supersink for each commodity. Let

PT
i := {P ∈ Pi | τ(P) ≤ T} ⊆ Pi

be the set of all si-ti-paths whose lengths are bounded from above by T . The cost
of path P ∈ Pi is defined as ci(P) :=

∑
e∈P ce,i. The length-bounded min-cost flow

problem can then be written as

min
∑
i∈K

∑
P∈PT

i

ci(P)xi
P

s.t.
∑

P∈PT
i

xi
P ≥ di for all i ∈ K,

∑
i∈K

∑
P∈PT

i :e∈P

xi
P ≤ ue for all e ∈ A,

xi
P ≥ 0 for all i ∈ K, P ∈ PT

i .

Unfortunately, the number of paths in PT
i and thus the number of variables in this

linear program are in general exponential in the size of the underlying network N . If
we take the dual of the program we get

max
∑
i∈K

di zi −
∑
e∈A

ue ye

s.t.
∑
e∈P

(ye + ce,i) ≥ zi for all i ∈ K, P ∈ PT
i ,

zi, ye ≥ 0 for all i ∈ K, e ∈ A.

The corresponding separation problem can be formulated as a length-bounded shortest
path problem: Find a shortest si-ti-path P with respect to the arc weights ye + ce,i

QUICKEST FLOWS OVER TIME 1609

whose length τ(P) is at most T , i.e., P ∈ PT
i . While this problem is NP-hard [15], it

can be solved approximately in the following sense: For any ε > 0, one can find in time
polynomial in the size of the network N and 1/ε an si-ti-path P ∈ Pi with τ(P) ≤
(1+ε)T whose length with respect to the arc weights ye+ce,i is bounded from above by
the length of a shortest path in PT

i [21, 26, 31]. Using the equivalence of optimization
and separation [17], this means for our problem that we can find in polynomial time
an optimal solution to a modified dual program which contains additional constraints
corresponding to paths of length at most (1 + ε)T . To be more precise, we find an
optimal solution to a linear program that is more constrained than the above dual:

max
∑
i∈K

di zi −
∑
e∈A

ue ye

s.t.
∑
e∈P

(ye + ce,i) ≥ zi for all i ∈ K, P ∈ P̃i,

zi, ye ≥ 0 for all i ∈ K, e ∈ A,

where PT
i ⊆ P̃i ⊆ P(1+ε)T

i for all i ∈ K. From this dual solution we get a primal
solution that sends flow of commodity i only on paths in P̃i. In particular, since P̃i ⊆
P(1+ε)T
i , this flow is (1 + ε)T -length-bounded.

Notice that the method described in the proof above relies on the ellipsoid method
and is therefore of rather restricted relevance for solving length-bounded flow problems
in practice. However, the FPTASs developed in [8, 16] for multicommodity flow
problems can be generalized to the case of length-bounded flows: Those algorithms
iteratively send flow on shortest paths with respect to some length function. In
order to get a T -length-bounded solution, these shortest path computations must be
replaced by a procedure that computes the (1 + ε)T -length-bounded shortest path.4

3.2. The approximation algorithm. Any feasible flow over time f with time
horizon T and cost at most C naturally induces a feasible static flow x on the under-
lying network N by averaging the flow on every arc over time, i.e.,

xi
e :=

1

T

∫ T

0

fe,i(θ) dθ

for all e ∈ A and i ∈ K. By construction, the static flow x is feasible, and it satisfies
the following three properties, as explained below:

(i) it is T -length-bounded;
(ii) it satisfies a fraction of 1/T of the supplies and demands covered by the flow

over time f ;
(iii) c(x) = c(f)/T .

Due to the fixed time horizon T , flow f can travel only on paths of length at most T .
Thus property (3.2) is fulfilled. Property (3.2) follows from (3). Finally, property (3.2)
is a consequence of (1) and (4).

On the other hand, given an arbitrary feasible static flow x meeting require-
ments (3.2), (3.2), and (3.2), it can easily be turned into a feasible flow over time g

4The algorithms in [8, 16] return a solution of cost at most 1 + ε times the minimum cost, which
obeys capacities and serves at least 1

1+ε
fraction of the demand. In the context of the approximation

algorithm described in the next subsection, this approximate result is sufficient to still obtain the 2+ε-
approximation guarantee. This is because flow can be sent just a little longer on the chosen paths
to fulfill all the demand.

1610 LISA FLEISCHER AND MARTIN SKUTELLA

s1 2 s2 0 t1

s3

0 t2 2

t3

Fig. 2. An instance of the quickest multicommodity flow problem containing three commodi-
ties i = 1, 2, 3, each with a single source si and a single sink ti. Commodities 1 and 3 have demand
value 1; commodity 2 has demand value 2. The numbers at the arcs indicate the transit times; all
arcs have unit capacity. Note that an arc with 0 transit time and capacity 1 takes no additional
time to cross but lets only one unit of flow through per unit time. A quickest flow with waiting at
intermediate nodes allowed takes three time units and stores one unit of commodity 2 at the inter-
mediate node t1 = s3 for two time units. However, if flow cannot be stored at intermediate nodes,
an optimal solution takes time 4.

with time horizon 2T , meeting the same supplies and demands at the same cost as f :
For every commodity i ∈ K, pump flow into every path P given by the length-bounded
path decomposition of x at the corresponding flow rate xi

P for T time units; then wait
for at most T additional time units until all flow has arrived at its destination. In
particular, no flow is stored at intermediate nodes in this solution. Therefore we can
state the following structural result on the power of intermediate node storage.

Lemma 3.2. Allowing the storage of flow at intermediate nodes in N saves at
most a factor of 2 in the optimal makespan. On the other hand, there are instances
where the optimal makespan without storage at intermediate nodes is 4/3 times the
optimal makespan with storage.

Proof. The bound of 2 follows from the discussion above. In Figure 2 we give an
instance with a gap of 4/3 between the optimal makespan without storing and the
optimal makespan with storing at intermediate nodes.

Notice that the gap of 4/3 is not an artifact of the small numbers in the instance
depicted in Figure 2. It holds for more general demands and transit times as well: For
instance, scale all transit times and capacities of arcs by a factor of q, and multiply
all pairwise demands by a factor of q2. For the new instance, there is still a gap
of 4/3 between the optimal makespan without storing and the optimal makespan
with storing at intermediate nodes.

In view of the discussion before Lemma 3.2, we can now state the core of our
approximation algorithm; see Figure 3. If the given time horizon T is at least as
large as the optimum makespan of the given instance, a static flow fulfilling require-
ments (3.2), (3.2), and (3.2) exists. In the first step of Algorithm LengthBounded

(Figure 3), we relax the length bound in property (3.2) by a factor 1 + ε so that the
step can be performed in polynomial time; see section 3.1.

We state the main result of this section.
Theorem 3.3. For the quickest multicommodity transshipment problem with

bounded cost, there exists a polynomial-time algorithm that, for any ε > 0, finds a
solution of cost at most C (cost budget) with makespan at most 2 + ε times the opti-
mal makespan. Moreover, the computed solution does not store flow at intermediate
nodes.

Proof. We embed Algorithm LengthBounded into a binary search for the op-
timal makspan T ∗. After O(log T ∗/ε′) steps, we get a guess of the optimal makespan
with precision 1 + ε′/4 for any ε′ > 0. That is, we get T with

T ∗ ≤ T ≤ (1 + ε′/4)T ∗.

If we call Algorithm LengthBounded using T and ε := ε′/4, we get a flow over

QUICKEST FLOWS OVER TIME 1611

Algorithm LengthBounded

Input: An instance of the quickest multicommodity transshipment problem with
cost bound C; tentative time horizon T ; precision ε > 0.

Output: A flow over time satisfying all supplies and demands with makespan
at most (2 + ε)T and cost bounded by C; or the information that T is
strictly smaller than the optimal makespan.

1. Compute a static flow x such that
– x is (1 + ε)T -length bounded;
– x satisfies a fraction 1/T of the supplies and demands;
– c(x) ≤ C/T ;

or decide that no such flow exists. In the latter case stop and output
“T < T ∗”.

2. Turn x into a flow over time satisfying all supplies and demands with
makespan at most (2 + ε)T and cost bounded by C (see discussion in
section 3.2).

Fig. 3. The core of the (2 + ε)-approximation algorithm.

s1

s2

s3

sk

tk

tk−1

tk−2

t1

k − 1

...

2

1

0

0

k − 1

...

2

1

0

Fig. 4. An instance with k commodities showing that the analysis in the proof of Theorem 3.3
is tight. All arcs have unit capacity and transit times as depicted above. The demand value of every
commodity is 1. A quickest flow needs T ∗ = k time units. However, any static flow can satisfy at
most a fraction of 1/k of the demands. In particular, the makespan of the resulting flow over time
is at least 2k − 1.

time with makespan (2 + ε)T ≤ (2 + ε′)T ∗. In the last inequality we assume that ε′

is chosen small enough (i.e., ε′ ≤ 4).
In Figure 4 we present an instance which shows that the analysis in the proof of

Theorem 3.3 is tight. That is, the performance guarantee of the discussed approxi-
mation algorithm is not better than 2.

3.3. Avoiding the length-bounded flow computation. In contrast to Ford’s
and Fulkerson’s temporally repeated flows, the flows over time resulting from T -
length-bounded static flows described before Lemma 3.2 do not necessarily use flow-
carrying paths as long as possible with respect to the time horizon 2T . Instead, we
stop sending flow into all paths at the same time T . In the following we argue that
such a flow over time can easily be turned into a temporally repeated flow.

We simply extend the time interval [0, T) during which flow is being sent into
each path P such that the last flow on path P arrives at the sink exactly at time 2T .
Thus, the extended time interval for path P is [0, 2T − τ(P)). On the other hand, we

1612 LISA FLEISCHER AND MARTIN SKUTELLA

compensate for the enlarged time interval by scaling the flow rate xi
P on each path P to

x̃i
P :=

T

2T − τ(P)
xi
P ≤ xi

P .

Notice that the resulting temporally repeated flow obeys capacities since we have not
increased the flow rate on any path. Moreover, by choice of x̃i

P the amount of flow
that is sent on any path P has remained unchanged because x̃i

P (2T − τ(P)) = xi
PT .

For the setting without costs, this observation also implies that the length-boun-
ded flow computation in our algorithm can be replaced by a standard (and presumably
faster) flow computation with costs, where transit times on arcs are interpreted as
cost coefficients. To simplify the presentation of this result, we restrict to the case
of only one source si and one sink ti for every commodity i ∈ K. The scaled flow
rates x̃i

P discussed above define a static multicommodity flow x̃. Let |x̃i| be the si-
ti-flow value of commodity i in x̃, and let di be the demand of commodity i. Since
the temporally repeated flow with time horizon 2T and flow rates x̃i

P sends exactly di
units of commodity i from si to ti, it follows from (6) that

2T |x̃i| −
∑
e∈A

τe x̃
i
e = di for all i ∈ K.(7)

On the other hand, any feasible static multicommodity flow x̃ fulfilling (7) can easily
be turned into a temporally repeated flow over time satisfying all demands within
time 2T : Compute any path decomposition of x̃ and send flow into every path at the
corresponding flow rate as long as there is enough time left for the flow to arrive at
its sink before time 2T . This follows again from (6). We can now prove the following
slightly improved approximation result which does not rely on a length-bounded static
flow computation.

Theorem 3.4. There exists a 2-approximation algorithm for the quickest mul-
ticommodity transshipment problem. Moreover, the computed solution does not store
flow at intermediate nodes.

Proof. For the sake of simplicity, we again restrict to the case of one single
source si and one sink ti for every commodity i ∈ K. The algorithm first solves the
following flow problem

min T

s.t. 2T |x̃i| −
∑
e∈A

τe x̃
i
e = di for every i ∈ K,

(x̃i
e)e∈A, i∈K is a feasible multicommodity flow.

Notice that this program is nonlinear since both T and the flow values |xi| are vari-
ables. On the other hand, it can be seen as a parametric multicommodity circulation
problem by introducing an arc of infinite capacity and cost 2T from ti to si for
all i ∈ K. The problem can thus be solved in polynomial time.

It follows from (7) and the discussion above that the optimal solution value T is
a lower bound on the time horizon of a quickest flow. Finally, the static flow x̃ can
be turned into a temporally repeated flow over time with time horizon 2T by taking
an arbitrary path-decomposition of x̃.5

5If the path-decomposition contains paths of length longer than 2T , these paths contribute
negatively to the right-hand side of (7). Thus we can remove them along with flow on a set of shorter
paths and obtain a smaller path-decomposition.

QUICKEST FLOWS OVER TIME 1613

s t

τ = 1 − ε; c = 1 τ = 1 − ε; c = 1

τ = 0; c = 0 τ = 0; c = 0

Fig. 5. An instance showing that the cost of a temporally repeated flow depends on the particular
path-decomposition of the underlying static s-t-flow. Consider the static flow of value 2 in the
depicted network with flow value 1 on every arc. The time horizon is set to 2. There are two
possible decompositions of this static flow into a sum of two path-flows. One of them leads to a
temporally repeated flow of cost 2 + 2ε; the other one has cost 2ε.

Unfortunately, this result cannot be generalized to the quickest multicommodity
transshipment problem with costs. The reason is that the cost of a temporally re-
peated flow is not uniquely determined by the underlying static flow but also depends
on the chosen path decomposition. This has already been observed in [25]. We give
an example in Figure 5. In fact, it can be shown by a reduction of the NP-complete
problem Partition that finding a path-decomposition of a given static flow x yielding
a cheapest temporally repeated flow is NP-hard.

4. Approximation schemes for quickest flows. In this section we present a
framework for obtaining FPTASs for various quickest flow problems. In section 4.1 we
introduce special time-expanded networks of polynomial size which are the backbone
of this framework. In section 4.2 we present the basic idea of our approach and point
out fundamental problems that need to be solved in order to make it work. Then,
in section 4.3 we discuss the special case of acyclic graphs. Under the assumption
that storage of flow at intermediate nodes is allowed, acyclic graphs are amenable
to a simple analysis. On the other hand, we show in section 4.4 that optimal single
commodity flows over time (with costs) do not require storage. Based on this insight,
we give an FPTAS for the quickest transshipment problem with bounded cost which
does not use storage at intermediate nodes in section 4.5. We describe a generalization
of our approach to the multicommodity flow setting in section 4.6.

4.1. Condensed time-expanded networks. Traditionally, flows over time are
solved in a time-expanded network. Given a network N = (V,A) with integral transit
times on the arcs and an integral time horizon T , the T -time-expanded network of N
denoted N T is obtained by creating T copies of V , labeled V0 through VT−1, with
the θth copy of node v denoted vθ, θ = 0, . . . , T − 1. The flow that passes through Vθ

corresponds to flow over time in the interval [θ, θ + 1). For every arc e = (v, w) in A
and 0 ≤ θ < T − τe, there is an arc eθ from vθ to wθ+τe with the same capacity and
cost as arc e. For each terminal v ∈ Si, i ∈ K, there is an additional infinite capacity
holdover arc from vθ to vθ+1 for all 0 ≤ θ < T − 1, which models the possibility to
hold flow at node v in the time interval [θ, θ+1). We assume without loss of generality
that a source (sink) has no incoming (outgoing) arc in N . Thus, a terminal is never
an intermediate node on a path flow.6 We treat the first copy v0 of a source v ∈ S+

i as
the corresponding source in N T and treat the last copy vT−1 of a sink v ∈ S−

i as the
corresponding sink in N T . In the model with storage of flow at intermediate nodes,
we introduce holdover arcs for all nodes v ∈ V . An illustration of a time-expanded
network is given in Figures 6(a) and (b).

6Under this assumption, the flow storage level of commodity i at v ∈ Si never exceeds Dv,i.

1614 LISA FLEISCHER AND MARTIN SKUTELLA

s

2
τ (s

,v
)
=

0

0
3

1 t

c)

[0, 1)

[1, 2)

[2, 3)

[3, 4)

[4, 5)

[5, 6)

[4, 6)

[2, 4)

[0, 2)

s v w ttwvs

w

v

a) b)

Fig. 6. (a) A static network N with transit times on the arcs, one source s, and one sink t;
(b) the corresponding time-expanded network NT with time horizon T = 6; (c) the condensed time-
expanded network NT /Δ with Δ = 2. Notice that the transit time of arc (s, w) has been rounded
up to 4 in NT /Δ since the original transit time 3 is not a multiple of Δ (see also section 4.2).

Any static (multicommodity) flow in this time-expanded network corresponds to
a (multicommodity) flow over time of equal cost: For any commodity, interpret the
flow on arc eθ as the flow rate entering arc e = (v, w) in the time interval [θ, θ + 1).
Similarly, any flow over time completing by time T corresponds to a flow in N T of the
same value and cost obtained by setting the flow on eθ to be the average flow rate into e
over the interval [θ, θ+1). More details can be found below in Lemma 4.1 (set Δ := 1).
Thus, we may solve any flow over time problem by solving the corresponding static
flow problem in the time-expanded graph.

One problem with this approach is that the size of N T depends linearly on T so
that if T is not bounded by a polynomial in the input size, this is not a polynomial-
time method of obtaining the required flow over time. However, if all arc lengths are
a multiple of Δ > 0 such that �T/Δ	 is bounded by a polynomial in the input size,
then instead of using the T -time-expanded network, we may rescale time and use a
condensed time-expanded network that contains only �T/Δ	 copies of V . Since in this
setting every arc corresponds to a time interval of length Δ, capacities are multiplied
by Δ. We denote this condensed time-expanded network by N T /Δ and the copies
of V in this network by VρΔ for ρ = 0, . . . , �T/Δ	 − 1. Copy VρΔ corresponds to flow
through V in the interval [ρΔ, (ρ + 1)Δ). An illustration is given in Figure 6(c).

Lemma 4.1. Suppose that all arc lengths are multiples of Δ and T/Δ is an integer.
Then, any (multicommodity) flow over time that completes by time T corresponds
to a static (multicommodity) flow of equal cost in N T /Δ, and any flow in N T /Δ
corresponds to a flow over time of equal cost that completes by time T .

Proof. Given an arbitrary (multicommodity) flow over time, a modified flow over
time of equal value and cost can be obtained by averaging the flow value of every
commodity on any arc in each time interval [ρΔ, (ρ + 1)Δ), ρ = 0, . . . , T/Δ − 1.
This modified flow over time defines a static (multicommodity) flow in N T /Δ in a
canonical way. Notice that the capacity constraints are obeyed since the total flow
starting on arc e in interval [ρΔ, (ρ + 1)Δ) is bounded by Δue. The flow values on
the holdover arcs are defined in such a way that flow conservation is obeyed in every
node of N T /Δ.

On the other hand, a static (multicommodity) flow on N T /Δ can easily be turned
into a flow over time. The static flow on an arc with tail in VρΔ is divided by Δ and

QUICKEST FLOWS OVER TIME 1615

Δ/2 + Δ/2
Δ

Δ/2

Δ

a)

1

4

3

2
2

1

3

4

b)

Fig. 7. (a) A flow over time in the original network. The two packets of flow originating at
nodes 1 and 2 are sent one after another into arc (3, 4). (b) The “same” flow over time in the
network with rounded transit times causes congestion on arc (3, 4) since the two packets of flow
arrive simultaneously on the arc.

sent for Δ time units starting at time ρΔ. If the head of the arc is in VσΔ for σ ≥ ρ,
then the length of the arc is (σ − ρ)Δ, and the last flow (sent before time (ρ + 1)Δ)
arrives before time (σ + 1)Δ. Note that if costs are assigned to arcs of N T /Δ in
the natural way, then the cost of the flow over time is the same as the cost of the
corresponding flow in the time-expanded graph.

If we drop the condition that T/Δ is integral, we get the following slightly weaker
result.

Corollary 4.2. Suppose that all arc lengths are multiples of Δ. Then, any
(multicommodity) flow over time that completes by time T corresponds to a static
(multicommodity) flow of equal value and cost in N T /Δ, and any flow in N T /Δ
corresponds to a flow over time of equal value that completes before time T + Δ.

4.2. Outline of an approximation scheme. The basic idea of our algorithm
is to round up transit times to the nearest multiple of Δ for an appropriately cho-
sen Δ, solve the static flow problem in the corresponding Δ-condensed time-expanded
network, and then translate this flow back to the setting of the original transit times.
In order to obtain provably good solutions in this way, one has to make sure that the
following two conditions are fulfilled:

I. the makespan of an optimal solution to the instance with increased transit
times (represented by the condensed time-expanded network) approximates
the makespan of an optimal solution in the original setting;

II. the solution to the instance with increased transit times can be transformed
into a flow over time with original arc lengths without too much loss in flow
value.

Before discussing how to fulfill these conditions, we first give some simple examples
to show that nontrivial problems have to be dealt with to address both I and II.

Consider first a (sub)network consisting of four nodes {1, 2, 3, 4} and three arcs
(1, 3), (2, 3), and (3, 4) with unit capacity depicted in Figure 7(a). The transit times
are τ(1,3) = Δ/2, τ(2,3) = Δ, and τ(3,4) = Δ. A flow in the graph without rounded tran-
sit times can send Δ/2 units of flow in interval [0,Δ/2) on each path P1 = 1 → 3 → 4
and P2 = 2 → 3 → 4. Path P1 will use arc (3, 4) in interval [Δ/2,Δ), and path P2

will use arc (3, 4) in interval [Δ, 3Δ/2). However, if we send flow simultaneously on
paths P1 and P2 in the network with transit times rounded up to the nearest multiple
of Δ, then this will cause a bottleneck on arc (3, 4); see Figure 7(b).

Now consider the unit capacity (sub)network depicted in Figure 8. If all transit
times are rounded up to the nearest multiple of Δ, we may send Δ units of flow
simultaneously on each path from s to t, and each path will use arc (v, t) in a distinct
interval of time. If we try to interpret this flow in the network with original transit
times, however, each path-flow will try to use arc (v, t) in the same time interval,
causing a large bottleneck.

1616 LISA FLEISCHER AND MARTIN SKUTELLA

�Δ/4� �Δ/4�

�Δ
/4� �Δ

/4
�

�Δ/3�

�Δ/2��Δ/2�

Δ

0v
ts

�Δ/3�
�Δ/3�

Fig. 8. In this partially drawn unit capacity network, there are Δ paths from s to v. The ith

path contains i arcs, each with transit time roughly Δ/i.

Condition II can be enforced by allowing storage of flow at nodes: If arc e = (v, w)
has length increased by Δ′ ≤ Δ, then this can be emulated in the original network
by holding flow arriving at w for Δ′ time units.7 More generally, we can state the
following observation.

Observation 4.3. Consider a network N = (V,A) and two transit time vec-
tors τ, τ ′ ∈ R

A
+ with τe ≤ τ ′e for all e ∈ A. Then, a flow over time in N with transit

times τ ′ can be emulated in N with transit times τ by introducing waiting time τ ′e−τe
at the head of every arc e.

For the case of acyclic graphs, we give a simple argument in section 4.3 to show
how to uphold condition I when storage is allowed. In section 4.5 we describe a more
sophisticated approach that works for general graphs even when storage of flow at
nodes is not allowed.

4.3. Acyclic graphs with storage. For acyclic graphs, the existence of a topo-
logical ordering of the nodes makes the problems illustrated above fairly easy to re-
solve. The algorithm is simple: For an appropriate guess of T , choose Δ := ε

nT , and
round transit times up to the nearest multiple of Δ. Form the Δ-condensed time-
expanded network, and compute a solution f in this network. Output the solution f ′

obtained by modifying f by emulating the rounded transit times as described above.
It remains to show condition I: There exists a feasible flow of cost at most C (the

given cost budget) satisfying the given (multicommodity) demands D by time T ∗(1+ε)
in the network with transit times rounded up to the nearest multiple of Δ. Let f∗

be a flow over time of cost at most C that satisfies demands D by time T ∗. More-
over, let {v0, v1, . . . , vn−1} be a topological ordering of V . Modify f∗ to obtain f̂

by setting f̂e(θ) = f∗
e (θ − iΔ) for e = (vi, vj) and for all θ ∈ [0,∞). With these

modifications, flow traveling on any path that includes vi is delayed from its origi-
nal departure from i by exactly iΔ time units. Thus, flow arriving at node vj in f̂

arrives at most jΔ time units later than its arrival in f∗, and the time horizon of f̂
is T ∗+Δ(n−1) ≤ T ∗(1+ε). Since f∗ is feasible, so is f̂ . Since flow travels on the same

paths in f∗ and f̂ , we have c(f∗) = c(f̂), and f̂ satisfies the same multicommodity
demands as f∗.

Notice that f̂ induces a flow in the network with the transit time of an arc (vi, vj)

equal to τij + Δ(j − i) ≥ τij + Δ. An alternate and equivalent view is that f̂ induces
a flow with storage in the network with transit time of (vi, vj) rounded up to τij +δij ,

7If Δ′ is large, then this requires a large amount of additional storage.

QUICKEST FLOWS OVER TIME 1617

the nearest multiple of Δ. In this view, flow sent on (vi, vj) is then held at vj for an
additional Δ(j− i)− δij ≥ 0 units of time. This latter flow is a flow in the Δ-rounded
network, implying the following theorem.

Theorem 4.4. In acyclic graphs with node storage, a (1+ε)-approximate solution
to the quickest cost-bounded multicommodity flow problem can be obtained with a static
flow computation in a network with O(n2/ε) nodes and O(nm/ε) arcs.

4.4. Minimum cost flows without storage. It follows from the work of
Hoppe and Tardos [24, 22] that for the quickest transshipment problem there al-
ways exists an optimal solution which does not store flow at intermediate nodes. We
generalize this result to the problem with costs and also to the more general case
when the flow cost on an arc is a nondecreasing, convex function of the flow rate
into the arc. As mentioned in section 4.1, when transit times are integers, the min-
cost transshipment over time problem with or without storage at intermediate nodes
can be solved by solving the corresponding static flow problem in the time-expanded
network8 N T .

Theorem 4.5. For nondecreasing, convex cost functions, the cost of a minimum
cost transshipment over time that does not use intermediate node storage is no more
than the cost of a minimum cost transshipment over time using intermediate node
storage.

The details of this proof are not essential for understanding the remainder of the
paper.

Proof. Consider a minimum cost transshipment over time with intermediate node
storage and a corresponding static min-cost flow x in the time-expanded network N T .
Notice that the set X of all min-cost solutions x is the intersection of the polytope
formed by all feasible solutions with a closed convex set given by the convex cost
constraint. In particular, X is convex and compact.

For a node z ∈ V , let x(δ(zθ)) be the net amount of flow leaving z in the time
interval [θ, θ + 1):

x(δ(zθ)) :=
∑

e∈δ+(z)

xeθ −
∑

e∈δ−(z)

xeθ−τe
.

Since X is compact, there exists an x ∈ X minimizing the convex function F (x) :=∑
z∈V

∑T−1
θ=0 |x(δ(zθ))|. We show that x does not send flow along holdover arcs of

nodes in V \ S.
By contradiction, let vϕ be the earliest copy of node v /∈ S to send flow along a

holdover arc. We have that x(δ(vϕ)) = −xvϕ,vϕ+1
< 0. Let [ϕ+ q, ϕ+ q+1) for q > 0

and integral be the first time interval after [ϕ,ϕ+1) in which v has more flow leaving
it than entering it; i.e., x(δ(vϕ+q)) > 0. We show in the following that F (x) can be
decreased by augmenting flow along a cycle in the time-expanded network N T . This
is a contradiction to the choice of x.

Consider a time-expanded network that is infinite in both directions, N (−∞,+∞).
Note that N (−∞,+∞) looks the same at vϕ as it does at vϕ+q. However, x in this
network looks different at each of these copies of v. We indicate this difference by

8Notice that the averaging argument used in the proof of Lemma 4.1 to turn an arbitrary flow
over time into a static flow in the time-expanded network also works for the case of convex costs
since averaging never increases cost.

1618 LISA FLEISCHER AND MARTIN SKUTELLA

coloring the arcs of N (−∞,+∞) as follows. Color transit arc (iθ−τij , jθ)

red if x(iθ−τij
,jθ) < x(iθ−τij−q,jθ−q)

blue if x(iθ−τij
,jθ) > x(iθ−τij−q,jθ−q)

no color if x(iθ−τij
,jθ) = x(iθ−τij−q,jθ−q).

All holdover arcs remain colorless. Note that there are no blue arcs leaving Vθ for θ ≥
T − 1 and there are no red arcs entering Vθ for θ ≤ q.

Let P be a simple path consisting of backward red arcs and forward blue arcs
from vϕ+q to a node wμ with the property that x(δ(wμ)) < x(δ(wμ−q)). We claim
that such a P exists: Since x(δ(vϕ+q)) − x(δ(vϕ)) > 0, node vϕ+q has either a red
arc entering it or a blue arc leaving it. Consider the set of all nodes which can be
reached from vϕ+q on a path consisting of backward red arcs and forward blue arcs.
Since x(δ(vϕ+q)) − x(δ(vϕ)) > 0, it follows from flow conservation that there must
exist a node wμ with x(δ(wμ)) − x(δ(wμ−q)) < 0 in this set.

Note that V (P) ⊂
⋃T−1

θ=q Vθ. We define the capacity u(P) of P to be

u(P) := min
(iθ,jθ+τij

)∈P
|x(iθ,jθ+τij

) − x(iθ−q,jθ−q+τij
)|.

We modify x to reduce |x(δ(vϕ))| and |x(δ(vϕ+q))|. Let

κ := min
{
u(P), − x(δ(vϕ)), x(δ(vϕ+q)), x(δ(wμ−q)) − x(δ(wμ))

}
> 0.

If an arc (iθ, jθ+τij) ∈ P is red, then we modify x on (iθ, jθ+τij) and (iθ−q, jθ−q+τij)
to

x(iθ,jθ+τij
) := x(iθ,jθ+τij

) + κ and x(iθ−q,jθ−q+τij
) := x(iθ−q,jθ−q+τij

) − κ.

If (iθ, jθ+τij) ∈ P is blue, then

x(iθ,jθ+τij
) := x(iθ,jθ+τij

) − κ and x(iθ−q,jθ−q+τij
) := x(iθ−q,jθ−q+τij

) + κ.

Finally, we remove κ units of flow from the path of holdover arcs from vϕ to vϕ+q and
add κ to the path of holdover arcs from wμ−q to wμ. Notice that we have augmented

flow on a cycle in N T by κ. Since the domain of P is restricted to V (P) ⊂
⋃T−1

θ=q Vθ,
the flow x is still a feasible solution to our problem.

We next argue that the cost of x is not increased so that x is still in X. Since
the flow augmentation transfers an equal amount of flow from one copy of an arc to
a parallel copy, if flow costs are linear, this does not change the cost of our solution.
Since the sum of flow on these two arcs does not change and we simply move flow so
that the flow on each is closer to the average flow on each, if our flow costs are convex
and nondecreasing, then the cost of our solution does not increase.

Finally, the augmentation by κ ensures that |x(δ(vϕ))| and |x(δ(vϕ+q))| are each
reduced by κ and |x(δ(wμ))|+ |x(δ(wμ−q))| is not increased. (Either |x(δ(wμ−q))| > κ
and |x(δ(wμ))| < −κ or, since κ ≤ x(δ(wμ−q)) − x(δ(wμ)), the quantities |x(δ(wμ))|
and |x(δ(wμ−q))| exchange values.) Thus, F (x) =

∑
z∈V

∑T−1
θ=0 |x(δ(zθ))| is decreased

by at least 2κ > 0. This concludes the proof.

QUICKEST FLOWS OVER TIME 1619

Theorem 4.5 implies that we can find a minimum cost flow over time in the time-
expanded network without holdover arcs for intermediate nodes. We can even state
the following stronger result.

Corollary 4.6. For every instance of the minimum cost transshipment over
time problem, when costs are nondecreasing convex functions of the flow rate, there
exists an optimal solution without intermediate node storage such that any infinitesi-
mal unit of flow visits every node at most once.

Proof. We first consider the case that there is no cycle of zero cost in N . If some
path-flow in an optimal flow visits a node v more than once, it travels along a cycle
in N . Therefore the cost of the solution can be decreased by letting the flow wait
at v. This is a contradiction to the optimality of the solution.

If there exists zero cost cycles in N , we can increase the cost of every arc by a
small amount such that an optimal solution to the modified problem always yields an
optimal solution to the original problem. This eliminates cycles of zero cost and thus
concludes the proof.

4.5. General graphs without storage. Here we describe how to adapt the
outline given in section 4.2 to yield an FPTAS for the quickest transshipment prob-
lem with bounded cost in general graphs. The computed solution does not use any
intermediate node storage.

The approach has two main steps. First, we choose Δ small enough so that
we can increase the time horizon by a sufficiently large amount relative to Δ to
satisfy condition I. Second, we average the flow computed in the rounded network over
sufficiently large intervals relative to Δ so that the resulting flow is almost feasible,
satisfying condition II. This second step also increases the total time horizon of the
flow, but again, by careful choice of Δ, by a sufficiently small amount.

The core of the FPTAS consists of an algorithm which gets as input an instance of
the quickest transshipment problem with bounded cost together with a tentative time
horizon T and precision ε > 0. The algorithm either finds a feasible solution (i.e., flow
over time) with makespan at most (1 + O(ε))T or decides that T is smaller than the
optimal makespan. Throughout this section we denote the optimal makespan by T ∗.
A detailed description of the algorithm is given in Figure 9.

Before we discuss and analyze this algorithm in more detail, we first remark the
following. A (1 + O(ε))-approximate flow over time can be computed by embed-
ding Algorithm FPTAS-Core into a binary search framework. We can begin with a
standard binary search to find lower and upper bounds on the optimal makespan T ∗

Algorithm FPTAS-Core

Input: Network N , capacities u, linear costs c, transit times τ , demand vector D,
cost bound C, time horizon T , and precision ε > 0.

Output: Feasible flow over time f with time horizon (1 + O(ε))T satisfying
demands D at cost at most C; or the information that T < T ∗.

1. set Δ := ε2 T/n and T ′ := �(1 + ε)3T/Δ	Δ;
2. compute static flow x in N T ′

/Δ satisfying demands (1 + ε)D at cost at
most (1 + ε)C; if no such flow exists, then stop and output “T < T ∗”;

3. transform x into a flow over time f in N with time horizon (1 + ε)T ′

satisfying demands D at cost at most C.

Fig. 9. The core component of an FPTAS.

1620 LISA FLEISCHER AND MARTIN SKUTELLA

that are within a constant multiple of each other. This requires log T ∗ calls of Al-
gorithm FPTAS-Core.9 Based on these upper and lower bounds, an estimate T
with T ∗ ≤ T ≤ (1 + O(ε))T ∗ can be obtained by a geometric mean binary search10

with O(log(1/ε)) calls of Algorithm FPTAS-Core. In particular, the last call of
Algorithm FPTAS-Core then returns a solution to the quickest flow problem with
time horizon at most (1 + ε)T ′. By definition of T ′ and Δ, this makspan is bounded
from above by (1 + ε)4T + (1 + ε) Δ and thus in (1 + O(ε))T ∗. The correctness of
Algorithm FPTAS-Core follows from the next proposition.

Proposition 4.7. Let T ≥ T ∗, Δ := ε2T/n, and T ′ := �(1 + ε)3T/Δ	Δ.
(a) There exists a static flow x in the Δ-condensed time-expanded network N T ′

/Δ
satisfying demands (1 + ε)D at cost at most (1 + ε)C.

(b) Given a flow x as in (a), one can compute a flow over time f in N with time
horizon at most (1 + ε)T ′ satisfying demands D at cost at most C.

We start by proving the following lemma.
Lemma 4.8. For any δ ≥ 1 and any T ≥ T ∗, there exists a flow over time f̃ with

time horizon δT satisfying supplies and demands δD at cost at most δC.
Proof. Consider an optimal solution f∗ to the quickest flow problem. That is, f∗ is

a flow over time with time horizon T ∗ ≤ T satisfying supplies and demands D at cost
at most C. By rescaling time, we can assume without loss of generality that T and all
transit times are integral. Let x∗ be the static flow in the T -time-expanded network
which corresponds to f∗. Consider a modified instance where all transit times of arcs
are increased by a factor of δ. Then, the δ-condensed time-expanded network of the
modified instance with time horizon δT is identical to the time-expanded network N T

but with arc capacities multiplied by δ. In particular, δx∗ defines a feasible flow over
time with time horizon δT and cost δc(f∗) ≤ δC satisfying demands and supplies δD
for the modified instance. Since transit times in the original instance are smaller, it
can be seen as a relaxation of the modified instance. This yields the existence of f̃
and concludes the proof.

In the following we denote the rounded transit time function by τ ′; i.e., τ ′e :=
�τe/Δ	Δ and 0 ≤ τ ′e − τe < Δ for all e ∈ A.

Proof of Proposition 4.7(a). In order to prove the existence of a static flow x
in N T ′

/Δ with the claimed properties, Lemma 4.1 implies that it suffices to show the
following: In the network N with transit times τ ′ there exists a flow over time f̄ with
time horizon T ′ satisfying demands (1 + ε)D at cost at most (1 + ε)C.

By Corollary 4.6 there exists a flow over time f̃ as in Lemma 4.8 with δ =
(1 + ε)2 that in addition sends flow only on simple paths and that never stores flow
at intermediate nodes. This means that f̃ can be written as a sum of path-flows over
time f̃P , P ∈ P: Consider an arbitrary arc e = (v, w) ∈ A. The total flow into arc e
at time θ is

f̃e(θ) =
∑

P∈P : e∈P

f̃P
(
θ − τ(P, e)

)
,(8)

where τ(P, e) denotes the length of the subpath of P which is obtained by removing
arc e and all its successors.

9Alternatively, the constant factor approximation algorithm for the quickest transshipment prob-
lem with bounded cost presented in section 3 yields a lower bound L and an upper bound U on T ∗

with U ∈ O(L).
10For details on this variant of binary search we refer to [21].

QUICKEST FLOWS OVER TIME 1621

ε Tε T 0
θ

f̃P (θ)

0
θ

f̂P (θ)

Fig. 10. The “smoothed” path flow over time f̂P in comparison to the original flow over time f ′
P

sent into path P .

From f̃ we obtain a “smoothed” flow over time (f̂P)P∈P which has a time horizon
of (1 + ε)2T + ε T by defining

f̂P (θ) :=
1

ε T

∫ θ

θ−ε T

f̃P (ξ) dξ(9)

for θ ∈ [0, (1 + ε)2T + ε T) and P ∈ P. An illustrative example is given in Figure 10.

It is easy to check that f̂ obeys capacity constraints and the total amount of flow sent
on a path P ∈ P is the same in f̃ and f̂ . In particular, c(f̂) = c(f̃) ≤ (1 + ε)2C,

and f̂ satisfies demands (1 + ε)2D.

Notice that (f̂P)P∈P still describes a (not necessarily feasible) flow over time
in (N , τ ′). Since every path P ∈ P is simple, it contains at most n − 1 arcs; there-
fore, 0 ≤ τ ′(P) − τ(P) ≤ ε2T , and

0 ≤ τ ′(P, e) − τ(P, e) ≤ ε2T(10)

for all e ∈ P . Thus, if we interpret f̂ as a flow over time in (N , τ ′), we get, for
all e ∈ A and θ ∈ [0, (1 + ε)2T + ε T + ε2 T),

f̂e(θ)
(8)
=

∑
P∈P : e∈P

f̂P (θ − τ ′(P, e))

(9)
=

1

ε T

∑
P∈P : e∈P

∫ θ−τ ′(P,e)

θ−τ ′(P,e)−ε T

f̃P (ξ) dξ

(10)

≤ 1

ε T

∑
P∈P : e∈P

∫ θ−τ(P,e)

θ−τ(P,e)−ε2 T−ε T

f̃P (ξ) dξ(11)

=
1

ε T

∫ θ

θ−ε2 T−ε T

∑
P∈P : e∈P

f̃P
(
ξ − τ(P, e)

)
dξ

(8)
=

1

ε T

∫ θ

θ−ε2 T−ε T

f̃e(ξ) dξ

≤ ε2 T + ε T

ε T
ue = (1 + ε)ue.

(Above, a number over a relation indicates that the corresponding equation is used
to obtain the right-hand side. In (11), we use (10) and the fact that f̃P (ξ) ≥ 0

for all ξ.) Thus, by dividing f̂ by 1 + ε, we establish the existence of a feasible

flow over time—namely f̄ := f̂/(1 + ε)—in (N , τ ′). The time horizon of f̄ is at

1622 LISA FLEISCHER AND MARTIN SKUTELLA

most (1 + ε)2T + ε T + ε2 T ≤ (1 + ε)3T ≤ T ′, its cost is c(f̂)/(1 + ε) ≤ (1 + ε)C, and
it satisfies demands (1 + ε)D.

We now turn to the second part of Proposition 4.7. The static flow x in N T ′
/Δ

naturally induces a flow over time f ′ in (N , τ ′) with time horizon T ′. If we choose to
allow storage of flow at intermediate nodes, we may simplify the algorithm by finding
a flow x satisfying demands D at cost C in step 2. Then the corresponding flow over
time can be simulated in the network with transit times τ by holding flow at nodes.

If, however, storage of flow at intermediate nodes is not allowed, deriving the final
flow over time f in (N , τ) from the static flow x computed in step 2 is a nontrivial task.
The static flow x corresponds to a flow over time f ′ in (N , τ ′) with time horizon T ′

that satisfies demands (1+ε)D at cost at most (1+ε)C. Since x lives in a (condensed)
time-expanded network without holdover arcs at intermediate nodes, f ′ never stores
flow at intermediate nodes in (N , τ ′). Moreover, using the same argument as in
Corollary 4.6, we can assume that x is such that f ′ sends flow only on simple paths in
the underlying network N . This means that f ′ can be written as a sum of path-flows
over time f ′

P , P ∈ P.
In the following lemma we show that a path-decomposition of the static flow x

can be turned into a path-decomposition of the flow over time f ′ which features a
simple structure. Notice that the number of arcs of the condensed time-expanded
network N T ′

/Δ is in O(mn/ε2).
Lemma 4.9. A path-decomposition of x into flows on r paths in N T ′

/Δ can be
turned into a path-decomposition (f ′

P)P∈P of f ′ on r paths such that the time inter-
val [0, T ′) can be partitioned into T ′/Δ ∈ O(n/ε2) subintervals where f ′

P is constant
for all P ∈ P.

Proof. Any path P used in a path-decomposition of x connects a source to a
sink in N T ′

/Δ. Each path P consists of a sequence of holdover arcs at the source,
followed by a path of copies of arcs in N , followed by a sequence of holdover arcs at
the sink. The static path-flow in N T ′

/Δ of value xP along P thus induces a path-flow
over time f ′

P ′ : [0, T ′) → R
+ along path P ′ in N such that the flow function f ′

P ′ is
0 except for an interval of length Δ where it is equal to xP /Δ. Since there can be
several paths in N T ′

/Δ that correspond to the same path P ′ in N , the flow function
on path P ′ in the final decomposition of f ′ is a piecewise constant function where the
number of intervals with constant flow value is bounded by the number of time layers
of N T ′

/Δ which is equal to T ′/Δ.
We are now ready to prove the second part of Proposition 4.7.
Proof of Proposition 4.7(b). Given x, we first derive the corresponding flow over

time f ′ in (N , τ ′) with a path-decomposition (f ′
P)P∈P as in Lemma 4.9. Similar to

the proof of Proposition 4.7(a), we consider a “smoothed” flow over time f̌ in (N , τ ′)
defined by

f̌P (θ) :=
1

ε T ′

∫ θ

θ−ε T ′
f ′
P (ξ) dξ(12)

for θ ∈ [0, (1 + ε)T ′) and P ∈ P. The flow over time (f̌P)P∈P can be interpreted
as a (not necessarily feasible) flow over time in (N , τ) with time horizon (1 + ε)T ′

satisfying demands (1+ ε)D at cost at most (1+ ε)C. Moreover, by using essentially

the same arguments as for f̂ in the proof of Proposition 4.7(a), we get, for all e ∈ A

QUICKEST FLOWS OVER TIME 1623

and θ ∈ [0, (1 + ε)T ′),

f̌e(θ) =
∑

P∈P : e∈P

f̌P (θ − τ(P, e))

(12)
=

1

ε T ′

∑
P∈P : e∈P

∫ θ−τ(P,e)

θ−τ(P,e)−ε T ′
f ′
P (ξ) dξ

(10)

≤ 1

ε T ′

∑
P∈P : e∈P

∫ θ−τ ′(P,e)+ε2T ′

θ−τ ′(P,e)−ε T ′
f ′
P (ξ) dξ(13)

=
1

ε T ′

∫ θ+ε2T ′

θ−ε T ′

∑
P∈P : e∈P

f ′
P

(
ξ − τ ′(P, e)

)
dξ

=
1

ε T ′

∫ θ+ε2T ′

θ−ε T ′
f ′
e(ξ) dξ

≤ ε2 T ′ + ε T ′

ε T ′ ue = (1 + ε)ue.

(Above, a number over a relation indicates that the corresponding equation is used
to obtain the right-hand side.) Thus, by dividing f̌ by 1 + ε, we get the desired flow
over time f in (N , τ) with time horizon (1 + ε)T ′ satisfying demands D at cost at
most C.

It remains to discuss the issue of how to actually compute f in step 3 of Algo-
rithm FPTAS-Core. According to Lemma 4.9, a path-decomposition of x yields a
path-decomposition of the corresponding flow over time f ′ such that f ′

P is piecewise
constant for all P ∈ P and has at most O(n/ε2) breakpoints. Since by definition

fP (θ) =
1

1 + ε

1

ε T ′

∫ θ

θ−ε T ′
f ′
P (ξ) dξ,

by Lemma 4.9, the functions fP , P ∈ P, are piecewise linear (see Figure 10) and can
be efficiently computed. This concludes the proof.

It remains to discuss the running time of Algorithm FPTAS-Core. The con-
densed time-expanded network N T ′

/Δ (without holdover arcs) contains O(n2/ε2)
nodes and O(mn/ε2) arcs. Thus the static flow x′ in step 2 can be computed in
polynomial time. Since step 3 of Algorithm FPTAS-Core also takes polynomial
time (see the proof of Proposition 4.7(b)), the overall running time of the algorithm
is polynomial in the input size.

Theorem 4.10. For an arbitrary ε > 0, a (1 + ε)-approximate solution to the
quickest transshipment problem with bounded cost can be obtained from O(log(1/ε))
static min-cost flow computations in a condensed time-expanded network containing
O(n2/ε2) nodes and O(mn/ε2) arcs (without holdover arcs). In particular, this solu-
tion does not use intermediate node storage.

For the case of the quickest transshipment problem without costs, the min-cost
flow computations in the condensed time-expanded network can be replaced by max-
flow computations.

4.6. Quickest multicommodity flows. The result of Theorem 4.10 can be
generalized to the quickest multicommodity flow problem with bounded cost. Figure 2
shows that the optimal solution to the quickest multicommodity flow problem may
require the use of storage of flow at intermediate nodes. On the other hand, if storing

1624 LISA FLEISCHER AND MARTIN SKUTELLA

at intermediate nodes is not allowed, then the optimal solution may contain nonsimple
flow paths. The analysis in (11) and (13) relies on the fact that one can restrict to
simple flow paths, since it uses (10). Indeed, it is shown in [19] that, unless P=NP,
there is no FPTAS for the quickest multicommodity flow problem when intermediate
node storage is prohibited and flow may only be sent on simple paths. If, however,
intermediate node storage is allowed, then there exists an optimal solution that uses
only simple flow paths: Instead of flow traveling around a cycle, it can simply wait at
the start node of the cycle. In this case, the approach described in section 4.5 can be
modified as follows.

A flow over time f which stores flow at intermediate nodes can no longer be
decomposed into path-flows over time as described in (8). In order to handle the
setting with storage of flow at intermediate nodes in a path-based model, we introduce
the following notation: A path with delays P δ is given by a path P in N consisting
of nodes (v0, v1, . . . , vp) and a vector of nonnegative delays δ = (δ1, . . . , δp). The
value δi, i = 1, . . . , p, specifies the amount of time that flow is stored at node vi before
it continues its journey towards node vi+1 in a flow over time on P δ. Thus, flow
entering P δ at time θ enters arc e = (v
, v
+1), � = 0, . . . , p− 1, at time θ + τ(P δ, e)

with τ(P δ, e) :=
∑

j=1(τ(vj−1,vj) + δj).
Since in a given flow over time f with time horizon T every infinitesimal unit

of flow describes a path with delays in N , the flow over time f can be decomposed
into (possibly infinitely many) flows over time fP δ on paths with delays P δ. In this
setting, (8) is replaced by

fe(θ) =
∑

P δ : e∈P

fP δ

(
θ − τ(P δ, e)

)
(14)

for all e ∈ A. If f is given by a corresponding static flow x in a (condensed) time-
expanded network with holdover arcs, then there exists a decomposition of f into
flows over time on paths with delays in N whose number is bounded by the num-
ber of arcs in the (condensed) time-expanded network: Consider an arbitrary path-
decomposition of x, and notice that any path in the (condensed) time-expanded net-
work with holdover arcs yields a path with delays in N .

Summarizing, a straightforward modification of the analysis in section 4.5 (i.e.,
replacing (8) by (14)) yields the following result.

Theorem 4.11. Consider an instance of the quickest multicommodity trans-
shipment problem with bounded cost and intermediate node storage. For any ε > 0,
a (1+ε)-approximate solution can be found by O(log(1/ε)) static multicommodity flow
computations with bounded cost in a condensed time-expanded network with O(n2/ε2)
nodes and O(mn/ε2) arcs (including holdover arcs).

5. Earliest arrival flows. In this section, we address the multiple source, earli-
est arrival flow problem: Given a set of sources S with supplies Dv > 0 for v ∈ S and
a single sink t, send the supplies to the sink so that the amount of supplies arriving
at the sink by time θ is the maximum possible for all θ ≥ 0. We show how the result
from section 4 can be generalized to this problem.

We use the following notion of approximation for the problem of computing an ear-
liest arrival flow. A flow over time is an α-approximate solution to this problem if, for
all d′ ≤ d :=

∑
v∈S Dv, the earliest point in time when d′ units have arrived at the sink

is within a factor of α of the earliest possible time. An algorithm which computes such
a flow over time in polynomial time is called an α-approximation algorithm. In order
to stress the property that the performance guarantee α is achieved for all d′ ≤ d, we

QUICKEST FLOWS OVER TIME 1625

say that such an algorithm has universal performance guarantee α. For the earliest
arrival problem, we find a solution with universal performance guarantee (1 + ε).

In section 5.2 we show that a unit-interval discretization may not be sufficiently
fine to achieve this guarantee, and we describe how to determine a good initial dis-
cretization. This discretization may be too large, and it will be necessary to condense
it. However, a uniformly crude discretization will not work, so in section 5.3, we in-
troduce a general framework for nonuniform condensed time-expanded networks and
prove some useful properties. Finally, in section 5.4 we derive a polynomial-time
algorithm that yields a univeral performance guarantee for the earliest arrival flow
problem by using a nonuniform, condensed time-expanded network with intervals of
geometrically increasing size.

5.1. Previous work. In the discrete time model, a universally maximal s-t-flow
over time can be computed in the time-expanded network by using lexicographically
maximal flows introduced by Minieka [28]. A lexicographically maximal flow is defined
in a static network with multiple sources and/or sinks. There is a strict ordering on
the sources and sinks, e.g., {ν1, ν2, . . . , νk}, where νi is used here to denote either
a source or a sink. A lexicographically maximal flow is a flow that simultaneously
maximizes the flow leaving each ordered subset of sources and sinks {ν1, ν2, . . . , νi},
i = 1, . . . , k. In the discrete time model, a universally maximal s-t-flow over time with
time horizon T is a lexicographically maximal flow in the time-expanded graph with
ordering of sources and sinks as

sT−1, sT−2, . . . , s1, s0, tT−1, tT−2, . . . , t1, t0.

However, due to the exponential size of the time-expanded network, this insight does
not lead to an efficient algorithm for the problem. As mentioned above, the algorithms
of Wilkinson [35] and Minieka [28] are based on the successive shortest path algorithm.
These also are not efficient algorithms for computing universally maximal dynamic
flows since the successive shortest path algorithm requires an exponential number of
iterations in the worst case; see, e.g., Zadeh [36].

While the results of Wilkinson and Minieka were originally derived for the discrete
time model, they also hold for the continuous time model. In this setting, the existence
of universally maximal dynamic flows was first observed by Philpott [32]. Fleischer
and Tardos [11] show how the algorithms for the discrete time model mentioned above
can be carried over to the continuous time setting.

In the continuous time model, an equivalent problem is the universally quickest
flow problem which asks for a flow over time of value d such that the earliest point in
time when d′ units have arrived at the sink is simultaneously minimized for all d′ ≤ d
and the earliest point in time when d′ units have left the source is simultaneously
maximized for all d′ ≤ d.

Hoppe and Tardos [23] compute a single-source single-sink universally maximal
dynamic flow where the amount of flow is approximately optimal at any moment of
time. Our Lemma 4.8 implies that this algorithm also achieves a universal guarantee.

An earliest arrival flow also exists for the case of multiple sources and a single
sink [34]. In the discrete time model, such a flow over time can again be found by a
lexicographically maximal flow computation in the time-expanded network. On the
other hand, Fleischer [9] presents an instance with two sources and two sinks for which
an earliest arrival flow does not exist.

Nonuniform time-expanded networks have been used previously to obtain ex-
act algorithms for the quickest transshipment problem in the setting of zero transit

1626 LISA FLEISCHER AND MARTIN SKUTELLA

times [9]. Partitioning time into intervals of geometrically increasing size has been
used previously in conjunction with dynamic programming to derive approximation
algorithms for problems in the area of machine scheduling [20, 4, 5, 1].

5.2. A sufficiently fine discretization of time. Unfortunately, a lexicograph-
ically maximal flow in a time-expanded network does not necessarily yield a universal
performance guarantee for the quickest flow problem in the continuous time model.
Although we can interpret a static flow in a time-expanded network as a continuous
flow over time (see proof of Lemma 4.1), in doing so, all the solutions we get are
such that the rate of flow arriving at the sink is constant (i.e., averaged) within each
discrete time interval. While this effect is negligible for late intervals in time, as the
following example shows, it could be significant in the first time intervals.

Example 1. The network is a single arc from source s to sink t with capacity
2 and transit time 0. There is a unit of supply at s and a unit of demand at t. A
universally quickest flow sends flow from s to t at rate 2 during the interval [0, 1

2) so
that flow arrives at t at rate 2 in the interval [0, 1

2). Averaging the flow over unit
intervals yields a flow that arrives at t at rate 1 in the interval [0, 1). Thus this flow
has universal performance guarantee of at most 2.

The problem illustrated by this example can be resolved as follows. For an arbi-
trary ε > 0 with 1/ε integral, we discretize time into intervals of size ε. Then, averag-
ing flow within each such interval delays flow that arrives at the sink after time 1 by
at most a factor of 1 + ε. It thus remains to take care of what happens until time 1.

Notice that flow arriving at the sink before time 1 can use only arcs with transit
time 0. In particular, an earliest arrival flow until time 1 can be computed by re-
stricting attention to the subnetwork consisting of these arcs. Hajek and Ogier [18]
describe an algorithm that finds an earliest arrival flow in a network with a single
sink and zero transit times using O(n) maximum flow computations. Fleischer [9]
gives an improved algorithm that solves the problem in the same asymptotic time as
one maximum flow computation. Moreover, the analysis of this algorithm shows that
the function describing the optimal rate of inflow into the sink is piecewise constant
and has at most k breakpoints θ1, . . . , θk, where k is the number of sources. These
breakpoints are independent of the discretization after time 1 and can be computed
without this information in polynomial time. They can then be used to determine
the appropriate discretization in [0, 1). Thus, a sufficiently fine discretization of time
guarantees that an earliest arrival flow until time 1 can be computed in the corre-
sponding time-expanded network. In the example given above, a discretization of time
into intervals of size 1/2 is sufficient. Together with the observation stated above, this
yields the following result.

Lemma 5.1. Consider an instance of the earliest arrival problem with multiple
sources with supply vector D and a single sink, and let θ1, . . . , θk be defined as above.
Then, a (1 + ε)-approximate earliest arrival flow can be obtained from a lexicograph-
ically maximal flow computation in the time-expanded network N T /Δ, where Δ is
chosen such that θ1, . . . , θk and ε are multiples of Δ.

By discussion in [9] (specifically, Theorem 3.6 and Theorem 4.1), we can bound Δ
from below by (m

∑
e∈A ue)

−k. Thus, the size of the resulting time-expanded net-
work N T /Δ is pseudopolynomial in the input size of the problem. Since time can
be rescaled by a factor of 1/Δ, we can and will assume without loss of generality
that Δ = 1 and thus N T /Δ = N T . In the next subsection we show how N T can be
turned into a network of polynomial size while only losing another factor of 1 + ε in
the performance guarantee of the resulting polynomial-time algorithm.

QUICKEST FLOWS OVER TIME 1627

5.3. Nonuniform condensed time-expanded networks. As we mentioned
above, the size of the time-expanded network N T is only pseudopolynomial in the
input size. In contrast to the situation for the quickest flow problem discussed in
section 4, using a uniformly rough discretization can lead to a much worse performance
guarantee for the earliest arrival flow problem. Instead we will use a nonuniform
discretization. In this section we describe a general framework for nonuniform time-
expanded networks and establish, where possible, the appropriate generalizations of
properties of uniform time-expanded networks.

Overloading the notation introduced in section 4.1, for a sorted list L = 〈θ0, . . . , θr〉
with

0 = θ0 < θ1 < · · · < θr−1 < θr = T,

the L-time-expanded network of N = (V,A) denoted by NL is obtained by creating r
copies of V , labeled V0 through Vr−1, with the qth copy of node v denoted vq for q =
0, . . . , r − 1. For every arc e = (v, w) ∈ A and for every q ≥ 0 with θq + τe ≤ θr−1,
there is an arc eq from vq to wq′e with

q′e := min{q′′ | θq + τe ≤ θq′′}.(15)

When e is clear from context, we use q′ instead of q′e. The capacity of arc eq is set
to ue (θq+1 − θq). In addition, there is a holdover arc from vq to vq+1 with infinite
capacity for all v ∈ V and 0 ≤ q < r − 1. Notice that this definition generalizes
the definition of the T -time-expanded network N T ; in particular, N T = NL for L =
〈0, 1, . . . , T 〉.

Whenever we consider a static flow in NL, we implicitly assume that tr−1 is its
only sink; all flow arriving at tq for q < r − 1 is sent to this sink on holdover arcs.

Lemma 5.2. Let L = 〈0 = θ0, . . . , θr〉 with θq − θq−1 ≤ θq+1 − θq for all q = 1
to r− 1. Then any static flow in NL corresponds to a flow over time in N such that
the amount of flow reaching t in N by time θq+1, q = 0, . . . , r− 1, is the same as the
amount of flow reaching node tq in NL.

Proof. Let x be a static flow in NL. We interpret x as a “generalized” flow over
time f ′ where, in contrast to “standard” flows over time, transit times can now vary
over time. Interpret the flow xeq on arc eq = (vq, wq′) as flow f ′

e sent at the constant
rate xeq/(θq+1−θq) into arc e = (v, w) during the time interval [θq, θq+1) and arriving
at node w during the time interval [θq′ , θq′+1) at the constant rate xeq/(θq′+1−θq′). In
particular, in the time interval [θq, θq+1), the transit time on arc e varies between θq′−
θq (flow entering the arc at time θq) and θq′+1−θq+1 (flow entering the arc immediately
before time θq+1) in f ′. Thus, since the sizes of the time intervals [θq, θq+1), q =
0, . . . , r − 1, are nondecreasing and by choice of q′, the transit time on arc e in f ′ is
never smaller than τe.

By design, f ′ obeys flow rate capacity constraints and flow conservation. More-
over, for q = 0, . . . , r−1, the amount of flow reaching t in f ′ by time θq+1 is the same
as the amount of flow reaching node tq in x. Finally, since transit times in f ′ are
always lower bounded by the actual transit times τe of arcs e ∈ A (by (15)), it can
easily be interpreted as a regular flow over time f in N by introducing appropriate
waiting times for every infinitesimal flow unit at the head of each arc.

Lemma 5.3. Let L = 〈0 = θ0, . . . , θr〉 with θq − θq−1 ≤ θq+1 − θq for all q = 1
to r − 1. Let f be any flow over time that completes by time θr in the network N
modified so that all transit times are increased by Δ := θr − θr−1. Then, f induces a
feasible static flow in NL of the same value.

1628 LISA FLEISCHER AND MARTIN SKUTELLA

Proof. For all e ∈ A and 0 ≤ q ≤ r − 1, define xeq to be the total f -flow into e
in interval [θq, θq+1). Since f is feasible, it obeys the capacity constraints; then by
construction so does x. By design, the value of x equals the value of f .

To establish flow conservation, consider the path P = 〈w0, w1, . . . , wh = t〉 trav-
eled by an infinitesimal unit of flow in f . This infinitesimal unit of flow arrives at wi at
time ϕi and leaves wi at some time ξi ≥ ϕi. We argue that the corresponding unit of
flow in x arrives at wi

pi
for some pi satisfying θpi

≤ ϕi. Thus it is available to be sent

along P in NL on arc (wi
qi , w

i+1
q′i

), where qi is the maximum index � satisfying θ
 ≤ ξi.

This will show that x satisfies flow conservation.
Set q := qi−1. By design of x, the infinitesimal unit of flow leaves wi−1

q in NL

and thus arrives at wi
q′ , where q′ is defined according to (15). By definition of q′, we

have that

θq′ − θq = θq′−1 − θq + (θq′ − θq′−1)

< τ(wi−1,wi) + (θr − θr−1) = τ(wi−1,wi) + Δ.

This yields θq′ < θq + τ(wi−1,wi) + Δ ≤ ξi−1 + τ(wi−1,wi) + Δ = ϕi ≤ ξi. (The
second inequality follows by definition of q := qi−1 ≤ ξi−1 at the end of the previous
paragraph; the subsequent equality follows by definition of ϕi.) This implies that
θq′ ≤ θqi , and thus the flow obeys conservation constraints.

5.4. An approximation scheme. To obtain a (1 + ε)-universal guarantee for
the earliest arrival flow problem, we use a geometrically increasing time discretization.
Let p := �2n/ε2	, and define the list

L := 〈0, 1, 2, . . . , 2p,
2(p + 1), 2(p + 2), . . . , 4p,

4(p + 1), 4(p + 2), . . . , 8p,

. . .

2
−1(p + 1), 2
−1(p + 2), . . . , 2
p〉.

Here � ∈ N0 is chosen such that the resulting time-expanded network NL is large
enough to allow for a (1 + O(ε))-approximate time horizon. To be more precise,
we choose the smallest � such that 2T ∗ ≤ 2
p, where T ∗ is the time horizon of an
optimal flow over time. Notice that the length of the list L is in O(p log T ∗) and hence
polynomially bounded in the input size and 1/ε. It thus remains to be shown that
a lexicographically maximal flow in the corresponding geometrically condensed time-
expanded network NL yields a flow over time with universal performance guarantee 1+
O(ε).

Lemma 5.4. A lexicographically maximal flow in NL induces a flow over time
in N with universal performance guarantee 1 + O(ε).

Proof. Let T ≤ T ∗ be the minimal time required to send d′ ≤ d units of flow to
the sink. We consider the time-expanded network NL′

defined by the sublist L′ :=
〈θ0, . . . , θr′〉 of L with r′ := min{q | θq ≥ (1+ ε)2 T}. In other words, NL′

is obtained
from NL by removing all time layers Vq with q ≥ r′ and all incident arcs. We show

below that there is a flow in NL′
of value d′. Then, since in a lexicographically

maximum flow in NL at least d′ units of flow reach tr′−1, the corresponding flow over
time in N sends at least d′ to t by time θr′ by Lemma 5.2. Hence this flow yields a
universal performance guarantee of 1 + O(ε).

QUICKEST FLOWS OVER TIME 1629

Let Δ′ = θr′ − θr′−1. By choice of p and since we can assume that θr′ ≤ 2T , we
have that

Δ′ = θr′ − θr′−1 ≤ θr′/p ≤ ε2T/n.(16)

Since there is flow of value d′ in N by time T , Lemma 4.8 implies that there is flow
of value d′(1 + ε) in N by time T (1 + ε). Then, the same argument as in the proof
of Proposition 4.7(a) (together with (16)) implies that there is flow of value d′ that
completes by time (1+ ε)T + ε T + ε2 T = (1+ ε)2T in the network N with all transit
times increased by Δ′. By Lemma 5.3, this implies that there is flow of value d′

in NL′
.

We have now established the main result of this section.
Theorem 5.5. There exists an FPTAS for the problem of computing an earliest

arrival flow in a network with multiple sources and a single sink.

Acknowledgments. We thank Dan Stratila for his helpful comments on an
earlier version of this paper. We also thank the two anonymous referees for their
numerous valuable comments that helped to improve the presentation of the paper.

REFERENCES

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,

M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes
for minimizing average weighted completion time with release dates, in Proceedings of the
40th Annual IEEE Symposium on Foundations of Computer Science, New York City, NY,
1999, pp. 32–43.

[2] J. E. Aronson, A survey of dynamic network flows, Ann. Oper. Res., 20 (1989), pp. 1–66.
[3] R. E. Burkard, K. Dlaska, and B. Klinz, The quickest flow problem, ZOR Methods Models

Oper. Res., 37 (1993), pp. 31–58.
[4] S. Chakrabarti, C. Phillips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein, Improved

scheduling algorithms for minsum criteria, in Automata, Languages and Programming,
Lecture Notes in Comput. Sci. 1099, F. Meyer auf der Heide and B. Monien, eds., Springer,
Berlin, 1996, pp. 646–657.

[5] F. A. Chudak and D. B. Shmoys, Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds, J. Algorithms, 30
(1999), pp. 323–343.

[6] L. Fleischer and M. Skutella, The quickest multicommodity flow problem, in Integer Pro-
gramming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 2337, W. J.
Cook and A. S. Schulz, eds., Springer, Berlin, 2002, pp. 36–53.

[7] L. Fleischer and M. Skutella, Minimum cost flows over time without intermediate stor-
age, in Proceedings of the 14th Annual ACM–SIAM Symposium on Discrete Algorithms,
Baltimore, MD, 2003, pp. 66–75.

[8] L. K. Fleischer, Approximating fractional multicommodity flows independent of the number
of commodities, SIAM J. Discrete Math., 13 (2000), pp. 505–520.

[9] L. K. Fleischer, Faster algorithms for the quickest transshipment problem, SIAM J. Optim.,
12 (2001), pp. 18–35.

[10] L. K. Fleischer, Universally maximum flow with piece-wise constant capacity functions, Net-
works, 38 (2001), pp. 1–11.

[11] L. K. Fleischer and É. Tardos, Efficient continuous-time dynamic network flow algorithms,
Oper. Res. Lett., 23 (1998), pp. 71–80.

[12] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows from static flows,
Oper. Res., 6 (1958), pp. 419–433.

[13] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton,
NJ, 1962.

[14] D. Gale, Transient flows in networks, Michigan Math. J., 6 (1959), pp. 59–63.
[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, 1979.

1630 LISA FLEISCHER AND MARTIN SKUTELLA

[16] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and
other fractional packing problems, in Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, Palo Alto, CA, 1998, pp. 300–309.

[17] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Algorithms Combin., Springer, Berlin, 1988.

[18] B. Hajek and R. G. Ogier, Optimal dynamic routing in communication networks with con-
tinuous traffic, Networks, 14 (1984), pp. 457–487.

[19] A. Hall, S. Hippler, and M. Skutella, Multicommodity flows over time: Efficient algorithms
and complexity, Theoret. Comput. Sci., to appear.

[20] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms, Math. Oper. Res., 22
(1997), pp. 513–544.

[21] R. Hassin, Approximation schemes for the restricted shortest path problem, Math. Oper. Res.,
17 (1992), pp. 36–42.

[22] B. Hoppe, Efficient Dynamic Network Flow Algorithms, Ph.D. thesis, Cornell University,
Ithaca, NY, 1995.

[23] B. Hoppe and É. Tardos, Polynomial time algorithms for some evacuation problems, in
Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, Arlington,
VA, 1994, pp. 433–441.

[24] B. Hoppe and É. Tardos, The quickest transshipment problem, Math. Oper. Res., 25 (2000),
pp. 36–62.

[25] B. Klinz and G. J. Woeginger, Minimum-cost dynamic flows: The series-parallel case,
Networks, 43 (2004), pp. 153–162.

[26] D. H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest
path problem, Oper. Res. Lett., 28 (2001), pp. 213–219.

[27] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res.,
4 (1979), pp. 414–424.

[28] E. Minieka, Maximal, lexicographic, and dynamic network flows, Oper. Res., 21 (1973),
pp. 517–527.

[29] R. G. Ogier, Minimum-delay routing in continuous-time dynamic networks with piecewise-
constant capacities, Networks, 18 (1988), pp. 303–318.

[30] J. B. Orlin, Minimum convex cost dynamic network flows, Math. Oper. Res., 9 (1984), pp. 190–
207.

[31] C. A. Phillips, The network inhibition problem, in Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, San Diego, CA, 1993, pp. 776–785.

[32] A. B. Philpott, Continuous-time flows in networks, Math. Oper. Res., 15 (1990), pp. 640–661.
[33] W. B. Powell, P. Jaillet, and A. Odoni, Stochastic and dynamic networks and routing, in

Network Routing, Handbooks Oper. Res. Management Sci. 8, M. O. Ball, T. L. Magnanti,
C. L. Monma, and G. L. Nemhauser, eds., North–Holland, Amsterdam, 1995, Chap. 3,
pp. 141–295.

[34] D. Richardson and É. Tardos, private communication, 2002.
[35] W. L. Wilkinson, An algorithm for universal maximal dynamic flows in a network, Oper.

Res., 19 (1971), pp. 1602–1612.
[36] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow algo-

rithms, Math. Program., 5 (1973), pp. 255–266.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1631–1647

A CONSTANT-FACTOR APPROXIMATION ALGORITHM FOR
OPTIMAL 1.5D TERRAIN GUARDING∗

BOAZ BEN-MOSHE† , MATTHEW J. KATZ‡ , AND JOSEPH S. B. MITCHELL§

Abstract. We present the first constant-factor approximation algorithm for a nontrivial instance
of the optimal guarding (coverage) problem in polygons. In particular, we give an O(1)-approximation
algorithm for placing the fewest point guards on a 1.5D terrain, so that every point of the terrain
is seen by at least one guard. While polylogarithmic-factor approximations follow from set cover
results, our new results exploit the geometric structure of terrains to obtain a substantially improved
approximation algorithm.

Key words. geometric optimization, guarding, approximation algorithms

AMS subject classifications. 68W25, 68W40, 05C69

DOI. 10.1137/S0097539704446384

1. Introduction. For a geometric domain D, the optimal guarding (coverage)
problem is to determine the smallest number, k∗, of guards (e.g., points) that can
be placed in D so that each point of D is seen by at least one guard. The optimal
guarding problem is an instance of a set cover problem that is induced by a geometric
setting. The many related problems, both combinatorial and algorithmic, fall into the
general category known as art gallery problems, which have been studied extensively;
see, e.g., [12, 14, 16, 17].

We give the first constant-factor approximation algorithm for a nontrivial instance
of the optimal guarding problem. All prior approximation bounds were polylogarith-
mic in n and/or k∗.

The instance we study here is the 1.5D terrain guarding problem, in which the
input domain is the two-dimensional region above an x-monotone polygonal chain
having n vertices. We restrict guards to being placed at points on the terrain; with
no restriction on guard placement, a single guard (at a high enough altitude) suffices
to see the terrain.

Related work. The classical combinatorial result, the “art gallery theorem,” states
that �n/3� guards are sufficient, and sometimes necessary, to guard an n-vertex simple
polygon [14]. Combinatorial results on the number of guards needed for various forms
of guarding on terrains are given in [2].

The optimal guarding problem is known to be NP-hard, even if D is a sim-
ple polygon [15]. Thus, efforts have concentrated on the approximability of optimal

∗Received by the editors October 22, 2004; accepted for publication (in revised form) September 2,
2006; published electronically February 26, 2007. An extended abstract of this paper appeared in [1].
The second and third authors are partially supported by grant 2000160 from the U.S.-Israel Binational
Science Foundation. The first and second authors are partially supported by the MAGNET program
of the Israel Ministry of Industry and Trade (LSRT consortium). The third author also acknowledges
support from Honda Fundamental Research Lab, NASA Ames Research (NAG2-1620), the National
Science Foundation (CCR-0098172, ACI-0328930), and Metron Aviation.

http://www.siam.org/journals/sicomp/36-6/44638.html
†Department of Computer Science and Mathematics, College of Judea & Samaria, Ariel 44837,

Israel (benmo@yosh.ac.il).
‡Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel (matya@cs.

bgu.ac.il).
§Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY

11794-3600 (jsbm@ams.sunysb.edu).

1631

1632 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

guarding problems. Ghosh [10] gave an O(log n)-approximation for optimal coverage
of a polygon by vertex guards, based on standard set cover results. Recent interest
[6, 11] has focused on methods of efficiently applying the Brönnimann–Goodrich tech-
nique [3], which exploits finiteness of VC-dimension. Efrat and Har-Peled [6] obtain
an O(log k∗)-approximation algorithm for polygon guarding with vertex guards, us-
ing time O(n(k∗)2 log4 n), where k∗ is the optimal number of vertex guards. Their
technique can be applied to nonvertex guards lying at points of a dense grid, adding
to the running time a factor polylogarithmic in the grid density. (No approximation
algorithm is known if the guards are completely unrestricted and all of the polygon is
to be guarded.) Their results apply also to polygons with holes and to 2.5D terrains,
still with polylogarithmic approximation factors. Most recently, Cheong, Efrat, and
Har-Peled [5] have shown how to place k guards in order to optimize (approximately)
the total area seen by the guards.

Eidenbenz [7], and Eidenbenz, Stamm, and Widmayer [9] have shown that it is
APX-hard to solve the optimal guarding problem in simple polygons; thus, there exists
an ε > 0 such that it is NP-hard to obtain a (1 + ε)-approximation algorithm. They
further show that guarding polygons with holes, as well as guarding 2.5D terrains,
is as hard as set cover; these problems do not have polynomial-time algorithms with
approximation ratio less than c lnn, for some c > 0, unless P = NP (and do not have
approximation ratio 1−ε

12 lnn, for any ε > 0, unless NP ⊂ TIME(nO(log log n))). These
hardness of approximation results are complemented by O(log n)-approximation al-
gorithms based on greedy set cover [8].

For 1.5D terrains, Chen, Estivill-Castro, and Urrutia [4] claim that a modification
of the hardness proof of [15] shows that the problem is NP-hard (details are omitted
and are still to be verified). In the very restricted setting where all guards are to
be placed at a constant altitude (above “sea level,” not above the terrain surface),
the optimal guarding problem is readily solved in polynomial time (it reduces to a
one-dimensional problem on intervals); in fact, it can be solved in linear time [7, 13].

Motivation. The terrain guarding problem arises in optimal placement of anten-
nas for communication networks. We are motivated to study the problem in two di-
mensions, in an effort to understand better the much more difficult three-dimensional
(2.5D) terrain guarding problem (which Eidenbenz shows has no better than a log-
approximation). Further, the two-dimensional problem shows up as a subproblem in
heuristics for solving the three-dimensional problem, and it arises directly in appli-
cations of coverage along a highway, and security lamp and camera placement along
walls and streets. In some applications, one needs to cover only a portion of the input
domain; our results can be extended to yield an algorithm for covering a subset of the
terrain surface optimally.

Our results. Our main result is an efficient O(1)-approximation algorithm for the
terrain guarding problem in two dimensions. Our results rely on developing several
geometric properties of terrains, in order that our algorithm can exploit the special
structure.

The main difficulty in proving our main result is in showing that one can obtain
a constant-factor approximation to the dominating set problem in graphs that can be
realized as the visibility graph of the vertices of a terrain polygon (i.e., to the problem
of placing vertex guards on a terrain in order to see all other vertices). It is then
relatively straightforward to extend this result to apply to placing arbitrary guards
on the terrain in order to guard all of the terrain.

It is worth noting that some natural and simple approaches to the problem do

1.5D TERRAIN GUARDING 1633

g1
g2

g3
g4

g5

v

Fig. 1. None of the guards g1, . . . , g5 is redundant, but a single guard at v would suffice.

not yield O(1)-approximations: One can give examples showing a subset of vertices
guarding T , without redundant vertices, that is arbitrarily bad with respect to optimal
(see Figure 1); similarly, simple sweep approaches that add guards “as needed” can
be arbitrarily bad.

We begin with some definitions and basic structural results.

2. Preliminaries. Let T be a terrain of complexity n in the plane; more pre-
cisely, let T be an x-monotone polygonal curve specified by n vertices, v1, . . . , vi =
(xi, yi), . . . , vn, indexed in x-increasing order. We refer to the terrain polygon, PT ,
which is the closed region of the plane bounded from below by T and from the sides
by the upwards vertical rays emanating from v1 and vn, respectively.

Let p = (px, py) and q = (qx, qy) be two points on the polygonal curve T . We
say that p sees q (and q sees p) if and only if the line segment pq is contained in PT .
We write p < q if p is to the left of q (i.e., px < qx). For any two vertices u, v ∈ T
with u < v, the subterrain [u, v] of T is simply the portion of T between u and v
(including u and v). For a point p ∈ T , let L(p) (resp., R(p)) denote the leftmost
(resp., rightmost) point on T that sees p. It is easy to see that L(p) and R(p) are
necessarily vertices of T .

A guard is a point of PT that we consider to be able to view (“guard” or “cover”)
other points of PT . A terrain guard is any point on T ; a vertex guard is a vertex of T .

The must-guard set, M , is a subset of PT that we require to be seen by a set of
guards. The dominating set problem on terrains (DSPT) is to compute a minimum-
cardinality set of vertex guards for M = {v1, . . . , vn}, the vertex set of T . We spend
most of our effort in obtaining an approximation algorithm for the DSPT; then, we
describe how this result extends to the case of terrain guards and to the case of M = T .
(Note that a set of guards that sees M = T necessarily sees all of PT ; however, it
is not the case that guarding the boundary of a general simple polygon P implies
guarding the interior of P .)

We say that a subterrain [u, v] can be guarded from the right (resp., left) if there
exists a set of vertex guards to the right of v (resp., to the left of u) that covers
M ∩ [u, v].

Claim 2.1 (order claim). Let a < b < c < d be four points on T . If a sees c and
b sees d, then a sees d.

Proof. Since a sees c, b lies below the line segment ac; similarly, c lies below bd.
Thus, ac and bd cross each other at a point ξ (above T), and T lies below the chain
(a, ξ, d), implying that a sees d.

1634 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

v
u

L(v)

R(v) L(u)
R(u)

Fig. 2. The overall structure of the algorithm.

3. The main algorithm. In this section we outline a constant-factor approxi-
mation algorithm for the DSPT: Find a minimum-size subset G of vertices of T such
that each vertex of T is visible from one of the vertices in G. (The missing details are
presented in section 4.)

We begin by computing the (upper) convex hull of T , denoted CH(T). Notice
that if m is the number of vertices in CH(T), then at least �m

2 � guards are needed in
order to guard T . In the first stage, we thus place a guard at each vertex of CH(T).
Notice that if T ′ is a subterrain defined by two consecutive vertices of CH(T), then
no point in its interior is visible from outside T ′. We therefore may consider each
of the m − 1 subterrains that are defined by the vertices of CH(T) separately (see
Figure 2).

Let T ′′ = [u, v] be a subterrain of T ′. We say that T ′′ requires a local guard if
there exists a vertex w in the interior of T ′′ that is not seen from (T ′ − T ′′) ∪ {u, v},
or, in other words, u < L(w) < R(w) < v.

Let T ′ be one of the subterrains obtained from the first stage. In the second
stage we partition T ′ into subterrains such that each of them does not require a local
guard. We do this as follows. For each internal vertex v of T ′, we compute the points
(vertices) L(v) and R(v). Let T (v) denote the subterrain [L(v), R(v)]. Viewing the
subterrains T (v) as open horizontal intervals and considering only minimal intervals
(i.e., intervals that do not contain other intervals), we compute a maximal set S of
disjoint such intervals. Let S ′ be the complementary set of subterrains; thus, any two
consecutive subterrains in S define at most one subterrain in S ′.

Claim 3.1. Let T ′′ be a subterrain in S ∪ S ′. Then T ′′ does not require a local
guard.

Proof. The proof follows immediately from the construction.
We place guards at the end vertices of the subterrains in S. In addition, for each

T ′′ ∈ S ∪ S ′, we place guards at the at most four vertices R(al), R(ar), L(bl), L(br),
where al (resp., ar) is the leftmost (resp., rightmost) internal vertex of T ′′ that is
seen from the right of T ′′, and bl (resp., br) is the leftmost (resp., rightmost) internal
vertex of T ′′ that is seen from the left of T ′′. Since |S|/2 is clearly a lower bound on
the number of guards needed to guard T ′, we increase the number of vertices by only
a constant factor.

We now “solve” each of the subterrains in S ∪S ′ separately. Each such subterrain
is considered to be a base case, in that it does not require a local guard, and is solved
using the base-case algorithms detailed in section 4. The independence property (based
on Claims 3.3–3.4) shown below justifies this approach, i.e., that the subterrains in
S ∪ S ′ may be solved separately without hurting the approximation bound.

The overall structure of the algorithm is thus as follows:
• Given a terrain T , compute its (upper) convex hull, place guards at the

vertices of the convex hull, and solve each subterrain T ′ separately.
• Given a subterrain T ′, partition it into subterrains S∪S ′, as described above.

1.5D TERRAIN GUARDING 1635

For each subterrain T ′′ ∈ S ∪ S ′, place guards at the end vertices of T ′′ and
at the vertices R(al), R(ar), L(bl), L(br), and solve the remaining unguarded
fragments of T ′′ separately, using the base-case algorithms detailed in sec-
tion 4.

The rest of this section deals with the independence property and its proof.
Lemma 3.2 (the independence property). Let T be a terrain, and let T1, . . . , Tk

be k disjoint subterrains of T . (Two subterrains may have a common end vertex.)
Assume that the size l of an optimal solution for T1 ∪ · · · ∪ Tk (by placing guards on
T) is greater than or equal to k/c1, for some constant c1. Also assume that for each
subterrain Ti we can compute a c2-solution for (the yet unguarded fragments of) Ti,
for some constant c2. Then we can compute a c-solution for T1 ∪ · · · ∪ Tk, for some
constant c. (A c0-solution is a solution whose size is at most c0 times the size of an
optimal solution; thus a c-solution is of size at most cl.)

We construct a c-solution for T1∪· · ·∪Tk. We begin by placing at most 2k guards
at the end vertices of the subterrains T1, . . . , Tk. We need the following two claims.

Claim 3.3. Let r1 < r2 < · · · < rm be the internal vertices of Ti that can be seen
from the right of Ti. Then

1. R(r1) ≥ R(r2) ≥ · · · ≥ R(rm).
2. If ri, for 1 < i < m, cannot be seen both from R(rm) and from R(r1), then

it can be seen only (when viewing from the right of Ti) from vertices in the
interior of the subterrain [R(rm), R(ri)] ⊆ [R(rm), R(r1)].

Proof. The first part follows immediately from Claim 2.1. If R(r2) > R(r1), then
by Claim 2.1, r1 must see R(r2), which is impossible since r1 does not see beyond
R(r1). Similarly, we argue that R(r2) ≥ R(r3), etc.

To prove the second part, assume that ri (for some 1 < i < m) cannot be seen
from R(rm) or from R(r1). Then ri cannot be seen from a vertex to the left of R(rm)
(and to the right of Ti), since if ri is seen from such a vertex, then, by Claim 2.1, it
is also seen from R(rm). Similarly, ri cannot be seen from a vertex to the right of
R(r1), since if it is seen from such a vertex, then, by Claim 2.1, r1 is also seen from
this vertex, which is impossible (by the definition of R(r1)).

Set R(Ti) = [R(rm), R(r1)], and let L(Ti) be the symmetric subterrain that is
defined by considering the internal vertices of Ti that can be seen from the left of Ti .

Claim 3.4. Let Ti, Tj be two of the subterrains above, such that Tj lies to the
right of Ti. Let Rj(Ti) ⊆ R(Ti) be the subterrain defined by considering only the
internal vertices in Ti that can be seen from the right of Tj. Then R(Tj) lies to the
left of Rj(Ti), where the right end vertex of R(Tj) and the left end vertex of Rj(Ti)
may coincide.

Proof. Assume there is an internal vertex in Ti that can be seen from the right of
Tj . (Otherwise, Rj(Ti) is empty.) Let u be the leftmost vertex in Tj that can be seen
from the right of Tj . Then R(u) defines the right end vertex of R(Tj). By Claim 2.1,
if v is any vertex in Ti that can be seen from the right of Tj , then R(v) ≥ R(u).

A symmetric claim can be formulated using the subterrains L(Ti) and Li(Tj)
instead of R(Tj) and Rj(Ti), respectively.

We are now ready to continue the construction of a c-solution for T1 ∪ · · · ∪ Tk.
For each Ti, we place guards at the end vertices of the subterrains R(Ti) and L(Ti).
We have thus placed at most 4k guards in this step (and at most 6k guards in the
first two steps). Next, for each Ti we compute a c2-solution Vi for (the yet unguarded
fragments of) Ti. We claim that the at most 6k guards of the first two steps together
with the sets Vi form a c-solution for T1 ∪ · · · ∪ Tk.

1636 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

Let Vopt be an optimal solution for T1∪· · ·∪Tk. Recall that we are assuming that
|Vopt| ≥ k/c1, for some constant c1. Let U denote the set of at most 4k vertices that
are the end vertices of the subterrains R(Ti) and L(Ti). Let v ∈ Vopt−U . We observe
that there is at most one subterrain Ti to the left of v, which has an internal vertex
that is not seen by a vertex of U but is seen from v. If there are two such subterrains
Ti and Tj , where Tj is to the right of Ti, then, by Claim 3.3, v is an internal vertex of
both R(Ti) and of R(Tj). More precisely, v is in Rj(Ti) (but not its right end vertex),
and v is an internal vertex of R(Tj). But this is impossible by Claim 3.4. Thus v can
help guarding at most one subterrain to its left, at most one subterrain to its right,
and possibly the subterrain in which it lies. Our construction replaces v with at most
3c2 guards.

4. Base-case algorithms. Let T be a terrain with n vertices, and let G be the
subset of vertices of T where guards have already been placed. Let A be a subterrain
of T that does not require a local guard, and let A′ be the subset of vertices of A that
cannot be seen by G. We wish to compute a set of guards V(A′) located at vertices of
T , some of which may be located within A, that together see all vertices in A′, and
such that the size of V(A′) is within some constant factor of the size of an optimal
such set of guards.

We distinguish between three base cases:
Case 0. We require that V(A′) consist only of vertices that lie to the left of subter-

rain A.
Case 1. We require that V(A′) consist only of vertices that lie to the left of or within

subterrain A.
Case 2. We make no requirements of the set V(A′) of vertices of T that guard sub-

terrain A.
Each subterrain T ′′ ∈ S ∪ S ′′ (see section 3) is passed to the Case 2 algorithm,

which in turn may pass it on to the Case 1 algorithm; see Figure 3.

Case 2 Case 1b Case 1a

constant
number of guards

Fig. 3. The program flow of the base-case algorithms: A dashed line denotes a recursive call,
while a solid line denotes a call to another (simpler) algorithm.

Definition 4.1. Let T be a terrain, and let G be the subset of vertices of T
at which guards have already been placed. Let T ′ be the subset of vertices of T that
cannot be seen by G. We say that two subterrains T1, T2 ⊂ T are guard-independent
with respect to G if the set of vertices of T that are seen by T1 ∩ T ′ and the set of
vertices seen by T2∩T ′ are disjoint. In other words, T1 and T2 are guard-independent
subterrains if any guard g that can see a vertex in T1∩T ′ cannot see a vertex in T2∩T ′

and vice versa.

1.5D TERRAIN GUARDING 1637

v

u

A

L(u)

L(v)

L+(u)

Fig. 4. If u can see v, then L(u) can also see v. If L(u) ∈ A, we apply Claim 4.3 to L(u) to
conclude that L(L(u)) dominates L(u) and therefore also sees v, etc., until we reach a vertex that
is not in A that dominates u.

4.1. Case 0. Let A be a subterrain of T such that it is possible to guard the set
of (so far unguarded) vertices A′ using only guards at vertices of T to the left of A.
Our goal is to determine a minimum-cardinality such set of left guards for A′. In this
specially constrained case, we are able to determine an optimal set, V(A′), of guards,
using the following algorithm.
While A′ contains an unguarded vertex, do

Place a guard at L(a), where a is the leftmost vertex in A′ that is not yet
guarded.

Lemma 4.2. The algorithm above computes an optimal subset of left guards
for A′.

Proof. When the algorithm locates a guard at vertex L(a), no vertex to the left
of L(a) can see a (by the definition of L(a)), and any vertex v to the right of L(a)
(and still to the left of A) that sees a is “dominated” by L(a) (by Claim 2.1), in that
a guard at L(a) will see any vertex of A′ that v sees. We continue by induction.

4.2. Case 1. Let A = [a, b] be a subterrain that does not require a local guard,
let A′ be the subset of vertices of A that remain to be guarded, and assume that A′

can be guarded from the left of A, that is, by placing guards only at vertices of T to
the left of A.

In this case (Case 1), our goal is to compute a set of guards V(A′) for A′ such
that each guard in V(A′) is either to the left of A or within A (but not to the right of
A). We present a constant-factor approximation algorithm for computing a minimum-
cardinality such set of guards.

We will need the following claim, which tells us that it does not make sense to
place a guard within A if its sole purpose is to view rightwards.

Claim 4.3. Let A = [a, b] be a subterrain as above. Let u
= b be any vertex in
A. Then L(u) dominates u, in the sense that any vertex v ∈ A′ to the right of u that
is seen by u is also seen by L(u).

Proof. Let v ∈ A′ be a vertex to the right of u that is seen by u. Recall that by
our assumption, L(v) lies to the left of A. We may also assume that L(u)
= L(v),
since otherwise L(u) clearly sees v. Now, on the one hand, both u and L(u) must
lie below the line l(L(v), v), and, on the other hand, L(u) must lie above the line
l(L(v), u). Thus L(u) can see v (see Figure 4).

Corollary 4.4. There is always a vertex to the left of A that dominates u (with

1638 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

respect to the vertices of A′ to the right of u). We shall denote by L+(u) any such
vertex.

Proof. If L(u) ∈ A, then we apply Claim 4.3 to L(u) to conclude that L(L(u))
also sees v, etc., until we reach a vertex that is not in A. This vertex clearly dominates
u.

Corollary 4.5. L+(u) dominates any vertex w that lies between L+(u) and u
(with respect to the vertices of A′ to the right of u).

Proof. The proof follows from the fact that w must lie below the chain u, L(u),
L(L(u)), . . . , L+(u).

We consider two subcases, according to whether or not the endpoints of A see
each other.

4.2.1. Case 1a. The endpoints of A see each other. Let A = [a, b] be a
subterrain such that a and b see each other. For a vertex q ∈ A, q
= b, that is visible
from b, we denote by A′

l(q) the vertices of A′ that lie to the left of q and are not visible
from b or L+(q). Similarly, let A′

r(q) denote the vertices of A′ that lie to the right of
q and are not visible from b or L+(q). If both A′

l(q) and A′
r(q) are nonempty, we say

that q implies a nontrivial division.
Claim 4.6. If there exists a vertex q ∈ A, q
= b, such that, b sees q, and both

A′
l(q) and A′

r(q) are nonempty (i.e., q implies a nontrivial division), then A′
l(q) and

A′
r(q) are guard-independent.

Proof. The vertices that can see one or more vertices of A′
l(q) can lie either to the

right of L+(q) and to the left of A, or in the subterrain [a, q]. This follows from the
fact that b can see q, and that any vertex to the left of L+(q) cannot see into A′

l(q).
Similarly, the vertices that can see one or more vertices in A′

r(q) can lie either to the
left of L+(q) or in the subterrain (q, b). Notice that q cannot see a vertex of A′

r(q),
since L+(q) cannot see such a vertex and, according to Claim 4.3, L+(q) dominates q
with respect to the subterrain to the right of q.

We say that A is in the single-pocket case if each vertex q ∈ A to the left of b that
is visible from b implies a trivial division (either A′

l(q) is empty or A′
r(q) is empty).

Claim 4.7. Consider a subterrain A that is in the single-pocket case. Then there
exists an (open) subterrain A∗ = (c, d) ⊂ A, d
= b, such that b cannot see any vertex
in A∗, and all the vertices of A′ that are not visible from b, L+(c), and L+(d) are
in A∗.

Proof. We may assume that there is no vertex q (to the left of b and visible from
b) for which both A′

l(q) and A′
r(q) are empty; otherwise, we could place guards at b

and L+(q) to see all of A′. Let c be the rightmost vertex (to the left of b and visible
from b) that implies a (trivial) division in which A′

l(c) is empty. Let d be the first
vertex to the right of c that is visible from b. Then d implies a (trivial) division in
which A′

r(d) is empty. Set A∗ = (c, d). By definition, b cannot see any vertex in A∗.
Also, any vertex in A′ that is not visible from b, L+(c), or L+(d) must lie in A∗,
since, by definition, b and L+(c) cover [a, c) ∩A′ as well as c, and b and L+(d) cover
(d, b] ∩A′ as well as d.

The single-pocket case. Consider the single-pocket case, where A∗ = (c, d) denotes
the “pocket.” Notice that (i) none of the vertices in (d, b] can see into the pocket A∗

(by Claim 2.1), and (ii) the vertices c and d see each other (since b sees both c and d
but does not see any vertex in A∗). Also we know that b, L+(c), and L+(d) together
cover A′ −A∗.

For a subset of vertices S, we denote by V (S, p) the subset of vertices of S that
are visible from a vertex p, and by V (S, P) the subset of vertices of S that are visible

1.5D TERRAIN GUARDING 1639

b

dc

L+(d)
L+(c)

a1 b1

A

A1

a

A∗

Fig. 5. We can reduce the problem A to the Case 1a problem A1 = [a1, b1] = [c, d], since
A′ −A∗ ⊆ V (A′, L+(d)) ∪ V (A′, d).

from at least one of the vertices of P .
Lemma 4.8. If V (A′, L+(d))∪V (A′, d) � A′−A∗, then (i) one must place at least

one guard outside of A∗ in order to guard A′−A∗, and (ii) there exists a constant-size
set of guards U that guards A′−A∗, and any other set of guards U ′ that guards A′−A∗

includes a guard g′ such that V (A′ ∩A∗, U) ⊇ V (A′ ∩A∗, g′).
Proof. To prove the first part, we observe that L+(d) dominates any vertex in

A∗ with respect to the subterrain to the right of d (applying Corollary 4.5), and d
dominates any vertex in A∗ with respect to the subterrain to the left of c (applying
Claim 2.1 to d and c). Now let v ∈ A′ − A∗ be a vertex that is not seen from L+(d)
or from d (such a vertex exists by our assumption). Clearly any guard that sees v
cannot lie in A∗.

To prove the second part, set U = {L+(d), L+(c), b}. We already know that U
guards A′ −A∗. We now show that if g′ is a guard that sees v, then V (A′ ∩A∗, U) ⊇
V (A′ ∩ A∗, g′). If v is to the right of A∗, then in order to guard v one must locate a
guard g′ either to the left of L+(d) or to the right of d. In both cases V (A′∩A∗, g′) = ∅.
Otherwise, if v is to the left of A∗, then in order to guard v one must locate a guard
g′ either in [L+(c), c] or to the right of d. In the former case it is possible that g′ sees
into A∗, but it is dominated by L+(c).

The lemma above implies that if V (A′, L+(d))∪V (A′, d) � A′−A∗, then we may
place three guards at L+(d), L+(c), and b and charge these guards to the guard g′

(in the proof above).
We now consider the case in which V (A′, L+(d)) ∪ V (A′, d) ⊇ A′ − A∗ (see Fig-

ure 5). In this case we say that A is reducible, and reduce A0 = A to the Case 1a
problem A1 = [a1, b1] = [c, d]. Now, if A1 is also reducible, that is, if A1 is a single-
pocket case with pocket A∗

1 = (c1, d1), and V (A′, L+(d1))∪V (A′, d1) ⊇ A′−A∗
1, where

A′ is the original A′, then we reduce A1 to the Case 1a problem A2 = [a2, b2] = [c1, d1].
This process continues until we reach a problem Ai = [ai, bi], i > 0, that is not re-
ducible.

1640 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

Notice that if we now place two guards at bi and at L+(bi), then all remaining
unguarded vertices in A′ will necessarily lie in the interior of Ai. This is because
bi = di−1 and Ai−1 was reducible. Thus we place these two guards and proceed as
follows, according to the state that we entered. There are three possible such states:

• Ai is not a single-pocket case; i.e., there is a vertex q ∈ Ai that implies a
nontrivial division.

• Ai is a single-pocket case, but V (A′, L+(di)) ∪ V (A′, di) � A′ −A∗
i .

• Ai has a constant-size solution.
In the first state, we divide Ai into two guard-independent subterrains (see Claim 4.6)
as follows. Let ql be the leftmost vertex in Ai that is seen from bi and implies a
nontrivial division. Let a′i be the rightmost vertex to the left of ql that is seen by bi.
Notice that ql and a′i see each other, since bi sees both of them and does not see any
vertex between them. Also notice that bi and L+(a′i) together cover the subterrain
[ai, a

′
i], since a′i implies a (left) trivial division. (Notice that it is impossible that a′i

implies a right trivial division, since, if it did, then so would ql.)
Thus, in addition to the two guards that were already placed (i.e, at bi and at

L+(bi)), we also place guards at L+(ql) and at L+(a′i). We now solve the two guard-
independent subterrains Al = [a′i, ql] and Ar = (ql, bi] by applying to each of them
the Case 1a algorithm. We charge the four guards that were placed to the increase
by one of the lower bound due to the presence of a vertex that implies a nontrivial
division.

In the second state we also place guards at L+(di) and L+(ci) (in addition to the
guards at bi and L+(bi)) according to Lemma 4.8 above, and solve the subproblem
[ci, di] by applying the Case 1a algorithm. We charge the four guards that were placed
to the guard g′ (see above). In the third state we simply solve the original problem
with a constant number of guards.

All the above implies the following algorithm for Case 1a.
Algorithm 4.9. (Case 1a)
1. If there exist two guards that together see all vertices in A′—done.
2. Let Q be the set of all vertices q ∈ A that imply a nontrivial division.
3. If Q
= ∅, let ql be the leftmost vertex in Q. Locate three guards at b, L+(ql),

and L+(a′), where a′ is the rightmost vertex to the left of ql that is visible
from b. Solve each of the (guard-independent) subterrains Al = [a′, ql] and
Ar = (ql, b] recursively using the Case 1a algorithm.

4. If Q = ∅ (the single-pocket case)
(a) Compute the pocket A∗ = (c0, d0).
(b) If A = A0 is not reducible, place a guard at b. Otherwise, reduce until a

subterrain Ai = [ai, bi] that is not reducible is reached, and place guards
at bi and L+(bi).

(c) If Ai, i ≥ 0, is a single-pocket case, then place guards at L+(ci) and
L+(di) and solve [ci, di] recursively using the Case 1a algorithm.

(d) Else, solve Ai recursively using the Case 1a algorithm.
The following lemma summarizes the result for Case 1a.
Lemma 4.10. Algorithm 4.9 computes a set of guards V(A′) for A′, whose size is

bounded by some constant times the size of a minimum-cardinality such set of guards.
We now turn to the general case, where A’s endpoints do not see each other.

4.2.2. Case 1b: The endpoints of A do not see each other. We begin
by computing the (upper) convex hull of A. Each of the edges of this convex hull
corresponds to a subterrain whose endpoints see each other. Some of these subterrains

1.5D TERRAIN GUARDING 1641

may already be fully guarded (by G); we consider only those that are not yet fully
guarded. Let A1 = [a, b] be the leftmost subterrain that is not yet fully guarded, let
A′

1 be the subset of vertices in A1 that are not yet guarded, and let u be the leftmost
vertex in A′

1. If there exists a single vertex to the left of A that sees all vertices in
A′

1, then L(u) is necessarily such a vertex. (Note that L(u) is necessarily to the left
of A since u ∈ A′

1.) Moreover, in this case, any vertex g (either to the left of A or in
A) that sees u is dominated by the pair of vertices L(u) and L(b). Thus, in this case
we can place guards at L(u) and at L(b) and charge this to the guard of the optimal
solution that sees u.

Assume now that A′
1 cannot be fully guarded by a single vertex to the left of A. In

this case, we place a guard at L(b) and distinguish between two cases. If after placing
a guard at L(b) there is no vertex to the right of b that remains to be guarded, then
apply Algorithm 4.9 to subterrain A1 and charge the guard at L(b) to the one-time
event of leaving Case 1b. If, however, there still remains an unguarded vertex to the
right of b, then the two subterrains A1 and A2 = A − A1 are guard-independent.
Indeed, any guard that can help guarding A′

1 must lie in (L(b), b], and any guard that
can help guarding A′

2 must lie either in A2 or to the left of L(b). Notice that b cannot
help in guarding A′

2, since L(b) dominates b with respect to visibility to the right of
b.

Algorithm 4.11. (Case 1b)
1. If all of A is guarded—done.
2. Let A1 = [a, b] be the leftmost subterrain that is not yet fully guarded, let A′

1

be the subset of remaining unguarded vertices in A1, and let u be the leftmost
vertex in A′

1.
3. If there exists a single vertex to the left of A1 that sees all vertices in A′

1, then
locate guards at L(u) and at L(b), go to Step #1.

4. Else, locate a guard at L(b) and solve the two guard-independent subproblems
A1, using the Case 1a algorithm, and A−A1, using the Case 1b algorithm.

The following lemma summarizes the result for Case 1b.
Lemma 4.12. Algorithm 4.11 computes a set of guards V(A′) for A′, whose size is

bounded by some constant times the size of a minimum-cardinality such set of guards.

4.3. Case 2. Given a terrain T , let A = [a, b] be a subterrain that does not
require a local guard, let A′ be the subset of all vertices in A that are not yet guarded.
In this case (Case 2), our goal is to compute a set of guards V(A′) for A′, where
the guards in V(A′) may be located anywhere in T . We present a constant-factor
approximation algorithm for computing a minimum-cardinality such set of guards.

We may assume that the endpoints of A are in A′, because otherwise we can
simply replace A with the subterrain [a′, b′], where a′ (resp., b′) is the leftmost (resp.,
rightmost) vertex in A′, and any (Case 2) solution to A is also a (Case 2) solution to
[a′, b′] and vice versa. In particular, we may assume that a and b are not vertices of
the convex hull of the initial terrain (since A is contained in a subterrain defined by
two consecutive vertices v1, v2 of the convex hull of the initial terrain, and we already
placed guards at these vertices).

We will need the following observation.
Observation 4.13. For any vertex v ∈ A, the vertices L(v) and R(v) can see

each other.
(If there were a vertex v for which L(v) and R(v) could not see each other, then

the upper angle formed by L(v), v, and R(v) would be greater than π, and v would be
a vertex of the convex hull of the original terrain (in between v1 and v2), contradicting

1642 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

L(m) R(m)

b
m

A∗

a

Al Ar

Fig. 6. The two subterrains defined by a shared vertex that implies a nontrivial division are
guard-independent.

our assumptions above.)
A vertex m ∈ A is called a shared vertex if m can be seen both from the left of A

and from the right of A. For a shared vertex m, let A′
l(m) (resp., A′

r(m)) denote the
subset of vertices of A′ that lie to the left (resp., to the right) of m and are not visible
from L(m), m, or R(m). As in Case 1a, we say that m implies a nontrivial division
if both A′

l(m) and A′
r(m) are not empty.

Claim 4.14. Let m be a shared vertex that implies a nontrivial division. Then
the two subterrains Al = [a,m) and Ar = (m, b] are guard-independent.

Proof. Any guard that can see a vertex in A′
l(m) must lie either between L(m)

and m or to the right of R(m), while any guard that can see a vertex in A′
r(m) must

lie either to the left of L(m) or between m and R(m). See Figure 6.
Claim 4.15. There is at least one shared vertex in A = [a, b].
Proof. a is surely seen from the left of A (e.g., by the vertex immediately to its

left), and b is surely seen from the right of A. Let c be the rightmost vertex in A that
is seen from the left of A. (If c = b, then let c be the previous vertex in A that is
seen from the left of A.) Let d be the vertex immediately to the right of c. Then d
is necessarily seen from the right of A. We observe that either L(c) or R(d) must lie
above the line through c and d. (Otherwise, c and d are vertices of the convex hull
of the original terrain—impossible; see assumptions and observation above.) Thus,
either c or d is a shared vertex; e.g., if L(c) lies above the line through c and d, it
must also see d, so d is a shared vertex in this case.

Let M be the set of all shared vertices in A. According to the claim above, M
= ∅.
We next show that any subterrain of A without shared vertices (i.e., vertices of M)
can be nicely divided into two subterrains.

Claim 4.16. Let A∗ = [l, r] ⊂ A be a subterrain such that A∗ ∩M = ∅. Let u be
a vertex in A∗. If u can be seen from the left of A, then any vertex in A∗ to the right
of u can also be seen from the left of A (and therefore cannot be seen from the right
of A).

Proof. Since A does not require a local guard, any vertex in A∗ can be seen either
from the left of A or from the right of A, but since A∗ ∩ M = ∅, it can be seen
from only one of these sides. Assume that there is a vertex to the right of u that is
seen from the right of A. Let v be the leftmost such vertex, and let u′ be the vertex
immediately to the left of v. Then u′ (which is possibly u) is seen from the left of
A. Observe that either L(u′) or R(v) must lie above the line through u′ and v (since
otherwise u′ and v would be vertices of the convex hull of the original terrain), and
therefore at least one of the two vertices u′, v is a shared vertex—contradicting our

1.5D TERRAIN GUARDING 1643

L(m2) L(m1) R(m1)
R(m2)

b

dc

m1

A

A∗

a m2

Al Ar

Fig. 7. By locating guards at L(m1), m1, m2, and R(m2), we obtain two guard-independent
subproblems, Al and Ar, both of Case 1.

assumption. We conclude that there is no vertex to the right of u that is seen from
the right of A.

Now let d be the leftmost vertex in A∗ that can be seen from the left of A. If
there is no such d, then every vertex in A∗ is seen from the right of A but not from
the left of A, and if d = l, then any vertex in A∗ is seen from the left of A but not
from the right of A. Otherwise, let c be the vertex immediately to the left of d. Then
every vertex in the subterrain Al = [l, c] is seen from the right of A but not from the
left of A, and every vertex in the subterrain Ar = [d, r] is seen from the left of A but
not from the right of A.

Claim 4.17. Assume that for each m ∈ M , m implies a trivial division. Then,
by placing a constant number of guards, one can reduce A either to a single instance
of Case 1, or to two guard-independent instances of Case 1.

Proof. Let m ∈ M be a shared vertex (such a vertex exists as shown in Claim 4.15).
We know that m implies a trivial division. Assume, e.g., that (after placing guards
at L(m), m, and R(m)) Al is fully guarded but Ar is not. Let m1 be the rightmost
shared vertex for which Al is fully guarded. We now distinguish between two possible
situations: (i) there exists another shared vertex to the right of m1, and (ii) m1 is
the rightmost shared vertex. In both cases the subterrain [a,m1] is fully guarded
by L(m1), m1, and R(m1). Consider the former more general situation. Let m2 be
the shared vertex immediately to the right of m1. Now m2 implies a trivial division
such that Ar is fully guarded (after placing guards at L(m2), m2, and R(m2)). Set
A∗ = (m1,m2). A∗ does not have a shared vertex, and [m2, b] is fully guarded by
L(m2), m2, and R(m2). We now use Claim 4.16 to divide (m1,m2) into two subter-
rains Al = (m1, c], Ar = [d,m2) (one of them might be empty) such that any vertex
in Al is seen from the right of A but not from the left of A, and any vertex in Ar

is seen from the left of A but not from the right of A. Observe that L(m1) and m1

dominate the visibility of any vertex in [a,m1) with respect to Al, so none of the
vertices to the left of Al can help in guarding the remaining unguarded vertices in
Al. Similarly, R(m2) and m2 dominate the visibility of any vertex in (m2, b] with
respect to Ar. Also if we place guards at c and R(c) and at d and L(d), then the
two subterrains Al and Ar are guard-independent, and both can be treated as Case 1
problems (see Figure 7).

Consider the second situation (i.e., there is no shared vertex in Ar = (m1, b]). We
apply Claim 4.15 to observe that no vertex in Ar can be seen from left of A. (b can be
seen from right of A, and therefore any vertex in Ar can be seen from the right of A,
and if there were a vertex that could also be seen from the left of A, then we would

1644 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

have a shared vertex.) Thus, locating guards at L(m1), m1, and R(m1) guarantees
that the only vertices that can help guarding Ar are within Ar or to the right of Ar,
which is a Case 1 problem. (Once again none of the vertices in [a,m1) can help guard
Ar, since L(m1) and m1 dominate these vertices with respect to Ar.)

Algorithm 4.18. (Case 2)
1. If there exist two (or any constant number of) guards that together see all

vertices in A′—done.
2. Compute the set M of all shared vertices.
3. If there exists m ∈ M that implies a nontrivial division, then locate guards at

L(m), m, and R(m) and solve (recursively) each of the two subproblems Al

and Ar.
4. Else, for each m ∈ M one of the sides is fully guarded by L(m), m, and

R(m), and the other is not. Use Claim 4.17 in order to reduce A (by placing
a constant number of guards) either to a single instance of Case 1 or to two
guard-independent instances of Case 1. (Notice that if A is reduced to a single
instance of Case 1, we charge the guards that were placed in doing so to the
one-time event of leaving Case 2.)

The following lemma summarizes the result for Case 2.
Lemma 4.19. Algorithm 4.18 computes a set of guards V(A′) for A′, whose size is

bounded by some constant times the size of a minimum-cardinality such set of guards.

5. Algorithm analysis. Throughout our description of the approximation al-
gorithm for the DSPT, whenever guards were placed we gave an appropriate charging
argument to justify why we could afford to place them. Consequently, we have shown
that the size of the guarding set that is computed by the algorithm is bounded by
a constant times the size of a minimum-size such set: We have obtained an O(1)-
approximation, as desired. We have not attempted to minimize the constant factor;
we leave this task to future work.

Concerning the running time of the algorithm, it is clear that it is polynomial.
The following lemma shows that the running time is O(n2).

Lemma 5.1. The running time of the constant-factor approximation algorithm
for the DSPT is O(n2).

Proof. As a preliminary stage, we compute the visibility graph, VGT (V), of the
terrain vertices. This can be done easily in O(n2) time (or in output-sensitive time,
but this does not yield an improved overall time bound for our algorithm). For each
vertex v ∈ V , we compute in linear time the subset of vertices in V that lie to the left
(alternatively, to the right) of v and are visible from v; the vertices in these subsets
are found one-by-one in decreasing (alternatively, increasing) x-order. In particular
the vertices L(v) and R(v) are the leftmost in the left list and rightmost in the right
list, respectively. It remains to show that the subsequent stages of the algorithm can
be carried out within the quadratic time bound.

In the first stage, we simply compute the (upper) convex hull of T in O(n) time.
In the second stage, we partition each “concave” subterrain (corresponding to an edge
of the convex hull) into subterrains that do not require a local guard (see section 3).
This can be done in O(m logm) time per “concave” subterrain of m vertices, and
therefore in overall O(n log n) time.

In the final stage, each of the subterrains obtained in the second stage is solved
separately, using the base-case algorithms, in O(m2) time, where m is the size of
the subterrain (see Lemma 5.2 below). Since the subterrains are disjoint, the overall
running time of this stage is O(n2).

1.5D TERRAIN GUARDING 1645

Lemma 5.2. Let A, A ⊂ T , be a subterrain that does not require a local guard.
Then A can be solved using the base-case algorithms (with minor modifications) in
O(m2) time, where m is the size of A.

Proof. For the lemma to be true, we need to modify the first step in each of the
base-case algorithms, so that, unless all vertices in A′ are already guarded, one must
continue by recursive calls. This change increases the depth of the recursion by only
a constant number of levels.
Case 2. The condition in the modified step 1 can be checked in constant time. In

step 2 all shared vertices can be computed in linear time, since one needs
to consider only the ranges of the vertices in A (which were computed in
the preliminary stage of the main algorithm). Checking in step 3 whether a
nontrivial division is possible is also done in linear time, since for each shared
vertex one needs to consider only a constant number of vertices. Moreover, the
number of such divisions is clearly O(m). In step 4 we reduce the problem to
two guard-independent instances of Case 1; the reduction is done in constant
time.

Case 1b. Step 2 is clearly linear in m. In steps 3 and 4 we reduce the problem to a
smaller one; therefore the number of these reductions is O(m).

Case 1a. Computing all vertices that imply a nontrivial division (in step 2) is done
in linear time (since, for each vertex q ∈ A, one needs to consider only a
constant number of vertices). In step 3 we reduce the problem to two guard-
independent and disjoint problems, so the number of these reductions is O(m);
the reduction itself takes only constant time. In step 4 we reduce the problem
to a smaller one. Again, the number of these reductions is clearly O(m), and
the reduction itself takes only constant time.

The following theorem summarizes this section.
Theorem 5.3. The algorithm of sections 3 and 4 computes a constant-factor

approximation for the DSPT in O(n2) time.

6. The terrain guarding algorithm. In this section we generalize the constant-
factor approximation algorithm for the DSPT to the general 1.5D terrain guarding
problem, where guards can be placed anywhere on the terrain, and all points of the
terrain (not only its vertices) must be guarded. For this we present a reduction from
the general 1.5D terrain guarding problem to the DSPT. Figure 8 (right) shows that a
solution to the DSPT is not necessarily a solution to the general 1.5D terrain guarding
problem.

Let V be the set of vertices of T , and set n = |V |.

T1

s

p1

p2

p3

p4 p5

p6

p7

p8 T2

s

p q

V (p)

V (q)

Fig. 8. Left: A single guard at s sees all points of the terrain T1, but if one may locate guards
only at vertices, then two guards are needed. Right: All vertices of the terrain T2 can be guarded
with two guards (at p and at q), but in order to guard all points of T2 three guards are needed.

1646 B. BEN-MOSHE, M. J. KATZ, AND J. S. B. MITCHELL

Observation 6.1. Any solution to the general 1.5D terrain guarding problem can
be transformed into another solution whose size is at most twice the size of the original
solution, such that all guards in the new solution are vertex guards, i.e., located at
vertices of the terrain.

Proof. Replace each guard g in the original solution that is not a vertex of the
terrain with the two endpoints vi, vi+1 of the edge T on which g lies. Clearly, any
point of T that is seen by g is also seen by at least one of these two vertices.

Lemma 6.2. There exists a set U of points on T such that every subset of vertices
V ′ ⊆ V that guards U also guards T . Moreover, |U | = O(n2) and U can be computed
in O(n2) time.

Proof. Let p be a point on T , and let vis(p) denote the set of all points on T that
are visible from p. vis(p) is the union of a linear number of maximal subterrains. For
such a subterrain A, it is easy to see that if p ∈ A, then both endpoints of A must
be vertices of T , and if p
∈ A, then the farther of the two endpoints of A must be
a vertex of T . We refer to the endpoints of the maximal subterrains in vis(p) as the
visibility events induced by p.

Let U ′ be the set of visibility events induced by the vertices in V . Let U ′′ be the
set that is obtained by picking an arbitrary point of T between each pair of consecutive
points in U ′. Set U = V ∪ U ′ ∪ U ′′. It is clear that |U | = O(n2) and that U can be
computed in O(n2) time.

The set U ′ induces a partition of T into O(n2) intervals. Observe that if p is a
point in the interior of an interval s of this partition and p′ is the point of U ′′ that lies
in the interior of s, then vis(p) ∩ V = vis(p′) ∩ V . This follows immediately from the
definition of U ′, since if there were a vertex v ∈ V such that p saw v and p′ did not
see v (or vice versa), then there would be a visibility event somewhere in the interior
of s.

Now let V ′ be a subset of V that guards U , and let p be any point on T , p
∈ U .
We need to show that p is guarded by V ′. Let s be the interval of the partition of T
induced by U ′ such that p lies in its interior, and let p′ be the point of U ′′ that lies in
the interior of s. Then by our assumption p′ is guarded by V ′, and, therefore, by the
observation above, so is p.

We are now ready to present the algorithm for the general 1.5D terrain guarding
problem.

Algorithm 6.3. General 1.5D terrain guarding.
1. Given a terrain T with vertex set V , compute the set U .
2. Solve the DSPT with U as the vertex set (using the DSPT algorithm as a

“black box”). Let G′, G′ ⊆ U , denote the solution obtained.
3. Replace each point g ∈ G′ − V with the two vertices of V adjacent to it. Let

G be the resulting set.
4. Return G.

From Observation 6.1 and Lemma 6.2 it is clear that G is indeed a solution to
the general 1.5D terrain guarding problem. Moreover, G can be computed in O(n4)
time (since |U | = O(n2) and the running time of the DSPT algorithm is O(|U |2)). It
remains to prove that the size of G is bounded by some constant times the size of an
optimal solution.

Let opt(A,B) be an optimal solution to the problem of guarding A by placing
guards at points of B, where A (alternatively, B) is either a subterrain of T or a
discrete set of points of T . In particular, opt(T, T) is an optimal solution to the
general 1.5D terrain guarding problem. Notice that if A′ ⊆ A and B′ ⊆ B, then

1.5D TERRAIN GUARDING 1647

|opt(A,B)| ≥ |opt(A′, B)| and |opt(A,B′)| ≥ |opt(A,B)|.
Lemma 6.4. Let c′ be the (constant) approximation factor of the DSPT algorithm.

Then |G| ≤ 4c′|opt(T, T)|.
Proof. Using the observation above and Observation 6.1, |opt(T, T)| ≥ |opt(U, T)| ≥

|opt(U, V)|/2 ≥ |opt(U,U)|/2 ≥ G′/(2c′) ≥ G/(4c′).
The following theorem summarizes the main result of this section.
Theorem 6.5. Algorithm 6.3 computes a constant-factor approximation for the

general 1.5D terrain guarding problem in O(n4) time.

7. Conclusion. There are two notable open problems: (1) Are the DSPT and
1.5D terrain guarding problems NP-hard? (the hardness claim in [4] has gaps in the
proof); and (2) is there an approximation algorithm for guarding a simple polygon?
So far, our attempts to generalize our methods to simple polygons have failed; our
method strongly exploits the special structure of 1.5D terrains.

REFERENCES

[1] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell, A constant-factor approximation algo-
rithm for optimal terrain guarding, in Proceedings of the 16th Annual ACM-SIAM Sympo-
sium Discrete Algorithms, Vancouver, BC, 2005, SIAM, Philadelphia, 2005, pp. 515–524.

[2] P. Bose, T. Shermer, G. Toussaint, and B. Zhu, Guarding polyhedral terrains, Comput.
Geom. Theory Appl., 7 (1997), pp. 173–185.

[3] H. Brönnimann and M. T. Goodrich, Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom., 14 (1995), pp. 263–279.

[4] D. Z. Chen, V. Estivill-Castro, and J. Urrutia, Optimal guarding of polygons and mono-
tone chains, in Proceedings of the 7th Annual Canadian Conference on Computational
Geometry, Quebec City, QB, 1995, pp. 133–138.

[5] O. Cheong, A. Efrat, and S. Har-Peled, On finding a guard that sees most and a shop
that sells most, in Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, New Orleans, LA, 2004, SIAM, Philadelphia, 2004, pp. 1091–1100.

[6] A. Efrat and S. Har-Peled, Locating guards in art galleries, in Proceedings of the 2nd
Annual IFIP International Conference on Theoretical Computer Science, Montréal, QB,
2002, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002, pp. 181–192.

[7] S. J. Eidenbenz, (In-)Approximability of Visibility Problems on Polygons and Terrains, Ph.D.
thesis, Department of Computer Science, ETH Zürich, Switzerland, 2000.

[8] S. J. Eidenbenz, Approximation algorithms for terrain guarding, Inform. Process. Lett., 82
(2002), pp. 99–105.

[9] S. J. Eidenbenz, C. Stamm, and P. Widmayer, Inapproximability results for guarding poly-
gons and terrains, Algorithmica, 31 (2001), pp. 79–113.

[10] S. K. Ghosh, Approximation algorithms for art gallery problems, in Proceedings of the Cana-
dian Information Processing Society Congress, 1987, pp. 429–434.

[11] H. González-Banos and J.-C. Latombe, A randomized art-gallery algorithm for sensor place-
ment, in Proceedings of the 17th Annual ACM Symposium on Computational Geometry,
Medford, MA, 2001, pp. 232–240.

[12] J. M. Keil, Polygon decomposition, in Handbook of Computational Geometry, J.-R. Sack and
J. Urrutia, eds., Elsevier Science, North–Holland, Amsterdam, 2000, pp. 491–518.

[13] B. J. Nilsson, Guarding Art Galleries—Methods for Mobile Guards, Ph.D. thesis, Department
of Computer Science, Lund University, Lund, Sweden, 1995.

[14] J. O’Rourke, Art Gallery Theorems and Algorithms, Internat. Ser. Monogr. Comput. Sci.,
Oxford University Press, New York, 1987.

[15] J. O’Rourke and K. J. Supowit, Some NP-hard polygon decomposition problems, IEEE Trans.
Inform. Theory, 30 (1983), pp. 181–190.

[16] T. C. Shermer, Recent results in art galleries, Proc. IEEE, 80 (1992), pp. 1384–1399.
[17] J. Urrutia, Art gallery and illumination problems, in Handbook of Computational Geometry,

J.-R. Sack and J. Urrutia, eds., North–Holland, Amsterdam, 2000, pp. 973–1027.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1648–1671

FINDING PATHS AND CYCLES OF SUPERPOLYLOGARITHMIC
LENGTH∗

HAROLD N. GABOW†

Abstract. Let � be the number of edges in a longest cycle containing a given vertex v in an
undirected graph. We show how to find a cycle through v of length exp(Ω(

√
log �/ log log �)) in

polynomial time. This implies the same bound for the longest cycle, longest vw-path, and longest
path. The previous best bound for longest path is length Ω((log �)2/ log log �) due to Björklund and
Husfeldt. Our approach, which builds on Björklund and Husfeldt’s, uses cycles to enlarge cycles.
This self-reducibility allows the approximation method to be iterated.

Key words. approximation algorithms, graph algorithms, long paths, long cycles

AMS subject classifications. 68R10, 68W25, 05C38, 05C85

DOI. 10.1137/S0097539704445366

1. Introduction. Interest in approximating the longest path of a graph was
rekindled by Karger, Motwani, and Ramkumar [13], who were motivated by the large
gap between known performance guarantees and known hardness results. We make
some progress in reducing the gap by presenting the best known polynomial time
approximation algorithm. In particular we show how to find paths of greater than
polylogarithmic length in polynomial time.

Previous work. Monien [15] investigated fixed parameter algorithms for long
paths and cycles. In particular he showed how to find a vw-path of length (exactly) k
for all pairs of vertices v, w for which such a path exists, in time O(k!nm). (Through-
out this paper, n and m denote the number of vertices and edges, respectively, of the
given graph.) Monien also proved a fact about undirected cycle length that is useful
in finding cycles of length ≥ k; a variant of this fact is stated below.

In other early work, Fellows and Langston showed how to find undirected cycles
of length ≥ k using Robertson–Seymour theory [9]. Bodlaender [2] used dynamic
programming to find long undirected paths and cycles, improving Monien’s bounds.

Alon, Yuster, and Zwick [1] introduced the technique of color coding to find
paths, cycles, and other subgraphs of guaranteed size. For example, in a directed
or undirected graph, color coding finds a path whose length is either the greatest
possible or ≥ log n in polynomial time. The same holds for vw-paths. For cycles, for
any k ≤ log n, color coding finds a cycle of length exactly k in polynomial time if one
exists.

Björklund and Husfeldt [3] find an undirected path of length Ω((log �/ log log �)2)
in polynomial time, for � the longest path length. Gabow and Nie [11] observe that
the length guarantee is actually Ω(log 2�/ log log �). This is the best known bound to
date for undirected paths.

Better results are known for undirected graphs of low degree. Feder, Motwani,
and Subi [8] find a cycle of length ≥ � log 92 > �0.315 in graphs of maximum degree

∗Received by the editors July 15, 2004; accepted for publication (in revised form) August 25, 2006;
published electronically March 2, 2007. A preliminary version of this paper appeared in STOC’04
[10].

http://www.siam.org/journals/sicomp/36-6/44536.html
†Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430

(hal@cs.colorado.edu).

1648

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1649

three; here � is the longest cycle length, and the algorithm runs in polynomial time. A
similar result holds for longest path. The length guarantee improves on 3-connected
cubic graphs.

Gabow and Nie [11] investigate long directed cycles. They also prove a variant
of Monien’s undirected cycle structure theorem: If a connected undirected graph has
a cycle of ≥ k edges, either every depth-first search spanning tree has a fundamental
cycle of ≥ k edges or some cycle has between k and 2k edges. This result, or Monien’s,
allows color coding to be applied to the problem of finding a cycle of ≥ k edges. (For
example, it allows color coding to find a cycle of length ≥ log n in polynomial time,
if one exists.)

The best known hardness results are due to Karger, Motwani, and Ramkumar
[13]. They showed that getting a constant factor approximation to the longest undi-
rected path is NP-hard. Furthermore for any ε > 0, approximating to within a factor
2O(log1−εn) is quasi-NP-hard. Stronger hardness results for directed graphs are given
in [4].

Our work also draws on previous work on a different problem on cycles: finding a
cycle through three given vertices. Robertson and Seymour showed that more gener-
ally the fixed vertex subgraph homeomorphism problem can be solved in polynomial
time [16]. However, huge constants are involved in this approach. Instead we use the
algorithm of LaPaugh and Rivest [14], which finds a cycle through three given vertices
in linear time with no large hidden constants. (See also [18].)

Our contribution. A v-cycle is a cycle containing the vertex v. We take the
basic problem to be approximating the longest v-cycle, where v is a given vertex of
degree two. The problems of approximating a longest cycle, a longest vw-path, and
a longest path are all easily reduced to our problem in polynomial time.

Let � be the length of a longest v-cycle in an undirected graph. We show that
a v-cycle of length exp(Ω(

√
log �/ log log �)) can be found in polynomial time. This

implies the same bound for the longest cycle, longest vw-path, and longest path. This
improves the previous best bound of Björklund and Husfeldt for longest path given
above. It also improves the previous best bound for longest vw-paths and cycles,
which was only logn using color coding.

We note that our results give further evidence of the difference in complexity
between the directed and undirected versions of the long path and cycle problems. The
best known length guarantees for long directed paths and cycles are only logarithmic:
a directed path (cycle) of length logn (log n/ log log n) remains the best that can be
found in polynomial time even when a Hamiltonian path (Hamiltonian cycle) exists
[1, 11]. Further, [4] provides hardness results that support the relative difficulty of
the directed problem.

Our approach builds on Björklund and Husfeldt’s idea of using cycles to enlarge
paths. We use cycles to enlarge cycles, giving a self-reducibility property that allows
the construction to be iterated. We note that the hardness results of Karger, Motwani,
and Ramkumar [13] are based on a self-improvability property of the longest path
problem involving graph products; it is unclear whether this has any relation to our
self-reducibility property.

Our results hinge on properties of biconnected components, cutpoints, and sepa-
rating pairs. The self-reducibility gives rise to a family of recursive algorithms. We
can recur only a limited number of times because of the need to keep the graphs large.

The paper is organized as follows. Section 2 presents the facts on cutpoints and
separation pairs that underlie our algorithm. Section 3 presents the algorithm. The

1650 HAROLD N. GABOW

next two sections give the analysis: section 4 proves the length guarantee, and section
5 provides details of the implementation and uses them to prove the polynomial time
bound. Section 6 gives some concluding remarks. We close this section with our
terminology.

Terminology. A fraction a/bc is always an abbreviation of a/(bc), e.g., a/2k.
All logarithms are base two unless noted otherwise. When used as a number, e is the
base of natural logarithms. exp(x) denotes ex.

Our graph terminology is consistent with [19] whenever possible. All graphs in
this paper are undirected and simple. G[X] denotes the subgraph induced by vertex
set X. For X and Y disjoint vertex sets, E[X,Y] consists of all edges joining X and
Y . Furthermore, by convention, writing xy ∈ E[X,Y] means x ∈ X and y ∈ Y .

All paths and cycles in this paper are simple. In contrast a walk can have repeated
vertices. (So a path is a simple walk.) Let x and y be vertices. An xy-path is a path
from x to y. For x �= y, d(x, y) denotes the length of a shortest xy-path. If the graph
of interest is unclear in some notation, we include it as a subscript, e.g., dG(x, y).

We represent a path as a list of vertices, e.g., x, y, z. We also allow paths in the
list; e.g., if xy is an edge and Z is a path starting at y, then x, Z denotes a path that
is one edge longer than Z. Sometimes we write x, y, Z for the same path to remind
the reader of the first edge xy. This will not cause any confusion.

If P is a path containing x and y with x preceding y, then P [x, y] denotes the
subpath of P from x to y. We occasionally write P [y, x] to refer to the subpath from
y to x in the reverse path of P ; however, to prevent confusion we always indicate
when this extended notation is being used. If C is a cycle containing x, y, and v,
then Cv[x, y] (Cv[x, y]) denotes the subpath of C from x to y that contains (avoids)
v, respectively. We extend the subpath notation to allow open-sided intervals; e.g.,
P (v, w] is the path P [v, w] − v.

If P is a path, we use P to denote a set of vertices or edges, as is convenient; if
the exact meaning is not clear from context, we state it explicitly. |P | always denotes
the number of edges in P .

2. Approach. Throughout this paper G is a given connected undirected graph.
Our main algorithm finds a long v-cycle, where v is a given vertex of degree two.
This algorithm can be used to find a long xy-path, by adding a new vertex v with
edges vx, vy. Letting x and y vary, we can approximate the longest path in the graph.
Similarly we can approximate the longest cycle.

Extending v-cycles. The overall approach is due to Björklund and Husfeldt
[3]. They use a cycle to find a long path. Since our algorithm seeks a long cycle
rather than a long path, the approach must be modified. This section presents the
combinatoric ideas on which our algorithm is based.

The setting for our algorithm is illustrated in Figure 1: C is a v-cycle. X is a
connected component of G− V (C). We sometimes write G[X] to emphasize that we
are dealing with the graph induced by vertices X. P is an a0a1-path through X, more
precisely for distinct vertices a0, a1 ∈ C, P = a0, P [x0, x1], a1 with P [x0, x1] ⊆ X.

Here is how the figure relates to the algorithm of the next section. Let C∗ be a
longest v-cycle. C will be a v-cycle already found by the algorithm. The algorithm is
attempting to enlarge C to a longer v-cycle. P will be either a path that our algorithm
has found recursively (in Lemma 2.1(i) below) or a subpath of C∗ (in Lemma 2.1(ii)).

We use two main techniques to enlarge C. The first is similar to Björklund and
Husfeldt’s idea to use cycles to extend paths.

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1651

a0

x 0
x
1

C

v

PX

a1

Fig. 1. A v-cycle C and an a0a1-path P passing through a connected component X of G− V (C).

Lemma 2.1. Consider a v-cycle C and a connected component X of G− V (C).
Let P be an a0a1-path with P (a0, a1) ⊆ X.

(i) P,Cv[a1, a0] is a v-cycle of length > |P | + dC(a0, v).
(ii) For any vertex c ∈ C adjacent to X, there is a path Q ⊆ X and a vertex

c′ ∈ C − c such that c,Q, c′ is a cc′-path of length ≥ |P |/2 + 1.
Proof. (i) Note |Cv[a1, a0]| > dC(a0, v) since a1 is distinct from the degree two

vertex v.
(ii) Let P start with the edge a0x0 and end with edge x1a1. So P (a0, a1) =

P [x0, x1] ⊆ X. Choose x ∈ X a neighbor of c as follows. If c = ai for i ∈ {0, 1}, then
x = xi. Otherwise x is arbitrary.

Take any minimal path R from x to P in X. Let R end at vertex r ∈ P . Choose
index j ∈ {0, 1} so that |P [r, xj]| ≥ |P [r, x1−j]|. (One of these two subpaths of
P actually involves the reverse of P .) The desired path c,Q, c′ is c,R, P [r, xj], aj .
This walk is simple since the choice of x guarantees c �= aj . The path’s length is
≥ 1 + (|P | − 2)/2 + 1 = |P |/2 + 1.

When at least one distance dC(ai, v) is large, part (i) allows us to make good
progress in enlarging C. When both distances dC(ai, v) are small another method is
needed. The idea, illustrated in Figure 2, is to take two recursively found paths P
(e.g., the two paths P in Figure 2) and find a v-cycle that contains both paths. We use
the following strategy to guarantee that the desired v-cycle exists: for two components
X of G − V (C) we find a separation pair r0, r1 of G (e.g., the two separation pairs
r0, r1 in Figure 2) with both vertices r0, r1 contained in C∗. Each path P will be
a (recursively found) r0r1-path in X. No matter what r0r1-paths P the algorithm
chooses, they will be contained in a v-cycle (since portions of C∗ provide such a v-
cycle). Of course the algorithm does not know C∗, so some guessing will be involved
in finding the right separation pairs. Furthermore the separation pairs need not even
exist. But once some other cases have been treated the existence of the separators
will be guaranteed.

The next several lemmas give tools that allow us either to enlarge C or to find
these separation pairs r0, r1. Our discussion uses connected components, biconnected
components, and a form of triconnected components. For clarity we use terminology
that explicitly differentiates all these types of components.

Bicomponents. A bicomponent is the set of edges of a biconnected component.
The following characterization is often used as the definition of a biconnected compo-
nent (see e.g., [17]).

1652 HAROLD N. GABOW

v

0r r1

r1

0r

C

X

X P

P

Fig. 2. A v-cycle C with two connected components X of G − V (C). Each component X has
a separation pair r0, r1 and a corresponding r0r1-path P .

B

x

y

Fig. 3. A bicomponent B and twelve vertices (drawn solid) that determine five distinct projec-
tions πB(v) (circled or drawn hollow).

Fact 1. Two edges belong to the same bicomponent if and only if some cycle
contains both of them.

We are interested in when a bicomponent B separates two vertices. By definition,
the edge set B separates vertices x and y if every xy-path includes an edge of B.
Note that it is possible for two vertices to be separated by a vertex of V (B) but not
separated by B, e.g., x and y in Figure 3.

The following notation, illustrated in Figure 3, elucidates the concept. Let B be
the union of one or more bicomponents forming a connected subgraph. (In most of
our applications B will be a single bicomponent, as in Figure 3.) For any vertex v,
the projection of v onto B, denoted πB(v), is the vertex of V (B) that is the end of
every minimal path from v to V (B) (“minimal” means that no vertex but the last
one belongs to V (B)). For example, a vertex v ∈ V (B) has πB(v) = v.

Assuming the graph is connected, any projection πB(v) is unique. In proof,
suppose not. So there are two minimal paths from v to V (B), say P1 and P2, with
Pi ending in vertex bi ∈ V (B) and b1 �= b2. Let Q be a b1b2-path in B. P1 ∪Q ∪ P2

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1653

contains a cycle C that includes edges belonging to B as well as edges not belonging to
B. So the same holds for some bicomponent B0 contained in B, i.e., C includes edges
belonging to B0 as well as edges not belonging to B0. But this contradicts Fact 1.

Projection gives this alternate characterization of separation: v and w are sepa-
rated by B if and only if their projections are distinct, πB(v) �= πB(w). We use the
characterization only when B is a bicomponent, but the following proof of the char-
acterization holds for B a connected union of bicomponents too: If πB(v) = πB(w),
then by definition there is a vw-path avoiding B; i.e., B does not separate v and
w. To prove the opposite direction a vw-path avoiding B gives a πB(v)πB(w)-walk
avoiding B. In general any xy-walk avoiding B and having x, y ∈ V (B) has x = y
(by Fact 1). So πB(v) = πB(w).

We now give some basic properties of separation by a bicomponent. Say that
vertex s weakly separates sets A,B ⊆ V if every path from A to B contains s. It is
possible that s belongs to A or B.

Lemma 2.2. Let G be connected, and let B be a bicomponent.
(i) Any two distinct vertices in V (B) are separated by B.
(ii) Any two distinct vertices x, y are separated by B if and only if every xy-path

contains an edge of B if and only if some xy-path contains an edge of B.
(iii) For any set of vertices W , either B separates some two vertices of W , or

some vertex of V (B) weakly separates W and V (B).
Proof. (i) and (ii) follow easily from the characterization of separation in terms

of projections. For (iii) note that if B does not separate any two vertices of W , then
every w ∈ W has the same projection πB(w) (by (ii)). By definition, this vertex
πB(w) weakly separates W and V (B).

For any real value b > 2, a bicomponent is b-round if it contains a cycle of ≥ b
edges. D(x, y) denotes the length of a longest xy-path.

Lemma 2.3. Consider a connected graph and two distinct vertices x, y.
(i) If x and y are separated by a b-round bicomponent, then D(x, y) ≥ b/2.
(ii) If b = D(x, y)/d(x, y) > 2, then x and y are separated by a b-round bicompo-

nent.
Remark. (ii) is consistent with x and y being vertices of the same biconnected

component.
Proof. (i) Let B be a bicomponent containing a cycle A of length ≥ b. First

suppose that x and y are distinct vertices of V (B). Biconnectedness implies there are
distinct vertices r, s ∈ A with an xr-path and a ys-path that are disjoint and also
both disjoint from A until their last vertex. (This fact is well known [19, Exercise
4.2.9]. It is also easy to see by adding edge xy to the graph if it is not already present
and applying Fact 1 to xy and an edge of A.) Piece these paths together to form
an xy-path of length ≥ b/2. (Specifically, follow the xr-path, then a path A[r, s] of
length ≥ b/2, and then the ys-path reversed.)

Now suppose that x and y are arbitrary vertices separated by B. Take an xy-path.
It contains an xπB(x)-subpath and a yπB(y)-subpath. We have πB(x) �= πB(y), so
the subpaths are disjoint. Form the desired xy-path from the two subpaths plus the
πB(x)πB(y)-path of length ≥ b/2 constructed above (this path is contained in B, so
our overall path is simple).

(ii) We’ll prove a slightly more general statement: D(x, y) > d(x, y) implies that
x and y are separated by a (D(x, y)/d(x, y) + 1)-round bicomponent.

Let L (S) be a longest (shortest) xy-path. Let the vertices of L ∩ S be x =
s0, s1, . . . , sr = y, ordered as they occur in S. (This need not be their order in
L.) For each consecutive pair si, si+1, paths L[si, si+1] and S[si, si+1] are internally

1654 HAROLD N. GABOW

vertex-disjoint. (L[si, si+1] may actually be a subpath of the reverse of L.) The
various paths L[si, si+1] can share vertices and edges, but certainly some L[sj , sj+1]
has length ≥ |L|/r ≥ |L|/|S|. Thus L[sj , sj+1], S[sj+1, sj] is a cycle A. (A is sim-
ple, and its length is ≥ 1 + 	|L|/|S|
 ≥ 3.) A is contained in some bicomponent
B. A makes B (|L|/|S| + 1)-round. Since S contains an edge of B, B separates x
and y.

Finding separation pairs. Recall that two edges are independent if all four
endpoints are distinct. A set of edges forms a star if some vertex (its center) is
incident to each of the edges. For a star that is a single edge we choose the center as
follows: the stars in this paper are always subsets of edge sets E[X,Y], where X and
Y partition the vertex set; we always choose the center to be in the set named X.
For an edge e ∈ E[X,Y], let X(e) denote the endpoint of e in X. For F ⊆ E[X,Y],
X(F) denotes {X(e) : e ∈ F}.

Lemma 2.4. Let the vertex set of graph G be partitioned into sets X and Y ,
with G[X] connected. Let B be a bicomponent of G[X], and let F = E[X,Y] with F
nonempty.

Suppose that no two independent edges e1, e2 ∈ F have their ends X(e1), X(e2)
separated by B, in graph G[X]. Then either F is a star or no two vertices of X(F)
are separated by B.

Proof. Suppose that F is not a star. Our goal is to prove that every vertex
x ∈ X(F) has the same projection πB(x). (All projections in this argument are
calculated in graph G[X].)

The supposition on F implies that there are independent edges xy, x′y′ ∈ E[X,Y].
(A quick way to see this is by König’s theorem: in a bipartite graph a maximum
matching and a minimum vertex cover have the same size.) The lemma’s hypothesis
implies πB(x) = πB(x′). Consider any edge zw ∈ E[X,Y] with z �= x, x′. This edge is
independent with either xy or x′y′ (or both). Hence the lemma’s hypothesis implies
πB(z) = πB(x′).

The next two lemmas are used by the algorithm to find the separation pairs r0, r1
described earlier (recall Figure 2). Each vertex ri is found separately. The first of
the lemmas shows how to find one vertex ri. The construction is based on a function
Π(F, x) that we now define.

We start by extending the projection operation, as follows. Consider a connected
graph G and a set S of at least two vertices. Let B denote the union of all bicompo-
nents that separate some two vertices of S. We’ll use this alternate characterization
of B: let T be a minimal tree of G that spans S. Minimality means that every leaf
belongs to S. Then B is the union of all bicomponents that contain an edge of T .
This characterization of B follows from Lemma 2.2(ii).

For any vertex v define the projection πS(v) to be πB(v), i.e., the vertex of V (B)
that is the end of every minimal path from v to V (B). The construction gives these
two properties:

(a) For any vertex v, πS(v) weakly separates S from v.
(b) For any vertices v ∈ V and s ∈ S, the bicomponents that separate two vertices

of S collectively contain an sπS(v)-path.
Now consider a graph G whose vertices are partitioned into sets X and Y , with

G[X] connected. For any nonempty set of edges F ⊆ E[X,Y] and any vertex x ∈ X,
define the near separator Π(F, x) as follows:

(i) if F is a star, then Π(F, x) is its center;
(ii) if F is not a star, then Π(F, x) = πX(F)(x) (where the latter is calculated in

G[X]).

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1655

In (i) if F is just a single edge, then recall that our convention chooses Π(F, x) to be
the vertex X(F). In (ii) note that |X(F)| ≥ 2. Hence πX(F)(x) is defined.

Continuing with this G, X, and Y , for any real value b > 2 call a set of edges F ⊆
E[X,Y] b-close if no two independent edges e1, e2 ∈ F have their ends X(e1), X(e2)
separated by a b-round bicomponent in G[X]. Observe that if F is b-close and B is
a b-round bicomponent of G[X], then Lemma 2.4 applies. It shows that either F is a
star or no two vertices of X(F) are separated by B.

Lemma 2.5. Let the vertex set of graph G be partitioned into sets X and Y , with
G[X] connected. Let F = E[X,Y] be b-close for some b > 2.

Let P be an x0x1-path in G[X], with x0 ∈ X(F). Suppose |P | ≥ dX(x0, x1)b > 0.
Then either F is a star or the near separator r = Π(F, x1) has these properties:

r ∈ P , r weakly separates X(F) from V (P (r, x1]) in graph G[X], and |P [x0, r]| <
dX(x0, x1)b.

Remark. The lemma is illustrated four times in Figure 2. First discard all edges
incident to C except the four in the upper left. These four edges constitute set F .
Extend P of the figure to the left so it begins at one of the three vertices of X(F).
Now r0 is vertex r of the lemma. Similarly for r0 in the lower left. In the upper right,
r1 is r of the lemma, this time a weak separator. The lower right illustrates the case
of F a star.

Proof. Suppose that F is not a star. Property (a) above shows that r weakly
separates X(F) from x1. Hence r ∈ P . Furthermore (a) shows that r weakly separates
X(F) from V (P (r, x1]).

It remains only to deduce the inequality of the lemma. Clearly it suffices to show
these two inequalities:

|P [x0, r]| < dX(x0, r)b, dX(x0, r) ≤ dX(x0, x1).

The second inequality is true because r weakly separates x0 and x1. For the first
inequality, property (b) above shows there is an x0r-path within the bicomponents
that separate two vertices of X(F). None of these bicomponents is b-round. (As
mentioned in the definition of b-closeness, this follows from Lemma 2.4.) So no b-
round bicomponent separates x0 and r. Now Lemma 2.3(ii) implies |P [x0, r]| <
dX(x0, r)b.

Recall that two vertices a, b in a biconnected graph G form a separation pair if
G − {a, b} is disconnected. In that case an a,b-tricomponent T is a maximal set of
edges, any two of which are joined by a path that does not contain a or b internally
[12]. Alternatively, T is a connected component of G−{a, b} plus the edges from the
component to a or b. (Note that T needn’t be 3-connected.) The next lemma shows
how we combine two near separators r0, r1 of the previous lemma into a separation
pair.

Lemma 2.6. Let G be a biconnected graph whose vertex set is partitioned into
sets X and Y , with G[X] connected. Let E[X,Y] = F0 ∪ F1 with Y (E[X,Y]) �= Y .
For some b > 2 let both sets Fi be b-close.

Let xi, i = 0, 1, be distinct vertices with xi ∈ X(Fi). Let P be an x0x1-path
in G[X]. Suppose |P | ≥ 2dX(x0, x1)b + 2. For i = 0, 1 let ri be the near separator
Π(Fi, x1−i). Then

(i) r0, r1 is a separation pair of G.
(ii) For i = 0, 1 if Fi is a star centered in ri ∈ Y , then extend P by the edge xi, ri.

Let P be the resulting path. P contains r0 and r1, and P [r0, r1] is contained in an
r0r1-tricomponent that is contained in G[X ∪ {r0, r1}].

1656 HAROLD N. GABOW

Remark. P is equal to either P (if both ri ∈ X), or P plus an edge at one end (if
exactly one ri ∈ Y), or P plus an edge at both ends (if both ri ∈ Y).

Proof. Note that Lemma 2.5 applies to both sets Fi. Note also that in (ii), P is
a path, even if both vertices r0, r1 belong to Y . This follows from the biconnectivity
of G. It is clear that in all cases P contains both r0 and r1.

The argument treats P and P as oriented paths. In particular, the notation
P [a, b] is well formed only if a precedes b in P . Take a vertex x ∈ P (r0, r1). (More
precisely, x must occur after r0 and before r1.) We claim that such an x exists. In
particular this claim implies that r0 precedes r1 in P .

To prove the claim first observe that ri ∈ X implies

|P [xi, ri]| < dX(x0, x1)b.

If Fi is not a star, this inequality follows from Lemma 2.5. If Fi is a star, then ri is
its center, so ri ∈ X implies ri = xi and |P [xi, ri]| = 0 < dX(x0, x1)b.

Hence if both ri ∈ X, the displayed inequality plus the hypothesized lower bound
on |P | imply |P [r0, r1]| ≥ 2; i.e., r0 precedes r1 in P and V (P (r0, r1)) �= ∅, as desired
(recall that P = P in this case). On the other hand, if some ri ∈ Y , then we can
simply take x to be the vertex xi. It is easy to check that xi �= r1−i, again using the
hypothesized bound on |P |. The claim now follows in all cases.

We prove (i) by showing that r0, r1 separates vertex x and Y − {r0, r1}. Let Q
be a path from Y −{r0, r1} to x; we must show that Q contains r0 or r1. To get from
Y to X, Q contains an edge of E[Y,X]. Let yz ∈ E[Y,X] be the last such edge in Q.
For definiteness assume yz ∈ F0; we will show r0 ∈ V (Q). If F0 is a star, then clearly
Q contains its center, which is r0. Suppose that F0 is not a star. Lemma 2.5 shows
that r0 weakly separates z ∈ X(F0) and x ∈ V (P (r0, x1]) in graph G[X]. The choice
of yz ensures that Q[z, x] is contained in X. Hence r0 ∈ V (Q[z, x]).

It is easy to see that we have also proved (ii). In particular the last part of (ii)
follows since x ∈ P (r0, r1).

Here’s how the algorithm uses the separation pairs r0, r1 (recall Figure 2). Say
that a path P traverses a subgraph H if P contains a subpath of ≥ 3 edges, where
the first and last subpath edge do not belong to H but all other subpath edges do
belong to H. Let a, b be a separation pair. Clearly any path P traversing an a, b-
tricomponent T contains both a and b. Furthermore P traverses T only once; i.e.,
E(P) ∩ T = E(P [a, b]).

Let C∗ be a v-cycle. Let r0, r1 be a separation pair of G contained in C∗, and
abbreviate C∗

v [r0, r1] to C∗
1 . Let T1 be the r0, r1-tricomponent of G that contains C∗

1 .
Thus C∗ traverses T1. Let Q1 be an arbitrary r0r1-path contained in T1. Next define
C∗

2 , T2, and Q2 similarly from a second separation pair r′0, r
′
1 that is also contained in

C∗. Assume that C∗
1 and C∗

2 are edge-disjoint; e.g., T1 and T2 are edge-disjoint.
The gluing principle states that regardless of the choice of Qi, a v-cycle containing

paths Q1 and Q2 exists. In proof, the edge set A = (C∗−∪2
i=1C

∗
i)∪ ∪2

i=1Qi is such a
cycle. This hinges on the fact that A is guaranteed to be simple, because C∗ traverses
each tricomponent T1, T2 only once.

The algorithm will identify the above separation pairs r0, r1 and r′0, r
′
1 and the

corresponding tricomponents T1 and T2. The algorithm will find its own r0r1-path
Q1 and r′0r

′
1-path Q2 (recursively). The gluing principle guarantees a v-cycle through

Q1 and Q2. We shall see that such a cycle can be found efficiently.
The existence of the separating pairs r0, r1 will be guaranteed by applying Lemma

2.6. The lemma’s x0x1-path P will be a subpath of C∗, and P [r0, r1] will be the above

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1657

r1

0r

1F0F

0r x

x

x

X

Y

Fig. 4. Finding a tricomponent cover on X. In this figure F0 is not a star, F1 is a star centered
at r1 ∈ Y , and there are two possible vertices r0 = Π(F0, x).

path C∗
1 (or C∗

2). Since the algorithm doesn’t know P , x0, or x1, it doesn’t know the
separation pair r0, r1 (since ri is defined in terms of xi). Similarly the algorithm
doesn’t know the corresponding tricomponent containing P [r0, r1]. To compensate,
the algorithm finds a set of tricomponents that includes the desired tricomponent
containing P [r0, r1]. The set is captured in the following definition.

Consider sets G,X, Y, F0, and F1 of Lemma 2.6. As in the lemma, the sets Fi are
b-close. A tricomponent cover on X is a collection T of triplets of the form (r0, r1, T)
satisfying the following conditions:

(i) r0, r1 is a separation pair of G with T an r0r1-tricomponent, where r0, r1 ∈
X ∪ Y (E[X,Y]) and V (T) ⊆ X ∪ {r0, r1}.

(ii) The edge sets T of T are pairwise disjoint.
(iii) Let P be any x0x1-path satisfying the conditions of Lemma 2.6. Then the

lemma gives the separation pair r0, r1. T must include a triplet (r0, r1, T), where, as
in the lemma, ri = Π(Fi, x1−i) for i = 0, 1 and T is the r0r1-tricomponent containing
P [r0, r1].

T may include other triplets besides those required by (iii).
Characterizing a tricomponent cover depends on how many sets F0, F1 are stars.

Lemma 2.7 below is the heart of the characterization. Part (ii) of the lemma, which
handles the case of exactly one star, is illustrated in Figure 4.

Lemma 2.7. Suppose that an application of Lemma 2.6 determines the separation
pair r0, r1 from G,X, Y, F0, F1, and P . Suppose that F0 is not a star.

(i) Suppose that F1 is also not a star. Then every vertex x ∈ X(F1) determines
the same near separator; i.e., Π(F0, x) = r0.

(ii) Suppose that F1 is a star and its center r1 belongs to Y . For two vertices
xj ∈ X(F1), j = 1, 2, let Π(F0, xj), r1 be a separation pair with Tj a corresponding
tricomponent such that xj ∈ V (Tj) − Π(F0, xj). Then T1 and T2 are either identical
or edge-disjoint.

Proof. Recall that the notion Π(F, x) is defined in terms of the notion πS(v),
whose definition in turn is based on the set B of bicomponents that separate two
vertices of S.

(i) For i = 0, 1 let Bi be the set of bicomponents used to define Π(Fi, ·). Observe
that r0 /∈ V (B1). To see this recall that, by definition, r1 = Π(F1, x0) is the first

1658 HAROLD N. GABOW

vertex of the path P [x0, r1] that belongs to V (B1). The proof of Lemma 2.6 shows
that r0 precedes r1 in P . Hence r0 /∈ V (B1).

Any x ∈ X(F1) is joined to x1 by a path Q contained in V (B1) (by construction).
Q avoids V (B0). To see this assume the contrary. Then Q contains a path from x1 to
V (B0). Hence Q contains r0, since r0 is defined as Π(F0, x1). But we have just seen
that this is not the case.

Combining Q and P [r0, x1] gives a path from x to r0 whose first vertex in V (B0)
is r0. So, by definition, r0 = Π(F0, x).

(ii) The lemma is obvious if Π(F0, x1) = Π(F0, x2). So assume Π(F0, x1) �=
Π(F0, x2). To treat this case it suffices to show that in general, for any separation
pair Π(F0, x), r1 with tricomponent T having x ∈ V (T) − Π(F0, x), every vertex
v ∈ V (T) − r1 has the same near separator Π(F0, v) = Π(F0, x).

Let B0 be the set of bicomponents used to define Π(F0, ·). Let Q be a path from
v to x that avoids Π(F0, x) and r1. (Q exists by the definition of tricomponent.) Let
Q′ be a path from x to Π(F0, x) that contains no vertex of V (B0) besides Π(F0, x).
(Q′ exists by the definition of Π(F0, x).) Combining Q and Q′ gives a path from v
to Π(F0, x) containing no vertex of V (B0) besides Π(F0, x). This shows Π(F0, v) =
Π(F0, x).

Using the lemma, a tricomponent cover T on X can be found as follows. Let P
be an x0x1-path satisfying the conditions of Lemma 2.6, and let (r0, r1, T0) be the
corresponding triplet that must be included in T . Consider the following three cases
that, taking into account the symmetry between F0 and F1, cover all possibilities.

Case 1. Neither set Fi is a star. We construct T containing just one triplet, the
desired one: Lemma 2.7(i) shows how to identify the two separating vertices r0, r1.
T0 is the (unique) r0r1-tricomponent that is contained in X (Lemma 2.6(ii)).

Case 2. F1 is a star centered in X, or both F0 and F1 are stars. Both near
separators are known: the near separator of a star is its center. If F0 is not a star
and F1 is a star centered in r1 ∈ X, then Lemma 2.6 shows r0 = Π(F0, r1).

In T the tricomponents T that correspond to the separation pair r0, r1 range
over all the r0r1-tricomponents whose vertices are in X ∪ {r0, r1}. There may be
any number of such tricomponents. However, these tricomponents are clearly edge-
disjoint, and one of them is the desired tricomponent T0 containing P [r0, r1].

Case 3. F1 is a star centered in Y and F0 is not a star. (This case is illustrated
in Figure 4.) Construct T as follows. r1 is the center of star F1. For each vertex
x ∈ X(F1), set r0 = Π(F0, x). If r0 �= x and r0, r1 is a separation pair, then let T be
the corresponding tricomponent containing x and add (r0, r1, T) to T .

Lemma 2.7(ii) shows that all tricomponents so constructed are pairwise edge-
disjoint.

To show that T contains the required triplet for P , recall that the proof of Lemma
2.6 shows x1 �= r0 (where x1 is the last vertex of P). In other words, x1 �= Π(F0, x1).
Thus T contains (Π(F0, x1), r1, T0), as required.

The algorithm of the next section constructs tricomponent covers on a number
of vertex sets X. These sets X are pairwise vertex-disjoint. (Specifically each X is
a connected component of G− V [C], where C is the algorithm’s current cycle.) It is
clear that property (ii) of the definition of tricomponent cover extends to this context:
any two edge sets T from the same or different tricomponent covers T are disjoint.

We end this section with an observation that is not needed for the logical develop-
ment but may prevent misconceptions. It is possible that two edge-disjoint subpaths
of C∗ both satisfy the hypothesis of Lemma 2.6 and both traverse the same set X
(where, as just mentioned, X is a connected component of G − V [C]). This can oc-

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1659

cur in Case 3 above. For instance, in Figure 4, C∗ enters X on the left edge of F0,
goes through the upper r0 vertex and the upper row of bicomponents to an edge xr1,
then goes through the lower row of bicomponents to the lower r0 vertex, and finally
proceeds to the right edge of F0.

3. Algorithm. This section presents an algorithm to approximate the longest
cycle C∗ through a given vertex v of degree two in a given graph G. Sections 4–5 give
the analysis (as well as some lower level details of the algorithm in section 5).

Let � be the length of C∗. For every integer p ≥ 1 we give an algorithm Ap that
finds a v-cycle of length Ω((log �/ log log �)p). Ap uses Ap−1 as a subroutine, and the
hidden constant decreases with p. We choose an appropriate value p∗ of p to get the
desired overall result on superpolylogarithmic cycles.

For brevity the presentation of Ap is not optimized. Slight asymptotic improve-
ments are possible by using more detailed versions of A1 and A2. Also we make no
attempt to keep the constants small, preferring instead to keep the arithmetic simple.

We will guess a value �∗ as the length of C∗. Write

a∗ = log �∗, k∗ = log a∗ = log log �∗.

For p ≤ p∗, algorithm Ap will be given a smaller graph derived from the given one,
along with a degree two vertex v. When describing Ap we will use C∗ to denote the
longest v-cycle in this recursive call. Ap uses variables a and k that play roles similar
to the roles of a∗ and k∗ above. The formulas for these quantities are

a =
pa∗

p∗
, k = k∗.(1)

The values of a decrease slowly from a∗ as p decreases (in recursive calls). This allows
us to find the longest v-cycle possible. The reader should think of variable k as log a,
in analogy with the definition of k∗. However since log a is difficult to compute, we
actually define k to be the slightly larger value k∗.

Algorithm Ap has this length guarantee: given a graph with a v-cycle of length
≥ 2a for a defined by (1), Ap returns a v-cycle of length at least

αp

(a
k

)p

.

Here αp ≤ 1 is a factor depending on p that we will derive. The length guarantee is
proved in Lemma 4.1.

We start with a driving routine. It ensures that a is large, in all calls to routines
Ap∗ ,Ap∗−1, . . . ,A1.

Main Routine.

Step 1. If |C∗| ≤ 228

, use color coding to find a longest v-cycle, and return it.
Step 2. For k∗ taking on consecutive integral values from 8 to � log log n set a∗ = 2k

∗
,

p∗ = �
√
a∗/24k∗, and call Ap∗ . Return the longest v-cycle found by any of

these routines.
To implement Step 1 note that for any integer k, color coding can find the longest

v-cycle having length ≤ k in time 2O(k)n log n. Applying this with k = 228

almost
accomplishes Step 1. But it doesn’t suffice, since it doesn’t prove |C∗| ≤ k. In [11]
color coding is supplemented with the undirected cycle structure theorem stated in
section 1 to accomplish Step 1. Specifically [11] shows that for any undirected graph
and any integer k, a v-cycle of length ≥ k can be found in time O(m) + 2O(k)n log n,
if one exists. This gives a complete implementation of Step 1.

1660 HAROLD N. GABOW

v’

r0 1r

x’

v

c’

c

(a)

x

Q

X

C

x

v

(b)

Q

c’ v’ c

c’’

X

C

(c)

v

X

v’

Q

C

< I
>_ I+1

< I+1

Fig. 5. Recursive calls of Ap+1 (see next page): (a) Step 2.1 calls Ap; (b) Step 3.1 and (c)
Step 5.3 call Ap+1.

Algorithm A1 is again implemented using the algorithm of [11]. It can find a
v-cycle of length min{|C∗|, log n} in polynomial time. This implies that our length
guarantee for A1 is satisfied with α1 = 1, since clearly a ≤ log n.

For p∗ > p ≥ 1 Algorithm Ap+1 uses Ap. We give an overview of Ap+1 before
stating it precisely. Ap+1 begins by using Ap to find a v-cycle C. Then Ap+1 recurses
on each connected component X of G − V (C), to find a long path P illustrated in
Figure 1. The idea is to enlarge one of these recursively found paths P , using C or
another recursively found cycle, to get a longer cycle C. Specifically each level of
recursion in Ap+1 enlarges the cycle (or path) of the previous level by the additive
“increment” I defined by

ã =
pa

p + 1
, I =

αp

2

(
ã

k

)p

.(2)

Observe from (1) that ã is the value of a in the recursive calls that Ap+1 makes to Ap.
So recalling the length guarantee stated above, I is half the length of a recursively
found cycle. The enlarged v-cycle C gets returned by Ap+1.

Ap+1 uses several different strategies to construct C. The first strategy (Step 3
below) is the analogue of Björklund and Husfeldt’s algorithm [3] (their algorithm also
provides the organization described in the previous paragraph): we apply Lemma
2.1(i) (and Figure 1), using the recursive call to find a long path through X and
combining this path with C to get C. In Step 3 (and Figure 5(b)) the long path
through X is denoted c,Q, c′′, where c, c′′ ∈ C and Q ⊆ X. This method is effective
if dC(c, v) is large.

The second major strategy involves using the gluing principle to piece together
two recursively found paths into C, as in Figure 2. We implement this strategy as
follows. Partition the edges of C∗ into maximal subpaths that are internally disjoint
from C. (Recall that two paths are internally disjoint if any common vertex is an end
of both paths.) Call each of these subpaths a segment of C∗. Both edges incident
to v are themselves segments. In general a segment is either an edge or chord of C
or a path traversing a connected component X of G− V (C) (i.e., a path through X
plus two connecting edges). Note that more than one segment may traverse a given
component X.

In the next paragraph we apply Lemma 2.6 to a segment S that traverses a
connected component X. This is interpreted as follows. In the lemma define Y
as the vertex complement of X, and P as S[x0, x1] for x0 and x1 the second and

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1661

penultimate vertices, respectively, of S (since the first and last vertices of S belong
to C; the variables Fi and b of the lemma are defined in Step 5 below).

Now consider two “long” segments of C∗ and their corresponding connected com-
ponents X. We will apply Lemma 2.6 (to each X and its segment) to find a separation
pair r0, r1 and corresponding r0r1-tricomponent T contained in X ∪{r0, r1}, where T
contains a (long) portion of C∗, C∗[r0, r1]. We will use recursive calls to approximate
C∗[r0, r1]. (This is done in Step 5.3, Figure 5(c).) To be precise for i = 1, 2 let Xi be
the two components X, let C∗

i be the subpath C∗[r0, r1] contained in Xi, and let Qi

be the r0r1-path returned by the recursive call (on the identified r0r1-tricomponent
T). The gluing principle guarantees the existence of a cycle containing Q1, Q2, and v.
The algorithm can find such a v-cycle using a routine for subgraph homeomorphism.
This is done in Step 6.

To implement this strategy based on the separation pairs r0, r1 given by Lemma
2.6, we must ensure that the lemma’s hypothesis holds. In particular we must ensure
that F0 and F1 are b-close. This is done using Lemma 2.3(i), in Step 2 (Figure 5(a)).
Then (in Step 5.2) we use Lemma 2.7 to find a tricomponent cover, thereby finding
the desired separation pairs r0, r1.

A special case of the second strategy occurs when the first strategy is not appli-
cable but C∗ has only one long segment (so gluing is not applicable). As before, the
long segment traverses a component X as in Figure 5(c). This possibility is easy to
handle: it suffices to return a cycle constructed from the cycle found recursively in X
(Step 7).

We have now sketched the major pieces of the algorithm. Because our two strate-
gies use differing recursive calls (Figure 5(b)–(c)) the algorithm maintains numeric
quantities like I to decide which strategy to use.

We proceed to give a high level statement of the algorithm. The details that are
postponed to section 5 are indicated in the algorithm statement.

Ap+1 has parameters G the graph, v the vertex of degree two, and ρ the recursion
level. It is assumed that G has a v-cycle. Parameter ρ is used to prevent too many
levels of recursion (which might violate the time bound). ρ equals 0 in the initial call.

The algorithm knows the values a and k of (1), ã and I of (2). In addition it uses
the values

b = 2 ã+1, g =

(
ã

k

)p+1

.(3)

The algorithm generates a number of v-cycles. It maintains C as the longest v-cycle
ever generated, and eventually returns C. If a cycle of length ≥ g is ever generated,
that cycle is immediately returned.

Algorithm Ap+1(G, v, ρ). /∗ The algorithm also knows the values defined in
(1)–(3): a, k, ã, I, b, g ∗/
Step 0. Initialize C to any v-cycle. If ρ ≥ ap+1, then return C. Otherwise prune G

to the (unique) biconnected component containing v. Let w0, w1 be the two
neighbors of v in G. Thus W = {vw0, vw1} is a w0w1-tricomponent. For
every other w0w1-tricomponent U , execute all the steps below for the graph
G′ whose edge set is U ∪W . Then return C.

Step 1. Find a v-cycle C by calling Ap(G
′, v, 0).

Step 2. Repeat Step 2.1 until either it makes |C| ≥ g or no further enlargement of C
is possible. In the former case return C = C.

1662 HAROLD N. GABOW

Step 2.1 (This step is illustrated in Figure 5(a).) Suppose for some connected compo-
nent X of G′ − V (C) that E[C,X] contains independent edges cx, c′x′ such
that |Cv[c, c

′]| < I and some b-round bicomponent of G[X] separates x and
x′. Call Ap to find an xx′-path Q in X. Specifically create a new vertex v′

along with new edges v′x, v′x′, and call Ap(H, v′, 0) for H the graph induced
by V [X]∪{v′}. In C replace Cv[c, c

′] by c,Q, c′. (The implementation of this
step is given in section 5. Section 4 shows that this replacement enlarges C.)

In the rest of the algorithm the variable X ranges over every connected component
of G′ − V (C). (There may not be any.)
Step 3. Execute Step 3.1 for each component X that has a neighbor c ∈ C with

dC(c, v) ≥ I+1 (if X has more than one such neighbor choose c arbitrarily).
Step 3.1. (This step is illustrated in Figure 5(b).) Create two new vertices v′, c′ along

with new edges v′c, v′c′, plus an edge c′x for each vertex x ∈ X that is
a neighbor of C − c. Call Ap+1(H, v′, ρ + 1) recursively for H, the graph
induced by V [X] ∪ {c, c′, v′}. The cycle returned corresponds to a path
c,Q, c′′ in G′, where Q ⊆ X and c′′ ∈ C − c. Update C for the v-cycle
c,Q, c′′, Cv[c

′′, c] of G.
Step 4. For each component X, check whether E[C,X] contains two independent

edges cx, c′x′ that have dX(x, x′) ≥ g. If so, let Q be an x′x-path in X and
return the cycle x′, Q, x, Cv[c, c

′], x′.
Step 5. This step applies Lemma 2.6. Initialize a set of paths Q to ∅. For each

component X not processed in Step 3 (i.e., every neighbor c ∈ C of X has
dC(c, v) < I + 1) execute Steps 5.1–5.3. (Note that if every component X
was processed in Step 3 then Steps 5–7 do nothing.)

Step 5.1. Partition E[C,X] into sets F0 and F1, where F0 contains the edges cx ∈
E[C,X] with dC(c, w0) ≤ dC(c, w1) and F1 contains the remaining edges. If
F0 or F1 is empty, skip Steps 5.2–5.3 and proceed to the next component
X.

Step 5.2. As described in section 2 use Lemma 2.7 to construct a tricomponent cover
T on X. Then each triplet (r0, r1, T) of T has r0, r1 ∈ X ∪ C and T ⊆
E(X) ∪ E[C,X].

(Observe the following property of T . Consider any segment of C∗ that traverses
X such that Lemma 2.6 guarantees a separation pair r0, r1 when applied to X and
the portion of the segment in X. Then T contains (r0, r1, T), where T is the r0r1-
tricomponent in X ∪ {r0, r1} containing C∗

v [r0, r1].)
Step 5.3. (This step is illustrated in Figure 5(c).) For each (r0, r1, T) ∈ T , call Ap+1 to

find an r0r1-path Q. Specifically create a new vertex v′ along with new edges
v′r0, v

′r1, and call Ap+1(H, v′, ρ+1) recursively for H the graph induced by
V [T] ∪ {v′}. Add Q to Q.

Step 6. For every pair of paths in Q, search for a cycle containing v and the two
paths. Update C for every cycle found. (The implementation of this step is
given in section 5.)

Step 7. Let Q be a longest path of Q. Extend Q to a v-cycle. (As shown below, this
can be done since Q and v are in different r0r1-tricomponents). Update C
for this cycle.

We leave the following implementation details to section 5: checking for the ex-
istence of the separating b-round bicomponent in Step 2.1, finding the desired cycle
in Step 6, and computing all the numeric quantities like I, b, etc. The rest of the
implementation of the algorithm is clear.

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1663

To clarify the difference in recursive calls to Ap and Ap+1, observe that Ap es-
sentially initializes C, in Steps 1 and 2. Ap+1 processes C, in Steps 3 and 5.

We close this section by verifying that the algorithm is well specified. First note
that each graph G′ constructed in Step 0 is biconnected. This follows easily from
Fact 1.

Recall that we assume Ap+1 is called with a graph that has a v-cycle. It is easy
to check that this property is maintained in all the recursive calls. In particular for
Step 3.1 the biconnectivity of G′ guarantees that X has neighbors in C − c.

Finally, we note that the v-cycle of Step 7 always exists. In proof, Step 5.2 shows
that v does not belong to the r0r1-tricomponent T containing Q. The biconnectivity
of G′ and Fact 1 show there is an r1r0-path R containing v that is edge-disjoint from
T . Now Q,R is the desired v-cycle for Step 7.

4. Length analysis. Before diving into the analysis we restate the high level
purpose of Algorithm Ap+1, for some intuition. Recall the length guarantee given for

Ap at the start of last section. Step 1 initializes C to a v-cycle of length ≥ αp

(
ã
k

)p

=

2I. This can be proved by the same simple argument as given for Claim 2 below. The
task for the rest of Ap+1 is to enlarge the cycle to the length guarantee’s quantity

αp+1

(
a
k

)p+1
. As mentioned in the last section, this is accomplished by having each

level of recursion (of Ap+1) increase the cycle length by ≥ I. This fact is the heart of
the analysis. It is stated formally as the Assertion of the Lemma 4.1 below.

We start the formal analysis with some inequalities that result from the basic
parameters being large. Step 2 of the Main Routine has

k∗ ≥ 8, a∗ = 2k
∗ ≥ 28, �∗ = 2a

∗ ≥ 228

.

Recall that algorithm Ap is called for all 1 ≤ p ≤ p∗, and Ap uses the value
a = pa∗/p∗. We claim that Ap always has

a ≥ 24, a ≥ 24kp2.(4)

For the first inequality the Main Routine’s Step 2 shows p∗ ≤
√
a∗. Hence a ≥

a∗/p∗ ≥
√
a∗ ≥ 24. For the second inequality write a = pp∗a∗/(p∗)2. The Main

Routine’s Step 2 shows p∗ ≤
√
a∗/24k∗, so we get a ≥ pp∗a∗/(a∗/24k∗) = 24k∗pp∗.

We need to verify two inequalities to ensure that the algorithm makes sense:
p∗ ≥ 1 (since the Main Routine’s Step 2 calls Ap∗) and b > 2 (since Step 2.1 looks

for b-round components). The first inequality is equivalent to
√

a∗/24k∗ ≥ 1, i.e.,
a∗/k∗ ≥ 24. This holds since, remembering that x/ log x is an increasing function for
x ≥ e, we have a∗/k∗ = a∗/ log a∗ ≥ 28/8 = 25. The inequality b > 2 holds since

b = 2 ã+1, ã ≥ 24.
Define the decreasing sequence αp for integers p ≥ 1 by

αp =
1

24p−1(p!)2
.

Let us show that this implies that every algorithm Ap+1, p ≥ 1, has

I ≥ 2.(5)

By definition (2), I =
αp

2

(
ã
k

)p

. Since ã represents the quantity a in algorithm Ap,

the second inequality of (4) amounts to ã ≥ 24kp2. Thus

I ≥ 1

2 · 24p−1p2p

(
24kp2

k

)p

= 12 > 2.

1664 HAROLD N. GABOW

The main task of this section is to prove the following length guarantee (already
mentioned at the start of section 3).

Lemma 4.1. For any p∗ > p ≥ 0, suppose Algorithm Ap+1 is called with graph G
having a v-cycle of length ≥ 2a, and ρ = 0. Here a is defined by the general equation
(1), i.e., a = (p + 1)a∗/p∗. Then Ap+1 returns a v-cycle of length ≥ αp+1(a/k)p+1.

Proof. We induct on p. The base case p = 0 (i.e., Algorithm A1) was verified
after the statement of the Main Routine in section 3. So assume that p ≥ 1 and
algorithm Ap fulfills the length guarantee. We prove that Ap+1 also fulfills the length
guarantee.

We begin by showing that the claim made in Step 2.1 is true, as follows.
Claim 0. Every replacement done by Step 2.1 gives a longer cycle C.
Proof. Applying Lemma 2.3(i) to the vertices x and x′ of Step 2.1 shows that

DX(x, x′) ≥ b/2 = 2 ã. Thus the inductive assumption applies to Ap and shows it

gives an xx′-path of length ≥ αp

(
ã
k

)p

− 2 = 2I − 2. Hence the length of C increases

by > (2I − 2) + 2 − I = I > 0.
Let R be the recursion tree of Ap+1. As usual, identify each node of R with the

corresponding invocation of Ap+1. By definition, R does not contain nodes for calls
to Ap. For any node τ of R let Cτ denote the cycle returned by τ .

Claim 1. Any child σ of any node τ of R has |Cσ| < |Cτ |.
Proof. First suppose that σ is called from Step 3.1 of τ . Lemma 2.1(i) implies

|Cτ | > (|Cσ| − 2) + (I + 1) > |Cσ|.
Next suppose that σ is called from Step 5.3. It suffices to assume that Cσ corre-

sponds to the longest path Q in Q. Step 5.3 shows that |Cσ| = |Q|+ 2. Step 7 shows
that this quantity is < |Cτ | unless {r0, r1} = {w0, w1}, where Q is an r0r1-path and
w0, w1 are the neighbors of v defined in Step 0. So suppose {r0, r1} = {w0, w1}. Step
0 then implies that the r0r1-tricomponent T containing Q equals G′ − {vw0, vw1}.
But this is impossible since the edge sets T and C are disjoint (Step 5.2 defines
T ⊆ E(X) ∪ E[C,X]).

Claim 1 implies that if Step 0 ever returns because ρ ≥ ap+1, the cycle returned
by the root of R has more than the desired length. Now assume R has height < ap+1.
We can also assume that no invocation of Step 2 or 4 returns a cycle of length ≥ g.

To check this we need only show g ≥ αp+1(a/k)p+1, equivalently
(

p
p+1

)p+1 ≥ αp+1.

The latter follows from p ≥ 1, since the left-hand side equals (1 − 1/(p + 1))p+1 ≥
(1 − 1/2)2 = 1/4 > α2 ≥ αp+1.

Define the values

δ = a2(p+1), d = log δ = 2(p + 1) log a, ε = 4/ap+1.(6)

The core of the argument is the following.
Assertion. Consider a node τ of R at depth ≥ j, where j is an integer in

0 ≤ j < ap+1. Let C∗ be a longest v-cycle for τ . Assume for some integer i, 1 ≤ i ≤
a

(p+1)d ,

|C∗| ≥ 2 ã+id−jε.

Then |Cτ | ≥ iI.
Before proving the assertion let us show that it implies the lemma. The root γ

of R has depth j = 0. Set i0 = � a
(p+1)d. We will show that the assertion for i = i0

implies the lemma’s conclusion.

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1665

We begin by showing that i0 satisfies the assertion’s lower bound on |C∗|. Recall
that the lemma assumes |C∗| ≥ 2a. Since a = ã + a/(p + 1) ≥ ã + i0d, this implies
the desired lower bound.

Next we show the two inequalities

i0 ≥ 1 and i0 ≥ a

4(p + 1)2k
.

The first inequality completes the proof that i0 satisfies all hypotheses of the assertion.
The second inequality is used below.

To prove the inequalities, recall log a ≤ log a∗ = k. Thus the definition (6) of d
shows that i0 is the floor of the quantity

a

(p + 1)d
=

a

2(p + 1)2 log a
≥ a

2(p + 1)2k
.

Thus it suffices to show that the rightmost quantity is at least one (since x ≥ 1 implies
�x ≥ x/2). Inequality (4) applied to algorithm Ap+1 shows a ≥ 24k(p + 1)2. Hence
the rightmost quantity is ≥ 24k(p + 1)2/2(p + 1)2k = 12 > 1, as desired.

Since (1 + 1/p)p ≤ e < 3,

I =
αp

2

1

(1 + 1/p)p

(a
k

)p

≥ αp

6

(a
k

)p

.

Using the assertion along with the second displayed lower bound for i0 and the lower
bound for I gives

|Cγ | ≥ i0I ≥ αp

24(p + 1)2

(a
k

)p+1

= αp+1

(a
k

)p+1

,

thus establishing the lemma.
We turn to proving the assertion. We use an inner induction, this time inducting

on the quantity i − j. (This induction is well founded since i − j > 1 − ap+1.) For
future reference observe the inequality

d ≥ jε.

It follows since (6) implies d ≥ 2(p + 1) ≥ 4 = ap+1ε. The next claim provides the
base case of the inner induction.

Claim 2. For any integers 1 ≤ i ≤ 2 and 0 ≤ j < ap+1, |Cτ | ≥ 2I ≥ iI.
Proof. Since id − jε ≥ d − jε ≥ 0, the assertion’s lower bound on |C∗| implies

|C∗| ≥ 2 ã. So when Step 1 is executed for the tricomponent containing C∗, Ap returns
a cycle of length ≥ αp(ã/k)p = 2I. Here we have used the lemma for Ap (true by the
inductive assumption on p) and the definition (2) of ã and I.

To do the inductive step (of the inner induction) assume i ≥ 3. It suffices to
show that some execution of Step 3.1, Step 6, or Step 7 constructs a cycle of length
≥ iI. Fix C as its value after Step 2 has completed. Call a segment of C∗ large
if it has length ≥ 2|C∗|/δ. We establish the inductive step by focusing on the large
segments. (Claim 6 below shows that they exist. Also note that 2|C∗|/δ is a relatively
big quantity, |C∗|/δ ≥ 23d−jε/2d = 22d−jε ≥ 2d = δ, and δ is much bigger than the
cycle to be returned by Ap+1.) Claims 3, 5, and 6 below exhaust all possibilities for
the large segments and show that the assertion holds in each case. This establishes
the inductive step.

1666 HAROLD N. GABOW

Claim 3. |Cτ | ≥ iI if some large segment traverses a component X that has a
neighbor c ∈ C with dC(c, v) ≥ I + 1.

Proof. Lemma 2.1(ii) shows that in Step 3.1 graph H has a v′-cycle of length

≥ (2|C∗|/2δ + 1) + 2 > |C∗|/δ ≥ 2 ã+(i−1)d−jε. The recursive call to Ap+1 has depth
≥ j + 1. Hence the inductive assertion implies that the recursive call finds a cycle
of length ≥ (i − 1)I. Lemma 2.1(i) shows that the v-cycle constructed has length
≥ ((i− 1)I − 2) + dC(c, v) + 1 ≥ iI.

Now assume that the hypothesis of Claim 3 never holds. Our next goal is to
derive the bound (8) below for estimating the performance of Step 5. For the rest of
the lemma’s proof, the notation C∗[x, y] abbreviates C∗

v [x, y], i.e., all subpaths of C∗

that we will refer to avoid v.
Claim 4. Consider any component X that contains a large segment, say the

segment a0, C
∗[x0, x1], a1. Define sets F0 and F1 as in Step 5.1 and value b as in (3).

Let path P be C∗[x0, x1]. Then all hypotheses of Lemma 2.6 are satisfied.
Proof. We start with a useful inequality:

2 + 2dX(x0, x1)b ≤ |C∗|/δap+1.(7)

To prove this recall from Step 4 that we have assumed dX(x0, x1) < g. Furthermore,
g ≤ (a/k)p+1 ≤ (a/8)p+1. Hence

2 + 2dX(x0, x1)b ≤ 4dX(x0, x1)b ≤ 8
(a

8

)p+1

2 ã ≤ ap+12 ã =

(
δ

ap+1

)
2 ã =

2ã+d

ap+1
.

Using i ≥ 3 and d ≥ jε gives d ≤ (i− 1)d− jε. Hence

2 ã+d ≤ 2 ã+(i−1)d−jε ≤ |C∗|
δ

.

Combining the last two displayed inequalities gives (7).
We proceed to verify the hypotheses of Lemma 2.6:
(i) Y (E[X,Y]) �= Y . This holds since v /∈ Y (E[X,Y]).
(ii) Each set Fi is b-close. From Claim 3 we have assumed that any edge cx ∈

E[C,X] has dC(c, v) < I + 1. So the definition of Fi (Step 5.1) shows any two edges
cx, c′x′ in Fi have |Cv[c, c

′]| < I. Recalling that Step 2 cannot enlarge C any further,
this inequality implies that Fi is b-close.

(iii) |P | ≥ 2dX(x0, x1)b + 2. Since P = C∗[x0, x1] comes from a large segment,
(7) gives

2|C∗|
δ

− 2 ≥ |C∗|
δ

≥ |C∗|
δap+1

≥ 2 + 2dX(x0, x1)b.

(iv) xi ∈ X(Fi) for i = 0, 1. We can assume x0 ∈ X(F0), by possibly renaming
vertices w0 and w1. So we must show x1 ∈ X(F1). The inequality of (iii) gives
DX(x0, x1) ≥ dX(x0, x1)b, so DX(x0, x1)/dX(x0, x1) ≥ b. Now Lemma 2.3(ii) shows
that x0 and x1 are separated by a b-round bicomponent in X. Since F0 is b-close, the
independent edges a0x0 and a1x1 show x1 /∈ X(F0), i.e., x1 ∈ X(F1).

Claim 4 shows that any large segment a0, C
∗[x0, x1], a1 has a corresponding triplet

(r0, r1, T) in the tricomponent cover T constructed in Step 5.2. Here r0 and r1 are the
near separators of Lemma 2.6, and T is the r0r1-tricomponent containing C∗[r0, r1].
Thus Step 5.3 adds to Q a path Q corresponding to the triplet (r0, r1, T).

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1667

Furthermore, the large segment satisfies

|C∗[r0, r1]| > |C∗[a0, a1]| −
|C∗|
δap+1

.(8)

To prove this first observe that if F0 is not a star, then Lemma 2.5 shows |C∗[x0, r0]| <
dX(x0, x1)b. A similar statement holds for F1, so if neither set is a star, then

|C∗[r0, r1]| > |C∗[x0, x1]| − 2dX(x0, x1)b.

It is easy to check that the above inequality continues to hold when either set Fi is a
star, since in that case ri is the star’s center xi or ai. The right-hand side is equal to
|C∗[a0, a1]| − 2 − 2dX(x0, x1)b. Applying (7) to this quantity gives (8).

To help bound the right-hand side of (8) we use the following estimate:

|C∗|
(

1 − 1

ap+1

)
≥ 2 ã+id−(j+1)ε.(9)

To prove this recall that ln(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2. Hence log (1 − 1/ap+1) =
log e ln(1 − 1/ap+1) ≥ 2(−2/ap+1) = −4/ap+1 = −ε. Combining this with the

assertion’s assumption |C∗| ≥ 2 ã+id−jε gives (9).
We now analyze the two remaining possibilities for the inner inductive step. Recall

that the inductive quantity is i− j.
Claim 5. |Cτ | ≥ iI if two large segments exist.
Proof. (8) and (9) show that each large segment satisfies

|C∗[r0, r1]| >
(

2|C∗|
δ

)(
1 − 1

ap+1

)
≥ 2 ã+(i−1)d−(j+1)ε+1.

Step 5.3 makes a recursive call for the triplet of T corresponding to each large segment.
This call gives a node of depth ≥ j + 1 in the recursion tree R. Hence by the inner
inductive assertion the recursive call finds an r0r1-path Q of length ≥ (i− 1)I − 2.

Step 6 eventually considers the pair consisting of these two paths Q. The gluing
principle ensures that Step 6 finds a v-cycle containing the two paths. The cycle has
length ≥ 2((i− 1)I − 2) + 2 = iI + (i− 2)I − 2 ≥ iI, where we have used i ≥ 3 and
I ≥ 2 (from (5)).

Claim 6. |Cτ | ≥ iI if at most one large segment exists.
Proof. Let us first show that a large segment must exist. C∗ has ≤ |C| segments,

and we have assumed (from Step 2) that |C| ≤ g. So the segments that are not large
have total length ≤ (2|C∗|/δ)(a/k)p+1 ≤ 2|C∗|/(ak)p+1. The last quantity is < |C∗|.
So the longest segment must be large.

Denote the longest segment as a0, C
∗[x0, x1], a1. The previous paragraph and the

hypothesis of Claim 5 shows that its length is ≥ |C∗| − 2|C∗|/(ak)p+1. Applying (8)
and (9) to this segment, and using the inequalities δ, k ≥ 2, and p ≥ 1, gives

|C∗[r0, r1]| >
(
|C∗| − 2|C∗|

(ak)p+1

)
− |C∗|

δap+1
≥ |C∗|

(
1 − 1

ap+1

)
≥ 2 ã+id−(j+1)ε.

Step 5.3 makes a recursive call for the triplet of T for this segment. The call gives a
node of depth ≥ j + 1 in R. Hence by the inner inductive assertion the recursive call
finds an r0r1-path of length ≥ iI − 2. Step 7 enlarges this path to a v-cycle of length
≥ (iI − 2) + 2 = iI, as desired.

1668 HAROLD N. GABOW

Suppose an iteration of Step 2 of the Main Routine has |C∗| ≥ 2a
∗
. We show that

Ap∗ returns a cycle of length ≥ ep
∗
. For notational simplicity we drop the asterisks

and write a, p, k for a∗, p∗, k∗.
Lemma 4.1 shows that Ap returns a cycle of length ≥ αp(a/k)p. The definition

of αp and (4) give

αp

(a
k

)p

≥ 1

24p−1(p!)2
(24p2)p ≥ 24

p2p

(p!)2
.

Any p ≥ 1 satisfies p! ≤ 3
√
p(p/e)p [5, p. 55]. Hence the rightmost quantity is at least

24
p2p

9p(p/e)2p
≥ e2p

p
≥ ep.

This gives the desired inequality.
Lemma 4.2. The Main Routine returns a v-cycle having length that is at least

exp(c
√

log �/ log log �), where � is the length of a longest v-cycle and c is some positive
constant.

Proof. Assume that Step 1 of the Main Routine does not find a longest cycle, so
log � > 28. Step 2 of the Main Routine eventually chooses k∗ so that

a∗ ≤ log � ≤ 2a∗.

(This is true even if � = n, since the last value for a∗ in Step 2 is ≥ 2 log log n−1 =
(log n)/2.) The first inequality gives |C∗| ≥ 2a

∗
, so, as shown above, Ap∗ returns a

cycle of length ≥ ep
∗
.

Step 2 shows p∗ ≥
√

a∗/24k∗/2 (since x ≥ 1 implies �x ≥ x/2). The displayed
inequalities imply a∗ ≥ (log �)/2 and k∗ ≤ log log �. Thus a∗/k∗ ≥ (log �)/2 log log �.
Hence p∗ ≥ c

√
log �/ log log � for some constant c > 0. The lemma follows.

5. Implementation and timing analysis. This section starts by presenting
the remaining implementation details of the algorithm, thus allowing a complete tim-
ing analysis. The section ends by showing that the algorithm runs in polynomial
time.

Implementation of Step 2.1. We break this step into a number of “passes.”
Each pass but the last one ends by enlarging C. Each pass examines each bicomponent
B of each connected component X, as follows.

Consider a bicomponent B that separates two independent edges cx, c′x′ selected
as in Step 2.1 (Figure 5(a)), i.e., |Cv[c, c

′]| < I. (If there is more than one such
pair of edges for B, choose arbitrarily. If there is no such pair for B, proceed to the
next bicomponent.) Let y be the projection πB(x), i.e., the vertex of V (B) on every
minimal path from x to B. Similarly let y′ be πB(x′). So y �= y′. Call Ap to find a
yy′-path Y in B (creating an artificial vertex v′ as in Step 2.1). If |Y | ≥ I, enlarge Y
to a path from cx to c′x′, and use that cc′-path to enlarge C. Then begin the next
pass. (If |Y | < I, just continue to the next bicomponent B.)

Step 2 ends when |C| ≥ g or a pass examines every bicomponent B without
enlarging C.

The argument for Claim 0 in Lemma 4.1 (applied to y, y′) shows that if B is
b-round, |Y | ≥ 2I−2 ≥ I. Hence we enlarge C in this case. It is possible that |Y | ≥ I
even if B is not b-round. It causes no harm that we enlarge C in this case too. Thus
the implementation of Step 2.1 is correct.

For the efficiency analysis, observe that in each pass, an edge of G belongs to the
graph of at most one call to Ap.

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1669

Implementation of Step 6. Consider the search for a v-cycle containing two
paths of Q. Let the paths be Q, corresponding to triplet (r0, r1, T), and Q′, corre-
sponding to triplet (r′0, r

′
1, T

′). Choose an internal vertex q (resp., q′) of Q (resp., Q′).
Find a cycle A through v, q, and q′, if one exists. The pair r0, r1 separates q and v,
by construction. Hence A traverses T , the r0r1-tricomponent containing q. Replace
the subpath Aq[r0, r1] by Q. Do the same for Q′. This gives the desired cycle. (In
particular, the new cycle is simple.)

A can be found by the algorithm of LaPaugh and Rivest [14]. This algorithm
finds a cycle through three given vertices. It uses linear time (with no large hidden
constants). For the efficiency analysis observe that Q contains ≤ n paths (recall
property (ii) of the definition of tricomponent cover). Hence Step 6 processes O(n2)
pairs of paths.

Implementation of arithmetic. We show how to implement all the tests in-
volving numeric quantities in polynomial time. This will be straightforward since the
algorithm has been written to avoid computing log a (using instead the unchanging
value k∗). We will use these simple inequalities:

p, p∗, k ≤ a∗ ≤ log n.

Note that p, p∗, k, and a∗ are integers. Also in this subsection and the next the largest
number we need to estimate is (a∗)2(p

∗)2 . This number is sublinear (in n):

log (a∗)2(p
∗)2 = 2(p∗)2 log a∗ ≤ 2

a∗

24k∗
k∗ =

a∗

12
≤ log n

12
.(10)

In the Main Routine, Step 2 computes p∗ = �
√
a∗/24k∗. Equivalently, p∗ is the

unique integer satisfying 24k∗(p∗)2 ≤ a∗ < 24k∗(p∗ + 1)2. Since all variables here are
integers ≤ log n we can find p∗ in polynomial time by enumeration.

We turn to Algorithm Ap+1. We can assume the algorithm is given integers
a∗, p∗, k = k∗ and p (as well as ρ). We list below all numeric quantities q computed
by Ap+1. We further observe that the only use of each of these quantities q is in a
comparison with a known integral quantity i; i.e., the algorithm needs to determine
only which relation i ≺ q holds for ≺∈ {<,=, >}:

ap+1 =

(
(p + 1)a∗

p∗

)p+1

(Step 0), g =

(
pa∗

kp∗

)p+1

(Steps 2 and 4),

I =
αp

2

(
pa∗

kp∗

)p

(Steps 2.1 and 3).

Recall also the quantity αp = 1/24p−1(p!)2.
Recall that p + 1 ≤ p∗ ≤ log n. Treat each of the quantities q as a fraction,

computing its numerator and denominator in O(p∗) integer multiplications. We will
show that each numerator and denominator is an integer ≤ n. So, performing the
comparison with i presents no problem.

The numerator and denominator of the first two quantities ap+1 and g are ≤
(a∗)2p

∗
. So (10) gives the desired conclusion. For the third quantity I the numerator

is again ≤ (a∗)2p
∗
. The denominator is the product of three integers each ≤ (a∗)2p

∗
,

since 24 < 28 ≤ a∗ and (p!)2 ≤ p2p ≤ (a∗)2p
∗
. So again (10) gives the desired

conclusion.

1670 HAROLD N. GABOW

Wrapup.
Theorem 5.1. The Main Routine returns a v-cycle having length that is

exp(Ω(
√

log �/ log log �)) in polynomial time, where � is the length of a longest v-
cycle.

Proof. Lemma 4.2 proves the length guarantee, so we need only establish the
polynomial time bound. For this we need only show that each execution of Ap∗ by
Step 2 of the Main Routine uses polynomial time. Throughout this argument, G∗

denotes the given graph.
First observe (Figure 5) that every invocation of a routine Ap, p ≤ p∗, is given a

graph G that consists of two edges incident to v plus edges that are either in G∗ or
images of such edges. (An image of an edge in G∗ is created in Step 3.1: an edge c′x
comes from an edge from C − c to x.) This follows by a simple induction.

The pseudocode in section 3 plus the implementation details of this section show
that if we ignore the recursive calls that Ap+1 makes to itself or Ap, Algorithm Ap+1

takes polynomial time. Specifically note that Step 2.1 repeats at most g times, and g is
sublinear (by (10)). Step 4 uses breadth-first search, and Step 5.2 finds a tricomponent
cover using a routine for biconnected components [5, 17]. Step 6 uses polynomial time,
as we noted in its implementation.

Hence it suffices to show there are a polynomial number of invocations of all
routines Ap, p ≤ p∗. We have shown that each invocation of a routine Ap uses a
graph that contains an edge of G∗ (or its image). Hence it suffices to show that each
edge e of G∗ is in the graph of a polynomial number of invocations Ap, p ≤ p∗.

Take any p ≤ p∗. Let R be the recursion tree of Ap. As in the previous section, R
contains nodes only for calls to Ap. Suppose that edge e of G∗ (or its image) belongs
to the graph of a node τ of R. Then e belongs to the graph of at most one child of
τ . In proof, the recursive calls to Ap occur in Steps 3.1 and 5.3. A component X
is processed in only one of the Steps 3 or 5. Step 5.2 ensures that all tricomponents
T are pairwise disjoint (property (ii) of the definition of tricomponent cover). So a
given edge is involved in only one recursive call in Step 5.3.

We conclude that e occurs in ≤ ap nodes τ of R. (Since we’re discussing Ap rather
than Ap+1, we reduce p in the pseudocode of section 3 by 1; e.g., Step 0 guarantees
that ρ ≤ ap.)

In each such node τ , e occurs in ≤ g ≤ ap graphs for calls to Ap−1 in Steps 1 and
2.1. This follows since each pass of Step 2.1 except the last enlarges C, and e belongs
to ≤ 1 graph per pass. We conclude that e occurs in at most ap × ap = a2p calls from
this invocation of Ap to Ap−1.

Any routine Ap has a ≤ a∗, p ≤ p∗. So overestimating, edge e is in the initial
graph of ≤ ((a∗)2(p

∗))i recursion trees for routine Ap∗−i, for any 0 ≤ i < p∗. In each of
these recursion trees, we have already noted that e occurs in ≤ (a∗)p

∗
nodes. This gives

a total of ≤ (a∗)2p
∗i× (a∗)p

∗ ≤ (a∗)2p
∗(i+1) nodes in recursion trees for calls to Ap∗−i.

Summing for i going from 0 to p∗ − 1, we have shown that e occurs in a total
of ≤ p∗(a∗)2(p

∗)2 nodes (i.e., recursive invocations). Using p∗ ≤ log n and (10), this
bound is polynomial (in fact sublinear), as desired.

6. Conclusions. Despite many levels of recursion, we leave the long cycle prob-
lem with a large gap between our guaranteed length bound (which is a cycle of
length exp(Ω(

√
log �/ log log �))) and the best-known hardness result (the quasi-NP-

hardness of a factor 2O(log1−εn) approximation to the longest path).
Since the initial appearance of this paper [10] some surprising progress has been

made. Feder and Motwani [7] have shown how to find a cycle whose length is

CYCLES OF SUPERPOLYLOGARITHMIC LENGTH 1671

exp(Ω(log n/ log log n)) in Hamiltonian graphs, in time O(n3). Their results also
improve our length guarantee in graphs that are very close to Hamiltonian (� ≥
n/ exp(o(

√
log n log log n))) as well as in some other cases. Their algorithm, like ours,

combines two recursively found paths through tricomponents, using the algorithm of
[14] for a cycle through three given vertices. In addition, they use a variety of other
new ideas, starting with a result of Chen, Xu, and Yu [6]: in a 3-connected graph of
maximum degree d, a cycle of length ≥ n log b2 exists and can be found efficiently, for
b = 2(d− 1)2 + 1.

REFERENCES

[1] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[2] H. L. Bodlaender, Minor tests with depth-first search, J. Algorithms, 14 (1993), pp. 1–23.
[3] A. Björklund and T. Husfeldt, Finding a path of superlogarithmic length, SIAM J. Comput.,

32 (2003), pp. 1395–1402.
[4] A. Björklund, T. Husfeldt, and S. Khanna, Approximating longest directed paths and

cycles, in Proceedings of the 31st International Conference on Automata, Languages and
Programming, Lecture Notes in Comput. Sci. 3142, Springer, New York, 2004, pp. 222–233.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
2nd ed., McGraw–Hill, New York, 2001.

[6] G. Chen, J. Xu, and X. Yu, Circumference of graphs with bounded degree, SIAM J. Comput.,
33 (2004), pp. 1136–1170.

[7] T. Feder and R. Motwani, Finding large cycles in Hamiltonian graphs, in Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, Vancouver, BC, 2005,
SIAM, Phiadelphia, pp. 166–175.

[8] T. Feder, R. Motwani, and C. Subi, Approximating the longest cycle problem in sparse
graphs, SIAM J. Comput., 31 (2002), pp. 1596–1607.

[9] M. R. Fellows and M. A. Langston, Nonconstructive tools for proving polynomial-time
decidability, J. ACM, 35 (1988), pp. 727–739.

[10] H. N. Gabow, Finding paths and cycles of superpolylogarithmic length, in Proceedings of the
36th Annual ACM Symposium on Theory of Computing, Chicago, IL, 2004, ACM, New
York, pp. 407–416.

[11] H. N. Gabow and S. Nie, Finding a long directed cycle, in Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, 2004, SIAM, Philadel-
phia, pp. 49–58.

[12] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135–158.

[13] D. Karger, R. Motwani, and G. D. S. Ramkumar, On approximating the longest path in a
graph, Algorithmica, 18 (1997), pp. 82–98.

[14] A. S. LaPaugh and R. L. Rivest, The subgraph homeomorphism problem, J. Comput. System
Sci., 20 (1980), pp. 133–149.

[15] B. Monien, How to find long paths efficiently, Ann. Discrete Math., 25 (1985), pp. 239–254.
[16] N. Robertson and P. D. Seymour, Graph minors. XIII: The disjoint paths problem, J. Com-

bin. Theory B, 63 (1995), pp. 65–110.
[17] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

pp. 146–160.
[18] M. E. Watkins and D. M. Mesner, Cycles and connectivity in graphs, Canadian J. Math., 19

(1967), pp. 1319–1328.
[19] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice–Hall, Upper Saddle River, NJ,

2001.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1672–1695

AN OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND ITS
APPLICATION TO GRAPH ALGORITHMS∗

LARS ARGE† , MICHAEL A. BENDER‡ , ERIK D. DEMAINE§ ,

BRYAN HOLLAND-MINKLEY¶, AND J. IAN MUNRO‖

Abstract. We develop an optimal cache-oblivious priority queue data structure, supporting
insertion, deletion, and delete-min operations in O(1

B
logM/B

N
B

) amortized memory transfers, where
M and B are the memory and block transfer sizes of any two consecutive levels of a multilevel
memory hierarchy. In a cache-oblivious data structure, M and B are not used in the description of
the structure. Our structure is as efficient as several previously developed external memory (cache-
aware) priority queue data structures, which all rely crucially on knowledge about M and B. Priority
queues are a critical component in many of the best known external memory graph algorithms, and
using our cache-oblivious priority queue we develop several cache-oblivious graph algorithms.

Key words. cache-oblivious algorithms, priority queue

AMS subject classification. 68P05

DOI. 10.1137/S0097539703428324

1. Introduction. As the memory systems of modern computers become more
complex, it is increasingly important to design algorithms that are sensitive to the
structure of memory. One of the characteristic features of modern memory systems is
that they are made up of a hierarchy of several levels of cache, main memory, and disk.
While traditional theoretical computational models have assumed a “flat” memory
with uniform access time, the access times of different levels of memory can vary
by several orders of magnitude in current machines. Thus algorithms for hierarchical
memory have received considerable attention in recent years. Very recently, the cache-
oblivious model was introduced as a way of achieving algorithms that are efficient
in arbitrary memory hierarchies without the use of complicated multilevel memory
models. In this paper we develop an optimal cache-oblivious priority queue and use
it to develop several cache-oblivious graph algorithms.

∗Received by the editors May 23, 2003; accepted for publication (in revised form) August 4, 2006;
published electronically March 19, 2007. An extended abstract version of this paper was presented
at the 2002 ACM Symposium on Theory of Computation (STOC’02), AMC Press, New York, 2002,
pp. 268–276.

http://www.siam.org/journals/sicomp/36-6/42832.html
†Department of Computer Science, University of Aarhus, DK-8200 Aarhus N, Denmark (large@

daimi.au.dk). This work was done while this author was at Duke University. This author was
supported in part by the National Science Foundation through ESS grant EIA–9870734, RI grant
EIA–9972879, CAREER grant CCR–9984099, and ITR grant EIA–0112849.

‡Department of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794 (bender@cs.
sunysb.edu). This author was supported in part by the National Science Foundation through ITR
grant EIA–0112849 and by HRL Laboratories and Sandia National Laboratories.

§Laboratory for Computer Science, MIT, Cambridge, MA 02139 (edemaine@mit.edu). This au-
thor was supported in part by the National Science Foundation through ITR grant EIA–0112849.

¶Department of Computer Science, Duke University, Durham, NC 27708 (bhm@cs.duke.edu).
This author was supported in part by the National Science Foundation through ITR grant EIA–
0112849.

‖School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada (imunro@
uwaterloo.ca). This author was supported in part by the Natural Science and Engineering Council
through grant RGPIN 8237-97 and the Canada Research Chair in Algorithm Design.

1672

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1673

1.1. Background and previous results. Traditionally, most algorithmic work
has been done in the random access machine (RAM) model of computation, which
models a “flat” memory with uniform access time. Recently, some attention has
turned to the development of theoretical models and algorithms for modern compli-
cated hierarchical memory systems; refer, e.g., to [3, 4, 5, 7, 53, 59]. Developing models
that are both simple and realistic is a challenging task since a memory hierarchy is
described by many parameters. A typical hierarchy consists of a number of memory
levels, with memory level � having size M� and being composed of M�/B� blocks of
size B�. In any memory transfer from level � to �− 1, an entire block is moved atom-
ically. Each memory level also has an associated replacement strategy, which is used
to decide what block to remove in order to make room for a new block being brought
into that level of the hierarchy. Further complications are the limited associativity of
some levels of the hierarchy, meaning that a given block can only be loaded into a
limited number of memory positions, as well as the complicated prefetching strategies
employed by many memory systems. In order to avoid the complications of multilevel
memory models, a body of work has focused on two-level memory hierarchies. Most
of this work has been done in the context of problems involving massive datasets,
because the extremely long access times of disks compared to the other levels of the
hierarchy means that I/O between main memory and disk is often the bottleneck in
such problems.

1.1.1. Two-level I/O model. In the two-level I/O model (or external memory
model) introduced by Aggarwal and Vitter [6], the memory hierarchy consists of an
internal memory of size M and an arbitrarily large external memory partitioned into
blocks of size B. The efficiency of an algorithm in this model (a so-called I/O or
external memory algorithm) is measured in terms of the number of block transfers
it performs between these two levels (here called memory transfers). An algorithm
has complete control over the placement of blocks in main memory and on disk. The
simplicity of the I/O model has resulted in the development of a large number of
external memory algorithms and techniques. See, e.g., [10, 59] for recent surveys.

The number of memory transfers needed to read N contiguous elements from
disk is scan(N) = Θ(NB) (the linear or scanning bound). Aggarwal and Vitter [6]

showed that Θ(NB logM/B
N
B) memory transfers are necessary and sufficient to sort N

elements. In this paper, we use sort(N) to denote N
B logM/B

N
B (the sorting bound).

The number of memory transfers needed to search for an element among a set of N
elements is Ω(logB N) (the searching bound), and this bound is matched by the B-
tree, which also supports updates in O(logB N) memory transfers [17, 36, 40, 39]. An
important consequence of these bounds is that, unlike in the RAM model, one cannot
sort optimally with a search tree—inserting N elements in a B-tree takes O(N logB N)
memory transfers, which is a factor of (B logB N)/(logM/B

N
B) from optimal. Finally,

permuting N elements according to a given permutation takes Θ(min{N, sort(N)})
memory transfers, and for all practical values of N,M , and B this is Θ(sort(N)) [6].
This represents another fundamental difference between the RAM and I/O model,
since N elements can be permuted in O(N) time in the RAM model.

The I/O model can also be used to model the two-level hierarchy between cache
and main memory; refer, e.g., to [54, 42, 44, 60, 50, 52]. Some of the main shortcomings
of the I/O model on this level are the lack of explicit application control of placement of
data in the cache and the low associativity of many caches. However, as demonstrated
by Sen, Chatterjee, and Dumir [54], I/O model results can often be used to obtain
results in more realistic two-level cache main memory models. Algorithms that are

1674 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

efficient on the two-level cache main memory levels have also been considered by, e.g.,
LaMarca and Ladner [42, 43].

1.1.2. Cache-oblivious model. One of the main disadvantages of two-level
memory models is that they force the algorithm designer to focus on a particular
level of the hierarchy. Nevertheless, the I/O model has been widely used because it
is convenient to consider only two levels of the hierarchy. Very recently, a new model
that combines the simplicity of the I/O mode with the realism of more complicated
hierarchical models was introduced by Frigo et al. [38]. The idea in the cache-oblivious
model is to design and analyze algorithms in the I/O model but without using the
parameters M and B in the algorithm description. It is assumed that when an
algorithm accesses an element that is not stored in main memory, the relevant block
is automatically fetched into memory with a memory transfer. If the main memory
is full, the ideal block in main memory is elected for replacement based on the future
characteristics of the algorithm; that is, an optimal offline paging strategy is assumed.
While this model may seem unrealistic, Frigo et al. [38] showed that it can be simulated
by essentially any memory system with only a small constant-factor overhead. For
example, the least recently used (LRU) block-replacement strategy approximates the
omniscient strategy within a constant factor, given a cache larger by a constant factor
[38, 55]. The main advantage of the cache-oblivious model is that it allows us to
reason about a simple two-level memory model, but prove results about an unknown,
multilevel memory hierarchy; because an analysis of an algorithm in the two-level
model holds for any block and main memory size, it holds for any level of the memory
hierarchy. As a consequence, if the algorithm is optimal in the two-level model, it is
optimal on all levels of a multilevel memory hierarchy.

Frigo et al. [38] developed optimal cache-oblivious algorithms for matrix multi-
plication, matrix transposition, fast Fourier transform, and sorting. Subsequently,
several authors developed dynamic cache-oblivious B-trees with a search and update
cost of O(logB N) matching the standard (cache-aware) B-tree [21, 27, 22, 49, 20].
Recently, several further results have been obtained, e.g., [23, 57, 24, 25, 26, 18, 2,
14, 16, 19, 28, 33]. See also the survey in [13]. Some of these results assume that
M ≥ B2 (the tall-cache assumption), and we will also make that assumption in this
paper. Brodal and Fagerberg [26] showed that an assumption of this type (actually
M = Ω(B1+ε) for some ε > 0) is necessary to obtain the I/O model sorting bound in
the cache-oblivious model.

1.1.3. Priority queues. A priority queue maintains a set of elements each with
a priority (or key) under insert and delete-min operations, where a delete-min oper-
ation finds and deletes the element with the minimum key in the queue. Sometimes
delete of an arbitrary element is also supported, often, as in this paper, assuming that
the key of the element to be deleted is known. The heap is a standard implementation
of a priority queue, and a balanced search tree can, of course, also easily be used to
implement a priority queue. In the I/O model, a priority queue based on a B-tree
would support all operations in O(logB N) memory transfers. The standard heap can
also be easily modified (to have fanout B) so that all operations are supported in the
same bound (see, e.g., [44]). The existence of a cache-oblivious B-tree immediately
implies the existence of an O(logB N) cache-oblivious priority queue.

As discussed in section 1.1.1, the use of an O(logB N) search tree (or prior-
ity queue) to sort N elements results in an I/O model algorithm that is a factor of
(B logB N)/(logM/B(N/B)) from optimal. To sort optimally we need a data structure

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1675

supporting the relevant operations in O(1
B logM/B

N
B) memory transfers. Note that

for reasonable values of N , M , and B, this bound is less than 1 and we can, therefore,
only obtain it in an amortized sense. To obtain such a bound, Arge developed the
buffer tree technique and showed how it can be used on a B-tree to obtain a priority
queue supporting all operations in O(1

B logM/B
N
B) amortized memory transfers [11].

This structure seems hard to make cache-oblivious since it involves periodically finding
the Θ(M) smallest key elements in the structure and storing them in internal mem-
ory. Efficient I/O model priority queues have also been obtained by using the buffer
tree technique on heap structures [37, 41]. The heap structure by Fadel et al. [37]
seems hard to make cache-oblivious because it requires collecting Θ(M) insertions
and performing them all on the structure at the same time. The structure by Ku-
mar and Schwabe [41] avoids this by using the buffer technique on a tournament tree
data structure. However, they only obtained O(1

B log2 N) bounds, mainly because
their structure was designed to also support an update operation. Finally, Brodal and
Katajainen [29] developed a priority queue structure based on an M/B-way merging
scheme. Very recently, and after the appearance of the conference version of this
paper, Brodal and Fagerberg [25] managed to develop a similar merging based cache-
oblivious priority queue based on ideas they developed in [24]. Brodal et al. [28],
as well as Chowdhury and Ramachandran [33], have also developed cache-oblivious
priority queues that support updates in the same bound as the I/O-efficient structure
of Kumar and Schwabe [41].

1.1.4. I/O model graph algorithms. The superlinear lower bound on per-
mutation in the I/O model has important consequences for the I/O complexity of
graph algorithms, because the solution of almost any graph problem involves some-
how permuting the V vertices or E edges of the graph. Thus Ω(min{V, sort(V)}) is
in general a lower bound on the number of memory transfers needed to solve most
graph problems. Refer to [9, 31, 46]. As mentioned in section 1.1.1, this bound is
Ω(sort(V)) in all practical cases. Still, even though a large number of I/O model
graph algorithms have been developed (see [59, 61] and references therein), not many
algorithms match this bound. Below we review the results most relevant to our work.

As with PRAM graph algorithms [51], list ranking—the problem of ranking the
elements in a linked list stored as an unordered sequence in memory—is the most
fundamental I/O model graph problem. Using PRAM techniques, Chiang et al. [31]
developed the first efficient I/O model list ranking algorithm. Using an I/O-efficient
priority queue, Arge [11] showed how to solve the problem in O(sort(V)) memory
transfers. The list ranking algorithm and PRAM techniques can be used in the devel-
opment of O(sort(V)) algorithms for many problems on trees, such as computing an
Euler tour, breadth-first search (BFS), depth-first search (DFS), and centroid decom-
position [31]. The best known DFS and BFS algorithms for general directed graphs
use O(V + EV

BM) [31] or O((V + E/B) log2 V + sort(E)) [30] memory transfers. For

undirected graphs, improved O(V +sort(E)) and O(
√

V ·E
B +sort(E)) BFS algorithms

have been developed [46, 45]. The best known algorithms for computing the connected
components and the minimum spanning forest of a general undirected graph both use
O(sort(E) · log2 log2(

V B
E)) or O(V + sort(E)) memory transfers [46, 15].

1.2. Our results. The main result of this paper is an optimal cache-oblivious
priority queue. Our structure supports insert, delete, and delete-min operations in
O(1

B logM/B
N
B) amortized memory transfers and O(logN) amortized computation

time; it is described in section 2. The structure is based on a combination of several

1676 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

Table 1.1

Summary of our results (priority queue bounds are amortized).

Problem Our cache-oblivious result Best cache-aware result

Priority queue
O(1

B
logM/B

N
B

) O(1
B

logM/B
N
B

)
[11]

List ranking O(sort(V)) O(sort(V)) [31, 11]

Tree algorithms O(sort(V)) O(sort(V)) [31]

Directed O((V + E/B) log2 V + sort(E)) O((V + E/B) log2 V + sort(E)) [30]

BFS and DFS O(V + EV
BM

) [31]

Undirected O(V + sort(E)) O(V + sort(E)) [46]

BFS
O(

√
V ·E
B

+ sort(E))
[45]

MSF O(sort(E) · log2 log2 V) O(sort(E) · log2 log2
V B
E

) [15]

O(V + sort(E)) O(V + sort(E)) [15]

new ideas with ideas used in previous recursively defined cache-oblivious algorithms
and data structures [38, 21], the buffer technique of Arge [11, 41], and the M/B-way
merging scheme utilized by Brodal and Katajainen [29]. When the conference version
of this paper appeared, our structure was the only cache-oblivious priority queue to
obtain the same bounds as in the cache-aware case.

In the second part of the paper, section 3, we use our priority queue to develop
several cache-oblivious graph algorithms. We first show how to solve the list ranking
problem in O(sort(V)) memory transfers. Using this result we develop O(sort(V))
algorithms for fundamental problems on trees, such as the Euler tour, BFS, and DFS
problems. The complexity of all of these algorithms matches the complexity of the best
known cache-aware algorithms. Next we consider DFS and BFS on general graphs.
Using modified versions of the data structures used in the O((V + E/B) log2 V +
sort(E)) DFS and BFS algorithms for directed graphs [30], we make these algorithms
cache-oblivious. We also discuss how the O(V +sort(E)) BFS algorithm for undirected
graphs [46] can be made cache-oblivious. Very recently, and after the appearance of
the conference version of this paper, Brodal et al. [28] developed two other cache-
oblivious algorithms for undirected BFS based on the ideas in [45]. Finally, we develop
two cache-oblivious algorithms for computing a minimum spanning forest (MSF),
and thus also for computing connected components, of an undirected graph using
O(sort(E) · log2 log2 V) and O(V + sort(E)) memory transfers, respectively. The two
algorithms can be combined to compute the MSF in O(sort(E) · log2 log2

V
V ′ + V ′)

memory transfers for any V ′ independent of B and M . Table 1.1 summarizes our
results. Note that, recently, cache-oblivious algorithms for undirected shortest path
computation have also been developed [28, 33].

2. Priority queue. In this section we describe our optimal cache-oblivious pri-
ority queue. In section 2.1 we define the data structure and in section 2.2 we describe
the supported operations.

2.1. Structure.

2.1.1. Levels. Our priority queue data structure containing N elements consists
of Θ(log logN0) levels whose sizes vary from N0 = Θ(N) to some small size c > 1
beneath a constant threshold ct. The size of a level corresponds (asymptotically) to
the number of elements that can be stored within it. The ith level from above has size

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1677

up buffer of size �X�

up buffer of size �X3/2�

at most �X1/3� down buffers of size Θ(X2/3) each
level X

level X3/2

level X9/4

at most �X1/2� down buffers of size Θ(X) each
and one of size O(X)

and one of size O(X2/3)

Fig. 2.1. Levels X, X3/2, and X9/4 of the priority queue data structure.

N
(2/3)i−1

0 , and for convenience we refer to the levels by their size. Thus the levels from

largest to smallest are level N0, level N
2/3
0 , level N

4/9
0 , . . . , level X9/4, level X3/2,

level X, level X2/3, level X4/9, . . . , level c9/4, level c3/2, and level c. Intuitively,
smaller levels store elements with smaller keys or elements that were recently inserted.
In particular, the element with minimum key and the most recently inserted element
in the structure are in the smallest (lowest) level c. Both insertions and deletions are
initially performed on the smallest level and may propagate up through the levels.

2.1.2. Buffers. A level stores elements in a number of buffers, which are also
used to transfer elements between levels. Refer to Figure 2.1. Level X3/2 consists of

one up buffer uX3/2

and at most �X1/2� + 1 down buffers dX
3/2

1 , . . . , dX
3/2

�X1/2�+1
. The

up buffer can store up to �X3/2� elements and the first down buffer can store up to
2�X� − 1 elements, while each of the other down buffers can store between �X� and
2�X� − 1 elements. We refer to the maximum possible number of elements that can
be stored in a buffer or level as its size; we refer to the number of elements currently
in a buffer or level as the occupancy. Thus the size of level X3/2 is Θ(X3/2). Note
that the size of a down buffer at one level matches the size (up to a constant factor)
of the up buffer one level down.

We maintain three invariants about the relationships between the elements in
buffers of various levels.

Invariant 1. At level X3/2, elements are sorted among the down buffers, that is,

elements in dX
3/2

i have smaller keys than elements in dX
3/2

i+1 , but the elements within

dX
3/2

i are unordered.

The element with largest key in each down buffer dX
3/2

i is called a pivot element.
Pivot elements mark the boundaries between the ranges of the keys of elements in
down buffers.

Invariant 2. At level X3/2, elements in the down buffers have smaller keys than

the elements in the up buffer uX3/2

.
Invariant 3. The elements in the down buffers at level X3/2 have smaller keys

than the elements in the down buffers at the next higher level X9/4.
The three invariants ensure that the keys of the elements in the down buffers get

larger as we go from smaller to larger levels of the structure. Furthermore, there is
an order between the buffers on one level; keys of elements in the up buffer are larger
than keys of elements in down buffers. Therefore, down buffers are drawn below up

1678 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

buffers in Figure 2.1. However, the keys of the elements in an up buffer are unordered
relative to the keys of the elements in down buffers one level up. Intuitively, up buffers
store elements that are “on their way up”; that is, they have yet to be resolved as
belonging to a particular down buffer in the next (or higher) level. Analogously, down
buffers store elements that are “on their way down”—these elements are partitioned
into several clusters so that we can quickly find the cluster of elements with smallest
keys of size roughly equal to the next level down. In particular, the first down buffer
of level X contains the smallest element in level X and higher levels.

2.1.3. Layout. We store the priority queue in a linear array as follows. The lev-
els are stored consecutively from smallest to largest with each level occupying a single
region of memory. For level X3/2 we reserve space for the up buffers of size �X3/2� and
for �X1/2�+1 possible down buffers of size 2�X�. The up buffer is stored first, followed
by the down buffers stored in an arbitrary order but linked together to form an ordered

linked list. Thus the total size of the array is
∑log3/2 logc N0

i=0 O(N
(2/3)i

0) = O(N0).

2.2. Operations. To implement the priority queue operations we will use two
general operations, push and pull. Push inserts �X� elements (with larger keys than
all elements in the down buffers of level X) into level X3/2, and pull removes and
returns the �X� elements with smallest keys from level X3/2 (and above). Generally,
whenever an up buffer on level X overflows we push the �X� elements in the buffer
into level X3/2, and whenever the down buffers on level X become too empty we
pull �X� elements from level X3/2. In sections 2.2.1 and 2.2.2 below, the push and
pull operations are described in detail. Note that we will assume that we never push
elements from level N0 and that we never try to pull more elements from level N0 than
it contains, that is, that level N0 never runs full or empty. As described in section
2.2.3, we will ensure this by periodically rebuilding the entire structure.

2.2.1. Push. We push �X� elements (with larger keys than all elements in the
down buffers of level X) into level X3/2 as follows: We first sort the elements. Then
we distribute them into the down buffers of level X3/2 by scanning through the sorted
list and simultaneously visiting the down buffers in (linked) order. More precisely,

we append elements to the end of the current down buffer dX
3/2

i , and advance to the

next down buffer dX
3/2

i+1 as soon as we encounter an element with larger keys than the

pivot of dX
3/2

i . Elements with larger keys than the pivot of the last down buffer are

inserted in the up buffer uX3/2

. During the distribution of elements a down buffer may
become overfull, that is, contain 2�X� elements. In this case, we split the buffer into
two down buffers each containing �X� elements. If the level has at most �X1/2� + 1
down buffers after the split, we place the new buffer in any free down-buffer spot for
the level and update the linked list accordingly. Otherwise, we first remove the last
down buffer by moving its at most 2�X� − 1 elements into the up buffer; then we
place the new buffer in the free down-buffer spot and update the linked list. If the up
buffer runs full during the process, that is, contains more than �X3/2� elements, we
recursively push �X3/2� elements into level X9/4 (the next level up), leaving at most
�X3/2� elements in the up buffer.

The invariants are all maintained during a push of �X� elements into level X3/2.
Because we sort the elements to distribute them among the down buffers, it is clear we
maintain Invariant 1. Only elements with keys larger than the pivot of the last down
buffer are placed in the up buffer, so Invariant 2 is also maintained. Finally, Invariant 3
is maintained since (by definition) the �X� elements all have keys larger than the

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1679

elements in the down buffers of level X, and since by Invariant 2 all recursively
pushed elements have keys larger than all elements in the down buffers (as required
to perform the recursive push).

Ignoring the cost of recursive push operations, a push of �X� elements into
level X3/2 can be performed cache-obliviously in O(XB logM/B

X
B) memory transfers

and O(X log2 X) time using O(M) of main memory. First note that since M = Ω(B2)
(the tall-cache assumption), all levels of size less than B2 (of total size O(B2)) fit in
memory. If all these levels are kept in main memory at all times, all push costs asso-
ciated with them would be eliminated. The optimal paging strategy is able to do so.
Thus we only need to consider push costs when X3/2 > B2, that is, when X > B4/3

(note that in that case X
B > 1). When performing the push operation, the initial sort

of the �X� elements can then be performed cache-obliviously using O(XB logM/B
X
B)

memory transfers and O(X log2 X) time [38]. The scan of the elements in the dis-
tribution step then takes O(X/B) memory transfers and O(X) time. However, even
though we do not insert elements in every down buffer, we still might perform a mem-
ory transfer for each of the �X1/2�+1 possible buffers; a block of each buffer may have
to be loaded and written back without transferring a full block of elements into the
buffer. If X ≥ B2, we trivially have that �X1/2� + 1 = O(XB). If, on the other hand,

B4/3 < X < B2, the �X1/2� + 1 term can dominate the memory transfer bound and
we have to analyze the cost more carefully. In this case we are working on a level X3/2

where B2 < X3/2 < B3. There is only one such level and because X1/2 < B and
M = Ω(B2) (the tall-cache assumption), a block for each of its down buffers can fit
into main memory. Consequently, if a fraction of the main memory is used to keep a
partially filled block of each buffer of level X3/2 (B2 ≤ X3/2 ≤ B3) in memory at all
times, and full blocks are written to disk, the X1/2 +1 cost is eliminated at this level.
The optimal paging strategy is able to do so. Thus the total cost of distributing the
�X� elements is O(X/B) memory transfers and O(X + X1/2) = O(X) time.

The split of an overfull down buffer during the distribution, that is, split of a
buffer of occupancy 2�X�, can be performed in O(X/B) memory transfers and O(X)
time by first finding the median of the elements in the buffer in O(X/B) transfers
and O(X) time [38], and then partitioning the elements into the two new buffers of
occupancy �X� in a simple scan. Since we maintain that any new down buffer has
occupancy �X�, and thus that �X� elements have to be inserted in it before it splits,
the amortized splitting cost per element is O(1/B) transfers and O(1) time. Thus, in
total, the amortized number of memory transfers and time used on splitting buffers
while distributing the �X� elements are O(X/B) and O(X), respectively.

Lemma 2.1. Using O(M) main memory, a push of �X� elements into level X3/2

can be performed in O(XB logM/B
X
B) memory transfers and O(X log2 X) amortized

time, not counting the cost of any recursive push operations, while maintaining In-
variants 1–3.

2.2.2. Pull. To pull the �X� elements with smallest keys from level X3/2 (and
above), we consider three different cases.

If the occupancy of the first down buffer of level X3/2 is Y ≥ �X�, we sort the
Y < 2�X� elements in the down buffer, remove the �X� elements with smallest keys,
and leave the remaining Y −�X� elements in the buffer. We return the �X� removed
elements, since by Invariants 1–3 they are the elements with smallest keys in level X3/2

(and above). It is easy to see that Invariants 1–3 are maintained is this case.
If the occupancy of the first down buffer of level X3/2 is Y < �X� but level X3/2

has at least one other down buffer, we first remove the Y elements in the first buffer.

1680 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

Next we sort the between �X� and 2�X� − 1 elements in the new first down buffer,
remove the �X� − Y elements with smallest keys, and leave the remaining elements
in the buffer. We return the �X� removed elements, since by Invariants 1–3 they are
the elements with smallest keys in level X3/2 (and above). As in the first case, it is
easy to see that Invariants 1–3 are maintained.

Finally, if the occupancy of the first down buffer of level X3/2 is Y < �X� and
level X3/2 has no other down buffers, we remove the Y elements and then we re-
cursively pull the �X3/2� elements with smallest keys from level X9/4 (and above).
Because these �X3/2� elements do not necessarily have smaller keys than the U ele-

ments in the up buffer uX3/2

, we then sort all the �X3/2� + U ≤ 2�X3/2� elements,
insert the U elements with largest keys in the up buffer, and remove the �X� − Y
elements with smallest keys. Finally, we distribute the remaining �X3/2�+Y −�X� <
�X3/2� ≤ X · X1/2 ≤ (�X� + 1) · X1/2 = �X� · X1/2 + X1/2 ≤ �X� · �X1/2� + �X�
sorted elements into one down buffer with occupancy between 1 and �X� and at most
�X1/2� down buffers of occupancy �X� each. As in the first two cases, we return
the �X� removed elements, since Invariant 1 and the sorting of the recursively pulled
elements and the elements in the up buffer ensure that they are the elements with
the smallest keys in level X3/2 (and above). As in the first two cases, it is relatively
easy to see that Invariants 1–3 are also maintained in this case: Invariant 1 is fulfilled
since we place elements in down buffers in sorted order, Invariant 2 is fulfilled since
we explicitly place the U elements (among the original U elements and the �X3/2�
recursively pulled elements) with largest keys in the up buffer, and Invariant 3 is ful-
filled since all the elements we place in down buffers have smaller keys than elements
in level X9/4.

To analyze a pull operation we assume, as in the push case, that all levels of
size O(B2) are kept in main memory (so that we only need to consider levels X3/2

with X3/2 > B2, that is, the case where X > B4/3). The first two cases are both
performed by sorting and scanning O(X) elements using O(XB logM/B

X
B) + O(XB)

memory transfers and O(X log2 X) + O(X) time. In the third case we also sort and
scan (distribute) O(X3/2) elements. However, the cost of doing so is dominated by
the cost of the recursive pull operation itself. Thus, ignoring these costs (charging
them to the recursive pull), we have the following lemma.

Lemma 2.2. Using O(M) main memory, a pull of �X� elements from level
X3/2 can be performed in O(XB logM/B

X
B) memory transfers and O(X log2 X) amor-

tized time, not counting the cost of any recursive pull operations, while maintaining
Invariants 1–3.

2.2.3. Insert and delete-min. To support insert and delete-min operations
using push and pull on our structure we (or rather, the optimal paging strategy does)
maintain an insertion and a deletion buffer of at most �c2/3� elements each in main
memory. The deletion buffer contains elements that have smaller keys than all other
elements in the structure, while intuitively the insertion buffer contains the most
recently inserted elements. We perform an insertion simply by comparing the key of
the element to be inserted with the maximal key of an element in the deletion buffer:
if the key of the new element is largest, we simply insert it into the insertion buffer;
otherwise we insert it into the deletion buffer and move the element with largest key
from the deletion buffer to the insertion buffer. In both cases, the occupancy of the
insertion buffer is increased by one, and if it runs full we empty it by pushing its �c2/3�
elements into level c. Similarly, we perform a delete-min by deleting and returning
the element with smallest key in the deletion buffer; if the deletion buffer becomes

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1681

empty, we pull �c2/3� elements from level c and fill up the deletion buffer with the
�c2/3� smallest of these elements and the elements in the insertion buffer (without
changing the occupancy of the insertion buffer). The correctness of the insert and
delete-min operations follows directly from Invariants 1–3 and the definition of the
push and pull operations.

Except for the possible push and pull operations on level c, which may require
recursive pushes or pulls on higher levels, the insert and delete-min operations are
performed in constant time without incurring any memory transfers. Below we will use
a credit argument to prove that including all push and pull operations the amortized
cost of an insert or delete-min is O(1

B logM/B
N0

B) memory transfers; then we will
argue that the operations take O(log2 N0) amortized computation time.

We define a level-X push coin as well as a level-X3/2 pull coin to be worth
Θ(1

B logM/B
X
B) memory transfers each, that is, �X� level-X push coins can pay for

a push of �X� elements into level X3/2, and �X� level-X3/2 coins can pay for a pull
of �X� elements from level X3/2. We maintain the following coin invariants.

Invariant 4. On level X3/2, each element in the first half of a down buffer has
a pull coin for level X3/2 and each level below.

Invariant 5. On level X3/2, each element in the second half of a down buffer
and in the up buffer has a push coin for level X3/2 and each level above, as well as
pull coins for all levels.

Invariant 6. Each element in the insertion buffer has a push and a pull coin
for each level.

Intuitively, the first two coin invariants mean that an element in the first half of
a down buffer can pay for being pulled down through all lower levels, while elements
in the second half of a down buffer and in an up buffer can pay for being pushed up
through all higher levels and pulled down through all levels.

To fulfill Invariant 6, we simply have to give each inserted element a push and
a pull coin for each level, since an insert operation increases the occupancy of the
insertion buffer by one and a delete-min does not change the occupancy. We will
show that we can then pay for all recursive push and pull operations with released
coins while maintaining Invariants 4 and 5. Thus a delete-min is free amortized and an

insertion costs O(
∑∞

i=0
1
B logM/B(N

(2/3)i

0 /B)) = O(1
B logM/B

N0

B) amortized memory
transfers.

First consider an insertion that results in a sequence of push operations. We will
show that we can maintain the coin invariants while paying for each push operation
with released coins, if we require that when pushing �X� elements into level X3/2,
each of the pushed elements has a push coin for level X and each level above, as
well as a pull coin for all levels (the push requirement). Note that Invariants 5 and 6
ensure that the push requirement is fulfilled, since the pushed elements come from
the insertion buffer or the up buffer of level X.

When performing a push on level X3/2 we first distribute the �X� elements into
the down and the up buffers. In the worst case (when all elements are placed in the
second half of a down buffer or in the up buffer) each element needs a push coin
for level X3/2 and each level above and pull coins for all levels to fulfill Invariants 4
and 5. Since they have a push coin for level X and each level above and pull coins
for all levels, this leaves us with �X� level-X push coins, which we can use to pay the
O(XB logM/B

X
B) push cost (Lemma 2.1). If a down buffer of occupancy 2�X� splits

into two buffers of occupancy �X� during the distribution process, �X� push coins for
level X3/2 and each level above and �X� pull coins for level X9/4 and each level above

1682 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

are released, since the �X� elements in the second half of the full buffer must fulfill
Invariant 5 before the split but only Invariant 4 after the split. On the other hand,
if splitting a down buffer results in the movement of the elements in the last down
buffer to the up buffer, the at most �X� elements in the first half of the down buffer
need �X� push coins for level X3/2 and each level above and �X� pull coins for level
X9/4 and each level above, since they must fulfill Invariant 5 after the move but only
Invariant 4 before the move. Since we never move elements from a down buffer to
the up buffer without having split a down buffer, we can reestablish Invariants 4 and
5 with the released coins. Finally, as mentioned above, if the up buffer runs full and
we perform a recursive push of �X3/2� elements into level X9/4, each of the pushed
elements has a push coin for level X3/2 and each level above, as well as pull coins for
all levels, as required (Invariant 5).

Next consider a delete-min that results in a sequence of pull operations. We will
show that we can maintain the coin invariants while paying for each pull operation
with released coins, if we require that when pulling �X� elements from level X3/2

down to level X, each of the pulled elements has a pull coin for level X and each level
below (the pull requirement).

When performing a pull on level X3/2 with at least �X� elements in the down
buffers (the first two cases), we effectively remove the �X� smallest elements from the
first two down buffers. It is straightforward to see that the remaining elements still
fulfill Invariants 4 and 5. From Invariants 4 and 5 we know that each of the removed
(pulled) elements (at least) has a pull coin for level X3/2 and each level below. Thus,
since they only need a pull coin for level X and each level below to fulfill the pull
requirement, this leaves us with �X� level-X3/2 pull coins, which we can use to pay
the O(XB logM/B

X
B) pull cost (Lemma 2.2). If, on the other hand, level X3/2 contains

Y < �X� elements in the down buffers (the third case), we perform a recursive pull
of �X3/2� elements from level X9/4, and effectively remove the �X� elements with
smallest keys among the �X3/2� + Y elements. Before the recursive pull, level X3/2

has one down buffer with Y elements and an up buffer with U elements; after the
recursive pull and removal of the �X� elements, it has one down buffer with fewer
than �X� elements, at most �X1/2� down buffers with �X� elements, and an up buffer
with U elements. The coins on the U elements in the up buffer before the recursive
pull can be used to fulfill Invariant 5 for the U elements in the up buffer after the
recursive pull. By the pull requirement, each of the �X3/2� pulled elements has a pull
coin for level X3/2 and each level below. The same is true for each of the Y original
elements (Invariant 4). Thus we have enough coins for all the elements in the down
buffers after the pull, since each down buffer contains at most �X� elements and each
element therefore only needs to fulfill Invariant 4. Similarly, since each of the �X�
removed (pulled) elements only needs a pull coin for level X and each level below to
fulfill the pull requirement, the pull cost can (as in the first two cases) be payed by
the remaining �X� level-X3/2 pull coins.

The above argument shows that all pushes and pulls can be paid if each in-
serted element is given a push and a pull coin for each level of the structure, that is,
that a delete-min is free amortized and an insertion costs O(1

B logM/B
N0

B) amortized
memory transfers. By a completely analogous argument, it is easy to see that the

operations are performed in O(
∑∞

i=0 log2(N
(2/3)i

0)) = O(log2 N0) amortized time.
Finally, to maintain that N0 = Θ(N) we completely rebuild the structure bottom-

up after every N0/4 operations (often referred to as global rebuilding [47]). We choose
the size N0 of the largest level to be 2N and compute the largest value c < ct such

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1683

that c(3/2)
i

= 2N for some integer i. Then we construct levels c, c3/2, . . . , N
2/3
0 such

that all up buffers are empty and such that each level-X3/2 has exactly �X1/2� down
buffers of size �X�. The remaining elements are placed in level N0 such that it

has at most �N1/3
0 � down buffers of size exactly �N2/3

0 � and one of size less than

�N2/3
0 �. We can easily perform the rebuilding in a sorting and a scanning step us-

ing a total of O(NB logM/B
N
B) memory transfers. At the same time, we can place

pull coins on the elements in order to fulfill Invariant 4; no elements need to ful-
fill Invariant 5—in particular, no push coins are needed. The cost of these pull
coins is bounded by the cost if all elements were placed in level N0, that is, by

O(N0 ·
∑∞

i=1
1
B logM/B(N

(2/3)i

0 /B)) = O(N0

B logM/B
N0

B) memory transfers. Thus the

rebuilding adds only O(1
B logM/B

N0

B) amortized transfers to the cost of an insert or
delete-min operation. In the same way we can argue that it adds only O(log2 N0)
amortized time per operation.

Since the up buffer of level N0 is of size �2N� = 2N after the rebuilding, we
will not need further levels during the next N0/4 = N/2 operations (insertions).
At the same time, the size N0 of the largest level remains Θ(N) during the next
N/2 operations (deletions). Thus the size of our structure remains linear in N and
it supports insert and delete-min operations in O(1

B logM/B
N
B) amortized memory

transfers and O(log2 N) amortized computation time.
Lemma 2.3. Using O(M) main memory, a set of N elements can be main-

tained in a linear-space cache-oblivious priority queue data structure supporting each
insert and delete-min operation in O(1

B logM/B
N
B) amortized memory transfers and

O(log2 N) amortized computation time.

2.2.4. Delete. Using standard techniques we can also easily support a delete op-
eration in O(1

B logM/B
N
B) memory transfers and O(log2 N) amortized time, provided

that we are given the id and key of the element to be deleted.
To perform a deletion, we simply insert a special delete element in the priority

queue, with id and key equal to the element to be deleted. Furthermore, whenever two
elements in the queue need to be compared (for example when sorting elements during
push or pull operations) their keys are first compared; in case of equal keys their id’s
are then compared. When performing a delete-min we first remove the smallest key
element from the deletion buffer in main memory. Then we consider the removed
element and the new smallest key element in the deletion buffer: If the two elements
have the same id’s (which means that one of the elements is a special delete element)
we also remove the new smallest key element (and delete both elements without
reporting any of them). We repeat this process of looking at the two smallest key
elements until they have different id’s; in that case we return and delete the removed
element. Finally, we modify the rebuilding algorithm (performed after every N0/4
operations) to first remove all special delete elements and the elements they should
delete, before choosing a new N0 and building the new structure. We can easily do
so in a simple sorting and scanning step without changing the asymptotic rebuilding
cost, since the way we compare elements (keys) ensures that an element that should
have been deleted and its corresponding special deletion element appear consecutively
in the list of sorted elements. Note that this also means that the structure cannot
contain more than a constant fraction of special elements and elements that should
have been deleted (that is, N0 is always Θ(N)).

The correctness of the delete (and delete-min) operation(s) follows directly from
the discussion in the previous subsection and the fact that if the smallest key element

1684 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

in the deletion buffer should really have been deleted, then the elements and the cor-
responding special delete element will appear consecutively in the buffer. To analyze
the modified structure, we first note that a delete operation basically behaves like an
insertion. As previously, all pushes and pulls can therefore be paid if each special
delete element is also given a push and a pull coin for each level of the structure.
Thus the cost of an insertion or deletion is O(1

B logM/B
N
B) amortized memory trans-

fers. That the modified delete-min operation is free amortized then follows, since it
basically consists of a sequence of the unmodified delete-min operations (where the
deleted elements are not reported).

Theorem 2.4. Using O(M) main memory, a set of N elements can be main-
tained in a linear-space cache-oblivious priority queue data structure supporting each
insert, delete-min, and delete operation in O(1

B logM/B
N
B) amortized memory trans-

fers and O(log2 N) amortized computation time.

3. Graph algorithms. In this section we discuss how our cache-oblivious pri-
ority queue can be used to develop several cache-oblivious graph algorithms. We first
consider the simple list ranking problem and algorithms on trees, and then we go on
and consider BFS, DFS, and MSF algorithms for general graphs.

3.1. List ranking. In the list ranking problem we are given a linked list of V
nodes stored as an unordered sequence. More precisely, we have an array with V
nodes, each containing the position of the next node in the list (an edge). The goal
is to determine the rank of each node v, that is, the number of edges from v to the
end of the list. In a more general version of the problem, each edge has a weight and
the goal is to find for each node v the sum of the weights of edges from v to the end
of the list. Refer to Figure 3.1.

Fig. 3.1. List ranking problem. An independent set of size 4 is marked. There are two forward
lists (on top) and two backward lists (on bottom).

Based on ideas from efficient PRAM algorithms [8, 34], Chiang et al. [31] designed
an O(sort(V)) I/O model list ranking algorithm. The main idea in the algorithm is
as follows. An independent set of Θ(V) nodes (nodes without edges to each other)
is found, nodes in the independent set are “bridged out” (edges incident to nodes
in this set are contracted), the remaining list is recursively ranked, and finally the
contracted nodes are reintegrated into the list (their ranks are computed). The main
innovation in the algorithm by Chiang et al. [31] was an O(sort(V)) memory transfer
algorithm for computing an independent set of size V/c for some constant c > 0. The
rest of the nonrecursive steps of the algorithm can easily be performed in O(sort(V))
memory transfers using a few scans and sorts of the nodes of the list as follows. To
bridge out the nodes in the independent set, we first identify nodes with a successor
in the independent set. We do so by creating a copy of the list of nodes, sorting it
by successor position, and simultaneously scanning the two lists. During this process,
we can also mark each predecessor of an independent set node v with the position of
the successor w of v, as well as with the weight of the edge (v, w). Next, in a simple
scan, we create a new list where the two edges incident to each independent set node

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1685

v have been replaced with an edge from the predecessor of v to the successor of v.
The new edge has weight equal to the sum of that of the two old edges. Finally, we
create the list to be ranked recursively by removing the independent set nodes and
“compressing” the remaining nodes, that is, storing them in an array of size V (1−1/c).
We do so by scanning through the list while creating a list of the nodes not in the
independent set, as well as a list that indicates the old and new position of each node
(that is, the position of each node in the old and new array). Then we update the
successor fields of the first list by sorting it by successor position, and simultaneously
scanning it and the list of new positions. After having ranked the compressed list
recursively, we reintegrate the removed nodes while computing their ranks. The rank
of an independent set node v is simply the rank of its successor w minus the weight
of edge (v, w). The reintegration of the independent set nodes can be performed in a
few scans and sorts similar to the way we bridged out the independent set. Overall,
not counting the independent set computation, the number of memory transfers used
to rank a V node list is T (V) = O(sort(V)) + T (V/c) = O(sort(V)).

Since we only use scans and sorts in the above algorithm, all that remains in
order to obtain a cache-oblivious list ranking algorithm is to develop a cache-oblivious
independent set algorithm. Under different assumptions about the memory and block
size, Chiang et al. [31] developed several independent set algorithms based on 3-
coloring; in a 3-coloring every node is colored with one of three colors such that
adjacent nodes have different colors. The independent set (of size at least V/3) then
consists of the set of nodes with the most popular color. Arge [11] and Kumar and
Schwabe [41] later removed the main memory and block assumptions.

One way of computing a 3-coloring is as follows [11, 31]: We call an edge (v, w) a
forward edge if v appears before w in the (unordered) sequence of nodes—otherwise it
is called a backward edge. First we imagine splitting the list into two sets consisting of
forward running segments (forward lists) and backward running segments (backward
lists). Each node is included in at least one of these sets, and nodes at the head
or tail of a segment (nodes at which there is a reversal of the direction) will be in
both sets. Refer to Figure 3.1. Next we color the nodes in the forward lists red or
blue by coloring the head nodes red and the other nodes alternately blue and red.
Similarly, the nodes in the backward lists are colored green and blue, with the head
nodes being colored green. In total, every node is colored with one color, except for
the heads/tails, which have two colors. It is easy to see that we obtain a 3-coloring if
we color each head/tail node the color it was colored as the head of a list [31].

In the above 3-coloring algorithm we can cache-obliviously color the forward lists
as follows (the backward lists can be colored similarly). In a single sort and scan
we identify the head nodes, and for each such node v we insert a red element in a
cache-oblivious priority queue with key equal to the position of v in the unordered
list. We then repeatedly extract the minimal key element e from the queue. If e
corresponds to a node v, we access v in the list, color it the same color as e, and
insert an element corresponding to its successor in the queue. We color the inserted
element in the opposite color of e. After processing all elements in the queue we have
colored all forward lists. The initial sort and scan is performed cache-obliviously in
O(sort(V)) memory transfers, and since we use a cache-oblivious priority queue we
can also perform the O(V) priority queue operations in O(sort(V)) memory transfers.
Apart from this, we also perform what appears to be random accesses to the O(V)
nodes in the list. However, since we only process the forward list nodes in position
order, the accesses overall end up corresponding to a scan of the list. Thus they only

1686 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

Fig. 3.2. An undirected tree and an Euler tour of the corresponding directed graph.

require O(V/B) transfers. Therefore, we can compute a 3-coloring cache-obliviously
in O(sort(V)) memory transfers, and thus overall we obtain the following.

Theorem 3.1. The list ranking problem on a V node list can be solved cache-
obliviously in O(sort(V)) memory transfers.

3.2. Algorithms on trees. Many efficient PRAM algorithms on undirected
trees use Euler tour techniques [56, 58]. An Euler tour of a graph is a cycle that
traverses each edge exactly once. Not every graph has an Euler tour, but a tree
where each undirected edge has been replaced with two directed edges does (refer to
Figure 3.2). When, in the following, we refer to an Euler tour of an undirected tree,
we mean a tour in the graph obtained by replacing each edge in the tree with two
directed edges.

To cache-obliviously compute an Euler tour of an undirected tree, that is, to
compute an ordered list of the edges along the tour, we use ideas from similar PRAM
algorithms. Consider imposing a (any) cyclic order on the nodes adjacent to each
node v in the tree. In [51] it is shown that an Euler tour is obtained if we traverse the
tree such that a visit to v from u (through the incoming edge (u, v)) is followed by a
visit to the node w following u in the cyclic order (through the outgoing edge (v, w)).
Thus we can compute the successor edge of each edge e, that is, the edge following e
in the Euler tour, as follows: We first construct a list of incoming edges to each node
v sorted according to the cyclic order. If two edges (u, v) and (w, v) are stored next
to each other in this list, the successor edge for the (incoming) edge (u, v) is simply
the (outgoing) edge (v, w). Therefore, we can compute all successor edges in a scan
of the list. Given a list of all edges augmented with their successor edge, we can then
compute the Euler tour simply by ranking the list and the sorting the edges by their
rank. Thus overall we compute an Euler tour of an undirected tree using a few sorts
and scans and a list ranking step, that is, using O(sort(V)) memory transfers.

Using our cache-oblivious Euler tour algorithm, we can easily compute a DFS
numbering of the nodes of a tree starting at a source node s [51]. First note that if
we start a walk of the Euler tour in the source node s it is actually a DFS tour of
the tree. To compute the numbering, we therefore first classify each edge as being
either a forward or a backward edge; an edge is a forward edge if it is traversed before
its reverse in the tour. After numbering the edges along the tour and sorting the
list of edges such that reverse edges appear consecutively, we can classify each edge
in a simple scan of the list. Then we assign each forward edge weight 1 and each
backward edge weight 0. The DFS number of a node v is then simply the sum of the
weights on the edges from s to v. Thus we can obtain the DFS numbering by solving
the general version of list ranking. Since we only use Euler tours computation, list

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1687

ranking, sorting, and scanning, we compute the DFS numbering cache-obliviously in
a total of O(sort(V)) memory transfers.

Using an Euler tour, list ranking, and sorting, we can also compute a BFS num-
bering of the nodes of a tree cache-obliviously in O(sort(V)) memory transfers in a
similar way [51]. Using standard PRAM ideas, and the tools developed here, we can
also, e.g., compute the centroid decomposition of a tree in O(sort(V)) memory trans-
fers [56, 58, 31]. The centroid of a tree is the node that, if removed, minimizes the
size of the largest of the remaining subtrees. The centroid decomposition of a tree is
a recursive partition of a tree into subtrees around the centroid.

Theorem 3.2. The Euler tour, BFS, DFS, and centroid decomposition prob-
lems on a tree with V nodes can be solved cache-obliviously in O(sort(V)) memory
transfers.

3.3. DFS and BFS. We now consider the DFS and BFS numbering problems
for general graphs. We first describe a cache-oblivious DFS algorithm for directed
graphs and then we modify it to compute a BFS numbering. Finally, we develop an
improved BFS algorithm for undirected graphs.

3.3.1. Depth-first search. In the RAM model, directed DFS can be solved in
linear time using a stack S containing vertices v that have not yet been visited but
have an edge (w, v) incident to a visited vertex w, as well as an array A containing an
element for each vertex v, indicating if v has been visited or not. The top vertex v of
S is repeatedly popped and A is accessed to determine if v has already been visited.
If v has not yet been visited, it is marked as visited in A and all vertices adjacent to
v are pushed onto S. It is easy to realize that if the stack S is implemented using a
doubling array then a push or pop requires O(1/B) amortized cache-oblivious memory
transfers, since the optimal paging strategy can always keep the last block of the array
(accessed by both push and pop) in main memory. However, each access to A may
require a separate memory transfer resulting in Ω(E) memory transfers in total.

In the I/O model, Chiang et al. [31] modified the above algorithm to obtain an
O(V + E

B
V
M) algorithm. In their algorithm all visited vertices (marked vertices in

array A) are stored in main memory. Every time the number of visited vertices grows
larger than the main memory, all visited vertices and all their incident edges are
removed from the graph. Since this algorithm relies crucially on knowledge of the
main memory size, it seems hard to make it cache-oblivious. Buchsbaum et al. [30]
described another O((V + E

B) log2 V +sort(E)) I/O model algorithm. In the following
we describe how to make it cache-oblivious. The algorithm uses a number of data
structures: V priority queues, a stack, and a so-called buffered repository tree. As
discussed above, a stack can trivially be made cache-oblivious. Below we first describe
how to make the buffered repository tree cache-oblivious. Next we describe what we
call a buffered priority tree that we use in the algorithm rather than our cache-oblivious
priority queue; we cannot simply use our priority queue since it requires O(M) space.
Finally, we describe the algorithm by Buchsbaum et al. [30] and how the use of the
cache-oblivious structures leads to a cache-oblivious version of it.

Buffered repository tree. A buffered repository tree (BRT) maintains O(E) ele-
ments with keys in the range [1..V] under operations insert and extract. The insert
operation inserts a new element, while the extract operation reports and deletes all
elements with a certain key.

Our cache-oblivious version of the BRT consists of a static binary tree with the
keys 1 through V in sorted order in the leaves. A buffer is associated with each node
and leaf of the tree. The buffer of a leaf v contains elements with key v and the buffers

1688 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�

�
�
�

����
����
����

����
����
����

��
��
��

��
��
��

Fig. 3.3. Buffered repository tree (BRT). Each nonroot node has a buffer of elements stored
as a linked list of buckets. The root node buffer is implemented using a doubling array.

of the internal nodes are used to perform insertions in a batched manner. We perform
an insertion simply by inserting the new element into the root buffer. To perform
an extraction of elements with key v we traverse the path from the root to the leaf
containing v. At each node μ on this path we scan the associated buffer and report
and delete elements with key v. During the scan we also distribute the remaining
elements among the two buffers associated with the children of μ; we distribute an
element with key w to the buffer of the child of μ on the path to w. We place
elements inserted in a buffer during the same scan consecutively in memory (but not
necessarily right after the other elements in the buffer). This way the buffer of a node
μ can be viewed as consisting of a linked list of buckets of elements in consecutive
memory locations, with the number of buckets being bounded by the number of times
the buffer of μ’s parent buffer has been emptied since the last time μ’s buffer was
emptied. To avoid performing a memory transfer on each insertion, we implement
the root buffer slightly differently, namely as a doubling array (like a stack). Since
only the root buffer is implemented this way, the optimal paging strategy can keep
the last block of the array in main memory and we obtain an O(1/B) amortized root
buffer insertion bound. Refer to Figure 3.3 for an illustration of a BRT.

Lemma 3.3. A cache-oblivious BRT uses Θ(B) main memory space and sup-
ports insert and extract operations in O(1

B log2 V) and O(log2 V) amortized memory
transfers, respectively.

Proof. As discussed, an insertion in the root buffer requires O(1/B) amortized
memory transfers. During an extract operation, we use O(X/B+K) memory transfers
to empty the buffer of a node μ containing X elements in K buckets (since we access
each element and each bucket). We charge the X/B-term to the insert operations
that inserted the X elements in the BRT. Since each element is charged at most once
on each level of the tree, an insert is charged O(1

B log2 V) transfers. We charge the K-
term to the extract operations that created the K buckets. Since an extract operation
creates two buckets on each level of the tree, it is charged a total of O(log2 V) memory
transfers.

Buffered priority tree. A buffered priority tree is constructed on Ev elements
with Ev distinct keys, and maintains these elements under buffered delete operations.
Given E′ elements, all of which are currently stored in the structure, a buffered delete
operation first deletes the E′ elements and then deletes and reports the minimal key
element among the remaining elements in the structure.

The buffered priority tree is implemented similarly to the BRT. It consists of
a static binary tree with the Ev keys in sorted order in the leaves, where a buffer
is associated with each internal node. Initially, the Ev elements are stored in the
leaves containing their keys. The buffers are used to store elements intended to be

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1689

deleted from the structure, and with each node v we maintain a counter storing the
number of (undeleted) elements stored in the tree rooted in v. To perform a buffered
delete we first insert the E′ elements in the buffer of the root and update its counter.
Next we traverse the path from the root to the leaf l containing the minimal key
elements (among the undeleted elements), while emptying the buffers associated with
the encountered nodes: At the root, we scan the buffer and distribute the elements
among the two buffers associated with the children (exactly as in the BRT). During
the distribution, we also update the counters in the two children. If the counter of the
left child vl is still greater than zero, i.e., the minimal element is in the tree rooted
in vl, we then recursively visit vl. Otherwise we visit the right child vr. (Note that
when reaching leaf l it has an empty buffer.) After finding l, we report and delete
the element stored in l. Finally, we decrement the counters on the path from the root
to l.

Lemma 3.4. Using no permanent main memory, a cache-oblivious buffered pri-
ority tree supports buffered deletes of E′ elements in O((E

′

B + 1) log2 V) amortized
memory transfers. It can be constructed in O(sort(Ev)) memory transfers.

Proof. The number of transfers needed to construct the tree is dominated by
the O(sort(Ev)) memory transfers needed to sort the Ev elements and construct the
leaves; after that, the tree can be constructed in O(Ev/B) transfers level-by-level
bottom-up. The amortized cost of a buffered delete is equal to the cost of inserting
E′ elements into a BRT, plus the cost of extracting an element from a BRT, that is,
O((E

′

B + 1) log2 V) memory transfers.
DFS algorithm. As mentioned, the directed DFS numbering algorithm by Buchs-

baum et al. [30] utilizes a number of data structures: a stack S containing vertices on
the path from the root of the DFS tree to the current vertex, a priority queue P (v) for
each vertex v containing edges (v, w) connecting v with a possibly unvisited vertex w,
as well as one BRT D containing edges (v, w) incident to a vertex w that has already
been visited but where (v, w) is still present in P (v). The key of an edge (v, w) is v
in D and w in P (v). For the priority queues P (v) we use our buffered priority tree.

Initially each P (v) is constructed on the Ev edges (v, w) incident to v, the source
vertex is placed on the stack S, and the BRT D is empty. To compute a DFS
numbering, the vertex u on the top of the stack is repeatedly considered. All edges
in D of the form (u,w) are extracted and deleted from P (u) using a buffered delete
operation. If P (u) is now empty, so that no minimal element (edge (u, v)) is returned,
all neighbors of u have already been visited and u is popped off S. Otherwise, if edge
(u, v) is returned, vertex v is visited next: It is numbered and pushed on S, and all
edges (w, v) (with w �= u) incident to it are inserted in D. In [30] it is shown that this
algorithm correctly computes a DFS numbering.

To analyze the above algorithm, we first note that each vertex is considered on
the top of S a number of times equal to one greater than its number of children in
the DFS tree. Thus the total number of times we consider a vertex on top of S is
2V − 1. When considering a vertex u we first perform a stack operation on S, an
extract operation on D, and a buffered delete operation on P (u). The stack operation
requires O(1/B) memory transfers and the extraction O(log2 V) transfers, since the
optimal paging strategy can keep the relevant O(1) blocks of S and D in main memory
at all times. Thus overall these costs add up to O(V log2 V). The buffered delete

operation requires O((1+ E′

B) log2 V) memory transfers if E′ is the number of deleted
elements (edges). Each edge is deleted once, so overall the buffered deletes costs add
up to O((V + E

B) log2 V). Next we insert the, say E′′, edges incident to v in D. This

1690 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

requires O(1 + E′′

B log2 V) memory transfers, or O(V + E
B log2 V) transfers over the

whole algorithm. (Note that the E′′ edges are not immediately deleted directly from
the relevant P (w)’s since that could cost a memory transfer per edge.) In addition,
the initial construction of the buffered priority trees requires O(sort(E)) memory
transfers. Thus overall the algorithm uses O((V + E

B) log2 V + sort(E)) memory
transfers.

3.3.2. Breadth-first search. The DFS algorithm described above can be mod-
ified to perform a BFS simply by replacing the stack S with a queue. Queues, like
stacks, can be implemented using a doubling array, and the optimal paging strategy
can keep the two partial blocks in use by the enqueue and dequeue operations in
memory, such that each queue operation requires O(1/B) amortized memory trans-
fers. Thus we also obtain an O((V + E

B) log2 V) directed BFS numbering algorithm.
Our directed DFS and BFS algorithms can of course also be used on undirected

graphs. For undirected graphs, improved O(V + sort(E)) and O(
√

V ·E
B + sort(E))

I/O model algorithms have been developed [46, 45]. The idea in the algorithm by
Munagala and Ranade [46], which can immediately be made cache-oblivious, is to
visit the vertices in “layers” of vertices of equal distance from the source vertex s.
The algorithm utilizes the fact that in an undirected graph any vertex adjacent to a
vertex in layer i is either in layer i− 1, layer i, or layer i+ 1. It maintains two sorted
lists of vertices in the last two layers i and i − 1. To create a sorted list of vertices
in layer i + 1, a list of possible layer i + 1 vertices is first produced by collecting
all vertices with a neighbor in level i (using a scan of the adjacency lists of layer i
vertices). Then this list is sorted, and in a scan of the list and the (sorted) lists of
vertices in level i and i − 1 all previously visited vertices are removed. Apart from
the sorting steps, overall this algorithm uses O(V +E/B) memory transfers to access
the edge lists for all vertices, as well as O(E/B) transfers to scan the lists. Since
each vertex is included in a sort once for each of its incident edges, the total cost
of all sorting steps is O(sort(E)). Thus in total the algorithm uses O(V + sort(E))
memory transfers. Since it uses only scans and sorts, it is cache-oblivious without
modification. Refer to [46] for full details. As mentioned in the introduction, Brodal
et al. [28] have developed other undirected BFS algorithms based on the ideas in [45].

Theorem 3.5. The DFS or BFS numbering of a directed graph can be computed
cache-obliviously in O((V + E

B) log2 V + sort(E)) memory transfers. The BFS num-
bering of an undirected graph can be computed cache-obliviously in O(V + sort(E))
memory transfers.

3.4. Minimum spanning forest. In this section we consider algorithms for
computing the MSF of an undirected weighted graph. Without loss of generality, we
assume that all edge weights are distinct. In the I/O model, a sequence of algorithms
has been developed for the problem [31, 1, 41, 15], culminating in an algorithm using
O(sort(E) · log2 log2(

V B
E)) memory transfers developed by Arge, Brodal, and Toma

[15]. This algorithm consists of two phases. In the first phase, an edge contraction
algorithm inspired by PRAM algorithms [32, 35] is used to reduce the number of
vertices to O(E/B). In the second phase, a modified version of Prim’s algorithm [48]
is used to complete the MSF computation. Using our cache-oblivious priority queue
we can relatively easily modify both of the phases to work cache-obliviously. However,
since we cannot decide cache-obliviously when the first phase has reduced the number
of vertices to O(E/B), we are not able to combine the two phases as effectively as in
the I/O model. Below, we first describe how to make the algorithms used in the two
phases cache-oblivious. Then we discuss their combination.

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1691

3.4.1. Phase 1. The basic edge contraction based MSF algorithm proceeds in
stages [32, 31, 41]. In each stage the minimum weight edge incident to each vertex is
selected and output as part of the MSF, and the vertices connected by the selected
edges are contracted into supervertices (that is, the connected components of the
graph of selected edges are contracted). See, e.g., [15] for a proof that the selected
edges along with the edges in a MSF of the contracted graph constitute a MSF for
the original graph.

In the following we sketch how we can perform a contraction stage on a graph
G cache-obliviously in O(sort(E)) memory transfers as in [15]. We can easily select
the minimum weight edges in O(sort(E)) memory transfers using a few scans and
sorts. To perform the contraction, we select a leader vertex in each connected com-
ponent of the graph Gs of selected edges, and replace every edge (u, v) in G with the
edge (leader(u), leader(v)). To select the leaders, we use the fact that the connected
components of Gs are trees, except that one edge in each component (namely, the
minimal weight edge) appears twice [15]. In each component, we simply use one of
the vertices incident to the edge appearing twice as leader. This way we can easily
identify all the leaders in O(sort(E)) memory transfers using a few sorts and scans
(by identifying all edges that appear twice). We can then use our cache-oblivious tree
algorithms developed in section 3.2 to distribute the identity of the leader to each
vertex in each component in O(sort(V)) memory transfers: We add an edge between
each leader in Gs and a pseudo root vertex s and perform a DFS numbering of the
resulting tree starting in s; since all vertices in the same connected component (tree)
will have consecutive DFS numbers, we can then mark each vertex with its leader
using a few sorts and scans. Finally, after marking each vertex v with leader(v),
we can easily replace each edge (u, v) in G with (leader(u), leader(v)) in O(sort(E))
memory transfers using a few sort and scan steps on the vertices and edges.

Since each contraction stage reduces the number of vertices by a factor of two, and
since a stage is performed in O(sort(E)) memory transfers, we can reduce the number
of vertices to V ′ = V/2i in O(sort(E) · log2(V/V

′)) memory transfers by performing i
stages after each other. Thus we obtain an O(sort(E)·log2 V) algorithm by continuing
the contraction until we are left with a single vertex. In the I/O model, Arge, Brodal,
and Toma [15] showed how to improve this bound to O(sort(E) · log2 log2 V) by
grouping the stages into “superstages” and working only on a subset of the edges of
G in each superstage. The extra steps involved in their improvement are all sorting
or scanning of the edges and vertices, and therefore the improvement is immediately
cache-oblivious.

Lemma 3.6. The MFS of an undirected weighted graph can be computed cache-
obliviously in O(sort(E) · log2 log2 V) memory transfers.

3.4.2. Phase 2. Prim’s algorithm [48] grows a minimum spanning tree (MST)
of a connected graph iteratively from a source vertex using a priority queue P on the
vertices not already included in the MST. The key of a vertex v in P is equal to the
weight of the minimal weight edge connecting v to the current MST. In each step of
the algorithm a delete-min is used to obtain the next vertex u to add to the MST, and
the keys of all neighbors of u in P are (possibly) updated. A standard implementation
of this algorithm uses Ω(E) memory transfers, since a transfer is needed to obtain
the current key of each neighbor vertex. In the I/O model, Arge, Brodal, and Toma
[15] showed how to modify the algorithm to use O(V + sort(E)) memory transfers
by storing edges rather than vertices in the priority queue. Below we describe this
algorithm in order to show that it can be implemented cache-obliviously.

1692 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

Like Prim’s algorithm, the algorithm in [15] grows the MST iteratively. We
maintain a priority queue P containing (at least) all edges connecting vertices in the
current MST with vertices not in the tree; P can also contain edges between two
vertices in the MST. Initially it contains all edges incident to the source vertex. In
each step of the algorithm we extract the minimum weight edge (u, v) from P . If v
is already in the MST we discard the edge; otherwise we include v in the MST and
insert all edges incident to v, except (v, u), in the priority queue. We can efficiently
determine if v is already in the MST, since if u and v are both already in the MST,
then (u, v) must be in the priority queue twice; thus, if the next edge we extract from
P is (v, u), then v is already in the MST.

The correctness of the above algorithm follows immediately from the correctness
of Prim’s algorithm. During the algorithm we access the edges in the adjacency list of
each vertex v once (when v is included in the MST) for a total of O(V +E/B) memory
transfers. We also perform O(E) priority queue operations, for a total of O(sort(E))
memory transfers. Thus the algorithm uses O(V + sort(E)) memory transfers. All of
the above can easily be modified to compute a MSF for an unconnected graph rather
than a MST for a connected graph. Thus we have obtained the following.

Lemma 3.7. The MSF of an undirected weighted graph can be computed cache-
obliviously in O(V + sort(E)) memory transfers.

3.4.3. Combined algorithm. In the I/O model, an O(sort(E) · log2 log2(
V B
E))

MSF algorithm can be obtained by running the phase 1 algorithm until the number
of vertices has been reduced to V ′ = E/B using O(sort(E) · log2 log2(

V B
E)) memory

transfers, and then finishing the MSF in O(V ′ + sort(E)) = O(sort(E)) memory
transfers using the phase 2 algorithm. As mentioned, we cannot combine the two
phases as effectively in the cache-oblivious model. In general, however, we can combine
the two algorithms to obtain an O(sort(E) · log2 log2(V/V

′) + V ′) algorithm for any
V ′ independent of B and M .

Theorem 3.8. The MSF of an undirected weighted graph can be computed cache-
obliviously in O(sort(E) · log2 log2(V/V

′)+V ′) memory transfers for any V ′ indepen-
dent of B and M .

4. Conclusions. In this paper, we presented an optimal cache-oblivious priority
queue and used it to develop efficient cache-oblivious algorithms for several graph
problems. We believe that the ideas utilized in the development of the priority queue
and our graph algorithms will prove useful in the development of other cache-oblivious
data structures.

Many important problems still remain open in the area of cache-oblivious algo-
rithms and data structures. In the area of graph algorithms, for example, it remains
open to develop a cache-oblivious MSF algorithm with complexity matching the best
known cache-aware algorithm.

Acknowledgments. The authors wish to thank an anonymous reviewer for
pointing out a mistake in an earlier draft of this paper, and all the reviewers for
numerous suggestions for improving the presentation.

REFERENCES

[1] J. Abello, A. L. Buchsbaum, and J. R. Westbrook, A functional approach to external graph
algorithms, Algorithmica, 32 (2002), pp. 437–458.

[2] P. K. Agarwal, L. Arge, A. Danner, and B. Holland-Minkley, Cache-oblivious data struc-
tures for orthogonal range searching, in Proceedings of the ACM Symposium on Compu-
tational Geometry, 2003, pp. 237–245.

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1693

[3] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, A model for hierarchical memory,
in Proceedings of the ACM Symposium on Theory of Computation, 1987, pp. 305–314.

[4] A. Aggarwal and A. K. Chandra, Virtual memory algorithms, in Proceedings of the ACM
Symposium on Theory of Computation, 1988, pp. 173–185.

[5] A. Aggarwal, A. K. Chandra, and M. Snir, Hierarchical memory with block transfer, in
Proceedings of the IEEE Symposium on Foundations of Computer Science, 1987, pp. 204–
216.

[6] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related problems,
Commun. ACM, 31 (1988), pp. 1116–1127.

[7] B. Alpern, L. Carter, E. Feig, and T. Selker, The uniform memory hierarchy model of
computation, Algorithmica, 12 (1994), pp. 72–109.

[8] R. J. Anderson and G. L. Miller, A simple randomized parallel algorithm for list-ranking,
Inform. Process. Lett., 33 (1990), pp. 269–273.

[9] L. Arge, The I/O-complexity of ordered binary-decision diagram manipulation, in Algorithms
and Computations, Lecture Notes in Comput. Sci. 1004, Springer, Berlin, 1995, pp. 82–91.
A complete version appears as BRICS Technical Report RS-96-29, University of Aarhus,
Denmark.

[10] L. Arge, External memory data structures, in Handbook of Massive Data Sets, J. Abello, P. M.
Pardalos, and M. G. C. Resende, eds., Kluwer Academic Publishers, Norwell, MA, 2002,
pp. 313–358.

[11] L. Arge, The buffer tree: A technique for designing batched external data structures, Algo-
rithmica, 37 (2003), pp. 1–24.

[12] L. Arge, M. Bender, E. Demaine, B. Holland-Minkley, and J. I. Munro, Cache-oblivious
priority queue and graph algorithm applications, in Proceedings of the ACM Symposium
on Theory of Computation, 2002, pp. 268–276.

[13] L. Arge, G. S. Brodal, and R. Fagerberg, Cache-oblivious data structures, in Handbook on
Data Structures and Applications, D. Mehta and S. Sahni, eds., CRC Press, Boca Raton,
FL, 2005.

[14] L. Arge, G. S. Brodal, R. Fagerberg, and M. Laustsen, Cache-oblivious planar orthogonal
range searching and counting, in Proceedings of the ACM Symposium on Computational
Geometry, 2005, pp. 160–169.

[15] L. Arge, G. S. Brodal, and L. Toma, On external memory MST, SSSP and multi-way planar
graph separation, J. Algorithms, 53 (2004), pp. 186–206.

[16] L. Arge, M. de Berg, and H. Haverkort, Cache-oblivious R-trees, in Proceedings of the
ACM Symposium on Computational Geometry, 2005, pp. 170–179.

[17] R. Bayer and E. McCreight, Organization and maintenance of large ordered indexes, Acta
Inform., 1 (1972), pp. 173–189.

[18] M. Bender, R. Cole, E. Demaine, and M. Farach-Colton, Scanning and traversing: Main-
taining data for traversals in memory hierarchy, in Proceedings of the European Sympo-
sium on Algorithms, 2002, Lecture Notes in Comput. Sci. 2461, Springer, Berlin, 2002, pp.
152–164.

[19] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu, J. Iacono, and A. López-

Ortiz, The cost of cache-oblivious searching, in Proceedings of the IEEE Symposium on
Foundations of Computer Science, 2003, pp. 271–282.

[20] M. A. Bender, R. Cole, and R. Raman, Exponential structures for cache-oblivious algo-
rithms, in Proceedings of the 29th International Colloquium on Automata, Languages,
and Programming, Malaga, Spain, 2002, Lecture Notes in Comput. Sci. 2380, Springer,
Berlin, pp. 195–207.

[21] M. A. Bender, E. D. Demaine, and M. Farach-Colton, Cache-oblivious B-trees, in Pro-
ceedings of the IEEE Symposium on Foundations of Computer Science, 2000, pp. 339–409.

[22] M. A. Bender, Z. Duan, J. Iacono, and J. Wu, A locality-preserving cache-oblivious dynamic
dictionary, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 2002, pp. 29–38.

[23] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall, An anal-
ysis of dag-consistent distributed shared-memory algorithms, in Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, 1996, pp. 297–308.

[24] G. S. Brodal and R. Fagerberg, Cache oblivious distribution sweeping, in Proceedings of
the 29th International Colloquium on Automata, Languages, and Programming, Malaga,
Spain, 2002, Lecture Notes in Comput. Sci. 2380, Springer, Berlin, pp. 426–438.

[25] G. S. Brodal and R. Fagerberg, Funnel heap—A cache oblivious priority queue, in Algo-
rithms and Computation, Lecture Notes in Comput. Sci. 2518, Springer, Berlin, 2002, pp.
219–228.

1694 ARGE, BENDER, DEMAINE, HOLLAND-MINKLEY, AND MUNRO

[26] G. S. Brodal and R. Fagerberg, On the limits of cache-obliviousness, in Proceedings of the
ACM Symposium on Theory of Computation, 2003, pp. 307–315.

[27] G. S. Brodal, R. Fagerberg, and R. Jacob, Cache oblivious search trees via binary trees
of small height, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 2002, pp. 39–48.

[28] G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh, Cache-oblivious data structures and
algorithms for undirected breadth-first search and shortest paths, in Algorithm Theory—
SWAT 2004, Lecture Notes in Comput. Sci. 3111, Springer, Berlin, 2004, pp. 480–492.

[29] G. S. Brodal and J. Katajainen, Worst-case efficient external-memory priority queues, in
Algorithm Theory—SWAT ’98, Lecture Notes in Comput. Sci. 1432, Springer, Berlin, 1998,
pp. 107–118.

[30] A. L. Buchsbaum, M. Goldwasser, S. Venkatasubramanian, and J. R. Westbrook, On
external memory graph traversal, in Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 2000, pp. 859–860.

[31] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.

Vitter, External-memory graph algorithms, in Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, SIAM, Philadelphia, 1995, pp. 139–149.

[32] F. Chin, J. Lam, and I. Chen, Efficient parallel algorithms for some graph problems, Commun.
ACM, 25 (1982), pp. 659–665.

[33] R. A. Chowdhury and V. Ramachandran, Cache-oblivious shortest paths in graphs using
buffer heap, in Proceedings of the ACM Symposium on Parallel Algorithms and Architec-
tures, ACM Press, New York, 2004, pp. 245–254.

[34] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel
list-ranking, Inform. and Control, 70 (1986), pp. 32–53.

[35] R. Cole and U. Vishkin, Approximate parallel scheduling. II. Applications to logarithmic-time
optimal parallel graph algorithms, Inform. and Comput., 92 (1991), pp. 1–47.

[36] D. Comer, The ubiquitous B-tree, ACM Computing Surveys, 11 (1979), pp. 121–137.
[37] R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola, Heaps and heapsort on secondary

storage, Theoret. Comput. Sci., 220 (1999), pp. 345–362.
[38] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms,

in Proceedings of the IEEE Symposium on Foundations of Computer Science, 1999, pp.
285–298.

[39] S. Huddleston and K. Mehlhorn, A new data structure for representing sorted lists, Acta
Inform., 17 (1982), pp. 157–184.

[40] D. E. Knuth, Sorting and Searching, The Art of Computer Programming, Vol. 3, 2nd ed.,
Addison-Wesley, Reading, MA, 1998.

[41] V. Kumar and E. Schwabe, Improved algorithms and data structures for solving graph prob-
lems in external memory, in Proceedings of the IEEE Symposium on Parallel and Dis-
tributed Processing, 1996, pp. 169–177.

[42] R. Ladner, J. Fix, and A. LaMarca, Cache performance analysis of traversals and random
accesses, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 1999, pp. 613–622.

[43] A. LaMarca and R. Ladner, The influence of cache on the performance of sorting, J. of
Algorithms, 31 (1999), pp. 66–104.

[44] A. LaMarca and R. E. Ladner, The influence of caches on the performance of heaps, ACM
J. Exp. Algorithmics, 1 (1996) (electronic).

[45] K. Mehlhorn and U. Meyer, External-memory breadth-first search with sublinear I/O, in
Algorithms—ESA 2002, Lecture Notes in Comput. Sci. 2461, Springer, New York, 2002,
pp. 723–735.

[46] K. Munagala and A. Ranade, I/O-complexity of graph algorithms, in Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1999, pp. 687–694.

[47] M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Comput. Sci. 156,
Springer-Verlag, New York, 1983.

[48] R. C. Prim, Shortest connection networks and some generalizations, Bell Syst. Tech. J., 36
(1957), pp. 1389–1401.

[49] N. Rahman, R. Cole, and R. Raman, Optimised predecessor data structures for internal
memory, in Algorithm Engineering, Lecture Notes in Comput. Sci. 2141, Springer, New
York, 2001, pp. 67–78.

[50] N. Rahman and R. Raman, Analysing cache effects in distribution sorting, in Algorithm
Engineering, Lecture Notes in Comput. Sc. 1668, Springer-Verlag, Berlin, 1999, pp. 183–
197.

[51] J. H. Reif, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann, San Francisco, 1993, pp.
61–114.

OPTIMAL CACHE-OBLIVIOUS PRIORITY QUEUE AND APPLICATIONS 1695

[52] P. Sanders, Fast priority queues for cached memory, in Algorithm Engineering and Experi-
mentation, Lecture Notes in Comput. Sci. 1619, Springer, Berlin, 1999, pp. 312–327.

[53] J. E. Savage, Extending the Hong-Kung model to memory hierarchies, in Computing and
Combinatorics, Lecture Notes in Comput. Sci. 959, Springer, New York, 1995, pp. 270–
281.

[54] S. Sen, S. Chatterjee, and N. Dumir, Towards a theory of cache-efficient algorithms, J.
ACM, 49 (2002), pp. 828–858.

[55] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging rules, Com-
mun. ACM, 28 (1985), pp. 202–208.

[56] R. E. Tarjan and U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM J. Comput.,
14 (1985), pp. 862–874.

[57] S. Toledo, Locality of reference in LU decomposition with partial pivoting, SIAM J. Matrix
Anal. Appl., 18 (1997), pp. 1065–1081.

[58] U. Vishkin, On efficient parallel strong orientation, Inform. Processing Lett., 20 (1985), pp.
235–240.

[59] J. S. Vitter, External memory algorithms and data structures: Dealing with MASSIVE data,
ACM Computing Surveys, 33 (2001), pp. 209–271.

[60] R. Wickremesinghe, L. Arge, J. S. Chase, and J. S. Vitter, Efficient sorting using registers
and caches, ACM J. Exp. Algorithmics, 7 (2002) (electronic).

[61] N. Zeh, I/O-Efficient Algorithms for Shortest Path Related Problems, Ph.D. thesis, Carleton
University, Ottawa, ON, 2002.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1696–1708

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION:
WINNOW YIELDS NEW LOWER BOUNDS FOR HARD SETS∗

JOHN M. HITCHCOCK†

Abstract. We establish a relationship between the online mistake-bound model of learning and
resource-bounded dimension. This connection is combined with the Winnow algorithm to obtain new
results about the density of hard sets under adaptive reductions. This improves previous work of
Fu [SIAM J. Comput., 24 (1995), pp. 1082–1090] and Lutz and Zhao [SIAM J. Comput., 30 (2000),
pp. 1197–1210], and solves one of Lutz and Mayordomo’s “twelve problems in resource-bounded
measure” [Bull. Eur. Assoc. Theor. Comput. Sci. EATSC, 68 (1999), pp. 64–80].

Key words. computational complexity, polynomial-time reductions, resource-bounded dimen-
sion, resource-bounded measure, sparse sets

AMS subject classification. 68Q15

DOI. 10.1137/050647517

1. Introduction. This paper has two main contributions: (i) establishing a close
relationship between resource-bounded dimension and Littlestone’s online mistake-
bound model of learning, and (ii) using this relationship along with the Winnow algo-
rithm to resolve an open problem in computational complexity. In this introduction
we briefly describe these contributions.

1.1. Online learning and dimension. Lindner, Schuler, and Watanabe [15]
studied connections between computational learning theory and resource-bounded
measure, primarily working with the probably approximately correct (PAC) model.
They also included the observation that any “admissible” subclass of P/poly that is
polynomial-time learnable in Angluin’s exact learning model [2] must have p-measure
0. The proof of this made use of the essential equivalence between Angluin’s model
and Littlestone’s online mistake-bound model [16].

In the online mistake-bound model, a learner is presented a sequence of examples
and is asked to predict whether or not they belong to some unknown target concept.
The concept is drawn from some concept class, which is known to the learner, and
the examples may be chosen by an adversary. After making a prediction about each
example, the learner is told the correct classification for the example, and learner may
use this knowledge in making future predictions. The mistake bound of the learner is
the maximum number of incorrect predictions the learner will make, over any choice
of target concept and sequence of examples.

We push the observation of [15] much further, developing a powerful, general
framework for showing that classes have resource-bounded dimension 0. Resource-
bounded measure and dimension involve betting on the membership of strings in an
unknown set. To prove that a class has dimension 0, we show that it suffices to give
a reduction to a family of concept classes that has a good mistake-bound learning
algorithm. It is possible that the reduction can take exponential-time and that the

∗Received by the editors December 13, 2005; accepted for publication (in revised form) September
20, 2006; published electronically March 19, 2007. This research was supported in part by National
Science Foundation grant 0515313.

http://www.siam.org/journals/sicomp/36-6/64751.html
†Department of Computer Science, University of Wyoming, Laramie, WY 82071 (jhitchco@cs.

uwyo.edu).

1696

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1697

learning algorithm can also take exponential-time, as long as the mistake bound of
the algorithm is subexponential. If we have a reduction from the unknown set to
a concept in the learnable concept class, we can view the reduction as generating a
sequence of examples, apply the learning algorithm to these examples, and use the
learning algorithm’s predictions to design a good betting strategy. Formal details of
this framework are given in section 3.

1.2. Density of hard sets. The two most common notions of polynomial-time
reductions are many-one (≤p

m) and Turing (≤p
T). A many-one reduction from A to

B maps instances of A to instance of B, preserving membership. A Turing reduction
from A to B makes many, possibly adaptive, queries to B in order to solve A. Many-
one reductions are a special case of Turing reductions. In between ≤p

m and ≤p
T is a

wide variety of polynomial-time reductions of different strengths.
A common use of reductions is to demonstrate hardness for a complexity class.

Let ≤p
τ be a polynomial-time reducibility. For any set B, let Pτ (B) = {A | A ≤p

τ B}
be the class of all problems that ≤p

τ -reduce to B. We say that B is ≤p
τ -hard for a

complexity class C if C ⊆ Pτ (B), that is, every problem in C ≤p
τ -reduces to B. For a

class D of sets, a useful notation is Pτ (D) =
⋃

B∈D Pτ (B).

A problem B is dense if there exists ε > 0 such that |B≤n| > 2n
ε

for all but
finitely many n. All known hard sets for the exponential-time complexity classes

E = DTIME(2O(n)) or EXP = DTIME(2n
O(1)

) are dense. Whether every hard set
must be dense has been often studied. First, Meyer (see his result reported by Berman
and Hartmanis [5, pp. 317–318]) showed that every ≤p

m-hard set for E must be dense,
and he observed that proving the same for ≤p

T reductions would imply that E does
not have polynomial-size circuits. Since then, a line of research has obtained results
for a variety of reductions between ≤p

m and ≤p
T, specifically the conjunctive (≤p

c)
and disjunctive (≤p

d) reductions, and for various functions f(n), the bounded query
≤p

f(n)−tt and ≤p
f(n)−T reductions:

1. Watanabe [27, 10] showed that every hard set for E under the ≤p
c , ≤p

d, or
≤p

O(log n)−tt reductions is dense.

2. Lutz and Mayordomo [21] showed that for all α < 1, the class Pnα−tt(DENSEc)
has p-measure 0, where DENSE is the class of all dense sets. Since E does
not have p-measure 0, their result implies that every ≤p

nα−tt-hard set for E
is dense.

3. Fu [8] showed that for all α < 1/2, every ≤p
nα−T-hard set for E is dense, and

that for all α < 1, every ≤p
nα−T-hard set for EXP is dense.

4. Lutz and Zhao [23] gave a measure-theoretic strengthening of Fu’s results,
showing that for all α < 1/2, Pnα−T(DENSEc) has p-measure 0, and that for
all α < 1, Pnα−T(DENSEc) has p

2
-measure 0.

This contrast between E and EXP in the last two references was left as a curious
open problem and stated as follows by Lutz and Mayordomo [22, Problem 6] as one
of their “twelve problems in resource-bounded measure.”

For 1
2 ≤ α < 1, is it the case that Pnα−T(DENSEc) has p-measure 0

(or at least, that E �⊆ Pnα−T(SPARSE))?

We resolve this problem, showing the much stronger conclusion that the classes in
question have p-dimension 0. But first, in section 4, we prove a theorem about dis-
junctive reductions that illustrates the basic idea of our technique. We show that
the class Pd(DENSEc) has p-dimension 0. The proof uses the learning framework

1698 JOHN M. HITCHCOCK

of section 3 and Littlestone’s Winnow algorithm [16]. Suppose that A ≤p
d S, where

S is a nondense set. Then there is a reduction g mapping strings to sets of strings
such that x ∈ A if and only if at least one string in g(x) belongs to S. We view
the reduction g as generating examples that we can use to learn a disjunction based
on S. Because S is subexponentially dense, the target disjunction involves a subex-
ponential number of variables out of exponentially many variables. This is truly a
case “when irrelevant attributes abound” [16], and the Winnow algorithm perfoms ex-
ceedingly well to establish our dimension result. In the same section we also use the
learning framework to show that Pc(DENSEc) has p-dimension 0. These results give
new proofs of Watanabe’s aforementioned theorems about ≤p

d-hard and ≤p
c -hard sets

for E.

Our main theorem, presented in section 5, is that for all α < 1, Pnα−T(DENSEc)
has p-dimension 0. This substantially improves the results of [21, 8, 23]. The resource-
bounded measure proofs in [21, 23] use the concept of weak stochasticity. As observed
by Mayordomo [25], this stochasticity approach can be extended to show a −1st-
order scaled dimension [12] result, but it seems a different technique is needed for an
(unscaled) dimension result. Our learning framework turns out to be just what is
needed. We reduce the class Pnα−T(DENSEc) to a family of learnable disjunctions.
For this, we make use of a technique that Allender et al. [1] used to prove a surprising
result converting bounded-query reductions to sparse sets into disjunctive reductions
to sparse sets: Pbtt(SPARSE) ⊆ Pd(SPARSE). Carefully applying the same technique
on a sublinear-query Turing-reduction to a nondense set results in a disjunction with
a nearly exponential blowup, but it can still be learned by Winnow in our dimension
setting.

The density of complete and hard sets for NP has also been studied often, with
motivation coming originally from the Berman–Hartmanis isomorphism conjecture
[5]: all many-one complete sets are dense if the isomorphism conjecture holds. Since
no absolute results about the density of NP-complete or NP-hard sets can be proved
without separating P from NP, the approach has been to prove conditional results
under a hypothesis on NP. Mahaney [24] showed that if P �= NP, then no sparse set
is ≤p

m-hard for NP. Ogiwara and Watanabe [26] extended Mahaney’s theorem to the
≤p

btt-hard sets. Deriving a result from P �= NP about NP-hard sets under unbounded
truth-table reductions is still an open problem, but a measure-theoretic assumption
yields very strong consequences. Lutz and Zhao [23] showed that under the hypothesis
“NP does not have p-measure 0,” every ≤p

nα−T-hard set for NP must be dense, for
all α < 1. In section 6 we present the same conclusion under the weaker hypothesis
“NP has positive p-dimension,” and some additional consequences.

2. Preliminaries. The set of all binary strings is {0, 1}∗. The length of a string
x ∈ {0, 1}∗ is |x|. We write λ for the empty string. For n ∈ N, {0, 1}n is the set of
strings of length n and {0, 1}≤n is the set of strings of length at most n. We write
s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . for the standard lexicographic enumeration of
{0, 1}∗.

A language is a subset L ⊆ {0, 1}∗. We write L≤n = L ∩ {0, 1}≤n and L=n =
L ∩ {0, 1}n. We say that L is sparse if there is a polynomial p(n) such that for all n,
|L=n| ≤ p(n). We say that L is (exponentially) dense if there is a constant ε > 0 such
that |L≤n| > 2n

ε

for all sufficiently large n. We write SPARSE and DENSE for the
classes of all sparse languages and all dense languages. The complement DENSEc of
DENSE is the class of all nondense languages.

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1699

2.1. Polynomial-time reductions. We use the following standard notions of
polynomial-time reducibilities:

• Turing reducibility: A ≤p
T B if there is a polynomial-time oracle machine M

such that A = L(MB).
• Truth-table reducibility: A ≤p

tt B if there is a polynomial-time oracle machine
M that makes nonadaptive queries such that A = L(MB).

• Disjunctive reducibility: A ≤p
d B if there is a polynomial-time computable

f : {0, 1}∗ → P({0, 1}∗) such that for all x, x ∈ A if and only if f(x)∩B �= ∅.
• Conjunctive reducibility: A ≤p

c B if there is a polynomial-time computable
f : {0, 1}∗ → P({0, 1}∗) such that for all x, x ∈ A if and only if f(x) ⊆ B.

We write ≤p
q(n)−T or ≤p

q(n)−tt to indicate that the reduction makes at most q(n)

queries on any input of length n. The bounded reducibility A ≤p
btt B means A ≤p

k−tt B
for some constant k.

Let ≤p
τ be a polynomial-time reducibility. For any language B, we define Pτ (B) =

{A | A ≤p
τ B}. A language B is ≤p

τ -hard for a class C if C ⊆ Pτ (B). For any class D
of languages, Pτ (D) =

⋃
B∈D Pτ (B).

2.2. Resource-bounded measure and dimension. Resource-bounded mea-
sure and dimension were introduced by Lutz [17, 19], and resource-bounded strong
dimension by Athreya et al. [4]. Here we briefly review the definitions and basic prop-
erties. We refer to the original sources and also the surveys [18, 22, 20, 13] for more
information.

The Cantor space is C = {0, 1}∞. Each language A ⊆ {0, 1}∗ is identified with its
characteristic sequence χ

A
∈ C according to the standard (lexicographic) enumeration

of {0, 1}∗. We typically write A in place of χ
A
. In this way a complexity class

C ⊆ P({0, 1}∗) is viewed as a subset C ⊆ C. We use the notation S �n to denote the
first n bits of a sequence S ∈ C.

Let s > 0 be a real number. An s-gale is a function d : {0, 1}∗ → [0,∞) such that
for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2s
.

A martingale is a 1-gale.
The goal of an s-gale is to obtain large values on sequences as follows.
Definition. Let d be an s-gale and S ∈ C.
1. d succeeds on S if lim supn→∞ d(S �n) = ∞.
2. d succeeds strongly on S if lim infn→∞ d(S �n) = ∞.
3. The success set of d is S∞[d] = {S ∈ C | d succeeds on S}.
4. The strong success set of d is S∞

str[d] = {S ∈ C | d succeeds strongly on S}.
Notice that the smaller s is, the more difficult it is for an s-gale to obtain large

values. Succeeding martingales (s = 1) imply measure 0, and the infimum s for which
an s-gale can succeed (or strongly succeed) gives the dimension (or strong dimension)
as follows.

Definition. Let X ⊆ C.
1. X has p-measure 0, written μp(X) = 0, if there is a polynomial-time com-

putable martingale d such that X ⊆ S∞[d].
2. The p-dimension of X, written dimp(X), is the infimum of all s such that

there exists a polynomial-time computable s-gale d with X ⊆ S∞[d].
3. The strong p-dimension of X, written Dimp(X), is the infimum of all s such

that there exists a polynomial-time computable s-gale d with X ⊆ S∞
str[d].

1700 JOHN M. HITCHCOCK

We now summarize some of the basic properties of the p-dimensions and p-
measure.

Proposition 2.1 (see [19, 4]). Let X,Y ⊆ C.

1. 0 ≤ dimp(X) ≤ Dimp(X) ≤ 1.
2. If dimp(X) < 1, then μp(X) = 0.
3. If X ⊆ Y , then dimp(X) ≤ dimp(Y) and Dimp(X) ≤ Dimp(Y).

The following theorem indicates that the p-dimensions are useful for studies within
the complexity class E.

Theorem 2.2 (see [17, 19, 4]).

1. μp(E) �= 0. In particular, dimp(E) = Dimp(E) = 1.
2. For all c ∈ N, Dimp(DTIME(2cn)) = 0.

2.3. Online mistake-bound model of learning. A concept is a set C ⊆ U ,
where U is some universe. A concept C is often identified with its characteristic
function fC : U → {0, 1}. In this paper the universe is always a set of binary strings.
A concept class is a set of concepts C ⊆ P(U).

Given a concept class C and a universe U , a learning algorithm tries to learn an
unknown target concept C ∈ C. The algorithm is given a sequence of examples x1,
x2, . . . in U . When given each example xi, the algorithm must predict if xi ∈ C or
xi �∈ C. The algorithm is then told the correct answer and given the next example.
The algorithm makes a mistake if its prediction for membership of xi in C is wrong.
This proceeds until every member of U is given as an example.

The goal is to minimize the number of mistakes. The mistake bound of a learning
algorithm A for a concept class C is the maximum over all C ∈ C of the number
of mistakes A makes when learning C, over all possible sequences of examples. The
running time of A on C is the maximum time A takes to make a prediction.

2.4. Disjunctions and Winnow. An interesting concept class is the class of
monotone disjunctions, which can be efficiently learned by Littlestone’s Winnow algo-
rithm [16]. A monotone disjunction on {0, 1}n is a formula of the form φV =

∨
i∈V xi,

where V ⊆ {1, . . . , n} and we write a string x ∈ {0, 1}n as x = x1 · · ·xn. The con-
cept φV can also be viewed as the set {x ∈ {0, 1}n | φV (x) = 1} or equivalently as
{A ⊆ {1, . . . , n} | A ∩ V �= ∅}.

The Winnow algorithm has two parameters α (a weight update multiplier) and
θ (a threshold value). Initially, each variable xi has a weight wi = 1. To classify a
string x, the algorithm predicts that x is in the concept if

∑
i wixi > θ, and not in the

concept otherwise. The weights are updated as follows whenever a mistake is made.

• If a negative example x is incorrectly classified, then set wi := 0 for all i such
that xi = 1. (Certainly these xi’s are not in the disjunction.)

• If a positive example x is incorrectly classified, then set wi := α · wi for all
i such that xi = 1. (It is considered more likely that these xi’s are in the
disjunction.)

A useful setting of the parameters is α = 2 and θ = n/2. With these parameters,
Littlestone proved that Winnow will make at most 2k log n + 2 mistakes when the
target disjunction has at most k literals. Also, the algorithm uses O(n) time to
classify each example and update the weights.

3. Learning and dimension. In this section we present a framework relating
online learning to resource-bounded dimension. This framework is based on reducibil-
ity to learnable concept class families.

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1701

Definition. A sequence C = (Cn | n ∈ N) of concept classes is called a concept
class family.

We consider two types of reducibility: a strong reduction that works for almost
all input lengths and a weak reduction that is only required to work infinitely often.

Definition. Let L ⊆ {0, 1}∗, C = (Cn | n ∈ N) be a concept class family, and
r(n) be a time bound.

1. We say L strongly reduces to C in r(n) time, and we write L ≤r
str C, if

there exist a sequence of target concepts (cn ∈ Cn | n ∈ N) and a reduction
f computable in O(r(n)) time such that for all but finitely many n, for all
x ∈ {0, 1}n, x ∈ L if and only if f(x) ∈ cn.

2. We say L weakly reduces to C in r(n) time, and we write L ≤r
wk C, if there

exists a reduction f computable in O(r(n)) time such that for infinitely many
n, there is a concept cn ∈ Cn such that for all x ∈ {0, 1}≤n, x ∈ L if and only
if f(0n, x) ∈ cn.

It is necessary to quantify both the time complexity and mistake bound for learn-
ing a concept class family.

Definition. Let t,m : N → N and let C = (Cn | n ∈ N) be a concept class
family. We say that C ∈ L(t,m) if there is an algorithm that learns Cn in O(t(n))
time with mistake bound m(n).

Combining the two previous definitions we arrive at our central technical concept.

Definition. Let r, t,m : N → N.

1. RLstr(r, t,m) is the class of all languages that ≤r
str-reduce to some concept

class family in L(t,m).
2. RLwk(r, t,m) is the class of all languages that ≤r

wk-reduce to some concept
class family in L(t,m).

A remark about the parameters in this definition is in order. If A ∈ RLstr(r, t,m),
then A ≤r

str C for some concept class family C = (Cn | n ∈ N). Then x ∈ A=n if and
only if f(x) ∈ cn, where cn ∈ Cn is the target concept and f is the reduction. We
emphasize that the complexity of learning Cn is measured in terms of n = |x|, and
not the size of cn or f(x). Instead Cn is learnable in time O(t(n)) with mistake bound
m(n).

The following theorem is the main technical tool in this paper. Here we consider
exponential-time reductions to concept classes that can be learned in exponential-
time, but with subexponentially many mistakes.

Theorem 3.1. Let c ∈ N.

1. RLstr(2
cn, 2cn, o(2n)) has strong p-dimension 0.

2. RLwk(2
cn, 2cn, o(2n)) has p-dimension 0.

Proof. We prove only that RLwk(2
cn, 2cn, o(2n)) has p-dimension 0. The other

part of the theorem is proved similarly. Let s > 0 such that 2s is rational. It suffices
to show that the class has p-dimension at most s.

Let A ∈ RLwk(2
cn, 2cn, o(2n)). Then there is a concept class family C = {Cn |

n ∈ N} ∈ L(2cn, o(2n)) such that A ≤2cn

wk C. Let f be this reduction from A to C.
Then for infinitely many n, there is a target concept cn ∈ Cn such that

x ∈ A≤n ⇐⇒ f(x) ∈ cn.

Let J be the set of all n such that this concept exists. Let A be a 2cn-time learning
algorithm for C with mistake bound o(2n).

Fix an n and let N = 2n+1−2. We view the reduction f as generating a sequence

1702 JOHN M. HITCHCOCK

of examples

f(s0), f(s1), . . . , f(sN),

one for each string in {0, 1}≤n. The idea is to run the algorithm A on this sequence
of examples, trying to learn cn. We will use A’s predictions to define an s-gale dn
inductively as follows.

1. Let N0 = 2n/2. For all strings w with |w| < N0, dn(w) = 2(s−1)|w|.
2. Let ε be a small rational number to be determined later. Let w be any string

with N0 ≤ |w| < N . Run A on the sequence of examples f(sN0), . . . , f(s|w|),
telling A that for each i, N0 ≤ i < |w|,

• if w[i] = 1, then f(si) is a positive example.
• if w[i] = 0, then f(si) is a negative example.

At the end A will output a prediction for f(s|w|):
• If A predicts that f(s|w|) is a member of the target concept cn, then we

let
– dn(w1) = 2s(1 − ε)d(w),
– dn(w0) = 2sεd(w).

• Otherwise, A predicts that f(s|w|) is not a member of the target concept
cn, and we let

– dn(w0) = 2s(1 − ε)d(w),
– dn(w1) = 2sεd(w).

3. For w with |w| ≥ N , we set dn(w0) = dn(w1) = 2(s−1)dn(w).
The reason for making dn wait until N0 to bet is computational efficiency. For |w| <
N0, dn(w) is computable in O(|w|) time. If |w| ≥ N0, then to compute dn(w) we need
to execute A on at most |w| examples, each execution taking O(2cn) time to compute
the example and O(2cn) to compute the label, for a total time of O(|w|2cn). Because
|w| ≥ 2n/2, this simplifies to O(|w|2c+1).

Each time A makes a correct prediction, the value of the s-gale is increased by
a 2s(1 − ε) factor. When A makes a mistake, the value is multiplied by 2sε. Let wn

be the length N prefix of A’s characteristic sequence and suppose that n ∈ J . In
the computation of dn(wn), observe that A is told the correct labels for the examples
according to the target concept cn. Let mn be the number of mistakes that A makes
on this sequence of examples when learning cn; we know that mn = o(2n). Then

dn(wn) = 2s(N−N0) · (1 − ε)N−N0−mn · εmn · 2(s−1)N0

= 2sN+[(N−N0−mn) log(1−ε)]+[mn log ε]−N0

≥ 2
sN−

(
N log

1
1−ε+mn log

1−ε
ε

)
−N0 .

We choose ε ∈ Q so that log 1
1−ε < s and let 0 < δ < s− log 1

1−ε . Then since mn

and N0 are both o(N), when n ∈ J is large enough we have

dn(wn) ≥ 2δN .

Let d be the s-gale d =
∑∞

n=1 2−ndn. Then A ∈ S∞[d]. A standard technique is that
taking the first |w| + r terms of the sum, we can approximate d(w) to precision 2−r

in time O((|w| + r) · max{|w| + r, |w|2c+1}). Such an s-gale can be defined for every
set in RLwk(2

cn, 2cn, o(2n)). These gales are all computable within the same time
bound, so we can apply a union lemma [19] to conclude that RLwk(2

cn, 2cn, o(2n))
has p-dimension at most s.

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1703

4. Disjunctive and conjunctive reductions. In this section, as a warmup
to our main theorem, we present two basic applications of Theorem 3.1. First, we
consider disjunctive reductions.

Theorem 4.1. Pd(DENSEc) has p-dimension 0.
Proof. We will show that Pd(DENSEc) ⊆ RLwk(2

2n, 22n, o(2n)). For this, let
A ∈ Pd(DENSEc) be arbitrary. Then there is a set S ∈ DENSEc and a reduction
f : {0, 1}∗ → P({0, 1}∗) computable in polynomial time p(n) such that for all x ∈
{0, 1}∗, x ∈ A if and only if f(x) ∩ S �= ∅. Note that on an input of length n, all
queries of f have length bounded by p(n). Also, since S is nondense, for any ε > 0
there are infinitely many n such that

|S≤p(n)| ≤ 2n
ε

.(4.1)

Let Qn =
⋃

|x|≤n f(x) be the set of all queries made by f up through length n.

Then |Qn| ≤ 2n+1p(n). Enumerate Qn as q1, . . . , qN . Then each subset of R ⊆ Qn can
be identified with its characteristic string χ

R
∈ {0, 1}N according to this enumeration.

We define Cn to be the concept class of all monotone disjunctions on {0, 1}N that have
at most 2n

ε

literals. Our target disjunction is

φn =
∨

i:qi∈S

qi,

which is a member of Cn whenever (4.1) holds. For any x ∈ {0, 1}≤n,

x ∈ A ⇐⇒ φn(χ
f(x)

) = 1.

Given x, χ
f(x)

can be computed in O(22n) time. Therefore A ≤O(22n)
wk C = (Cn | n ∈ N).

Since Winnow [16] learns Cn making at most 2 · 2nε

log |Qn| + 2 = o(2n) mistakes in
time O(22n), it follows that A ∈ RLwk(2

2n, 22n, o(2n)).
Next, we consider conjunctive reductions.
Theorem 4.2. Pc(DENSEc) has p-dimension 0.
Proof. We will show that Pc(DENSEc) ⊆ RLwk(2

n, 22n, o(2n)). For this, let
A ≤p

c S ∈ DENSEc. Then there is a reduction f : {0, 1}∗ → P({0, 1}∗) computable
in polynomial time p(n) such that for all x ∈ {0, 1}∗, x ∈ A if and only if f(x) ⊆ S.

Fix an input length n, and let Qn =
⋃

|x|≤n f(x). Let ε > 0 and consider the
concept class

Cn = {P(X) | X ⊆ Qn and |X| ≤ 2n
ε}.

Our target concept is

Cn = P(S ∩Qn).

For infinitely many n, |S ∩ Qn| ≤ |S≤p(n)| ≤ 2n
ε

, in which case Cn ∈ Cn. For any
x ∈ {0, 1}≤n, we have

x ∈ A ⇐⇒ f(x) ∈ Cn.

Therefore A ≤p(n)
wk C = (Cn | n ∈ N).

The class Cn can be learned by a simple algorithm that makes at most |X| mistakes
when learning P(X). The hypothesis for X is simply the union of all positive examples

1704 JOHN M. HITCHCOCK

seen so far. More explicitly, the algorithm begins with the hypothesis H = ∅. In any
stage, given an example Q, the algorithm predicts “yes” if Q ⊆ H and “no” otherwise.
If the prediction is no, but Q is revealed to be a positive example, then the hypothesis
is updated as H := H ∪ Q. The algorithm will never make a mistake on a negative
example, and can make at most |X| mistakes on positive examples.

This algorithm shows that C ∈ L(22n, o(2n)), so A ∈ RLwk(p(n), 22n, o(2n)). It
follows that Pc(DENSEc) ⊆ RLwk(2

n, 22n, o(2n)).
Since dimp(E) = 1, we have new proofs of the following results of Watanabe.
Corollary 4.3 (Watanabe [27]). E �⊆ Pd(DENSEc) and E �⊆ Pc(DENSEc).

That is, every ≤p
d-hard or ≤p

c -hard set for E is dense.

5. Adaptive reductions. In this section we prove our main theorem, which
concerns adaptive reductions that make a sublinear number of queries to a nondense
set. It turns out that this problem can also be reduced to learning disjunctions.

In a surprising result (refuting a conjecture of Ko [14]), Allender et al. [1] showed
that Pbtt(SPARSE) ⊆ Pd(SPARSE). The disjunctive reduction they obtain will not
be polynomial-time computable if the original reduction has more than a constant
number of queries. However, in the proof of the following theorem we are still able
to exploit their technique, and obtain an exponential-time reduction to a disjunction.
Then we can apply the Winnow algorithm as in the previous section.

Theorem 5.1. For all α < 1, Pnα−T(DENSEc) has p-dimension 0.
Proof. Let L ≤p

nα−T S ∈ DENSEc via some oracle machine M . We will
show how to reduce L to a class of disjunctions and obtain Pnα−T(DENSEc) ⊆
RLwk(2

2n, 22n, o(2n)).
Fix an input length n. For an input x ∈ {0, 1}≤n, consider using each z ∈ {0, 1}nα

as the sequence of yes/no answers to M ’s queries. Each z causes M to produce
a sequence of queries wx,z

0 , . . . , wx,z
k(x,z), where k(x, z) < nα, and an accepting or

rejecting decision. Let Zx ⊆ {0, 1}nα

be the set of all query answer sequences that
cause M to accept x. Then we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) S[wx,z
j] = z[j],

which is equivalent to

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) z[j] · wx,z
j ∈ Sc ⊕ S,

where Sc ⊕ S is the disjoint union {0x | x ∈ Sc} ∪ {1x | x ∈ S}.
A key part of the proof that Pbtt(SPARSE) ⊆ Pd(SPARSE) in [1] is to show that

P1−tt(SPARSE) is contained in Pd(SPARSE). The same argument yields that

P1−tt(DENSEc) ⊆ Pd(DENSEc).

Therefore, there is a set U ∈ DENSEc such that Sc ⊕ S ≤p
d U . Letting g be this

polynomial-time disjunctive reduction, we have x ∈ L if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) g(z[j] · wx,z
j) ∩ U �= ∅.

For each z ∈ Zx, let

Hx,z = {〈u0, . . . , uk(x,z)〉 | (∀0 ≤ j ≤ k(x, z)) uj ∈ g(z[j] · wx,z
j)}.

Let r(n) be a polynomial bounding the running time of g on inputs of the form
z[j] · wx,z

j , where |x| ≤ n. Define

An = {〈u0, . . . , uk〉 | k < nα and (∀0 ≤ j ≤ k) uj ∈ U≤r(n)}.

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1705

Then we have x ∈ L if and only if

(∃z ∈ Zx)(∃v ∈ Hx,z) v ∈ An.

Letting

Hx =
⋃

z∈Zx

Hx,z,

we can rewrite this as

x ∈ L ⇐⇒ Hx ∩An �= ∅.(5.1)

Because |Hx,z| ≤ r(n)n
α

we have

|Hx| ≤ |Zx| · r(n)n
α ≤ 2n

α·(1+log r(n)).(5.2)

Also,

|An| ≤ nα · |U≤r(n)|n
α

.

Let ε ∈ (0, 1−α), and let δ ∈ (α+ ε, 1). Then since U is nondense, for infinitely many
n, we have |U≤r(n)| ≤ 2n

ε

. This implies

(∃∞n) |An| ≤ nα · 2nα+ε ≤ 2n
δ

.(5.3)

Let

Hn =
⋃

x∈{0,1}≤n

Hx.

Then from (5.2), |Hn| ≤ 22n if n is sufficiently large.
Enumerate Hn as h1, . . . , hN . We identify any R ⊆ Hn with its characteristic

string χ(n)
R

∈ {0, 1}N according to this enumeration. Let Cn be the concept class of

all monotone disjunctions on {0, 1}N that have at most 2n
δ

literals.
Define the disjunction

φn =
∨

i:hi∈An

hi,

which by (5.3) is in Cn for infinitely many n. For any x ∈ {0, 1}≤n, from (5.1) it
follows that

x ∈ L ⇐⇒ φn(χ(n)
Hx

) = 1.

Given x ∈ {0, 1}≤n, we can compute χ(n)
Hx

in O(2n · poly(n) + |Hn|) time. There-

fore, letting C = (Cn | n ∈ N), we have L ≤22n

wk C. Since Cn is learnable by

Winnow with at most 2 · 2n
δ · log |Hn| + 2 = o(2n) mistakes, it follows that L ∈

RLwk(2
2n, 22n, o(2n)).

As a corollary, we have a positive answer to the question of Lutz and Mayordomo
[22] mentioned in our introduction.

Corollary 5.2. For all α < 1, Pnα−T(DENSEc) has p-measure 0.

1706 JOHN M. HITCHCOCK

Corollary 5.3. For all α < 1, E �⊆ Pnα−T(DENSEc). That is, every ≤p
nα−T-

hard set for E is dense.
If we scale down from nondense sets to sparse sets, the same proof technique can

handle more queries.
Theorem 5.4. Po(n/ logn)−T(SPARSE) has strong p-dimension 0.
Proof. Let L ≤p

f(n)−T S ∈ SPARSE via some oracle machine M , where f(n) =

o(n/ log n).
Fix an input length n. For an input x ∈ {0, 1}n, each query answer sequence

z ∈ {0, 1}f(n) causes M to produce a sequence of queries wx,z
0 , . . . , wx,z

k(x,z), where

k(x, z) < f(n), and an accepting or rejecting decision. Let Zx ⊆ {0, 1}f(n) be the set
of all query answer sequences that cause M to accept x. Then we have x ∈ L if and
only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) z[j] · wx,z
j ∈ Sc ⊕ S.

Since P1−tt(SPARSE) ⊆ Pd(SPARSE), there is a set U ∈ SPARSE such that
Sc⊕S ≤p

d U . Letting g be this polynomial-time disjunctive reduction, we have x ∈ L
if and only if

(∃z ∈ Zx)(∀0 ≤ j ≤ k(x, z)) g(z[j] · wx,z
j) ∩ U �= ∅.

As before, we can define sets Hx and An so that

x ∈ L ⇐⇒ Hx ∩An �= ∅.

Let r(n) be a polynomial bounding the running time of g outputs on inputs of
the form z[j] · wx,z

j , where |x| = n. Then

|Hx| ≤ |Zx| · r(n)f(n) ≤ 2f(n)·(1+log r(n)),

so we have |Hx| ≤ 2n if n is sufficiently large because f(n) = o(n/ log n) . Letting
Hn =

⋃
x∈{0,1}n Hx, we have |Hn| ≤ 22n.

Also,

|An| ≤ f(n) · |U≤r(n)|f(n).

Let q(n) be a polynomial such that |U≤r(n)| ≤ q(n) for all n. Then

|An| ≤ f(n) · q(n)f(n) ≤ 2f(n) log q(n)+log f(n).

Let v(n) = f(n) log q(n) + log f(n). Notice that v(n) = o(n) because f(n) =
o(n/ log n).

As before, we enumerate Hn as h1, . . . , hN and identify any R ⊆ Hn with its
characteristic string χ(n)

R
∈ {0, 1}N . Let Cn be the concept class of all monotone dis-

junctions on {0, 1}N that have at most 2v(n) literals. The disjunction φn =
∨

i:hi∈An
hi

is in Cn for every n. For any x ∈ {0, 1}n, we have

x ∈ L ⇐⇒ φn(χ(n)
Hx

) = 1.

Given x ∈ {0, 1}n, we can compute χ(n)
Hx

in O(2n · poly(n) + |Hn|) time. There-

fore, letting C = (Cn | n ∈ N), we have L ≤22n

str C. Since Cn is learnable by

ONLINE LEARNING AND RESOURCE-BOUNDED DIMENSION 1707

Winnow with at most 2 · 2v(n) · log |Hn| + 2 = o(2n) mistakes, it follows that L ∈
RLstr(2

2n, 22n, o(2n)).
The following corollary improves the result of Fu [8] that E �⊆ Po(n/ logn)−T(TALLY).
Corollary 5.5. E �⊆ Po(n/ logn)−T(SPARSE).
Since Wilson constructed an oracle relative to which E ⊆ PO(n)−tt(SPARSE)

[28, 21], Corollary 5.5 is near the limits of relativizable techniques.
In Theorem 5.4, we used strong dimension, which raises a technical point. The

results about reductions to DENSEc cannot be strengthened to strong p-dimension
simply because the class DENSEc itself has strong dimension 1. This is because
being nondense is an infinitely often property [9]. However, if we replace DENSEc

with by SPARSE in any of our results, the proofs can be adapted to show that the
resulting class has strong p-dimension 0. We can also obtain strong dimension results
by substituting the larger class DENSEc

i.o., where DENSEi.o. is the class of all L that
satisfy (∃ε > 0)(∃∞n) |L≤n| > 2n

ε

.

6. Hard sets for NP. The hypothesis “NP has positive p-dimension,” written
dimp(NP) > 0, was first used in [11] to study the inapproximability of MAX3SAT.
This positive dimension hypothesis is apparently much weaker than Lutz’s often-
investigated μp(NP) �= 0 hypothesis, but is a stronger assumption than P �= NP:

μp(NP) �= 0 ⇒ dimp(NP) = 1 ⇒ dimp(NP) > 0 ⇒ P �= NP.

The measure hypothesis μp(NP) �= 0 has many plausible consequences that are not
known to follow from P �= NP (see, e.g., [22]). So far, few consequences of dimp(NP) >
0 are known. The following corollary of our results begins to remedy this.

Theorem 6.1. If dimp(NP) > 0, then every set that is hard for NP under ≤p
d

reductions, ≤p
c reductions, or ≤p

nα−T reductions (α < 1) is dense, and every set that
is hard under ≤p

o(n/ logn)−T reductions is not sparse.

The consequences in Theorem 6.1 are much stronger than what is known to follow
from P �= NP. If P �= NP, then no ≤p

btt-hard or ≤p
c -hard set is sparse [26, 3], but

it is not known whether hard sets under disjunctive reductions or unbounded Turing
reductions can be sparse.

Another result is that if NP �= RP, then no ≤p
d-hard set for NP is sparse [7,

6]. It is interesting to see that while the hypotheses dimp(NP) > 0 and NP �=
RP are apparently incomparable, they both have implications for the density of the
disjunctively hard sets for NP.

7. Conclusion. Our connection between online learning and resource-bounded
dimension appears to be a powerful tool for computational complexity. We have used
it to give relatively simple proofs and improvements of several previous results.

An interesting observation is that for all reductions ≤p
τ for which we know how to

prove “every ≤p
τ -hard set for E is dense,” by the results presented here we can actually

prove “Pτ (DENSEc) has p-dimension 0.” Indeed, we have proven the strongest results
for Turing reductions in this way.

Acknowledgment. I thank the anonymous referees for helpful comments and
corrections.

REFERENCES

[1] E. Allender, L. A. Hemachandra, M. Ogiwara, and O. Watanabe, Relating equivalence
and reducibility to sparse sets, SIAM J. Comput., 21 (1992), pp. 521–539.

1708 JOHN M. HITCHCOCK

[2] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[3] V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogi-

wara, U. Schöning, R. Silvestri, and T. Thierauf, Reductions to sets of low informa-
tion content, in Complexity Theory: Current Research, K. Ambos-Spies, S. Homer, and
U. Schöning, eds., Cambridge University Press, Cambridge, UK, 1993, pp. 1–45.

[4] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo, Effective strong dimen-
sion in algorithmic information and computational complexity, in Proceedings of the 21st
Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin, 2004,
pp. 632–643.

[5] L. Berman and J. Hartmanis, On isomorphism and density of NP and other complete sets,
SIAM J. Comput., 6 (1977), pp. 305–322.

[6] H. Buhrman, L. Fortnow, and L. Torenvliet, Six hypotheses in search of a theorem, in
Proceedings of the 12th Annual IEEE Conference on Computational Complexity, IEEE
Computer Society, Piscataway, NJ, 1997, pp. 2–12.

[7] J. Cai, A. V. Naik, and D. Sivakumar, On the existence of hard sparse sets under weak reduc-
tions, in Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer
Science, Springer, Berlin, 1996, pp. 307–318.

[8] B. Fu, With quasilinear queries EXP is not polynomial time Turing reducible to sparse sets,
SIAM J. Comput., 24 (1995), pp. 1082–1090.

[9] X. Gu, A note on dimensions of polynomial size circuits, Theoret. Comput. Sci., 359 (2006),
pp. 176–187.

[10] L. A. Hemachandra, M. Ogiwara, and O. Watanabe, How hard are sparse sets?, in Proceed-
ings of the Seventh Annual Structure in Complexity Theory Conference, IEEE Computer
Society Press, Piscataway, NJ, 1992, pp. 222–238.

[11] J. M. Hitchcock, MAX3SAT is exponentially hard to approximate if NP has positive dimen-
sion, Theoret. Comput. Sci., 289 (2002), pp. 861–869.

[12] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo, Scaled dimension and nonuniform com-
plexity, J. Comput. System Sci., 69 (2004), pp. 97–122.

[13] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo, The fractal geometry of complexity
classes, SIGACT News, 36 (2005), pp. 24–38.

[14] K. Ko, Distinguishing conjunctive and disjunctive reducibilities by sparse sets, Inform. Com-
put., 81 (1989), pp. 62–87.

[15] W. Lindner, R. Schuler, and O. Watanabe, Resource-bounded measure and learnability,
Theory Comput. Syst., 33 (2000), pp. 151–170.

[16] N. Littlestone, Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm, Machine Learning, 2 (1987), pp. 285–318.

[17] J. H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44 (1992),
pp. 220–258.

[18] J. H. Lutz, The quantitative structure of exponential time, in Complexity Theory Retrospective
II, L. A. Hemaspaandra and A. L. Selman, eds., Springer, New York, 1997, pp. 225–254.

[19] J. H. Lutz, Dimension in complexity classes, SIAM J. Comput., 32 (2003), pp. 1236–1259.
[20] J. H. Lutz, Effective fractal dimensions, Math. Logic Quart., 51 (2005), pp. 62–72.
[21] J. H. Lutz and E. Mayordomo, Measure, stochasticity, and the density of hard languages,

SIAM J. Comput., 23 (1994), pp. 762–779.
[22] J. H. Lutz and E. Mayordomo, Twelve problems in resource-bounded measure, Bull. Eur.

Assoc. Theoret. Comput. Sci. EATCS, 68 (1999), pp. 64–80. Also in Current Trends in
Theoretical Computer Science: Entering the 21st Century, World Scientific Publishing,
River Edge, NJ, 2001, pp. 83–101.

[23] J. H. Lutz and Y. Zhao, The density of weakly complete problems under adaptive reductions,
SIAM J. Comput., 30 (2000), pp. 1197–1210.

[24] S. R. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and Hart-
manis, J. Comput. System Sci., 25 (1982), pp. 130–143.

[25] E. Mayordomo. Personal communication, 2002.
[26] M. Ogiwara and O. Watanabe, On polynomial-time bounded truth-table reducibility of NP

sets to sparse sets, SIAM J. Comput., 20 (1991), pp. 471–483.
[27] O. Watanabe, Polynomial time reducibility to a set of small density, in Proceedings of the

Second Structure in Complexity Theory Conference, IEEE Computer Society, Piscataway,
NJ, 1987, pp. 138–146.

[28] C. B. Wilson, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), pp. 169–181.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1709–1728

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS:
RANDOMIZATION AND RESTARTS HELP∗

MAREK CHROBAK† , WOJCIECH JAWOR† , JIŘÍ SGALL‡ , AND TOMÁŠ TICHÝ‡

Abstract. We consider the following scheduling problem. The input is a set of jobs with
equal processing times, where each job is specified by its release time and deadline. The goal is
to determine a single-processor nonpreemptive schedule that maximizes the number of completed
jobs. In the online version, each job arrives at its release time. We give two online algorithms
with competitive ratios below 2 and show several lower bounds on the competitive ratios. First, we
give a barely random 5/3-competitive algorithm that uses only one random bit. We also show a
lower bound of 3/2 on the competitive ratio of barely random algorithms that randomly choose one
of two deterministic algorithms. If the two algorithms are selected with equal probability, we can
further improve the bound to 8/5. Second, we give a deterministic 3/2-competitive algorithm in the
model that allows restarts, and we show that in this model the ratio 3/2 is optimal. For randomized
algorithms with restarts we show a lower bound of 6/5.

Key words. job scheduling, online algorithms, competitive analysis, randomization

AMS subject classifications. 68W10, 68W20, 68W25, 68W40, 90B99

DOI. 10.1137/S0097539704446608

1. Introduction. We consider the following fundamental problem in the area
of real-time scheduling. The input is a collection of jobs with equal processing times
p, where each job j is specified by its release time rj and deadline dj . (All numbers
are assumed to be positive integers.) The desired output is a single-processor nonpre-
emptive schedule. Naturally, each scheduled job must be executed between its release
time and deadline, and different jobs cannot overlap. The term “nonpreemptive”
means that each job must be executed without interruptions, in a contiguous interval
of length p. The objective is to maximize the number of completed jobs.

In the online version, each job j arrives at time rj , and its deadline dj is revealed
at this time. The number of jobs and future release times are unknown. At each time
step when no job is running, we have to decide whether to start a job and, if so, to
choose which one, based only on the information about the jobs released so far. An
online algorithm is called c-competitive if on every input instance it schedules at least
1/c as many jobs as the optimum schedule.

Our results. It is known that a simple greedy algorithm is 2-competitive for this
problem and that this ratio is optimal for deterministic algorithms. We present two
ways to improve the competitive ratio of 2.

First, addressing an open question in [13, 14], we give a 5/3-competitive ran-
domized algorithm. Interestingly, our algorithm is barely random; it chooses with
probability 1/2 one of two deterministic algorithms, i.e., it uses only one random bit.

∗Received by the editors December 1, 2004; accepted for publication (in revised form) June 12,
2006; published electronically March 19, 2007.

http://www.siam.org/journals/sicomp/36-6/44660.html
†Department of Computer Science, University of California, Riverside, CA 92521 (marek@cs.ucr.

edu, wojtek@cs.ucr.edu). The work of these authors was supported by NSF grants CCR-9988360,
CCR-0208856, and OISE-0340752.

‡Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic (sgall@math.cas.
cz, tichy@math.cas.cz). The work of these authors was partially supported by Institutional Research
Plan AV0Z10190503, by Institute for Theoretical Computer Science, Prague (project 1M0545 of
MŠMT ČR), grant 201/05/0124 of GA ČR, and grant IAA1019401 of GA AV ČR.

1709

1710 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

These two algorithms are two identical copies of the same deterministic algorithm that
are run concurrently and use a shared lock to break the symmetry and coordinate
their behaviors. We are not aware of previous work in the design of randomized online
algorithms that uses such a mechanism to coordinate identical algorithms; thus, this
technique may be of its own independent interest.

We then show a lower bound of 3/2 on the competitive ratio of barely random
algorithms that choose one of two deterministic algorithms with any probability. If
these algorithms are each chosen with probability 1/2, we improve the lower bound
to 8/5.

Second, we give a deterministic 3/2-competitive algorithm in the preemption–
restart model. In this model, an online algorithm is allowed to abort a job during
execution in order to start another job. The algorithm gets credit only for jobs that
are executed contiguously from beginning to end. Aborted jobs can be restarted
(from scratch) and completed later. Note that the final schedule produced by such
an algorithm is not preemptive. Thus the distinction between nonpreemptive and
preemption–restart models makes sense only in the online case. (The optimal solutions
are always the same.) In addition to the algorithm, we give a matching lower bound,
by showing that no deterministic online algorithm with restarts can be better than
3/2-competitive. We also show a lower bound of 6/5 for randomized algorithms with
restarts.

We remark that both our algorithms are natural and easy to state and implement.
The competitive analysis is, however, fairly involved, and it relies on some structural
lemmas about schedules of equal-length jobs.

An extended abstract of this paper appeared as [9].

Previous work. The problem of scheduling equal-length jobs to maximize the
number of completed jobs has been well studied in the literature. In the offline case,
an O(n log n)-time algorithm for the feasibility problem (checking if all jobs can be
completed) was given by Garey et al. [12] (see also [23, 7]). The maximization version
can also be solved in polynomial time [8, 2], although the known algorithms are
rather slow. (Carlier [7] claimed an O(n3 log n) algorithm but, as pointed out in [8],
his algorithm is not correct.)

As the first positive result on the online version, Baruah, Haritsa, and Sharma
[4, 5] show that a deterministic greedy algorithm is 2-competitive; in fact, they show
that any nonpreemptive deterministic algorithm that is never idle at times when jobs
are available for execution is also 2-competitive.

Goldman, Parwatikar, and Suri [13] gave a lower bound of 4/3 on the competitive
ratio of randomized algorithms and the tight bound of 2 for deterministic algorithms.
We briefly sketch these lower bounds, as they illustrate well what situations an online
algorithm needs to avoid in order to achieve a small competitive ratio. Let p ≥ 2.
The jobs, written in the form j = (rj , dj), are 1 = (0, 2p + 1), 2 = (1, p + 1), and
3 = (p, 2p). The instance consists of jobs 1,2 or jobs 1,3; in both cases the optimum
is 2. Figure 1.1 illustrates the input instance and the adversary strategy. (In this
figure, and later throughout the paper, the horizontal dimension corresponds to the
time axis, each job j in the input instance is drawn as a line segment spanning the
interval [rj , dj], and jobs that appear in the schedules are represented by rectangles of
length p positioned at the actual time of execution.) In the deterministic case, release
job 1. If at time 0 the online algorithm starts job 1, then release job 2; otherwise,
release job 3. The online algorithm completes only one job and the competitive ratio
is no better than 2. In the randomized case, using Yao’s principle [24, 6], we choose

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1711

0 2p+1

p+11
p 2p

1

2

3

1 3
ADV1

ADV2
2 1

Fig. 1.1. Jobs used in the lower bound proof.

each of the two instances with probability 1/2. The expected number of completed
jobs of any deterministic online algorithm is at most 1.5, as on one of the instances it
completes only one job. Thus the competitive ratio is no better than 2/1.5 = 4/3.

Goldman, Parwatikar, and Suri [13] show that the lower bound of 2 can be beaten
if the jobs on input have sufficiently large “slack”: more specifically, they prove that
a greedy algorithm is 3/2-competitive for instances where dj − rj ≥ 2p for all jobs
j. This is closely related to our algorithm with restarts: On such instances, our
algorithm never uses restarts and becomes identical to the greedy algorithm. Thus
in this special case our result constitutes an alternative proof of the result from [13].
Exploring further this direction, Goldwasser [14] obtained a parameterized extension
of this result: if dj − rj ≥ λp for all jobs j, where λ ≥ 1 is an integer, then the
competitive ratio is 1 + 1/λ.

In our brief overview of the literature given above, we focused on the case when
jobs are of equal length and the objective function is the number of completed jobs. We
need to stress though that, in addition to the work cited above, there is a vast literature
on real-time scheduling problems where a variety of other models is considered: other
or no restrictions can be placed on processing times, jobs may have different weights
(benefits), we can have multiple processors, and preemptions may be allowed. For
example, once arbitrary processing times and/or weights are introduced, no constant-
competitive nonpreemptive algorithms exist. Therefore it is common in the literature
to allow preemption with resumption, where a job can be preempted and later started
from where it was stopped.

The model with restarts was studied by Hoogeveen, Potts, and Woeginger [17].
They present a 2-competitive deterministic algorithm with restarts for jobs with arbi-
trary processing times and the objective to maximize the number of completed jobs.
They also give a matching lower bound. Their algorithm does not use restarts on the
instances with equal processing times, and thus it is no better than 2-competitive for
our problem.

Real-time scheduling is an area where randomized algorithms have been found
quite effective. Most randomized algorithms in the general scenarios use the classify-
and-randomly-select technique by Lipton and Tomkins [20]. Typically, this method
decreases the dependence of the competitive ratio from linear to logarithmic in certain
parameters (e.g., the maximum ratio between job weights), but it does not apply to
the case of jobs with equal lengths and weights. Our randomized algorithm is based
on entirely different ideas.

Barely random algorithms have been successfully applied in the past to a variety of
online problems, including the list update problem [21], the k-server problem [3], and
makespan scheduling [1, 11, 22]. In particular, the algorithm of Albers [1] involves two

1712 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

deterministic processes in which the second one keeps track of the first and corrects
its potential “mistakes”—a coordination idea somewhat similar to ours, although in
[1] the two processes are not symmetric. Closer to the topic of this paper, for the
general throughput maximization problem with arbitrary processing times and with
preemption, Kalyanasundaram and Pruhs [19] showed that a constant competitive
ratio can be achieved with a barely random algorithm, even though no constant-
competitive deterministic algorithms are possible in that model.

The area of real-time scheduling is of course well motivated by multitudes of ap-
plied scenarios. In particular, the model of equal-length jobs—without or with limited
preemption—is related to applications in packet switched networks. When different
weights are considered, the problem has further connections to the “quality of service”
issues (recently a fashionable phrase). Nevertheless, we shamelessly admit that this
work has been partially driven by plain curiosity. It is quite intriguing, after all, that
so little is known about the competitiveness of such a fundamental scheduling problem.

2. Preliminaries. The input consists of a set of jobs J = {1, 2, . . .}, where each
job j is given by its release time rj and deadline dj . All jobs have processing time p.
(We assume that all numbers are positive integers and that dj ≥ rj +p for all j.) The
expiration time of a job j is xj = dj − p, i.e., the last time when it can be started. A
job j is called admissible at time t if rj ≤ t ≤ xj . A job j is called tight if xj − rj < p.

A nonpreemptive schedule A assigns to each completed job j an interval [SA
j , CA

j),

with rj ≤ SA
j ≤ xj and CA

j = SA
j +p, during which j is executed. These intervals are

disjoint for distinct jobs. SA
j and CA

j are called the start time and completion time
of job j. Without loss of generality, both are assumed to be an integer. The number
of jobs completed in A is denoted |A|. We adopt a convention in which “job running
(a schedule being idle, etc.) at time t” is an equivalent shorthand for “job running
(a schedule being idle, etc.) in the interval [t, t + 1).” Given a schedule A, a job is
pending at time t in A if it is admissible at t (i.e., rj ≤ t ≤ xj) but not yet completed
in A. Note that according to this definition a job that is being executed at t may
also be considered pending. When A is understood from context, we will typically
use notation Pt to denote the set of jobs pending at time t.

For any set of jobs Q, we say that Q is feasible at time t if there exists a schedule
which completes all jobs in Q such that no job is started before t. Q is flexible at
time t if it is feasible at time t + p.

Applying the Jackson rule [18], it is quite easy to determine whether a set P of
pending jobs is feasible at t: Order the jobs in P in order of increasing deadlines, and
schedule them at times t, t + p, t + 2p, etc. Then P is feasible if and only if all jobs
in P meet their deadlines. Furthermore, if we want to compute the maximum-size
feasible subset P ′ ⊆ P , we can start with P ′ = ∅, and then add jobs j ∈ P − P ′ to
P ′, one by one and in arbitrary order, as long as P ′ remains feasible. This means,
in particular, that P ′ is a maximum-size feasible subset of P if and only if P ′ is a
⊆-maximal feasible subset of P . All those properties can be proven by elementary
exchange arguments, and the proofs are left to the reader.

We say that a job started by a schedule A at time t is flexible in A if the set of all
jobs pending in A at t is flexible; otherwise, the job is called urgent. Intuitively, a job
is flexible if we could possibly postpone it and stay idle for time p without losing any
of the currently pending jobs; this could improve the schedule if a tight job arrives.
On the other hand, postponing an urgent job can bring no advantage to the algorithm.

An online algorithm constructs a schedule incrementally: at each step t making
decisions based only on the jobs released at or before t. The information about each

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1713

job j, including its deadline, is revealed to the algorithm at its release time rj . A
nonpreemptive online algorithm can start a job only when no job is running; thus, if
a job is started at time t, the algorithm has no choice but to let it run to completion
at time t + p. An online algorithm with restarts can start a job at any time. If we
start a job j when another job, say k, is running, then k is aborted and started from
scratch when (and if) it is started again later. The unfinished portion of k is removed
from the final schedule, which is considered to be idle during this time interval. Thus
the final schedule generated by an online algorithm with restarts is nonpreemptive.

An online algorithm is called c-competitive if, for any set of jobs J and any
schedule Z for J , the schedule A generated by the algorithm on J satisfies |Z| ≤ c|A|.
If the algorithm is randomized, the expression |A| is replaced by the expected (average)
number of jobs completed on the given instance.

The definitions above assume the model—standard in the scheduling literature—
with integer release times and deadlines, which implicitly makes the time discrete.
Some papers on real-time scheduling work with continuous time. Both our algorithms
can be modified to the continuous time model and unit processing time jobs without
any change in performance, at the cost of a somewhat more technical presentation.

Properties of schedules. For every instance J , we fix a canonical linear order-
ing ≺ of J such that j ≺ k implies dj ≤ dk. In other words, we order the jobs by
their deadlines, breaking the ties arbitrarily but consistently for all applications of the
deadline ordering. The term “earliest-deadline” (ED) now refers to the ≺-minimal job.

A schedule A is called “earliest-deadline-first” (EDF) if, whenever it starts a job,
it chooses the ED job of all the pending jobs that are later completed in A. (Note
that this may not be the overall ED pending job.)

A schedule A is normal if it satisfies the following two properties:
(n1) when A starts a job, it chooses the ED job from the set of all pending jobs;
(n2) if the set of all pending jobs in A at some time t is not flexible, then some

job is running at t.
Obviously, any normal schedule is EDF, but the reverse is not true. All algorithms

presented in this paper generate normal schedules. The properties (n1) and (n2)
are reasonable, as the online algorithm cannot make a mistake by enforcing them.
Formally, any online algorithm can be modified, using a standard exchange argument,
to produce normal schedules without reducing the number of scheduled jobs. (We omit
the proof as we do not need this fact in the paper.)

The following property will be crucial in our proofs.
Lemma 2.1. Suppose that a job j is urgent in a normal schedule A. Then at any

time t, SA
j ≤ t ≤ xj, an urgent job is running in A.

Proof. Denote by P the set of jobs pending at time SA
j (including j). By the

assumption about j, P is not flexible at SA
j . Towards contradiction, suppose that A

is idle or starts a flexible job at time t, where CA
j ≤ t ≤ xj . Then the set Q of jobs

pending at time t is flexible at t. Since j is the ED job from P (by the normality of
A) and t ≤ xj , all other jobs in P have not expired until t, and thus Q contains all
the jobs from P that are not completed in A until time t.

Using the above properties, we can rearrange the schedule as follows. Since Q is
flexible at t, we can schedule all jobs of Q at time t + p or later, start j at t, and
schedule all jobs in P − Q − {j} as in A. But this shows that P is flexible at time
SA
j —a contradiction.

Two schedules D and D′ for an instance J are called equivalent if they satisfy the
following conditions for each time t:

1714 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

(eq1) D starts a job at t if and only if D′ starts a job at t.
(eq2) Suppose that D starts a job j at time t and D′ starts a job j′ at time t.

Then j is flexible in D if and only if j′ is flexible in D′. Furthermore, if
they are both flexible then j = j′.

Obviously, if D, D′ are equivalent, then |D| = |D′|.
To facilitate competitive analysis, we modify normal schedules into equivalent

EDF schedules with better structural properties. In particular, the next lemma gives
us more control over the choice of jobs that we can include in the schedule, in situations
where there are several choices. The modified schedules are no longer normal (only
EDF, which is a weaker requirement); nevertheless, as they are equivalent to normal
schedules, they inherit some of their important properties, including Lemma 2.1.

Lemma 2.2. Let X be a normal schedule for a set of jobs J . Let f : J → J be
a partial function such that if f(k) is defined then k is scheduled as flexible in X and
rf(k) ≤ CX

k ≤ xf(k). Then there exists an EDF schedule A equivalent to X such that
the following hold:

(1) All jobs f(k) are completed in A.
(2) Consider a time t when either A is idle or it starts a job and the set of all its

pending jobs is feasible at t. Then all jobs pending at t are completed in A. In
particular, each job that is pending when A starts a flexible job is completed
in A.

Furthermore, if X is constructed by an online algorithm and f(k) can be deter-
mined online at time CX

k for each flexible job k in X , then A can be produced by an
online algorithm.

Remark. Property (1) is useful in our proofs, since it allows us to modify the
schedule computed by the algorithm to resemble more the optimal schedule. Property
(2) guarantees that any job planned to be scheduled is indeed scheduled in the future.

Since A and X are equivalent, flexible jobs are the same and scheduled at the
same times in A and X . In particular, all the jobs k on which f(k) is defined are
scheduled at the same time in both A and X—a property that will play an important
role in our later arguments.

The basic idea of the construction of A is quite straightforward: Maintain a set
Qt of jobs that we plan to schedule. If the set of all pending jobs is feasible, we
always plan to schedule them all. In addition, if we start a flexible job k at time t,
the flexibility of k allows us to add to Qt+p an extra job released during the execution
of k; so if f(k) is defined, we add f(k).

Proof. We construct A iteratively. Throughout the proof, t ranges over times
when X is idle or starts a job. For each such t, let Pt and P ′

t denote the set of jobs
pending in X and A, respectively.

We will maintain an auxiliary set of jobs Qt that are pending at t in X and A,
i.e., Qt ⊆ Pt ∩ P ′

t . Simultaneously with the construction, we prove inductively that,
for all t, the following invariant holds:

(∗) Qt is a ⊆-maximal feasible subset of each of Pt and P ′
t .

Before describing the construction, we make two observations. First, recall that
condition (∗) implies that Qt is also maximum with respect to size. Second, if any of
sets Pt, P

′
t , Qt is flexible, then Qt = Pt = P ′

t by the maximality of Qt.
We now describe the construction. Initially, choose Q0 as an arbitrary maximal

feasible set of the jobs released at time 0.
Assume we have already defined Qt. If X is idle at t, we let A idle and choose

an arbitrary Qt+1 ⊇ Qt by adding to Qt the jobs released at t + 1, as long as the set

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1715

remains feasible. Since X is idle, Pt is flexible at t, and thus Qt = Pt = P ′
t . Therefore

Qt is feasible at t+ 1, Pt+1 = P ′
t+1, and we can conclude that (∗) holds at time t+ 1.

Now suppose that X starts a job k at time t. We consider two subcases, depending
on whether k is flexible or urgent.

Case 1. Job k is flexible in X . Then A starts k, too. This is possible since in
this case we have Qt = Pt = P ′

t , and thus k is pending in A at time t. Note that k is
executed as flexible in A. Further, we also have P ′

t+p = Pt+p.
Since Qt is flexible, it is feasible at t + p. To construct Qt+p, we start with

Qt+p = Qt−{k} and expand it by processing newly released jobs, one by one, adding
each processed job into Qt+p if Qt+p remains feasible. We process first the job f(k),
if it is defined, pending, and not yet in Qt+p. Then we process the remaining jobs h
with t < rh ≤ t+ p in an arbitrary order. Since Qt is feasible at t+ p and k is the ED
job in Qt, Qt−{k}∪{f(k)} is feasible at t+p as well, so f(k) can always be added to
Qt+p without violating feasibility. By the construction, (∗) is satisfied at time t + p.

Case 2. Job k is urgent in X . A starts the ED (more precisely, ≺-minimal)
job k′ from Qt. Since Qt is a maximal feasible set both for X and A, it is nonempty
whenever X starts a job. Furthermore, we know that Qt is not flexible at t and thus
k′ is urgent.

Let T = Qt − {k′}. We claim that
(t1) T is a maximal subset of Pt (resp., P ′

t) that is feasible at time t + p, and
(t2) T ⊆ Pt+p ∩ P ′

t+p.
That T is feasible at t + p follows directly from the definition of T and the fact

that k′ is the ED job in Qt. For the same reason, all jobs in T are pending in A at
time t+ p. Since k′ is pending in X at t, and X schedules the ED pending job (as X
is normal), we have k ≺ k′. Therefore all jobs in T are pending at time t + p in X as
well. We conclude that (t2) holds.

No job in P ′
t −Qt can be feasibly added to T at time t+ p, as otherwise it could

be feasibly added to Qt at time t, contradicting the maximality of Qt for A. The
same argument applies to X . Thus, T satisfies condition (t1) for both Pt and P ′

t .
We construct Qt+p as in the previous case. We start with Qt+p = T and process

newly released jobs in an arbitrary order, one by one, adding each processed job
into Qt+p if Qt+p remains feasible. Again, the maximality of T and the construction
implies that Qt+p satisfies (∗) at time t + p.

This completes the construction. Obviously, X and A are equivalent. Also, A
is EDF since, whenever it schedules a job, it chooses the ED job of Qt, and jobs in
P ′
t −Qt are never added to Qs for s > t, so they will not be scheduled in A.

By the construction, A schedules all the jobs that are in some Qt. At any time t
when A is idle or starts a flexible job, Qt is flexible and thus Qt = P ′

t . This proves
Lemma 2.2(2). This also implies Lemma 2.2(1) since, for t = SX

k , f(k) is either
completed by time t + p or f(k) ∈ Qt+p.

Lemma 2.2 gives an easy proof that any normal schedule X schedules at least
half as many jobs as the optimum. Take the modified schedule A from Lemma 2.2
(with f undefined). Charge any job j completed in an optimal schedule Z to a job
completed in A as follows: (a) If A is running a job k at time SZ

j , charge j to k; (b)
otherwise, charge j to j. This is well defined since if j is admissible and A is idle at
time SZ

j , then A completes j by Lemma 2.2(2). Furthermore, only one job can be
charged to k using rule (a), as all jobs have the same processing time and only one
job can be started in Z during the interval when k is running in A. Thus overall at
most two jobs in Z are charged to each job in A, and |Z| ≤ 2|A| = 2|X |, as claimed.

1716 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

This shows that any online algorithm that generates a normal schedule is 2-
competitive. In particular, this includes the known result that the greedy algorithm
which always schedules the ED pending job when there are any pending jobs is 2-
competitive. We use similar but more refined charging schemes to analyze our im-
proved algorithms.

Goldwasser and Kerbikov [15] introduced a concept of online algorithms that
upon release of a job immediately commit whether it will be completed or not. We do
not formulate our algorithms in this form, but Lemma 2.2 can be applied to normal
schedules generated by our algorithms (with f undefined) to obtain equivalent online
algorithms with immediate notification. (For the model with restarts, this implies that
any preempted job is completed later.) Since the construction produces equivalent
schedules, the performance is also the same.

3. Randomized algorithms. In this section we present our 5/3-competitive
barely random algorithm. This algorithm uses only one random bit, namely, at the
beginning of computation it chooses with probability 1/2 between two deterministic
algorithms. We also show two lower bounds for barely random algorithms: Any
randomized algorithm that randomly chooses between two schedules has a ratio of at
least 3/2. Furthermore, if the two algorithms are selected with equal probability, the
competitive ratio is at least 8/5.

Algorithm RandLock. We describe our algorithm in terms of two identical
processes that are denoted by X and Y. Each process is, in essence, a scheduling
algorithm that receives its own copy of the input instance J and computes its own
schedule for J . (This means that a given job can be executed by both processes, at the
same or different times.) We chose to use the term “process” rather than “algorithm”
since X and Y are not fully independent: they both have access to a shared lock
mechanism used to coordinate their behavior.

Each process X and Y is defined as follows:
(RL1) If there are no pending jobs, wait until some job is released.
(RL2) If the set of pending jobs is not flexible, execute the ED pending job.
(RL3) If the set of pending jobs is flexible and the lock is available, acquire the

lock (ties broken arbitrarily), execute the ED pending job, and release the
lock upon its completion.

(RL4) Otherwise, wait until the lock becomes available or the set of pending jobs
becomes nonflexible (due to progress of time or new jobs being released).

Algorithm RandLock selects initially one of the two processes X or Y, each with
probability 1/2. Then it simulates the two processes on a given instance, outputting
the schedule generated by the selected process.

By the description of the algorithm, at each step only one process, namely, the
one that possesses the lock, can be executing a flexible job.

Before we analyze the algorithm, we illustrate its behavior on the instance in
Figure 3.1. Both processes schedule only three jobs, while the optimal schedule has
five jobs. Thus RandLock is not better than 5/3-competitive.

Theorem 3.1. RandLock is a 5/3-competitive nonpreemptive randomized al-
gorithm for scheduling equal-length jobs.

Proof. Overloading the notation, let X and Y denote the schedules generated by
the corresponding processes on a given instance J . By rules (RL2) and (RL3), both
schedules are normal. Fix an arbitrary schedule Z for the given instance J .

We start by modifying the schedules X and Y according to Lemma 2.2. Define a
partial function fA : J → J as follows. Let fA(k) = h if k is a flexible job completed

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1717

3p+1

3

4

5

2p+1

4p+1

5p1

1

2

0

3p11

5p+1

p+1

2p+1

1 2

2 1 4

2 43 5 1

4

Z

X

Y

Fig. 3.1. An instance on which RandLock schedules three jobs out of five. At time 0, process
X acquires the lock and executes job 1. Process Y must then wait to execute job 2 until it becomes
urgent at time p. At time 2p, Y acquires the lock and executes 1, while X waits with job 4 until it
becomes urgent at time 3p. Overall, job 1 is executed as flexible by both processes; the other jobs are
executed as urgent.

in X and h is a job started in Z during the execution of k in X and admissible at the
completion of k in X , i.e., SX

k ≤ SZ
h < CX

k ≤ xh. Otherwise (if k is urgent or no such
h exists), fA(k) is undefined. Note that if h exists, it is unique for a given k. Then we
define A to be the schedule constructed from X in Lemma 2.2 using function fA(·).
Analogously we define function fB(·), and we modify schedule Y to obtain schedule
B. We stress that these new schedules A and B cannot be constructed online as their
definition depends on Z; they only serve as tools for the analysis of RandLock.

Since A (resp., B) is equivalent to a normal schedule X (resp., Y), Lemma 2.1
still applies to A (resp., B) and the number of completed jobs remains the same as
well.

Throughout the proof we use the convention that whenever D denotes one of the
schedules A and B, then D̄ denotes the other one.

Lemma 3.2. Let D ∈ {A,B}, and let D̄ be the other process of RandLock.
Suppose that at time t D is idle or is executing an urgent job and D̄ is idle. Then
each job admissible at time t is completed in D̄ as a flexible job by time t.

Proof. The lemma is a direct consequence of the lock mechanism. By the as-
sumption, the lock is available at time t, yet the process corresponding to D̄ does not
schedule any job. This is possible only if no job is pending. Consequently, any job
k admissible at time t must have been completed in D̄ by time t. Furthermore, if k
would be executed as urgent in D before time t then, since SD

k ≤ t ≤ xk, Lemma 2.1
implies that D could not be idle at time t. This shows that k is completed as a flexible
job.

The charging scheme. Our proof is based on a charging scheme. The funda-
mental principle of this scheme is the same as in the proof for the greedy algorithm
in section 2. Each adversary job will generate a charge of 1. This charge will be
distributed among the jobs in schedules A and B in such a way that each job in these
schedules will receive a charge of at most 5/6. This will imply the 5/3 bound on the
competitive ratio of RandLock.

Let j be a job started in Z at time t = SZ
j . This job generates several charges of

different weights to (the occurrences of) the jobs in schedules A and B. Each charge

1718 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

(IIIb3)(IIIb2)

D

D

t j

1/3

k j

1/2

1/6
j

D
D

k

k
D

D

(IV)

jt

1/3

2/3 1/6

xj

D

(IIIa)

D

1/2

j

t j

1/3

k

1/6

j

j

(II)

t

1/2

j 1/2
D

k
D

idleflexible urgent busyflexible or urgent

(IIIb1)

D

D

t j

1/3

kj

j
or

j

1/2

1/6

xj

(I)

1/2j

j

jt

1/2
D

D

j
1/6

1/2

jk

1/3

jt

D

D

Fig. 3.2. Illustration of the charging scheme in the analysis of Algorithm RandLock. The
figure gives examples of different types of charges. In case (IIIb), there are several illustrations that
cover possibilities playing a different role in the proof. (To reduce the number of cases, in the figures
for case (III) we assume that j �= k and j is executed in D before it is executed in D̄.)

is uniquely labeled as a self-charge or an up-charge. Self-charges from j go to the
occurrences of j in A or B, and up-charges from j go to the jobs running at time
t in A and B. If one of the processes runs j at time t, then the charge to this job
may be designated as either an up-charge or a self-charge; in case (III) below such a
j can even receive both a self-charge and an up-charge from j. The total of charges
generated by j is always 1. The charges depend on the status of A and B at time t.
(See Figure 3.2.)

(I) Both schedules A and B are idle. By Lemma 3.2, in both A and B, j is
completed as flexible by time t. We generate two self-charges of 1/2 to the
two occurrences of j in A and B.

(II) One schedule D ∈ {A,B} is running an urgent job k and the other schedule
D̄ is idle. By Lemma 3.2, in D̄, j is completed as flexible by time t. We
generate a self-charge of 1/2 to the occurrence of j in D̄ and an up-charge
of 1/2 to k in D.

(III) One schedule D ∈ {A,B} is running a flexible job k and the other schedule
D̄ is idle. We claim that j is completed in both A and B. For D̄, this
follows directly from Lemma 2.2(2). We now prove it for D. If rj ≤ SD

k ,
then Lemma 2.2(2) applied to time t′ = SD

k implies that D completes j.
If xj ≥ CD

k , then fD(k) = j, so D completes j by Lemma 2.2(1). The
remaining case, namely, SD

k < rj ≤ t ≤ xj < CD
k , cannot happen, since this

condition implies that j is tight and thus the set of jobs pending at time t
for D̄ is not flexible. So D̄ would not be idle at t, contradicting the case
condition.

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1719

In this case we generate one up-charge of 1/3 to k in D and two self-
charges of 1/2 and 1/6 to the occurrences of j according to the two subcases
below. Let E ∈ {A,B} be the schedule which starts j first (breaking ties
arbitrarily).

(IIIa) If E schedules j as an urgent job and the other schedule Ē is idle
at some time t′ satisfying SE

j ≤ t′ ≤ xj , then charge 1/6 to the

occurrence of j in E and 1/2 to the occurrence of j in Ē .
We make here a few observations that will be useful later in

the proof. Since in this case j is urgent in E and E is either idle
or executes a flexible job at time t, Lemma 2.1 implies that j is
executed in E after time t. It also implies that E runs urgent jobs
between SE

j and xj . This means that E runs an urgent job at

t′. Since Ē is idle at time t′ by the case condition, Lemma 3.2
implies that Ē schedules j as flexible before time t′.

(IIIb) Otherwise, charge 1/2 to the occurrence of j in E and 1/6 to the
occurrence of j in Ē .

(IV) Both processes A and B are running jobs kA and kB, respectively, at time
t. We show below in Lemma 3.4 that in the previous cases either kA or kB
receives a self-charge of at most 1/6 from its occurrence in Z. We generate
an up-charge of 2/3 from j to this job and an up-charge of 1/3 to the other
one. No self-charge is generated in this case.

This completes the description of the charging scheme. Before we resume the
proof of the theorem, we prove two lemmas, the purpose of which is to justify the
correctness of the charges in case (IV).

Lemma 3.3. Assume that case (IV) applies to j. Suppose also that kF for
some F ∈ {A,B} is scheduled before j in Z (i.e., SZ

kF
≤ t − p), and that kF in F

receives a self-charge of 1/2 generated in case (IIIb) applied to kF . Then kF̄ ≺ kF
or kF̄ = kF .

Proof. Since kF receives a charge of 1/2 in (IIIb), the choice of E in case (III)
implies that kF is executed in F̄ later than in F , i.e., SF̄

kF
≥ SF

kF
> t − p. On

the other hand, SF̄
kF̄

≤ t, so kF must be executed in F̄ after kF̄ . Furthermore,

SF̄
kF̄

> t− p ≥ SZ
kF

≥ rkF , and thus kF is pending in F̄ when kF̄ is started. Since F̄
is EDF, we have kF̄ ≺ kF or kF̄ = kF , completing the proof.

Lemma 3.4. Assume that case (IV) applies to j. Then for some D ∈ {A,B} the
self-charge to kD in D does not exceed 1/6.

Proof. Note that self-charges are generated only in cases (I)–(III) and any self-
charge has weight 1/2 or 1/6. Assume, towards contradiction, that both kA and kB
receive a self-charge of 1/2. At least one of kA and kB is scheduled as urgent in the
corresponding schedule, due to the lock mechanism. Thus kA = kB, as (I) is the
only case when two self-charges 1/2 to the same job are generated and then both
occurrences are flexible. Furthermore, if j = kG for some G ∈ {A,B}, then kG would
not receive any self-charge. Thus kA, kB, and j are three distinct jobs.

Choose D such that kD is urgent in D (as noted above, such D exists). The only
case when an urgent job receives a self-charge of 1/2 is (IIIb). By Lemma 2.1, D
executes urgent jobs at all times t′, t ≤ t′ ≤ xkD , which, together with the condition
for case (III) applied to kD (namely, that D is either idle or executes a flexible job at
SZ
kD

), implies that SZ
kD

≤ t. As j = kD, it follows that SZ
kD

≤ t − p. By Lemma 3.3,

kD̄ ≺ kD and xkD̄ ≤ xkD . Furthermore, since (IIIa) does not apply to kD, D̄ is also
not idle at any time t′, t ≤ t′ ≤ xkD .

1720 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

We now show that the assumption of a self-charge of 1/2 to kD̄ in D̄ leads to a
contradiction. The proof is accomplished by considering several cases. In most cases
the contradiction is with the fact that, as shown in the previous paragraph, both
processes are busy at all times between t and xkD (keeping in mind that xkD̄ ≤ xkD).

If this charge is generated in case (I) or (II), then by the case conditions, D̄ would
be idle at time SZ

kD̄
, and we would have SZ

kD̄
≥ SD̄

kD̄
and thus t ≤ SZ

kD̄
≤ xkD̄ , which

is a contradiction.
Suppose that this self-charge is generated in case (III). Similarly as before, the

condition of this case implies that one process is idle at time SZ
kD̄

, so we must have

SZ
kD̄

≤ t, for otherwise we would again have an idle time between t and xkD̄ .

We have now two subcases. If the self-charge originated from case (IIIa), the
condition of this case implies that there is an idle time t′ between SZ

kD̄
and xkD̄ . As

t ≤ t′ ≤ xkD̄ , this is again a contradiction.
The last possibility is that this self-charge originated from case (IIIb). But then

SZ
kD̄

≤ t− p as j = kD̄, and Lemma 3.3 above applies to kD̄. However, the conclusion
that kD ≺ kD̄ contradicts the linearity of ≺ as kD = kD̄, and we have already shown
that kD̄ ≺ kD.

Summarizing, we get a contradiction in all the cases, completing the proof of the
lemma.

Continuing the proof of the theorem, we now show that the total charge to each
occurrence of a job in A or B is at most 5/6. Suppose that k is executed in D ∈ {A,B}.
During the execution of k at most one job is started in Z; thus, k gets at most one
up-charge in addition to a possible self-charge. If k does not receive any up-charge,
it is self-charged 1/2 or 1/6, i.e., less than 5/6.

If k receives an up-charge in (II), then k is an urgent job and, since D̄ is idle, it is
already completed in D̄, so SD̄

k < SD
k . The only case where the occurrence of k that

is later in time is urgent and receives a self-charge is case (IIIb), and in this case this
self-charge is 1/6. So the total charge would be at most 1/6 + 1/2 < 5/6.

If a job receives an up-charge in (III), the up-charge is only 1/3, and thus the
total is at most 1/3 + 1/2 = 5/6.

If a job receives an up-charge in (IV), Lemma 3.4 implies that the up-charges can
be defined as claimed in the case description. The total charge is then bounded by
1/6 + 2/3 = 5/6 and 1/2 + 1/3 = 5/6, respectively.

The expected number of jobs completed by RandLock is (|A| + |B|)/2. Since
each job in A and B receives a charge of at most 5/6 and all jobs in Z generate a
charge of 1, we have (5/3) · (|A|+ |B|)/2 = (5/6) · (|A|+ |B|) ≥ |Z|. This implies that
RandLock is 5/3-competitive.

As discussed in the introduction, a lower bound of 4/3 is known for randomized
algorithms [13]. For barely random algorithms that choose between two deterministic
algorithms, we can improve this bound to 3/2. Assuming also that the two algorithms
are selected with equal probability, we can further improve the bound to 8/5.

Theorem 3.5. Suppose that R is a barely random nonpreemptive algorithm for
scheduling equal-length jobs that chooses one of two deterministic algorithms. Then
R is not better than 3/2-competitive.

Proof. Assume that R chooses randomly one of two deterministic algorithms, A
or B, with some arbitrary probabilities. Let p ≥ 3, and write the jobs as j = (rj , dj).
We start with job 1 = (0, 4p). Let t be the first time when one of the algorithms, say
A, schedules job 1. If B schedules it at t as well, release a job 1′ = (t+1, t+p+1); the
optimum schedules both jobs while both A and B schedule only one, so the competitive
ratio is at least 2.

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1721

So we may assume that B is idle at t. Release job 2 = (t + 1, t + 2p + 2). If B
starts any job (1 or 2) at t+ 1, release job 3 = (t+ 2, t+ p+ 2); otherwise, release job
4 = (t+ p+1, t+2p+1). B completes only one of the jobs 2, 3, or 4. Since A is busy
with job 1 until time t + p, it also completes only one of the jobs 2, 3, or 4 as their
deadlines are smaller than t + 3p. So each of A and B completes at most two jobs.

The optimal schedule completes three jobs: If 3 is issued, schedule 3 and 2, back
to back, starting at time t+ 2. If 4 is issued, schedule 2 and 4, back to back, starting
at time t+1. In either case, two of jobs 2, 3, and 4 fit in the interval [t+1, t+2p+2).
If t ≥ p−1, schedule job 1 at time 0; otherwise, schedule job 1 at time 3p ≥ t+2p+2.
Thus the competitive ratio of R is at least 3/2.

Theorem 3.6. Suppose that R is a barely random nonpreemptive algorithm for
scheduling equal-length jobs that chooses one of two deterministic algorithms, each
with probability 1/2. Then R is not better than 8/5-competitive.

Proof. Assume that R chooses one of two deterministic algorithms, A or B, each
with probability 1/2. Let p ≥ 3, and write the jobs in the format j = (rj , dj). We
start with job 1 = (0, 6p). Let t be the first time when one of the algorithms, say A,
schedules job 1.

At time t+ 1 release job 2 = (t+ 1, t+ p+ 1). If B does not start 2 at time t+ 1,
then no more jobs will be released and the ratio is at least 2.

We may thus assume that B starts 2 at time t+ 1 and then starts 1 at some time
t′ ≥ t + p + 1. Release job 3 = (t′ + 1, t′ + 2p + 2). If A starts job 3 at t′ + 1, release
job 4 = (t′ +2, t′ + p+2); otherwise, release 5 = (t′ + p+1, t′ +2p+1). By the choice
of the last job, A can complete only one of the jobs 3, 4, or 5. Since B is busy with
job 1 until time t′ + p ≥ t′ + 3, it also can complete only one of the jobs 3, 4, or 5 as
their deadlines are strictly smaller than t′ + 3p. So A can complete 2 jobs only, and
B can complete 3 jobs.

The optimal schedule can complete all four released jobs. If 4 is issued, schedule
4, and 3, back to back, starting at time t′ + 2. If 5 is issued, schedule 3, and 5,
back to back, starting at time t′ + 1. In either case, both jobs fit in the interval
[t′ + 1, t′ + 2p+ 2). This interval is disjoint with the interval [t+ 1, t+ p+ 1) where 2
is scheduled. Finally, these two intervals occupy length 3p + 1 of the interval [0, 6p)
and divide it into at most 3 contiguous pieces; thus, one of the remaining pieces has
a length of at least p, and job 1 can be scheduled.

Summarizing, R completes at most (2 + 3)/2 = 2.5 jobs on average, while the
optimal schedule completes 4 jobs. Therefore the competitive ratio is at least 4/2.5 =
8/5, as claimed.

4. Scheduling with restarts. Our algorithm with restarts is very natural. At
any time, it greedily schedules the ED job. However, if a tight job arrives that would
expire before the running job is completed, we consider a preemption. A preemption
occurs only if it guarantees to increase the number of completed jobs among those
that are known to the algorithm, which includes the currently executed job and all
pending jobs.

To formalize this idea, we need an auxiliary definition. Suppose that a job k is
started at time s by the online algorithm. We call a job h a preemption candidate for
k if s < rh ≤ xh < s + p.

The exact statement of the algorithm is somewhat technical, as it needs to prop-
erly handle the case when two preemption candidates arrive at the same time and
also the case when some other jobs arrive between the start of a job and the arrival
of the first preemption candidate.

1722 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

Algorithm TightRestart. At time t, do the following.
(TR1) If no job is running, start the ED pending job, providing there is at least

one pending job; otherwise, stay idle until some job is released.
(TR2) Otherwise, let k be the running job. If k was started as urgent or if no

preemption candidate is released at t, continue running k.
(TR3) Otherwise, the running job k was started as flexible. Let P ∗

t be the set
of all jobs pending at time t, including k but excluding any preemption
candidates. If P ∗

t is flexible at t, preempt k and start (at time t) a
preemption candidate; choose the ED preemption candidate, if more are
admissible at time t. Otherwise, continue running k.

Note that in case (TR3) job k is indeed still pending at time t, for its flexibility
at its start time implies that k is still admissible at t. (Recall that only admissible
jobs are considered pending, and a job that is partially executed is pending as well,
as long as it is still admissible.)

Let X be the final schedule generated by TightRestart, after removing the
preempted parts of jobs. For any time t, as before, we denote as Pt the set of jobs
that are pending in X at time t. We stress that we distinguish between X being idle
and TightRestart being idle: At some time steps TightRestart can process a
job that will be preempted later, in which case X is considered idle at these steps but
TightRestart is not.

Lemma 4.1. Schedule X is normal.
Proof. By rules (TR1) and (TR3), TightRestart always starts the ED pending

job; in (TR3) note that, by definition, any preemption candidate is tight and thus it
has an earlier deadline than any job in the flexible set P ∗

t of the remaining pending
jobs. The property (n1) of normal schedules follows as, obviously, at each time step,
the pending jobs in TightRestart and X are the same.

If TightRestart is idle then there is no pending job. Thus, to show the prop-
erty (n2), it remains to verify that Pt′ is flexible at any time t′ when X is idle but
TightRestart is not. This means that TightRestart is running a job which is
later preempted.

Suppose TightRestart starts a job k at time s and preempts it at time t. By
(TR2), k is started as flexible. Let t′ be any time such that s < t′ < t. Since k is
flexible at s and it is the ED job in Ps, no job in Ps expires before s + p > t. Thus
we have Ps ⊆ P ∗

t′ ⊆ P ∗
t by the definition of P ∗

t′ and P ∗
t in (TR3). As TightRestart

preempts at time t, P ∗
t is flexible at t. Consequently, P ∗

t′ ⊆ P ∗
t is flexible at t and

also at t′ < t. Using this for all t′, we conclude that the first preemption candidate
for k is released at t, as otherwise k would be preempted earlier. Thus no preemption
candidate is admissible at any t′, s < t′ < t, and Pt′ = P ∗

t′ which we have shown is
flexible at t′. Thus (n2) holds, and X is normal.

Theorem 4.2. TightRestart is a 3/2-competitive algorithm with restarts for
scheduling equal-length jobs.

Proof. As usual, by Z we denote an optimal schedule. The proof is based on
a charging scheme, where each job in Z generates a charge of 1 and each job in
TightRestart’s schedule receives a charge of at most 3/2.

Let us start by giving some intuition behind the charging scheme. Suppose that
a job j is started at time t in Z. If TightRestart is running a job k at t and k
is not preempted later, we want to charge j to k. If TightRestart is running a
job k which is later preempted by a job h, we charge 1/2 to h and 1/2 to j (using
Lemma 2.2 to guarantee that the modified schedule completes j). The main problem

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1723

is to handle the case when TightRestart is idle when j starts in Z; we call such a
j a free job. In this case, TightRestart was “tricked” into scheduling j too early.
We would like to charge j to itself. However, it may happen that then j would be
charged twice, so we need to split this charge and find another job that we can charge
1/2. The definition of f(j) below chooses such a job and Lemma 2.2 again guarantees
that the modified schedule completes f(j). The rule (f2) in the definition of f below
chooses a value of f to be a job not scheduled in Z, which is opposite to the general
intuition that the modified schedule is more similar to Z; however, it guarantees that
this job may be charged that additional 1/2. Another difficulty that arises in the
above scheme is that, due to preemptions in TightRestart’s schedule and to idle
times in Z, the jobs can become misaligned. To deal with this problem, we define a
matching M between the jobs in X and Z. Typically, a job k in X is matched to the
first unmatched job in Z that starts later than k. In some situations we match a free
job k to itself.

We now proceed with the formal proof. First, we define a partial function f :
J → J . For any job k scheduled as flexible in X , we define f(k) as follows.

(f1) If at some time t, SX
k ≤ t < CX

k , Z starts a job h which is not a preemption
candidate, then let f(k) = h.

(f2) Otherwise, if there exists a job h with SX
k < rh ≤ CX

k ≤ xh such that Z
does not complete h, then let f(k) = h (choose arbitrarily if there are more
such h’s).

(f3) Otherwise, f(k) is undefined.
Notice that f(·) is one-to-one, for the first two cases are disjoint, and in each case

k is uniquely determined by h = f(k): If h = f(k) and (f1) applied to k, then k is the
job that is being executed by X when Z starts h. If (f2) applied to k, then k is the
job being executed by X at time rh − 1.

According to Lemma 4.1, X is a normal schedule. Let A be the schedule con-
structed in Lemma 2.2 from X and function f(·). Since A is equivalent to X , it also
satisfies Lemma 2.1.

Call a job j scheduled in Z a free job if TightRestart is idle at time SZ
j . This

condition implies that at time SZ
j no job is pending in A; in particular, by Lemma 2.1,

j is completed as a flexible job by time SZ
j in A.

Now define a partial function M : J → J which is a matching of (some) occur-
rences of jobs in A to those in Z. Process the jobs k scheduled in A in the order of
increasing SA

k . For a given k, let j be the first unmatched job in Z started at or after
SA
k or, more formally, the job with smallest SZ

j among those with SZ
j ≥ SA

k and such

that j = M(k′) for all k′ in A with SA
k′ < SA

k . If no such j exists, M(k) is undefined.
Else, do the following.

(m1) If SZ
j ≥ CA

k and k is a free job which is not in the current range of M , then
let M(k) = k.

(m2) Otherwise, let M(k) = j.
The definition implies that M is one-to-one. See Figure 4.1 for an example.

Lemma 4.3. Let j be a job executed in Z.
(1) If A executes some job when j starts in Z, i.e., SA

k ≤ SZ
j < CA

k for some k,
then j is in the range of M .

(2) If j is free and f(j) is undefined, then j is in the range of M .
Proof. Part (2) is simple: Suppose that A is executing some job k at SZ

j , and
consider the step in the construction of M when we are about to define M(k). If j is
not in the range of M at this time, then we would define M(k) as j.

1724 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

8
9

10
11

13
14

12

7 1211106512A

7 6 5 13 11109431Z

444036322820161284 240

8 101X 6 1152

1
2

3
4

5
6

7

14

Fig. 4.1. An example of an instance, the schedule X produced by TightRestart, the modified
schedule A, and the construction of M (represented by directed edges). The processing time is p = 4.
Jobs are identified by positive integers. Preempted pieces of jobs are not shown. In X , jobs 5, 6,
and 11 are flexible, and the other jobs are urgent. Note that f(5) is undefined, f(6) = 7 (since 7
is not a preemption candidate), and f(11) = 12 (since 13 is a preemption candidate and 12 is not,
and 12 is not executed in X).

Ps’all u jobs from

Z

A

at most u1 jobs

j

M

jl

s s’

Fig. 4.2. Illustration to the proof of Lemma 4.3(2).

We now prove (2). Let s = SA
j be the start time of j in A and s′ = CA

j = s + p
its completion time. Since j is free, it is completed in A before it is started in Z, i.e.,
SZ
j ≥ s′ and j is flexible in A.

Suppose for a contradiction that j is not in the range of M . By the definition of
M , this implies that M(j) = l for some job l with s ≤ SZ

l < s′. Otherwise, during
the construction of M when we are about to define M(j), we would set M(j) = j.

Since f(j) is undefined, by condition (f1), l must be a preemption candidate for
j, i.e., s < rl ≤ xl < s′. Furthermore, as TightRestart does not preempt j when l
is released, the set P ∗

rl
is not flexible.

Figure 4.2 illustrates the argument that follows. The idea is this: Since j is
not preempted even though a preemption candidate l arrives, A must be nearly full
between s′ and dj . So, intuitively, one of the jobs scheduled in this interval should
overlap in time with the occurrence of j in Z, and this job would end up being

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1725

matched to j. The rigorous argument gets a bit technical because of possible gaps in
the schedules.

Let H = {h | s < rh ≤ s′ ≤ xh} be the set of all jobs released during the execution
of j in A or exactly at CA

j , excluding preemption candidates. Since f(j) is undefined,
by condition (f2), all these jobs are completed in Z, and obviously they cannot be
completed before SZ

l . Also, l /∈ H. Thus H is feasible at CZ
l and also at s′ ≤ CZ

l .
Since A is an EDF schedule and j is flexible in A, all jobs h ∈ Ps−{j} have xh ≥

xj ≥ s′, so they are still pending at s′. Therefore Ps′ = Ps∪H−{j} = P ∗
rl
∪H−{j}.

(Job j is not pending at s′ since it is already completed.)
We claim that Ps′ is feasible at s′. Suppose, towards contradiction, that it is not.

Let d be smallest time such that R = {h ∈ Ps′ | dh ≤ d} is not feasible; i.e., R is the
smallest infeasible initial segment of Ps′ ordered by ≺. Then TightRestart would
execute urgent jobs from s′ until time d − p + 1, as always the ED job is started as
urgent and then the set of pending jobs cannot become feasible before or at time d−p.
Since X is idle at time SZ

j , this implies that d < CZ
j . Since all jobs h ∈ Ps′ with

dh < dj are in H, this implies that R ⊆ H, which is a contradiction with feasibility
of H. We conclude that Ps′ is feasible at s′, as claimed.

Since Ps′ is feasible at s′, Lemma 2.2(2) implies that A completes all jobs in Ps′ .
Furthermore, all jobs in Ps′ are scheduled between s′ and SZ

j , as TightRestart is

idle at SZ
j .

Let u = |Ps′ |. Next we claim that
(i) SZ

j − CZ
l < up, and

(ii) Z does not schedule any of the jobs in Ps′ after j.
If either of (i) or (ii) were violated, Ps′ ∪ {j} would be feasible at CZ

l , for we can
first schedule H, which is feasible at CZ

l , and then the remaining jobs from Ps′ : If
(i) is violated, we can complete all jobs in Ps′ by the time SZ

j , which is smaller than

the deadlines in P ∗
rl
−H, and start j at SZ

j . If (ii) is violated, let j′ be the job in Ps′

scheduled after j in Z. We know that SZ
j − CZ

l > SZ
j − s′ − p ≥ (u − 1)p; thus, we

can complete all jobs in Ps′ by the time SZ
j and schedule j and j′ as in Z.

By the previous paragraph, if either (i) or (ii) does not hold, then P ∗
rl
∪ {j} ⊆

Ps′∪{j} is feasible at rl+p ≤ CZ
l and thus flexible at rl, contradicting the assumption

that l (which is a preemption candidate) did not cause preemption. We thus obtain
that (i) and (ii) are true, as claimed.

Summarizing, A completes the u jobs in Ps′ between s′ and SZ
j , and by (ii), these

jobs are not executed after SZ
j in Z. Therefore, if j were not in the range of M , the

jobs in Ps′ would have to be matched to the jobs in Z between CZ
l and SZ

j , which is
not possible, because there are at most u− 1 such jobs by (i). We can thus conclude
that j is indeed in the range of M .

Charging scheme. Let j be a job started at time t = SZ
j in Z. We charge j to

jobs in A according to the following cases.
(I) j = M(k) for some k. Charge j to k. By Lemma 4.3(1), this case always

applies when A is not idle at t, so in the remaining cases A is idle at t.
(II) Otherwise, if j is free, then charge 1/2 of j to the occurrence of j in A and

1/2 of j to the occurrence of f(j) in A. Note that, since (I) does not apply,
Lemma 4.3(2) implies that f(j) is defined, and then Lemma 2.2 implies that
both j and f(j) are completed in A.

(III) Otherwise, A is idle at t, but TightRestart is running some job k at t
which is later preempted by another job h. Charge 1/2 of j to j and 1/2 to

1726 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

h. By Lemma 2.2(2), j is completed in A. Job h is urgent, and thus it is
completed as well.

Analysis. We prove that each job scheduled in A is charged at most 3/2. Each
job is charged at most 1 in case (I), as M defines a matching.

We claim that each job receives at most one charge of 1/2. For the rest of the
proof, we will distinguish two types of charges of 1/2: self-charges, when j is charged
to itself, and non-self-charges, when j is charged to a different job.

Suppose first that k receives a self-charge. (Obviously, it can receive only one.)
Then A is idle at time SZ

k , for otherwise case (I) would apply to k in Z. This implies
two things. First, k is not tight, so it cannot receive a non-self-charge in case (III).
Second, k cannot be in the range of f(·), since each job f(j) is either not in Z or, if it
is, A is executing some job at time SZ

f(j). Therefore k cannot receive a non-self-charge

in case (II).
Next, suppose that k does not receive a self-charge. Since f(·) is one-to-one, k

can receive at most one non-self-charge in case (II). If k receives a non-self-charge
in case (III) from a job j, then k is started in A while Z is executing j, so k can
receive only one such charge. Finally, if k receives a non-self-charge in case (II),
then by the definition of f(·), k is not a preemption candidate, so it cannot receive a
non-self-charge in case (III).

We conclude that each job completed in A gets at most one charge of 1 and at
most one charge of 1/2 and thus is charged a total of at most 3/2. Each job in Z
generates a charge of 1. Thus, by summation over all jobs in Z, we have |Z| ≤ 3|A|/2,
completing the proof of the theorem.

We now show that the competitive ratio of our algorithm is in fact optimal.
Theorem 4.4. For scheduling equal-length jobs with restarts, no deterministic

algorithm is better than 3/2-competitive and no randomized algorithm is better than
6/5-competitive.

Proof. For p ≥ 2, consider four jobs given in the form j = (rj , dj): 1 = (0, 3p+1),
2 = (1, 3p), 3 = (p, 2p), and 4 = (p + 1, 2p + 1). The instance consists of jobs 1, 2,
and 3 or jobs 1, 2, and 4.

There exist schedules that schedule three jobs 1, 3, and 2 or three jobs 2, 4, and
1, in this order. (See Figure 4.3.) Therefore the optimal solution consists of three
jobs.

In the deterministic case, release jobs 1 and 2. If the online algorithm starts job 2
at time 1, release job 3; otherwise, release job 4. The online algorithm completes only
two jobs. As the optimal schedule has three jobs, the competitive ratio is no better
than 3/2.

1 0 3p+1

1 3p

2pp

p+1 2p+1

1 3 2

2 4 1

Z

Z’

2

3

4

Fig. 4.3. Jobs used in the lower bounds with restarts.

ONLINE SCHEDULING OF EQUAL-LENGTH JOBS 1727

Our proof for randomized algorithms is based on Yao’s principle [24, 6]. We define
a probability distribution on our two instances as follows: Always release jobs 1 and
2, and then one randomly chosen job from 3 and 4, each with probability 1/2. If A
is any deterministic online algorithm, then the expected number of jobs completed
by A is at most 2.5, as on one of the instances it completes only 2 jobs. Using Yao’s
principle, we conclude that no randomized algorithm can have a competitive ratio
smaller than 3/2.5 = 6/5.

5. Final comments. For equal processing times, closing the gap between our
upper bound of 5/3 and the lower bound of 4/3 is a challenging open problem. It would
also be interesting to close these gaps for barely random algorithms which—in our
view—are of their own interest (even in the case when we use only one fair random bit).

Barely random algorithms with a single random bit intuitively seem to be some-
what similar to deterministic algorithms for two machines for the same problem. In
particular, one might expect that lower bounds will carry over to the problem with
two machines when each job is duplicated. However, subsequent to our work, indepen-
dently Ding and Zhang [10] and Goldwasser and Pedigo [16] designed 3/2-competitive
deterministic algorithms for two machines. Thus, somewhat surprisingly, the answers
for the two problems are different. Still, it remains a possibility that algorithms for
more machines will bring some insight into the randomized scheduling on a single
machine.

Beyond our simple lower bound of 6/5, nothing is known about the effect of
allowing both randomness and restarts. The best upper bound of 3/2 is achieved by
a deterministic algorithm. Can randomization help in the model with restarts?

Acknowledgment. We wish to express our gratitude to the anonymous referees,
whose numerous and insightful suggestions helped us simplify some arguments and
significantly improve the presentation of the paper.

REFERENCES

[1] S. Albers, On randomized online scheduling, in Proceedings of the 34th Symposium Theory of
Computing (STOC), Association for Computing Machinery, New York, 2002, pp. 134–143.

[2] P. Baptiste, Polynomial time algorithms for minimizing the weighted number of late jobs on
a single machine with equal processing times, J. Sched., 2 (1999), pp. 245–252.

[3] Y. Bartal, M. Chrobak, and L. L. Larmore, A randomized algorithm for two servers on
the line, Inform. and Comput., 158 (2000), pp. 53–69.

[4] S. K. Baruah, J. Haritsa, and N. Sharma, On-line scheduling to maximize task completions,
in Proceedings of the 15th Real-Time Systems Symposium, IEEE Press, Piscataway, NJ,
1994, pp. 228–236.

[5] S. K. Baruah, J. Haritsa, and N. Sharma, On-line scheduling to maximize task completions,
J. Combin. Math. Combin. Comput., 39 (2001), pp. 65–78.

[6] A. Borodin and R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, London, 1998.

[7] J. Carlier, Problèmes d’ordonnancement à durées égales, QUESTIO, 5 (1981), pp. 219–228.
[8] M. Chrobak, C. Dürr, W. Jawor, �L. Kowalik, and M. Kurowski, A note on scheduling

equal-length jobs to maximize throughput, J. Sched., 9 (2006), pp. 71–73.
[9] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý, Online scheduling of equal-length jobs:

Randomization and restarts help, in Proceedings of the 31st International Colloquium on
Automata, Languages, and Programming (ICALP), Lecture Notes in Comput. Sci. 3142,
Springer, Berlin, 2004, pp. 358–370.

[10] J. Ding and G. Zhang, Online scheduling with hard deadlines on parallel machines, in Pro-
ceedings of the 2nd International Conference on Algorithmic Aspects in Information and
Management (AAIM), of Lecture Notes in Comput. Sci. 4041, Springer, Berlin, 2006,
pp. 32–42.

1728 M. CHROBAK, W. JAWOR, J. SGALL, AND T. TICHÝ

[11] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger, Randomized on-line
scheduling for two related machines, J. Sched., 4 (2001), pp. 71–92.

[12] M. Garey, D. Johnson, B. Simons, and R. Tarjan, Scheduling unit-time tasks with arbitrary
release times and deadlines, SIAM J. Comput., 10 (1981), pp. 256–269.

[13] S. A. Goldman, J. Parwatikar, and S. Suri, Online scheduling with hard deadlines, J.
Algorithms, 34 (2000), pp. 370–389.

[14] M. H. Goldwasser, Patience is a virtue: The effect of slack on the competitiveness for ad-
mission control, J. Sched., 6 (2003), pp. 183–211.

[15] M. H. Goldwasser and B. Kerbikov, Admission control with immediate notification, J.
Sched., 6 (2003), pp. 269–285.

[16] M. H. Goldwasser and M. Pedigo, Online, non-preemptive scheduling of equal-length jobs on
two identical machines, in Proceedings of the 10th Scandinavian Workshop on Algorithm
Theory (SWAT), Lecture Notes in Comput. Sci. 4059, Springer, Berlin, 2006, pp. 113–123.

[17] H. Hoogeveen, C. N. Potts, and G. J. Woeginger, On-line scheduling on a single machine:
Maximizing the number of early jobs, Oper. Res. Lett., 27 (2000), pp. 193–196.

[18] J. Jackson, Scheduling a Production Line to Minimize Maximum Tardiness, Technical re-
port 43, Management Science Research Project, University of California, Los Angeles,
1955.

[19] B. Kalyanasundaram and K. Pruhs, Maximizing job completions online, J. Algorithms, 49
(2003), pp. 63–85.

[20] R. J. Lipton and A. Tomkins, Online interval scheduling, in Proceedings of the 5th Sympo-
sium on Discrete Algorithms (SODA), ACM/SIAM, 1994, pp. 302–311.

[21] N. Reingold, J. Westbrook, and D. D. Sleator, Randomized competitive algorithms for
the list update problem, Algorithmica, 11 (1994), pp. 15–32.

[22] S. Seiden, Barely random algorithms for multiprocessor scheduling, J. Sched., 6 (2003),
pp. 309–334.

[23] B. Simons, A fast algorithm for single processor scheduling, in Proceedings of the 19th Sym-
posium on Foundations of Computer Science (FOCS), IEEE Press, Piscataway, NJ, 1978,
pp. 246–252.

[24] A. C. C. Yao, Probabilistic computations: Towards a unified measure of complexity, in Pro-
ceedings of the 18th Symposium on Foundations of Computer Science (FOCS), IEEE Press,
Piscataway, NJ, 1977, pp. 222–227.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1729–1747

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING∗

LEONARD J. SCHULMAN† , TAL MOR‡ , AND YOSSI WEINSTEIN‡

Abstract. Simultaneous near-certain preparation of qubits (quantum bits) in their ground
states is a key hurdle in quantum computing proposals as varied as liquid-state NMR and ion traps.
“Closed-system” cooling mechanisms are of limited applicability due to the need for a continual
supply of ancillas for fault tolerance and to the high initial temperatures of some systems. “Open-
system” mechanisms are therefore required. We describe a new, efficient initialization procedure for
such open systems. With this procedure, an n-qubit device that is originally maximally mixed, but
is in contact with a heat bath of bias ε � 2−n, can be almost perfectly initialized. This performance
is optimal due to a newly discovered threshold effect: For bias ε � 2−n no cooling procedure can,
even in principle (running indefinitely without any decoherence), significantly initialize even a single
qubit.

Key words. quantum computation, state preparation, thermodynamics

AMS subject classifications. 68W01, 80A99

DOI. 10.1137/050666023

1. Introduction. Quantum computation poses a difficult experimental chal-
lenge. Simultaneous near-certain preparation of qubits (quantum bits) in their ground
states is a key hurdle in proposals as varied as NMR and ion traps [8, 19, 9, 13, 10, 11].
Such “cooling” (also known as “biasing” or “polarizing”) is required both for initia-
tion of the computation [2] and in order to supply ancillas for fault tolerance as the
computation proceeds.

Cooling of quantum systems has long been essential in a variety of experimen-
tal contexts unrelated to quantum computation, and is performed by processes that
directly cool the system such as laser cooling in ion traps or application of strong
magnetic fields in NMR. Spin exchange has also been employed in order to transfer
highly cooled states into the desired system from another that is more readily directly
cooled [4, 14, 24]. In all these methods, the temperature is limited by the original
cooling process.

Algorithmic cooling. It is in principle possible, however, to reach even lower
temperatures, by application of certain logic gates among the qubits [22]. (Even prior
to quantum computation the need for signal amplification in NMR imaging led to the
implementation of a basic 3-qubit logic gate [23].) In several quantum computation
proposals this kind of improvement in cooling is necessary due to the requirement
that a large number of qubits all be, with high probability, simultaneously in their
ground states.

We distinguish between closed- and open-system algorithmic cooling methods. In
the former [22] an initial phase of physical cooling is performed which reduces the

∗Received by the editors March 9, 2005; accepted for publication (in revised form) October 6,
2006; published electronically March 19, 2007.

http://www.siam.org/journals/sicomp/36-6/66602.html
†California Institute of Technology, MC 256-80, Pasadena, CA 91125 (schulman@caltech.edu).

The work of this author was supported in part by the NSF (PHY-0456720 and CCF-0524828), the
ARO (W911NF-05-1-0294), the Mathematical Sciences Research Institute, and the Okawa Founda-
tion.

‡Technion - Israel Institute of Technology, Haifa 32000, Israel (talmo@cs.technion.ac.il, yossiv@cs.
technion.ac.il). The work of these authors was supported in part by the Israel Ministry of Defense
and by the Institute for Future Defense Research at the Technion.

1729

1730 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

entropy of the system. Then in the closed phase an entropy preserving (unitary)
algorithmic process is performed on the qubits. By contrast in an open process [5]
some of the qubits of the system can be cooled by external interaction even during
(or at interruptions in) the quantum computation. Open-system cooling places an
additional experimental difficulty: Computation qubits must not decohere during the
process of cooling other qubits which, at another stage, they must interact with.
Nonetheless closed-system cooling appears to be insufficient for two reasons. The
first applies specifically to liquid-state NMR quantum computing, where the initial
entropy-reducing preparation is quite weak: the probability of the ground state of each
qubit exceeds the probability of the excited state by the small factor of e2ε ≈ 1+10−5.
In the subsequent closed phase an ε2 fraction of the qubits can be prepared in highly
cooled states [22] (and see [23, 7] for experimental demonstrations of key steps); for
information-theoretic reasons this fraction is best possible, but at the current value
of ε it is too small for effective implementation of a quantum computer. The second
reason applies more broadly. Any quantum computing implementation must cope
with noise. Fault-tolerance mechanisms have been designed that can do so [1], if the
noise level is below a specified threshold (estimated to be between 10−4 and 10−2

per qubit per operation [16]) and if a continual supply of “ancillas” (qubits which are
initialized in a known state) is available. Ancilla initialization need not be perfect, but
the error cannot exceed the same fault-tolerance threshold. In ion traps, for example,
direct cooling can place qubits in their ground states with probability ≈ 0.95, a level
that necessitates further cooling to exceed the threshold [15, 3]. Since fresh ancillas
are needed in each time step, either a very large supply must be chilled in advance
and maintained without substantial decoherence, or—more likely—an open-system
approach must be adopted in which registers are cooled on a regular basis.

It is necessary, therefore, to study effective means for open-system algorithmic
cooling. A suggested framework (called the “heat-bath” approach) was made in [5]. A
heat-bath device comprises two types of qubits—some that are hard to cool (but relax
slowly) and others that are readily cooled (but relax rapidly). The former are com-
putation qubits and the latter are “refrigerants.” At chosen times, the computation
and refrigerant qubits can undergo joint unitary interaction (such as spin exchange).
A similar framework is contemplated for ion trap quantum computers [3]—the com-
putation ions are not cooled directly, due to the decoherence that this causes; instead
they are cooled by interaction with separate refrigerant ions that have been directly
laser-cooled.

Results. In this paper we establish the theoretical limits for cooling on heat-bath
devices. We introduce a cooling mechanism achieving much higher bias amplification
than given previously. We explicitly bound the number of cooling steps required in
our amplification process, a crucial matter, since any cooling process must be carried
out within the relaxation times of the computation qubits. Finally, we show that
our method is optimal in terms of entropy extraction per cooling step. In the course
of doing so we discover a threshold phenomenon: significant initialization cannot be
achieved at all unless ε, the bias that can be imparted to the rapidly relaxing qubits,
is asymptotically above 2−n. The proof uses majorization inequalities to convert the
problem to analysis of a certain combinatorial “chip game.”

For specificity we assume that the quantum computer has n − 1 computation
qubits, and an nth refrigerant qubit that is in contact with the heat bath. The
cooling step, ι, has the effect of changing the traced density matrix of the nth qubit

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1731

to

ρε =
1

eε + e−ε

(
eε 0
0 e−ε

)
(1.1)

(no matter what the previous state was). In between cooling steps, reversible (unitary)
quantum logic gates can be applied to the register of n qubits. Let In be the density
matrix of the maximally mixed state over the 2n-dimensional Hilbert space (In =
2−n× the identity matrix of dimension 2n). The question is, Starting from In, and
using these operations, how different from In can we make the density matrix of the
device?

There is little a priori reason to expect any limit on the difference. To speak (im-
precisely) in terms of temperature, we have already pointed out that the temperature
of the heat bath is not a lower bound on the achievable temperature of the device,
because we can use logic gates and energy to implement a heat engine (refrigerator).
This being so, there is no natural lower bound on the achievable temperature short
of absolute zero. It is therefore fascinating that a positive lower bound exists. The
bound derives not from entropic considerations but from finite-size effects. The pre-
cise statement is not in terms of temperature but in terms of the maximum probability
of any state. (For a Gibbs distribution this would be a ground state.)

Theorem 1.1 (physical limit). No heat-bath method can increase the proba-
bility (i.e., |amplitude|2) of any basis state from its initial value, 2−n, to any more

than min{2−neε2
n−1

, 1}. This conclusion holds even under the idealization that an
unbounded number of cooling and logic steps can be applied without error or decoher-
ence.

This shows that if ε � 2−n, then the variation distance between the uniform
distribution, and any distribution reachable by cooling, is � 1.

On the flip side, it was shown in [12] how to produce (at small ε) a qubit of bias
(3/2)(n−2)/2ε. We improve on this result and establish a converse to Theorem 1.1,
using a specific cooling procedure, the PPA, described below. For convenience let
ε̃ = tanh ε. (For small ε, ε̃ ≈ ε.) We present the converse in two slightly incomparable
forms.

Theorem 1.2 (threshold effect). If ε̃ ≥ 24−n, the PPA increases the variation
distance from uniform to Θ(1). This occurs within ε̃−2 cooling steps.

Theorem 1.3 (cold qubit extraction). Within 4nε̃−2(1+ log(1/ε̃)) cooling steps,
the PPA creates a probability distribution in which with probability at least 1−
O(1

1+log 1/ε̃), all of the first n− (1 + o(1)) log2 1/ε̃ bits are |0〉’s (where o(1) denotes a

term tending to 0 as ε̃ tends to 0).
This extraction procedure is useful for quantum computing (it extracts qubits of

bias almost 1, i.e., that are almost certainly in their ground state) so long as ε is
above n2−n.

The notion that the computation qubits are entirely insulated from the environ-
ment is of course merely a simplification good for moderate time spans. To be useful,
algorithms must converge to the desired state within the relaxation time of the com-
putation qubits. Next we show that the PPA is near-optimal in terms of the number
of cooling steps.

Theorem 1.4 (cooling steps required). Any algorithm which creates a bit of
constant bias requires Ω(ε̃−2) cooling steps.

Finally, since the computations in the PPA vary in a complex way depending
upon the value of n, we accompany the above results with another simpler cooling

1732 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

procedure that applies transpositions and reversible 3-qubit majorities in a recursive
pattern, and performs fairly effective cooling. This procedure is a slight modification,
to achieve better asymptotics, of one given in [12]. Let φ = (1 +

√
5)/2, let Fk be

the kth Fibonacci number, and let N = min{n, �logφ 1/ε̃�}; the cooling algorithm F
mentioned in the theorem is described in section 8.

Theorem 1.5 (simple cooling algorithm). The cooling algorithm F is NC1-
uniform and, when run on an N -bit device, creates a bit of bias Ω(ε̃FN) within runtime
(counting both cooling steps and logic gates) exp(O(N logN)).

Comment. The reader will have noticed that while we speak of “cooling,” the
algorithms are characterized not in terms of the final temperatures achieved in the
qubits but in terms of other desirable properties of the final probability distributions.
There are two reasons for this. The first is that other properties, especially as in
Theorem 1.3, are more germane to the application to quantum computing. The
second is that unambiguous assignment of a temperature to a probability distribution
depends on the latter being a Gibbs distribution for some Hamiltonian describing
the system; but the distributions produced by algorithmic cooling need not be Gibbs
distributions. In particular, the PPA does not produce a Gibbs distribution.

Other applications of algorithmic cooling. A central point of this paper is the firm
limit that Theorem 1.1 sets on the cooling parameter ε in order that the heat-bath
method be useful for quantum computation. However, it is important to note that
heat-bath cooling algorithms (the PPA or others) may be viable for other applications
even at smaller ε. Specifically, algorithmic cooling is likely to find significant appli-
cation in the scientific and medical imaging applications for which NMR technology
is already in wide use. The signal-to-noise ratio in NMR imaging is proportional to
the polarization of the nuclear spins and to the square root of the duration of the
scan; since the duration is often limited in medicine by the need to immobilize the
patient, improved sensitivity demands increased polarization. In other applications
the benefit of increased polarization is in decreased scan times. Algorithmic cooling of
a few nuclear spins may therefore be highly beneficial even in the range ε � 2−n that
is not adequate for quantum computation. For example, perfect implementation of
the PPA on a 5-qubit molecule (four computation qubits and one refrigerant) would
yield a qubit of bias 8ε, implying a 64-fold decrease in scan duration compared to
cooling without algorithmic amplification.

An abridged version of this paper appeared in [21].

2. Reduction of quantum to classical cooling. In preparation for the proofs
of Theorems 1.1–1.5 we start with a reduction that significantly simplifies the rest of
our task. Recall that the heat-bath quantum computer is assumed to start in the
maximally mixed density matrix, In. Any cooling step ι changes the traced density
matrix on the nth qubit to the matrix given in (1.1). To see how this affects the entire
density matrix, suppose that before the cooling step, the quantum computer is in a
2n × 2n density matrix

M =

(
M11 M12

M†
12 M22

)
,(2.1)

where the states |0〉 and |1〉 of the nth qubit partition the density matrix into these
four parts. Application of ι effects the following transformation:

M
ι−→ ρε⊗ (M11 +M22) =

1

eε + e−ε

(
eε(M11 + M22) 0

0 e−ε(M11 + M22)

)
.(2.2)

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1733

Between cooling steps, quantum logic gates can be applied to the system. These
act on the density matrix as conjugations by unitary operators. If there are r+1 cool-
ing steps, let these unitaries be u1, . . . , ur. These unitary operators are constrained
to be implementable by local quantum logic gates; for the limit on achievable cooling
(Theorem 1.1), we may ignore this constraint and allow the unitaries to be arbitrary.
For unitary u let u denote the corresponding conjugation operator.

The eigenvalues of a density matrix are the probabilities with which the spectral
basis states are measured; by an inequality of Schur, the spectral basis gives mea-
surement probabilities that are furthest from uniform, in the sense of majorization
(see [18, section 9B]). A probability vector p = (p1, . . .) is said to majorize another
p′ = (p′1, . . .) (written p � p′) if there exists a doubly stochastic matrix D such that
(p1, . . .)D = (p′1, . . .). This is a partial (pre-)order on probability distributions in
which the singular distribution (1, 0, 0, . . .) dominates all others, while the uniform
distribution is dominated by all. Schur’s inequality is that the eigenvalues of a Her-
mitian matrix majorize its diagonal entries. A density matrix h is said to majorize
another h′ (written h � h′) if the eigenvalues of h majorize those of h′.

Domination in majorization implies domination in any of the other measures we
are interested in, such as variation distance from uniform, or the sum of the largest K
probabilities (for a fixed K). So our concern is the following: If u1, . . . , ur represent
the reversible actions of an algorithm between its cooling steps (each acting on the
density matrix as conjugation by a unitary operator), how different can the eigenvalues
of ι ur ι · · · u1 ι In be from those of In (in which all equal 2−n)?

A classical cooling algorithm is one that uses only reversible (deterministic) clas-
sical logic gates between cooling steps. In this case each operator ui acts on the
density matrix as conjugation by a permutation matrix. Observe that a 2n × 2n

diagonal density matrix represents a probability distribution over the basis states
|0 . . . 0〉 , . . . , |1 . . . 1〉.

Proposition 2.1 (classical cooling). Let h be a 2n×2n diagonal density matrix.
Given any quantum logic steps u1, . . . , ur, there are classical steps π1, . . . , πr such that
ι πr ι · · · π1 ι h majorizes ι ur ι · · · u1 ι h.

For a density matrix M with eigenvectors v1, . . . , v2n listed in decreasing order of
their eigenvalues λ1 ≥ · · · ≥ λ2n , let w be a unitary operator which arranges the eigen-
vectors so that they correspond, in order, to the vectors |0..00〉 , |0..01〉 , |0..10〉 , . . . ,
|1..11〉 (recall that the “cooling bit” that is in contact with the reservoir is the nth
or rightmost bit). Then, acting on M with w, and representing the new matrix as
in (2.1), it will have the diagonal entries λ1, λ3, . . . , λ2n−1 in order in the upper left
and the diagonal entries λ2, λ4, . . . , λ2n in order in the lower right. To prove the
proposition we use the following lemma.

Lemma 2.2. Let M and M ′ be density matrices and let M � M ′. Then ιwM �
ιM ′.

Proof of Proposition 2.1. Consider any sequence of conjugations u1, . . . , ur. Ap-
plying the lemma, induction on r shows that

ι w ι · · · w ι h � ι ur ι · · · u1 ι h.(2.3)

Observe that for each r, the left-hand side of this expression is a diagonal density
matrix. Hence each application of w is a classical operation, a permutation of the
basis states.

1734 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

Proof of Lemma 2.2. For a density matrix

A =

(
A11 A12

A†
12 A22

)
,(2.4)

let α1, . . . , α2n−1 be the eigenvalues of A11 + A22. Then the eigenvalues of ιA are
eε

eε+e−εα1,
e−ε

eε+e−εα1, . . . ,
eε

eε+e−εα2n−1 , e−ε

eε+e−εα2n−1 . It follows that if another density
matrix B is given (and partitioned in the same way) and if A11 + A22 � B11 + B22,
then ιA � ιB. So it remains to show that (wM)11 + (wM)22 � M ′

11 + M ′
22.

Let λ1 ≥ · · · ≥ λ2n be the eigenvalues of M and let λ′
1 ≥ . . . ≥ λ′

2n be the eigen-
values of M ′. Then (wM)11 is the diagonal matrix with diagonal (λ1, λ3, . . . , λ2n−1),
and (wM)22 is the diagonal matrix with diagonal (λ2, λ4, . . . , λ2n). The eigenvalues
of (wM)11 + (wM)22 are (λ1 + λ2, λ3 + λ4, . . . , λ2n−1 + λ2n); by the assumption that
M � M ′, this majorizes the sequence (λ′

1 + λ′
2, λ

′
3 + λ′

4, . . . , λ
′
2n−1 + λ′

2n). It remains
to show that the latter majorizes the eigenvalues of M ′

11 + M ′
22.

A simple inequality (see [18, section 9G]) states that the eigenvalues of M ′
11+M ′

22

are majorized by the sequence (β1 + γ1, . . . , β2n−1 + γ2n−1), where β1 ≥ · · · ≥ β2n−1

are the eigenvalues of M ′
11 and γ1 ≥ · · · ≥ γ2n−1 are the eigenvalues of M ′

22. The
argument is completed by an inequality of Fan (see [18, section 9C]) which states that
for any Hermitian H,

(
H11 H12

H†
12 H22

)
�

(
H11 0
0 H22

)
;(2.5)

applied to H = M ′, this yields (λ′
1, λ

′
2, . . . , λ

′
2n) � (β1, . . . , β2n−1 , γ1, . . . , γ2n−1).

We may therefore restrict our attention to classical cooling algorithms. Observe
that every intermediate density matrix created by a classical algorithm is diagonal.
Hence the classical cooling steps are equivalent to the following discrete process on
probability distributions on the set {0, 1}n: begin with the uniform distribution on
{0, 1}n. The only tool for modifying the probability distribution is “discrete cooling
steps,” which have the effect of transforming the current distribution (denoted p) to
a new distribution (denoted p′), related to p by

p′w0 = (pw0 + pw1)
eε

eε+e−ε

p′w1 = (pw0 + pw1)
e−ε

eε+e−ε

}
for each binary string
w of length n− 1.

(2.6)

There is no way of directly cooling the first n−1 bits, but in between cooling steps we
can perform arbitrary permutations of the binary strings. In the discrete process, the
role of a permutation of the basis states is to properly pair off the current probabilities
before the next cooling step.

Due to Proposition 2.1, Theorem 1.1 is equivalent to showing that the above
discrete process cannot increase any probability from its initial value, 2−n, to any
more than 2−neε2

n−1

, while Theorem 1.4 is equivalent to showing that the discrete
process cannot create a bit of constant bias in less than Ω(ε̃−2) cooling steps.

3. Preliminaries.

3.1. Special configurations. The set of probabilities of the basis states, {P (w) :
w ∈ {0, 1}n}, will be referred to as the configuration of the computer.

Definition 3.1. A “special” configuration is one of
(a) a configuration that can be created (out of any configuration, and by any

pairing) by a cooling step;

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1735

(b) the starting configuration, in which all probabilities equal 2−n.
Note that in a special configuration of type (a), two states that were paired in

the previous round, and now have probabilities p and p′, satisfy | log p− log p′| = 2ε.

3.2. The PPA. If the basis states of the computer are relabeled so that their
probabilities are p0 ≥ · · · ≥ p2n−1 (ties broken in arbitrary but fixed fashion), then
for each even i we will refer to the states i and i + 1 as each other’s “partners.”

The PPA or “partner-pairing algorithm” is simply the following process: In each
cooling step, pair partners together. (This completely specifies the algorithm save
only for the number of iterations.)

Lemma 3.2. In a special configuration, if states with probabilities p and p′ are
partners, then | log p− log p′| ≤ 2ε.

Proof. For the configuration of type (b) this is automatic; for those of type (a)
let p be the probability of a state for which the lemma is violated and let q be the
probability of the state with which it was paired in the previous round. Suppose q > p;
the other case is similar. So p is now paired with a probability r for some r < pe−2ε,
and the interval (r, p) is empty of state probabilities. The interval (−∞, r] therefore
contains only intact pairs from the previous round and hence an even number of state
probabilities. So it cannot be that p’s partner in this round is r.

The next step in demonstrating Theorems 1.1 and 1.4 concerns the relation be-
tween the output of an arbitrary cooling algorithm B and that of the PPA.

Corollary 3.3. Given any initial probability distribution p = {p0, . . . , p2n−1},
and any cooling algorithm B, the distribution which results from applying the PPA for
r cooling steps majorizes the distribution which results from applying B for r cooling
steps.

Proof. This follows from Proposition 2.1 because the PPA is the restriction to
probability distributions of the operator w defined in section 2.

As a consequence, in pursuit of a bound on the maximum achievable probability
of any one string, we can focus on the PPA. (The same lesson applies to any Schur-
convex function of the probabilities, of which the maximum probability is but one
example; see [18].)

4. Proof of Theorem 1.1.

4.1. Dynamics of cooling algorithms: Assemblies of chips. It is useful to
apply the map p → log(2np) to all the probabilities of a configuration, to obtain a set
of 2n “chips” arrayed on the real axis. Two chips at z1 and z2 which are paired by a
cooling step are carried to two new chips at T (z1, z2) ± ε, where T is given by

eT (z1,z2)+ε + eT (z1,z2)−ε = ez1 + ez2 .(4.1)

We now need to understand more about the dynamics of the PPA. A central tool
will be to designate certain subsets of the chips as assemblies. With an assembly S
we associate a center c(S) which is the arithmetic mean of the chips, a radius r(S)
which is ε/2 times the number of chips in the assembly, and an interval IS which is
the closed interval [c(S) − r(S), c(S) + r(S)]. (We define assemblies only for special
configurations.) A set of chips qualifies as an assembly if either

1. it is a pair of chips z1 and z2 which are partners (note that the center of this
assembly is (z1 + z2)/2 and its radius is ε);

2. it is the union of two assemblies whose intervals intersect (we will refer to
this as merging the two assemblies).

A maximal assembly is one which cannot be merged with any other assembly.

1736 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

4.2. The modified PPA. The nonlinear map T (defined in (4.1)) is difficult to
work with directly, but it has a linearization which suits our needs. In the modified
process, chips at z1 and z2 are carried to the pair M(z1, z2) ± ε, where

M(z1, z2) = (z1 + z2)/2.(4.2)

(The modified process does not preserve the identity 2−n
∑

ezi = 1.) In the modified
PPA, partners are defined among the chips just as before, but the map M rather than
the map T is applied to each pair. That the modified process is a useful approximation
to the true process is due to the twin facts that ε is small and that in a special
configuration, partners z1 and z2 are close. The bearing of the modified process on
the true process is expressed in the following lemma.

Lemma 4.1. Consider two sets of chips in special configurations x0 ≥ · · · ≥ x2n−1

and y0 ≥ · · · ≥ y2n−1, such that xi ≤ yi for all i. Apply a step of the true PPA to
x0, . . . , x2n−1, resulting in the set of chips x′

0 ≥ · · · ≥ x′
2n−1. Apply a step of the

modified PPA to y0, . . . , y2n−1, resulting in the set of chips y′0 ≥ · · · ≥ y′2n−1. Then
x′
i ≤ y′i for all i.

Proof. We have only to show that for any even i, T (xi, xi+1) ≤ M(yi, yi+1). We
have that

eT (xi,xi+1) = eM(xi,xi+1)
cosh((xi − xi+1)/2)

cosh(ε)
.(4.3)

Since the configuration x1, . . . , x2n is special, |xi − xi+1| ≤ 2ε by Lemma 3.2, and
so T (xi, xi+1) ≤ M(xi, xi+1). Since M(xi, xi+1) ≤ M(yi, yi+1) directly from the
assumptions, we conclude that T (xi, xi+1) ≤ M(yi, yi+1).

Applying each of the processes T and M repeatedly starting from a common
special configuration, we conclude by induction that after any number of iterations,
the greatest achievable probability of any state in the modified process is an upper
bound on the probability of any state in the true process.

The chip game. The modified process given by (4.2) describes the following chip
game: 2n chips are placed initially at the origin of the real line. In each step you
choose a pairing of the chips, and then the positions of each pair of chips (say z1 and
z2) are moved to (z1 + z2)/2± ε. Your goal is to move any one chip as far to the right
as possible. Theorem 1.1 has been reduced to showing that no chip can be moved
to distance more than ε2n−1 from the origin. Section 4.3 is devoted to a somewhat
lengthy combinatorial proof of this fact.

Fortunately, there is a simpler proof of a bound that is weaker by a factor of
2: i.e., no chip can be moved to distance more than ε2n from the origin. This
is sufficient to establish our fundamental physical conclusions—to wit: unbounded
cooling is impossible using finitely many computation qubits at a fixed heat-bath
temperature; moreover, for large n there is a threshold at (− log2 ε̃)/n = 1 for the
feasibility of cooling. The reader interested only in these conclusions can read the
following and skip section 4.3.

The bound of ε2n rests on showing that the modified PPA, starting from the initial
configuration having all chips at the origin, never creates a separation of more than
2ε between adjacent chips: Suppose the gaps within a set of chips x0 ≥ · · · ≥ x2n−1

are bounded by 2ε, and that a step of the modified PPA is applied to these chips,
carrying x2i to x′

2i = (x2i + x2i+1)/2 + ε, and x2i+1 to x′
2i+1 = (x2i + x2i+1)/2 − ε.

Note that for even i, x′
i ≥ xi, while for odd i, x′

i ≤ xi. The {x′
i} are generally not in

sorted order, but x′
2n−1 is a smallest chip, and so it is enough to show that for every

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1737

i < 2n− 1, x′
i+1 ≥ x′

i− 2ε (i.e., there are no descents by more than 2ε in the sequence
x′

0, . . . , x
′
2n−1). For even i, x′

i+1 ≥ x′
i − 2ε is satisfied with equality. For odd i, using

the inductive hypothesis, x′
i+1 ≥ xi+1 ≥ xi − 2ε ≥ x′

i − 2ε.
Finally, a configuration of chips whose mean is 0 and in which all gaps are bounded

by 2ε has no chip beyond distance ε2n from the origin. For if any gap is less than 2ε,
the configuration does not achieve greatest possible distance, since the chips to the
right and left of this gap can be shifted outward while preserving the mean, while a
configuration in which all the gaps are exactly 2ε is an arithmetic sequence centered
at the origin.

We return to the proof of the full statement of Theorem 1.1.

4.3. Preservation of maximal assemblies. The most lengthy technical por-
tion of this paper goes into establishing the following proposition.

Proposition 4.2.

1. The maximal assemblies of a special configuration partition the set of chips.
(Equivalently, we can arrive at the list of all maximal assemblies by merging
assemblies in any order until no further mergers are possible.)

2. Maximal assemblies are preserved by the modified PPA (i.e., the partition of
the chips of a special configuration into maximal assemblies is unchanged by
a cooling step).

We begin with a sequence of arguments that do not depend on whether the true
or modified PPA is applied but only on the fact that each step pairs partners together.

Lemma 4.3. In a special configuration, if a, b ∈ R, a ≤ b, and the intervals
[a− 2ε, a) and (b, b + 2ε] are empty of chips, then the interval [a, b] contains an even
number of chips.

Proof. In a special configuration, two chips that were paired in the previous round
are separated by 2ε. The fact that [a− 2ε, a) is empty of chips therefore implies that
there are an even number of chips in (−∞, a); similar reasoning shows there are an
even number of chips in (b,∞).

Lemma 4.4. Let k ≥ 0, k even, and let D be an assembly of cardinality at most
k.

1. (Bounded gap). If S ⊆ D consists of some of the partner pairs of D, then
IS ∩ ID−S �= ∅.

2. (Monotonicity). If an assembly B is a subset of D, then IB is contained in
ID.

Proof. The proof is by induction on k.
Part 1, Bounded gap: Let P1, . . . , Pk/2 be the partner pairs of D, listed in

their order on the line. Suppose the lemma fails for S = P1 ∪ · · · ∪ P�, for some
0 < � < k/2. Fix a sequence of mergers that forms D out of P1, . . . , Pk/2. We may
assume these mergers always combine adjacent assemblies, since if an assembly B is
between A and C which are being merged, IB must intersect one of IA or IC (say IA);
B can be merged with A. By part 2 of the lemma (for k − 2), all subsequent merger
steps which are supposed to be performed with the assembly containing A or B can
still be performed (in particular the very next step of merging A∪B with C). So the
mergers describe a binary tree T0 of assemblies, whose leaves are the partner pairs and
whose internal nodes are the assemblies constructed during the merging process; the
left and right children of any internal node are always two disjoint assemblies which
are adjacent to each other in the left-right order on the line. Moreover, the children
of any internal node are two disjoint assemblies whose intervals intersect, since this is
a tree of mergers. The root of T0 is D.

1738 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

We will also use other trees in the proof. The internal nodes of these trees might
not be assemblies, but each internal node will still be a sequence of partner pairs that
are laid out consecutively on the line; the left and right children of an internal node
will still consist of two sequences which are disjoint, adjacent to each other on the
line, and in the same left-right order. While the set at an internal node may not be
an assembly, we will still associate with such a set of partner pairs a center, a radius,
and an interval, all defined just as they are for an assembly.

We will say that an internal node is “cohesive” if the intervals of its two children
intersect. Every internal node in T0 is cohesive. The claim will follow from the
existence of another tree TF in which the left child of the root is S, the right child is
D − S, and the root is cohesive.

We will show the existence of TF by converting T0 into it through a sequence of
“tree rotations.” In a tree rotation a tree T ′ is changed into a tree T ′′ as follows. Let
A,B, and C each be a sequence of consecutive partner pairs, and let these sequences
be disjoint, and arranged adjacent to each other on the line from left to right in the
order A,B,C. Suppose that each occurs as a node in T ′ and that there are internal
nodes A∪B and A∪B∪C. Then a right tree rotation “at A∪B∪C” is the conversion
of T ′ into the tree T ′′ that differs only in that instead of an internal node A ∪ B, it
has an internal node B ∪C. (A left tree rotation would be the replacement of a node
B ∪ C by a node A ∪ B.) We will demonstrate the following property of right tree
rotations; the analogous property holds for left tree rotations and is shown in the
same way.

(*) If A ∪B and A ∪B ∪C are cohesive in T ′, then A ∪B ∪C is cohesive in T ′′.
Using (*) we will obtain the desired tree TF by beginning with T0, in which

all internal nodes are cohesive, and repeatedly doing the following: Find the least
common ancestor J of P� and P�+1, let K be its parent, and rotate at K. After the
rotation, K becomes the new least common ancestor of P� and P�+1; by (*), it is still
cohesive. The cohesiveness of nodes outside the subtree rooted at K is unaffected by
the rotation. Hence the process continues until a last rotation at the root, at which
time the root is cohesive, and is the least common ancestor of P� and P�+1.

Finally, we show (*). For simplicity of notation and without loss of generality
we will assume the center of B is 0. Let A have center −r1 and radius s1; let B
have radius s2; and let C have center r3 and radius s3. Note s1, s2, s3, r1, r3 ≥ 0.
Cohesiveness of A ∪B in T ′ means that

r1 ≤ s1 + s2,(4.4)

while cohesiveness of A ∪B ∪ C in T ′ means that

r3 +
r1s1

s1 + s2
≤ s1 + s2 + s3.(4.5)

Sum these inequalities with the respective nonnegative coefficients s2(s1+s2+s3)
(s1+s2)(s2+s3)

and
s3

(s1+s2)(s2+s3)
to obtain

r1 +
r3s3

s2 + s3
≤ s1 + s2 + s3,(4.6)

which indicates the cohesiveness of A ∪B ∪ C in T ′′.
Part 2, Monotonicity: The proof is in two sections. (a) We argue that we can

form D in a sequence of strict mergers that create B as an intermediate step. (A

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1739

strict merger is one that forms the union of two assemblies neither of which contains
the other.) (b) We argue that in any strict merger, forming assembly C = B1 ∪ B2

from B1 and B2, the interval of C contains those of B1 and B2.
Proof of (a). First, carry out the mergers that create B from the original pairs.

Now consider the mergers that create D from the original pairs. Carry out those
steps, each time replacing the arguments E1 and E2 of a desired merger E1 ∪ E2,
with the present (greatest) assemblies that contain E1 and E2. We must check that
this makes sense: that each of E1 and E2 are a subset of a present assembly, and
that the intervals of those assemblies intersect. The latter claim holds by induction
because, until D has been formed, those assemblies are smaller than D (and because
after D has been formed, all mergers are trivial). To see the former claim, observe
(by induction on the step number) that at any time, the present greatest assembly
containing Ei is either Ei, or Ei ∪ B, depending on whether any of the pairs in Ei

intersects B.
Proof of (b). Let s = |B1 ∩B2|, s1 = |B1 −B2|, and s2 = |B2 −B1|. Let c be the

arithmetic mean of B1∩B2, c1 the arithmetic mean of B1−B2, and c2 the arithmetic
mean of B2 −B1.

The arithmetic mean of B1 is c1 = (cs+ c1s1)/(s+ s1), and the arithmetic mean
of B2 is c2 = (cs + c2s2)/(s + s2). Let c be the arithmetic mean of B2 ∪ B1, so
c = (cs+ c1s1 + c2s2)/(s+ s1 + s2). To demonstrate the containment of intervals, we
show that the left-hand boundary of IC , c− s− s1 − s2, is to the left of the left-hand
boundary of IB1 , c1 − s − s1; in other words, c1 − s − s1 ≥ c − s − s1 − s2. The
remaining three cases are similar.

By part 1 of the lemma we know

s + s2 ≥ c2 − c,(4.7)

s + s1 ≥ c− c1.(4.8)

Inequality (4.7) is equivalent to c2 − c1 ≤ s + s2 + c − c1. Inequality (4.8) is
equivalent to c− c1 ≤ s1. Together these give

c2 − c1 ≤ s + s1 + s2,(4.9)

which is equivalent to

c− c1 ≤ s2.(4.10)

We now prove Proposition 4.2(1): The maximal assemblies of a special configura-
tion partition the set of chips. (Equivalently, we can arrive at the list of all maximal
assemblies by merging assemblies in any order until no further mergers are possible.)

Proof. The initial pairing of chips is fixed. Let S1, . . . , Sk be the maximal as-
semblies obtained by a particular sequence of mergers. Write, in terms of the initial
pairs, S1 = P11 ∪ · · · ∪ P1�1 , S2 = P21 ∪ · · · ∪ P2�1 , and so forth. Fixing an alternate
merger sequence, consider the first step in which that sequence joins pairs from some
two different Si’s; suppose those are S1 and S2. Let S′

1 ⊆ S1 and S′
2 ⊆ S2 be the

two assemblies merged in this step. Then the intervals of S′
1 and S′

2 intersect, which
contradicts Lemma 4.4(2), since the intervals of S1 and S2 do not intersect.

Corollary 4.5. Let D be an assembly and let S ⊆ D be a set of even cardinality.
Then IS is contained in ID.

1740 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

Proof. We show that the right end of IS is less than the right end of ID; a similar
argument shows that the left end of IS is greater than the left end of ID. The set
S′ consisting of the rightmost |S| chips in D consists of several partner pairs. By
Lemma 4.4(1), IS′ intersects ID−S′ ; this implies that IS′ ⊆ ID.

Lemma 4.6. Given a cooling step, form a corresponding set of intervals S as
follows. For each two chips paired by the cooling step, S contains the interval between
the poststep positions of those chips. Also, for each pair of partners in the poststep
configuration, S contains the interval between the partners. Consider any point that
coincides with no poststep chips. Then there is an even number of intervals of S
containing that point.

Proof. Moving from left to right, at every chip the number of partner intervals
covering the line alternates between 0 and 1. The parity of the contribution of the
pair intervals also alternates at every chip. Therefore, between chips, the parity is the
same as it is beyond the last chip: 0.

Lemma 4.7. Two chips which are paired in a cooling step (of any algorithm) are
in a common maximal assembly after that cooling step.

Proof. For specificity suppose this step was numbered t. Let x be such that the
positions of the two chips after step t are x± ε. We will use the terms “righties” and
“lefties” to refer to members of pairs depending on whether they are, respectively, the
higher or lower probability chip (after the step); e.g., x + ε is the righty (or t-righty,
to specify the step) and x− ε is the t-lefty of their pair.

We consider several cases.

Case 1. x± ε are partners poststep. The lemma follows.

Otherwise, for −ε ≤ s1, s2 ≤ ε, let x− ε be partnered with a chip at x− ε + 2s1

and let x+ε be partnered with a chip at x+ε+2s2. The number of chips, m, between
the pairs {x−ε, x−ε+2s1} and {x+ε, x+ε+2s2} is even; we consider several cases.

Case 2. s1 ≥ s2. In this case the assembly {x− ε, x− ε+ 2s1} (whose right-hand
boundary is at x+s1) and the assembly {x+ε, x+ε+2s2} (whose left-hand boundary
is at x + s2) intersect geometrically, and the lemma follows.

Case 3. s1 < s2. We start by showing that m > 0, which is to say that the
interval [x− ε+2s1, x+ ε+2s2] contains chips other than x− ε or x+ ε. The interval
between max{x− ε, x− ε + 2s1} and min{x + ε, x + ε + 2s2} is nonempty, and since
it is contained in [x− ε, x+ ε], it must by Lemma 4.6 intersect some interval between
two chips that were paired in the last cooling step; neither x− ε+2s1 nor x+ ε+2s2

can be one of the chips generating such an interval, since the distance between them
is greater than 2ε. Hence m is positive; we continue with two cases depending on its
value.

Case 3a. s1 < s2 and m = 2. Let the two points be z1 and z2, with z1 ≤ z2; note
that these are paired together poststep and that x−ε ≤ z1 ≤ z2 ≤ x+ε. By the parity
argument of Lemma 4.6, there must be two chips that were paired in step t, for which
the interval between the poststep chip positions covers the interval between x−ε+2s1

and z1; therefore z1 ≤ x+ ε+2s1. For a similar reason, z2 ≥ x− ε+2s2. We examine
three pair assemblies: A = {x−ε, x−ε+2s1}, B = {z1, z2}, and C = {x+ε, x+ε+2s2}.
Their intervals are IA = [x−2ε+s1, x+s1], IB = [(z1 +z2)/2−ε, (z1 +z2)/2+ε], and
IC = [x+ s2, x+2ε+ s2]. If IB does not intersect IA, then x+ s1 + ε < (z1 + z2)/2. If
in addition IB does not intersect IC , then (z1 + z2)/2 < x+ s2 − ε, together implying
s1 + 2ε < s2, which is impossible, since −ε ≤ s1, s2 ≤ ε. Hence IB intersects at least
one of IA or IC . The rest of the argument is symmetric for these two cases, and so
we spell out only the case that IB intersects IA.

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1741

If IB intersects IA, the four points of A and B form an assembly A ∪ B whose
right-hand boundary is at (2(x−ε)+2s1 +z1 +z2)/4+2ε which, by the lower bounds
for z1 and z2, is at least x + ε + (s1 + s2)/2. Subtracting the left-hand boundary of
IC gives ε + (s1 − s2)/2, which by the constraints on s1 and s2 is at least 0. Hence
the interval of the assembly A ∪B intersects that of the assembly C, and the lemma
follows.

Case 3b. s1 < s2 and m ≥ 4. In this case there are at least four points z1, . . . , zm
arranged as x − ε ≤ z1 ≤ · · · ≤ zm ≤ x + ε; the same argument used for Case 3a
shows that either the assembly of {z1, z2} intersects that of {x−ε, x−ε+2s1}, or the
assembly of {zm−1, zm} intersects that of {x+ε, x+ε+2s2}. The cases are symmetric,
and so suppose that the first of these occurs. Then the assembly formed by D =
{z1, z2, x−ε, x−ε+2s1} has its right-hand boundary at (2(x−ε)+2s1+z1+z2)/4+2ε.
Using the lower bound x − ε for z1 and z2 places a lower bound of x + ε + s1/2 on
this boundary. For the interval of the assembly {zm−1, zm} not to intersect this, we
must have (zm−1 + zm)/2 > x+ s1/2 + 2ε. The right-hand boundary of the assembly
{zm−1, zm} must therefore be at a position greater than x+ s1/2 + 3ε, which in turn
is at least x + 5ε/2. Hence the four points E = {zm−1, zm, x + ε, x + ε + 2s2} form
an assembly. Using the upper bound x+ ε on zm−1 and zm places an upper bound of
x−ε+s2/2 on the left-hand boundary of this assembly. The intervals of the assemblies
D and E intersect because (x+ ε+ s1/2)− (x− ε+ s2/2) = 2ε+ (s1 − s2)/2 ≥ ε ≥ 0.
The lemma follows.

We can now finally prove Proposition 4.2(2): Maximal assemblies are preserved
by the modified PPA.

We show, equivalently, that every prestep assembly is contained in a poststep
assembly. Lemma 4.7 establishes this for prestep pairs. Now suppose that the prestep
assembly D was formed by merging assemblies B and C. By induction B and C
are each contained in a poststep assembly; call these B′ and C ′. By Corollary 4.5,
the intervals of B′ and C ′ contain those of the poststep sets of chips B and C. In
the modified chip process, these last two intervals are identical, respectively, to the
intervals of the prestep assemblies B and C. Therefore IB ⊆ IB′ and IC ⊆ IC′ . Since
IB intersects IC , B′ ∪ C ′ is an assembly, and it contains D.

Proof of Theorem 1.1. Proposition 4.2 implies that in a configuration reachable
from the start state by the modified chip process there is just a single maximal as-
sembly, whose interval is [−ε2n−1, ε2n−1]. Consider a chip that is furthest from the
origin: by Lemma 3.2, it lies within the interval of the assembly formed by itself and
its partner; by Lemma 4.4(2), this interval is contained within the interval of the
maximum assembly. Hence all chips lie within distance ε2n−1 of the origin. Due to
Corollary 3.3 (applied to the initial uniform distribution which corresponds to the
maximally mixed state In) and Lemma 4.1, this shows that no cooling process can

increase any probability above 2−neε2
n−1

, establishing the theorem.

5. Proof of Theorem 1.2. Here we prove Theorem 1.2, which is a complement
to the “impossibility” result of Theorem 1.1: For ε̃ ≥ 24−n, heat-bath cooling using the
PPA produces a distribution at variation distance Θ(1) from uniform, within T = ε̃−2

cooling steps. To a state with probability p assign the potential g(p) = log cosh(2n(p−
2−n)), and to a configuration c assign the potential g(c) =

∑
p g(p). Observe that

g(initial configuration) = 0.

Let c be any special configuration and let c′ be the configuration it is carried
to by the PPA. Let Δg(c) = g(c′) − g(c). If p1 and p2 are paired in c, then their

1742 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

contribution to Δg(c) is

g(p′1) + g(p′2) − g(p1) − g(p2),(5.1)

where without loss of generality p1 ≤ p2, and we have written p′1 = (p1 + p2)(1− ε̃)/2
and p′2 = (p1+p2)(1+ ε̃)/2. This is nonnegative because g is convex, p1+p2 = p′1+p′2,
and because due to Lemma 3.2, [p1, p2] ⊆ [p′1, p

′
2].

Since g is strictly convex, the potential of a special configuration increases strictly
unless each of its pairs {p1, p2} satisfies | log p2 − log p1| = 2ε.

If sometime within T rounds it happens that there are at least 2n−1 − 2 proba-
bilities outside of the interval [2−n−1, 3 · 2−n−1], then we are done.

Otherwise, suppose that c is a special configuration having at least 2n−1 + 2
probabilities within the interval [2−n−1, 3 · 2−n−1]. We want to show a lower bound
on Δg(c). The PPA must form at least 2n−2 pairs among these probabilities , and at
least 2n−3 of those pairs must be of length (separation between the probabilities) at
most 23−2n. The contribution of such a pair to Δg(c) is least if its length is indeed
23−2n; for a lower bound on Δg(c) we also assume that the poststep probabilities are
as close to each other as possible, which (since their ratio is fixed at e2ε) occurs when
the average of the probabilities is as small as possible, namely 2−n−1 · 2ε̃ = 2−nε̃.
Letting the probabilities of the pair, before the cooling step, be y±22−2n, and letting
Δ1 be the contribution of these two probabilities to Δg(c), we can write

Δ1 = log
cosh 2n(y(1 + ε̃) − 2−n) cosh 2n(y(1 − ε̃) − 2−n)

cosh 2n(y + 22−2n − 2−n) cosh 2n(y − 22−2n − 2−n)
.(5.2)

Let x = 2ny − 1; note that |x| ≤ 1/2. Let η = 2nyε̃; since y ≥ 2−n−1, η ≥ ε̃/2.

Δ1 = log
cosh(x + η) cosh(x− η)

cosh(x + 22−n) cosh(x− 22−n)
= log

cosh 2x + cosh 2η

cosh 2x + cosh 23−n
.(5.3)

Since this is increasing in η for η > 0, we have

Δ1 ≥ log
cosh 2x + cosh ε̃

cosh 2x + cosh 23−n
.(5.4)

Now let h(z) = log cosh 2x+cosh(ε̃/2+z)
cosh 2x+cosh 23−n . Then Δ1 ≥ h(ε̃/2). Now

h′(z) =
sinh(ε̃/2 + z)

cosh 2x + cosh(ε̃/2 + z)
,(5.5)

h′′(z) =
1 + cosh(ε̃/2 + z) cosh 2x

(cosh 2x + cosh(ε̃/2 + z))2
≥ 0.(5.6)

Thus h(z) ≥ h(0) + zh′(0), and in particular, since ε̃/2 ≥ 23−n, h(0) ≥ 0, and

Δ1 ≥ h

(
ε̃

2

)
≥ 0 +

ε̃

2

sinh(ε̃/2)

cosh 2x + cosh(ε̃/2)
≥ ε̃2

8 cosh 1
,(5.7)

the last inequality being implied by |x| ≤ 1/2, ε̃ ≤ 1, and sinh(ε̃/2) ≥ ε̃/2. Con-
sequently, if for T rounds it does not occur that at least 2n−1 − 2 probabilities are

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1743

outside of the interval [2−n−1, 3 · 2−n−1], then due to the 2n−3 pairs to which this
analysis applies, g increases to at least

T2n−6ε̃2

cosh 1
.(5.8)

Observe now that for any p, |p − 2−n| ≥ g(p)2−n. So the variation distance from
uniform after T = ε̃−2 steps rises to at least

2−6

cosh 1
.(5.9)

6. Proof of Theorem 1.3. Here we prove Theorem 1.3, the second form (and
the one more directly relevant to quantum computation) of the complement to the
“impossibility” result of Theorem 1.1. Within 4nε̃−2(1 + log(1/ε̃)) cooling steps, the
PPA creates a probability distribution in which with probability at least 1−O(1

1+log 1/ε̃),

all of the first n− (1 + o(1)) log2 1/ε̃ bits are |0〉’s.
Proof. As in the previous section we use a potential function, but now we use a

different function—the entropy of the distribution—and we use it only for the runtime
analysis, rather than using low entropy to imply that many cold bits are extracted.

Let H be the entropy function, and for 0 ≤ δ ≤ 1 let H(δ) = H({(1 − δ)/2, (1 +
δ)/2}) = 1−δ

2 log 2
1−δ + 1+δ

2 log 2
1+δ . Let (1 ± δ)p/2 be two probabilities paired in a

cooling step. The change in their contribution to the distribution entropy due to the
cooling step is (H(ε̃) −H(δ))p; due to Lemma 3.2, δ ≤ ε̃, and so this contribution is
nonpositive. Thus the distribution entropy is weakly decreasing in each cooling step.

Lemma 6.1. Within n log 2
(H(δ)−H(ε̃))γ cooling steps, at least 1 − γ of the probability

resides in partners {p1, p2} for which | log p1 − log p2| ≥ 2δ.
Proof. So long as the condition is unfulfilled, at least γ of the probability resides

in partners for which | log p1 − log p2| ≤ 2δ, and so the distribution entropy (which
begins as n log 2) decreases in each cooling step by at least (H(δ) −H(ε̃))γ.

Lemma 6.2. If at least 1 − γ of the probability resides in partners {p1, p2} for
which | log p1 − log p2| ≥ 2δ, then for positive even y, at least (1− γ)(1− e−(y+2)δ) of
the probability resides in just y of the states.

Proof. The probability of the y most likely states is at least equal to the probability
of the y most likely states in partner pairs for which | log p1 − log p2| ≥ 2δ. That
probability is maximized by the distribution in which the partners pairs are adjacent,
which is to say that each probability occurs twice (except at the ends), once as the
smaller and once as the larger of two partners. A short calculation shows that the
sum of the top y probabilities is at least (1 − γ)(1 − e−(y+2)δ).

Finally, we can establish Theorem 1.3. Let γ = log 2
1+log 1/ε̃ , y = 2 log 1/γ

ε̃ , and

δ = ε̃/2. The total probability of these y most likely states is 1 − O(1
1+log 1/ε̃), and

once indexed lexicographically in decreasing likelihood from 0 to 2n−1, they all share
|0〉’s in their first n− lg y ≥ n− (1 + o(1)) lg 1/ε̃ bits.

7. Proof of Theorem 1.4. We demonstrate here the lower bound of Ω(ε̃−2) on
the number of cooling steps required in order to create even a single bit of constant
bias. As in section 6, we examine the entropy of the distribution. The initial entropy
is n log 2. A distribution in which some bit has bias bounded away from 0 has entropy
(n − Ω(1)) log 2. From the calculations in section 6 we see that the entropy of the
distribution can decrease by at most log 2−H(ε̃) ≤ ε̃2 in a single cooling step. Hence
a total of Ω(ε̃−2) cooling steps is required.

1744 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

8. Proof of Theorem 1.5. To this point we have concentrated on what can be
achieved by alternating arbitrary permutations with cooling steps. It is not known
whether the quality of initialization achieved in Theorems 1.2 and 1.3 can also be
efficiently produced if the permutations must be implemented with one of the standard
bases of reversible gates. However, we now outline why slightly weaker cooling can
indeed be achieved using a simple sequence of standard reversible gates. Theorems 1.2
and 1.3 guarantee good initialization, provided, respectively, that ε̃ ≥ 24−n and ε̃ ∈
Ω(n2−n); the simple procedure provided in this section initializes a bit with bias
Ω(1) within time O((1/ε̃)log log 1/ε̃), provided that ε̃ ∈ Ω(φ−n). (Recall that φ =
(1 +

√
5)/2.) More generally, for N ≤ min{n, �logφ 1/ε̃�}, the procedure prepares

a bit of bias Ω(ε̃FN) within time exp(O(N logN)) using an N -bit device. In what
follows set N = min{n, �logφ 1/ε̃�}.

Recall that Fk = (2φ/5−1/5)φk−(2φ/5−1/5)(1−φ)k. For notational convenience
we assume in this section that bit 1 (rather than n) is the special bit that can be
directly cooled by the heat bath.

The procedure F , taking argument 2 ≤ N ≤ �logφ 1/ε̃�, produces statistically
independent bits 1, . . . , N , such that bit k (for every 1 ≤ k ≤ N) has bias ≈ ε̃Fk,
or more specifically, bias ≥ ε̃Fk(1 − 2k−N−1). The sequence of quantum gates to
be applied in this simple recursive procedure is easily generated by an NC1 circuit
(whose input is the elapsed time in the cooling procedure).

Procedure F(N): Run F ′(N,N).

Procedure F ′(N, k):
(a) If k = 2, run the cooling step on bits 1 and (by exchange) 2.
(b) If k > 2, repeat steps (b1) and (b2) O(N − k) times until the bias of bit k is

at least ε̃Fk(1 − 2k−N−1):
(b1) Use a reversible majority gate to set bit k to be the majority of bits

k − 2, k − 1, and k.
(b2) Run F ′(N, k − 1).

(There are various ways to implement a reversible majority gate. Conceptually per-
haps the simplest is the transformation of a triple of bits (a, b, c) into the triple
(MAJ(a, b, c), a⊕ b, a⊕ c).)

We start with an imprecise version of the analysis. The effect of the majority
gate in (b1) is, roughly, to transform bits with biases ε̃φk−2, ε̃φk−1, and ε̃x into a bit
of bias ≈ ε̃(φk−2 + φk−1 + x)/2 (this is an approximation accurate for biases � 1).
In each iteration within step (b), x converges toward the unique fixed point of this
transformation, x = φk. Convergence of the loop inside step (b) is rapid: in each
iteration, the Lyapunov function (φk − x)2 decreases by a factor of almost 4. (When
step (b) is very close to completion the factor is no longer close to 4 but remains
bounded away from 1.) This is why O(N − k) repetitions are enough.

The more careful analysis of F ′(N, k) is this: by definition, the last recursive call
to F ′(N, k − 1) terminated with bits k − 1 and k − 2 being independent and having
biases at least ε̃Fk(1−2k−N−2) and ε̃Fk(1−2k−N−3). A few lines of calculation show
that if the bias of bit k was ε̃Fk(1 − y) (before application of (b1)), then after the
application it is at least ε̃Fk(1 − cy) for a fixed positive constant c < 1. Therefore
O(N − k) rounds suffice to drive the bias up to ε̃Fk(1 − 2k−N−1).

Since procedure F ′(N, k) makes O(N − k) recursive calls to F ′(N, k − 1), the
overall runtime of F ′(N,N), and hence F(N), is (N !)O(1) = exp(O(N logN)). This
establishes Theorem 1.5.

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1745

Historical notes. The application of majority gates to amplify bias began at least
with von Neumann’s work on fault tolerance [27]. The idea was later used as part
of the design for algorithmic heat engines in [22]. An experiment to demonstrate the
three-bit-majority primitive was conducted in [7]; a similar experiment was conducted
by Sørensen [23], for NMR imaging amplification, before NMR quantum computers
had been suggested. A simpler two-bit process, also pioneered by von Neumann [26]
(for the quite different purpose of extracting fair from biased coin flips), was used for
cooling in [22] and then in [5]. However, since the two-bit process amplifies bias only
by order ε̃2 rather than by order ε̃, majority gates were subsequently employed in [12].
In this section we have followed that approach but use a slightly different recursive
procedure F to achieve scaling of the bias in powers of φ.

9. Discussion. Numerical estimates. We depict a specific way of using the PPA.
Consider an ion trap quantum computer in which four qubits are reserved for prepara-
tion of ancillas, all others being devoted to the main quantum algorithm (including the
fault-tolerance mechanism). Of the reserved qubits, three are “computation qubits”
and one is the “refrigerant.” Ion trap technology is capable of placing the refrigerant
in its ground state with probability 0.95 (i.e., ε̃ = arctanh 0.9 ≈ 1.47). Calculation
shows that application of the PPA on the quadruple for just nine cooling steps suffices
to prepare one of the qubits in the ground state with probability 1− 10−4. This is at
the conservative end of the estimates of between 10−4 and 10−2 for the fault-tolerance
threshold for quantum computation. Hence after every nine cooling steps the PPA
can prepare an ancilla, ready to be moved by spin exchange into the main bank of
qubits (in place of a “warm” qubit generated by the fault-tolerance mechanism).

Implementation objectives. It is necessary to study the sensitivity of the model to
imperfections in the cooling steps as well as in the logic gates between cooling steps,
in specific experimental implementations.

Experimental algorithmic cooling also has the opportunity to produce a physically
meaningful result well before producing a quantum computer. A series of papers [28,
25, 6] shows that if k qubits have bias less than 2−2k, then their joint state is separable.
Conversely, in the ball of radius 2−k/2 there exist nonseparable states. Liquid-state
NMR experiments have not, to date, produced a demonstrably nonseparable state.
Achieving this goal will require some combination of an increase in the number of
coherently manipulated qubits and an increase in the individual polarization of these
qubits. The latter demands implementation of new cooling techniques.

In the simple model adopted in this paper we have assumed that there is only
a single refrigerant qubit. One may ask how the model is affected if the number of
such qubits is proportional to the number of computation qubits. (In liquid-state
NMR, for example, we can expect that nuclei of various types will be present in fixed
proportions.) The answer is that while some gain is likely, the fundamental limits of
the model are unchanged because with a slowdown in the cooling process by a factor
of O(n), the same effect can be achieved by spin exchange with a single refrigerant
qubit.

The present paper leaves open whether there is a simple implementation of the
PPA or whether some other simply implemented algorithm can achieve the same
ε ≈ 2−n threshold.

The necessity of cooling many qubits for quantum computation. In view of the
difficulty of cooling certain kinds of quantum computers, the question was posed of
whether this was truly necessary [17]. Since a uniformly mixed state is unchanged by
reversible (unitary) operations, computation is impossible (the statistics of the final

1746 LEONARD J. SCHULMAN, TAL MOR, AND YOSSI WEINSTEIN

state do not depend on the computation steps) unless the initial mixture can be trans-
formed into something other than the uniform mixture. Interestingly, this does not
rule out the possibility of quantum-over-classical computational speedups on devices
that are initialized in a highly (though not completely) mixed state. A key example
was provided in [17]: the trace of a unitary operator of dimension 2n can be computed
on a device with n qubits, of which just one is strongly biased while the others are
maximally mixed. (For related recent work see [20].) However, it was demonstrated
in [2] that there is no way of directly simulating general quantum computers on highly
mixed devices such as this. Hence computations on such devices can be accomplished,
if at all, only with tailor-made algorithms. The available evidence suggests that such
devices, even if noise-free, would be strictly weaker than general-purpose quantum
computers, and so the suggestion in [17] is unlikely to circumvent the need for effec-
tive cooling. The necessity of using ancillas to compensate for noise buttresses this
conclusion.

Summary. We have studied the fundamental limits of open-system “heat-bath”
cooling, with a view to the significance of such methods for quantum computation as
well as for imaging tasks limited by imperfect state preparation. We have provided a
cooling (bias amplification) method and shown the following: (a) The bias it achieves
is substantially higher than in previous methods, and the ground-state probability
after any number of cooling steps is highest possible. (b) The number of cooling steps
it requires is asymptotically close to best possible. (c) There is a sharp threshold
for the heat-bath temperature, above which substantial cooling is impossible in any
method, and below which it is achieved by ours.

Acknowledgments. Thanks go to R. Laflamme and J. Fernandez for helpful
discussions, and to an anonymous referee for a careful reading of the manuscript.

REFERENCES

[1] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, in
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
1997, pp. 176–188.

[2] A. Ambainis, L. J. Schulman, and U. Vazirani, Computing with highly mixed states, in
Proceedings of the Thirty-Second Annual ACM Symposium on the Theory of Computing,
2000, pp. 705–714.

[3] M. D. Barrett, B. DeMarco, T. Schaetz, V. Mayer, D. Leibfried, J. Britton, J. Chi-

averini, W. M. Itano, B. Jelenkovic, J. D. Jost, C. Langer, T. Rosenband, and

D. J. Wineland, Sympathetic cooling of 9be+ and 24mg+ for quantum logic, Phys. Rev.
A, 68 (2003), 042302.

[4] C. M. Bowden, J. P. Dowling, and S. P. Hotaling, Quantum computing using electron-
nuclear double resonances, in SPIE Proceedings 3076: Photonic Quantum Computing,
1997, pp. 173–182.

[5] P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Algorithmic cooling
and scalable NMR quantum computers, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 3388–
3393.

[6] S. L. Braunstein, C. M. Caves, R. Josza, N. Linden, S. Popescu, and R. Schack, Sepa-
rability of very noisy mixed states and implications for NMR quantum computing, Phys.
Rev. Lett., 83 (1999), pp. 1054–1057.

[7] D. E. Chang, L. M. K. Vandersypen, and M. Steffen, NMR implementation of a building
block for scalable quantum computation, Chem. Phys. Lett., 338 (2001), pp. 337–344.

[8] J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett.,
74 (1995), pp. 4091–4094.

[9] D. G. Cory, A. F. Fahmy, and T. F. Havel, Ensemble quantum computing by nuclear mag-
netic resonance spectroscopy, Proc. Nat. Acad. Sci. USA, 94 (1997), pp. 1634–1639.

PHYSICAL LIMITS OF HEAT-BATH ALGORITHMIC COOLING 1747

[10] D. P. DiVincenzo, Topics in quantum computers, in Mesoscopic Electron Transport, Kluwer,
Dordrecht, 1997, pp. 657–667.

[11] D. P. DiVincenzo, The physical implementation of quantum computation, Fortschr. Phys., 48
(2000), pp. 771–783.

[12] J. M. Fernandez, S. Lloyd, T. Mor, and V. Roychowdhury, Algorithmic cooling of spins:
A practicable method for increasing polarization, Internat. J. Quantum Inf., 2 (2004),
pp. 461–477.

[13] N. A. Gershenfeld and I. L. Chuang, Bulk spin-resonance quantum computation, Science,
275 (1997), pp. 350–356.

[14] M. Iinuma, Y. Takahashi, I. Shaké, M. Oda, A. Masaike, T. Yabuzaki, and H. M. Shimizu,
High proton polarization by microwave-induced optical nuclear polarization at 77 K, Phys.
Rev. Lett., 84 (2000), pp. 171–174.

[15] B. E. King, C. S. Wood, C. J. Myatt, Q. A. Turchette, D. Leibfried, W. M. Itano,

C. Monroe, and D. J. Wineland, Cooling the collective motion of trapped ions to ini-
tialize a quantum register, Phys. Rev. Lett., 81 (1998), pp. 1525–1528.

[16] E. Knill, Fault-Tolerant Postselected Quantum Computation: Threshold Analysis,
http://arxiv.org/abs/quant-ph/0404104 (2004).

[17] E. Knill and R. Laflamme, On the power of one bit of quantum information, Phys. Rev.
Lett., 81 (1998), pp. 5672–5675.

[18] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications,
Academic Press, New York, London, 1979.

[19] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Demonstration
of a fundamental quantum logic gate, Phys. Rev. Lett., 75 (1995), pp. 4714–4717.

[20] D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier, Exponential speed-up with a
single bit of quantum information: Measuring the average fidelity decay, Phys. Rev. Lett.,
92 (2004), 177906.

[21] L. J. Schulman, T. Mor, and Y. Weinstein, Physical limits of heat-bath algorithmic cooling,
Phys. Rev. Lett., 94 (2005), 120501.

[22] L. J. Schulman and U. Vazirani, Molecular scale heat engines and scalable quantum com-
putation, in Proceedings of the Thirty-First Annual ACM Symposium on the Theory of
Computing, 1999, pp. 322–329.

[23] O. W. Sørensen, Polarization transfer experiments in high-resolution NMR spectroscopy,
Prog. NMR Spec., 21 (1989), pp. 504–569.

[24] A. S. Verhulst, O. Liivak, M. H. Sherwood, H.-M. Vieth, and I. L. Chuang, Non-thermal
nuclear magnetic resonance quantum computing using hyperpolarized xenon, Appl. Phys.
Lett., 79 (2001), pp. 2480–2482.

[25] G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A, 59 (1999), pp. 141–155.
[26] J. von Neumann, Various techniques used in connection with random digits, in The Monte

Carlo Method, Nat. Bur. Standards Appl. Math. Ser. 12, U.S. Government Printing Office,
Washington, D.C., 1951, pp. 36–38.

[27] J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable
components, in Automata Studies, C. E. Shannon and J. McCarthy, eds., Princeton Uni-
versity Press, Princeton, NJ, 1956, pp. 43–98.

[28] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Volume of the set of
separable states, Phys. Rev. A, 58 (1998), pp. 883–892.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1748–1763

WHOLE GENOME DUPLICATIONS AND CONTRACTED
BREAKPOINT GRAPHS∗

MAX A. ALEKSEYEV† AND PAVEL A. PEVZNER†

Abstract. The genome halving problem, motivated by the whole genome duplication events
in molecular evolution, was solved by El-Mabrouk and Sankoff in the pioneering paper [SIAM J.
Comput., 32 (2003), pp. 754–792]. The El-Mabrouk–Sankoff algorithm is rather complex, inspiring
a quest for a simpler solution. An alternative approach to the genome halving problem based on
the notion of the contracted breakpoint graph was recently proposed in [M. A. Alekseyev and P.
A. Pevzner, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4 (2007), pp. 98–107]. This new
technique reveals that while the El-Mabrouk–Sankoff result is correct in most cases, it does not
hold in the case of unichromosomal genomes. This raises a problem of correcting a flaw in the El-
Mabrouk–Sankoff analysis and devising an algorithm that deals adequately with all genomes. In this
paper we efficiently classify all genomes into two classes and show that while the El-Mabrouk–Sankoff
theorem holds for the first class, it is incorrect for the second class. The crux of our analysis is a new
combinatorial invariant defined on duplicated permutations. Using this invariant we were able to
come up with a full proof of the genome halving theorem and a polynomial algorithm for the genome
halving problem.

Key words. genome duplication, genome halving, genome rearrangement, breakpoint graph,
de Bruijn graph

AMS subject classifications. 90C27, 90C35, 90C46, 94C15

DOI. 10.1137/05064727X

1. Introduction. In 1970 Susumu Ohno came up with two fundamental theories
of chromosome evolution that were the subjects of many controversies in the last
35 years [31]. The first, random breakage theory, was embraced by biologists from
the very beginning but was refuted by Pevzner and Tesler in 2003 [35] and Murphy
et al. in 2005 [30]. The second, whole genome duplication theory, postulated a new
type of evolutionary event and had a very different fate. It was subject to controversy
in the first 35 years and only recently was proven to be correct [27, 15]. Kellis, Birren,
and Lander in 2004 [27] sequenced the yeast K. waltii genome, compared it with the
yeast S. cerevisiae genome, and demonstrated that nearly every region in K. waltii
corresponds to two regions in S. cerevisiae, thus proving that there was a whole
genome duplication event in the course of yeast evolution. This discovery was quickly
followed by the discovery of whole genome duplications in vertebrates [24, 36, 12] and
plants [21]. Finally, in September, 2005 Dehal and Boore [14] found evidence of two
rounds of whole genome duplications on the evolutionary path from early vertebrates
to humans. Shortly afterwards, Meyer and Van de Peer [28] found evidence of yet
another (third) round of whole genome duplications in ray-finned fishes, thus implying
that nearly every human gene could have existed in as many as eight copies at different
stages of evolution.

These recent studies provided irrefutable evidence that whole genome duplica-
tions represent a new type of event that may explain phenomena which classical
evolutionary studies have had difficulty explaining (e.g., emergence of new metabolic

∗Received by the editors December 12, 2005; accepted for publication (in revised form) October 19,
2006; published electronically March 19, 2007.

http://www.siam.org/journals/sicomp/36-6/64727.html
†Department of Computer Science and Engineering, University of California at San Diego, La

Jolla, CA 92093 (maxal@cs.ucsd.edu, ppevzner@cs.ucsd.edu).

1748

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1749

+a

+b

−c

+a

+b

−c

+a

+b

−c

R R⊕

Genome
Halving
Problem

ch

ct

ah

at

bh

bt

+b

+a
−c

+a +a
+b+b

−c

−c

2R

duplication

reversals

⊕

 R = +a +b −c

R R = +a +b −c +a +b −c
 +a −a +c −b +b −c
 +a −a +c +c −b +b
 P = +b −c −c +a −a +b

 ?? ?? ??

 +b −c −c +a −a +b

a)

c)

b) R

Fig. 1. (a) Whole genome duplication of genome R = +a + b − c into a perfect duplicated
genome R ⊕ R = +a + b− c + a + b− c followed by three reversals. (b) Whole genome duplication
of a circular genome R (center) resulting in R ⊕ R (left) or 2R (right). (c) Breakpoint graph of
genomes +a + b− c and +a + b + c.

pathways [27]). At the same time, they raised the problem of reconstructing the ge-
nomic architecture of the ancestral preduplicated genomes. Unfortunately, since the
El-Mabrouk–Sankoff algorithm for solving this problem [20] has not yet resulted in a
software tool, the recent studies of whole genome duplications did not attempt to rig-
orously reconstruct the architecture of the preduplicated genomes. We revisited the
El-Mabrouk–Sankoff result, found a flaw in their approach, reformulated and proved
the genome halving theorem, and developed a new algorithm and software tool for
studies of genome duplications.

Whole genome duplications double the gene content of a genome R and result in a
perfect duplicated genome R⊕R that contains two identical copies of each chromosome.
The genome then becomes subject to rearrangements that shuffle the genes in R⊕R,
resulting in some rearranged duplicated genome P . The genome halving problem is
to reconstruct the ancestral preduplicated genome R from the rearranged duplicated
genome P (Figure 1(a)).

From an algorithmic perspective, the genome is a collection of chromosomes, and
each chromosome is a signed sequence over a finite alphabet. DNA has two strands,
and genes on a chromosome have directionality that reflects the strand of the genes.
We represent the order and directions of the genes on each chromosome as a sequence
of signed elements, i.e., elements with signs “+” and “-”. In this paper we focus on the
basic unichromosomal case, where the genomes consist of just one chromosome, and
assume that the genomes are circular. A unichromosomal genome, where each gene
appears in a single copy, is referred to as signed permutation. For unichromosomal
genomes the rearrangements are limited to reversals that “flip” genes xi . . . xj in a
genome x1x2 . . . xn as follows:

x1 . . . xi−1 xi xi+1 . . . xj−−−−−−−−−−−−→xj+1 . . . xn −→ x1 . . . xi−1−xj − xj−1 · · · − xi←−−−−−−−−−−−−−−xj+1 . . . xn.

The reversal distance between two genomes is defined as the minimum number of
reversals required to transform one genome into the other (see Chapter 10 of [34] for
a review of genome rearrangement algorithms).

We represent a circular genome R as a cycle formed by directed edges encoding
the genes and their directions (Figure 2(b), center). There are two natural ways to
represent duplication of the genome R resulting in a unichromosomal genome R⊕R
(Figure 1(b), left) and a multichromosomal genome 2R (Figure 1(b), right) but only
the former is applicable to unichromosomal genomes.

1750 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

a)

a

ab

b a

ab

b

0

01

1b)

a

ab

b
01

11 10

00

c)

a

b

d)

b

a

*

Fig. 2. (a) Circular genome P = +a − b + a + b represented as a cycle with directed edges.
(b) 01-labeling of the vertices of the cycle defined by P . (c) Induced labeling of the genes of P that is
consistent. (d) For some genomes consistent labelings do not exist: for genome Q = +a + b− b− a
the labels of both copies of gene a start with the same digit (“ ∗”) so they cannot be inversions of
each other.

For unichromosomal genomes, whole genome duplication is a concatenation of the
genome R with itself, resulting in a perfect duplicated genome R ⊕ R. The genome
R ⊕ R becomes subject to reversals that change the order and signs of the genes
and transform R ⊕ R into a duplicated genome P . The genome halving problem is
formulated as follows.

Genome halving problem. Given a duplicated genome P , recover an ancestral
preduplicated genome R minimizing the reversal distance d(P,R⊕R) from the perfect
duplicated genome R⊕R to P .

The genome halving problem was solved in a series of papers [18, 19, 17] cul-
minating in a rather complex algorithm by El-Mabrouk and Sankoff in [20]. The
El-Mabrouk–Sankoff algorithm is one of the most technically challenging results in
computational biology and its proof spans over 30 pages in [20]. Recently Alekseyev
and Pevzner [1] revisited the El-Mabrouk–Sankoff work and presented an alternative
approach based on the notion of a contracted breakpoint graph.

After paper [1] was submitted, our studies of the contracted breakpoint graph led
us to realize that the El-Mabrouk–Sankoff analysis has a flaw and that the problem of
finding minR d(P,R⊕R) remains unsolved in the simplest case when P is a unichro-
mosomal genome. Below we show that this flaw is a rule rather than a pathological
case: it affects a large family of duplicated genomes. We further proceed to give a
full analysis of the genome halving problem that is based on introducing an invariant
that divides the set of all rearranged duplicated genomes into two classes. We show
that the El-Mabrouk–Sankoff formula is correct for the first class but is off by 1 for
the second class. We remark that our approach is very different from [20] and we
do not know whether the technique in [20] can be adjusted to address the described
complication.

To introduce a new combinatorial invariant of duplicated genomes, consider la-
belings of vertices in the cycle defined by the duplicated rearranged genome P with
numbers 0 and 1 (Figure 2(b)). Every such labeling induces a two-digit labeling of
the genes (edges): a label of each gene is formed by the labels of the incident vertices
(Figure 2(c)). A 01-labeling of the vertices is called consistent if for every pair of
identical genes in P the label of one copy is an inversion of the other. If there exists
a consistent labeling of genome P , we define the parity index of P as the number of
genes labeled “01” modulo 2. Below we prove that the parity index is well defined,
i.e., the parity index is the same for all consistent labelings of a genome. It turns out
that the El-Mabrouk–Sankoff theorem fails on genomes with the parity index 0.

The paper is organized as follows. Section 2 presents the concept of contracted

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1751

breakpoint graph and reviews some results from [1]. Section 3 describes a flaw in the
El-Mabrouk–Sankoff analysis. Section 4 presents a solution to the genome halving
problem (for unichromosomal circular genomes) and a classification of the genomes
for which the original El-Mabrouk–Sankoff theorem is incorrect. Section 5 outlines our
genome halving algorithm. Finally, section 6 discusses potential biological applications
of the presented algorithm.

2. Reversal distance between duplicated genomes and contracted
breakpoint graphs. A duality theorem and a polynomial algorithm for comput-
ing reversal distance between two signed permutations was proposed by Hannenhalli
and Pevzner [23] and later was generalized for multichromosomal genomes [22]. The
algorithm was further simplified and improved in a series of papers [6, 25, 3, 7, 42, 26]
and applied in a variety of biological studies [29, 10, 8, 33, 5].

A signed permutation on n elements can be transformed into an unsigned per-
mutation on 2n elements (see [4]) by substituting every element x in the signed per-
mutation with two elements xt and xh in the unsigned permutation (indices t and
h stand for tail and head, respectively). Each element +x in the permutation P is
replaced with xtxh, and each element −x is replaced with xhxt, resulting in an un-
signed permutation π(P). For example, a permutation +a+ b− c will be transformed
into atahbtbhchct. Element xt is called the obverse of element xh, and vice versa.

Let P and Q be two circular signed permutations on the same set of elements
G, and let π(P) and π(Q) be corresponding unsigned permutations. The breakpoint
graph G = G(P,Q) is defined on the set of vertices V = {xt, xh | x ∈ G} with edges
of three colors: obverse, black, and gray (Figure 1(c)). Edges of each color form a
matching on V as follows:

• pairs of obverse elements form an obverse matching ;
• adjacent elements in π(P), other than obverses, form a black matching ;
• adjacent elements in π(Q), other than obverses, form a gray matching.

Every pair of matchings forms a collection of alternating cycles in G, called black-
gray, black-obverse, and gray-obverse, respectively (a cycle is alternating if colors of
its edges alternate). The permutation π(P) can be read along a single black-obverse
cycle, while the permutation π(Q) can be read along a single gray-obverse cycle in G.
The black-gray cycles in the breakpoint graph play an important role in computing
the reversal distance. According to the Hannenhalli–Pevzner theorem, the reversal
distance between permutations P and Q is given by the formula

d(P,Q) = |P | − c(P,Q) + h(P,Q),(1)

where |P | = |Q| is the size of P and Q, c(P,Q) = c(G(P,Q)) is the number of black-
gray cycles in the breakpoint graph G, and h(G) is an easily computable combinatorial
parameter. While this result leads to a fast algorithm for computing reversal distance
between two signed permutations, the problem of computing reversal distance between
two genomes with duplicated genes remains unsolved.

Let P and Q be duplicated genomes on the same set of genes G. If one labels copies
of each gene x as x1 and x2, then the genomes P and Q become signed permutations
and (1) applies. The breakpoint graph G(P,Q) of the labeled genomes P and Q has
a vertex set V = {xt

1, x
h
1 , x

t
2, x

h
2 | x ∈ G} and uniquely defines permutations π(P) and

π(Q). We remark that different labelings may lead to different breakpoint graphs (on
the same vertex set) for the same genomes P and Q (Figure 3) and it is not clear how
to choose a labeling that results in the minimum reversal distance between the labeled
copies of P and Q. We also remark that pairs of vertices xj

1 and xj
2 form yet another

1752 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

+a1+b1Q=−b1 −b2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

+a1 +b2+a1Q= +b12+a 2+a−b1−b2Q= +a1+b22+a +a2 Q=

Fig. 3. Breakpoint graphs for P = +a−a− b+ b and four different labelings Q = +a− b+a+ b
(we assume that the labeling of P = +a1 − a2 − b1 + b2 is fixed). Two out of four breakpoint graphs
have c(G) = 1, while two others have c(G) = 2. The counterpart matching in these graphs is formed
by pairs (at1, a

t
2), (ah1 , a

h
2), (bt1, b

t
2), (bh1 , b

h
2).

matching in the breakpoint graph G called counterpart. Counterpart of a vertex v is
denoted v̄ so that x̄j

1 = xj
2 and x̄j

2 = xj
1 (see legend for Figure 3).

Recently there were many attempts to generalize the Hannenhalli–Pevzner theory
for genomes with duplicated and deleted genes [9, 11, 16, 37, 40, 41]. However, the only
known option for solving the reversal distance problem for duplicated genomes exactly
is to consider all possible labelings, to compute the reversal distance problem for each
labeling, and to choose the labeling with the minimal reversal distance. For dupli-
cated genomes with n genes this leads to 2n invocations of the Hannenhalli–Pevzner
algorithm, rendering this approach impractical. Moreover, the problem remains open
if one of the genomes is perfectly duplicated (i.e., computing d(P,R ⊕ R)). Surpris-
ingly, the problem of computing minR d(P,R ⊕ R) that we address in this paper is
solvable in polynomial time.

Using the concept of the breakpoint graph and formula (1), the genome halving
problem can be posed as follows. For a duplicated genome P , find a perfect duplicated
genome R⊕R and a labeling of gene copies such that the breakpoint graph G(P,R⊕R)
of the labeled genomes P and R ⊕ R attains the minimum value of |P | − c(P,Q) +
h(P,Q). Since |P | is constant and h(G) is typically small (see [34]), the value of
d(P,Q) depends mainly on c(P,Q). El-Mabrouk and Sankoff [20] established that the
problems of maximizing c(P,Q) and minimizing h(P,Q) can be solved separately in
a consecutive manner.1 In this paper we focus on the former and harder problem as
follows.

Weak genome halving problem. For a given duplicated genome P , find a
perfect duplicated genome R ⊕ R and a labeling of gene copies that maximizes the
number of black-gray cycles c(P,R ⊕ R) in the breakpoint graph G(P,R ⊕ R) of the
labeled genomes P and R⊕R.

From now on, we will find it convenient to represent a circular signed permutation
as an alternating cycle formed by edges of two colors with one color reserved for obverse
edges. For example, Figures 4(a),(b) show a black-obverse cycle representation of
permutation P = +a−a−b+b and a gray-obverse cycle representation of permutation
Q = +a− b+a+ b (the obverse edges in these cycles are labeled and directed). Given
a set of edge-labeled graphs, the de Bruijn graph of this set is defined as the result of
“gluing”2 edges with the same label in all graphs in the set (compare with Pevzner,

1In paper [2] we describe an analogue of formula (1) without the “h(G)” term and give a short
proof of the genome halving theorem (for multichromosomal genomes) that does not rely on the
analysis in [20].

2Gluing takes into account the directions of edges; i.e., tails (or heads) of all edges with a given
label are glued into a single vertex.

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1753

P = +a −a −b +b

Q= +a −b+a +b

b

a

b

a

d)

b

a

a

b

a

b

c) Q’ = +a −b; +a +b

bh

at

ah

bt

P̂

Q̂

a)

a

b

b

a

b

a
a

b

b)

e)

Fig. 4. (a) Genome P = +a − a − b + b as a black-obverse cycle and its transformation into

P̂ by gluing identically labeled edges. (b) Genome Q = +a − b + a + b as a gray-obverse cycle

and its transformation into Q̂ by gluing identically labeled edges. (c) Two-chromosomal genome

Q′ = (+a− b)(+a + b) that is equivalent to the genome Q (i.e., Q̂′ = Q̂). (d) The de Bruijn graph
of genomes P and Q. (e) The contracted breakpoint graph G′(P,Q).

Tang, and Tesler [32]). The de Bruijn graph for two cycles in Figures 4(a),(b) is shown
in Figure 4(d).

For any genome P (represented as a cycle) we define P̂ as the graph obtained
from P by gluing identically labeled edges. Obviously, the de Bruijn graph of P and
Q coincides with the de Bruijn graph of P̂ and Q̂ (Figure 4). For a duplicated genome
P , the black edges of P̂ form a set of vertex-disjoint black cycles. We denote by be(P)
the number of even black cycles in P̂ .

The conventional breakpoint graph [4] of signed permutations P and Q on n
elements can be defined as the gluing of n pairs of identically labeled obverse edges
in the corresponding permutations (represented as black-obverse and gray-obverse
cycles). The contracted breakpoint graph of duplicated genomes P and Q on n elements
is simply the gluing of n quartets of obverse edges. Below we give a somewhat more
formal definition of the contracted breakpoint graph.

Let P and Q be duplicated genomes on the same set of genes G and let G be a
breakpoint graph defined by some labeling of P and Q. The contracted breakpoint
graph G′(P,Q) is the result of contracting every pair of vertices xj

1, x
j
2 (where x ∈ G,

j ∈ {t, h}) in the breakpoint graph G into a single vertex xj . So the contracted
breakpoint graph G′ = G′(P,Q) is a graph on the set of vertices V ′ = {xt, xh |
x ∈ G} with each vertex incident to two black, two gray, and a pair of parallel obverse
edges (Figure 4(e)). The contracted breakpoint graph G′(P,Q) does not depend on
a particular labeling of P and Q. The following theorem gives a characterization of
the contracted breakpoint graphs (for unichromosomal genomes).

Theorem 1 (see [1]). A graph H with black, gray, and obverse edges is a con-
tracted breakpoint graph for some duplicated genomes if and only if

• each vertex in H is incident to two black edges, two gray edges, and two
parallel obverse edges;

• H is connected with respect to black and obverse edges (black-obverse con-
nected);

• H is connected with respect to gray and obverse edges (gray-obverse con-
nected).

1754 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

ah

bt

at

bh

a)

ah

bt

at

bh

at

ah

bt bh

ah

at

bt bh

at

ah

bt bh

ah

at

bt bh

b) c) d)

Fig. 5. (a) Contracted breakpoint graph G′(P,R⊕R) for P = +a + b− a− b and R = +a + b.
(b) Black-gray cycle decomposition C of G′ which is not induced by any labeling of P and R ⊕ R.
(c) Breakpoint graph G(P, 2R) inducing C. (d) Breakpoint graph G(P,R⊕R) (unique up to relabeling
of vertices) with c(G) = 2 < |C| = 3.

In the case when Q = R⊕R is a perfect duplicated genome, the gray edges in the
contracted breakpoint graph G′(P,Q) form pairs of parallel gray edges that we refer
to as double gray edges. Similar to the double obverse edges, the double gray edges
form a matching in G′ (Figure 5(a)).

Let G(P,Q) be a breakpoint graph for some labeling of P and Q. A set of black-
gray cycles in G(P,Q) is contracted into a set of black-gray cycles in the contracted
breakpoint graph G′(P,Q), thus forming a black-gray cycle decomposition of G′(P,Q).
Therefore, each labeling induces a black-gray cycle decomposition of G′(P,Q). We
are interested in the reverse problem as follows.

Labeling problem. Given a black-gray cycle decomposition of the contracted
breakpoint graph G′(P,Q) of duplicated genomes P and Q, find a labeling of P and Q
that induces this cycle decomposition.

This problem may not always have a solution for unichromosomal genomes (Fig-
ure 5) and this is exactly the factor that leads to a counterexample in section 3. This
complication will be addressed in section 4 using the following three theorems proved
in [1].

Theorem 2 (see [1]). Let P and R ⊕ R be unichromosomal duplicated genomes
and C be a black-gray cycle decomposition of the contracted breakpoint graph G′(P,
R ⊕ R). Then there exists some labeling of P and either R ⊕ R or 2R that induces
the cycle decomposition C.

Let cmax(P,R⊕R) = cmax(G′(P,R⊕R)) be the number of cycles in a maximal
black-gray cycle decompositions of the contracted breakpoint graph G′(P,R ⊕ R).
Theorem 2 motivates the following problem that will later help us to solve the weak
genome halving problem.

Cycle decomposition problem. For a given duplicated genome P , find a
perfect duplicated genome R⊕R maximizing cmax(P,R⊕R).

Although the maximal black-gray cycle decomposition of G′(P,R ⊕R) may cor-
respond to a breakpoint graph G(P, 2R) (Figure 5), we will prove below that there
exists a breakpoint graph G(P,R⊕R) having “almost” the same number of black-gray
cycle as G(P, 2R) (Figure 5(d)). Later we will classify all the cases in which there
exists a labeled genome R′ ⊕R′ such that c(P,R′ ⊕R′) = c(P, 2R).

The solution to the cycle decomposition problem is given by the following two
theorems.

Theorem 3 (see [1]). For a given duplicated genome P and any perfect duplicated
genome R⊕R,

cmax(P,R⊕R) ≤ |P |/2 + be(P),

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1755

at
1

a1
h

t
1b

1
hb

1
hc

t
1c

t
2b

2
hb 1d h

1d t

1
he

t
1e

a2
h

at
2

t
2c

2
hc

2d h

2d t

2
he

t
2e

at
1

a1
h

t
1b

1
hb

1
hc

t
1c

t
2b

2
hb 1d h

1d t

1
he

t
1e

a2
h

at
2

t
2c

2
hc

2d h

2d t

2
he

t
2e

b)

at
1

a1
h

t
1b

1
hb

1
hc

t
1c

t
2b

2
hb 1d h

1d t

1
he

t
1e

a2
h

at
2

t
2c

2
hc

2d h

2d t

2
he

t
2e

c)a)

Fig. 6. (a) A set of black edges forming the partial graph G(V, A) corresponding to the genome
P = +a+b−c+b−d−e+a+c−d−e. (b) Natural graphs as connected components in the partial graph
with counterpart edges. (c) A completed graph G(V, A,Γ) with maximum number of cycles c(G) = 8.
G(V, A,Γ) is a breakpoint graph of the circular genome P = +a1+b1−c1+b2−d1−e1+a2+c2−d2−e2
and a perfect duplicated genome (−a1 + e2 + d2 − c2 + b1)(−b2 + c1 − d1 − e1 + a2) (of the form
R�R).

where |P |/2 represents the number of unique genes in P and be(P) is the number
of even black cycles in P̂ . Moreover, if cmax(P,R ⊕ R) = |P |/2 + be(P), then each
black-gray connected component of G′(P,R ⊕ R) contains either a single even black
cycle (simple component) or a pair of odd black cycles (paired component).

Theorem 4 (see [1]). For any duplicated genome P , there exists a perfect dupli-
cated genome R⊕R such that

cmax(P,R⊕R) = |P |/2 + be(P)

and each paired component of G′(P,R⊕R) contains a single interedge (a double gray
edge connecting distinct black cycles).

3. A flaw in the El-Mabrouk–Sankoff analysis. El-Mabrouk and Sankoff
came up with a theorem describing the minimum distance from the given rearranged
duplicated genome to a perfect duplicated genome. Given a rearranged duplicated
genome P , the crux of their approach is an algorithm for computing c(G)—the number
of cycles of a so-called maximal completed graph, i.e., a breakpoint graph3 with the
maximum number of black-gray cycles. In [20] they demonstrate that c(G) equals
the number of genes plus γ(G), where γ(G) is the parameter defined below. We
illustrate the concepts from [20] using the genome P = +a + b − c + b − d − e +
a + c − d − e on the set of genes B = {a, b, c, d, e} (page 757 in [20]). El-Mabrouk
and Sankoff first arbitrarily label two copies of each gene x as x1 and x2 for each
x ∈ B and further transform the signed permutation G into an unsigned permutation
at1a

h
1b

t
1b

h
1c

h
1c

t
1b

t
2b

h
2d

h
1d

t
1e

h
1e

t
1a

t
2a

h
2c

t
2c

h
2d

h
2d

t
2e

h
2e

t
2.

Let V = {xt
1, x

h
1 , x

t
2, x

h
2 | x ∈ B}. The partial graph G(V, A) associated with P

has the edge set A of black edges linking adjacent terms (other than obverses xt
i and

xh
i) in the corresponding unsigned permutation (Figure 6(a)).

Black edges together with counterpart edges (i.e., edges between xt
1 and xt

2 or
between xh

1 and xh
2) form a graph shown in Figure 6(b). The connected components

of this graph are called natural graphs in [20]. There are four connected components
(natural graphs) in the graph in Figure 6(b), two of them have three black edges (odd

3Following El-Mabrouk and Sankoff [20] we ignore obverse edges in breakpoint graphs throughout
section 3.

1756 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1+b1 2+a +b2

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1 2+a+b2 +b1

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1 2+a−b1 −b2

bh
1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1 2+a−b2 −b1

bt
1

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1+b1−b2 2−a

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1 −b1+b2 2−a

bt
1 bh

1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1−b1+b2 2−a

bh
1

at
2

ah
2

ah
1

at
1

bt
2 bh

2

+a1−b2

bt
1

+b1 2−aQ= Q= Q= Q=

Q= Q= Q= Q=

Fig. 7. Breakpoint graphs of the circular genome P = +a + b− a− b and all possible labelings
of all possible perfect duplicated genomes Q (without loss of generality, we assume that labeling of
P = +a1 + b1 − a2 − b2 is fixed). In terms of [20], the top four graphs correspond to an R ⊕ R
duplication pattern, while the bottom four graphs correspond to an R�R duplication pattern.

natural graphs) and two of them have two black edges (even natural graphs). Let
NE be the number of even natural graphs (NE = 2 in Figure 6(b)).

El-Mabrouk and Sankoff define the parameter

γ(G) =

{
NE if all natural graphs are even,
NE + 1 otherwise.

A graph G(V, A,Γ) obtained from the partial graph G(V, A) by introducing a set
of gray edges Γ is called a completed graph if G(V, A,Γ) is a breakpoint graph for
some genomes on the set of genes {x1, x2 | x ∈ B}. The following theorem (Theo-
rem 7.7 in [20]) characterizes the maximum number of cycles in the completed graph
G(V, A,Γ).

Theorem. The maximal number of cycles in a completed graph of G(V, A) is

c(G) = |A|
2 + γ(G).

For the genome in Figure 6 we have γ(G) = NE+1 = 3 and c(G) = |A|
2 +γ(G) =

10
2 + 3 = 8. A completed graph G(V, A,Γ) with eight cycles is shown at Figure 6(c).4

Below we provide a counterexample to Theorem 7.7 from [20].
Consider a circular genome P = +a + b − a − b labeled as +a1 + b1 − a2 − b2.

The genome P defines a partial graph G(V, A) with a single natural graph of even
size implying γ(G) = 1. It follows from Theorem 7.7 in [20] that there exists a
perfect duplicated genome Q such that the breakpoint graph G = G(P,Q) consists

of |A|
2 + γ(G) = 3 cycles. However, the direct enumeration of all possible perfect

duplicated genomes Q shows that there is no breakpoint graph G(P,Q) with three
cycles. There exist eight distinct labeled perfect duplicated genomes Q giving rise
to eight breakpoint graphs G(P,Q) shown in Figure 7. All of them have less than
three cycles. In the next section we explain what particular property of the genome
+a + b− a− b was not addressed properly in the El-Mabrouk–Sankoff analysis.

4While we do not explicitly consider R�R duplications shown in this figure (see [20] for details),
our counterexample works for both R⊕R and R�R duplications.

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1757

4. Classification of duplicated genomes. The labeling problem can be ad-
dressed by considering multichromosomal genomes.5 A multichromosomal duplicated
genome is a set of circular chromosomes with every gene present in two copies. For
example, Figure 4(c) presents a multichromosomal duplicated genome Q′ consisting of
two circular chromosomes +a−b and +a+b, each of which forms a gray-obverse cycle.
We remark that the de Bruijn graph of the genome Q′ coincides with the de Bruijn
graph of a unichromosomal genome Q = +a− b+ a+ b (Figure 4(b)) and, hence, the
contracted breakpoint graphs G′(P,Q) and G′(P,Q′) are the same for any genome P
(Figure 4(d)). We call genomes Q and Q′ equivalent if their de Bruijn graphs are the

same, i.e., Q̂ = Q̂′.
It is easy to see that R⊕R is equivalent to 2R and, thus, G′(P,R⊕R) = G′(P, 2R)

for any duplicated genome P . But in contrast to the breakpoint graph G(P,R⊕R) (for
any labeling of P and R⊕R) that contains a single gray-obverse cycle, the breakpoint
graph G(P, 2R) contains two gray-obverse cycles. The following theorem reveals the
relationship between G(P,R⊕R) and G(P, 2R).

Theorem 5. For any labeling of the genomes P and 2R, there exists a labeling
of the genome R ⊕ R such that |c(P,R ⊕ R) − c(P, 2R)| ≤ 1. Moreover, if there are
two gray edges (x, y) and (x̄, ȳ) belonging to the same black-gray cycle in G(P, 2R),
then there exists a labeling of R⊕R with c(P,R⊕R) ≥ c(P, 2R).

Proof. Let (x, y) be a gray edge in the breakpoint graph G(P, 2R). Since the
genome 2R is perfect duplicated there exists a gray edge (x̄, ȳ) connecting counterparts
of x and y. Define a graph H having the same vertices and edges as G(P, 2R) except
the gray edges (x, y) and (x̄, ȳ) that are replaced with the gray edges (x, ȳ) and (x̄, y).
Since the graph G(P, 2R) consists of two gray-obverse cycles, the gray edges (x, y)
and (x̄, ȳ) belong to different gray-obverse cycles. Therefore, the graph H contains
a single gray-obverse cycle (as well as a single black-obverse cycle inherited from
G(P, 2R)). This implies that H is a breakpoint of the genomes P and R ⊕ R (i.e.,
H = G(P,R⊕R)), where the labeling of P is the same as in G(P, 2R).

If the gray edges (x, y) and (x̄, ȳ) belong to the same black-gray cycle in G(P, 2R),
then this cycle may be split into two in H, while the other black-gray cycles are not
affected. Conversely, if the gray edges (x, y) and (x̄, ȳ) belong to different black-gray
cycles in G(P, 2R), then these cycles may be joined into a single cycle in H. In either
case the difference |c(P,R⊕R) − c(P, 2R)| does not exceed 1.

We redefine the notion of parity of a genome P in terms of the de Bruijn graph
P̂ . A genome P is called singular if all black cycles in P̂ are even. For a nonsingular
genome P , define parity(P) = ∞. For a singular genome P , we clockwise label edges
of each black cycle in P̂ with alternating numbers {0, 1} so that every two adjacent
edges are labeled differently (Figure 8(a)). Labels of black edges in cycle P classify
obverse edges in P into two classes: even if its flanking black edges have the same
labels, and odd if its flanking black edges have different labels (Figure 8(b)). Let meven

and modd be the number of even/odd obverse edges in P correspondingly. Obviously,
both meven and modd are even numbers. We define parity(P) = modd/2 mod 2.

This definition of the parity index coincides with the one given in the introduction.
To establish a correspondence between them one can consider a genome P as a black-
obverse cycle and contract each black edge into a single vertex that inherits the label
from the black edge. Since every pair of adjacent black edges of P̂ is labeled differently,
every pair of counterpart vertices is labeled differently as well. This implies that two-

5We emphasize that in this paper we consider only the genome halving problem for unichromo-
somal genomes and use multichromosomal genomes only to prove some auxiliary results.

1758 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

tc

d
t

tb

bh

ah

hc

dh

ta

1

0

0

1

0

1

1

0
1

0

0

1 0

1

01

a) b) tc tc

d
t
d

t

hc

ta

ta

dh
dh

bt

bt

bh

bh

ah

ah

hc

u

v

x

y

z

t

0
1

1

u

v

H’H
c2

c1

c)

1

Fig. 8. For the genome P = +a− b− b−d+ c−a−d+ c, (a) 01-labeling of the de Bruijn graph

P̂ ; (b) induced labeling of black-obverse cycle P with modd = 4 and meven = 4; (c) transformation
of the graph H into H′ by removing vertices x, y, z, t and incident edges and adding a black edge
(u, v) labeled the same as (u, x) and (v, t).

digit labels of every pair of obverse edges are inversions of each other.
Theorem 6. The parity index of a singular genome is well defined.
Proof. Let P be a singular genome. If P̂ has k black cycles, then there are

2k different 01-labelings of its black edges (two possible labelings per cycle). Therefore,
it is sufficient to show that a change of 01-labeling of a particular black cycle c does
not affect parity(P).

Let mc
even and mc

odd be the number of even/odd obverse edges in cycle P con-
necting black edges of c with black edges outside c. Since double obverse edges form
a matching in the de Bruijn graph P̂ , the total number of double obverse edges con-
necting c with other black cycles is even and, thus, mc

even + mc
odd is a multiple of 4.

Changing the 01-labeling of the black cycle c reverses the labels 0 ↔ 1 in c.
Reversed labeling of c does not change parity of obverse edges connecting two black
edges in c (since both endpoint labels change) or two black edges outside of c (since
neither of the endpoint labels changes). At the same time, each of the mc

even + mc
odd

obverse edges connecting black edges in c with black edges outside of c changes its
parity (i.e., even edges become odd and vice versa). Then modd changes as follows:

m′
odd = modd −mc

odd + mc
even = modd − (mc

odd + mc
even) + 2mc

even.

Since both mc
odd + mc

even and 2mc
even are multiples of 4, the parity of m′

odd/2 and
modd/2 is the same, implying that parity(P) is well defined.

Our goal is to prove the following theorem.
Theorem 7. For a duplicated genome P ,

max
R

c(P,R⊕R) =

{
|P |/2 + be(P) if parity(P)
= 0,
|P |/2 + be(P) − 1 otherwise.

The proof of Theorem 7 is split into two cases depending on whether P is singular
or nonsingular.

Theorem 8. For a nonsingular genome P , maxR c(P,R⊕R) = |P |/2 + be(P).
Proof. If P is a nonsingular genome, then P̂ has an odd black cycle. According to

Theorem 4 there exists a perfect duplicated genome R⊕R such that cmax(P,R⊕R) =
|P |/2 + be(P). Theorem 2 ensures that the maximum cycle decomposition of the
contracted breakpoint graph G′(P,R ⊕ R) is induced by a labeling of either R ⊕ R
or 2R. If it is R⊕R, then the theorem holds. Otherwise, consider a paired component
in G′(P,R ⊕ R) (which exists since P̂ has an odd black cycle) and an interedge e in
it. Let (x, y) and (x̄, ȳ) be gray edges in G(P, 2R) corresponding to the interedge e in
G′(P,R⊕R). Since e is the only bridge between two different black cycles (Theorem 4)

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1759

in G′(P,R⊕R), the gray edges (x, y) and (x̄, ȳ) must belong to the same black-gray
cycle in G(P, 2R). Applying Theorem 5 to these gray edges, we obtain a labeled
genome R⊕R with c(P,R⊕R) = c(P, 2R) = |P |/2 + be(P).

For a singular genome P , we first fix some alternating 01-labeling of black edges
in every black cycle of P̂ . The labeling of edges imposes labeling of vertices of any
breakpoint graph G(P,Q) (for any genome Q) so that each vertex inherits a label
from an incident black edge. Note that every pair of counterpart vertices get different
labels, as their incident black edges are adjacent in P̂ . A labeling of vertices of G(P,Q)
is called uniform if endpoints of every gray edge have identical labels (i.e., every gray
edge is even). We will need the following theorem.

Theorem 9. Let P be a singular genome and Q be a perfect duplicated genome
with c(P,Q) = |P |/2 + be(P). Then every alternating 01-labeling of P̂ imposes a
uniform labeling on vertices of G(P,Q).

While the definition of the breakpoint graph does not explicitly specify the coun-
terpart edges, one can derive them for G(P,Q) in Theorem 9 from the vertex labels.
Also, it is easy to see that gray and counterpart edges in G(P,Q) form cycles of
length 4 as soon as Q is a perfect duplicated genome. We take the liberty of restating
the condition c(P,Q) = |P |/2 + be(P) as cbg(G) = n + cbc(G), where cbg(G) is the
number of black-gray edges in G, n is the number of unique genes in P , and cbc(G) is
the number of black-counterpart cycles in G. Also, every alternating 01-labeling of P̂
corresponds to an alternating labeling of black edges within black-counterpart cycles.
This leads to the following reformulation of Theorem 9.

Theorem 10. Let H be a graph on 4n vertices consisting of three perfect match-
ings black, gray, and counterpart such that (i) gray and counterpart matchings form
cycles of length 4, and (ii) cbg(H) = n + cbc(H). Then every alternating 01-labeling
of black edges within black-counterpart cycles imposes a uniform labeling on vertices
of H.

Proof. The proof is done by induction on n. If n = 1, then the graph H consists
of a gray-counterpart cycle with two black edges parallel to the gray edges, and the
theorem holds. Assume that the theorem holds for graphs with less than 4n vertices.

Since H has 2n black edges and cbg(H) = n+cbc(H) > n, the pigeonhole principle
implies that there exists a black-gray cycle c1 of length 2 in H. Let e1 = (x, y) be
a gray edge in the cycle c1 (thus, e1 is even) and let (x, z) and (y, t) be adjacent
counterpart edges. Then there is a gray edge e2 = (z, t) belonging to the same gray-
counterpart cycle as e1. Let c2 be a black-gray cycle c2 containing the gray edge e2.

If the cycle c2 has length 2, then the endpoints of e2 have identical labels. In this
case we define a new graph H ′ as the graph H without vertices x, y, z, t and all incident
edges. It is easy to see that H ′ is a graph on 4(n−1) vertices satisfying the conditions
of the theorem. Indeed, the number of black-gray cycles in H ′ is reduced by 2 and
the number of black-counterpart cycles is reduced by 1 (as compared to H), i.e.,
cbg(H

′) = cbg(H)−2 and cbc(H
′) = cbc(H)−1. Therefore, cbg(H

′) = (n−1)+cbc(H
′).

By the induction assumption, every alternating 01-labeling of H ′ imposes uniform
labeling on vertices of H ′. It implies that every alternating 01-labeling of H imposes
uniform labeling on vertices of H.

If the cycle c2 has length greater than 2, let (u, z) and (t, v) be black edges adjacent
to e2. These black edges are neighbors of the black edge (x, y) on a black-counterpart
cycle (passing through the vertices u, z, x, y, t, v), so they have the same label l which
is different from the label of (x, y). Therefore, the endpoints of the gray edge e2 have
identical labels. We define a new graph H ′ as the graph H with vertices x, y, z, t
and all incident edges removed but with a single black edge (u, v) labeled l added

1760 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

(Figure 8(c)). The graph H ′ has 4(n−1) vertices, cbc(H
′) = cbc(H) black-counterpart

cycles, and cbg(H
′) = cbg(H) − 1 black-gray cycles; thus, cbg(H

′) = n − 1 + cbc(H
′)

and the induction applies.
To complete the proof of Theorem 7 we need one more theorem.
Theorem 11. For a singular genome P and a perfect duplicated genome Q with

c(P,Q) = |P |/2 + be(P),
• Q = R⊕R if and only if parity(P) = 1;
• Q = 2R if and only if parity(P) = 0.

Proof. According to Theorem 2, the graph G(P,Q) has either a single gray-
obverse cycle (i.e., Q = R ⊕ R) or two symmetric gray-obverse cycles (i.e., Q = 2R).
Theorem 9 implies that all gray edges in G are even (i.e., have identically labeled
endpoints) for every alternating 01-labeling of black edges of P .

Case 1. Graph G has a single gray-obverse cycle c. Consider an arbitrary vertex
v in G and its counterpart v. Vertices v and v break c into two paths: c′ (from v to
v) and c′′ (from v to v). For every path (cycle) c denote codd as the number of odd
obverse edges in c. Note that obverse edges are evenly divided between c′ and c′′, i.e.,
for every pair of obverse edges connecting counterpart vertices, one edge belongs to c′

and the other edge belongs to c′′. Therefore, c′odd = c′′odd. Note that the start (vertex
v) and the end (vertex v) vertices of path c′ are labeled differently. Since the total
number of odd edges is odd for every path with differently labeled ends, and since all
gray edges are even (Theorem 9), the total number of odd obverse edges in the path
c′ is odd. Therefore, codd/2 = c′odd is odd, implying that parity(P) = 1.

Case 2. Graph G has two gray-obverse cycles c′ and c′′. Note that obverse edges
are evenly divided between c′ and c′′; i.e., for every pair of obverse edges connecting
counterpart vertices, one edge belongs to c′ and the other edge belongs to c′′. There-
fore, c′odd = c′′odd. Since the total number of odd edges in every cycle is even, and since
all gray edges are even (Theorem 9), the total number of odd obverse edges in every
cycle is even. Since c′odd is even, the overall number of odd obverse edges is a multiple
of 4, implying that parity(P) = 0.

For a singular genome P with parity(P) = 1 Theorem 11 implies Theorem 7,
while for a singular genome P with parity(P) = 0 it implies that there is no genome
R for which c(P,R ⊕ R) = |P |/2 + be(P). In the latter case, there exists a genome
R and a labeling of P and 2R for which c(P, 2R) = |P |/2 + be(P) (Theorem 4).
The genome 2R can be transformed into a labeled genome R⊕R with c(P,R⊕R) =
c(P, 2R)−1 = |P |/2+be(P)−1 (Theorem 5). This completes the proof of Theorem 7.

5. Genome halving algorithm. The classification of circular genomes leads
to the following algorithm for the weak genome halving problem.6

1. For a given duplicated genome P , find a perfect duplicated genome R⊕R such
that cmax(P,R⊕R) = |P |/2+be(P) (Theorem 4) and decompose G′(P,R⊕R)
into the maximum number of black-gray cycles [1].

2. Find a labeling of the genomes P and Q (Q = R⊕R or Q = 2R) and a break-
point graph G(P,Q) inducing the maximum black-gray cycle decomposition
of G′(P,R⊕R) (Theorem 2).

3. If Q = R⊕R, then output the breakpoint graph G(P,R⊕R).
4. If Q = 2R and P is nonsingular, then there is a paired component in G′(P,

R ⊕ R) with a single interedge (Theorem 4) that corresponds to two gray

6The algorithm outputs the breakpoint graph G(P,R ⊕ R) (in addition to the preduplicated
genome R). This allows one to reconstruct a sequence of reversals transforming R ⊕ R into P with
the reversal distance algorithm.

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1761

edges (x, y) and (x̄, ȳ) in G(P, 2R). Find a labeling of the genome R⊕R for
which c(P,R⊕R) = c(P, 2R) (Theorems 5 and 8) and output G(P,R⊕R).

5. If Q = 2R and P is singular, then parity(P) = 0 (Theorem 11). Find a
labeling of the genome R⊕R for which c(P,R⊕R) = c(P, 2R)−1 (Theorem 5)
and output G(P,R⊕R).

We illustrate the algorithm for a genome P = +a + b − a − b (assuming a fixed
labeling of P as (+a1 + b1 − a2 − b2)) using Figure 5. At step 1, we use the algo-
rithm from [1] to construct R = +a + b such that the contracted breakpoint graph
G′(P,R⊕R) (Figure 5(a)) has a black-gray cycle decomposition with |P |/2+be(P) = 3
cycles (Figure 5(b)). At step 2, we find a breakpoint graph G(P,Q) (Figure 5(c)) in-
ducing this cycle decomposition (see [1]). The breakpoint graph G(P,Q) has two
gray-obverse cycles (Figure 5(c)), thus implying that Q = 2R. Since the genome P
is singular, we proceed to step 5 and perform a transformation of Q = 2R into a
new genome, as described in Theorem 5. We first find a pair of gray edges from two
different cycles in 2R as described in Theorem 5, for example, a pair of edges labeled
(ah, bt) in Figure 5(c). Afterwards, we replace these edges with a new pair of gray
edges also labeled (ah, bt), as shown in Figure 5(d). This operation transforms two
cycles in the genome Q into a single cycle (unichromosomal genome) that we represent
as R ⊕ R. According to Theorems 5 and 7, this genome represents a solution to the
weak genome halving problem.

The first two steps of the genome halving algorithm can be implemented in
O(|P |2) time (see [1]) while the remaining steps fit this time bound as well. In
practice, our genome halving software takes less than a second to halve a “random”
duplicated genome with 1000 unique genes on a standard Intel PIII-900MHz CPU.

6. Conclusion. While whole genome duplications in multichromosomal ge-
nomes are well established, there are relatively few examples of whole genome dupli-
cations in unichromosomal genomes. Undoubtedly, bacterial genomes have undergone
a large number of duplications, but it is difficult to distinguish between partial and
whole genome duplication scenarios in the case of these genomes (Coissac, Maillier,
and Netter [13]). Matters are further complicated by the fact that even a few re-
arrangements can quickly “randomize” gene orders in bacterial genomes (due to a
relatively small number of genes).

Recently, Sugaya et al. [38] studied Cyanobacterium Anabaena and came to the
conclusion that it has undergone whole genome duplications rather than a series of
(tandem) segmental duplications. Indeed, the arrangement of genes in Cyanobac-
terium Anabaena points to whole genome duplications as the most likely scenario (it
also has an unusually large genome as compared to other organisms in the Cyanobac-
teria phylum). Also, the recent discovery and sequencing of Acanthamoeba polyphaga
(the largest known virus to date) revealed an unusually large number of duplicated
regions that point to a large duplication event (Suhre [39]). While it remains un-
clear whether this large segmental duplication represents whole genome duplications
or extremely large partial duplication(s), one can argue that it is only a matter of
time until ongoing sequencing efforts will reveal traces of whole genome duplications
in many unichromosomal (bacterial and viral) genomes.

These recent discoveries raise a new algorithmic challenge that we refer to as
the partial genome duplication problem. Let R be a genome with n unique genes
(represented as a signed permutation) and R′ be a set of m consecutive genes in
this genome. We define R ⊕ R′ as a perfect partially duplicated genome. Let P be a
genome with n+m genes in which m genes from R′ are duplicated and the remaining

1762 MAX A. ALEKSEYEV AND PAVEL A. PEVZNER

n−m genes are unique. Given a genome P , the partial genome duplication problem
is to find a perfect partially duplicated genome R⊕R′ such that the reversal distance
between R⊕R′ and P is minimal.

Acknowledgments. We are grateful to Mohan Paturi and Dekel Tsur for many
insightful comments.

REFERENCES

[1] M. A. Alekseyev and P. A. Pevzner, Colored de Bruijn graphs and the genome halving
problem, IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4 (2007), pp. 98–107.

[2] M. A. Alekseyev and P. A. Pevzner, Whole genome duplications, multi-break rearrange-
ments, and genome halving problem, in Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), SIAM, Philadelphia, ACM, New York, 2007, pp.
665–679.

[3] D. A. Bader, B. M. E. Moret, and M. Yan, A linear-time algorithm for computing inversion
distances between signed permutations with an experimental study, J. Comput. Biol., 8
(2001), pp. 483–491.

[4] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals, SIAM J.
Comput., 25 (1996), pp. 272–289.

[5] E. Belda, A. Moya, and F. J. Silva, Genome rearrangement distances and gene order phy-
logeny in γ-proteobacteria, Mol. Biol. Evol., 22 (2005), pp. 1456–1467.

[6] A. Bergeron, A very elementary presentation of the Hannenhalli–Pevzner theory, in Com-
binatorial Pattern Matching, Lecture Notes in Comput. Sci. 2089, Springer, Berlin, 2001,
pp. 106–117.

[7] A. Bergeron, J. Mixtacki, and J. Stoye, Reversal distance without hurdles and fortresses,
in Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 3109, Springer, Berlin,
2004, pp. 388–399.

[8] G. Bourque, P. A. Pevzner, and G. Tesler, Reconstructing the genomic architecture of
ancestral mammals: Lessons from human, mouse, and rat genomes, Genome Res., 14
(2004), pp. 507–516.

[9] G. Bourque, Y. Yacef, and N. El-Mabrouk, Maximizing synteny blocks to identify ancestral
homologs, in Comparative Genomics, Lecture Notes in Comput. Sci. 3678, Springer, Berlin,
2005, pp. 21–34.

[10] G. Bourque, E. M. Zdobnov, P. Bork, P. A. Pevzner, and G. Tesler, Comparative ar-
chitectures of mammalian and chicken genomes reveal highly variable rates of genomic
rearrangements across different lineages, Genome Res., 15 (2005), pp. 98–110.

[11] X. Chen, J. Zheng, P. Nan, Z. Fu, Y. Zhong, S. Lonardi, and T. Jiang, Computing the
assignment of orthologous genes via genome rearrangement, in Proceedings of the 3rd Asia
Pacific Bioinformatics Conference, Imperial College Press, London, 2005, pp. 363–378.

[12] A. Christoffels, E. G. L. Koh, J. Chia, S. Brenner, S. Aparicio, and B. Venkatesh,
Fugu genome analysis provides evidence for a whole-genome duplication early during the
evolution of ray-finned fishes, Mol. Biol. Evol., 21 (2004), pp. 1146–1151.

[13] E. Coissac, E. Maillier, and P. Netter, A comparative study of duplications in bacteria
and eukaryotes: The importance of telomeres, Mol. Biol. Evol., 14 (1997), pp. 1062–1074.

[14] P. Dehal and J. L. Boore, Two rounds of genome duplication in the ancestral vertebrate
genome, PLoS Biol., 3 (2005), e314.

[15] F. S. Dietrich, S. Voegeli, S. Brachat, A. Lerch, K. Gates, S. Steiner, C. Mohr,

R. Pöhlmann, P. Luedi, S. Choi, R. A. Wing, A. Flavier, T. D. Gaffney, and P.

Philippsen, The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces
cerevisiae genome, Science, 304 (2004), pp. 304–307.

[16] N. El-Mabrouk, Genome rearrangement by reversals and insertions/deletions of contigu-
ous segments, in Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 1848,
Springer, Berlin, 2000, pp. 222–234.

[17] N. El-Mabrouk, D. Bryant, and D. Sankoff, Reconstructing the pre-doubling genome, in
Proceedings of the Third Annual International Conference on Computational Molecular
Biology (RECOMB), ACM, New York, 1999, pp. 154–163.

[18] N. El-Mabrouk, J. H. Nadeau, and D. Sankoff, Genome halving, in Combinatorial Pattern
Matching, Lecture Notes in Comput. Sci. 1448, Springer, Berlin, 1998, pp. 235–250.

[19] N. El-Mabrouk and D. Sankoff, On the reconstruction of ancient doubled circular genomes,
Genome Informatics, 10 (1999), pp. 83–93.

WGDS AND CONTRACTED BREAKPOINT GRAPHS 1763

[20] N. El-Mabrouk and D. Sankoff, The reconstruction of doubled genomes, SIAM J. Comput.,
32 (2003), pp. 754–792.

[21] R. Guyot and B. Keller, Ancestral genome duplication in rice, Genome, 47 (2004), pp.
610–614.

[22] S. Hannenhalli and P. Pevzner, Transforming men into mouse (polynomial algorithm for
genomic distance problem), in Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, 1995, IEEE, Piscataway, NJ, pp. 581–592.

[23] S. Hannenhalli and P. Pevzner, Transforming cabbage into turnip (polynomial algorithm
for sorting signed permutations by reversals), J. ACM, 46 (1999), pp. 1–27.

[24] O. Jaillon et al., Genome duplication in the teleost fish Tetraodon nigroviridis reveals the
early vertebrate proto-karyotype, Nature, 431 (2004), pp. 946–957.

[25] H. Kaplan, R. Shamir, and R. E. Tarjan, A faster and simpler algorithm for sorting signed
permutations by reversals, SIAM J. Comput., 29 (1999), pp. 880–892.

[26] H. Kaplan and E. Verbin, Sorting signed permutations by reversals, revisited, J. Comput.
System Sci., 70 (2005), pp. 321–341.

[27] M. Kellis, B. W. Birren, and E. S. Lander, Proof and evolutionary analysis of ancient
genome duplication in the yeast Saccharomyces cerevisiae, Nature, 428 (2004), pp. 617–
624.

[28] A. Meyer and Y. Van de Peer, From 2R to 3R: Evidence for a fish-specific genome dupli-
cation (FSGD), BioEssays, 27 (2005), pp. 937–945.

[29] W. J. Murphy, G. Bourque, G. Tesler, P. Pevzner, and S. J. O’Brien, Reconstructing
the genomic architecture of mammalian ancestors using multispecies comparative maps,
Human Genomics, 1 (2003), pp. 30–40.

[30] W. J. Murphy, D. M. Larkin, A. Everts van der Wind, G. Bourque, G. Tesler, L. Auvil,

J. E. Beever, B. P. Chowdhary, F. Galibert, L. Gatzke, C. Hitte, C. N. Meyers, D.

Milan, E. A. Ostrander, G. Pape, H. G. Parker, T. Raudsepp, M. B. Rogatcheva,

L. B. Schook, L. C. Skow, M. Welge, J. E. Womack, S. J. O’Brien, P. A. Pevzner,

and H. A. Lewin, Dynamics of mammalian chromosome evolution inferred from multi-
species comparative map, Science, 309 (2005), pp. 613–617.

[31] S. Ohno, Evolution by Gene Duplication, Springer, Berlin, 1970.
[32] P. Pevzner, H. Tang, and G. Tesler, De novo repeat classification and fragment assembly,

Genome Res., 14 (2004), pp. 1786–1796.
[33] P. Pevzner and G. Tesler, Genome rearrangements in mammalian evolution: Lessons from

human and mouse genomes, Genome Res., 13 (2003), pp. 37–45.
[34] P. A. Pevzner, Computational Molecular Biology: An Algorithmic Approach, The MIT Press,

Cambridge, MA, 2000.
[35] P. A. Pevzner and G. Tesler, Human and mouse genomic sequences reveal extensive break-

point reuse in mammalian evolution, Proc. Nat. Acad. Sci., 100 (2003), pp. 7672–7677.
[36] M. Robinson-Rechavi, O. Marchand, H. Escriva, and V. Laudet, An ancestral whole-

genome duplication may not have been responsible for the abundance of duplicated fish
genes, Curr. Biol., 11 (2001), pp. 458–459.

[37] D. Sankoff, Genome rearrangement with gene families, Bioinformatics, 15 (1999), pp. 909–
917.

[38] N. Sugaya, M. Sato, H. Murakami, A. Imaizumi, S. Aburatani, and K. Horimoto, Causes
for the large genome size in a Cyanobacterium Anabaena sp. PCC7120, Genome Infor-
matics, 15 (2004), pp. 229–238.

[39] K. Suhre, Gene and genome duplication in Acanthamoeba polyphaga Mimivirus, J. Virology,
79 (2005), pp. 14095–14101.

[40] K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E. Moret, Approxi-
mating the true evolutionary distance between two genomes, in Proceedings of the Seventh
Workshop on Algorithm Engineering and Experiments and the Second Workshop on An-
alytic Algorithmics and Combinatorics, C. Demetrescu, R. Sedgewick, and R. Tamassia,
eds., SIAM, Philadelphia, 2005, pp. 121–129.

[41] K. M. Swenson, N. D. Pattengale, and B. M. E. Moret, A framework for orthology assign-
ment from gene rearrangement data, in Comparative Genomics, Lecture Notes in Comput.
Sci. 3678, Springer, Berlin, 2005, pp. 153–166.

[42] E. Tannier and M. F. Sagot, Sorting by reversals in subquadratic time, in Combinatorial
Pattern Matching, Lecture Notes in Comput. Sci. 3109, Springer, Berlin, 2004, pp. 1–13.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1764–1776

APPROXIMATING THE RADII OF POINT SETS∗

KASTURI VARADARAJAN† , S. VENKATESH‡ , YINYU YE§ , AND JIAWEI ZHANG¶

Abstract. We consider the problem of computing the outer-radii of point sets. In this problem,
we are given integers n, d, and k, where k ≤ d, and a set P of n points in �d. The goal is to compute
the outer k-radius of P , denoted by Rk(P), which is the minimum over all (d − k)-dimensional
flats F of maxp∈P d(p, F), where d(p, F) is the Euclidean distance between the point p and flat F .
Computing the radii of point sets is a fundamental problem in computational convexity with many
significant applications. The problem admits a polynomial time algorithm when the dimension d
is constant [U. Faigle, W. Kern, and M. Streng, Math. Program., 73 (1996), pp. 1–5]. Here we are
interested in the general case in which the dimension d is not fixed and can be as large as n, where the
problem becomes NP-hard even for k = 1. It is known that Rk(P) can be approximated in polynomial
time by a factor of (1 + ε) for any ε > 0 when d − k is a fixed constant [M. Bădoiu, S. Har-Peled,
and P. Indyk, in Proceedings of the ACM Symposium on the Theory of Computing, 2002; S. Har-
Peled and K. Varadarajan, in Proceedings of the ACM Symposium on Computing Geometry, 2002].
A polynomial time algorithm that guarantees a factor of O(

√
logn) approximation for R1(P), the

width of the point set P , is implied by the results of Nemirovski, Roos, and Terlaky [Math. Program.,
86 (1999), pp. 463–473] and Nesterov [Handbook of Semidefinite Programming Theory, Algorithms,
Kluwer Academic Publishers, Norwell, MA, 2000]. In this paper, we show that Rk(P) can be
approximated by a ratio of O(

√
logn) for any 1 ≤ k ≤ d, thus matching the previously best known

ratio for approximating the special case R1(P), the width of point set P . Our algorithm is based
on semidefinite programming relaxation with a new mixed deterministic and randomized rounding
procedure. We also prove an inapproximability result that gives evidence that our approximation
algorithm is doing well for a large range of k. We show that there exists a constant δ > 0 such that
the following holds for any 0 < ε < 1: there is no polynomial time algorithm that approximates

Rk(P) within (log n)δ for all k such that k ≤ d − dε unless NP ⊆ DTIME [2(log m)O(1)
]. Our

inapproximability result for Rk(P) extends a previously known hardness result of Brieden [Discrete
Comput. Geom., 28 (2002), pp. 201–209] and is proved by modifying Brieden’s construction using
basic ideas from probabilistically checkable proofs (PCP) theory.

Key words. approximation algorithms, semidefinite programming, computational convexity

AMS subject classifications. 68W20, 68W25, 68W40

DOI. 10.1137/050627472

1. Introduction. Computing the outer k-radius of a point set is a fundamental
problem in computational convexity with applications in global optimization, data

∗Received by the editors March 24, 2005; accepted for publication (in revised form) November
2, 2006; published electronically March 19, 2007. A preliminary version of this paper appeared as
(i) K. R. Varadarajan, S. Venkatesh, and J. Zhang, Approximating the radii of point sets in high
dimensions, in Proceedings of the 43rd IEEE Symposium on the Foundations of Computer Science,
2002 and (ii) Y. Ye and J. Zhang, An improved algorithm for approximating the radii of point sets,
in Proceedings of Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques (APPROX, 2003), Springer, 2003.

http://www.siam.org/journals/sicomp/36-6/62747.html
†Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419 (kvaradar@

cs.uiowa.edu, www: http://www.cs.uiowa.edu/˜kvaradar/). The research of this author was sup-
ported by NSF CAREER award CCR-0237431.

‡Department of Computer Science, University of Victoria, PO Box 3055, STN CSC, Victoria
V8W 3P6, BC, Canada (venkat@cs.uvic.ca, www: http://www.cs.uvic.ca/˜venkat). The research of
this author was supported by an NSERC discovery grant.

§Management Science and Engineering and, by courtesy, Electrical Engineering, Stanford Univer-
sity, Stanford, CA 94305 (yinyu-ye@stanford.edu). The research of this authors was supported by
NSF grant DMI-0231600.

¶IOMS-Operations Management, Stern School of Business, New York University, 44 W. 4th
Street, Suite 8-66, New York, NY 10012-1126 (jzhang@stern.nyu.edu, www: http://www.stern.
nyu.edu/˜jzhang). The research of this authors was supported by NSF grant DMI-0231600.

1764

APPROXIMATING THE RADII OF POINT SETS 1765

mining, statistics, and clustering, and it has received considerable attention in the
computational geometry literature [20, 21, 22]. In this problem, we are given integers
n, d, and k, where k ≤ d, and a set P of n points in �d. A flat or affine subspace
F in �d is specified by a point q ∈ �d and a linear subspace H; it is defined as
F = {q+h|h ∈ H}. The dimension of the flat F is defined to be the dimension of the
linear subspace H. For any flat F , let R(P, F) = maxp∈P d(p, F) denote the radius
of the flat F with respect to P , where d(p, F) is the Euclidean distance between the
point p and the flat F . The goal is to compute the outer k-radius of P , denoted
by Rk(P), which is the minimum of R(P, F) over all (d − k)-dimensional flats F . A
(d− k)-flat is simply a flat of dimension d− k. Roughly speaking, the outer k-radius
Rk(P) measures how well the point set P can be approximated by an affine subspace
of dimension d − k. A few special cases of Rk(P) which have received particular
attention include R1(P), half of the width of P ; Rd(P), the radius of the minimum
enclosing ball of P ; and Rd−1(P), the radius of the minimum enclosing cylinder of P .

When the dimension d is a fixed constant, Rk(P) can be computed exactly in
polynomial time [15]. It is also known that Rk(P) can be approximated by a factor
of (1+ε) for any ε > 0 in O(n+fd(

1
ε)) time [2, 6], where fd is a polynomial for every

fixed d. In this paper, we are interested in the general scenario when the dimensions
k and d are not fixed and d can be as large as n.

When the dimensions k and d are part of the input, the complexity of comput-
ing/approximating Rk(P) depends on the parameter d− k. It is well known that the
problem is polynomial time solvable when d− k = 0, i.e., the minimum enclosing ball
of a set of points can be computed in polynomial time (Gritzmann and Klee [20]).
Megiddo [25] shows that the problem of determining whether there is a line that inter-
sects a set of balls is NP-hard. In his reduction, the balls have the same radius, which
implies that computing the radius Rd−1(P) of the min-enclosing cylinder of a set of
points P is NP-hard. Bădoiu, Har-Peled, and Indyk [7] show that Rd−1(P) can be
approximated in polynomial time by a factor of (1 + ε) for any ε > 0. Har-Peled and
Varadarajan [22, 23] generalize the result and show that Rk(P) can be approximated
by a factor of (1 + ε) for any ε > 0 when d− k is constant.1

More hardness results are known when d − k becomes large or when k becomes
small. Bodlaender et al. [10] show that the problem is NP-hard when k = 1. This
is true even for the case n = d + 1 [20]. Gritzmann and Klee [20] also show that it
is NP-hard to compute Rk(P) if k ≤ c · d for any fixed 0 < c < 1. These negative
results are further improved by Brieden, Gritzmann, and Klee [11] and Brieden [14],
the latter of which has shown that it is NP-hard to approximate R1(P), the width of
a point set, to within any constant factor.

On the positive side, the algorithms of Nemirovski, Roos, and Terlaky [26] and
Nesterov [27] imply that R1(P), or equivalently the width of the point set P , can be
approximated within a factor of O(

√
log n). Another algorithm for approximating the

width of a point set is given by Brieden et al. [12, 13], and their algorithm has a per-
formance guarantee

√
d/ log d that is measured in the dimension d. Their algorithm

in fact works for any convex body given in terms of appropriate “oracles”; the number
of calls to the oracle is polynomial in the dimension d. They also show that this is
the best possible result in the oracle model even if randomization is allowed. (Their
algorithm actually gives a

√
d/ log n approximation with poly(n) calls to the oracle,

where n is the number of points in the set.) It is not clear if their algorithm can be
extended to compute Rk(P).

1Note that Ropt
k

in [23] is the same as Rd−k in this paper

1766 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

The problem of efficiently computing the low-rank approximation of matrices has
received considerable attention recently; see [1, 5, 17] and the references cited in these
papers. This problem corresponds to computing the best (d−k)-dimensional subspace
that fits a point set, where the quality of a subspace is the sum of the square of the
distance of each point from the flat. The problem is therefore related to the one we
study in this paper, where the quality of a flat is the maximum over the point-flat
distances. However, the low-rank approximation problem can be solved in polynomial
time for any 1 ≤ k ≤ d.

Our results and an overview. We show that Rk(P) can be approximated in
polynomial time by a factor of O(

√
log n) for all 1 ≤ k ≤ d, thereby generalizing

the result of Nemirovski, Roos, and Terlaky [26] to all values of k. Our algorithm is
based on a semidefinite programming (SDP) relaxation with a mixed deterministic and
randomized rounding procedure, in contrast to all other purely randomized rounding
procedures used for semidefinite programming approximation.

Generally speaking, the problem of computing Rk(P) can be formulated as a
quadratic minimization problem. SDP problems (where the unknowns are represented
by positive semidefinite matrices) have recently been developed for approximating
such problems; see, for example, Goemans and Williamson [18]. In the case of k =
1, computing R1(P) corresponds to a SDP problem plus an additional requirement
that the rank of the unknown matrix equals 1. Removing the rank requirement,
the SDP problem becomes a relaxation of the original problem and can be solved
within any given accuracy ε > 0 in time polynomial in ln 1

ε and the dimension of the
data specifying the problem. Once obtaining an optimal solution, say X, of the SDP
relaxation, one would like to generate a rank-1 matrix, say X̂ = yyT , from X, where
y is a column vector and serves as a solution to the original problem. Such rank
reduction is called “rounding.” Many rounding procedures are proposed, and almost
all of them are randomized; see, for example, [9].

One particular procedure has been proposed by Nemirovski, Roos, and Ter-
laky [26] which can be used for approximating R1(P). Their procedure is a simple
randomized rounding that can be described as follows: an optimal solution X of the
SDP relaxation, whose rank could be as large as d, can be represented as (for example,
by eigenvector decomposition)

X = λ1v1v
T
1 + λ2v2v

T
2 + · · · + λdvdv

T
d .

Then one can generate a single vector y by taking a random linear combination of
the vectors

√
λ1v1,

√
λ2v2, . . . ,

√
λdvd, where the coefficients of the combination take

values of −1 or 1 uniformly and independently.
For the case k ≥ 2, the SDP relaxation that we describe is best viewed as a direct

relaxation of the problem of computing Rk(P), rather than one that is obtained via a
quadratic program formulation of Rk(P). We then need to generate k rank-1 matrices
from X, the optimal solution of the SDP relaxation, such that

X̂ =

k∑
i=1

yiy
T
i ,

where yis are orthogonal to each other. Our rounding procedure works as follows:
having obtained an optimal solution for the SDP relaxation with

X = λ1v1v
T
1 + λ2v2v

T
2 + · · · + λdvdv

T
d ,

APPROXIMATING THE RADII OF POINT SETS 1767

we deterministically partition the vectors v1, v2, . . . , vd into k groups where group j
may contain nj vectors and each group can be seen as a single semidefinite matrix
with rank nj . We then generate one vector from each group using the randomized
rounding procedure similar to that of Nemirovski, Roos, and Terlaky [26]. The k
vectors generated by this rounding procedure will automatically satisfy the condition
that any pair of them must be orthogonal to each other. We then manage to show that
the quality of these vectors yields an approximation ratio of no more than O(

√
log n).

We also prove an inapproximability result that gives evidence that our approxi-
mation algorithm is close to the best possible for a large range of k. We show that
there exists a constant δ > 0 such that the following holds for any 0 < ε < 1: there is
no polynomial time algorithm that approximates Rk(P) within (logn)δ for all k such

that k ≤ d− dε unless NP ⊆ P̃ . P̃ denotes the complexity class DTIME[2(logm)O(1)

],
which is sometimes referred to as deterministic quasi-polynomial time. That is, P̃
contains the set of all problems for which there is an algorithm that runs in time

2(logm)O(1)

on inputs of size m.
To prove the lower bound result, we start with a two-prover protocol for 3SAT

in which the verifier has very low error probability. Such a protocol is obtained
as a consequence of the probabilistically checkable proofs (PCP) theorem of Arora
et al. [3], and Arora and Safra [4] and the parallel repetition theorem of Raz [28].
The construction of Brieden [14] then implies a reduction from Max-3SAT to width
computation such that the ratio of the width of point sets that correspond to satisfiable
instances to those that correspond to unsatisfiable instances is large. This separation
gives us the inapproximability result for the width. This result can then be extended
to an inapproximability result for Rk(P) for a large range of k.

The remainder of this paper is organized as follows: in section 2, we present our
algorithm for approximating the outer k-radius Rk(P) of a point set P . In section 3,
we describe our inapproximability results. We make some concluding remarks in
section 4.

2. Approximating the radius. We now present the quadratic program formu-
lation of the outer k-radius problem and its SDP relaxation. It will be helpful to first
introduce some notation that will be used later. The trace of a given square matrix
A, denoted by Tr(A), is the sum of the entries on the main diagonal of A. We use
I to denote the identity matrix whose dimension will be clear in the context. The
inner product of two vectors p and q is denoted by 〈p, q〉. The 2-norm of a vector x,
denoted by ‖x‖, is defined by

√
〈x, x〉. For a matrix X, we use the notation X � 0

to mean that X is a positive semidefinite matrix. For simplicity, we assume that P is
symmetric in the sense that if p ∈ P , then −p ∈ P . This is without loss of generality
for the following reason: we may, by performing a translation if necessary, assume
that 0 ∈ P . Denote the set {−p|p ∈ P} by −P , and let Q = P ∪ −P . It is clear that
Rk(P) ≤ Rk(Q) ≤ 2Rk(P). Therefore, if we found a good approximation for Rk(Q),
then it must also be a good approximation for Rk(P).

Since P is a symmetric point set, the best (d−k)-flat for P contains the origin so
that it is a subspace. Thus, the square of Rk(P) can be defined by the optimal value
of the following quadratic minimization problem:

Rk(P)2 := Minimize α

Subject to
∑k

i=1〈p, xi〉2 ≤ α ∀p ∈ P,
‖xi‖2 = 1, i = 1, . . . , k,
〈xi, xj〉 = 0 ∀i �= j.

(1)

1768 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

Assume that x1, x2, . . . , xk ∈ �d is the optimal solution of (1). Then one can easily
verify that the matrix X = x1x

T
1 + x2x

T
2 + · · · + xkx

T
k is a feasible solution for the

following semidefinite program:

α∗
k := Minimize α

Subject to Tr(ppTX) (= pTXp) ≤ α ∀p ∈ P,
Tr(X) = k,
I −X � 0, X � 0.

(2)

It follows that α∗
k ≤ Rk(P)2. The following lemma follows from the above observa-

tions.
Lemma 1. There exists an integer r ≥ k such that we can compute, in polynomial

time, r nonnegative reals λ1, λ2, . . . , λr and r orthogonal unit vectors v1, v2, . . . , vr
such that

1.
∑r

i=1 λi = k.
2. max1≤i≤r λi ≤ 1.
3.

∑r
i=1 λi〈p, vi〉2 ≤ Rk(P)2 for any p ∈ P .

Proof. We solve the semidefinite program (2) and let X∗ be an optimal solution
of (2). We claim that the rank of X∗, say r, is at least k. This follows from the fact
that Tr(X∗) = k and I −X∗ � 0. In other words, Tr(X∗) = k implies that the sum
of the eigenvalues of X∗ is equal to k, and I −X∗ � 0 implies that all the eigenvalues
are less than or equal to 1. Therefore, X∗ has at least k nonzero eigenvalues, which
implies that the rank of X∗ is at least k. Let λ1, λ2, . . . , λr be the r nonnegative
eigenvalues and v1, v2, . . . , vr be the corresponding eigenvectors (see [26, p. 466] for
details on computing the eigenvalues and eigenvectors in polynomial time). Then we
have

∑r
i=1 λi = k and max1≤i≤r λi ≤ 1. Furthermore, for any p ∈ P ,

r∑
i=1

λi〈p, vi〉2 = Tr(ppT
r∑

i=1

λiviv
T
i) = Tr(ppTX∗) ≤ α∗

k ≤ Rk(P)2.

2.1. Deterministic first rounding. In this section, we prove a lemma con-
cerning how to deterministically group the eigenvalues and their eigenvectors. The
proof of the lemma is elementary, but it plays an important role for proving our main
result.

Lemma 2. The index set {1, 2, . . . , r} can be partitioned into k sets I1, I2, . . . , Ik
such that, for any i : 1 ≤ i ≤ k,

∑
j∈Ii

λj ≥ 1
2 .

Proof. Recall that
∑r

j=1 λj = k and 0 ≤ λj ≤ 1 for all j. Without loss of
generality, we can assume that λ1 ≥ λ2 ≥ · · · ≥ λr. Our partitioning algorithm is
the same as the longest-processing-time heuristic algorithm for the parallel machine
scheduling problem. The algorithm works as follows:

1. For i = 1, 2, . . . , k, set Ii = ∅, and let Li = 0. Let I = {1, 2, . . . , r}.
2. While I �= ∅,

choose j from I with the smallest index;
choose set i with the smallest value Li.
Let Ii := Ii ∪ {j}, Li := Li + λj , and I := I − {j}.

It is clear that when the algorithm stops, the sets I1, I2, . . . , Ik are a partition of
{1, 2, . . . , r}. Now we prove the lemma by contradiction. Assume that there exists
some t such that

∑
j∈It

λj <
1
2 .

We now claim that, for all i,
∑

j∈Ii
λj ≤ 1. Otherwise, suppose

∑
j∈It′

λj > 1 for

some t′. Note that λj ≤ 1, for every j, and thus there are at least two eigenvalues

APPROXIMATING THE RADII OF POINT SETS 1769

assigned to It′ . Denote the last element within It′ by s′. It follows that
∑

j∈It′
λj −

λs′ =
∑

j∈It′\{s′} λj ≤
∑

j∈It
λj since, otherwise, we would have not assigned λs′ to

It′ in the algorithm. However, since
∑

j∈It
λj < 1

2 , we must have
∑

j∈It′
λj − λs′ =∑

j∈It′\{s′} λj < 1
2 . Thus, λs′ >

∑
j∈It′

λj − 1
2 > 1

2 . This is impossible since λs′ is
the last eigenvalue assigned to It′ , which implies λs′ ≤ λj for every j ∈ It′ , and
we have already proved that there must exist an l such that s′ �= l ∈ It′ and λl ≤∑

j∈It′\{s′} λj <
1
2 . Therefore,

∑
j∈Ii

λj ≤ 1 for all i, and in particular
∑

j∈It
λj <

1
2 .

It follows that
∑k

i=1

∑
j∈Ii

λj < k. However, we know that since I1, I2, . . . , Ik is a

partition of the index set {1, 2, . . . , r},
∑k

i=1

∑
j∈Ii

λj =
∑r

j=1 λj = k. This results in
a contradiction. Therefore, such a t does not exist, and the proof is completed.

Notice that the running time of the partitioning algorithm is bounded by O(r ·k).2

2.2. Randomized second rounding. Let us now assume that we have found
I1, I2, . . . , Ik. Then our next randomized rounding procedure works as follows:

1. Generate an r-dimensional random vector φ such that each entry of φ takes
value, independently, −1 or 1 with probability 1

2 each way.
2. For i = 1, 2, . . . , k, let

xi =

∑
j∈Ii

φj

√
λj · vj√∑

j∈Ii
λj

.

The following lemmas show that x1, x2, . . . , xk form a feasible solution for the
original problem. In other words, they are k orthogonal unit vectors.

Lemma 3. For i = 1, 2, . . . , k, ‖xi‖ = 1.
Proof. Recall that 〈vl, vj〉 = 0 for any l �= j and ‖vj‖ = 1. By definition,

‖xi‖2 =

〈∑
j∈Ii

φj

√
λjvj√∑

j∈Ii
λj

,

∑
j∈Ii

φj

√
λjvj√∑

j∈Ii
λj

〉

=
1∑

j∈Ii
λj

∑
j∈Ii

〈φj

√
λjvj , φj

√
λjvj〉

=
1∑

j∈Ii
λj

∑
j∈Ii

(φj)
2λj‖vj‖2

= 1.

Lemma 4. If s �= t, then 〈xs, xt〉 = 0.
Proof. Since for any j ∈ Is and l ∈ It, 〈vj , vl〉 = 0,

〈xs, xt〉 =

〈∑
j∈Is

φj

√
λjvj√∑

j∈Is
λj

,

∑
j∈It

φj

√
λjvj√∑

j∈It
λj

〉

=
1√∑

j∈Is
λj ·

∑
j∈It

λj

〈∑
j∈Is

φj

√
λjvj ,

∑
j∈It

φj

√
λjvj

〉

= 0.

2An alternative way of partitioning the eigenvalues is the following: first, put the eigenvalues
that are greater than or equal to 1/2 into distinct subsets. If the number of such eigenvalues, say l,
is not less than k, then we are done. Otherwise, arbitrarily put the remaining eigenvalues into k − l
subsets such that the sum of eigenvalues in each subset is greater than or equal to 1/2. This method
was suggested by an anonymous referee of a preliminary version of this paper.

1770 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

Now we establish a bound on the performance of our algorithm. First, let us
introduce Bernstein’s theorem (see, for example, [26]), which is a form of the Chernoff
bound.

Lemma 5. Let φ be a random vector whose entries are independent and either 1
or −1 with probability 1

2 each way. Then, for any vector e and β > 0,

prob{〈φ, e〉2 > β‖e‖2} < 2 · exp

(
−β

2

)
.

Let Cip =
∑

j∈Ii
λj〈p, vj〉2. Then we have

Lemma 6. For each i = 1, 2, . . . , k and each p ∈ P , we have

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2

n3
.

Proof. Given i and p, define an |Ii|-dimensional vector e such that its entries are√
λj〈p, vj〉, j ∈ Ii, respectively. Furthermore, we define the |Ii|-dimensional vector

φ|Ii whose entries are those of φ with indices in Ii. First notice that

‖e‖2 =
∑
j∈Ii

(
√
λj〈p, vj〉)2 =

∑
j∈Ii

λj · 〈p, vj〉2 = Cip.

On the other hand, since
∑

j∈Ii
λj ≥ 1

2 ,

〈p, xi〉2 =

〈
p,

∑
j∈Ii

√
λjvjφj√∑

j∈Ii
λj

〉2

≤ 2

〈
p,

∑
j∈Ii

√
λjvjφj

〉2

= 2

⎛
⎝∑

j∈Ii

√
λjφj〈p, vj〉

⎞
⎠

2

= 2 〈φ|Ii , e〉
2
.

Thus

prob{〈p, xi〉2 > 12 log(n)Cip} ≤ prob{〈φ|Ii , e〉2 > 6 log(n)‖e‖2}.

Therefore, the conclusion of the lemma follows by using Lemma 5 and by letting
β = 6 log(n).

Theorem 1. We can compute in polynomial time a (d − k)-flat such that, with
probability at least 1 − 2

n , the distance between any point p ∈ P and F is at most√
12 log(n) ·Rk(P).

Proof. For given i = 1, 2, . . . , k and p ∈ P , consider the event

Bip = {φ|〈p, xi〉2 > 12 log(n) · Cip}

and B =
⋃

i,p Bip. The probability that the event B happens is bounded by

∑
i,p

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2kn

n3
≤ 2

n
.

APPROXIMATING THE RADII OF POINT SETS 1771

If B does not happen, then for any i and p,

〈p, xi〉2 ≤ 12 log(n) · Cip.

Therefore, for each p ∈ P ,

k∑
i=1

〈p, xi〉2 ≤ 12 log(n)

k∑
i=1

Cip ≤ 12 log(n) ·Rk(P)2.

The last inequality follows from Lemma 1. This completes the proof by taking F as
the subspace which is orthogonal to the vectors x1, x2, . . . , xk.

3. The inapproximability results. We start with formal definitions of the
problems that will be used in the sequence of reductions from 3SAT to computing
the outer k-radius Rk(P) of a set P of points. Our starting point will be the classic
3SAT problem, in which we are given a 3CNF formula and we want to know if there
is an assignment to its variables that simultaneously satisfies all its clauses. The next
problem we consider is the resricted quadratic programming problem as defined by
Brieden [14].

Definition 1 (ζ-restricted quadratic programming). We are given nonnegative
integers λ, τ, κ, and σ and nonnegative rational numbers cp,q,a,b for p ∈ [λ], q ∈ [τ],
a ∈ [κ], and b ∈ [σ]. (For a nonnegative integer n, [n] denotes the set {1, 2, . . . , n}.)
Our goal is to maximize

f(x) =
∑

p,q,a,b

cp,q,a,bxp,ayq,b

over the polytope P ⊆ �λκ+τσ described by∑
a∈[κ]

xp,a = 1 for p ∈ [λ],

∑
b∈[σ]

yq,b = 1 for q ∈ [τ],

0 ≤ xp,a ≤ 1 for p ∈ [λ], a ∈ [κ],

0 ≤ yq,b ≤ 1 for q ∈ [τ], b ∈ [σ].

We denote instances in which κ, σ ≤ ζ and λ, τ ≤ Δ by ζ-restricted QP [Δ].
Definition 2 (symmetric full-dimensional norm maximization). We are given

a string (n,m,A), where n and m are natural numbers and A is a rational m × n
matrix. Our goal is to maximize

f(x) = ||x||2
over all vectors x that belong to the polytope P = {x| − 1 ≤ Ax ≤ 1}. We denote an
instance in which the number of rows of A is at most m and the number of columns
is at most n by NM [m,n].

We first prove an inapproximability result for the case k = 1 and later extend it
to a large range of k using a simple reduction. The crux of the proof is the following
lemma.

Lemma 7. There is a constant c > 1 such that for any sufficiently large integer
parameter t ≥ 1, there is a reduction T from 3SAT formulas of size m to computing
R1 for a point set of size n = 2O(t23t logm) in d = 2O(t logm) dimensions such that the
following hold:

1772 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

1. If ψ is satisfiable, then R1(T (ψ)) ≥ w for some w.
2. If ψ is unsatisfiable, then R1(T (ψ)) ≤ w′ for some w′.
3. w

w′ ≥ ct.

This reduction, including the computation of w and w′, runs in time 2O(t23t logm).
Proof. The proof involves a sequence of three reductions.
From 3SAT to quadratic programming. Bellare and Rogaway [8, section 4]

give a reduction from 3SAT to quadratic programming via a two-prover protocol for
3SAT. We use their reduction, but in order to get the right parameters in the hardness
of approximation result for quadratic programming, we need to replace the one-round
two-prover protocol that they start off with by a different one that is described in
Feige [16, section 2.2]. For completeness, we now describe this two-prover protocol
for 3SAT.

The two-prover protocol. Feige [16, Proposition 2.1.2] shows there exists a poly-
nomial time reduction T from 3CNF formulas to 3CNF formulas such that each clause
of T (ψ) has exactly three literals (corresponding to three different variables) and each
variable appears in exactly five clauses and furthermore the following hold:

1. If ψ is satisfiable, then T (ψ) is satisfiable.
2. If ψ is not satisfiable, then T (ψ) is at most (1−ε)-satisfiable for some constant

0 < ε < 1. That is, any assignment satisfies at most a fraction (1 − ε) of all
clauses in T (ψ).

Without the requirement that each variable appears in exactly five clauses, such
a reduction is known to be a consequence of the PCP theorem [3]. We now describe
the steps taken by the verifier in the two-prover protocol.

1. Convert ψ to T (ψ).
2. Choose t clauses uniformly at random (with replacement) from T (ψ). Ask

prover P1 for an assignment to the variables in each clause chosen.
3. From each chosen clause, choose one of the three variables in that clause

uniformly at random. We get t distinguished variables, possibly with repetitions. Ask
the prover P2 for an assignment to each of these t variables.

4. Accept if, for each chosen clause, it is satisfied by the assignment received from
prover P1 and the assignments made by the two provers to the distinguished variable
from the clause are consistent. (Acceptance means that the verifier declares ψ to be
satisfiable.) For example, suppose t = 2 and the verifier chose the clauses (¬x∨ y∨ z)
and (¬y∨ z∨w) and chose x and w as the respective distingushed variables. Suppose
that P1 returned the values x1, y1, and z1 for the variables in the first clause and the
values y2, z2, and w2 for the variables in the second clause. Suppose that P2 returned
values x3 and w3 for the distinguished variables. Then the verifier accepts if both
(¬x1 ∨ y1 ∨ z1) and (¬y2 ∨ z2 ∨ w2) evaluate to true, x1 = x3, and w2 = w3.

The prover P1 is any function that on seeing ψ and the identity of the t clauses in
T (ψ) returns 3t bits that the verifier interprets as an assignment to the 3t variables
in these clauses. Similarly, the prover P2 is any function that on seeing ψ and the
identity of the t distinguished variables returns t bits that the verifier interprets as an
assignment to the distinguished variables.

If ψ is satisfiable, so is T (ψ), and there exist provers (functions) that will cause
the verifier to accept on every outcome of the random choices. This can be seen by
picking a satisfying assignment to T (ψ) and defining the two provers so that they
answer according to this assignment. If ψ is unsatisfiable, what is the maximum
probability, over all choices of provers (functions) P1 and P2, that the verifier accepts
ψ? By Raz’s parallel repetition theorem [28], this error probabibility is bounded above
by st for some s < 1 (where the s depends on ε). We refer the reader to Feige [16,

APPROXIMATING THE RADII OF POINT SETS 1773

section 2.2] for a discussion of this and to the paper by H̊astad [24] for more details on
the use of two-prover protocols in inapproximability results. Also, note that in this
protocol the questions to the two provers are at most O(t logm) bits long, where m
is the input size, since O(logm) bits suffice to identify a clause or variable in T (ψ).
The answers from the two-provers P1 and P2 are 3t and t bits long.

We now plug this two-prover protocol into the reduction of Bellare and Rog-
away [8, section 4] from SAT to restricted quadratic programming via two-prover
protocols. Their description assumes for simplicity that the question and answer
lengths of the two-prover protocol are the same, but their reduction works even if
these sizes are different. Using the fact that the answer length is at most 3t, we
obtain the following.3

Lemma 8 (Bellare and Rogaway [8]). There is a constant f > 1 such that, for
any sufficiently large integer t ≥ 1, there is a reduction T1 that maps 3CNF formulas
of size m to 23t-restricted QP [2O(t logm)] such that the following hold:

1. If ψ is satisfiable, then OPT (T1(ψ)) = w1 for some w1.
2. If ψ is unsatisfiable, then OPT (T1(ψ)) ≤ w2 for some w2.
3. w1

w2
≥ f t.

Moreover, this reduction, including the computation of w1 and w2, runs in time
2O(t logm).

From quadratic programming to norm maximization. Brieden [14, Theo-
rem 3.4] describes a set of interesting reductions that converts an instance of quadratic
programming to an instance of the norm maximization problem. Using this reduction,
we obtain the following.

Lemma 9 (Brieden [14]). For any λ > 0, there is a reduction T2 from restricted
quadratic programming to symmetric full-dimensional norm maximization that maps
23t-restricted QP [2O(t logm)] into NM [2O(t23t logm), 2O(t logm)] with the following prop-
erty: for any input L of QP to T2,

OPT (L)

(1 + λ)
≤ OPT (T2(L)) ≤ (1 + λ)OPT (L).

Moreover, the reduction T2 runs in time 2O(t23t logm).
From norm maximization to width computation. The reduction from

symmetric full-dimensional norm maximization to width computation is simple [19]
and is in fact used by Brieden [14]. Let ai ∈ �n be the vector that corresponds to the
ith row of matrix A which is input to the norm-maximation problem for 1 ≤ i ≤ m.
Thus the norm-maximization problem is

γ := Maximize ||x||2
Subject to 〈ai, x〉2 ≤ 1 for 1 ≤ i ≤ m.

(3)

The reduction T3 simply constructs a set B of points by adding, for each 1 ≤ i ≤
m, the points ai and −ai to B. Since B is a symmetric point set, R1(B)2 is given by
the program

Minimize α

Subject to 〈ai, x〉2 ≤ α for 1 ≤ i ≤ m,
‖x‖2 = 1.

(4)

3In Bellare’s and Rogaway’s reduction, the connection between the parameters of the two-prover
protocol for 3SAT and the parameters of the resulting ζ-restricted QP [Δ] instance is as follows: ζ
is exponential in the answer length, Δ is exponential in the question length, and the “gap” f t in
Lemma 8 is the reciprocal of the error probability of the protocol.

1774 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

It is easy to verify that γ = 1/R1(B).
The reduction T claimed in Lemma 7 is obtained by composing the reductions

T1, T2, and T3. In particular, choose λ such that (1 + λ)2 < f , and let

c =
1

(1 + λ)2
f > 1.

It can now be checked that Lemma 7 holds with this choice of c.
Theorem 2.

1. There exists a constant δ > 0 such that the following holds: there is no quasi-
polynomial time algorithm that approximates R1(P) within (log n)δ unless NP
⊆ P̃ .

2. Fix any constant b ≥ 1. Then there is no quasi-polynomial time algorithm
that approximates R1(P) within (log d)b unless NP ⊆ P̃ .

Proof. To prove part 1, we apply the reduction of Lemma 7 with t = log logm
to obtain an instance of computing R1 for a set of n = 2O(t23t logm) in d = 2O(t logm)

dimensions. Choose δ′ < log c
5 . Then

ct

(t23t)δ′
≥ ct

(24t)δ′
≥

(c

24δ′

)t

> (2δ
′
)t ≥ (logm)δ

′
.

Thus ct > (t23t logm)δ
′
. Since n = 2O(t23t logm), we can choose δ < δ′ such that,

for n large enough,

ct > (log n)δ.

To prove part 2, we apply the reduction of Lemma 7 with t = 2p log logm
log c for some

sufficiently large constant p. Then,

ct

tp
≥ 22p log logm

tp
≥ 2p log logm 2p log logm

tp
= 2p log logm

(
logm

t

)p

> 2p log logm

since logm > t for sufficiently large m.
Thus, ct > tp2p log logm = (t logm)p. Since the dimension d is 2O(t logm), it follows

that for every constant b ≥ 1, we can choose p large enough such that

ct > (log d)b.

Observe that the reduction runs in quasi-polynomial time for our choice of t in both
cases and hence the theorem follows.

We now give the easy reduction from width to the outer k-radius that proves the
main result of this section.

Theorem 3.

1. There exists a constant δ > 0 such that the following holds for any 0 < ε < 1:
there is no quasi-polynomial time algorithm that approximates Rk(P) within
(log n)δ for all k such that k ≤ d− dε unless NP ⊆ P̃ .

2. Fix any ε > 0. Fix any constant c ≥ 1. Then there is no quasi-polynomial
time algorithm that approximates Rk(P) within (log d)c for all k such that
k ≤ d− dε unless NP ⊆ P̃ .

Proof. Let P be a set of n points in �d. We map P to a set P ′ of n points
in �d+k−1 using the function that takes a point (x1, . . . , xd) ∈ �d to the point
(x1, . . . , xd, 0, . . . , 0). It is easily checked that R1(P) = Rk(P

′). Theorem 3 follows

APPROXIMATING THE RADII OF POINT SETS 1775

from this reduction and some simple calculations: observe that the reduction runs
in polynomial time even if we set k to be d1/ε − d + 1. With this choice, the target
dimension d′ := d+k− 1 equals d1/ε. Thus k = d1/ε−d+1 ≥ d′−d′ε. Theorem 3(1)
now follows by applying Theorem 2(1). For part (2), we apply Theorem 2(2) with
b = 2c. Since

(log d)2c ≥ (ε log d′)2c = (ε2 log d′)c(log d′)c ≥ (log d′)c

for sufficiently large d′, Theorem 3(2) also follows.

4. Conclusions. Finding efficient rounding methods for SDP relaxation plays a
key role in constructing better approximation algorithms for various hard optimization
problems. All of them developed to date are randomized in nature. Therefore, the
mixed deterministic and randomized rounding procedure developed in this paper may
have its own independent value. We expect to see more applications of the procedure
in approximating various computational geometry and space embedding problems.

Acknowledgment. We wish to thank Andreas Brieden and the anonymous ref-
erees for their valuable feedback.

REFERENCES

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, in
Proceedings of the ACM Symposium on the Theory of Computing, 2001.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent measures of
points, J. ACM, 51 (2004), pp. 606–635.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[4] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[5] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia, Spectral analysis of data, in
Proceedings of the ACM Symposium on the Theory of Computing, 2001.

[6] G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions, J. Algorithms, 38 (2001), pp. 91–109.

[7] M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets, in Proceedings
of the ACM Symposium on the Theory of Computing, 2002.

[8] M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program, Math.
Program. B, 69 (1995), pp. 429–441.

[9] D. Bertsimas and Y. Ye, Semidefinite Relaxations, Multivariate Normal Distributions, and
Order Statistics, Handbook Combin. Optim. 3, D.-Z. Du and P. M. Pardalos, eds., Kluwer
Academic Publishers, Norwell, MA, 1998, pp. 1–19.

[10] H. L. Bodlaender, P. Gritzmann, V. Klee, and J. Van Leeuwen, The computational
complexity of norm maximization, Combinatorica, 10 (1990), pp. 203–225.

[11] A. Brieden, P. Gritzmann, and V. Klee, Inapproximability of some geometric and quadratic
optimization problems, in Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, P. M. Pardalos, ed., Kluwer Academic Publishers,
Norwell, MA, 2000, pp. 96–115.

[12] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, and M. Simonovits, Deter-
ministic and randomized polynomial-time approximation of radii, Mathematika, 48 (2001),
pp. 63–105.

[13] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, and M. Simonovits, Approxi-
mation of diameters: Randomization doesn’t help, in Proceedings of the IEEE Symposium
on the Foundations of Computer Science, 1998, pp. 244–251.

[14] A. Brieden, Geometric optimization problems likely not contained in APX, Discrete Comput.
Geom., 28 (2002), pp. 201–209.

[15] U. Faigle, W. Kern, and M. Streng, Note on the computational complexity of j-radii of
polytopes in Rn, Math. Program., 73 (1996), pp. 1–5.

[16] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.

1776 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

[17] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low rank
approximations, J. ACM, 51 (2004), pp. 1025–1041.

[18] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semi-definite programming, J. ACM, 42 (1995), pp. 1115–
1145.

[19] P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional
normed spaces, Discrete Comput. Geom., 7 (1992), pp. 255–280.

[20] P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes
in finite-dimensional normed spaces, Math. Program., 59 (1993), pp. 162–213.

[21] P. Gritzmann and V. Klee, On the complexity of some basic problems in computational
convexity: I. Containment problems, Discrete Math., 136 (1994), pp. 129–174.

[22] S. Har-Peled and K. Varadarajan, Projective clustering in high dimensions using core-sets,
in Proceedings of the 18th Annual Symposium on Computational Geometry, ACM Press,
2002, pp. 312–318.

[23] S. Har-Peled and K. Varadarajan, High-dimensional shape fitting in linear time, Discrete
Comput. Geom., 32 (2004), pp. 269–288.

[24] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[25] N. Megiddo, On the complexity of some geometric problems in unbounded dimension, J. Sym-

bolic Comput., 10 (1990), pp. 327–334.
[26] A. Nemirovski, C. Roos, and T. Terlaky, On maximization of quadratic forms over inter-

section of ellipsoids with common center, Math. Program., 86 (1999), pp. 463–473.
[27] Yu. Nesterov, Global quadratic optimization via conic relaxation, in Handbook of Semidefinite

Programming Theory, Algorithms, and Applications, H. Wolkowicz, R. Saigal, and L.
Vandenberghe, eds., Kluwer Academic Publishers, Norwell, MA, 2000.

[28] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.

SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1777–1806

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS
AND APPLICATION TO INTEGER FACTORIZATION AND

CARTIER–MANIN OPERATOR∗

ALIN BOSTAN† , PIERRICK GAUDRY‡ , AND ÉRIC SCHOST‡

Abstract. We study the complexity of computing one or several terms (not necessarily consec-
utive) in a recurrence with polynomial coefficients. As applications, we improve the best currently
known upper bounds for factoring integers deterministically and for computing the Cartier–Manin
operator of hyperelliptic curves.

Key words. linear recurrences, factorization, Cartier–Manin operator

AMS subject classifications. 11Y16, 68Q25, 11Y05

DOI. 10.1137/S0097539704443793

1. Introduction. We investigate complexity questions for linear recurrent se-
quences. Our main focus is on the computation of one term, or several terms not
necessarily consecutive, in a recurrence with polynomial coefficients. As applications,
we improve the deterministic complexity of factoring integers and of computing the
Cartier–Manin operator of hyperelliptic curves.

A well-known particular case is that of linear recurrences with constant coeffi-
cients. In this case, the Nth term can be computed with a complexity logarithmic
in N , using binary powering. In the general case, there is a significant gap, as no
algorithm with a complexity polynomial in (logN) is known. However, Chudnovsky
and Chudnovsky showed in [11] how to compute one term in such a sequence without
computing all intermediate ones. This algorithm is closely related to Strassen’s algo-
rithm [48] for integer factorization; using baby steps/giant steps (BSGS) techniques,
it requires a number of operations which are roughly linear in

√
N to compute the

Nth term.
Precisely, let R be a commutative ring with unity and let M (resp., MM) be a

function N → N such that polynomials of degree less than d (resp., matrices of size
n×n) can be multiplied in M(d) (resp., MM(n)) operations (+,−,×); for x ∈ R−N,
we write M(x) = M(�x�). Next let M(X) be an n× n matrix with entries in R[X] of
degree at most 1. Given a vector of initial conditions U0 ∈ Rn, define the sequence
(Ui) of vectors in Rn by the vector recurrence

Ui+1 = M(i + 1)Ui for all i ≥ 0.

Then, assuming that 2, . . . , �
√
N� are units in R, Chudnovsky and Chudnovsky

showed that UN can be computed using

O
(
MM(n)M(

√
N) + n2M(

√
N) logN

)

∗Received by the editors May 17, 2004; accepted for publication (in revised form) September 14,
2006; published electronically March 22, 2007. A preliminary version of this paper appears in [6];
with the exception of Theorem 5, all results here are new.

http://www.siam.org/journals/sicomp/36-6/44379.html
†Domaine de Voluceau, B.P. 105, E-78153 Le Chesnay Cedex, France (alin.bostan@inria.fr).
‡Laboratoire d’Informatique LIX, École Polytechnique, 91128 Palaiseau Cedex, France (gaudry@

lix.polytechnique.fr, schost@lix.polytechnique.fr).

1777

1778 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

operations. Both terms in this estimate describe basic operations on polynomial
matrices of degree

√
N (resp., multiplication and multipoint evaluation); using FFT-

based multiplication, the cost becomes linear in
√
N , up to polylogarithmic factors.

Our goal in this paper is to improve, generalize, and give applications of this algorithm.
• We prove that the Nth term in the sequence (Ui) above can be computed in

O
(
MM(n)

√
N + n2 M

(√
N
))

operations. Compared to [11], the dependence in n stays the same; how-
ever, for fixed n, we save polylogarithmic factors in N . Chudnovsky and
Chudnovsky suggested a lower bound of about

√
N base ring operations for

this problem; thus, our improvement gets us closer to the possible optimal
bound. Furthermore, in practice, saving such polylogarithmic factors is far
from negligible, since in some instances of an application, as detailed below
(Cartier–Manin operator computation), N may be of order 232.

• We give a generalization to the computation of several selected terms, which
are of indices N1 < · · · < Nr = N . When the number r of terms to be
computed does not exceed

√
N , we show that all of them can be obtained in

a time complexity which is the same as above, that is, essentially linear in√
N , so we are close to the optimal.

• Along the way, we consider a question of basic polynomial arithmetic: Given
the values taken by a univariate polynomial P on a large enough set of points,
how fast can we compute the values of P on a shift of this set of points? An
obvious solution is to use fast interpolation and evaluation techniques, but
we show that this can be done faster when the evaluation points form an
arithmetic progression.

In all these algorithms, we will consider polynomial matrices with coefficients of degree
at most 1, which is quite frequent in applications, e.g., in the two applications pre-
sented below. However, this is not a real restriction: the case of coefficients of larger
degree can be handled mutatis mutandis at the cost of a more involved presentation.

A first application is the deterministic factorization of integers. To find the prime
factors of an integer N , we note that Strassen’s algorithm [48] has a complexity of

O
(
Mint(

4
√
N logN) logN

)
bit operations, where we denote by Mint a function such that integers of bit-size d
can be multiplied in Mint(d) bit operations (as above, we extend this function to take
arguments in R). Chudnovsky and Chudnovsky’s algorithm generalizes Strassen’s;
thus, our modifications apply here as well. We prove that there exists a determin-
istic algorithm that outputs the complete factorization of an integer N with a bit
complexity in

O
(
Mint(

4
√
N logN)

)
.

To our knowledge, this gives the fastest deterministic integer factorization algorithm.
Prior to Strassen’s work, the record was held by Pollard’s algorithm [35]; for any
δ > 0, its bit complexity is in O(Mint(

4
√
N logN)N δ). Other deterministic factor-

ization algorithms exist [36, 30]; some have a better conjectured complexity, whose
validity relies on unproved number-theoretic conjectures. The fastest probabilis-
tic algorithm for integer factorization, with a fully established complexity bound,
is due to Lenstra, Jr. and Pomerance [27], with a bit complexity polynomial in

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1779

exp(
√

logN log logN). The number field sieve [26] has a better conjectured com-
plexity, expected to be polynomial in exp(3

√
logN(log logN)2).

In accordance with these estimates, the latter algorithms are better suited for
practical computations than our deterministic variant, and all recent record-sized
computations rely on the number field sieve. However, as already pointed out by
Pollard [35], proving unconditional, deterministic upper bounds remains an important
challenge.

Our second application is point-counting in cryptography, related to the compu-
tation of the Cartier–Manin operator [10, 28] of hyperelliptic curves over finite fields.

The basic ideas already appear for elliptic curves [44, Chapter V]. Suppose we
are to count the number n of solutions of the equation y2 = f(x) over Fp, where
p > 2 is prime and f has degree 3. Let χ : Fp → Fp be the map x �→ x(p−1)/2. For
x 	= 0, χ(x) = 1 when x is a square, and χ(x) = −1 otherwise. Hence, n equals∑

x∈Fp
χ(f(x)) modulo p. For i 	= 0,

∑
x∈Fp

xi equals −1 if p − 1 divides i, and 0

otherwise; one deduces that n modulo p is the opposite of the coefficient of xp−1 in
f(x)(p−1)/2.

Generalizing these ideas to hyperelliptic curves leads to the notions of the Hasse–
Witt matrix and Cartier–Manin operator. Using a result of Manin [28], the Hasse–
Witt matrix can be used as part of a point-counting procedure. As above, for hyperel-
liptic curves given by an equation y2 = f(x), the entries of this matrix are coefficients
of h = f (p−1)/2.

The coefficients of h satisfy a linear recurrence with rational function coefficients.
Using our results on linear recurrences, we deduce an algorithm to compute the Hasse–
Witt matrix whose complexity is essentially linear in

√
p. For instance, in a fixed

genus, for a curve defined over the finite field Fp, the complexity of our algorithm is

O
(
Mint(

√
p log p)

)

bit operations. This improves the methods of [18] and [29] which have a complexity
essentially linear in p. Note that when p is small enough, other methods, such as
the p-adic methods used in Kedlaya’s algorithm [24], also provide very efficient point-
counting procedures, but their complexity is at least linear in p; see [17].

Main algorithmic ideas. We briefly recall Strassen’s factorization algorithm and
Chudnovsky and Chudnovsky’s generalization, and describe our modifications.

To factor an integer N , trial division with all integers smaller than
√
N has a cost

linear in
√
N . To do better, Strassen proposed to group all integers smaller than

√
N

into c blocks of c consecutive integers, where c ∈ N is of order 4
√
N . Write f0 = 1 · · · c

mod N , f1 = (c + 1) · · · (2c) mod N, . . . , fc−1 = (c2 − c + 1) · · · (c2) mod N . If
the values f0, . . . , fc−1 can be computed efficiently, then finding a prime factor of N
becomes easy, using the gcd’s of f0, . . . , fc−1 with N . Thus, the main difficulty lies
in computing the values fi, whose cost will actually dominate the whole complexity.

To perform this computation, let R = Z/NZ and let F be the polynomial
(X + 1) · · · (X + c) ∈ R[X]. The “baby steps” part of the algorithm consists of
computing F : using the subproduct tree algorithm [15, Chapter 10], this is done
in O(M(c) log c) operations in R. Then, the “giant steps” consist of evaluating F at
0, c, . . . , (c − 1)c, since F (ic) = fi. Using fast evaluation, these values can be com-
puted in O(M(c) log c) operations. Since c has order 4

√
N , the whole process has a

complexity of O(M(4
√
N) logN) operations in R. This is the core of Strassen’s fac-

torization algorithm; working out the complexity estimates in a boolean complexity
model yields the bounds given before.

1780 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

Independently of the factorization question, one sees that multiplying the values
f0, f1, . . . , fc−1 yields the product 1 · · · c2 modulo N . Thus, this algorithm can be
used to compute factorials: the analysis above shows that in any ring R, for any
N ≥ 0, the product 1 · · ·N can be computed in O(M(

√
N) logN) operations in R.

Note the improvement obtained over the naive iterative algorithm, whose complexity
is linear in N .

Now, the sequence UN = N ! is a basic example of a solution of a linear recur-
rence with polynomial coefficients, namely UN = NUN−1. Chudnovsky and Chud-
novsky thus generalized the above BSGS process to compute the Nth term of an
n × n matrix recurrence with polynomial coefficients of degree at most 1. The main
tasks are the same as above. Computing the matrix equivalent of the polynomial F
can be done using O(MM(n)M(

√
N)) operations if 2, . . . , �

√
N� are units in R, and

O(MM(n)M(
√
N) logN) otherwise. Then, the subsequent evaluation can be done us-

ing O(n2M(
√
N) logN) operations. This gives the complexity estimate mentioned

before.

Let us now describe our approach for the factorial (the matrix case is similar).
We are not interested in the coefficients of the polynomial F , but in its values on
suitable points. Now, both F and the evaluation points have special structures: F is
the product of (X + 1), (X + 2), . . . , (X + c), whereas the evaluation points form
the arithmetic progression 0, c, . . . , (c − 1)c. This enables us to reduce the cost of
evaluating F from O(M(c) log c) to O(M(c)). We use a divide-and-conquer approach;
the recursive step consists of evaluating a polynomial akin to F , with degree halved,
on an arithmetic progression of halved size. Putting this idea into practice involves
the following operation, which is central to all our algorithms: Given the values of a
polynomial P on an arithmetic progression, compute the values of P on a shift of this
arithmetic progression.

In the general case of an n×n matrix recurrence, our fast solution to this problem
will enable us to dispense completely with polynomial matrix multiplications, and to
reduce by a logarithmic factor all costs related to multipoint evaluation. However, it
will impose suitable invertibility conditions in R; we will pay special attention to such
conditions, since in our two applications the base ring contains zero-divisors.

Organization of the paper. Section 2 introduces notation and previous results.
Section 3 gives our algorithm for shifting a polynomial given by its values on an
arithmetic progression; it is used in section 4 to evaluate some polynomial matrices,
with an application in section 5 to integer factorization. In section 6, we give our
modification on Chudnovsky and Chudnovsky’s algorithm for computing one term in
a recurrence with polynomial coefficients; a generalization to several terms is given in
section 7. In section 8, we apply these results to the computation of the Cartier–Manin
operator.

2. Notation and basic results. We use two computational models. Our algo-
rithms for linear recurrent sequences apply over arbitrary rings, so their complexity
is expressed in an algebraic model, counting at unit cost the base ring operations.
Algorithms for integer factorization and Cartier–Manin operator computation require
us to count bit operations: for this purpose, we will use the multitape Turing machine
model.

Our algorithms use BSGS techniques. As usual with such algorithms, the mem-
ory requirements essentially follow the time complexities (whereas naive iterative al-
gorithms for linear recurrences run in constant memory). We will thus give memory
estimates for all our algorithms.

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1781

In what follows, log x is the base-2 logarithm of x;
x� and �x� denote, respectively,
the largest integer less than or equal to x, and the smallest integer larger than or equal
to x.

To make some expressions below well defined, if f is defined as a map N → N we
may implicitly extend it to a map R → N by setting f(x) = f(�x�) for x ∈ R − N.

All our rings will be commutative and unitary. If R is such a ring, the map N → R
sending n to 1 + · · · + 1 (n times) extends to a map ϕ : Z → R; we will still denote
by n ∈ R the image ϕ(n).

2.1. Algebraic complexity model. The algorithms of sections 3, 4, 6, and 7
apply over arbitrary rings. To give complexity estimates, we use the straight-line
program model, counting at unit cost the operations (+,−,×) in the base ring; see [8].
Hence, the time complexity of an algorithm is the size of the underlying straight-line
program; we will simply speak of “ring operations.” Branching and divisions are not
used; thus, if we need the inverses of some elements, they will be given as inputs to
the algorithm.

To assign a notion of space complexity to a straight-line program, we play a pebble
game on the underlying directed acyclic graph; see [3] for a description. However, we
will not use such a detailed presentation: we will simply speak of the number of
ring elements that have to be stored, or of “space requirements”; such quantities
correspond to the number of pebbles in the underlying pebble game.

Basic operations. Let R be a ring. The following lemma (see [32] and [33, p. 66])
shows how to trade inversions (when they are possible) for multiplications.

Lemma 1. Let r0, . . . , rd be units in R. Given (r0 · · · rd)−1, one can compute
r−1
0 , . . . , r−1

d in O(d) operations and space O(d).

Proof. We first compute R0 = r0, R1 = r0r1, . . . , Rd = r0r1 · · · rd in d multipli-
cations. The inverse of Rd is known; by d more multiplications we deduce Sd = R−1

d ,
Sd−1 = rdSd, . . . , S0 = r1S1, so that Si equals (r0 · · · ri)−1. We obtain the inverse
si of ri by computing s0 = S0, s1 = R0S1, . . . , sd = Rd−1Sd for d additional opera-
tions.

In what follows, we need to compute some constants in R. For i, d ∈ N, and
a ∈ R, set

δ(i, d) =

d∏
j=0, j �=i

(i− j) and Δ(a, i, d) =

d∏
j=0

(a + i− j).(1)

Then, we have the following results.

Lemma 2. Suppose that 2, . . . , d are units in R. Given their inverses, one can
compute the inverses of δ(0, d), . . . , δ(d, d) in O(d) operations and space O(d).

Suppose that a− d, . . . , a− 1 are units in R. Given their inverses, one can com-
pute Δ(a, 0, d), . . . ,Δ(a, d, d) in O(d) operations and space O(d).

Proof. We use the following formulas, where i ranges from 1 to d:

1

δ(0, d)
=

1∏d
j=1(−j)

,
1

δ(i, d)
=

i− d− 1

i

1

δ(i− 1, d)
,

Δ(a, 0, d) =
d∏

j=0

(a− j), Δ(a, i, d) =
a + i

a + i− d− 1
Δ(a, i− 1, d).

1782 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

Algorithms for polynomials. We denote by M : N − {0} → N a function such
that over any ring, the product of polynomials of degree less than d can be computed
in M(d) ring operations. Using the algorithms of [41, 39, 9], M(d) can be taken in
O(d log d log log d). Following [15, Chapter 8], we suppose that for all d and d′, M
satisfies the inequalities

M(d)

d
≤ M(d′)

d′
if d ≤ d′ and M(dd′) ≤ d2M(d′),(2)

and that the product in degree less than d can be computed in space O(d). These
assumptions are satisfied for naive, Karatsuba, and Schönhage–Strassen multiplica-
tions. The first inequality implies that M(d) + M(d′) ≤ M(d+ d′) and that d ≤ M(d);
the second one is used to derive the inclusion M(O(d)) ⊂ O(M(d)).

We use the following results for arithmetic over a ring R. The earliest references
we know of are [22, 31, 47, 4], and [7] gives more recent algorithms.

Evaluation. If P is in R[X], of degree at most d, and r0, . . . , rd are in R, then
P (r0), . . . , P (rd) can be computed in time O(M(d) log d) and space O(d log d).
Using the algorithm of [16, Lemma 2.1], space can be reduced to O(d), but
this will not be used here.
Interpolation. For simplicity, we consider only interpolation at 0, . . . , d.
Suppose that 2, . . . , d are units in R; given their inverses, from the values
P (0), . . . , P (d), one can recover the coefficients of P using O(M(d) log d) op-
erations, in space O(d log d).

See the appendix for a description of the underlying algorithmic ideas.
Matrix multiplication. We denote by MM : N − {0} → N a function such that

the product of n × n matrices over any ring can be computed in MM(n) base ring
operations, in space O(n2). Thus, one can take MM(n) ∈ O(n3) using classical
multiplication, and MM(n) ∈ O(nlog 7) ⊂ O(n2.81) using Strassen’s algorithm [46].
We do not know whether the current record estimate [13] of O(n2.38) satisfies our
requirements. Note that n2 ≤ MM(n); see [8, Chapter 15].

2.2. Boolean complexity model. In sections 5 and 8, we discuss the complex-
ity of factoring integers and of computing the Cartier–Manin operator on curves over
finite fields. For these applications, the proper complexity measure is bit complexity.
For this purpose, our model will be the multitape Turing machine; see, for instance,
[40]. We will speak of bit operations to estimate time complexities in this model. Stor-
age requirements will be expressed in bits as well, taking into account input, output,
and intermediate data size.

Boolean algorithms will be given through high-level descriptions, and we shall
not give the details of their multitape Turing implementations. We just mention the
following relevant fact: for each algorithm, there is a corresponding multitape Turing
machine. Using previously designed algorithms as subroutines is then possible; each
of the corresponding machines is attributed a special band that plays the role of a
stack to handle subroutine calls. We refer to [40] for examples of detailed descriptions
along these lines.

Integer operations. Integers are represented in base 2. The function Mint : N → N

is such that the product of two integers of bit-size d can be computed within Mint(d)
bit operations. Hence, multiplying integers bounded by N takes at most Mint(logN)
bit operations.

We suppose that Mint satisfies inequalities (2), and that product in bit-size d
can be done in space O(d). Using the algorithm of [41], Mint(d) can be taken in

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1783

O(d log d log log d). Euclidean division in bit-size d can be done in time O(Mint(d))
and space O(d); see [12]. The extended gcd of two bit-size d integers can be computed
in time O(Mint(d) log d) and space O(d); see [25, 38].

Effective rings. We next introduce effective rings as a way to obtain results of a
general nature in the Turing model.

Let R be a finite ring, let � be in N, and consider an injection σ : R ↪→
{0, 1}�. We use σ to represent the elements of R. Polynomials in R[X] are rep-
resented by the sequence of the σ-values of their coefficients. Matrices over R are
represented in row-major ordering: an m × n matrix A = (ai,j) is represented as
σ(a1,1), . . . , σ(a1,n), . . . , σ(am,1), . . . , σ(am,n).

An effective ring is the data of such R, �, and σ, together with constants mR, sR ∈
N, and maps MR,SR and MMR,SMR : N − {0} → N meeting the following criteria.
First, through the σ representation, we ask that

• the sum and product of elements in R can be computed in time mR ≥ � and
space sR ≥ �;

• the product of polynomials of degree less than d in R[X] can be computed in
time MR(d) and space SR(d);

• the product of size n matrices over R can be computed in time MMR(n) and
space SMR(n).

We ask that for all d and d′, MR satisfies the inequalities (2),

MR(d)

d
≤ MR(d′)

d′
if d ≤ d′ and MR(dd′) ≤ d2MR(d′),

as well as dmR ≤ MR(d). We also ask that, for all d and d′, SR satisfies

sR ≤ SR(d) and SR(dd′) ≤ d2SR(d′).

Finally, as to matrix multiplication, we require that for all n, MMR and SMR satisfy

n2mR ≤ MMR(n) and sR ≤ SMR(n).

In what follows, our results will be first given in the algebraic model, and then
on an effective ring, with a bit complexity estimate; note that for both algebraic and
Turing models, all constants hidden in the O() estimates will be independent of the
base ring.

Effective rings will enable us to state bit complexity results similar to algebraic
complexity ones. We have, however, no general transfer theorem from algebraic to bit
complexity. First, nonarithmetic operations (loop handling, stack managing for recur-
sive calls) are not taken into account in the former model. In most cases however, the
corresponding cost is easily seen to be negligible, so we will not spend time discussing
this. A more important difference is that the algebraic model does not count time to
access data, that is, the number of tape movements done in the Turing model. This
point will be checked for the algorithms we will discuss on Turing machines.

For concrete applications, the following lemma, proved in the appendix, gives the
basic examples of effective rings. The results for matrix multiplication are not the
sharpest possible, since this would take us too far afield.

Lemma 3. Let N be in N, let R0 = Z/NZ, and let P be monic of degree m in
R0[T]. Then R = R0[T]/P can be made an effective ring, with

• � = m�logN�,
• mR ∈ O(Mint(m log(mN))) and sR ∈ O(m log(mN)),

1784 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

• MR(d) ∈ O(Mint(dm log(dmN))) and SR(d) ∈ O(dm log(dmN)),
• MMR(n) ∈ O(nlog 7mR) and SMR(n) ∈ O(n2� + sR).

Finally, the results given before in the algebraic model have the following coun-
terpart in the Turing model, using again the notation δ(i, d) and Δ(a, i, d) introduced
in (1). The proofs are given in the appendix.

Lemma 4. Let R be an effective ring. Then the following hold:

1. Suppose that r0, . . . , rd are units in R. Given r0, . . . , rd, (r0 · · · rd)−1, one
can compute r−1

0 , . . . , r−1
d in time O(dmR) and space O(d� + sR).

2. Suppose that 2, . . . , d are units in R. Given their inverses, one can compute
the inverses of δ(0, d), . . . , δ(d, d) in time O(dmR) and space O(d� + sR).

3. Suppose that a − d, . . . , a − 1 are units in R. Given their inverses, one can
compute Δ(a, 0, d), . . . ,Δ(a, d, d) in time O(dmR) and space O(d� + sR).

4. Let P =
∑d

i=0 piX
i be in R[X]. Given p0, . . . , pd and elements r0, . . . , rd

in R, P (r0), . . . , P (rd) can be computed in time O(MR(d) log d) and space
O(�d log d + SR(d)).

5. Suppose that 2, . . . , d are units in R. If P ∈ R[X] has degree at most d,
then given P (0), . . . , P (d) and the inverses of 2, . . . , d, one can compute the
coefficients of P in time O(MR(d) log d) and space O(�d log d + SR(d)).

3. Shifting evaluation values. We now address a special case of the question
of shifting evaluation values of a polynomial. Let R be a ring, let P be of degree d
in R[X], and let a and r0, . . . , rd be in R. Given P (r0), . . . , P (rd), how fast can we
compute P (r0 + a), . . . , P (rd + a)? We stress the fact that the coefficients of P are
not part of the input.

Suppose that all differences ri − rj , i 	= j are units in R. Then using fast inter-
polation and evaluation, the problem can be solved using O(M(d) log d) operations
in R. We propose an improved solution, in the special case when r0, . . . , rd form an
arithmetic progression; its complexity is in O(M(d)), so we gain a logarithmic factor.

Our algorithm imposes invertibility conditions on the sample points slightly more
general than those above. Given α, β in R and d in N, we define the following property:

h(α, β, d): β, 2, . . . , d and α− dβ, α− (d− 1)β, . . . , α + (d− 1)β, α + dβ are units.

We then define d(α, β, d) = β ·2 · · · d · (α−dβ) · · · (α+dβ) ∈ R. Assumption h(α, β, d)
holds if and only if d(α, β, d) is a unit.

Theorem 5. Let α, β be in R and d be in N such that h(α, β, d) holds, and
suppose that the inverse of d(α, β, d) is known. Let F be in R[X] of degree at most d
and r ∈ R. Given

F (r), F (r + β), . . . , F (r + dβ),

one can compute

F (r + α), F (r + α + β), . . . , F (r + α + dβ),

in time 2M(d) + O(d) and space O(d), in the algebraic model. If R is effective, then
the bit complexity is 2MR(d) + O(dmR) and the space complexity is O(SR(d)) bits.

Proof. Our algorithm reduces to the multiplication of two suitable polynomials
of degrees at most d and 2d; O(d) additional operations come from pre- and post-
processing operations. All operations below on integer values take place in R.

First, we perform a change of variables. Define P (X) = F (βX + r); then our
assumption is that the values P (0), P (1), . . . , P (d) are known. Let us write a = α/β;

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1785

our objective is then to determine the values P (a), . . . , P (a + d). To this effect,
assumption h(α, β, d) enables us to write the Lagrange interpolation formula:

P =

d∑
i=0

P (i)

∏d
j=0,j �=i(X − j)∏d
j=0,j �=i(i− j)

=

d∑
i=0

P̃i

d∏
j=0,j �=i

(X − j),

with P̃i = P (i)/δ(i, d), where δ(i, d) is defined in (1). For k in 0, . . . , d, let us evaluate
P at a + k:

P (a + k) =

d∑
i=0

P̃i

d∏
j=0,j �=i

(a + k − j).

Assumption h(α, β, d) implies that a− d, . . . , a + d are units. We can thus complete
each product by the missing factor a + k − i:

P (a + k) =
d∑

i=0

P̃i

∏d
j=0(a + k − j)

a + k − i
=

⎛
⎝ d∏

j=0

(a + k − j)

⎞
⎠ ·

(
d∑

i=0

P̃i
1

a + k − i

)
.(3)

We now use the sequence Δ(a, k, d) introduced in (1) and define Qk = P (a+k)/Δ(a, k, d).
Using these values, (3) reads

Qk =

d∑
i=0

P̃i
1

a + k − i
.(4)

Let P̃ and S be the polynomials

P̃ =
d∑

i=0

P̃iX
i, S =

2d∑
i=0

1

a + i− d
Xi;

then by (4), for k = 0, . . . , d, Qk is the coefficient of degree k + d in the product P̃S.
From the knowledge of Qk, we easily deduce P (a + k).

Let us analyze the complexity of this algorithm, first in the algebraic model.
Using Lemma 1, from the inverse of d(α, β, d), we obtain those of β, 2, . . . , d and
α−dβ, . . . , α+dβ in O(d) operations. Using the equality (a+ id)−1 = β(α+ idβ)−1,
we obtain the inverses of a− d, . . . , a + d in O(d) further operations. Lemma 2 then
gives all Δ(a, i, d) and the inverses of all δ(i, d) for O(d) operations as well. The

sequence P̃i is deduced for O(d) operations.
The coefficients Qi are then obtained by a polynomial multiplication in degrees d

and 2d; this can be reduced to two polynomial multiplications in degrees less than d,
and O(d) additional operations, for a complexity of 2M(d)+O(d). Given Q0, . . . , Qd,
we deduce P (a), . . . , P (a + d) by multiplications with the coefficients Δ(a, i, d); this
requires O(d) ring operations. This concludes the algebraic complexity estimates,
since space requirements are easily seen to be in O(d).

When R is effective, we have to implement this algorithm on a multitape Turing
machine. For this simple algorithm, there is no difficulty; we give details to show the
manipulations that need to be made, making no effort to minimize the number of
tapes. For the next algorithms, we will be more sketchy and concentrate on difficult
points.

1786 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

Initially, P (0), . . . , P (d) and the inverse of d(α, β, d) are contiguous blocks of �
bits on the input tape. First, we produce on an auxiliary tape T1 all elements whose
inverses will be used, in a suitable order, namely β, 2, . . . , d, α − dβ, . . . , α + dβ.
Then the inverse of d(α, β, d) is appended to these elements; using Lemma 4, we
obtain β−1, 2−1, . . . , d−1 and (α−dβ)−1, . . . , (α+dβ)−1 on a tape T2. As before, we
deduce (a − d)−1, . . . , (a + d)−1; this is done is a single sweep of T2, and the results
are stored on a tape T3. Then, using Lemma 4, all δ(i, d)−1 are computed and stored
on a tape T4, and all Δ(a, i, d) on a tape T5. The whole cost up to now is O(dmR),
the cost of the tape movements being O(d�). The space complexity is in O(d� + sR).

The coefficients of S are copied from T3 to a tape T6, and those of P̃ are computed
and stored on a tape T7; the cost is O(dmR), since the data are well organized on

tapes. We then compute the product of S and P̃ . The result is the list of coefficients
Qk, stored on a tape T8 after a time 2MR(d) + O(dmR). Finally the target values
P (a+k) are computed at an additional cost of O(dmR), since again everything is well
organized. This concludes the time analysis. The space complexity is easily seen to
fit the required bound.

Remark 1. In [20], the operation called middle product is defined: Given a ring R,
and A,B in R[X] of respective degrees at most d and 2d, write AB = C0 +C1X

d+1 +
C2X

2d+2, with all Ci of degree at most d; then the middle product of A and B is the
polynomial C1. This is precisely what is needed in the algorithm above.

Up to considering the reciprocal polynomial of A, the middle product by A can
be seen as the transpose of the map of multiplication by A. General program trans-
formation techniques then show that it can be computed in time M(d) + O(d) (but
with a possible loss in space complexity): this is the transposition principle for linear
algorithms, which is an analogue of results initiated by Tellegen [49] and Bordewijk [2]
in circuit theory. Thus, the time complexity of the algorithm above can be reduced
to M(d) +O(d) ring operations, but possibly with an increased space complexity. We
refer to [23, Problem 6] for a longer discussion and [8, Theorem 13.20] for a proof; see
also [20] for the independent discovery of the middle product, and [7] for additional
applications.

Remark 2. Using the notation of the proof above, we mention an alternative
O(M(d)) algorithm which does not require any invertibility assumption, in the special
case when a = d + 1. The key fact is that for any polynomial P of degree d, the
sequence P (0), P (1), . . . is linearly recurrent, of characteristic polynomial Q(X) =
(1 −X)d+1. Thus, if the first terms P (0), . . . , P (d) are known, the next d + 1 terms
P (d + 1), . . . , P (2d + 1) can be recovered in O(M(d)) using the algorithm in [43,
Theorem 3.1].

4. Algorithms for polynomial matrix evaluation. In Strassen’s algorithm
sketched in the introduction, an important part of the effort lies in evaluating polyno-
mials on points that form an arithmetic progression. A generalization of this question
appears in Chudnovsky and Chudnovsky’s algorithm for matrix recurrences, where
one has to evaluate a polynomial matrix at points in an arithmetic progression. We
now present such an evaluation algorithm, in the special case when the polynomial
matrix has the form

Mk(X) = M(X + αk) · · ·M(X + α),

where M(X) is a given n×n polynomial matrix with entries of degree at most 1: this
is enough to handle both Strassen’s and Chudnovsky and Chudnovsky’s algorithms.
Using the result of the previous section, we propose a divide-and-conquer approach,

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1787

which, for fixed n, saves a logarithmic factor in k compared to classical multipoint
evaluation techniques.

Let R be a ring. We will need several invertibility assumptions in R, in order to
apply Theorem 5 along all recursive steps of the algorithm; we discuss this first. With
a positive integer k, we associate the sequence k0, . . . , k�log k� defined by k0 = k and
ki+1 =
ki/2�, so that k�log k� = 1.

Then, given α, β in R and k in N, we say that assumption H(α, β, k) holds if
assumptions h(β(ki + 1), β, ki) and h(αki, β, ki) of the previous section hold for i =
1, . . . ,
log k�: this is what we need for the algorithm below. We write D(α, β, k) for
the product

�log k�∏
i=1

d(β(ki + 1), β, ki) d(αki, β, ki);

note that H(α, β, k) holds if and only if D(α, β, k) is a unit in R. We mention a few
basic results related to this definition; the straightforward proofs are left to the reader.

Lemma 6. Given α, β, and k, D(α, β, k) can be computed in time and space O(k),
in the algebraic model. If R is effective, this can be done in time O(kmR) and space
O(k� + sR).

Condition H(α, β, k) asserts that O(k) elements are units in R. It is easy, but
cumbersome, to give the list of these elements. It will be enough to note the following
particular cases.

Lemma 7.

• H(k, 1, k) holds if and only if 2, . . . , 2ki+1 and kki−ki, . . . , kki+ki are units
in R, for i = 1, . . . ,
log k�.

• H(1, 2s, 2s) holds if and only if 2, . . . , 2s + 1 are units in R.
We can now state the main result of this section.
Theorem 8. Suppose that H(α, β, k) holds and that the inverse of D(α, β, k) is

known. Then the scalar matrices Mk(0),Mk(β), . . . ,Mk(kβ) can be computed in

O(MM(n)k + n2M(k))

ring operations, in space O(n2k). If R is effective, then the bit complexity is

O
(
MMR(n)k + n2MR(k) + n2�kmin(log k, log n)

)
,

and the space complexity is O(n2k� + SR(k) + SMR(n)) bits.
Proof. We first deal with inverses. Let k0, . . . , k�log k� be defined as above. In the

following we need the inverses of all

d(αki, β, ki) and d(β(ki + 1), β, ki) for i = 1, . . . ,
log k�.

For any i, both d(αki, β, ki) and d(β(ki + 1), β, ki) can be computed in O(ki) ring
operations; hence, all of them can be computed in O(k) operations. Using Lemma 1,
their inverses can be deduced from that of D(α, β, k) for O(log k) products.

We will then give an estimate on the complexity of computing the values of
Mki

(X) on 0, β, . . . , kiβ, for decreasing values of i. The case i =
log k� is obvious,
since then ki = 1 and Mki

(X) = M(X + α), which can be evaluated at 0 and β in
O(n2) operations.

Then, for some i =
log k�, . . . , 1, suppose that the values of Mki(X) are known on
0, β, . . . , kiβ. We now show how to deduce the values of Mki−1

(X) on 0, β, . . . , ki−1β.

1788 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

To this effect, we will use Theorem 5, using the fact that all entries of Mki
(X) have

degree at most ki. To keep control on the O() constants, we let C be a constant such
that the complexity estimate in Theorem 5 is upper-bounded by 2M(d) + Cd.

• Applying Theorem 5 to each entry of Mki(X) to perform a shift by (ki +1)β,
we see that the values of Mki(X) on (ki+1)β, . . . , (2ki+1)β can be computed
for n2(2M(ki)+Cki) ring operations, since d(β(ki +1), β, ki)

−1 is known. We
then have at our disposal the values of Mki

(X) at 0, β, . . . , (2ki + 1)β.
• Applying Theorem 5 to each entry of Mki

(X) to perform shifts by kiα and
then by (ki+1)β, we see that the values of Mki(X+kiα) on 0, β, . . . , (2ki+1)β
can be computed for 2n2(2M(ki) + Cki) ring operations. For the first shift
we need d(αki, β, ki)

−1 and for the second we need d(β(ki +1), β, ki)
−1; they

have both been precomputed in the preamble.
From these values, it is easy to deduce the values of Mki−1(X) at 0, β, . . . , ki−1β. We
distinguish two cases, according to the parity of ki−1.

• Suppose first that ki−1 is even, so that ki−1 = 2ki. Using the equality

Mki−1(X) = Mki(X + αki) ·Mki(X),

we obtain the values of Mki−1(X) at 0, β, . . . , ki−1β by multiplying the known
values of Mki

(X + αki) and Mki
(X) at 0, β, . . . , ki−1β. This takes (ki−1 +

1)MM(n) operations.
• Suppose now that ki−1 is odd, so that ki−1 = 2ki + 1. Using the equality

Mki−1(X) = M(X + αki−1) ·Mki
(X + αki) ·Mki(X),

we obtain the values of Mki−1(X) at 0, β, . . . , ki−1β as follows. We first
multiply the values of Mki(X + αki) and Mki

(X) at 0, β, . . . , ki−1β, for
(ki−1+1)MM(n) operations. Then we evaluate M(X+αki−1) at these points
for 2n2(ki−1 + 1) operations, from which we deduce the requested values of
M2ki+1(X) for (ki−1 + 1)MM(n) operations.

Let us denote by T (ki−1) the cost of these operations. From the analysis above,
we deduce the inequality

T (ki−1) ≤ T (ki) + 2(ki−1 + 1)MM(n) + 6n2M(ki) + n2C′ki

for a constant C′ that can be taken to be C′ = 3C + 4. Using the definition of
the sequence ki and our assumptions on the function M, we deduce the estimate
T (k) = T (k0) ∈ O(MM(n)k +n2M(k)). The space complexity estimate is easily dealt
with, since all computations at step i can be done in space O(n2ki).

We now come to the last statement, where R is effective. In the Turing context, we
have to pay attention to the way matrices and vectors are represented. The preamble,
where inverses are precomputed, poses no problem; it suffices to organize the elements
to invert in the correct order. However, at the heart of the procedure, we have to
switch between two representations of matrices of vectors over R. This is free in an
algebraic model but has to be justified to have negligible cost in a Turing model.

At the input of the inner loop on i, we have on a tape the values of Mki
(X) at

0, β, . . . , kiβ. They are stored as a sequence of matrices over R, each in row-major
representation. In order to apply Theorem 5, we need its input to be contiguous on
a tape. Hence, we must first reorganize the data, switching to a representation as a
matrix of vectors, with vectors of size ki +1: Corollary 19 in the appendix shows how
to do this in cost O(�n2ki min(log ki, log n)). After the applications of Theorem 5, we

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1789

have at our disposal the values of Mki
(X) and of Mki

(X+kiα) at 0, β, . . . , (2ki+1)β,
organized as matrices of vectors. We switch back to their representation as a sequence
of matrices over R to perform the matrix multiplications. This is the converse problem
as before, and it admits the same O(�n2ki min(log ki, log n)) solution. The matrix
products can then be done at the expected cost, since the input data is contiguous,
and finally we are ready to enter again the loop with the next value of i.

Putting together the costs of these operations, the additional cost compared
to the algebraic model is O(�n2kmin(log k, log n)). The memory requirements con-
sist of O(n2k�) for storing all intermediate matrices and polynomials, plus a term
in O(SR(k)) coming from Theorem 5, and the term SMR(n) for matrix multiplica-
tion.

The case α = β = 1 is not covered in the last theorem. However, this case is
easier to handle (note also that there are no invertibility conditions).

Proposition 9. Suppose that α = 1, that is, Mk(X) = M(X + k) · · ·M(X + 1).
Then the scalar matrices Mk(0),Mk(1), . . . ,Mk(k) can be computed using O(MM(n)k)
ring operations, in space O(n2k). If R is effective, the bit complexity is O(MMR(n)k)
and the space requirement is O(n2k� + SMR(n)) bits.

Proof. We first evaluate all matrices M(1), . . . ,M(2k); this requires O(n2k) oper-
ations and takes space O(n2k). The conclusion is now similar to the proof of Lemma 1.
Denoting by I the n× n identity matrix, we first compute the products

Rk = I, Rk−1 = RkM(k), Rk−2 = Rk−1M(k − 1), . . . , R0 = R1M(1)

and

L0 = I, L1 = M(k + 1)L0, L2 = M(k + 2)L1, . . . , Lk = M(2k)Lk−1.

This takes O(MM(n)k) ring operations, and O(n2k) space. We conclude by computing
the matrices Mk(i) = LiRi for 0 ≤ i ≤ k. This also takes O(MM(n)k) ring operations
and O(n2k) space. The estimates in the Turing model come similarly.

In section 7, we have to deal with a similar evaluation problem, but with arbitrary
sample points. The following corollary of Proposition 9 will then be useful; compared
to the particular case of Theorem 8, we lose a logarithmic factor in the evaluation
process.

Corollary 10. Let notation be as in Proposition 9 and assume that 2, . . . , k
are units in R, and that their inverses are known. Then for any set of k+1 elements
βi of R, the matrices Mk(β0),Mk(β1), . . . ,Mk(βk) can be computed in

O(MM(n)k + n2M(k) log k)

operations, in space O(kn2 + k log k). If R is effective, the bit complexity is

O(MMR(n)k + n2MR(k) log k),

and the space requirement is O(k�n2 + SMR(n) + �k log k + SR(k)) bits.
Proof. We start by evaluating Mk(X) on 0, . . . , k; by Proposition 9, this takes

O(MM(n)k) operations and space O(n2k). Using the inverses of 2, . . . , k, it is then
possible to interpolate all entries of Mk(X) in O(n2M(k) log k) operations, in space
O(k log k). Then, we can evaluate all entries of this matrix at the points β0, β1, . . . , βk,
with the same cost.

In the Turing model, we face the same problem as in Theorem 8. The output of
Proposition 9 is given as a sequence of scalar matrices, so we switch to a matrix of

1790 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

vectors to apply interpolation and evaluation, and convert it back to a sequence of
matrices. Proposition 9 gives the cost for evaluation at 0, . . . , k; Lemma 4 gives that
for interpolation at these points, and for evaluation at β0, . . . , βk; Corollary 19 gives
the cost for changing the data’s organization. The conclusion follows.

5. Application to integer factorization. In this section, we apply the algo-
rithm of Theorem 8 to reduce by a logarithmic factor the best upper bound for deter-
ministic integer factorization, due to Strassen [48]. Strassen’s result is that a positive
integer N can be completely factored using at most O

(
Mint(

4
√
N logN) logN

)
bit

operations. The following theorem improves this result.

Theorem 11. There exists a deterministic algorithm that outputs the complete
factorization of any positive integer N using at most O(Mint(

4
√
N logN)) bit opera-

tions. The space complexity is O(4
√
N logN) bits.

Our proof closely follows that of Strassen, in the presentation of [15], the main
ingredient being now Theorem 8; some additional complications arise due to the
nontrivial invertibility conditions required by that theorem. First, applying Lemma 3
(with m = 1) gives the data describing Z/NZ as an effective ring:

• � = �logN�,
• mR ∈ O(Mint(logN)) and sR ∈ O(logN),
• MR(d) ∈ O(Mint(d log(dN))) and SR(d) ∈ O(d log(dN)).

The data for matrix multiplication is not required here, since all matrices have size 1.

Lemma 12. Let f0, . . . , fk−1 be in Z/NZ. Then one can decide whether all fi
are invertible modulo N and, if not, find a noninvertible fi in time

O
(
kMint(logN) + log kMint(logN) log logN

)

and space O(k logN) bits.

Proof. For i ≤ k − 1, we will denote by Fi the canonical preimage of fi in
[0, . . . , N − 1]. Hence, our goal is to find one Fi such that gcd(Fi, N) > 1.

We first form the “subproduct tree” associated with the values Fi. By completing
with enough 1’s, we can assume that k is a power of 2, i.e., that k = 2m. First, we de-
fine Fi,m = Fi for i = 0, . . . , k−1; then iteratively we let Fi,j−1 = F2i,jF2i+1,j mod N ,
for j = m, . . . , 1 and i = 0, . . . , 2j−1 −1. These numbers are organized in a tree simi-
lar to the one described in the appendix for evaluation and interpolation; see also [15,
Chapter 10]. The number of multiplications to perform in Z/NZ is at most k; hence,
their total cost is O(kMint(logN)), the number of tape movements being a negligible
O(k logN). The space complexity is O(k logN) bits as well.

By computing gcd(F0,0, N), we can decide whether all of F0, . . . , Fk−1 are in-
vertible modulo N . If this is not the case, finding one i for which gcd(Fi, N) > 1
amounts to going down the tree from the root to one leaf. Suppose indeed that we
have determined that gcd(Fi,j , N) > 1 for some j < m. Computing gcd(F2i,j+1, N)
enables us to determine one of F2i,j+1 or F2i+1,j+1 which has a nontrivial gcd with
N .

The cost of a gcd is O(Mint(logN) log logN). Since the tree has depth log k, we
compute only log k gcd’s. Again, since the tree is well organized on the tape, going
down the tree is done in a one pass process; so our claim on the time complexity is
proved. The space complexity does not increase, concluding the proof.

Our second intermediate result is the cornerstone of the algorithm; we improve
the estimate of [15, Theorem 19.3] using Theorem 8.

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1791

Lemma 13. Let b and N be positive integers with 2 ≤ b < N . Then one can
compute a prime divisor of N bounded by b, or prove that no such divisor exists, in

O
(
Mint(

√
b logN) + log bMint(logN) log logN

)

bit operations. The space complexity is O(
√
b logN) bits.

Proof. Let c =

√
b� and let us consider the polynomials of Z/NZ[X] given by

f(X) = X + 1 − c and

F (X) =
c−1∏
k=0

(X + ck + 1) = f(X + c2) · · · f(X + 2c)f(X + c).

Our first goal is to compute the values

F (0) =
c−1∏
k=0

(ck + 1) mod N, . . . , F (c− 1) =

c−1∏
k=0

(ck + c) mod N.

To this effect, we want to apply Theorem 8 with n = 1, α = c, β = 1, and k = c.
This can be done under suitable invertibility conditions: by Lemma 7, O(

√
b) integers

bounded by c2 ≤ b must be invertible modulo N . All these integers are easily com-
putable and less than N . Using Lemma 12, we can test whether one of these integers
is not invertible modulo N and, if this is the case, find one such integer in

O
(√

bMint(logN) + log bMint(logN) log logN
)

bit operations. Then, by trial division, we can find a prime factor of N bounded by b
in O(

√
bMint(logN)) bit operations; in this case, the result is proved. Thus, we can

now assume that all invertibility conditions are satisfied.
By Lemma 6, computing D(c, 1, c) ∈ Z/NZ has a cost of O(

√
bMint(logN));

computing its inverse has a cost in O(Mint(logN) log logN). Applying Theorem 8,
we deduce that all the values F (i), for i = 0, . . . , c − 1, can be computed in time
O(Mint(

√
b log(bN))); since b < N , this is in O(Mint(

√
b logN)).

Suppose that N admits a prime factor bounded by c2; then, some F (i) is not
invertible modulo N . By Lemma 12, such an i can be found in time

O
(√

bMint(logN) + log bMint(logN) log logN
)
.

Since F (i) is not invertible, gcd(ck+i+1, N) is nontrivial for some k ≤ c−1. Applying
Lemma 12 again, the element ck + i + 1 can be found in time

O
(√

bMint(logN) + log bMint(logN) log logN
)
.

By definition, ck + i + 1 ≤ b, so by trial division, we can then find a prime factor of
N bounded by b in O(

√
bMint(logN)) bit operations.

At this point, if we have not found any prime divisor, then we have certified that
N has no prime divisor in 2, . . . , c2, so we finally inspect the range c2 + 1, . . . , b.
Since b − c2 ∈ O(

√
b), and since all these numbers are in O(b), we can finish using

trial division with the same time complexity bounds as above. The space complexity
is dominated by those of Theorem 8 and Lemma 12.

The proof of Theorem 11 follows from successive applications of the lemma above
with increasing values of b. Starting with b = 2, the algorithm of Lemma 13 is run

1792 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

with the same value of b until no more factors smaller than b remain in N ; then the
value of b is doubled. The algorithm stops as soon as b ≥

√
N .

The space complexity estimate comes immediately. However, analyzing the time
complexity requires more work. Indeed, since there are at most (logN) prime factors
of N , a rough upper bound on the runtime of the whole factorization would be (logN)
times the runtime of Lemma 13 with b =

√
N , which is too high for our purposes. We

show now that this (logN) factor can in fact be avoided, thus proving Theorem 11.
When Lemma 13 is run with a given parameter b, all prime divisors of N less

than b/2 have already been found and divided out. Therefore the primes that can be
detected are greater than b/2; since their product is bounded by N , we deduce that the
number of runs of Lemma 13 for the parameter b is upper-bounded by O(logN/ log b).

In the complexity estimate of Lemma 13, the sum of all Mint(logN) log b log logN
terms is bounded by a polynomial in (logN), so its contribution in the total runtime
is negligible. We are thus left with the problem of evaluating the following quantity:

	(logN)/2
∑
i=1

logN

log(2i)
Mint(2

i/2 logN) ≤ Mint

⎛
⎝logN

	(logN)/2
∑
i=1

⌈
logN

i

⌉
2i/2

⎞
⎠ ,

where the upper bound follows from the first assumption of (2). Then, the sum is
upper-bounded by a constant times N1/4, giving the runtime of Theorem 11.

6. Computing one term in a linear recurrence. We now address the fol-
lowing problem: given an n × n matrix M(X) with entries in R[X], all of them of
degree at most 1, and a vector of initial conditions U0, define the sequence (Ui) of
elements in Rn by the linear recurrence

Ui+1 = M(i + 1)Ui for all i ≥ 0.

Our question is to compute the vector UN for some N ∈ N. In the introduction, we
gave the complexity of Chudnovsky and Chudnovsky’s algorithm for this task. Our
modification is similar to the one for integer factorization in the previous section.

Theorem 14. Let N be a positive integer and s =
log4 N�, such that 2, . . . , 2s+1
are units in R. Given the inverses of D(1, 2t, 2t), t ≤ s, UN can be computed in

O
(
MM(n)

√
N + n2 M(

√
N)

)

operations, in space O(n2
√
N). If R is effective, then the bit complexity is

O
(
MMR(n)

√
N + n2MR(

√
N) + n2�

√
N min(logN, log n)

)
,

using O(n2�
√
N + SMR(n) + SR(

√
N)) bits.

Proof. The proof is divided into two steps. We begin by proving the assertion in
the particular case when N is a power of 4; then we treat the general case. Dealing
with powers of 4 makes it possible to control the list of elements that need to be units.

• The case when N is a power of 4. Let us suppose that k = 2s and N = k2,
so that N = 4s. Let Mk(X) be the n× n matrix over R[X] defined by

Mk(X) = M(X + k) · · ·M(X + 1);

then, the requested output UN can be obtained by the equation

UN = Mk(k(k − 1)) · · ·Mk(k)Mk(0)U0.(5)

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1793

Taking α = 1 and β = k = 2s, Lemma 7 shows that condition H(1, 2s, 2s) of
Theorem 8 is satisfied. Thus, Mk(0),Mk(k), . . . ,Mk((k − 1)k) can be com-
puted within the required time and space complexities. Then, by formula (5),
the result is obtained by performing

√
N successive matrix-vector products,

which has a cost in both time and space of O(n2
√
N). There is no additional

complication in the Turing model, since in the row-major representation of
matrices, matrix-vector products do not involve expensive tape movements.

• The general case. Let N =
∑s

i=0 Ni4
i be the 4-adic expansion of N , with

Ni ∈ {0, 1, 2, 3} for all i. Given any t ≥ 0, we will denote by �N�t the integer∑t−1
i=0 4iNi. Using this notation, we define a sequence (Vt)0≤t≤s as follows:

We let V0 = U0 and, for 0 ≤ t ≤ s we set

Vt+1 = M(�N�t + 4tNt) · · ·M(�N�t + 1)Vt if Nt ∈ {1, 2, 3},
Vt+1 = Vt if Nt = 0.

(6)

One checks that Vt = U	N
t for all t, and in particular that Vs+1 = UN . We
will compute all Vt successively. Suppose thus that the term Vt is known.

If Nt is zero, we have nothing to do. Otherwise, we let V
(0)
t+1 = Vt, and, for

1 ≤ j ≤ Nt, we let

M (j)(X) = M
(
X + �N�t + 4t(j − 1)

)
.

Then we define V
(j)
t+1 by

V
(j)
t+1 = M (j)(4t) · · ·M (j)(1)V

(j−1)
t+1 , j = 1, . . . , Nt.

By (6), we have V
(Nt)
t+1 = Vt+1. Thus, passing from Vt to Vt+1 amounts to

computing Nt selected terms of a linear recurrence of the special form treated
in the previous case, for indices of the form 4t ≤ 4s. With all necessary
assumptions being satisfied, using the complexity result therein and the fact
that all Nt are bounded by 3 we see that the total cost of the general case is
thus

O

(
s∑

t=0

(
MM(n)2t + n2 M(2t)

))
= O

(
MM(n)2s + n2

(
s∑

t=0

M(2t)

))
.

Using the fact that 2s ≤
√
N ≤ 2s+1 and the assumptions on the func-

tion M, we easily deduce that the whole complexity fits into the bound
O
(
MM(n)

√
N +n2 M

(√
N
))
, and the bound concerning the memory require-

ments follows. As before, porting this algorithm on a Turing machine does
not raise any difficulty.

7. Computing several terms in a linear recurrence. We now study the
case when several terms in a linear recurrence are questioned; this will be applied in
the next section for the computation of the Cartier–Manin operator. We use the same
notation as before: M(X) is an n× n matrix whose entries are degree 1 polynomials
over a ring R; we consider the sequence (Ui) defined for all i ≥ 0 by Ui+1 = M(i+1)Ui,
and let U0 be a vector in Rn. Given r indices N1 < N2 < · · · < Nr, we want to
compute all the values UNi

, 1 ≤ i ≤ r.

1794 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

An obvious solution is to repeatedly apply Theorem 14 to each interval [Ni, Ni−1],
leading to a time complexity of

O

(
MM(n)

r∑
i=1

√
Ni −Ni−1 + n2

r∑
i=1

M
(√

Ni −Ni−1

))

and with a memory requirement of O(n2 maxr
i=1

√
Ni −Ni−1), where we have set

N0 = 0. In special cases, this might be close to optimal, for instance if N1, . . . , Nr−1

are small compared to Nr. However, in most cases it is possible to improve on this:
we now present an alternative algorithm, which improves on the time complexity, at
the cost, however, of increased memory requirements.

Theorem 15. Let N1 < N2 < · · · < Nr = N be positive integers. Suppose that
2, . . . , 2s + 1 are units in R, where s =
log4 N�, and that the inverse of D(1, 2s, 2s)

is known. Suppose also that r < N
1
2−ε, with 0 < ε < 1

2 . Then UN1 , . . . , UNr can be
computed within

O
(
MM(n)

√
N + n2M(

√
N)

)

ring operations in space O(n2
√
N). If R is effective, the bit complexity is in

O
(
MMR(n)

√
N + n2MR(

√
N) + n2�

√
N min(logN, log n)

)
,

and the space complexity is O(n2�
√
N + SMR(n) + SR(

√
N)) bits.

In other words, the complexity of computing several terms is essentially the same
as that of computing the one of largest index, as long as the total number of terms
to compute is not too large. If the Ni form an arithmetic progression, and if the
multiplication function M is essentially linear, we gain a factor of

√
r compared to

the naive approach. In the limiting case, where r =
√
N , and for fixed size n, our

algorithm is optimal up to logarithmic factors, as it takes a time essentially linear in
the size of the output.

Proof. The algorithm proceeds as follows: we start by applying Theorem 8 with
k ≈

√
N , so as to compute k terms in the sequence with indices separated by intervals

of size about
√
N . If all indices Ni have been reached, then we are done. Otherwise,

we have reached r indices that are within a distance of about
√
N of N1, . . . , Nr.

A recursive refining procedure is then done simultaneously for all these r indices.
When we get close enough to the wanted indices, we finish with a divide-and-conquer
method. The refining and the final steps make use of Corollary 10.

We now describe more precisely the first step (named Step 0), the ith refining
step, and the final step. In what follows, given k ∈ N, we denote by Mk(X) the
polynomial matrix Mk(X) = M(X + k) · · ·M(X + 1).

Step 0. Let k0 = 2s. As a preliminary, from the inverse of D(1, 2s, 2s), we deduce
using Lemma 1 the inverses of all integers 1, . . . , k0 in R. This will be used later on.

Define N
(0)
j = k0
Nj

k0
� for j ≤ r, so that N

(0)
j ≤ Nj < N

(0)
j + k0. Step

0 consists of computing U
N

(0)
1

, . . . , U
N

(0)
r

. This is done by computing all vectors

Uk0 , U2k0 , . . . , U4k2
0
; this sequence contains all requested vectors, since all wanted

indices are multiples of k0 and upper-bounded by 4k2
0. Lemma 7 shows that the as-

sumptions of Theorem 8 with α = 1 and β = k = k0 are satisfied. We use it to
compute the matrices

Mk0(0),Mk0(k0), . . . ,Mk0((k0 − 1)k0);

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1795

the vector U0 is then successively multiplied by these matrices, yielding the vectors
Uk0 , U2k0 , . . . , Uk2

0
. To complete the sequence, we repeat three times the same strat-

egy, starting with V0 = Uk2
0

and shifting the matrix M(X) accordingly. Among all
the resulting vectors, we collect the requested values U

N
(0)
1

, . . . , U
N

(0)
r

.

Step i. We assume that after step (i−1), we are given an integer ki−1 and indices

N
(i−1)
j , where for all j ≤ r, we have N

(i−1)
j ≤ Nj < N

(i−1)
j + ki−1. We also suppose

that U
N

(i−1)
1

, . . . , U
N

(i−1)
r

are known. In other words, we know r vectors whose indices

are within a distance of ki−1 of the wanted ones. Then, the ith refining step is as
follows. Set

ki =
⌈√

rki−1

⌉
;

then the new terms that we want to compute correspond to the indices

N
(i)
1 = N

(i−1)
1 + ki

⌊
N1 −N

(i−1)
1

ki

⌋
, . . . , N (i)

r = N (i−1)
r + ki

⌊
Nr −N

(i−1)
r

ki

⌋
,

which satisfies the induction assumption for entering step (i + 1). To compute these
values, we evaluate the new polynomial matrix Mki

(X) at the points

N
(i)
1 =

{
N

(i−1)
1 , N

(i−1)
1 + ki, . . . , N

(i−1)
1 +

(⌊
ki−1

ki

⌋
− 1

)
ki

}

...
...

N(i)
r =

{
N (i−1)

r , N (i−1)
r + ki, . . . , N

(i−1)
r +

(⌊
ki−1

ki

⌋
− 1

)
ki

}
.

There are r
ki−1

ki
� ≤ ki points of evaluation. We have already computed the inverses

of 1, . . . , k0 in R; in particular, we know the inverses of 1, . . . , ki, so Corollary 10 can
be applied to perform the evaluation. Then, for all j ≤ r, we successively multiply

U
N

(i−1)
j

by the values taken by Mki(X) at all indices in N
(i)
j . By construction, N

(i)
j −ki

belongs to N
(i)
j , so we obtain in particular the requested value U

N
(i)
j
.

Final step. The refining process stops when ki is close to r, namely ki ≤ 2r. In this
situation, we have at our disposal r indices N ′

1, . . . , N
′
r such that N ′

j ≤ Nj < N ′
j + 2r

for all j, and such that all values UN ′
1
, . . . , UN ′

r
are known. Then another recursive

algorithm is used: Mr(X) is computed, evaluated at all N ′
j using Corollary 10, and

used to reduce all gaps that were of size between r and 2r; again, the invertibility
conditions cause no problem. As a result, all the gaps are now of size at most r. Then
M r

2
(X) is computed and used to reduce the gaps to at most r

2 , and so on until we
get the result.

It remains to perform the complexity analysis. The cost of Step 0 is dominated
by that of evaluating the matrix Mk0

(X); by Theorem 8, it can be done in

O
(
MM(n)

√
N + n2M(

√
N)

)

operations in R, and space O(n2
√
N). By Corollary 10, the ith refining step has a

cost of

O
(
MM(n)ki + n2M(ki) log ki

)

1796 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

operations, and requires O(n2ki + ki log ki) temporary memory allocation; the total
cost of this phase is thus

O

(
imax∑
i=1

MM(n)ki + n2M(ki) log ki

)
,

where imax is the number of refining steps. Our hypotheses on the function M show
that this fits into the bound

O

(
MM(n)

imax∑
i=1

ki + n2M

(
imax∑
i=1

ki

)
log

(
imax∑
i=1

ki

))
.

An easy induction shows that ki is at most (4r)
2i−1

2i N
1

2i+1 , whence imax = O(log logN).

Furthermore, using r < N
1
2−ε, we get

ki ≤ 4N
1
2

(
N−ε

) 2i−1

2i .

For any 0 < � ≤ 1 we have
∑imax

i=1 �
2i−1

2i ≤ imax�
1
2 ; therefore we deduce

imax∑
i=1

ki = O
(
N

1−ε
2 log logN

)
.

Using the second assumption in (2), the cost of the refining steps is negligible compared
with that of the first step, since the N−ε/2 compensates for all logarithmic factors.
The memory requirement also is negligible compared with that of Step 0.

Using Corollary 10, the cost of the first reduction in the final step is

O
(
MM(n)r + n2M(r) log r

)

ring operations and O(n2r + r log r) temporary space. Due to our hypotheses on the
function M, the second reduction costs at most half as much, the third reduction
costs at most 1

4 of it, etc. Summing up, we see that the whole cost of the final step
is bounded by twice that of the first reduction, which is itself less than the cost of
Step 0.

There is no complication in the Turing model. Indeed, between the calls to
Theorem 8, to Corollary 10, and the successive matrix-vector products, there is no
need to reorganize data, so the tape movements’ cost is negligible. Furthermore, our
assumptions on MR and SR imply that, as in the arithmetic model, the time and
space costs of Step 0 are predominant.

8. Application to the Cartier–Manin operator. Let C be a hyperelliptic
curve of genus g defined over the finite field Fpd with pd elements, where p > 2 is
prime. We suppose that the equation of C is of the form y2 = f(x), where f is
monic and square free, of degree 2g + 1. The generalization to hyperelliptic curves of
the Hasse invariant for elliptic curves is the Hasse–Witt matrix [21]: Let hk be the
coefficient of degree xk in the polynomial f (p−1)/2. The Hasse–Witt matrix is the g×g
matrix with coefficients in Fpd given by H = (hip−j)1≤i,j≤g. It represents, in a suitable
basis, the operator on differential forms introduced by Cartier [10]; Manin [28] showed
that this matrix is strongly related to the action of the Frobenius endomorphism on

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1797

the p-torsion part of the Jacobian of C. The article [50] provides a complete survey
about these facts; they are summarized in the following theorem.

Theorem 16 (Manin). Let Hπ = HH(p) · · ·H(pd−1), where the notation H(q)

means elementwise raising to the power q. Let κ(t) be the characteristic polynomial of
the matrix Hπ and χ(t) the characteristic polynomial of the Frobenius endomorphism
of the Jacobian of C. Then χ(t) ≡ (−1)gtgκ(t) mod p.

This result provides a method to compute the characteristic polynomial of the
Frobenius endomorphism. As such, it can be used in a point-counting algorithm,
which is the main application we have in mind; see the end of this section for more
comments.

To compute the entries of the Hasse–Witt matrix, the obvious solution consists of
expanding the product f (p−1)/2. Using binary powering, this can be done in O(M(gp))
base ring operations, whence a time complexity that is essentially linear in p, if g is
kept constant. In what follows, we show how to obtain a complexity essentially
linear in

√
p using the results of the previous sections. We will make the additional

assumption that the constant term of f is not zero; otherwise, the problem is actually
simpler.

Introduction of a linear recurrent sequence. In [14], Flajolet and Salvy already
treated the question of computing a selected coefficient in a high power of some given
polynomial, as an answer to a SIGSAM challenge. The key point of their approach is
that h = f (p−1)/2 satisfies the following first-order linear differential equation

fh′ − p− 1

2
f ′h = 0.

This shows that coefficients of h satisfy a linear recurrence of order 2g + 1, with
polynomial coefficients of degree 1. Explicitly, denote by hk the coefficient of degree k
of h, and for convenience, set hk = 0 for k < 0. Similarly, the coefficient of degree k of
f is denoted by fk. Then the differential equation above implies that, for all k in Z,

(k+1)f0hk+1+

(
k − p− 1

2

)
f1hk+· · ·+

(
k − 2g − (2g + 1)(p− 1)

2

)
f2g+1hk−2g = 0.

We set Uk = [hk−2g, hk−2g+1, . . . , hk]
t, and let A(k) be the companion matrix:

A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

f2g+1((2g+1)(p−1)/2−(k−2g−1))
f0k

· · · · · · · · · f1((p−1)/2−k+1)
f0k

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The initial vector U0 = [0, . . . , 0, f
(p−1)/2
0]t can be computed using binary powering

techniques in O(log p) operations; then for k ≥ 0, we have Uk+1 = A(k+ 1)Uk. Thus,
to answer our specific question, it suffices to note that the vector Uip−1 gives the
coefficients hip−j for j = 1, . . . , g that form the ith row of the Hasse–Witt matrix
of C.

Theorems 14 and 15 cannot be directly applied to this sequence, because A(k)
has entries that are rational functions, not polynomials. Though the algorithm could
be adapted to handle the case of rational functions, we rather use the very specific
form of the matrix A(k), so only a small modification is necessary. Let us define a new

1798 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

sequence Vk by Vk = fk
0 k!Uk. Then, this sequence is linearly generated and we have

Vk+1 = B(k+1)Vk, where B(k) = f0kA(k). Therefore, the entries of the matrix B(k)
are polynomials of degree at most 1. Note also that the denominators fk

0 k! satisfy the
recurrence relation fk+1

0 (k + 1)! = (f0(k + 1)) · (fk
0 k!).

We can apply the results of the previous sections to compute separately the re-
quired vectors Vk, as well as the corresponding denominators: specifically, we will
compute Vp−1, V2p−1, . . . , Vgp−1 as well as fp−1

0 (p− 1)!, . . . , fgp−1
0 (gp− 1)!. Then the

vectors Up−1, U2p−1, . . . , Ugp−1 are deduced using the relation fk
0 k! Uk = Vk.

Lifting to characteristic zero. A difficulty arises from the fact that the character-
istic is too small compared to the degrees we are aiming for, so p! is zero in Fpd . The
workaround is to do computations in the unramified extension K of Qp of degree d,
whose residual field is Fpd . The ring of integers of K will be denoted by OK , so that
any element of OK can be reduced modulo p to give an element of Fpd . On the other
hand, K has characteristic 0, so p is invertible in K.

We consider an arbitrary lift of f to OK [X]. The reformulation in terms of
linear recurrent sequence made in the paragraph above can be performed over K; the
coefficients of f (p−1)/2 are computed as elements of K and then projected back onto
Fpd . This is possible, as they all belong to OK . We separately compute the values in

K of the vectors Vip−1 and the denominators f ip−1
0 (ip− 1)!, for i = 1, . . . , g. To this

effect, we can apply any of the strategies mentioned in section 7.

The first one is the plain iteration based on Theorem 14; iterating g times, it
performs O

(
MM(g)g

√
p + g3M(

√
p)
)

operations in K and requires storing O(g2√p)
elements. The second strategy is to apply Theorem 15. In this case, we need to have
g ≤ (gp)1/2−ε′ , for some 0 < ε′ < 1

2 ; this is equivalent to imposing that g ≤ p1−ε

for some 0 < ε < 1. Then, with increased memory requirements of O(g2√gp), the
number of operations in K reduces to O

(
MM(g)

√
gp + g2M(

√
gp)

)
.

Computing at fixed precision. We do not want to compute in K at arbitrary
precision, since this is not an effective ring (even in a much weaker sense than the
one we defined). For our purposes, it suffices to truncate all computations modulo a
suitable power of p. To evaluate the required precision of the computation, we need
to check when the algorithm operates a division by p.

To compute the vectors Vip−1 and the denominators f ip−1
0 (ip−1)!, for i = 1, . . . , g,

we use either Theorem 14 or Theorem 15. In the worst case, it might be required to
invert all integers up to

√
gp. With the condition g ≤ p1−ε, these numbers are strictly

smaller than p, and they are thus units in OK . Hence no division by p occurs in this
first phase. Then, for all i = 1, . . . , g, to deduce Uip−1 from Vip−1, we need to divide

by f ip−1
0 (ip − 1)!. The element f0 is a unit in OK , so the only problem comes from

the factorial. If i < p, then the p-adic valuation of (ip− 1)! is exactly i− 1. Therefore
the worst case is i = g, for which we have to divide by pg−1. Hence computing the
vectors Vip−1 modulo pg is enough to know the vectors Uip−1 modulo p, and then to
deduce the Hasse–Witt matrix.

Overall complexity. Since the ring R = OK/pgOK is isomorphic to (Z/pgZ)[X]/P
for some monic polynomial P of degree d, Lemma 3 shows that R is an effective ring
with

• � = d�g log p�,
• mR ∈ O(Mint(dg log(dp))) and sR ∈ O(dg log(dp)),
• MR(k) ∈ O(Mint(dkg log(dkp))) and SR(k) ∈ O(dkg log(dkp)),
• MMR(n) ∈ O(nlog 7mR) and SMR(n) ∈ O(n2� + sR).

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1799

From the results of sections 6 and 7, we deduce the following theorem on the complex-
ity of computing the Hasse–Witt matrix. We give two variants that follow the two
strategies described above. The first one follows from applying g times Theorem 14
with n = 2g + 1, N = p, � = d�g log p�; the second one come from applying Theo-
rem 15 with n = 2g + 1, N = gp, � = d�g log p�. Both theorems require us to compute
the inverses of some integers in R as prerequisites; the cost of their computation is
negligible.

Theorem 17. Let p > 2 be a prime, d ≥ 0, and C be a hyperelliptic curve defined
over Fpd by the equation y2 = f(x), with f of degree 2g + 1. Assuming g < p1−ε for
some 0 < ε < 1, one can compute the Hasse–Witt matrix of C using one of the two
following strategies:

1. A memory-efficient strategy gives a complexity of

O
(
g1+log 7p

1
2 Mint(dg log(dp)) + g3Mint(dgp

1
2 log(dp)) + dg4p

1
2 log g log p

)

bit operations and O(dg3p
1
2 log p + dgp

1
2 log d) storage.

2. A time-efficient strategy gives a complexity of

O
(
g

1
2+log 7p

1
2 Mint(dg log(dp)) + g2Mint(dg

3
2 p

1
2 log(dgp)) + dg

7
2 p

1
2 log g log p

)

bit operations, with O(dg
7
2 p

1
2 log p + dg

3
2 p

1
2 log d) storage.

The matrix H already gives information on the curve C: for instance, H is in-
vertible if and only if the Jacobian of C is ordinary [50, Corollary 2.3]. However, as
stated in Theorem 16, the matrix Hπ, and in particular its characteristic polynomial
κ, tells much more and is required if the final goal is point-counting.

From now on, all operations are done in the effective ring R′ = Fpd ; hence the cost
of the basic operations becomes mR′ ∈ O(Mint(d log(dp))) and sR′ ∈ O(d log(dp)). The
matrix Hπ is the “norm” of H and as such can be computed with a binary powering
algorithm. For simplicity, we assume that d is a power of 2; then, denoting

Hπ,i = HH(p) · · ·H(p2i−1),

we have

Hπ,i+1 = Hπ,i · (Hπ,i)
(p2i)

.

Hence computing Hπ,i+1 from Hπ,i costs one matrix multiplication and 2i matrix
conjugations. A matrix conjugation consists of raising all the entries to the power
p; therefore it costs O(g2Mint(d log(dp)) log p) bit operations. The matrix we need to
compute is Hπ = Hπ,log d. Hence the cost of computing Hπ is

O
((
dg2 log p + glog 7 log d

)
Mint(d log(dp))

)
bit operations. The general case, where d is not a power of 2, is handled by adjust-
ing the recursive step according to the binary expansion of d and yields the same
complexity up to a constant factor.

The cost of the characteristic polynomial computation of an n×n matrix defined
over an effective ring can be bounded by O(n4) operations in the ring using a sequen-
tial version of Berkowitz’s algorithm [1]. This adds a negligible O(g4Mint(d log(dp)))
contribution to the complexity.

1800 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

If we are interested only in the complexity in p and d, i.e., if we assume that
the genus is fixed, then the two strategies of Theorem 17 become equivalent, up to
constant factors. Then, to summarize, the reduction modulo p of the characteristic
polynomial χ of the Frobenius endomorphism can be computed in time

O
(
Mint(dp

1
2 log(dp)) + d log pMint(d log(dp))

)

bit operations and O(dp
1
2 log(dp)) storage.

Case of large genus. If g ≥ p, then our analysis is no longer valid. In this
paragraph, we assume that the function Mint is essentially linear, i.e., we do not
count logarithmic factors. Then the cost of strategy 1 of Theorem 17 is of order
dg4p

1
2 bit operations, the cost of strategy 2 is of order dg

7
2 p

1
2 , and that of the naive

algorithm is in O(dgp).
It turns out that for p1/6 < g < p1−ε, the algorithms of Theorems 14 and 15 are

not the fastest. Assume that g > p1/6. Then it follows that g4p
1
2 > gp, and therefore

the naive algorithm is faster than strategy 1 of Theorem 17. If further g > p1/5, then
g

7
2 p

1
2 > gp, and the naive algorithm is also faster than strategy 2. Thus, whatever

the strategy used in Theorem 17, the parameter range for which our algorithms are
interesting is far from the limit induced by the technical condition g < p1−ε.

Combination with other point-counting algorithms. Computing the characteristic
polynomial of Hπ is not enough to deduce the group order of the Jacobian of C,
since only χ mod p is computed. We now survey different ways to complete the
computation; we give rough complexity estimates, neglecting the logarithmic factors.

If p is small compared to g or d, p-adic algorithms [24, 37] have the best asymptotic
complexity. These algorithms compute χ modulo high powers of p, so they necessarily
recompute the information that has been obtained via the Cartier–Manin operator.
Hence, our approach is of no interest here.

Consider next the extensions of Schoof’s algorithm [34]. These algorithms have
a complexity that is polynomial in d log p and exponential in g. For fixed g, our
algorithm will be faster only if p is small compared to d, so that the power of d in the
complexity of Schoof’s algorithm can compensate the

√
p complexity of our method.

But in that case, our algorithm gives only very small information, and therefore the
overall complexity of point counting is unchanged.

The combination with approaches based on the baby steps/giant steps algorithm
(or low memory variants) is more fruitful, and can be of practical interest. Indeed,
as far as we know, there is no implementation of any Schoof-like approach for genus
greater than 2, and even for genus 2, the current record computations [19, 29] are
obtained by combining many methods, including the baby steps/giant steps approach.
Here is thus a short description of known approaches using BSGS ideas:

1. BSGS method: This is the generic method for finding the order of a group.
If the order is known to be in an interval of width w, then the complexity
is in O(

√
w). In the case of the Jacobian of C, Hasse–Weil bounds give

w = O(pd(g−
1
2)), so the complexity is in O(pd(

g
2−

1
4)).

2. Computing the number of points of C in small degree extensions of Fpd re-
duces the width of the search interval. Counting (naively) the points of C up
to extension degree k costs O(pdk), and the cost of the BSGS algorithm be-

comes O(qd(
g
2−

k+1
4)). This method (and additional practical improvements)

is from [45]. We call it “approximation method” below.
3. When χ is known modulo some integer M , the group order is also known

modulo M and therefore the BSGS method can be sped up by a factor of

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1801

√
M . In [29] it is shown that in some cases a full factor M can be gained by

doing a BSGS search on the coefficients of χ instead of just the group order.
We abbreviate this method as MCT (from the names of the authors).

Thus, in genus 2, the complexity of the BSGS algorithm is in O(p
3d
4). For prime

fields, our O(p
1
2) method is faster and gives essentially the complete information. For

extension fields, our method gives the characteristic polynomial modulo p at a cost
of O(p

1
2), from which we can recover the whole characteristic polynomial using the

MCT algorithm at a cost of O(p
3d
4 −1). Thus, for d = 2, the complexity is improved

from O(p
3
2) to O(p

1
2), and for d = 3, from O(p

9
4) to O(p

5
4).

In genus 3, using the approximation method with k = 1 yields a complexity in
O(pd). For prime fields, our method yields most of the information, the remaining

part being computable using BSGS in time O(p
1
4). Hence, the cost drops from O(p)

to O(p
1
2); this is of practical interest, since the O(p) algorithm is currently used for

genus 3 point-counting over prime fields. For extension fields, the complexity drops
from O(pd) to O(pd−

1
2).

The complexities for small degrees and genera are summarized in the following
table. For each parameter set (g, d), there are two columns: the left-hand column
describes the previously best known combination of methods; the right-hand one
gives the new best combination with our algorithm (written “CM”). In each column
we put an X in front of the algorithms that are used in the combination, and at the
bottom list the total complexity.

g = 2 g = 3
d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

BSGS X X X X X X X X X
Approx. X X X X X

MCT X X
CM X X X X X X

Cplx. p3/4 p1/2 p3/2 p1/2 p9/4 p5/4 p p1/2 p2 p3/2 p3 p5/2

Computer experiments. We have implemented our algorithm using Shoup’s NTL
C++ library [42]. NTL does not provide any arithmetic of local fields or rings, but
allows one to work in finite extensions of rings of the form Z/pgZ, as long as no
divisions by p occur; the divisions by p are well isolated in the algorithm, so we could
handle them separately. Furthermore, NTL multiplies polynomials defined over this
kind of structure using an asymptotically fast FFT-based algorithm.

To illustrate that our method can be used as a tool in point-counting algorithms,
we have computed the Zeta function of a (randomly chosen) genus 2 curve defined
over Fp3 , with p = 232 − 5. Such a Jacobian has therefore about 2192 elements and
should be suitable for cryptographic use if the group order has a large prime factor.
Note that previous computations were limited to p of order 223 [29].

The characteristic polynomial χ of the Frobenius endomorphism was computed
modulo p in 3 hours and 41 minutes, using 1 GB of memory, on an AMD Athlon
MP 2200+. Then we used the Schoof-like algorithms of [19] to compute χ modulo
128× 9× 5× 7, and finally we used the modified BSGS algorithm of [29] to finish the
computation. These other parts were implemented in Magma [5] and were performed
in about 15 days of computation on an Alpha EV67 at 667 MHz. This computation
was meant as an illustration of the possible use of our method, so little time was
spent optimizing our code. In particular, the Schoof-like part and the final BSGS
computations are done using a generic code that is not optimized for extension fields.
Still, to our knowledge, on the same computers, such a computation would not have
been possible with previous algorithms.

1802 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

Appendix. Computations in the Turing model. In this appendix we discuss
basic complexity results for polynomials and matrices over effective rings, in the multi-
tape Turing machine model. We do not consider the operations used to control the
computations, like incrementing an index in a loop: this is done on separate tapes,
and the corresponding cost is negligible.

Proof of Lemma 3. Let N ∈ N, R0 = Z/NZ, and R = R0[T]/P , with P ∈ R0[T]
monic of degree m. We show here how to make R an effective ring. Elements of R0

will be represented as integers in 0, . . . , N − 1, and elements of R as sequences of m
elements of R0; representing such an element requires � = m�logN� bits.

Polynomials in R0[T] are multiplied as polynomials in Z[T]; then their coefficients
are reduced modulo N . Using Kronecker’s substitution [15, Corollary 8.27], the mul-
tiplication in degree d is done in time Mint(d log(dN)) and space O(d log(dN)); the
subsequent reduction is done by fast integer Euclidean division, using Cook’s algo-
rithm [12], which adds a negligible cost. Using Cook’s algorithm again, Euclidean
division in degree d in R0[T] can be done in time O(Mint(d log(dN))) and space
O(d log(dN)). In particular, taking d = m, this establishes the bounds on mR and sR
given in the lemma.

Polynomials in R[X] are multiplied as polynomials in Z[T,X], and then reduced
modulo N and P , where the product in Z[T,X] is reduced to an integer product by
bivariate Kronecker’s substitution. In degree d, this yields time and space complexities
MR and SR of, respectively, O(Mint(dm log(dmN))) and O(dm log(dmN)).

We finally discuss matrix multiplication, contenting ourselves with the descrip-
tion of Strassen’s algorithm [46, 15] for matrices of size n = 2k (which is enough to
establish our claim). Each step of the algorithm requires us to compute 14 linear
combinations of the 4 quadrants of the input matrices before entering recursive calls;
4 linear combinations of the 7 subproducts are performed after the recursive calls.

At each step in the recursion, the data has to be reorganized. The row-major
representation of each input matrix is replaced with the consecutive row-major repre-
sentations of its four quadrants, from which the linear combinations can be performed;
a similar unfolding is done after the recursive calls. Taking into account the cost of
this reorganization does not alter the complexity of this algorithm. This yields esti-
mates for MMR and SMR, respectively, in O(nlog 7mR) and O(nlog 7� + sR), the term
sR standing for temporary memory used for scalar multiplications.

Finally, checking all required conditions on mR, sR, MR, SR, MMR, and SMR is
straightforward.

Proof of Lemma 4. Let now R be an effective ring, with elements represented on
� bits. We prove here the assertions in Lemma 4.

• Trading inverses for multiplications: proof of Lemma 4, item 1. We use the
notation of the proof of Lemma 1. Looking at the proof, one sees that all
quantities Ri can be computed and stored on a tape T1 in a single forward
sweep of the input r0, . . . , rd; reading the input backward, we compute all
Si and store them on a tape T2. Finally, the output values si are computed
by a single forward sweep of T1 and T2. The time complexity is O(dmR)
for multiplications, plus O(d�) for tape movements; hence it fits in O(dmR).
The space complexity is O(d�) bits for storage, plus sR temporary bits for
multiplications.

• Computing constants: proof of Lemma 4, items 2 and 3. We apply the
same formulas as in the proof of Lemma 2. The cost of all operations is
in O(dmR); it is easy to check that the tape movements contribute with a
negligible O(d�) cost. As above, the space complexity is O(d�) bits for storage,

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1803

plus sR temporary bits for multiplications.
• Evaluation and interpolation: proof of Lemma 4, items 4 and 5. Let r0, . . . , rd

be in R. For simplicity, we suppose that the number of points is a power of
2, that is, d+ 1 = 2k; the general case is handled similarly and presents only
notational difficulties. All algorithms below are classical [15, Chapter 10]; our
focus is on their adaptation in the Turing model.

For i ≤ d, set Ai,k = X − ri ∈ R[X]; then, for 0 ≤ j ≤ k − 1 and 0 ≤ i ≤ 2j − 1,
set Ai,j = A2i,j+1A2i+1,j+1. These polynomials will be arranged in a “subproduct
tree,” where A2i,j+1 and A2i+1,j+1 are the children of Ai,j . We now show how to
compute this tree, writing Aj for the sequence A0,j , . . . , A2j−1,j . Note that the sum
of the degrees of the polynomials in Aj is d + 1.

Given the sequence Aj , one can compute the extended sequence Aj , Aj−1 in
O(MR(d)) bit operations and space O(d� + SR(2k−j)). It suffices to read the input
once and to compute on the fly the products A2i,jA2i+1,j , storing them on an auxiliary
tape, before appending all results to the input; the cost estimate follows from the
superadditivity of MR. Applying this k = log d times, one can compute the sequences
Ak, . . . , A0 in time O(MR(d) log d) and space O(�d log d + SR(d)).

The evaluation algorithm uses the subproduct tree as follows. Let P = P0,0 be
of degree at most d, and set P2i,j+1 = Pi,j mod A2i,j+1 and P2i+1,j+1 = Pi,j mod
A2i+1,j+1, for 0 ≤ i ≤ 2j − 1 and 0 ≤ j ≤ k. We write Pj for the sequence
P0,j , . . . , P2j−1,j .

On input the sequences Pj and Aj+1, given on two distinct tapes, one can compute
Pj , Pj+1 in O(MR(d)) bit operations and space O(�d + SR(2k−j)): we read once the
input sequences and compute on the fly the remainders P2i,j+1 and P2i+1,j+1, storing
them on an auxiliary tape; then they are appended to the sequence Pj . The estimates
for Euclidean division and the superadditivity property then give the complexity
estimate. Applying this k = log d times, given P and the sequence Ak, . . . , A0, one
can compute all Pi,k = P (ri) in time O(MR(d) log d) and space O(�d log d + SR(d)).

It remains to deal with interpolation. Difficulties come from the inversion of
quantities associated with the sample points. We thus suppose that ai = i for all
i ≤ d (this is what is used in this article), that 2, . . . , d are units in R, and that their
inverses are known. Interpolating a polynomial P at 0, . . . , d is done by computing∑

i≤d Pi

∏
j �=i(X − j), where Pi = P (i)/δ(i, d). The inverses of all δ(i, d) can be

computed in time O(dmR), by Lemma 4, item 2. Then, from [15, Chapter 10], the
sum can be computed “going up” the subproduct tree, just as evaluation amounts
to “going down” the tree. One checks that as above, it can be performed in time
O(MR(d) log d) and space O(�d log d + SR(d)).

Matrix of vectors and vectors of matrices. Let R be an effective ring, with ele-
ments represented using � bits. Two representations for matrices with vector entries
are used in this paper:

1. the row-major representation, where each entry is a vector over R, say of
size k;

2. the vector representation, through a sequence of k scalar matrices, each in
row-major representation.

In the Turing model, we must take care of data contiguity. We now give an algorithm
that converts efficiently from one representation to the other; we start with a lemma
on matrix transposition.

Lemma 18. In row-major representation, the transpose of an m × n matrix A
can be computed in bit complexity O(�mnmin(logm, log n)) and space O(�mn).

1804 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

Proof. Suppose that n ≤ m. We first copy A from the input tape to an auxiliary
tape, and pad on the fly the end of each line with an arbitrary symbol to make the
column dimension equal to a power of 2. Thus we obtain an m×n′ matrix A′, where
n′ is a power of 2; the cost is in O(mn�). We describe now a recursive algorithm that
transposes A′; the transpose of A can be deduced as the top-left n×m submatrix of
the transpose of A′, and it can be copied on the output tape at a cost of O(mn�).

We are thus reduced to transposing an m × n matrix A with n a power of 2.
First, note that if n = 1, then the representations of A and of its transpose are the
same. For n ≥ 2 we proceed as follows. Let A1 be the submatrix of A formed of
the n/2 first coefficients of each row and A2 the submatrix of A formed of their n/2
last coefficients. Then, the row-major representation of the transpose of A is the row-
major representation of the transpose of A1 followed by the row-major representation
of the transpose of A2. Hence computing the transpose of A amounts to the following
operations:

• Uninterleaving: put A1 followed by A2 on a tape in place of the original A,
using a temporary auxiliary tape.

• Recursively call to replace A1 by its transpose at the same place, using a
temporary auxiliary tape, and do the same with A2.

The number T (m,n) of tape movements verifies an equation of the form

T (m,n) ≤ λ�mn + 2T (m,n/2),

for some constant λ. Therefore the overall cost is O(�mn log n) and the number of
cells visited on each tape is at most �mn. This concludes the proof in the case n ≤ m.

In the case m ≤ n, we use essentially the same recursive algorithm but with
the matrix split in two blocks of complete rows. Hence the algorithm for size m
decomposes in two recursive calls at size m/2 and one subsequent step of interleaving
the resulting matrices. In this way the logn factor is replaced with logm.

Corollary 19. Let M be an n×n matrix, with entries in Rk. Switching between
the two possible representations of M has bit complexity in O(�n2kmin(logn, log k))
and space complexity in O(�n2k).

Proof. Let M be represented on tape as a matrix of vectors. We can see the
data of this tape as the row-major representation of an n2 × k matrix over R. Let us
compute the transpose of this matrix using the algorithm of Lemma 18. We obtain
the representation of a k× n2 matrix over R; for i ≤ k, its ith entry is the row-major
representation of the n× n matrix made of the ith entries of M .

Acknowledgments. We thank Bruno Salvy for his comments on this paper,
Joachim von zur Gathen and Jürgen Gerhard for answering our questions on the
complexity of integer factorization, and the referees for their helpful comments.

REFERENCES

[1] J. Berkowitz, On computing the determinant in small parallel time using a small number of
processors, Inform. Process. Lett., 18 (1984), pp. 147–150.

[2] J. L. Bordewijk, Inter-reciprocity applied to electrical networks, Appl. Sci. Res. B., 6 (1956),
pp. 1–74.

[3] A. Borodin, Time space tradeoffs (getting closer to the barrier?), in Proceedings of the 4th
International Symposium on Algorithms and Computation, Lecture Notes in Comput.
Sci. 762, Springer-Verlag, London, 1993, pp. 209–220.

[4] A. Borodin and R. T. Moenck, Fast modular transforms, Comput. Systems Sci., 8 (1974),
pp. 366–386.

LINEAR RECURRENCES WITH POLYNOMIAL COEFFICIENTS 1805

[5] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language,
J. Symbolic Comput., 24 (1997), pp. 235–265. See also http://www.maths.usyd.edu.au.

[6] A. Bostan, P. Gaudry, and É. Schost, Linear recurrences with polynomial coefficients and
computation of the Cartier-Manin operator on hyperelliptic curves, in Proceedings of the
International Conference on Finite Fields and Applications (Toulouse, 2003), Lecture Notes
in Comput. Sci. 2948, Springer, Berlin, 2004, pp. 40–58.

[7] A. Bostan, G. Lecerf, and É. Schost, Tellegen’s principle into practice, in Proceedings of
the International Conference on Symbolic and Algebraic Computation, ACM Press, New
York, 2003, pp. 37–44.

[8] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic Complexity Theory,
Grundlehren der Math. Wiss. 315, Springer-Verlag, Berlin, 1997.

[9] D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbitrary algebras,
Acta Inform., 28 (1991), pp. 693–701.

[10] P. Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris, 244
(1957), pp. 426–428.

[11] D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication ac-
cording to Ramanujan, in Ramanujan Revisited (Urbana-Champaign, IL, 1987), Academic
Press, Boston, MA, 1988, pp. 375–472.

[12] S. Cook, On the Minimum Computation Time of Functions, Ph.D. thesis, Harvard University,
Cambridge, MA, 1966.

[13] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput., 9 (1990), pp. 251–280.

[14] P. Flajolet and B. Salvy, The SIGSAM challenges: Symbolic asymptotics in practice,
SIGSAM Bull., 31 (1997), pp. 36–47.

[15] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press,
Cambridge, UK, 1999.

[16] J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials,
Comput. Complexity, 2 (1992), pp. 187–224.

[17] P. Gaudry and N. Gürel, Counting points in medium characteristic using Kedlaya’s algo-
rithm, Experiment. Math., 12 (2003), pp. 395–402.

[18] P. Gaudry and R. Harley, Counting points on hyperelliptic curves over finite fields, in
Algorithmic Number Theory (ANTS-IV), Lecture Notes in Comput. Sci. 1838, Springer,
Berlin, 2000, pp. 313–332.

[19] P. Gaudry and É. Schost, Construction of secure random curves of genus 2 over prime
fields, in Advances in Cryptology (EUROCRYPT 2004), C. Cachin and J. Camenisch,
eds., Lecture Notes in Comput. Sci. 3027, Springer, Berlin, 2004, pp. 239–256.

[20] G. Hanrot, M. Quercia, and P. Zimmermann, The middle product algorithm, I. Speeding
up the division and square root of power series, Appl. Algebra Engrg. Comm. Comput.,
14 (2004), pp. 415–438.

[21] H. Hasse and E. Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade p über
einem algebraischen Funktionenkörper der Charakteristik p, Monatsch. Math. Phys., 43
(1936), pp. 477–492.

[22] E. Horowitz, A fast method for interpolation using preconditioning, Inform. Process. Lett., 1
(1972), pp. 157–163.

[23] E. Kaltofen, R. M. Corless, and D. J. Jeffrey, Challenges of symbolic computation: My
favorite open problems, J. Symbolic Comput., 29 (2000), pp. 891–919.

[24] K. S. Kedlaya, Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology,
J. Ramanujan Math. Soc., 16 (2001), pp. 323–338.

[25] D. E. Knuth, The analysis of algorithms, in Actes du Congrès International des
Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971, pp. 269–274.

[26] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The number
field sieve, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
ACM, New York, 1990, pp. 564–572.

[27] H. W. Lenstra, Jr., and C. Pomerance, A rigorous time bound for factoring integers, J.
Amer. Math. Soc., 5 (1992), pp. 483–516.

[28] J. I. Manin, The Hasse-Witt matrix of an algebraic curve, Trans. Amer. Math. Soc., 45 (1965),
pp. 245–264.

[29] K. Matsuo, J. Chao, and S. Tsujii, An improved baby step giant step algorithm for point
counting of hyperelliptic curves over finite fields, in Algorithmic Number Theory (ANTS-
V), Lecture Notes in Comput. Sci. 2369, Springer, Berlin, 2002, pp. 461–474.

[30] J. McKee and R. Pinch, Old and new deterministic factoring algorithms, in Algorithmic
Number Theory (Talence, 1996), Lecture Notes in Comput. Sci. 1122, Springer, Berlin,
1996, pp. 217–224.

1806 ALIN BOSTAN, PIERRICK GAUDRY, AND ÉRIC SCHOST

[31] R. T. Moenck and A. Borodin, Fast modular transforms via division, in Proceedings of the
Thirteenth Annual IEEE Symposium on Switching and Automata Theory (University of
Maryland, College Park, MD), 1972, pp. 90–96.

[32] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp., 48 (1987), pp. 243–264.

[33] P. L. Montgomery, An FFT Extension of the Elliptic Curve Method of Factorization, Ph.D.
thesis, University of California, Los Angeles CA, 1992.

[34] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Math.
Comp., 55 (1990), pp. 745–763.

[35] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.
Soc., 76 (1974), pp. 521–528.

[36] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in Compu-
tational Methods in Number Theory, Part I, Math. Centre Tracts 154, Math. Centrum,
Amsterdam, 1982, pp. 89–139.

[37] T. Satoh, The canonical lift of an ordinary elliptic curve over a finite field and its point
counting, J. Ramanujan Math. Soc., 15 (2000), pp. 247–270.

[38] A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform., 1 (1971),
pp. 139–144.

[39] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2,
Acta Inform., 7 (1977), pp. 395–398.

[40] A. Schönhage, A. F. W. Grotefeld, and E. Vetter, Fast Algorithms, Bibliographisches
Institut, Mannheim, 1994.

[41] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7 (1971),
pp. 281–292.

[42] V. Shoup, NTL: A library for doing number theory. http://www.shoup.net/ntl (2005).
[43] V. Shoup, A fast deterministic algorithm for factoring polynomials over finite fields of small

characteristic, in Proceedings of the International Conference on Symbolic and Algebraic
Computation, ACM Press, New York, 1991, pp. 14–21.

[44] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer-
Verlag, New York, 1996.

[45] A. Stein and H. Williams, Some methods for evaluating the regulator of a real quadratic
function field, Experiment. Math., 8 (1999), pp. 119–133.

[46] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354–356.
[47] V. Strassen, Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von

Interpolationskoeffizienten, Numer. Math., 20 (1972/73), pp. 238–251.
[48] V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein., 78

(1976/77), pp. 1–8.
[49] B. Tellegen, A general network theorem, with applications, Philips Res. Rep., 7 (1952),

pp. 259–269.
[50] N. Yui, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p > 2, J.

Algebra, 52 (1978), pp. 378–410.

	SMJCAT_V36_i1_p0001
	SMJCAT_V36_i1_p0016
	SMJCAT_V36_i1_p0028
	SMJCAT_V36_i1_p0056
	SMJCAT_V36_i1_p0083
	SMJCAT_V36_i1_p0099
	SMJCAT_V36_i1_p0132
	SMJCAT_V36_i1_p0158
	SMJCAT_V36_i1_p0184
	SMJCAT_V36_i1_p0207
	SMJCAT_V36_i1_p0230
	SMJCAT_V36_i1_p0247
	SMJCAT_V36_i1_p0279
	SMJCAT_V36_i2_p0281
	SMJCAT_V36_i2_p0310
	SMJCAT_V36_i2_p0326
	SMJCAT_V36_i2_p0354
	SMJCAT_V36_i2_p0394
	SMJCAT_V36_i2_p0411
	SMJCAT_V36_i2_p0433
	SMJCAT_V36_i2_p0457
	SMJCAT_V36_i2_p0498
	SMJCAT_V36_i2_p0516
	SMJCAT_V36_i2_p0543
	SMJCAT_V36_i3_p0563
	SMJCAT_V36_i3_p0595
	SMJCAT_V36_i3_p0609
	SMJCAT_V36_i3_p0635
	SMJCAT_V36_i3_p0657
	SMJCAT_V36_i3_p0681
	SMJCAT_V36_i3_p0695
	SMJCAT_V36_i3_p0721
	SMJCAT_V36_i3_p0740
	SMJCAT_V36_i3_p0763
	SMJCAT_V36_i3_p0779
	SMJCAT_V36_i3_p0803
	SMJCAT_V36_i3_p0815
	SMJCAT_V36_i3_p0835
	SMJCAT_V36_i4_p00ix
	SMJCAT_V36_i4_p0845
	SMJCAT_V36_i4_p0889
	SMJCAT_V36_i4_p0975
	SMJCAT_V36_i4_p1025
	SMJCAT_V36_i4_p1072
	SMJCAT_V36_i4_p1095
	SMJCAT_V36_i4_p1119
	SMJCAT_V36_i4_p1160
	SMJCAT_V36_i4_p1215
	SMJCAT_V36_i5_p1231
	SMJCAT_V36_i5_p1248
	SMJCAT_V36_i5_p1264
	SMJCAT_V36_i5_p1301
	SMJCAT_V36_i5_p1329
	SMJCAT_V36_i5_p1342
	SMJCAT_V36_i5_p1360
	SMJCAT_V36_i5_p1376
	SMJCAT_V36_i5_p1387
	SMJCAT_V36_i5_p1404
	SMJCAT_V36_i5_p1435
	SMJCAT_V36_i5_p1453
	SMJCAT_V36_i5_p1472
	SMJCAT_V36_i5_p1494
	SMJCAT_V36_i6_p1513
	SMJCAT_V36_i6_p1544
	SMJCAT_V36_i6_p1570
	SMJCAT_V36_i6_p1600
	SMJCAT_V36_i6_p1631
	SMJCAT_V36_i6_p1648
	SMJCAT_V36_i6_p1672
	SMJCAT_V36_i6_p1696
	SMJCAT_V36_i6_p1709
	SMJCAT_V36_i6_p1729
	SMJCAT_V36_i6_p1748
	SMJCAT_V36_i6_p1764
	SMJCAT_V36_i6_p1777

